1
|
Benvie AM, Berry DC. Reversing Pdgfrβ signaling restores metabolically active beige adipocytes by alleviating ILC2 suppression in aged and obese mice. Mol Metab 2024; 89:102028. [PMID: 39278546 PMCID: PMC11458544 DOI: 10.1016/j.molmet.2024.102028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/02/2024] [Accepted: 09/07/2024] [Indexed: 09/18/2024] Open
Abstract
OBJECTIVE Platelet Derived Growth Factor Receptor Beta (Pdgfrβ) suppresses the formation of cold temperature-induced beige adipocytes in aged mammals. We aimed to determine if deleting Pdgfrβ in aged mice could rejuvenate metabolically active beige adipocytes by activating group 2 innate lymphoid cells (ILC2), and whether this effect could counteract diet-induced obesity-associated beige fat decline. METHODS We employed Pdgfrβ gain-of-function and loss-of-function mouse models targeting beige adipocyte progenitor cells (APCs). Our approach included cold exposure, metabolic cage analysis, and age and diet-induced obesity models to examine beige fat development and metabolic function under varied Pdgfrβ activity. RESULTS Acute cold exposure alone enhanced metabolic benefits in aged mice, irrespective of beige fat generation. However, Pdgfrβ deletion in aged mice reestablished the formation of metabolically functional beige adipocytes, enhancing metabolism. Conversely, constitutive Pdgfrβ activation in young mice stymied beige fat development. Mechanistically, Pdgfrβ deletion upregulated IL-33, promoting ILC2 recruitment and activation, whereas Pdgfrβ activation reduced IL-33 levels and suppressed ILC2 activity. Notably, diet-induced obesity markedly increased Pdgfrβ expression and Stat1 signaling, which inhibited IL-33 induction and ILC2 activation. Genetic deletion of Pdgfrβ restored beige fat formation in obese mice, improving whole-body metabolism. CONCLUSIONS This study reveals that cold temperature exposure alone can trigger metabolic activation in aged mammals. However, reversing Pdgfrβ signaling in aged and obese mice not only restores beige fat formation but also renews metabolic function and enhances the immunological environment of white adipose tissue (WAT). These findings highlight Pdgfrβ as a crucial target for therapeutic strategies aimed at combating age- and obesity-related metabolic decline.
Collapse
Affiliation(s)
- Abigail M Benvie
- Division of Nutritional Sciences, Cornell University Ithaca, NY 14853, USA
| | - Daniel C Berry
- Division of Nutritional Sciences, Cornell University Ithaca, NY 14853, USA.
| |
Collapse
|
2
|
Zhang Y, Jiang Y, Yang X, Huang Y, Pan A, Liao Y. Adipose tissue senescence: Biological changes, hallmarks and therapeutic approaches. Mech Ageing Dev 2024; 222:111988. [PMID: 39265709 DOI: 10.1016/j.mad.2024.111988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/22/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
Adipose tissue (AT), the largest energy storage reservoir and endocrine organ, plays a crucial role in regulating systemic energy metabolism. As one of the most vulnerable tissues during aging, the plasticity of AT is impaired. With age, AT undergoes redistribution, characterized by expansion of visceral adipose tissue (VAT) and reduction of peripheral subcutaneous adipose tissue (SAT). Additionally, age-related changes in AT include reduced adipogenesis of white adipocytes, decreased proliferation and differentiation capacity of mesenchymal stromal/stem cells (MSCs), diminished thermogenic capacity in brown/beige adipocytes, and dysregulation of immune cells. Specific and sensitive hallmarks enable the monitoring and evaluation of the biological changes associated with aging. In this study, we have innovatively proposed seven characteristic hallmarks of AT senescence, including telomere attrition, epigenetic alterations, genomic instability, mitochondrial dysfunction, disabled macroautophagy, cellular senescence, and chronic inflammation, which are intricately interconnected and mutually regulated. Finally, we discussed anti-aging strategies targeting AT, offering insights into mitigating or delaying metabolic disturbances caused by AT senescence.
Collapse
Affiliation(s)
- Yajuan Zhang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Yaoyao Jiang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Xiaoyue Yang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - Yumei Huang
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China
| | - An Pan
- Department of Epidemiology and Biostatistics, Ministry of Education Key Laboratory of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| | - Yunfei Liao
- Department of Endocrinology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China; Hubei Provincial Clinical Research Center for Diabetes and Metabolic Disorders, Wuhan, China.
| |
Collapse
|
3
|
Markina NO, Matveev GA, Zasypkin GG, Golikova TI, Ryzhkova DV, Kononova YA, Danilov SD, Babenko AY. Role of Brown Adipose Tissue in Metabolic Health and Efficacy of Drug Treatment for Obesity. J Clin Med 2024; 13:4151. [PMID: 39064191 PMCID: PMC11277946 DOI: 10.3390/jcm13144151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/05/2024] [Accepted: 07/11/2024] [Indexed: 07/28/2024] Open
Abstract
(1) Background: Brown adipose tissue (BAT) is responsible for non-shivering thermogenesis, and its activation has become a new object as both a determinant of metabolic health and a target for therapy. This study aimed to identify the relationships between the presence of BAT, parameters that characterize metabolic health (glucose, lipids, blood pressure (BP)), and the dynamics of body mass index (BMI) during weight-reducing therapy. (2) Methods: The study included 72 patients with obesity. We investigated metabolic parameters, anthropometric parameters, and BP. Dual-energy X-ray absorptiometry (DXA) and positron emission tomography and computed tomography (PET/CT) imaging with 18F-fluorodeoxyglucose (18F-FDG) were performed. (3) Results: Before weight-reducing therapy, BAT was revealed only in 19% patients with obesity. The presence of BAT was associated with a lower risk of metabolic deviations that characterize metabolic syndrome: shorter waist circumference (WC) (p = 0.02) and lower levels of glucose (p = 0.03) and triglycerides (p = 0.03). Thereafter, patients were divided into four groups according to the type of therapy (only lifestyle modification or with Liraglutide or Reduxin or Reduxin Forte). We did not find a relationship between the presence of BAT and response to therapy: percent weight reduction was 10.4% in patients with BAT and 8.5% in patients without BAT (p = 0.78) during six months of therapy. But we noted a significant positive correlation between the volume of BAT and the effectiveness of weight loss at 3 months (r = 0.52, p = 0.016). The dynamic analysis of BAT after 6 months of therapy showed a significant increase in the volume of cold-induced metabolically active BAT, as determined by PET/CT with 18F-FDG in the Liraglutide group (p = 0.04) and an increase in the activity of BAT standardized uptake value (SUV mean and SUV max) in the Reduxin (p = 0.02; p = 0.01, respectively) and Liraglutide groups (p = 0.02 in both settings). (4) Conclusions: The presence of brown adipose tissue is associated with a lower risk of metabolic abnormalities. In general, our study demonstrated that well-established drugs in the treatment of obesity (Liraglutide and Reduxin) have one more mechanism for implementing their effects. These drugs have the ability to increase the activity of BAT. A significant positive relationship between the total volume of BAT and the percentage of weight loss may further determine the priority mechanism of the weight-reducing effect of these medicaments.
Collapse
Affiliation(s)
- Natalia O. Markina
- Laboratory of Prediabetes and Metabolic Disorders, WCRC “Centre for Personalized Medicine”, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia (G.A.M.); (G.G.Z.); (T.I.G.)
| | - Georgy A. Matveev
- Laboratory of Prediabetes and Metabolic Disorders, WCRC “Centre for Personalized Medicine”, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia (G.A.M.); (G.G.Z.); (T.I.G.)
| | - German G. Zasypkin
- Laboratory of Prediabetes and Metabolic Disorders, WCRC “Centre for Personalized Medicine”, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia (G.A.M.); (G.G.Z.); (T.I.G.)
| | - Tatiana I. Golikova
- Laboratory of Prediabetes and Metabolic Disorders, WCRC “Centre for Personalized Medicine”, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia (G.A.M.); (G.G.Z.); (T.I.G.)
| | - Daria V. Ryzhkova
- Laboratory of Prediabetes and Metabolic Disorders, WCRC “Centre for Personalized Medicine”, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia (G.A.M.); (G.G.Z.); (T.I.G.)
| | - Yulia A. Kononova
- Laboratory of Prediabetes and Metabolic Disorders, WCRC “Centre for Personalized Medicine”, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia (G.A.M.); (G.G.Z.); (T.I.G.)
| | - Sergey D. Danilov
- Facility of Digital Transformation, ITMO University, Saint Petersburg 197101, Russia
| | - Alina Yu. Babenko
- Laboratory of Prediabetes and Metabolic Disorders, WCRC “Centre for Personalized Medicine”, Almazov National Medical Research Centre, Saint Petersburg 197341, Russia (G.A.M.); (G.G.Z.); (T.I.G.)
| |
Collapse
|
4
|
Mun SK, Jang CJ, Jo S, Park SH, Sim HB, Ramos SC, Kim H, Choi YJ, Park DH, Park KW, Jeong BG, Kim DH, Kang KY, Kim JJ. Anti-obesity and immunomodulatory effects of oil and fermented extract dried from Tenebrio molitor larvae on aged obese mice. Anim Cells Syst (Seoul) 2024; 28:340-352. [PMID: 39011371 PMCID: PMC11249154 DOI: 10.1080/19768354.2024.2374547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/24/2024] [Indexed: 07/17/2024] Open
Abstract
Preventing disease and maintaining the health of the elderly are crucial goals for an aging population, with obesity and immune function restoration being of paramount importance. Obesity, particularly visceral obesity characterized by excessive fat accumulation around the abdominal organs, is linked to chronic conditions such as diabetes, hypertension, cardiovascular diseases, and immune dysfunction. Globally, obesity is considered a disease, prompting significant research interest in its treatment. Therefore, it is essential to explore potential therapeutic and preventive strategies to address obesity and the decline in immune function brought about by aging. Tenebrio molitor larvae (TML), commonly known as 'mealworms,' are rich in unsaturated fatty acids, including oleic and linoleic acids, and essential amino acids, such as isoleucine and tyrosine. In this study, we aimed to investigate the effects of the consumption of TML oil and mealworm fermented extract (MWF-1) on obesity and immunological changes in aged obese mice. Our data showed reduced body fat in 23-week-old C57BL/6 mice fed processed TML products for 6 weeks. Additionally, the characteristically high levels of serum triglycerides decreased by treating with TML oil. The immune responsiveness results confirmed an increase in B cells by treating with MWF-1, while cytokine levels (interferon-gamma, tumor necrosis factor-alpha, interleukin-2, and -6) were restored to levels similar to young mice. These results suggest that TML oil and MWF-1 are promising dietary supplements for addressing obesity and restoring immune function.
Collapse
Affiliation(s)
- Seul-Ki Mun
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Chang Joo Jang
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Semi Jo
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Si-Hyoun Park
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Hyun Bo Sim
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Sonny C Ramos
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Hyeongyeong Kim
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Yu-Jeong Choi
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Dae-Han Park
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| | - Kyung-Wuk Park
- R&D team, Suncheon Research Center for Bio Health Care, Suncheon, Republic of Korea
| | - Beom-Gyun Jeong
- R&D team, Suncheon Research Center for Bio Health Care, Suncheon, Republic of Korea
| | - Dae Heon Kim
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
- CCRIPO Inc., Daejeon, Republic of Korea
| | - Kyung-Yun Kang
- R&D team, Suncheon Research Center for Bio Health Care, Suncheon, Republic of Korea
| | - Jong-Jin Kim
- Department of Biomedical Science, Sunchon National University, Suncheon, Republic of Korea
| |
Collapse
|
5
|
Lin T, Mohammad A, Kolonin MG, Eckel-Mahan KL. Mechanisms and metabolic consequences of adipocyte progenitor replicative senescence. IMMUNOMETABOLISM (COBHAM, SURREY) 2024; 6:e00046. [PMID: 39211801 PMCID: PMC11356692 DOI: 10.1097/in9.0000000000000046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024]
Abstract
In recent decades, obesity has become a worldwide epidemic. As a result, the importance of adipose tissue (AT) as a metabolically active storage depot for lipids and a key mediator of body-wide metabolism and energy balance has been increasingly recognized. Emerging from the studies of AT in metabolic disease is a recognition of the importance of the adipocyte progenitor cell (APC) population of AT being the gatekeeper of adipocyte function. APCs have the capability to self-renew and undergo adipogenesis to propagate new adipocytes capable of lipid storage, which is important for maintaining a healthy fat pad, devoid of dysfunctional lipid droplet hypertrophy, inflammation, and fibrosis, which is linked to metabolic diseases, including type 2 diabetes. Like other dividing cells, APCs are at risk for undergoing cell senescence, a state of irreversible cell proliferation arrest that occurs under a variety of stress conditions, including DNA damage and telomere attrition. APC proliferation is controlled by a variety of factors, including paracrine and endocrine factors, quality and timing of energy intake, and the circadian clock system. Therefore, alteration in any of the underlying signaling pathways resulting in excessive proliferation of APCs can lead to premature APC senescence. Better understanding of APCs senescence mechanisms will lead to new interventions extending metabolic health.
Collapse
Affiliation(s)
- Tonghui Lin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Aftab Mohammad
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Mikhail G. Kolonin
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Molecular and Translational Biology Program, MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
- Department of Integrative Biology and Pharmacology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kristin L. Eckel-Mahan
- The Brown Foundation Institute of Molecular Medicine, University of Texas Health Science Center at Houston, Houston, TX, USA
- Molecular and Translational Biology Program, MD Anderson Cancer Center/UTHealth Graduate School of Biomedical Sciences, Houston, TX, USA
| |
Collapse
|
6
|
Yuan Y, Hu R, Park J, Xiong S, Wang Z, Qian Y, Shi Z, Wu R, Han Z, Ong SG, Lin S, Varady KA, Xu P, Berry DC, Shu G, Jiang Y. Macrophage-derived chemokine CCL22 establishes local LN-mediated adaptive thermogenesis and energy expenditure. SCIENCE ADVANCES 2024; 10:eadn5229. [PMID: 38924414 PMCID: PMC11204298 DOI: 10.1126/sciadv.adn5229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
There is a regional preference around lymph nodes (LNs) for adipose beiging. Here, we show that local LN removal within inguinal white adipose tissue (iWAT) greatly impairs cold-induced beiging, and this impairment can be restored by injecting M2 macrophages or macrophage-derived C-C motif chemokine (CCL22) into iWAT. CCL22 injection into iWAT effectively promotes iWAT beiging, while blocking CCL22 with antibodies can prevent it. Mechanistically, the CCL22 receptor, C-C motif chemokine receptor 4 (CCR4), within eosinophils and its downstream focal adhesion kinase/p65/interleukin-4 signaling are essential for CCL22-mediated beige adipocyte formation. Moreover, CCL22 levels are inversely correlated with body weight and fat mass in mice and humans. Acute elevation of CCL22 levels effectively prevents diet-induced body weight and fat gain by enhancing adipose beiging. Together, our data identify the CCL22-CCR4 axis as an essential mediator for LN-controlled adaptive thermogenesis and highlight its potential to combat obesity and its associated complications.
Collapse
Affiliation(s)
- Yexian Yuan
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ruoci Hu
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Jooman Park
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shaolei Xiong
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zilai Wang
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Yanyu Qian
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Zuoxiao Shi
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Ruifan Wu
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Zhenbo Han
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Sang-Ging Ong
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Shuhao Lin
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Krista A. Varady
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuwei Jiang
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL 60612, USA
- Division of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, IL 60612, USA
| |
Collapse
|
7
|
Liu M, Lu F, Feng J. Aging and homeostasis of the hypodermis in the age-related deterioration of skin function. Cell Death Dis 2024; 15:443. [PMID: 38914551 PMCID: PMC11196735 DOI: 10.1038/s41419-024-06818-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 02/01/2024] [Accepted: 06/10/2024] [Indexed: 06/26/2024]
Abstract
Adipose tissues in the hypodermis, the crucial stem cell reservoir in the skin and the endocrine organ for the maintenance of skin homeostasis undergo significant changes during skin aging. Dermal white adipose tissue (dWAT) has recently been recognized as an important organ for both non-metabolic and metabolic health in skin regeneration and rejuvenation. Defective differentiation, adipogenesis, improper adipocytokine production, and immunological dissonance dysfunction in dWAT lead to age-associated clinical changes. Here, we review age-related alterations in dWAT across levels, emphasizing the mechanisms underlying the regulation of aging. We also discuss the pathogenic changes involved in age-related fat dysfunction and the unfavorable consequences of accelerated skin aging, such as chronic inflammaging, immunosenescence, delayed wound healing, and fibrosis. Research has shown that adipose aging is an early initiation event and a potential target for extending longevity. We believe that adipose tissues play an essential role in aging and form a potential therapeutic target for the treatment of age-related skin diseases. Further research is needed to improve our understanding of this phenomenon.
Collapse
Affiliation(s)
- Meiqi Liu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Feng Lu
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China
| | - Jingwei Feng
- Department of Plastic Surgery, Nanfang Hospital, Southern Medical University, 1838 Guangzhou North Road, Guangzhou, Guangdong, 510515, People's Republic of China.
| |
Collapse
|
8
|
Benvie AM, Berry DC. Reversing Pdgfrβ Signaling Restores Metabolically Active Beige Adipocytes by Alleviating ILC2 Suppression in Aged and Obese Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.17.599436. [PMID: 38948810 PMCID: PMC11212986 DOI: 10.1101/2024.06.17.599436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Objective Platelet Derived Growth Factor Receptor Beta (Pdgfrβ) suppresses the formation of cold temperature-induced beige adipocytes in aged mammals. We aimed to determine if deleting Pdgfrβ in aged mice could rejuvenate metabolically active beige adipocytes by activating group 2 innate lymphoid cells (ILC2), and whether this effect could counteract diet-induced obesity-associated beige fat decline. Methods We employed Pdgfrβ gain-of-function and loss-of-function mouse models targeting beige adipocyte progenitor cells (APCs). Our approach included cold exposure, metabolic cage analysis, and age and diet-induced obesity models to examine beige fat development and metabolic function under varied Pdgfrβ activity. Results Acute cold exposure alone enhanced metabolic benefits in aged mice, irrespective of beige fat generation. However, Pdgfrβ deletion in aged mice reestablished the formation of metabolically functional beige adipocytes, enhancing metabolism. Conversely, constitutive Pdgfrβ activation in young mice stymied beige fat development. Mechanistically, Pdgfrβ deletion upregulated IL-33, promoting ILC2 recruitment and activation, whereas Pdgfrβ activation reduced IL-33 levels and suppressed ILC2 activity. Notably, diet-induced obesity markedly increased Pdgfrβ expression and Stat1 signaling, which inhibited IL-33 induction and ILC2 activation. Genetic deletion of Pdgfrβ restored beige fat formation in obese mice, improving whole-body metabolism. Conclusion This study reveals that cold temperature exposure alone can trigger metabolic activation in aged mammals. However, reversing Pdgfrβ signaling in aged and obese mice not only restores beige fat formation but also renews metabolic function and enhances the immunological environment of white adipose tissue (WAT). These findings highlight Pdgfrβ as a crucial target for therapeutic strategies aimed at combating age- and obesity-related metabolic decline.
Collapse
Affiliation(s)
- Abigail M. Benvie
- Division of Nutritional Sciences, Cornell University Ithaca, NY 14853 USA
| | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University Ithaca, NY 14853 USA
| |
Collapse
|
9
|
Ealey KN, Togo J, Lee JH, Patel Y, Kim JR, Park SY, Sung HK. Intermittent fasting promotes rejuvenation of immunosenescent phenotypes in aged adipose tissue. GeroScience 2024; 46:3457-3470. [PMID: 38379117 PMCID: PMC11009208 DOI: 10.1007/s11357-024-01093-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/03/2024] [Indexed: 02/22/2024] Open
Abstract
The aging of white adipose tissue (WAT) involves senescence of adipose stem and progenitor cells (ASPCs) and dysregulation of immune cell populations, serving as a major driver of age-associated adipose dysfunction and metabolic diseases. Conversely, the elimination of senescent ASPCs is associated with improvements in overall health. Intermittent fasting (IF), a dietary intervention that incorporates periodic cycles of fasting and refeeding, has been reported to promote weight loss and fat mass reduction and improve glucose and insulin homeostasis in both murine and human studies. While previous studies have assessed the effects of IF on obesity-associated metabolic dysfunction, few studies have examined the aging-specific changes to ASPCs and immune cell populations in WAT. Here, we show that IF in 18-20-month-old mice reduced senescent phenotypes of ASPCs and restored their adipogenic potential. Intriguingly, IF-treated mice exhibited an increase in adipose eosinophils, which has been reported to be associated with improved WAT homeostasis and immunological fitness in aged mice. The observed cellular and metabolic changes suggest that IF may be a feasible lifestyle regimen to reduce cellular senescence which could result in attenuation of downstream aging-induced WAT dysfunction and metabolic diseases.
Collapse
Affiliation(s)
- Kafi N Ealey
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jacques Togo
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Ju Hee Lee
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Yash Patel
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jae-Ryong Kim
- Department of Biochemistry, Yeungnam University, Daegu, 42415, Republic of Korea.
- Senotherapy-based Metabolic Disease Control Research Center, Yeungnam University, Daegu, 42415, Republic of Korea.
| | - So-Young Park
- Senotherapy-based Metabolic Disease Control Research Center, Yeungnam University, Daegu, 42415, Republic of Korea.
- Department of Physiology, Yeungnam University, Daegu, 42415, Republic of Korea.
| | - Hoon-Ki Sung
- Translational Medicine Program, The Hospital for Sick Children, Toronto, ON, Canada.
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada.
| |
Collapse
|
10
|
Park J, Hu R, Qian Y, Xiong S, El-Sabbagh AS, Ibrahim M, Wang J, Xu Z, Chen Z, Song Q, Song Z, Yan G, Mahmoud AM, He Y, Layden BT, Chen J, Ong SG, Xu P, Jiang Y. Estrogen counteracts age-related decline in beige adipogenesis through the NAMPT-regulated ER stress response. NATURE AGING 2024; 4:839-853. [PMID: 38858606 DOI: 10.1038/s43587-024-00633-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 04/17/2024] [Indexed: 06/12/2024]
Abstract
Thermogenic beige adipocytes are recognized as potential therapeutic targets for combating metabolic diseases. However, the metabolic advantages that they offer are compromised with aging. Here we show that treating mice with estrogen (E2), a hormone that decreases with age, can counteract the age-related decline in beige adipogenesis when exposed to cold temperature while concurrently enhancing energy expenditure and improving glucose tolerance in mice. Mechanistically, we found that nicotinamide phosphoribosyl transferase (NAMPT) plays a pivotal role in facilitating the formation of E2-induced beige adipocytes, which subsequently suppresses the onset of age-related endoplasmic reticulum (ER) stress. Furthermore, we found that targeting NAMPT signaling, either genetically or pharmacologically, can restore the formation of beige adipocytes by increasing the number of perivascular adipocyte progenitor cells. Conversely, the absence of NAMPT signaling prevents this process. Together, our findings shed light on the mechanisms regulating the age-dependent impairment of beige adipocyte formation and underscore the E2-NAMPT-controlled ER stress pathway as a key regulator of this process.
Collapse
Affiliation(s)
- Jooman Park
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Ruoci Hu
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA
| | - Yanyu Qian
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Shaolei Xiong
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
- Department of Microbiology and Immunology, University of Illinois Chicago, Chicago, IL, USA
| | - Asma Sana El-Sabbagh
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Meram Ibrahim
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Jaden Wang
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Ziqiao Xu
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL, USA
| | - Zhengjia Chen
- Division of Epidemiology and Biostatistics, School of Public Health, University of Illinois Chicago, Chicago, IL, USA
- Biostatistics Shared Resource, University of Illinois Cancer Center, Chicago, IL, USA
| | - Qing Song
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois Chicago, Chicago, IL, USA
| | - Gege Yan
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Abeer M Mahmoud
- Division of Endocrinology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Yanlin He
- Pennington Biomedical Research Center, Louisiana State University, Baton Rouge, LA, USA
| | - Brian T Layden
- Division of Endocrinology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
- Jesse Brown Medical VA Medical Center, Chicago, IL, USA
| | - Jiwang Chen
- Division of Pulmonary, Critical Care, Sleep & Allergy, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Sang-Ging Ong
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois Chicago, Chicago, IL, USA
- Division of Cardiology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, College of Medicine, University of Illinois Chicago, Chicago, IL, USA.
- Department of Pharmaceutical Sciences, University of Illinois Chicago, Chicago, IL, USA.
- Division of Endocrinology, Department of Medicine, University of Illinois Chicago, Chicago, IL, USA.
| |
Collapse
|
11
|
Lee D, Benvie AM, Steiner BM, Kolba NJ, Ford JG, McCabe SM, Jiang Y, Berry DC. Smooth muscle cell-derived Cxcl12 directs macrophage accrual and sympathetic innervation to control thermogenic adipose tissue. Cell Rep 2024; 43:114169. [PMID: 38678562 PMCID: PMC11413973 DOI: 10.1016/j.celrep.2024.114169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/11/2024] [Accepted: 04/15/2024] [Indexed: 05/01/2024] Open
Abstract
Sympathetic innervation of brown adipose tissue (BAT) controls mammalian adaptative thermogenesis. However, the cellular and molecular underpinnings contributing to BAT innervation remain poorly defined. Here, we show that smooth muscle cells (SMCs) support BAT growth, lipid utilization, and thermogenic plasticity. Moreover, we find that BAT SMCs express and control the bioavailability of Cxcl12. SMC deletion of Cxcl12 fosters brown adipocyte lipid accumulation, reduces energy expenditure, and increases susceptibility to diet-induced metabolic dysfunction. Mechanistically, we find that Cxcl12 stimulates CD301+ macrophage recruitment and supports sympathetic neuronal maintenance. Administering recombinant Cxcl12 to obese mice or leptin-deficient (Ob/Ob) mice is sufficient to boost macrophage presence and drive sympathetic innervation to restore BAT morphology and thermogenic responses. Altogether, our data reveal an SMC chemokine-dependent pathway linking immunological infiltration and sympathetic innervation as a rheostat for BAT maintenance and thermogenesis.
Collapse
Affiliation(s)
- Derek Lee
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Abigail M Benvie
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Benjamin M Steiner
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Nikolai J Kolba
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Josie G Ford
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Sean M McCabe
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL 60612, USA
| | - Daniel C Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
12
|
Holman CD, Sakers AP, Calhoun RP, Cheng L, Fein EC, Jacobs C, Tsai L, Rosen ED, Seale P. Aging impairs cold-induced beige adipogenesis and adipocyte metabolic reprogramming. eLife 2024; 12:RP87756. [PMID: 38775132 PMCID: PMC11111218 DOI: 10.7554/elife.87756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/24/2024] Open
Abstract
The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process in mice. We found that aging increases the expression of Cd9 and other fibro-inflammatory genes in fibroblastic ASPCs and blocks their differentiation into beige adipocytes. Fibroblastic ASPC populations from young and aged mice were equally competent for beige differentiation in vitro, suggesting that environmental factors suppress adipogenesis in vivo. Examination of adipocytes by single nucleus RNA-sequencing identified compositional and transcriptional differences in adipocyte populations with aging and cold exposure. Notably, cold exposure induced an adipocyte population expressing high levels of de novo lipogenesis (DNL) genes, and this response was severely blunted in aged animals. We further identified Npr3, which encodes the natriuretic peptide clearance receptor, as a marker gene for a subset of white adipocytes and an aging-upregulated gene in adipocytes. In summary, this study indicates that aging blocks beige adipogenesis and dysregulates adipocyte responses to cold exposure and provides a resource for identifying cold and aging-regulated pathways in adipose tissue.
Collapse
Affiliation(s)
- Corey D Holman
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Alexander P Sakers
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Ryan P Calhoun
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Lan Cheng
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Ethan C Fein
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| | - Christopher Jacobs
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical CenterBostonUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
| | - Linus Tsai
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical CenterBostonUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
| | - Evan D Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical CenterBostonUnited States
- Broad Institute of MIT and HarvardCambridgeUnited States
- Harvard Medical SchoolBostonUnited States
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism, Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
13
|
Zhang X, Wang Q, Wang Y, Ma C, Zhao Q, Yin H, Li L, Wang D, Huang Y, Zhao Y, Shi X, Li X, Huang C. Interleukin-6 promotes visceral adipose tissue accumulation during aging via inhibiting fat lipolysis. Int Immunopharmacol 2024; 132:111906. [PMID: 38593501 DOI: 10.1016/j.intimp.2024.111906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/06/2024] [Accepted: 03/18/2024] [Indexed: 04/11/2024]
Abstract
BACKGROUND Age-related visceral obesity could contribute to the development of cardiometabolic complications. The pathogenesis of visceral fat mass accumulation during the aging process remains complex and largely unknown. Interleukin-6 (IL-6) has emerged as one of the prominent inflammaging markers which are elevated in circulation during aging. However, the precise role of IL-6 in regulating age-related visceral adipose tissue accumulation remains uncertain. RESULTS A cross-sectional study including 77 older adults (≥65 years of age) was initially conducted. There was a significant positive association between serum IL-6 levels and visceral fat mass. We subsequently validated a modest but significant elevation in serum IL-6 levels in aged mice. Furthermore, we demonstrated that compared to wildtype control, IL-6 deficiency (IL-6 KO) significantly attenuated the accumulation of visceral adipose tissue during aging. Further metabolic characterization suggested that IL-6 deficiency resulted in improved lipid metabolism parameters and energy expenditure in aged mice. Moreover, histological examinations of adipose depots revealed that the absence of IL-6 ameliorated adipocyte hypertrophy in visceral adipose tissue of aged mice. Mechanically, the ablation of IL-6 could promote the PKA-mediated lipolysis and consequently mitigate lipid accumulation in adipose tissue in aged mice. CONCLUSION Our findings identify a detrimental role of IL-6 during the aging process by promoting visceral adipose tissue accumulation through inhibition of lipolysis. Therefore, strategies aimed at preventing or reducing IL-6 levels may potentially ameliorate age-related obesity and improve metabolism during aging.
Collapse
Affiliation(s)
- Xiaofang Zhang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Qingxuan Wang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Yaru Wang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Chen Ma
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Qing Zhao
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Hongyan Yin
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Long Li
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China; Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Dongmei Wang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China; Department of Public Health and Medical Technology, Xiamen Medical College, Xiamen 361023, China
| | - Yinxiang Huang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Yan Zhao
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Xiulin Shi
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China
| | - Xuejun Li
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China.
| | - Caoxin Huang
- Department of Endocrinology and Diabetes, Xiamen Diabetes Institute, Fujian Key Laboratory of Translational Research for Diabetes, The First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen 361003, China.
| |
Collapse
|
14
|
Pozzo LD, Xu Z, Lin S, Wang J, Wang Y, Enechojo OS, Abankwah JK, Peng Y, Chu X, Zhou H, Bian Y. Role of epigenetics in the regulation of skin aging and geroprotective intervention: A new sight. Biomed Pharmacother 2024; 174:116592. [PMID: 38615608 DOI: 10.1016/j.biopha.2024.116592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/07/2024] [Accepted: 04/10/2024] [Indexed: 04/16/2024] Open
Abstract
Multiple epigenetic factors play a regulatory role in maintaining the homeostasis of cutaneous components and are implicated in the aging process of the skin. They have been associated with the activation of the senescence program, which is the primary contributor to age-related decline in the skin. Senescent species drive a series of interconnected processes that impact the immediate surroundings, leading to structural changes, diminished functionality, and heightened vulnerability to infections. Geroprotective medicines that may restore the epigenetic balance represent valid therapeutic alliances against skin aging. Most of them are well-known Western medications such as metformin, nicotinamide adenine dinucleotide (NAD+), rapamycin, and histone deacetylase inhibitors, while others belong to Traditional Chinese Medicine (TCM) remedies for which the scientific literature provides limited information. With the help of the Geroprotectors.org database and a comprehensive analysis of the referenced literature, we have compiled data on compounds and formulae that have shown potential in preventing skin aging and have been identified as epigenetic modulators.
Collapse
Affiliation(s)
- Lisa Dal Pozzo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Zhe Xu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Shan Lin
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Jida Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ying Wang
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Ogbe Susan Enechojo
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Joseph Kofi Abankwah
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Yanfei Peng
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Xiaoqian Chu
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Huifang Zhou
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Yuhong Bian
- School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| |
Collapse
|
15
|
Iacobini C, Vitale M, Haxhi J, Menini S, Pugliese G. Impaired Remodeling of White Adipose Tissue in Obesity and Aging: From Defective Adipogenesis to Adipose Organ Dysfunction. Cells 2024; 13:763. [PMID: 38727299 PMCID: PMC11083890 DOI: 10.3390/cells13090763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/13/2024] Open
Abstract
The adipose organ adapts and responds to internal and environmental stimuli by remodeling both its cellular and extracellular components. Under conditions of energy surplus, the subcutaneous white adipose tissue (WAT) is capable of expanding through the enlargement of existing adipocytes (hypertrophy), followed by de novo adipogenesis (hyperplasia), which is impaired in hypertrophic obesity. However, an impaired hyperplastic response may result from various defects in adipogenesis, leading to different WAT features and metabolic consequences, as discussed here by reviewing the results of the studies in animal models with either overexpression or knockdown of the main molecular regulators of the two steps of the adipogenesis process. Moreover, impaired WAT remodeling with aging has been associated with various age-related conditions and reduced lifespan expectancy. Here, we delve into the latest advancements in comprehending the molecular and cellular processes underlying age-related changes in WAT function, their involvement in common aging pathologies, and their potential as therapeutic targets to influence both the health of elderly people and longevity. Overall, this review aims to encourage research on the mechanisms of WAT maladaptation common to conditions of both excessive and insufficient fat tissue. The goal is to devise adipocyte-targeted therapies that are effective against both obesity- and age-related disorders.
Collapse
|
16
|
Yu X, Benitez G, Wei PT, Krylova SV, Song Z, Liu L, Zhang M, Xiaoli AM, Wei H, Chen F, Sidoli S, Yang F, Shinoda K, Pessin JE, Feng D. Involution of brown adipose tissue through a Syntaxin 4 dependent pyroptosis pathway. Nat Commun 2024; 15:2856. [PMID: 38565851 PMCID: PMC10987578 DOI: 10.1038/s41467-024-46944-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 03/15/2024] [Indexed: 04/04/2024] Open
Abstract
Aging, chronic high-fat diet feeding, or housing at thermoneutrality induces brown adipose tissue (BAT) involution, a process characterized by reduction of BAT mass and function with increased lipid droplet size. Single nuclei RNA sequencing of aged mice identifies a specific brown adipocyte population of Ucp1-low cells that are pyroptotic and display a reduction in the longevity gene syntaxin 4 (Stx4a). Similar to aged brown adipocytes, Ucp1-STX4KO mice display loss of brown adipose tissue mass and thermogenic dysfunction concomitant with increased pyroptosis. Restoration of STX4 expression or suppression of pyroptosis activation protects against the decline in both mass and thermogenic activity in the aged and Ucp1-STX4KO mice. Mechanistically, STX4 deficiency reduces oxidative phosphorylation, glucose uptake, and glycolysis leading to reduced ATP levels, a known triggering signal for pyroptosis. Together, these data demonstrate an understanding of rapid brown adipocyte involution and that physiologic aging and thermogenic dysfunction result from pyroptotic signaling activation.
Collapse
Affiliation(s)
- Xiaofan Yu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Gabrielle Benitez
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Peter Tszki Wei
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Sofia V Krylova
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Ziyi Song
- Guangxi Key Laboratory of Animal Breeding, Disease Control and Prevention, College of Animal Science and Technology, Guangxi University, Nanning, Guangxi, 530004, China
| | - Li Liu
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Meifan Zhang
- Center for Advanced Biotechnology and Medicine, Rutgers University, Piscataway, NJ, 08854, USA
| | - Alus M Xiaoli
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Henna Wei
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Fenfen Chen
- Department of Animal Science, College of Life Science, Southwest Forestry University, Kunming, Yunnan, 650244, China
| | - Simone Sidoli
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Fajun Yang
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Developmental and Molecular Biology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Kosaku Shinoda
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jeffrey E Pessin
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Daorong Feng
- Department of Medicine, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
- Fleischer Institute for Diabetes and Metabolism, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
17
|
Zhang J, Kibret BG, Vatner DE, Vatner SF. The role of brown adipose tissue in mediating healthful longevity. THE JOURNAL OF CARDIOVASCULAR AGING 2024; 4:17. [PMID: 39119146 PMCID: PMC11309368 DOI: 10.20517/jca.2024.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
There are two major subtypes of adipose tissue, i.e., white adipose tissue (WAT) and brown adipose tissue (BAT). It has been known for a long time that WAT mediates obesity and impairs healthful longevity. More recently, interest has focused on BAT, which, unlike WAT, actually augments healthful aging. The goal of this review is to examine the role of BAT in mediating healthful longevity. A major role for BAT and its related beige adipose tissue is thermogenesis, as a mechanism to maintain body temperature by producing heat through uncoupling protein 1 (UCP1) or through UCP1-independent thermogenic pathways. Our hypothesis is that healthful longevity is, in part, mediated by BAT. BAT protects against the major causes of impaired healthful longevity, i.e., obesity, diabetes, cardiovascular disorders, cancer, Alzheimer's disease, reduced exercise tolerance, and impaired blood flow. Several genetically engineered mouse models have shown that BAT enhances healthful aging and that their BAT is more potent than wild-type (WT) BAT. For example, when BAT, which increases longevity and exercise performance in mice with disruption of the regulator of G protein signaling 14 (RGS14), is transplanted to WT mice, their exercise capacity is enhanced at 3 days after BAT transplantation, whereas BAT transplantation from WT to WT mice also resulted in increased exercise performance, but only at 8 weeks after transplantation. In view of the ability of BAT to mediate healthful longevity, it is likely that a pharmaceutical analog of BAT will become a novel therapeutic modality.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Berhanu Geresu Kibret
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Dorothy E. Vatner
- Department of Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| | - Stephen F. Vatner
- Department of Cell Biology and Molecular Medicine, Rutgers, New Jersey Medical School, Newark, NJ 07103, USA
| |
Collapse
|
18
|
Holman CD, Sakers AP, Calhoun RP, Cheng L, Fein EC, Jacobs C, Tsai L, Rosen ED, Seale P. Aging impairs cold-induced beige adipogenesis and adipocyte metabolic reprogramming. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.03.20.533514. [PMID: 36993336 PMCID: PMC10055201 DOI: 10.1101/2023.03.20.533514] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The energy-burning capability of beige adipose tissue is a potential therapeutic tool for reducing obesity and metabolic disease, but this capacity is decreased by aging. Here, we evaluate the impact of aging on the profile and activity of adipocyte stem and progenitor cells (ASPCs) and adipocytes during the beiging process. We found that aging increases the expression of Cd9 and other fibro-inflammatory genes in fibroblastic ASPCs and blocks their differentiation into beige adipocytes. Fibroblastic ASPC populations from young and aged mice were equally competent for beige differentiation in vitro, suggesting that environmental factors suppress adipogenesis in vivo. Examination of adipocytes by single nucleus RNA-sequencing identified compositional and transcriptional differences in adipocyte populations with age and cold exposure. Notably, cold exposure induced an adipocyte population expressing high levels of de novo lipogenesis (DNL) genes, and this response was severely blunted in aged animals. We further identified natriuretic peptide clearance receptor Npr3, a beige fat repressor, as a marker gene for a subset of white adipocytes and an aging-upregulated gene in adipocytes. In summary, this study indicates that aging blocks beige adipogenesis and dysregulates adipocyte responses to cold exposure and provides a unique resource for identifying cold and aging-regulated pathways in adipose tissue.
Collapse
Affiliation(s)
- Corey D. Holman
- Institute for Diabetes, Obesity & Metabolism; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Alexander P. Sakers
- Institute for Diabetes, Obesity & Metabolism; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ryan P. Calhoun
- Institute for Diabetes, Obesity & Metabolism; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Lan Cheng
- Institute for Diabetes, Obesity & Metabolism; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Ethan C. Fein
- Institute for Diabetes, Obesity & Metabolism; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Christopher Jacobs
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Linus Tsai
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Evan D. Rosen
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Patrick Seale
- Institute for Diabetes, Obesity & Metabolism; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
- Department of Cell and Developmental Biology; Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
19
|
Yu A, Yu R, Liu H, Ge C, Dang W. SIRT1 safeguards adipogenic differentiation by orchestrating anti-oxidative responses and suppressing cellular senescence. GeroScience 2024; 46:1107-1127. [PMID: 37420111 PMCID: PMC10828476 DOI: 10.1007/s11357-023-00863-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Accepted: 06/23/2023] [Indexed: 07/09/2023] Open
Abstract
Adipose tissue is an important endocrine organ that regulates metabolism, immune response and aging in mammals. Healthy adipocytes promote tissue homeostasis and longevity. SIRT1, a conserved NAD+-dependent deacetylase, negatively regulates adipogenic differentiation by deacetylating and inhibiting PPAR-γ. However, knocking out SIRT1 in mesenchymal stem cells (MSCs) in mice not only causes defects in osteogenesis, but also results in the loss of adipose tissues, suggesting that SIRT1 is also important for adipogenic differentiation.Here, we report that severe impairment of SIRT1 function in MSCs caused significant defects and cellular senescence during adipogenic differentiation. These were observed only when inhibiting SIRT1 during adipogenesis, not when SIRT1 inhibition was imposed before or after adipogenic differentiation. Cells generate high levels of reactive oxygen species (ROS) during adipogenic differentiation. Inhibiting SIRT1 during differentiation resulted in impaired oxidative stress response. Increased oxidative stress with H2O2 or SOD2 knockdown phenocopied SIRT1 inhibition. Consistent with these observations, we found increased p16 levels and senescence associated β-galactosidase activities in the inguinal adipose tissue of MSC-specific SIRT1 knockout mice. Furthermore, previously identified SIRT1 targets involved in oxidative stress response, FOXO3 and SUV39H1 were both required for healthy adipocyte formation during differentiation. Finally, senescent adipocytes produced by SIRT1 inhibition showed decreased Akt phosphorylation in response to insulin, a lack of response to adipocytes browning signals, and increased survival for cancer cells under chemotherapy drug treatments. These findings suggest a novel safeguard function for SIRT1 in regulating MSC adipogenic differentiation, distinct from its roles in suppressing adipogenic differentiation.
Collapse
Affiliation(s)
- An Yu
- Yunnan Key Laboratory for Basic Research On Bone and Joint Diseases &, Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, 650214, Yunnan, China
- Baylor College of Medicine, Huffington Center On Aging, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Ruofan Yu
- Baylor College of Medicine, Huffington Center On Aging, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Haiying Liu
- Baylor College of Medicine, Huffington Center On Aging, 1 Baylor Plaza, Houston, TX, 77030, USA
| | - Chenliang Ge
- Yunnan Key Laboratory for Basic Research On Bone and Joint Diseases &, Yunnan Stem Cell Translational Research Center, Kunming University, Kunming, 650214, Yunnan, China
| | - Weiwei Dang
- Baylor College of Medicine, Huffington Center On Aging, 1 Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
20
|
Kesharwani D, Brown AC. Navigating the Adipocyte Precursor Niche: Cell-Cell Interactions, Regulatory Mechanisms and Implications for Adipose Tissue Homeostasis. JOURNAL OF CELLULAR SIGNALING 2024; 5:65-86. [PMID: 38826152 PMCID: PMC11141760 DOI: 10.33696/signaling.5.114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Support for stem cell self-renewal and differentiation hinges upon the intricate microenvironment termed the stem cell 'niche'. Within the adipose tissue stem cell niche, diverse cell types, such as endothelial cells, immune cells, mural cells, and adipocytes, intricately regulate the function of adipocyte precursors. These interactions, whether direct or indirect, play a pivotal role in governing the balance between self-renewal and differentiation of adipocyte precursors into adipocytes. The mechanisms orchestrating the maintenance and coordination of this niche are still in the early stages of comprehension, despite their crucial role in regulating adipose tissue homeostasis. The complexity of understanding adipocyte precursor renewal and differentiation is amplified due to the challenges posed by the absence of suitable surface receptors for identification, limitations in creating optimal ex vivo culture conditions for expansion and constraints in conducting in vivo studies. This review delves into the current landscape of knowledge surrounding adipocyte precursors within the adipose stem cell niche. We will review the identification of adipocyte precursors, the cell-cell interactions they engage in, the factors influencing their renewal and commitment toward adipocytes and the transformations they undergo during instances of obesity.
Collapse
Affiliation(s)
- Devesh Kesharwani
- Center for Molecular Medicine, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
| | - Aaron C. Brown
- Center for Molecular Medicine, MaineHealth Institute for Research, 81 Research Drive, Scarborough, ME 04074, USA
- School of Biomedical Sciences and Engineering, The University of Maine, Orono, Maine 04469, USA
- Tufts University School of Medicine, 145 Harrison Ave, Boston, MA 02111, USA
| |
Collapse
|
21
|
Ren X, Zhuang H, Jiang F, Zhang Y, Zhou P. Barasertib impedes chondrocyte senescence and alleviates osteoarthritis by mitigating the destabilization of heterochromatin induced by AURKB. Biomed Pharmacother 2023; 166:115343. [PMID: 37634474 DOI: 10.1016/j.biopha.2023.115343] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/12/2023] [Accepted: 08/19/2023] [Indexed: 08/29/2023] Open
Abstract
Osteoarthritis (OA) is a common joint disease characterized by progressive cartilage loss that causes disability worldwide. The accumulation of senescent chondrocytes in aging human cartilage contributes to the high incidence of OA. Heterochromatin instability, the hallmark and driving factor of senescence, regulates the expression of the senescence-associated secretory phenotype that induces inflammation and cartilage destruction. However, the role of heterochromatin instability in OA progression remains unclear. In this work, we identified AURKB as a key senescence-associated chromatin regulator using bioinformatics methods. We found that AURKB was upregulated in OA cartilage and chondrocytes exposed to abnormal mechanical strain. Overexpression of AURKB could cause senescence and heterochromatin instability. Furthermore, the AURKB inhibitor Barasertib reversed senescence and heterochromatin instability in chondrocytes and alleviated OA in a rat model. Mechanistically, abnormal mechanical strain increased AURKB levels through the Piezo1/Ca2+ signaling axis. Blocking Piezo1/Ca2+ signaling by short interfering RNA against Piezo1 and Ca2+ chelator BAPTA could reduce the expression of AURKB and alleviate senescence in chondrocytes exposed to abnormal mechanical strain. In conclusion, our data confirmed that abnormal mechanical strain increases the expression of AURKB by activating the Piezo1/Ca2+ signaling axis, leading to destabilized heterochromatin and senescence in chondrocytes, whereas Barasertib consolidates heterochromatin, counteracts senescence and alleviates OA.
Collapse
Affiliation(s)
- Xunshan Ren
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huangming Zhuang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Fuze Jiang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuelong Zhang
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China
| | - Panghu Zhou
- Department of Orthopedics, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
22
|
Park J, Hu R, Xiong S, Qian Y, El-Sabbagh AS, Ibrahim M, Song Q, Yan G, Song Z, Mahmoud AM, He Y, Layden BT, Chen J, Ong SG, Xu P, Jiang Y. Estrogen prevents age-dependent beige adipogenesis failure through NAMPT-controlled ER stress pathway. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555821. [PMID: 37693431 PMCID: PMC10491185 DOI: 10.1101/2023.08.31.555821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Thermogenic beige adipocytes are recognized as potential therapeutic targets for combating metabolic diseases. However, the metabolic advantages they offer are compromised with aging. Here, we show that treating mice with estrogen (E2), a hormone that decreases with age, to mice can counteract the aging- related decline in beige adipocyte formation when subjected to cold, while concurrently enhancing energy expenditure and improving glucose tolerance. Mechanistically, we find that nicotinamide phosphoribosyltranferase (NAMPT) plays a pivotal role in facilitating the formation of E2-induced beige adipocytes, which subsequently suppresses the onset of age-related ER stress. Furthermore, we found that targeting NAMPT signaling, either genetically or pharmacologically, can restore the formation of beige adipocytes by increasing the number of perivascular adipocyte progenitor cells. Conversely, the absence of NAMPT signaling prevents this process. In conclusion, our findings shed light on the mechanisms governing the age-dependent impairment of beige adipocyte formation and underscore the E2-NAMPT controlled ER stress as a key regulator of this process. Highlights Estrogen restores beige adipocyte failure along with improved energy metabolism in old mice.Estrogen enhances the thermogenic gene program by mitigating age-induced ER stress.Estrogen enhances the beige adipogenesis derived from SMA+ APCs.Inhibiting the NAMPT signaling pathway abolishes estrogen-promoted beige adipogenesis.
Collapse
|
23
|
de Lange P, Lombardi A, Silvestri E, Cioffi F, Giacco A, Iervolino S, Petito G, Senese R, Lanni A, Moreno M. Physiological Approaches Targeting Cellular and Mitochondrial Pathways Underlying Adipose Organ Senescence. Int J Mol Sci 2023; 24:11676. [PMID: 37511435 PMCID: PMC10380998 DOI: 10.3390/ijms241411676] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/02/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
The adipose organ is involved in many metabolic functions, ranging from the production of endocrine factors to the regulation of thermogenic processes. Aging is a natural process that affects the physiology of the adipose organ, leading to metabolic disorders, thus strongly impacting healthy aging. Cellular senescence modifies many functional aspects of adipose tissue, leading to metabolic alterations through defective adipogenesis, inflammation, and aberrant adipocytokine production, and in turn, it triggers systemic inflammation and senescence, as well as insulin resistance in metabolically active tissues, leading to premature declined physiological features. In the various aging fat depots, senescence involves a multiplicity of cell types, including mature adipocytes and immune, endothelial, and progenitor cells that are aging, highlighting their involvement in the loss of metabolic flexibility, one of the common features of aging-related metabolic disorders. Since mitochondrial stress represents a key trigger of cellular senescence, and senescence leads to the accumulation of abnormal mitochondria with impaired dynamics and hindered homeostasis, this review focuses on the beneficial potential of targeting mitochondria, so that strategies can be developed to manage adipose tissue senescence for the treatment of age-related metabolic disorders.
Collapse
Affiliation(s)
- Pieter de Lange
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Assunta Lombardi
- Dipartimento di Biologia, Università degli Studi di Napoli "Federico II", Monte Sant'Angelo, Via Cinthia 4, 80126 Naples, Italy
| | - Elena Silvestri
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Federica Cioffi
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Antonia Giacco
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Stefania Iervolino
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| | - Giuseppe Petito
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Rosalba Senese
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Antonia Lanni
- Dipartimento di Scienze e Tecnologie Ambientali, Biologiche e Farmaceutiche, Università degli Studi della Campania "Luigi Vanvitelli", Via Vivaldi 43, 81130 Caserta, Italy
| | - Maria Moreno
- Dipartimento di Scienze e Tecnologie, Università degli Studi del Sannio, via De Sanctis snc, 82100 Benevento, Italy
| |
Collapse
|
24
|
Kasza I, Cuncannan C, Michaud J, Nelson D, Yen CLE, Jain R, Simcox J, MacDougald OA, Parks BW, Alexander CM. "Humanizing" mouse environments: Humidity, diurnal cycles and thermoneutrality. Biochimie 2023; 210:82-98. [PMID: 36372307 PMCID: PMC10172392 DOI: 10.1016/j.biochi.2022.10.015] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/18/2022] [Accepted: 10/25/2022] [Indexed: 11/13/2022]
Abstract
Thermoneutral housing has been shown to promote more accurate and robust development of several pathologies in mice. Raising animal housing temperatures a few degrees may create a relatively straightforward opportunity to improve translatability of mouse models. In this commentary, we discuss the changes of physiology induced in mice housed at thermoneutrality, and review techniques for measuring systemic thermogenesis, specifically those affecting storage and mobilization of lipids in adipose depots. Environmental cues are a component of the information integrated by the brain to calculate food consumption and calorie deposition. We show that relative humidity is one of those cues, inducing a rapid sensory response that is converted to a more chronic susceptibility to obesity. Given high inter-institutional variability in the regulation of relative humidity, study reproducibility may be improved by consideration of this factor. We evaluate a "humanized" environmental cycling protocol, where mice sleep in warm temperature housing, and are cool during the wake cycle. We show that this protocol suppresses adaptation to cool exposure, with consequence for adipose-associated lipid storage. To evaluate systemic cues in mice housed at thermoneutral temperatures, we characterized the circulating lipidome, and show that sera are highly depleted in some HDL-associated phospholipids, specifically phospholipids containing the essential fatty acid, 18:2 linoleic acid, and its derivative, arachidonic acid (20:4) and related ether-phospholipids. Given the role of these fatty acids in inflammatory responses, we propose they may underlie the differences in disease progression observed at thermoneutrality.
Collapse
Affiliation(s)
- Ildiko Kasza
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States
| | - Colleen Cuncannan
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States
| | - Julian Michaud
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States
| | - Dave Nelson
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States
| | - Chi-Liang E Yen
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States
| | - Raghav Jain
- Department of Biochemistry, University of Wisconsin-Madison, United States
| | - Judi Simcox
- Department of Biochemistry, University of Wisconsin-Madison, United States
| | - Ormond A MacDougald
- Department of Molecular & Integrative Physiology, University of Michigan, United States
| | - Brian W Parks
- Department of Nutritional Sciences, University of Wisconsin-Madison, United States
| | - Caroline M Alexander
- McArdle Laboratory for Cancer Research, University of Wisconsin-Madison, United States.
| |
Collapse
|
25
|
Fu T, Sun W, Xue J, Zhou Z, Wang W, Guo Q, Chen X, Zhou D, Xu Z, Liu L, Xiao L, Mao Y, Yang L, Yin Y, Zhang XN, Wan Q, Lu B, Chen Y, Zhu MS, Scherer PE, Fang L, Piao HL, Shao M, Gan Z. Proteolytic rewiring of mitochondria by LONP1 directs cell identity switching of adipocytes. Nat Cell Biol 2023; 25:848-864. [PMID: 37217599 DOI: 10.1038/s41556-023-01155-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 04/19/2023] [Indexed: 05/24/2023]
Abstract
Mitochondrial proteases are emerging as key regulators of mitochondrial plasticity and acting as both protein quality surveillance and regulatory enzymes by performing highly regulated proteolytic reactions. However, it remains unclear whether the regulated mitochondrial proteolysis is mechanistically linked to cell identity switching. Here we report that cold-responsive mitochondrial proteolysis is a prerequisite for white-to-beige adipocyte cell fate programming during adipocyte thermogenic remodelling. Thermogenic stimulation selectively promotes mitochondrial proteostasis in mature white adipocytes via the mitochondrial protease LONP1. Disruption of LONP1-dependent proteolysis substantially impairs cold- or β3 adrenergic agonist-induced white-to-beige identity switching of mature adipocytes. Mechanistically, LONP1 selectively degrades succinate dehydrogenase complex iron sulfur subunit B and ensures adequate intracellular succinate levels. This alters the histone methylation status on thermogenic genes and thereby enables adipocyte cell fate programming. Finally, augmented LONP1 expression raises succinate levels and corrects ageing-related impairments in white-to-beige adipocyte conversion and adipocyte thermogenic capacity. Together, these findings reveal that LONP1 links proteolytic surveillance to mitochondrial metabolic rewiring and directs cell identity conversion during adipocyte thermogenic remodelling.
Collapse
Affiliation(s)
- Tingting Fu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Wanping Sun
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Jiachen Xue
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Zheng Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Wen Wang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Qiqi Guo
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Xinyi Chen
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Danxia Zhou
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Zhisheng Xu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Lin Liu
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Liwei Xiao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Yan Mao
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Likun Yang
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Yujing Yin
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Xue-Na Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Qiangyou Wan
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Chinese Academy of Sciences, Shanghai, China
| | - Bin Lu
- Hengyang Medical College, University of South China, Hengyang, China
| | - Yuncong Chen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, China
| | - Min-Sheng Zhu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School of Nanjing University, Nanjing University, Nanjing, China
| | - Philipp E Scherer
- Touchstone Diabetes Center, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Fang
- Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing, China
| | - Hai-Long Piao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, China
| | - Mengle Shao
- CAS Key Laboratory of Molecular Virology and Immunology, The Center for Microbes, Development and Health, Chinese Academy of Sciences, Shanghai, China.
| | - Zhenji Gan
- State Key Laboratory of Pharmaceutical Biotechnology and MOE Key Laboratory of Model Animal for Disease Study, Model Animal Research Center, Division of Spine Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Medical School of Nanjing University, Nanjing University, Nanjing, China.
- Jiangsu Key Laboratory of Molecular Medicine, Chemistry and Biomedicine Innovation Center (ChemBIC), Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
26
|
Félix-Soriano E, Sáinz N, Gil-Iturbe E, Castilla-Madrigal R, Celay J, Fernández-Galilea M, Pejenaute Á, Lostao MP, Martínez-Climent JA, Moreno-Aliaga MJ. Differential remodeling of subcutaneous white and interscapular brown adipose tissue by long-term exercise training in aged obese female mice. J Physiol Biochem 2023:10.1007/s13105-023-00964-2. [PMID: 37204588 DOI: 10.1007/s13105-023-00964-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 04/26/2023] [Indexed: 05/20/2023]
Abstract
Obesity exacerbates aging-induced adipose tissue dysfunction. This study aimed to investigate the effects of long-term exercise on inguinal white adipose tissue (iWAT) and interscapular brown adipose tissue (iBAT) of aged obese mice. Two-month-old female mice received a high-fat diet for 4 months. Then, six-month-old diet-induced obese animals were allocated to sedentarism (DIO) or to a long-term treadmill training (DIOEX) up to 18 months of age. In exercised mice, iWAT depot revealed more adaptability, with an increase in the expression of fatty acid oxidation genes (Cpt1a, Acox1), and an amelioration of the inflammatory status, with a favorable modulation of pro/antiinflammatory genes and lower macrophage infiltration. Additionally, iWAT of trained animals showed an increment in the expression of mitochondrial biogenesis (Pgc1a, Tfam, Nrf1), thermogenesis (Ucp1), and beige adipocytes genes (Cd137, Tbx1). In contrast, iBAT of aged obese mice was less responsive to exercise. Indeed, although an increase in functional brown adipocytes genes and proteins (Pgc1a, Prdm16 and UCP1) was observed, few changes were found on inflammation-related and fatty acid metabolism genes. The remodeling of iWAT and iBAT depots occurred along with an improvement in the HOMA index for insulin resistance and in glucose tolerance. In conclusion, long-term exercise effectively prevented the loss of iWAT and iBAT thermogenic properties during aging and obesity. In iWAT, the long-term exercise program also reduced the inflammatory status and stimulated a fat-oxidative gene profile. These exercise-induced adipose tissue adaptations could contribute to the beneficial effects on glucose homeostasis in aged obese mice.
Collapse
Affiliation(s)
- Elisa Félix-Soriano
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
| | - Neira Sáinz
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
| | - Eva Gil-Iturbe
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
| | - Rosa Castilla-Madrigal
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
| | - Jon Celay
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, University of Navarra, Pamplona, Spain
- CIBERONC, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - Marta Fernández-Galilea
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
| | - Álvaro Pejenaute
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
| | - M Pilar Lostao
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - José A Martínez-Climent
- Division of Hemato-Oncology, Center for Applied Medical Research CIMA, University of Navarra, Pamplona, Spain
- CIBERONC, Instituto de Salud Carlos III (ISCIII), Madrid, Spain
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain
| | - María J Moreno-Aliaga
- University of Navarra; Center for Nutrition Research and Department of Nutrition, Food Science and Physiology; School of Pharmacy and Nutrition, Pamplona, Spain.
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN). Instituto de Salud Carlos III (ISCIII), Madrid, Spain.
- IdiSNA, Navarra Institute for Health Research, Pamplona, Spain.
| |
Collapse
|
27
|
Liu Y, Han L, Zhu P, Song M, Zhang Y, Meng L, Zhang W, Zhang C, Zhong M. PTPN2 targets TAK1 for dephosphorylation to improve cellular senescence and promote adipose tissue browning in T2DM. Front Pharmacol 2023; 14:1124633. [PMID: 37251330 PMCID: PMC10213551 DOI: 10.3389/fphar.2023.1124633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 04/19/2023] [Indexed: 05/31/2023] Open
Abstract
Introduction: The energy imbalance when energy intake exceeds expenditure acts as an essential factor in the development of insulin resistance (IR). The activity of brown adipose tissue, which is involved in the dissipation of energy via heat expenditure decreases under type 2 diabetic mellitus (T2DM) state when the number of pathological aging adipocytes increases. Protein tyrosine phosphatase non-receptor type 2 (PTPN2) regulates several biological processes by dephosphorylating several cellular substrates; however, whether PTPN2 regulates cellular senescence in adipocytes and the underlying mechanism has not been reported. Methods: We constructed a model of type 2 diabetic mice with PTPN2 overexpression to explore the role of PTPN2 in T2DM. Results: We revealed that PTPN2 facilitated adipose tissue browning by alleviating pathological senescence, thus improving glucose tolerance and IR in T2DM. Mechanistically, we are the first to report that PTPN2 could bind with transforming growth factor-activated kinase 1 (TAK1) directly for dephosphorylation to inhibit the downstream MAPK/NF-κB pathway in adipocytes and regulate cellular senescence and the browning process subsequently. Discussion: Our study revealed a critical mechanism of adipocytes browning progression and provided a potential target for the treatment of related diseases.
Collapse
Affiliation(s)
- Yapeng Liu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Lu Han
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Department of General Practice, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ping Zhu
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ming Song
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yaoyuan Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Linlin Meng
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Wei Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Cheng Zhang
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ming Zhong
- The Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
28
|
Wu R, Park J, Qian Y, Shi Z, Hu R, Yuan Y, Xiong S, Wang Z, Yan G, Ong SG, Song Q, Song Z, Mahmoud AM, Xu P, He C, Arpke RW, Kyba M, Shu G, Jiang Q, Jiang Y. Genetically prolonged beige fat in male mice confers long-lasting metabolic health. Nat Commun 2023; 14:2731. [PMID: 37169793 PMCID: PMC10175245 DOI: 10.1038/s41467-023-38471-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Accepted: 05/04/2023] [Indexed: 05/13/2023] Open
Abstract
A potential therapeutic target to curb obesity and diabetes is thermogenic beige adipocytes. However, beige adipocytes quickly transition into white adipocytes upon removing stimuli. Here, we define the critical role of cyclin dependent kinase inhibitor 2A (Cdkn2a) as a molecular pedal for the beige-to-white transition. Beige adipocytes lacking Cdkn2a exhibit prolonged lifespan, and male mice confer long-term metabolic protection from diet-induced obesity, along with enhanced energy expenditure and improved glucose tolerance. Mechanistically, Cdkn2a promotes the expression and activity of beclin 1 (BECN1) by directly binding to its mRNA and its negative regulator BCL2 like 1 (BCL2L1), activating autophagy and accelerating the beige-to-white transition. Reactivating autophagy by pharmacological or genetic methods abolishes beige adipocyte maintenance induced by Cdkn2a ablation. Furthermore, hyperactive BECN1 alone accelerates the beige-to-white transition in mice and human. Notably, both Cdkn2a and Becn1 exhibit striking positive correlations with adiposity. Hence, blocking Cdkn2a-mediated BECN1 activity holds therapeutic potential to sustain beige adipocytes in treating obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Ruifan Wu
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Jooman Park
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yanyu Qian
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Zuoxiao Shi
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Ruoci Hu
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Yexian Yuan
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Shaolei Xiong
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Zilai Wang
- Department of Microbiology and Immunology, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Gege Yan
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Sang-Ging Ong
- Department of Pharmacology and Regenerative Medicine, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
- Division of Cardiology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Qing Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Zhenyuan Song
- Department of Kinesiology and Nutrition, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Abeer M Mahmoud
- Division of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Pingwen Xu
- Division of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Congcong He
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, Chicago, IL, 60611, USA
| | - Robert W Arpke
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Michael Kyba
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Gang Shu
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Qingyan Jiang
- Guangdong Laboratory of Lingnan Modern Agriculture, Guangdong Province Key Laboratory of Animal Nutritional Regulation and National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, 510642, China
| | - Yuwei Jiang
- Department of Physiology and Biophysics, College of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Department of Pharmaceutical Sciences, University of Illinois at Chicago, Chicago, IL, 60612, USA.
- Division of Endocrinology, Department of Medicine, University of Illinois at Chicago, Chicago, IL, 60612, USA.
| |
Collapse
|
29
|
Bao H, Cao J, Chen M, Chen M, Chen W, Chen X, Chen Y, Chen Y, Chen Y, Chen Z, Chhetri JK, Ding Y, Feng J, Guo J, Guo M, He C, Jia Y, Jiang H, Jing Y, Li D, Li J, Li J, Liang Q, Liang R, Liu F, Liu X, Liu Z, Luo OJ, Lv J, Ma J, Mao K, Nie J, Qiao X, Sun X, Tang X, Wang J, Wang Q, Wang S, Wang X, Wang Y, Wang Y, Wu R, Xia K, Xiao FH, Xu L, Xu Y, Yan H, Yang L, Yang R, Yang Y, Ying Y, Zhang L, Zhang W, Zhang W, Zhang X, Zhang Z, Zhou M, Zhou R, Zhu Q, Zhu Z, Cao F, Cao Z, Chan P, Chen C, Chen G, Chen HZ, Chen J, Ci W, Ding BS, Ding Q, Gao F, Han JDJ, Huang K, Ju Z, Kong QP, Li J, Li J, Li X, Liu B, Liu F, Liu L, Liu Q, Liu Q, Liu X, Liu Y, Luo X, Ma S, Ma X, Mao Z, Nie J, Peng Y, Qu J, Ren J, Ren R, Song M, Songyang Z, Sun YE, Sun Y, Tian M, Wang S, Wang S, Wang X, Wang X, Wang YJ, Wang Y, Wong CCL, Xiang AP, Xiao Y, Xie Z, Xu D, Ye J, Yue R, Zhang C, Zhang H, Zhang L, Zhang W, Zhang Y, Zhang YW, Zhang Z, Zhao T, Zhao Y, Zhu D, Zou W, Pei G, Liu GH. Biomarkers of aging. SCIENCE CHINA. LIFE SCIENCES 2023; 66:893-1066. [PMID: 37076725 PMCID: PMC10115486 DOI: 10.1007/s11427-023-2305-0] [Citation(s) in RCA: 108] [Impact Index Per Article: 108.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 02/27/2023] [Indexed: 04/21/2023]
Abstract
Aging biomarkers are a combination of biological parameters to (i) assess age-related changes, (ii) track the physiological aging process, and (iii) predict the transition into a pathological status. Although a broad spectrum of aging biomarkers has been developed, their potential uses and limitations remain poorly characterized. An immediate goal of biomarkers is to help us answer the following three fundamental questions in aging research: How old are we? Why do we get old? And how can we age slower? This review aims to address this need. Here, we summarize our current knowledge of biomarkers developed for cellular, organ, and organismal levels of aging, comprising six pillars: physiological characteristics, medical imaging, histological features, cellular alterations, molecular changes, and secretory factors. To fulfill all these requisites, we propose that aging biomarkers should qualify for being specific, systemic, and clinically relevant.
Collapse
Affiliation(s)
- Hainan Bao
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Jiani Cao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Mengting Chen
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Min Chen
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Chen
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China
| | - Xiao Chen
- Department of Nuclear Medicine, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
| | - Yanhao Chen
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yu Chen
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Yutian Chen
- The Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Zhiyang Chen
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China
| | - Jagadish K Chhetri
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
| | - Yingjie Ding
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Junlin Feng
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mengmeng Guo
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China
| | - Chuting He
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Yujuan Jia
- Department of Neurology, First Affiliated Hospital, Shanxi Medical University, Taiyuan, 030001, China
| | - Haiping Jiang
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Ying Jing
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Dingfeng Li
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China
| | - Jiaming Li
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jingyi Li
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Qinhao Liang
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China
| | - Rui Liang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China
| | - Feng Liu
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China
| | - Xiaoqian Liu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Zuojun Liu
- School of Life Sciences, Hainan University, Haikou, 570228, China
| | - Oscar Junhong Luo
- Department of Systems Biomedical Sciences, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jianwei Lv
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| | - Jingyi Ma
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kehang Mao
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China
| | - Jiawei Nie
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Xinhua Qiao
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Xinpei Sun
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China
| | - Xiaoqiang Tang
- Key Laboratory of Birth Defects and Related Diseases of Women and Children of MOE, State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China
| | - Jianfang Wang
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China
| | - Qiaoran Wang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Siyuan Wang
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China
| | - Xuan Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China
| | - Yaning Wang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Yuhan Wang
- University of Chinese Academy of Sciences, Beijing, 100049, China
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China
| | - Rimo Wu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China
| | - Kai Xia
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China
| | - Fu-Hui Xiao
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China
| | - Lingyan Xu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yingying Xu
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China
| | - Haoteng Yan
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China
| | - Liang Yang
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China
| | - Ruici Yang
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yuanxin Yang
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China
| | - Yilin Ying
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China
| | - Le Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Weiwei Zhang
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China
| | - Wenwan Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Xing Zhang
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhuo Zhang
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China
| | - Min Zhou
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Qingchen Zhu
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Zhengmao Zhu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China
| | - Feng Cao
- Department of Cardiology, The Second Medical Centre, Chinese PLA General Hospital, National Clinical Research Center for Geriatric Diseases, Beijing, 100853, China.
| | - Zhongwei Cao
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Piu Chan
- National Clinical Research Center for Geriatric Diseases, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Chang Chen
- National Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Guobing Chen
- Department of Microbiology and Immunology, School of Medicine, Jinan University, Guangzhou, 510632, China.
- Guangdong-Hong Kong-Macau Great Bay Area Geroscience Joint Laboratory, Guangzhou, 510000, China.
| | - Hou-Zao Chen
- Department of Biochemistryand Molecular Biology, State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100005, China.
| | - Jun Chen
- Peking University Research Center on Aging, Beijing Key Laboratory of Protein Posttranslational Modifications and Cell Function, Department of Biochemistry and Molecular Biology, Department of Integration of Chinese and Western Medicine, School of Basic Medical Science, Peking University, Beijing, 100191, China.
| | - Weimin Ci
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
| | - Bi-Sen Ding
- State Key Laboratory of Biotherapy, West China Second University Hospital, Sichuan University, Chengdu, 610041, China.
| | - Qiurong Ding
- CAS Key Laboratory of Nutrition, Metabolism and Food Safety, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Feng Gao
- Key Laboratory of Ministry of Education, School of Aerospace Medicine, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jing-Dong J Han
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Center for Quantitative Biology (CQB), Peking University, Beijing, 100871, China.
| | - Kai Huang
- Clinic Center of Human Gene Research, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Clinical Research Center of Metabolic and Cardiovascular Disease, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Hubei Key Laboratory of Metabolic Abnormalities and Vascular Aging, Huazhong University of Science and Technology, Wuhan, 430022, China.
- Department of Cardiology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Institute of Ageing and Regenerative Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qing-Peng Kong
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
- State Key Laboratory of Genetic Resources and Evolution, Key Laboratory of Healthy Aging Research of Yunnan Province, Kunming Key Laboratory of Healthy Aging Study, KIZ/CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
| | - Ji Li
- Department of Dermatology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- Hunan Key Laboratory of Aging Biology, Xiangya Hospital, Central South University, Changsha, 410008, China.
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Xin Li
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Baohua Liu
- School of Basic Medical Sciences, Shenzhen University Medical School, Shenzhen, 518060, China.
| | - Feng Liu
- Metabolic Syndrome Research Center, The Second Xiangya Hospital, Central South Unversity, Changsha, 410011, China.
| | - Lin Liu
- Department of Genetics and Cell Biology, College of Life Science, Nankai University, Tianjin, 300071, China.
- Haihe Laboratory of Cell Ecosystem, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, 300020, China.
- Institute of Translational Medicine, Tianjin Union Medical Center, Nankai University, Tianjin, 300000, China.
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, 300350, China.
| | - Qiang Liu
- Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230036, China.
| | - Qiang Liu
- Department of Neurology, Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, 300052, China.
- Tianjin Institute of Immunology, Tianjin Medical University, Tianjin, 300070, China.
| | - Xingguo Liu
- CAS Key Laboratory of Regenerative Biology, Joint School of Life Sciences, Guangzhou Institutes of Biomedicine and Health, Chinese Academy of Sciences, Guangzhou Medical University, Guangzhou, 510530, China.
| | - Yong Liu
- College of Life Sciences, TaiKang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430072, China.
| | - Xianghang Luo
- Department of Endocrinology, Endocrinology Research Center, Xiangya Hospital of Central South University, Changsha, 410008, China.
| | - Shuai Ma
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Xinran Ma
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Zhiyong Mao
- Shanghai Key Laboratory of Maternal Fetal Medicine, Clinical and Translational Research Center of Shanghai First Maternity and Infant Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Jing Nie
- The State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Division of Nephrology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Yaojin Peng
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jing Qu
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Jie Ren
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Ruibao Ren
- Shanghai Institute of Hematology, State Key Laboratory for Medical Genomics, National Research Center for Translational Medicine (Shanghai), International Center for Aging and Cancer, Collaborative Innovation Center of Hematology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Center for Aging and Cancer, Hainan Medical University, Haikou, 571199, China.
| | - Moshi Song
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Zhou Songyang
- MOE Key Laboratory of Gene Function and Regulation, Guangzhou Key Laboratory of Healthy Aging Research, School of Life Sciences, Institute of Healthy Aging Research, Sun Yat-sen University, Guangzhou, 510275, China.
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, 510120, China.
| | - Yi Eve Sun
- Stem Cell Translational Research Center, Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, China.
| | - Yu Sun
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Department of Medicine and VAPSHCS, University of Washington, Seattle, WA, 98195, USA.
| | - Mei Tian
- Human Phenome Institute, Fudan University, Shanghai, 201203, China.
| | - Shusen Wang
- Research Institute of Transplant Medicine, Organ Transplant Center, NHC Key Laboratory for Critical Care Medicine, Tianjin First Central Hospital, Nankai University, Tianjin, 300384, China.
| | - Si Wang
- Beijing Municipal Geriatric Medical Research Center, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Aging Translational Medicine Center, International Center for Aging and Cancer, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| | - Xia Wang
- School of Pharmaceutical Sciences, Tsinghua University, Beijing, 100084, China.
| | - Xiaoning Wang
- Institute of Geriatrics, The second Medical Center, Beijing Key Laboratory of Aging and Geriatrics, National Clinical Research Center for Geriatric Diseases, Chinese PLA General Hospital, Beijing, 100853, China.
| | - Yan-Jiang Wang
- Department of Neurology and Center for Clinical Neuroscience, Daping Hospital, Third Military Medical University, Chongqing, 400042, China.
| | - Yunfang Wang
- Hepatobiliary and Pancreatic Center, Medical Research Center, Beijing Tsinghua Changgung Hospital, Beijing, 102218, China.
| | - Catherine C L Wong
- Clinical Research Institute, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science & Peking Union Medical College, Beijing, 100730, China.
| | - Andy Peng Xiang
- Center for Stem Cell Biologyand Tissue Engineering, Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Sun Yat-sen University, Guangzhou, 510080, China.
- National-Local Joint Engineering Research Center for Stem Cells and Regenerative Medicine, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Yichuan Xiao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Zhengwei Xie
- Peking University International Cancer Institute, Health Science Center, Peking University, Beijing, 100101, China.
- Beijing & Qingdao Langu Pharmaceutical R&D Platform, Beijing Gigaceuticals Tech. Co. Ltd., Beijing, 100101, China.
| | - Daichao Xu
- Interdisciplinary Research Center on Biology and Chemistry, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Shanghai, 201210, China.
| | - Jing Ye
- Department of Geriatrics, Medical Center on Aging of Shanghai Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- International Laboratory in Hematology and Cancer, Shanghai Jiao Tong University School of Medicine/Ruijin Hospital, Shanghai, 200025, China.
| | - Rui Yue
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai, 200092, China.
| | - Cuntai Zhang
- Gerontology Center of Hubei Province, Wuhan, 430000, China.
- Institute of Gerontology, Department of Geriatrics, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| | - Hongbo Zhang
- Key Laboratory for Stem Cells and Tissue Engineering, Ministry of Education, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
- Advanced Medical Technology Center, The First Affiliated Hospital, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou, 510080, China.
| | - Liang Zhang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, Chinese Academy of Sciences, Shanghai, 200031, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Weiqi Zhang
- CAS Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences and China National Center for Bioinformation, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
| | - Yong Zhang
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Yun-Wu Zhang
- Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, School of Medicine, Xiamen University, Xiamen, 361102, China.
| | - Zhuohua Zhang
- Key Laboratory of Molecular Precision Medicine of Hunan Province and Center for Medical Genetics, Institute of Molecular Precision Medicine, Xiangya Hospital, Central South University, Changsha, 410078, China.
- Department of Neurosciences, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Tongbiao Zhao
- State Key Laboratory of Stem Cell and Reproductive Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
| | - Yuzheng Zhao
- Optogenetics & Synthetic Biology Interdisciplinary Research Center, State Key Laboratory of Bioreactor Engineering, Shanghai Frontiers Science Center of Optogenetic Techniques for Cell Metabolism, School of Pharmacy, East China University of Science and Technology, Shanghai, 200237, China.
- Research Unit of New Techniques for Live-cell Metabolic Imaging, Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Dahai Zhu
- Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, 510005, China.
- The State Key Laboratory of Medical Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and School of Basic Medicine, Peking Union Medical College, Beijing, 100005, China.
| | - Weiguo Zou
- State Key Laboratory of Cell Biology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, 200031, China.
| | - Gang Pei
- Shanghai Key Laboratory of Signaling and Disease Research, Laboratory of Receptor-Based Biomedicine, The Collaborative Innovation Center for Brain Science, School of Life Sciences and Technology, Tongji University, Shanghai, 200070, China.
| | - Guang-Hui Liu
- University of Chinese Academy of Sciences, Beijing, 100049, China.
- State Key Laboratory of Membrane Biology, Institute of Zoology, Chinese Academy of Sciences, Beijing, 100101, China.
- Institute for Stem Cell and Regeneration, Chinese Academy of Sciences, Beijing, 100101, China.
- Beijing Institute for Stem Cell and Regenerative Medicine, Beijing, 100101, China.
- Advanced Innovation Center for Human Brain Protection, and National Clinical Research Center for Geriatric Disorders, Xuanwu Hospital Capital Medical University, Beijing, 100053, China.
| |
Collapse
|
30
|
Benvie AM, Lee D, Steiner BM, Xue S, Jiang Y, Berry DC. Age-dependent Pdgfrβ signaling drives adipocyte progenitor dysfunction to alter the beige adipogenic niche in male mice. Nat Commun 2023; 14:1806. [PMID: 37002214 PMCID: PMC10066302 DOI: 10.1038/s41467-023-37386-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 03/15/2023] [Indexed: 04/04/2023] Open
Abstract
Perivascular adipocyte progenitor cells (APCs) can generate cold temperature-induced thermogenic beige adipocytes within white adipose tissue (WAT), an effect that could counteract excess fat mass and metabolic pathologies. Yet, the ability to generate beige adipocytes declines with age, creating a key challenge for their therapeutic potential. Here we show that ageing beige APCs overexpress platelet derived growth factor receptor beta (Pdgfrβ) to prevent beige adipogenesis. We show that genetically deleting Pdgfrβ, in adult male mice, restores beige adipocyte generation whereas activating Pdgfrβ in juvenile mice blocks beige fat formation. Mechanistically, we find that Stat1 phosphorylation mediates Pdgfrβ beige APC signaling to suppress IL-33 induction, which dampens immunological genes such as IL-13 and IL-5. Moreover, pharmacologically targeting Pdgfrβ signaling restores beige adipocyte development by rejuvenating the immunological niche. Thus, targeting Pdgfrβ signaling could be a strategy to restore WAT immune cell function to stimulate beige fat in adult mammals.
Collapse
Affiliation(s)
- Abigail M Benvie
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Derek Lee
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Benjamin M Steiner
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Siwen Xue
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA
| | - Yuwei Jiang
- Department of Physiology and Biophysics, University of Illinois at Chicago, Chicago, IL, 60612, USA
| | - Daniel C Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, 14853, USA.
| |
Collapse
|
31
|
Xue S, Lee D, Berry DC. Thermogenic adipose tissue in energy regulation and metabolic health. Front Endocrinol (Lausanne) 2023; 14:1150059. [PMID: 37020585 PMCID: PMC10067564 DOI: 10.3389/fendo.2023.1150059] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 03/07/2023] [Indexed: 04/07/2023] Open
Abstract
The ability to generate thermogenic fat could be a targeted therapy to thwart obesity and improve metabolic health. Brown and beige adipocytes are two types of thermogenic fat cells that regulate energy balance. Both adipocytes share common morphological, biochemical, and thermogenic properties. Yet, recent evidence suggests unique features exist between brown and beige adipocytes, such as their cellular origin and thermogenic regulatory processes. Beige adipocytes also appear highly plastic, responding to environmental stimuli and interconverting between beige and white adipocyte states. Additionally, beige adipocytes appear to be metabolically heterogenic and have substrate specificity. Nevertheless, obese and aged individuals cannot develop beige adipocytes in response to thermogenic fat-inducers, creating a key clinical hurdle to their therapeutic promise. Thus, elucidating the underlying developmental, molecular, and functional mechanisms that govern thermogenic fat cells will improve our understanding of systemic energy regulation and strive for new targeted therapies to generate thermogenic fat. This review will examine the recent advances in thermogenic fat biogenesis, molecular regulation, and the potential mechanisms for their failure.
Collapse
Affiliation(s)
| | | | - Daniel C. Berry
- Division of Nutritional Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
32
|
Knocking Down CDKN2A in 3D hiPSC-Derived Brown Adipose Progenitors Potentiates Differentiation, Oxidative Metabolism and Browning Process. Cells 2023; 12:cells12060870. [PMID: 36980212 PMCID: PMC10047013 DOI: 10.3390/cells12060870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 03/16/2023] Open
Abstract
Human induced pluripotent stem cells (hiPSCs) have the potential to be differentiated into any cell type, making them a relevant tool for therapeutic purposes such as cell-based therapies. In particular, they show great promise for obesity treatment as they represent an unlimited source of brown/beige adipose progenitors (hiPSC-BAPs). However, the low brown/beige adipocyte differentiation potential in 2D cultures represents a strong limitation for clinical use. In adipose tissue, besides its cell cycle regulator functions, the cyclin-dependent kinase inhibitor 2A (CDKN2A) locus modulates the commitment of stem cells to the brown-like type fate, mature adipocyte energy metabolism and the browning of adipose tissue. Here, using a new method of hiPSC-BAPs 3D culture, via the formation of an organoid-like structure, we silenced CDKN2A expression during hiPSC-BAP adipogenic differentiation and observed that knocking down CDKN2A potentiates adipogenesis, oxidative metabolism and the browning process, resulting in brown-like adipocytes by promoting UCP1 expression and beiging markers. Our results suggest that modulating CDKN2A levels could be relevant for hiPSC-BAPs cell-based therapies.
Collapse
|
33
|
Ziqubu K, Dludla PV, Mthembu SXH, Nkambule BB, Mabhida SE, Jack BU, Nyambuya TM, Mazibuko-Mbeje SE. An insight into brown/beige adipose tissue whitening, a metabolic complication of obesity with the multifactorial origin. Front Endocrinol (Lausanne) 2023; 14:1114767. [PMID: 36875450 PMCID: PMC9978510 DOI: 10.3389/fendo.2023.1114767] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/06/2023] [Indexed: 02/18/2023] Open
Abstract
Brown adipose tissue (BAT), a thermoregulatory organ known to promote energy expenditure, has been extensively studied as a potential avenue to combat obesity. Although BAT is the opposite of white adipose tissue (WAT) which is responsible for energy storage, BAT shares thermogenic capacity with beige adipose tissue that emerges from WAT depots. This is unsurprising as both BAT and beige adipose tissue display a huge difference from WAT in terms of their secretory profile and physiological role. In obesity, the content of BAT and beige adipose tissue declines as these tissues acquire the WAT characteristics via the process called "whitening". This process has been rarely explored for its implication in obesity, whether it contributes to or exacerbates obesity. Emerging research has demonstrated that BAT/beige adipose tissue whitening is a sophisticated metabolic complication of obesity that is linked to multiple factors. The current review provides clarification on the influence of various factors such as diet, age, genetics, thermoneutrality, and chemical exposure on BAT/beige adipose tissue whitening. Moreover, the defects and mechanisms that underpin the whitening are described. Notably, the BAT/beige adipose tissue whitening can be marked by the accumulation of large unilocular lipid droplets, mitochondrial degeneration, and collapsed thermogenic capacity, by the virtue of mitochondrial dysfunction, devascularization, autophagy, and inflammation.
Collapse
Affiliation(s)
- Khanyisani Ziqubu
- Department of Biochemistry, North-West University, Mmabatho, South Africa
| | - Phiwayinkosi V. Dludla
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
- Department of Biochemistry and Microbiology, Faculty of Science and Agriculture, University of Zululand, KwaDlangezwa, South Africa
| | - Sinenhlanhla X. H. Mthembu
- Department of Biochemistry, North-West University, Mmabatho, South Africa
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Bongani B. Nkambule
- School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sihle E. Mabhida
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Babalwa U. Jack
- Biomedical Research and Innovation Platform, South African Medical Research Council, Tygerberg, South Africa
| | - Tawanda M. Nyambuya
- Department of Health Sciences, Faculty of Health and Applied Sciences, Namibia University of Science and Technology, Windhoek, Namibia
| | | |
Collapse
|
34
|
Liu J, Lin X, McDavid A, Yang Y, Zhang H, Boyce BF, Xing L. Molecular signatures distinguish senescent cells from inflammatory cells in aged mouse callus stromal cells. Front Endocrinol (Lausanne) 2023; 14:1090049. [PMID: 36875448 PMCID: PMC9981154 DOI: 10.3389/fendo.2023.1090049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Accepted: 02/02/2023] [Indexed: 02/18/2023] Open
Abstract
Cellular senescence plays important roles in age-related diseases, including musculoskeletal disorders. Senescent cells (SCs) exert a senescence-associated secretory phenotype (SASP) by producing SASP factors, some of which overlap with factors produced by inflammatory cells (Inf-Cs). However, the differences between SCs and Inf-Cs and how they interact with each other during fracture repair have not been well studied. Here, we analyzed single cell RNA sequencing data of aged mouse fracture callus stromal cells. We defined Inf-Cs as cells that express NF-κB Rela/Relb, SCs as cells that express the senescence genes, Cdkn1a, Cdkn2a or Cdkn2c, and inflammatory SCs (Inf-SCs) as cells that express both NF-κB and senescence genes. Differentially expressed genes and pathway analyses revealed that Inf-SCs and SCs had a similar gene expression profile and upregulated pathways that are related to DNA damage/oxidation-reduction and cellular senescence, while Inf-Cs expressed different gene signatures and pathways from SCs and Inf-SCs, mainly related to inflammation. Cellchat software analysis indicated that SCs and Inf-SCs are potential ligand-producing cells that affect Inf-Cs as target cells. Cell culture experiments demonstrated that SC conditioned medium promoted inflammatory gene expression by callus-derived mesenchymal progenitor cells, and Inf-Cs had reduced osteoblast differentiation capacity. In summary, we have identified three cell subclusters associated with inflammation and senescence in callus stromal cells, predicted potential effects of Inf-SCs and SCs on Inf-Cs by production of active ligands, and demonstrated that when mesenchymal progenitors acquire inflammatory phenotypes their osteogenic potential is reduced.
Collapse
Affiliation(s)
- Jiatong Liu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Xi Lin
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Andrew McDavid
- Biostatistics and Computational Biology, University of Rochester Medical Center, Rochester, NY, United States
| | - Yutiancheng Yang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Hengwei Zhang
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
| | - Brendan F. Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Lianping Xing
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, Rochester, NY, United States
- Orthopaedics and Rehabilitation, Center for Musculoskeletal Research, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
35
|
Abstract
Rather than serving as a mere onlooker, adipose tissue is a complex endocrine organ and active participant in disease initiation and progression. Disruptions of biological processes operating within adipose can disturb healthy systemic physiology, the sequelae of which include metabolic disorders such as obesity and type 2 diabetes. A burgeoning interest in the field of adipose research has allowed for the elucidation of regulatory networks underlying both adipose tissue function and dysfunction. Despite this progress, few diseases are treated by targeting maladaptation in the adipose, an oft-overlooked organ. In this review, we elaborate on the distinct subtypes of adipocytes, their developmental origins and secretory roles, and the dynamic interplay at work within the tissue itself. Central to this discussion is the relationship between adipose and disease states, including obesity, cachexia, and infectious diseases, as we aim to leverage our wealth of knowledge for the development of novel and targeted therapeutics.
Collapse
Affiliation(s)
- Christopher Auger
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA;
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA; .,Howard Hughes Medical Institute, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA;
| |
Collapse
|
36
|
Zhang K, Li T, Li Q, Nie C, Sun Y, Xue L, Wang Y, Fan M, Qian H, Li Y, Wang L. 5-Heptadecylresorcinol Regulates the Metabolism of Thermogenic Fat and Improves the Thermogenic Capacity of Aging Mice via a Sirtuin 3-Adenosine Monophosphate-Activated Protein Kinase Pathway. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:557-568. [PMID: 36535764 DOI: 10.1021/acs.jafc.2c07073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
5-Heptadecylresorcinol (AR-C17), a well-known biomarker for whole grain rye consumption, is a primary homolog of alkylresorcinols. In this study, the effects of AR-C17 on the thermogenesis of brown adipocytes and 3T3-L1 adipocytes were investigated. The results showed that AR-C17 increased sirtuin 3 (Sirt3) expression, and the expressions of specific thermogenic genes in adipocytes were increased. Furthermore, AR-C17 increased the mitochondrial functions during the thermogenic activation of adipocytes. In in vivo study, AR-C17 increased the cold tolerance and thermogenic capacity of adipose tissues in aging mice. In addition, Sirt3 activity was required for AR-C17-induced thermogenesis. Meanwhile, AR-C17 increased adenosine monophosphate-activated protein kinase (AMPK) phosphorylation, and AMPK was involved in the regulation of AR-C17 on thermogenic adipocytes. Mechanically, AR-C17 upregulated a Sirt3-AMPK positive-feedback loop in adipocytes and further increased the expression of uncoupling protein 1 to activate thermogenesis. This study indicated that AR-C17 could be a promising thermogenic activator of adipocytes to alleviate obesity and aging-associated metabolic diseases.
Collapse
Affiliation(s)
- Kuiliang Zhang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Tingting Li
- Department of Food Science and Engineering, College of Light Industry and Food Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Li
- China National Institute of Standardization, Beijing 100015, China
| | - Chenzhipeng Nie
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yujie Sun
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Lamei Xue
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yu Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Mingcong Fan
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Haifeng Qian
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Yan Li
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Li Wang
- State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
37
|
Cai Z, He B. Adipose tissue aging: An update on mechanisms and therapeutic strategies. Metabolism 2023; 138:155328. [PMID: 36202221 DOI: 10.1016/j.metabol.2022.155328] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Revised: 09/20/2022] [Accepted: 09/29/2022] [Indexed: 11/06/2022]
Abstract
Aging is a complex biological process characterized by a progressive loss of physiological integrity and increased vulnerability to age-related diseases. Adipose tissue plays central roles in the maintenance of whole-body metabolism homeostasis and has recently attracted significant attention as a biological driver of aging and age-related diseases. Here, we review the most recent advances in our understanding of the molecular and cellular mechanisms underlying age-related decline in adipose tissue function. In particular, we focus on the complex inter-relationship between metabolism, immune, and sympathetic nervous system within adipose tissue during aging. Moreover, we discuss the rejuvenation strategies to delay aging and extend lifespan, including senescent cell ablation (senolytics), dietary intervention, physical exercise, and heterochronic parabiosis. Understanding the pathological mechanisms that underlie adipose tissue aging will be critical for the development of new intervention strategies to slow or reverse aging and age-related diseases.
Collapse
Affiliation(s)
- Zhaohua Cai
- Heart Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China
| | - Ben He
- Heart Center, Shanghai Chest Hospital, Shanghai Jiaotong University, Shanghai 200030, China.
| |
Collapse
|
38
|
Chronic docosahexaenoic acid supplementation improves metabolic plasticity in subcutaneous adipose tissue of aged obese female mice. J Nutr Biochem 2023; 111:109153. [PMID: 36150680 DOI: 10.1016/j.jnutbio.2022.109153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 01/01/2023]
Abstract
This study aimed to characterize the potential beneficial effects of chronic docosahexaenoic acid (DHA) supplementation on restoring subcutaneous white adipose tissue (scWAT) plasticity in obese aged female mice. Two-month-old female C57BL/6J mice received a control (CT) or a high fat diet (HFD) for 4 months. Then, 6-month-old diet-induced obese (DIO) mice were distributed into the DIO and the DIOMEG group (fed with a DHA-enriched HFD) up to 18 months. In scWAT, the DHA-enriched diet reduced the mean adipocyte size and reversed the upregulation of lipogenic genes induced by the HFD, reaching values even lower than those observed in CT animals. DIO mice exhibited an up-regulation of lipolytic and fatty oxidation gene expressions that was reversed in DHA-supplemented mice except for Cpt1a mRNA levels, which were higher in DIOMEG as compared to CT mice. DHA restored the increase of proinflammatory genes observed in scWAT of DIO mice. While no changes were observed in total macrophage F4/80+/CD11b+ content, the DHA treatment switched scWAT macrophages profile by reducing the M1 marker Cd11c and increasing the M2 marker CD206. These events occurred alongside with a stimulation of beige adipocyte specific genes, the restoration of UCP1 and pAKT/AKT ratio, and a recovery of the HFD-induced Fgf21 upregulation. In summary, DHA supplementation induced a metabolic remodeling of scWAT to a healthier phenotype in aged obese mice by modulating genes controlling lipid accumulation in adipocytes, reducing the inflammatory status, and inducing beige adipocyte markers in obese aged mice.
Collapse
|
39
|
Chen YJ, Liao PX, Kuo WH, Chen CY, Ding ST, Wang MH. Assessment of Brown and Beige Adipose Tissue Activation in Mice Using PET/CT Imaging. Methods Mol Biol 2023; 2662:135-145. [PMID: 37076677 DOI: 10.1007/978-1-0716-3167-6_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2023]
Abstract
In response to cold induction, brown adipose tissues (BAT) and emerged brown-like adipocytes (beige adipocytes) in subcutaneous white adipose tissues (WAT browning/beiging) are activated. Thermogenesis is increased during glucose and fatty acid uptake and metabolism in adult humans and mice. This activation of BAT or WAT beiging to generate heat helps to counteract diet-induced obesity. This protocol applies the glucose analog radiotracer 18F-fluorodeoxyglucose (FDG), coupled with positron emission tomography and computed tomography (PET/CT) scanning to evaluate cold-induced thermogenesis in the active BAT (interscapular region) and browned/beiged WAT (subcutaneous adipose region) in mice. The PET/CT scanning technique not only can quantify cold-induced glucose uptake in well-known BAT and beige-fat depots but also helps to visualize the anatomical location of novel uncharacterized mouse BAT and beige fat where cold-induced glucose uptake is high. Histological analysis is further employed to validate signals of delineated anatomical regions in PET/CT images as bona fide mouse BAT or beiged WAT fat depots.
Collapse
Affiliation(s)
- Yu-Jen Chen
- Institute of Biotechnology and Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan.
| | - Pei-Xin Liao
- Institute of Biotechnology and Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Wen-Hung Kuo
- Department of Surgery, National Taiwan University Hospital and College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Ching-Yi Chen
- Institute of Biotechnology and Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Shih-Torng Ding
- Institute of Biotechnology and Department of Animal Science and Technology, National Taiwan University, Taipei, Taiwan
| | - Mei-Hui Wang
- Institute of Nuclear Energy Research, Taoyuan, Taiwan
| |
Collapse
|
40
|
Abe I, Oguri Y, Verkerke ARP, Monteiro LB, Knuth CM, Auger C, Qiu Y, Westcott GP, Cinti S, Shinoda K, Jeschke MG, Kajimura S. Lipolysis-derived linoleic acid drives beige fat progenitor cell proliferation. Dev Cell 2022; 57:2623-2637.e8. [PMID: 36473459 PMCID: PMC9875052 DOI: 10.1016/j.devcel.2022.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 09/21/2022] [Accepted: 11/08/2022] [Indexed: 12/12/2022]
Abstract
De novo beige adipocyte biogenesis involves the proliferation of progenitor cells in white adipose tissue (WAT); however, what regulates this process remains unclear. Here, we report that in mouse models but also in human tissues, WAT lipolysis-derived linoleic acid triggers beige progenitor cell proliferation following cold acclimation, β3-adrenoceptor activation, and burn injury. A subset of adipocyte progenitors, as marked by cell surface markers PDGFRα or Sca1 and CD81, harbored cristae-rich mitochondria and actively imported linoleic acid via a fatty acid transporter CD36. Linoleic acid not only was oxidized as fuel in the mitochondria but also was utilized for the synthesis of arachidonic acid-derived signaling entities such as prostaglandin D2. Oral supplementation of linoleic acid was sufficient to stimulate beige progenitor cell proliferation, even under thermoneutral conditions, in a CD36-dependent manner. Together, this study provides mechanistic insights into how diverse pathophysiological stimuli, such as cold and burn injury, promote de novo beige fat biogenesis.
Collapse
Affiliation(s)
- Ichitaro Abe
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Department of Cardiology and Clinical Examination, Oita University Faculty of Medicine, Oita, Japan
| | - Yasuo Oguri
- Laboratory of Nutrition Chemistry, Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kyoto, Japan
| | - Anthony R P Verkerke
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Lauar B Monteiro
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Carly M Knuth
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada
| | - Christopher Auger
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Yunping Qiu
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Gregory P Westcott
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA
| | - Saverio Cinti
- Center of Obesity, Marche Polytechnic University, Ancona, Italy
| | - Kosaku Shinoda
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, NY, USA; Department of Medicine, Division of Endocrinology & Diabetes, Albert Einstein College of Medicine, Bronx, NY, USA; Albert Einstein College of Medicine, Fleischer Institute for Diabetes and Metabolism, Bronx, NY, USA
| | - Marc G Jeschke
- Faculty of Medicine, University of Toronto, Toronto, ON, Canada; Biological Sciences, Sunnybrook Research Institute, Toronto, ON, Canada; Ross Tilley Burn Centre, Sunnybrook Hospital, Toronto, ON, Canada; Department of Surgery, Division of Plastic Surgery, and Department of Immunology, University of Toronto, Toronto, ON, Canada
| | - Shingo Kajimura
- Division of Endocrinology, Diabetes and Metabolism, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, MA, USA; Howard Hughes Medical Institute, Chevy Chase, MD, USA.
| |
Collapse
|
41
|
Tews D, Brenner RE, Siebert R, Debatin KM, Fischer-Posovszky P, Wabitsch M. 20 Years with SGBS cells - a versatile in vitro model of human adipocyte biology. Int J Obes (Lond) 2022; 46:1939-1947. [PMID: 35986215 PMCID: PMC9584814 DOI: 10.1038/s41366-022-01199-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 07/18/2022] [Accepted: 07/19/2022] [Indexed: 11/21/2022]
Abstract
20 years ago, we described a human cell strain derived from subcutaneous adipose tissue of an infant supposed to have Simpson-Golabi-Behmel Syndrome (SGBS), thus called “SGBS cells”. Since then, these cells have emerged as the most commonly used cell model for human adipogenesis and human adipocyte biology. Although these adipocyte derived stem cells have not been genetically manipulated for transformation or immortalization, SGBS cells retain their capacity to proliferate and to differentiate into adipocytes for more than 50 population doublings, providing an almost unlimited source of human adipocyte progenitor cells. Original data obtained with SGBS cells led to more than 200 peer reviewed publications comprising investigations on adipogenesis and browning, insulin sensitivity, inflammatory response, adipokine production, as well as co-culture models and cell-cell communication. In this article, we provide an update on the characterization of SGBS cells, present basic methods for their application and summarize results of a systematic literature search on original data obtained with this cell strain.
Collapse
|
42
|
Silva GDN, Amato AA. Thermogenic adipose tissue aging: Mechanisms and implications. Front Cell Dev Biol 2022; 10:955612. [PMID: 35979379 PMCID: PMC9376969 DOI: 10.3389/fcell.2022.955612] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 07/04/2022] [Indexed: 12/27/2022] Open
Abstract
Adipose tissue undergoes significant anatomical and functional changes with aging, leading to an increased risk of metabolic diseases. Age-related changes in adipose tissue include overall defective adipogenesis, dysfunctional adipokine secretion, inflammation, and impaired ability to produce heat by nonshivering thermogenesis. Thermogenesis in adipose tissue is accomplished by brown and beige adipocytes, which also play a role in regulating energy homeostasis. Brown adipocytes develop prenatally, are found in dedicated depots, and involute in early infancy in humans. In contrast, beige adipocytes arise postnatally in white adipose tissue and persist throughout life, despite being lost with aging. In recent years, there have been significant advances in the understanding of age-related reduction in thermogenic adipocyte mass and function. Mechanisms underlying such changes are beginning to be delineated. They comprise diminished adipose precursor cell pool size and adipogenic potential, mitochondrial dysfunction, decreased sympathetic signaling, and altered paracrine and endocrine signals. This review presents current evidence from animal models and human studies for the mechanisms underlying thermogenic adipocyte loss and discusses potential strategies targeting brown and beige adipocytes to increase health span and longevity.
Collapse
|
43
|
Thiagarajan D, Quadri N, Jawahar S, Zirpoli H, Del Pozo CH, López-Díez R, Hasan SN, Yepuri G, Gugger PF, Finlin BS, Kern PA, Gabbay K, Schmidt AM, Ramasamy R. Aldose reductase promotes diet-induced obesity via induction of senescence in subcutaneous adipose tissue. Obesity (Silver Spring) 2022; 30:1647-1658. [PMID: 35894077 DOI: 10.1002/oby.23496] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Revised: 05/09/2022] [Accepted: 05/12/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Aldose reductase (AKR1B1 in humans; Akr1b3 in mice), a key enzyme of the polyol pathway, mediates lipid accumulation in the murine heart and liver. The study objective was to explore potential roles for AKR1B1/Akr1b3 in the pathogenesis of obesity and its complications. METHODS The study employed mice treated with an inhibitor of aldose reductase or mice devoid of Akr1b3 were used to determine their response to a high-fat diet. The study used subcutaneous adipose tissue-derived adipocytes to investigate mechanisms by which AKR1B1/Akr1b3 promotes diet-induced obesity. RESULTS Increased expression of aldose reductase and senescence in the adipose tissue of humans and mice with obesity were demonstrated. Genetic deletion of Akr1b3 or pharmacological blockade of AKRIB3 with zopolrestat reduced high-fat-diet-induced obesity, attenuated markers of adipose tissue senescence, and increased lipolysis. CONCLUSIONS AKR1B1/Akr1b3 modulation of senescence in subcutaneous adipose tissue contributes to aberrant metabolic responses to high-fat feeding. These data unveil new opportunities to target these pathways to combat obesity.
Collapse
Affiliation(s)
- Devi Thiagarajan
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
- Saha Cardiovascular Research Center, Department of Physiology, University of Kentucky, Lexington, Kentucky, USA
| | - Nosirudeen Quadri
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Shabnam Jawahar
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Hylde Zirpoli
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Carmen Hurtado Del Pozo
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Raquel López-Díez
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Syed Nurul Hasan
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Gautham Yepuri
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Paul F Gugger
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Brian S Finlin
- Center for Clinical and Translational Sciences, University of Kentucky, Lexington, Kentucky, USA
| | - Philip A Kern
- Center for Clinical and Translational Sciences, University of Kentucky, Lexington, Kentucky, USA
| | | | - Ann Marie Schmidt
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| | - Ravichandran Ramasamy
- Diabetes Research Program, Department of Medicine, New York University Grossman School of Medicine, New York, New York, USA
| |
Collapse
|
44
|
Zhang Q, Shan B, Guo L, Shao M, Vishvanath L, Elmquist G, Xu L, Gupta RK. Distinct functional properties of murine perinatal and adult adipose progenitor subpopulations. Nat Metab 2022; 4:1055-1070. [PMID: 35982290 PMCID: PMC9940036 DOI: 10.1038/s42255-022-00613-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 07/06/2022] [Indexed: 01/25/2023]
Abstract
Adult white adipose tissue (WAT) harbors distinct mesenchymal stromal cell subpopulations that differentially affect WAT function and plasticity. Here we unveil the cellular landscape of the perinatal epididymal WAT primordium using single-cell transcriptomics in male mice. We reveal that adipocyte precursor cells and fibro-inflammatory progenitors (FIPs) emerge as functionally distinct PDGFRβ+ subpopulations within the epididymal WAT anlagen prior to adipocyte accrual. We further identify important molecular and functional differences between perinatal and adult FIPs, including differences in their pro-inflammatory response, adipogenic capacity and anti-adipogenic behavior. Notably, we find that transient overexpression of Pparg in PDGFRβ+ cells only during postnatal days 0.5 to 7.5 in male mice leads to hyperplastic WAT development, durable progenitor cell reprogramming, and protection against pathologic WAT remodeling and glucose intolerance in adult-onset obesity. Thus, factors that alter the adipogenic capacity of perinatal adipose progenitors can have long-lasting effects on progenitor plasticity, tissue expandability and metabolic health into adulthood.
Collapse
Affiliation(s)
- Qianbin Zhang
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Bo Shan
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Mengle Shao
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lavanya Vishvanath
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - George Elmquist
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Department of Population and Data Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Rana K Gupta
- Touchstone Diabetes Center, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
45
|
Scambi I, Peroni D, Nodari A, Merigo F, Benati D, Boschi F, Mannucci S, Frontini A, Visonà S, Sbarbati A, Krampera M, Galiè M. The transcriptional profile of adipose-derived stromal cells (ASC) mirrors the whitening of adipose tissue with age. Eur J Cell Biol 2022; 101:151206. [DOI: 10.1016/j.ejcb.2022.151206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 01/14/2022] [Accepted: 02/04/2022] [Indexed: 12/22/2022] Open
|
46
|
Xie H, Liu X, Zhou Q, Huang T, Zhang L, Gao J, Wang Y, Liu Y, Yan T, Zhang S, Wang CY. DNA Methylation Modulates Aging Process in Adipocytes. Aging Dis 2022; 13:433-446. [PMID: 35371604 PMCID: PMC8947842 DOI: 10.14336/ad.2021.0904] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2021] [Accepted: 09/04/2021] [Indexed: 11/17/2022] Open
Abstract
Aging has been recognized to be a highly complex biological health problem with a high risk of chronic diseases, including type 2 diabetes, atherosclerosis, chronic bronchitis or emphysema, cancer and Alzheimer's disease. Particularly, age-related turnover in adipose tissue is a major contributor to metabolic syndromes and shortened lifespan. Adipocytes undergo senescence in early stage, which results in adipose tissue metabolic dysfunction, redistribution, and inflammation. The well-established association between DNA methylation (DNAm) and aging has been observed in the past few decades. Indeed, age-related alteration in DNAm is highly tissue-specific. This review intends to summarize the advancements how DNAm changes coupled with aging process in adipose tissue, by which DNAm regulates cellular senescence, metabolic function, adipokine secretion and beiging process in adipocytes. Elucidation of the effect of DNAm on adipose aging would have great potential to the development of epigenetic therapeutic strategies against aging-related diseases in clinical settings.
Collapse
Affiliation(s)
- Hao Xie
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xin Liu
- Department of Interventional Radiology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Qing Zhou
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Teng Huang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Lu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Jia Gao
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yuhan Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Yanjun Liu
- The Center for Obesity and Metabolic Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Sichuan, China.,The Center of Gastrointestinal and Minimally Invasive Surgery, Department of General Surgery, The Third People’s Hospital of Chengdu & The affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan, China.
| | - Tong Yan
- The Center for Obesity and Metabolic Health, Affiliated Hospital of Southwest Jiaotong University, The Third People’s Hospital of Chengdu, Sichuan, China.
| | - Shu Zhang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Correspondence should be addressed to: Drs. Cong-Yi Wang () or Shu Zhang (), the Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Cong-Yi Wang
- The Center for Biomedical Research, Department of Respiratory and Critical Care Medicine, NHC Key Laboratory of Respiratory Disease, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.,Correspondence should be addressed to: Drs. Cong-Yi Wang () or Shu Zhang (), the Center for Biomedical Research, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
47
|
The Shades of Grey in Adipose Tissue Reprogramming. Biosci Rep 2022; 42:230844. [PMID: 35211733 PMCID: PMC8905306 DOI: 10.1042/bsr20212358] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022] Open
Abstract
The adipose tissue (AT) has a major role in contributing to obesity-related pathologies through regulating systemic immunometabolism. The pathogenicity of the AT is underpinned by its remarkable plasticity to be reprogrammed during obesity, in the perspectives of tissue morphology, extracellular matrix (ECM) composition, angiogenesis, immunometabolic homoeostasis and circadian rhythmicity. Dysregulation in these features escalates the pathogenesis conferred by this endometabolic organ. Intriguingly, the potential to be reprogrammed appears to be an Achilles’ heel of the obese AT that can be targeted for the management of obesity and its associated comorbidities. Here, we provide an overview of the reprogramming processes of white AT (WAT), with a focus on their dynamics and pleiotropic actions over local and systemic homoeostases, followed by a discussion of potential strategies favouring therapeutic reprogramming. The potential involvement of AT remodelling in the pathogenesis of COVID-19 is also discussed.
Collapse
|
48
|
Lu Z, Jiang Z, Tang J, Lin C, Zhang H. Functions and origins of cardiac fat. FEBS J 2022; 290:1705-1718. [PMID: 35114069 DOI: 10.1111/febs.16388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 01/06/2022] [Accepted: 02/02/2022] [Indexed: 11/28/2022]
Abstract
Triglyceride droplets can be stored within cardiac adipocytes (CAs) and cardiomyocytes in the heart. Cardiac adipocytes reside in three distinct regions: pericardial, epicardial, and intramyocardial adipose tissues. In healthy individuals, cardiac adipose tissues modulate cardiovascular functions and energy partitioning, which are, thus, protective. However, ectopic deposition of cardiac adipose tissues turns them into adverse lipotoxic, prothrombotic, and pro-inflammatory tissues with local and systemic contribution to the development of cardiovascular disorders. Accumulation of triglyceride droplets in cardiomyocytes may lead to lipotoxic injury of cardiomyocytes and contribute to the development of cardiac hypertrophy and dysfunction. Here, we summarize the roles of CAs and myocardial triglyceride droplets under physiological and pathological conditions and review the cellular sources of CAs in heart development and diseases. Understanding the functions and cellular origins of cardiac fat will provide clues for future studies on pathophysiological processes and treatment of cardiovascular diseases.
Collapse
Affiliation(s)
- Zhengkai Lu
- School of Life Science and Technology ShanghaiTech University China
- University of Chinese Academy of Sciences Beijing China
| | - Zhen Jiang
- School of Life Science and Technology ShanghaiTech University China
| | - Juan Tang
- Institute for Regenerative Medicine Shanghai East Hospital Frontier Science Center for Stem Cell Research School of Life Science and Technology Tongji University Shanghai China
| | - Chao‐Po Lin
- School of Life Science and Technology ShanghaiTech University China
| | - Hui Zhang
- School of Life Science and Technology ShanghaiTech University China
| |
Collapse
|
49
|
Camell CD. Adipose tissue microenvironments during aging: Effects on stimulated lipolysis. Biochim Biophys Acta Mol Cell Biol Lipids 2022; 1867:159118. [PMID: 35131468 PMCID: PMC8986088 DOI: 10.1016/j.bbalip.2022.159118] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 10/17/2021] [Accepted: 01/20/2022] [Indexed: 12/15/2022]
Abstract
Adipose tissue is a critical organ for nutrient sensing, energy storage and maintaining metabolic health. The failure of adipose tissue homeostasis leads to metabolic disease that is seen during obesity or aging. Local metabolic processes are coordinated by interacting microenvironments that make up the complexity and heterogeneity of the adipose tissue. Catecholamine-induced lipolysis, a critical pathway in adipocytes that drives the release of stored triglyceride as free fatty acid after stimulation, is impaired during aging. The impairment of this pathway is associated with a failure to maintain a healthy body weight, core body-temperature during cold stress or mount an immune response. Along with impairments in aged adipocytes, aging is associated with an accumulation of inflammation, immune cell activation, and increased dysfunction in the nervous and lymphatic systems within the adipose tissue. Together these microenvironments support the initiation of stimulated lipolysis and the transport of free fatty acid under conditions of metabolic homeostasis. However, during aging, the defects in these cellular systems result in a reduction in ability to stimulate lipolysis. This review will focus on how the immune, nervous and lymphatic systems interact during tissue homeostasis, review areas that are impaired with aging and discuss areas of research that are currently unclear.
Collapse
Affiliation(s)
- Christina D Camell
- Institute on the Biology of Aging and Metabolism, Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN, United States of America.
| |
Collapse
|
50
|
Kasza I, Kühn JP, Völzke H, Hernando D, Xu YG, Siebert JW, Gibson ALF, Yen CLE, Nelson DW, MacDougald OA, Richardson NE, Lamming DW, Kern PA, Alexander CM. Contrasting recruitment of skin-associated adipose depots during cold challenge of mouse and human. J Physiol 2022; 600:847-868. [PMID: 33724479 PMCID: PMC8443702 DOI: 10.1113/jp280922] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 03/02/2021] [Indexed: 02/03/2023] Open
Abstract
KEY POINTS Several distinct strategies produce and conserve heat to maintain the body temperature of mammals, each associated with unique physiologies, with consequences for wellness and disease susceptibility Highly regulated properties of skin offset the total requirement for heat production We hypothesize that the adipose component of skin is primarily responsible for modulating heat flux; here we evaluate the relative regulation of adipose depots in mouse and human, to test their recruitment to heat production and conservation We found that insulating mouse dermal white adipose tissue accumulates in response to environmentally and genetically induced cool stress; this layer is one of two adipose depots closely apposed to mouse skin, where the subcutaneous mammary gland fat pads are actively recruited to heat production In contrast, the body-wide adipose depot associated with human skin produces heat directly, potentially creating an alternative to the centrally regulated brown adipose tissue ABSTRACT: Mammalian skin impacts metabolic efficiency system-wide, controlling the rate of heat loss and consequent heat production. Here we compare the unique fat depots associated with mouse and human skin, to determine whether they have corresponding functions and regulation. For humans, we assay a skin-associated fat (SAF) body-wide depot to distinguish it from the subcutaneous fat pads characteristic of the abdomen and upper limbs. We show that the thickness of SAF is not related to general adiposity; it is much thicker (1.6-fold) in women than men, and highly subject-specific. We used molecular and cellular assays of β-adrenergic-induced lipolysis and found that dermal white adipose tissue (dWAT) in mice is resistant to lipolysis; in contrast, the body-wide human SAF depot becomes lipolytic, generating heat in response to β-adrenergic stimulation. In mice challenged to make more heat to maintain body temperature (either environmentally or genetically), there is a compensatory increase in thickness of dWAT: a corresponding β-adrenergic stimulation of human skin adipose (in vivo or in explant) depletes adipocyte lipid content. We summarize the regulation of skin-associated adipocytes by age, sex and adiposity, for both species. We conclude that the body-wide dWAT depot of mice shows unique regulation that enables it to be deployed for heat preservation; combined with the actively lipolytic subcutaneous mammary fat pads they enable thermal defence. The adipose tissue that covers human subjects produces heat directly, providing an alternative to the brown adipose tissues.
Collapse
Affiliation(s)
- Ildiko Kasza
- McArdle Laboratory for Cancer Research, University of
Wisconsin-Madison, Germany
| | - Jens-Peter Kühn
- Institute and Policlinic of Diagnostic and Interventional
Radiology, Medical Faculty Carl Gustav Carus, Technical University Dresden,
Germany
| | - Henry Völzke
- Institute of Community Medicine, University of Greifswald,
Germany
| | - Diego Hernando
- Department of Radiology, University of Wisconsin-School of
Medicine and Public Health,Department of Medical Physics, University of
Wisconsin-School of Medicine and Public Health
| | - Yaohui G. Xu
- Department of Dermatology, University of Wisconsin-School
of Medicine and Public Health
| | - John W. Siebert
- Department of Surgery, University of Wisconsin-School of
Medicine and Public Health
| | - Angela LF Gibson
- Department of Surgery, University of Wisconsin-School of
Medicine and Public Health
| | - C.-L. Eric Yen
- Department of Nutritional Sciences, University of
Wisconsin-Madison
| | - David W. Nelson
- Department of Nutritional Sciences, University of
Wisconsin-Madison
| | | | - Nicole E. Richardson
- Department of Medicine, University of Wisconsin-School of
Medicine and Public Health,William S. Middleton Memorial Veterans Hospital, Madison,
Wisconsin
| | - Dudley W. Lamming
- Department of Medicine, University of Wisconsin-School of
Medicine and Public Health,William S. Middleton Memorial Veterans Hospital, Madison,
Wisconsin
| | - Philip A. Kern
- Department of Internal Medicine, University of Kentucky,
Lexington
| | - CM Alexander
- McArdle Laboratory for Cancer Research, University of
Wisconsin-Madison, Germany,corresponding author: CM Alexander, McArdle
Laboratory for Cancer Research, University of Wisconsin-Madison, 1111 Highland
Ave, Madison WI 53705-2275. Ph: 608-265 5182;
| |
Collapse
|