1
|
Du M, Wang C, Jiang Z, Cong R, Li A, Wang W, Zhang G, Li L. Genotype-by-Environment Effects of Cis-Variations in the Atgl Promoter Mediate the Divergent Pattern of Phenotypic Plasticity for Temperature Adaptation in Two Congeneric Oyster Species. Mol Ecol 2025; 34:e17623. [PMID: 39718158 DOI: 10.1111/mec.17623] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/25/2024]
Abstract
Phenotypic plasticity plays an essential role in adaptive evolution. However, the molecular mechanisms of how genotype-by-environment interaction (G × E) effects shape phenotypic plasticity in marine organisms remain poorly understood. The crucial temperature-responsive trait triacylglycerol (TAG) content and its major gene adipose triglyceride lipase (Atgl) expression have divergent plastic patterns in two congeneric oyster species (Crassostrea gigas and Crassostrea angulata) to adapt to relative-cold/northern and relative-warm/southern habitats, respectively. In this study, eight putative loci were identified in the Atgl promoter region (cis-variations) between wild C. gigas and C. angulata that exhibited differential environmental responsiveness (G × E). The G and G × E effects of each locus were further dissected by measuring the Atgl gene expression of different genotypes in response to temperature changes at the cellular and organismal levels. Two transcription factors, non-environmentally responsive non-POU domain-containing octamer-binding protein (Nono) and environmentally responsive heterogeneous nuclear ribonucleoprotein K (Hnrnpk), were screened for binding to g.-1804 (G locus) and g.-1919 (G + G × E locus), respectively. The specificity of Nono binding to the C. angulata allele mediated the G effects of g.-1804, and the lower environmental sensitivity of Hnrnpk in C. angulata mediated the G × E effects of g.-1919, jointly regulating the trade-offs between higher constitutive and lower plastic expression of Atgl gene expression in C. angulata. This study served as an experimental case to reveal how the genetic variations with G and (or) G × E effects propagate into the divergent pattern of plasticity in environmental adaptive traits, which provides new insights into predicting the adaptability of marine organisms to future climate changes.
Collapse
Affiliation(s)
- Mingyang Du
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Chaogang Wang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
| | - Zhuxiang Jiang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Rihao Cong
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Ao Li
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Shandong Center of Technology Innovation for Oyster Seed Industry, Qingdao, China
| | - Wei Wang
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
| | - Guofan Zhang
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao Marine Science and Technology Center, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Shandong Center of Technology Innovation for Oyster Seed Industry, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| | - Li Li
- Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture (CAS), Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Shandong Province Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao Marine Science and Technology Center, Qingdao, China
- National and Local Joint Engineering Laboratory of Ecological Mariculture, Qingdao, China
- Shandong Center of Technology Innovation for Oyster Seed Industry, Qingdao, China
- Southern Marine Science and Engineering Guangdong Laboratory (Zhanjiang), Zhanjiang, China
| |
Collapse
|
2
|
Planté-Bordeneuve P, Boussion S, Caumes R, Rama M, Thuillier C, Boute-Benejean O, Vincent-Delorme C, Ait-Yahya E, Delobel B, Ghoumid J, Smol T. NONO-related X-linked intellectual disability syndrome: Further clinical and molecular delineation. Eur J Med Genet 2025; 73:104987. [PMID: 39709004 DOI: 10.1016/j.ejmg.2024.104987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 12/03/2024] [Accepted: 12/19/2024] [Indexed: 12/23/2024]
Abstract
The X-linked NONO gene encodes Non-Pou Domain-Containing Octamer-Binding Protein, a multifunctional member of the DBHS family involved in transcriptional regulation, RNA splicing and DNA repair. Pathogenic variants in NONO cause Intellectual Developmental Disorder, X-linked Syndromic (MIM #300967), characterised by intellectual disability, neurodevelopmental delay, cardiomyopathy, such as left ventricular non-compaction (LVNC), and congenital heart defects such as including atrial septal defect (ASD), ventricular septal defect (VSD), patent ductus arteriosus (PDA), and patent foramen ovale (PFO). This study reports three new patients with pathogenic hemizygous frameshift variants in NONO identified with exome sequencing, broadening the clinical presentation. The patients present with neurodevelopmental delay, macrocephaly, agenesis or hypoplasia of the corpus callosum and LVNC, confirming previous findings. These findings contribute to the understanding of the phenotypic diversity in patients with NONO pathogenic variants and highlight the need for further investigation of genotype-phenotype correlations, particularly with regard to early cardiac development, and prenatal presentations.
Collapse
Affiliation(s)
| | - Simon Boussion
- Univ. Lille, ULR7364 - RADEME - Maladies RAres du DEveloppement embryonnaire et du Métabolisme, F-59000 Lille, France; CHU Lille Clinique de Génétique, F-59000 Lille, France
| | - Roseline Caumes
- Univ. Lille, ULR7364 - RADEME - Maladies RAres du DEveloppement embryonnaire et du Métabolisme, F-59000 Lille, France; CHU Lille Clinique de Génétique, F-59000 Lille, France
| | - Mélanie Rama
- CHU Lille, Institut de Génétique Médicale, F-59000 Lille, France
| | | | - Odile Boute-Benejean
- Univ. Lille, ULR7364 - RADEME - Maladies RAres du DEveloppement embryonnaire et du Métabolisme, F-59000 Lille, France; CHU Lille Clinique de Génétique, F-59000 Lille, France
| | - Catherine Vincent-Delorme
- Univ. Lille, ULR7364 - RADEME - Maladies RAres du DEveloppement embryonnaire et du Métabolisme, F-59000 Lille, France; CHU Lille Clinique de Génétique, F-59000 Lille, France
| | - Emilie Ait-Yahya
- CHU Lille, Unité de Bio-informatique, Plateau de Biologie-Moléculaire, F-59000 Lille, France
| | - Bruno Delobel
- GHIC Lille, Centre de Génétique Chromosomique, F-59000 Lille, France
| | - Jamal Ghoumid
- Univ. Lille, ULR7364 - RADEME - Maladies RAres du DEveloppement embryonnaire et du Métabolisme, F-59000 Lille, France; CHU Lille Clinique de Génétique, F-59000 Lille, France
| | - Thomas Smol
- CHU Lille, Institut de Génétique Médicale, F-59000 Lille, France; Univ. Lille, ULR7364 - RADEME - Maladies RAres du DEveloppement embryonnaire et du Métabolisme, F-59000 Lille, France.
| |
Collapse
|
3
|
Zhao Y, Chai X, Peng J, Zhu Y, Dong R, He J, Xia L, Liu S, Chen J, Xu Z, Luo C, Sheng J. Proline exacerbates hepatic gluconeogenesis via paraspeckle-dependent mRNA retention. Nat Metab 2025:10.1038/s42255-024-01206-5. [PMID: 39820557 DOI: 10.1038/s42255-024-01206-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 12/10/2024] [Indexed: 01/19/2025]
Abstract
Type 2 diabetes (T2D) is a global health issue characterized by abnormal blood glucose levels and is often associated with excessive hepatic gluconeogenesis. Increased circulating non-essential amino acids (NEAAs) are consistently observed in individuals with T2D; however, the specific contribution of each amino acid to T2D pathogenesis remains less understood. Here, we report an unexpected role of the NEAA proline in coordinating hepatic glucose metabolism by modulating paraspeckle, a nuclear structure scaffolded by the long non-coding RNA Neat1. Mechanistically, proline diminished paraspeckles in hepatocytes, liberating the retained mRNA species into cytoplasm for translation, including the mRNAs of Ppargc1a and Foxo1, contributing to enhanced gluconeogenesis and hyperglycaemia. We further demonstrated that the proline-paraspeckle-mRNA retention axis existed in diabetic liver samples, and intervening in this axis via paraspeckle restoration substantially alleviated hyperglycaemia in both female and male diabetic mouse models. Collectively, our results not only delineated a previously unappreciated proline-instigated, paraspeckle-dependent mRNA-retention mechanism regulating gluconeogenesis, but also spotlighted proline and paraspeckle as potential targets for managing hyperglycaemia.
Collapse
Affiliation(s)
- Yurong Zhao
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Xinxin Chai
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Junxuan Peng
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Yi Zhu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Rong Dong
- NHC Key Laboratory of Pulmonary Immunological Diseases, Guizhou Provincial People's Hospital, Guiyang, China
| | - Junwei He
- College of Life Science, Zhejiang University, Hangzhou, China
| | - Linghao Xia
- College of Life Science, Zhejiang University, Hangzhou, China
| | - Sishuo Liu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Jingzhou Chen
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Zhengping Xu
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Cancer Center, Zhejiang University, Hangzhou, China
| | - Chi Luo
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
| | - Jinghao Sheng
- Institute of Environmental Medicine and Department of General Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- Cancer Center, Zhejiang University, Hangzhou, China.
| |
Collapse
|
4
|
Garcia M, Holota H, De Haze A, Saru JP, Sanchez P, Battistelli E, Thirouard L, Monrose M, Benoit G, Volle DH, Beaudoin C. Alternative splicing is an FXRα loss-of-function mechanism and impacts energy metabolism in hepatocarcinoma cells. J Biol Chem 2025; 301:108022. [PMID: 39608717 PMCID: PMC11758954 DOI: 10.1016/j.jbc.2024.108022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 11/02/2024] [Accepted: 11/13/2024] [Indexed: 11/30/2024] Open
Abstract
Farnesoid X receptor α (FXRα, NR1H4) is a bile acid-activated nuclear receptor that regulates the expression of glycolytic and lipogenic target genes by interacting with the 9-cis-retinoic acid receptor α (RXRα, NR2B1). Along with cofactors, the FXRα proteins reported thus far in humans and rodents have been observed to regulate both isoform (α1-4)- and tissue-specific gene expression profiles to integrate energy balance and metabolism. Here, we studied the biological functions of an FXRα naturally occurring spliced exon 5 isoform (FXRαse5) lacking the second zinc-binding module of the DNA-binding domain. We demonstrate spliced exon 5 FXRα expression in all FXRα-expressing human and mouse tissues and cells, and that it is unable to bind to its response element or activate FXRα dependent transcription. In parallel, this spliced variant displays differential interaction capacities with its obligate heterodimer partner retinoid X receptor α that may account for silencing of this permissive dimer for signal transduction. Finally, deletion of exon 5 by gene edition in HepG2 cells leads to FXRα loss-of-function, increased expression of LRH1 metabolic sensor and CD36 fatty acid transporter in conjunction with changes in glucose and triglycerides homeostasis. Together, these findings highlight a novel mechanism by which alternative splicing may regulate FXRα gene function to fine-tune adaptive and/or metabolic responses. This finding deepens our understanding on the role of splicing events in hindering FXRα activity to regulate specific transcriptional programs and their contribution in modifying energy metabolism in normal tissues and metabolic diseases.
Collapse
Affiliation(s)
- Manon Garcia
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD Team-Volle, Clermont-Ferrand, France
| | - Hélène Holota
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD Team-Volle, Clermont-Ferrand, France
| | - Angélique De Haze
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD Team-Volle, Clermont-Ferrand, France
| | - Jean-Paul Saru
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD Team-Volle, Clermont-Ferrand, France
| | - Phelipe Sanchez
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD Team-Volle, Clermont-Ferrand, France
| | - Edwige Battistelli
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD Team-Volle, Clermont-Ferrand, France
| | - Laura Thirouard
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD Team-Volle, Clermont-Ferrand, France
| | - Mélusine Monrose
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD Team-Volle, Clermont-Ferrand, France
| | - Gérard Benoit
- Université de Rennes 1, CNRS UMR6290, INSERM U1305, IGDR, Rennes Cedex, France
| | - David H Volle
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD Team-Volle, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France.
| | - Claude Beaudoin
- Université Clermont Auvergne, CNRS UMR6293, INSERM U1103, iGReD Team-Volle, Clermont-Ferrand, France; Centre de Recherche en Nutrition Humaine d'Auvergne, Clermont-Ferrand, France.
| |
Collapse
|
5
|
Koch R, Nagoshi E. Examining the potential involvement of NONO in TDP-43 proteinopathy in Drosophila. Eur J Neurosci 2025; 61:e16632. [PMID: 39690447 DOI: 10.1111/ejn.16632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 10/18/2024] [Accepted: 11/20/2024] [Indexed: 12/19/2024]
Abstract
The misfolding and aggregation of TAR DNA binding protein-43 (TDP-43), leading to the formation of cytoplasmic inclusions, emerge as a key pathological feature in a spectrum of neurodegenerative diseases, including amyotrophic lateral sclerosis (ALS) and frontotemporal lobar dementia (FTLD). TDP-43 shuttles between the nucleus and cytoplasm but forms nuclear bodies (NBs) in response to stress. These NBs partially colocalise with nuclear speckles and paraspeckles that sequester RNAs and proteins, thereby regulating many cellular functions. The laboratory of Steven Brown has recently found that the non-POU domain-containing octamer-binding protein (NONO), a component of paraspeckles, forms novel nuclear speckle-like structures in mouse cortical neurons in response to stress and sleep deprivation. These findings suggest the possibility of a functional link between NONO and TDP-43, potentially contributing to TDP-43 proteinopathy. Here, we demonstrate that pathological phenotypes caused by TDP-43 gain of function-locomotor defects and life span shortening-are exacerbated by silencing the Drosophila homolog of NONO, no on or off transient A (NonA). Additionally, NonA silencing results in an increase in nuclear TDP-43 NBs. These results provide supporting evidence for the functional link between NONO and TDP-43 and lay the foundation for dissecting underlying mechanisms.
Collapse
Affiliation(s)
- Rafael Koch
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| | - Emi Nagoshi
- Department of Genetics and Evolution and Institute of Genetics and Genomics of Geneva (iGE3), University of Geneva, Geneva, Switzerland
| |
Collapse
|
6
|
Li Y, Wang Y, Tan YQ, Yue Q, Guo Y, Yan R, Meng L, Zhai H, Tong L, Yuan Z, Li W, Wang C, Han S, Ren S, Yan Y, Wang W, Gao L, Tan C, Hu T, Zhang H, Liu L, Yang P, Jiang W, Ye Y, Tan H, Wang Y, Lu C, Li X, Xie J, Yuan G, Cui Y, Shen B, Wang C, Guan Y, Li W, Shi Q, Lin G, Ni T, Sun Z, Ye L, Vourekas A, Guo X, Lin M, Zheng K. The landscape of RNA binding proteins in mammalian spermatogenesis. Science 2024; 386:eadj8172. [PMID: 39208083 DOI: 10.1126/science.adj8172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 04/08/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Despite continuous expansion of the RNA binding protein (RBP) world, there is a lack of systematic understanding of RBPs in the mammalian testis, which harbors one of the most complex tissue transcriptomes. We adapted RNA interactome capture to mouse male germ cells, building an RBP atlas characterized by multiple layers of dynamics along spermatogenesis. Trapping of RNA-cross-linked peptides showed that the glutamic acid-arginine (ER) patch, a residue-coevolved polyampholytic element present in coiled coils, enhances RNA binding of its host RBPs. Deletion of this element in NONO (non-POU domain-containing octamer-binding protein) led to a defective mitosis-to-meiosis transition due to compromised NONO-RNA interactions. Whole-exome sequencing of over 1000 infertile men revealed a prominent role of RBPs in the human genetic architecture of male infertility and identified risk ER patch variants.
Collapse
Affiliation(s)
- Yang Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuanyuan Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Yue-Qiu Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Andrology, Nanjing Drum Tower Hospital, the Affiliated Hospital of Nanjing University, Nanjing 210008, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Ruoyu Yan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- College of Life Sciences, Northwest A&F University, Yangling 712100, China
| | - Lanlan Meng
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Huicong Zhai
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Lingxiu Tong
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zihan Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wu Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cuicui Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shenglin Han
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Sen Ren
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yitong Yan
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Weixu Wang
- Institute of Computational Biology, Helmholtz Center Munich, Munich 85764, Germany
| | - Lei Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chen Tan
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Tongyao Hu
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
| | - Hao Zhang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Liya Liu
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
| | - Pinglan Yang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Wanyin Jiang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yiting Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Huanhuan Tan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yanfeng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Chenyu Lu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xin Li
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jie Xie
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Gege Yuan
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yiqiang Cui
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Bin Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Cheng Wang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, Nanjing 211166, China
| | - Yichun Guan
- Center for Reproductive Medicine, the Third Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Wei Li
- Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Qinghua Shi
- Division of Reproduction and Genetics, First Affiliated Hospital of USC, Hefei National Laboratory for Physical Sciences at Microscale, School of Basic Medical Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei 230027, China
| | - Ge Lin
- Institute of Reproductive and Stem Cell Engineering, NHC Key Laboratory of Human Stem Cell and Reproductive Engineering, School of Basic Medical Science, Central South University, Changsha 410083, China
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-Xiangya, Changsha 410008, China
| | - Ting Ni
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center of Genetics and Development, Human Phenome Institute, Shanghai Engineering Research Center of Industrial Microorganisms, School of Life Sciences and Huashan Hospital, Fudan University, Shanghai 200438, China
| | - Zheng Sun
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Lan Ye
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Anastasios Vourekas
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Xuejiang Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Mingyan Lin
- Department of Neurobiology, School of Basic Medical Science, Nanjing Medical University, Nanjing 211166, China
- Changzhou Medical Center, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou 213000, China
- Division of Birth Cohort Study, Fujian Maternity and Child Health Hospital, Fuzhou 350014, China
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
7
|
Zhang L, Zhang J, Zang H, Yin Z, Guan P, Yu C, Shan A, Feng X. Dietary pterostilbene exerts potential protective effects by regulating lipid metabolism and enhancing antioxidant capacity on liver in broilers. J Anim Physiol Anim Nutr (Berl) 2024; 108:921-933. [PMID: 38372476 DOI: 10.1111/jpn.13941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/18/2024] [Accepted: 02/03/2024] [Indexed: 02/20/2024]
Abstract
Intensive breeding of broilers met the increasing demands of human for broiler products, but it raised their increased susceptibility to various stressors resulting in the disorder of lipid metabolism. Pterostilbene, the methoxylated analogue of resveratrol, exhibits astonishing functions of antioxidant, anti-inflammatory and glycolipid regulatory. The study aimed to elucidate the protective effects of pterostilbene on broiler liver and to explore the potential mechanisms. A total of 480 one-day-old male Arbor Acres (AA) broilers were randomly divided into four groups: the control group (basal diet) and pterostilbene groups (PT200, PT400, and PT600 feeding with basal diet containing 200, 400 and 600 mg/kg pterostilbene, respectively). The results showed that the dietary pterostilbene supplementation significantly improved the ADG of broilers. Dietary pterostilbene supplementation regulated the expression levels of the genes Sirt1 and AMPK and the downstream genes related to lipid metabolism to protect liver function and reduce lipid accumulation in broilers. Dietary pterostilbene supplementation upregulated the expression levels of the Nrf2 gene and its downstream antioxidant genes (SOD, CAT, HO-1, NQO-1, GPX) and phase II detoxification enzyme-related genes (GST, GCLM, GCLC). Collectively, pterostilbene was confirmed the positive effects as a feed additive on lipid metabolism and antioxidant via regulating Sirt1/AMPK and Nrf2 signalling pathways in broilers.
Collapse
Affiliation(s)
- Licong Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Xiangfang District, Harbin, People's Republic of China
| | - Jingyang Zhang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Xiangfang District, Harbin, People's Republic of China
| | - Haoran Zang
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Xiangfang District, Harbin, People's Republic of China
| | - Zesheng Yin
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Xiangfang District, Harbin, People's Republic of China
| | - Peiyue Guan
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Xiangfang District, Harbin, People's Republic of China
| | - Chunting Yu
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Xiangfang District, Harbin, People's Republic of China
| | - Anshan Shan
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Xiangfang District, Harbin, People's Republic of China
| | - Xingjun Feng
- Department of Animal Nutrition and Feed Science, College of Animal Science and Technology, Northeast Agricultural University, Xiangfang District, Harbin, People's Republic of China
| |
Collapse
|
8
|
Ronchetti D, Traini V, Silvestris I, Fabbiano G, Passamonti F, Bolli N, Taiana E. The pleiotropic nature of NONO, a master regulator of essential biological pathways in cancers. Cancer Gene Ther 2024; 31:984-994. [PMID: 38493226 PMCID: PMC11257950 DOI: 10.1038/s41417-024-00763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/18/2024]
Abstract
NONO is a member of the Drosophila behavior/human splicing (DBHS) family of proteins. NONO is a multifunctional protein that acts as a "molecular scaffold" to carry out versatile biological activities in many aspects of gene regulation, cell proliferation, apoptosis, migration, DNA damage repair, and maintaining cellular circadian rhythm coupled to the cell cycle. Besides these physiological activities, emerging evidence strongly indicates that NONO-altered expression levels promote tumorigenesis. In addition, NONO can undergo various post-transcriptional or post-translational modifications, including alternative splicing, phosphorylation, methylation, and acetylation, whose impact on cancer remains largely to be elucidated. Overall, altered NONO expression and/or activities are a common feature in cancer. This review provides an integrated scenario of the current understanding of the molecular mechanisms and the biological processes affected by NONO in different tumor contexts, suggesting that a better elucidation of the pleiotropic functions of NONO in physiology and tumorigenesis will make it a potential therapeutic target in cancer. In this respect, due to the complex landscape of NONO activities and interactions, we highlight caveats that must be considered during experimental planning and data interpretation of NONO studies.
Collapse
Affiliation(s)
- Domenica Ronchetti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Valentina Traini
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Ilaria Silvestris
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Giuseppina Fabbiano
- Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Francesco Passamonti
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Niccolò Bolli
- Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
- Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Elisa Taiana
- Hematology, Fondazione IRCCS Cà Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
9
|
Park SH, Ju JS, Woo H, Yun HJ, Lee SB, Kim SH, Győrffy B, Kim EJ, Kim H, Han HD, Eyun SI, Lee JH, Park YY. The m 6A writer RBM15 drives the growth of triple-negative breast cancer cells through the stimulation of serine and glycine metabolism. Exp Mol Med 2024; 56:1373-1387. [PMID: 38825643 PMCID: PMC11263342 DOI: 10.1038/s12276-024-01235-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 03/03/2024] [Accepted: 03/03/2024] [Indexed: 06/04/2024] Open
Abstract
N6-adenosine methylation (m6A) is critical for controlling cancer cell growth and tumorigenesis. However, the function and detailed mechanism of how m6A methyltransferases modulate m6A levels on specific targets remain unknown. In the current study, we identified significantly elevated levels of RBM15, an m6A writer, in basal-like breast cancer (BC) patients compared to nonbasal-like BC patients and linked this increase to worse clinical outcomes. Gene expression profiling revealed correlations between RBM15 and serine and glycine metabolic genes, including PHGDH, PSAT1, PSPH, and SHMT2. RBM15 influences m6A levels and, specifically, the m6A levels of serine and glycine metabolic genes via direct binding to target RNA. The effects of RBM15 on cell growth were largely dependent on serine and glycine metabolism. Thus, RBM15 coordinates cancer cell growth through altered serine and glycine metabolism, suggesting that RBM15 is a new therapeutic target in BC.
Collapse
Affiliation(s)
- Su Hwan Park
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, Republic of Korea
| | - Jin-Sung Ju
- Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Hyunmin Woo
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Hye Jin Yun
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, Republic of Korea
| | - Su Bin Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, Republic of Korea
| | - Seok-Ho Kim
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, Republic of Korea
- Department of Medicinal Biotechnology, College of Health Science, Dong-A University, Busan, Republic of Korea
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, H-1094, Budapest, Hungary
- Department of Biophysics, Medical School, University of Pecs, H-7624, Pecs, Hungary
- Cancer Biomarker Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, H-1117, Budapest, Hungary
| | - Eun-Jeong Kim
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea
| | - Ho Kim
- Division of Life Science and Chemistry, College of Natural Science, Daejin University, Pocheon, Republic of Korea
| | - Hee Dong Han
- Department of Immunology, School of Medicine, Konkuk University, Chungcheongbuk-Do, Republic of Korea
| | - Seong-Il Eyun
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea.
| | - Jong-Ho Lee
- Department of Health Sciences, The Graduate School of Dong-A University, Busan, Republic of Korea.
| | - Yun-Yong Park
- Department of Life Science, Chung-Ang University, Seoul, Republic of Korea.
| |
Collapse
|
10
|
Trifault B, Mamontova V, Cossa G, Ganskih S, Wei Y, Hofstetter J, Bhandare P, Baluapuri A, Nieto B, Solvie D, Ade CP, Gallant P, Wolf E, Larsen DH, Munschauer M, Burger K. Nucleolar detention of NONO shields DNA double-strand breaks from aberrant transcripts. Nucleic Acids Res 2024; 52:3050-3068. [PMID: 38224452 PMCID: PMC11014278 DOI: 10.1093/nar/gkae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 12/11/2023] [Accepted: 01/04/2024] [Indexed: 01/16/2024] Open
Abstract
RNA-binding proteins emerge as effectors of the DNA damage response (DDR). The multifunctional non-POU domain-containing octamer-binding protein NONO/p54nrb marks nuclear paraspeckles in unperturbed cells, but also undergoes re-localization to the nucleolus upon induction of DNA double-strand breaks (DSBs). However, NONO nucleolar re-localization is poorly understood. Here we show that the topoisomerase II inhibitor etoposide stimulates the production of RNA polymerase II-dependent, DNA damage-inducible antisense intergenic non-coding RNA (asincRNA) in human cancer cells. Such transcripts originate from distinct nucleolar intergenic spacer regions and form DNA-RNA hybrids to tether NONO to the nucleolus in an RNA recognition motif 1 domain-dependent manner. NONO occupancy at protein-coding gene promoters is reduced by etoposide, which attenuates pre-mRNA synthesis, enhances NONO binding to pre-mRNA transcripts and is accompanied by nucleolar detention of a subset of such transcripts. The depletion or mutation of NONO interferes with detention and prolongs DSB signalling. Together, we describe a nucleolar DDR pathway that shields NONO and aberrant transcripts from DSBs to promote DNA repair.
Collapse
Affiliation(s)
- Barbara Trifault
- Mildred Scheel Early Career Center for Cancer Research (Mildred-Scheel-Nachwuchszentrum, MSNZ) Würzburg, University Hospital Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Victoria Mamontova
- Mildred Scheel Early Career Center for Cancer Research (Mildred-Scheel-Nachwuchszentrum, MSNZ) Würzburg, University Hospital Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Giacomo Cossa
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Sabina Ganskih
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Yuanjie Wei
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Julia Hofstetter
- Cancer Systems Biology Group, Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Pranjali Bhandare
- Cancer Systems Biology Group, Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Apoorva Baluapuri
- Cancer Systems Biology Group, Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Blanca Nieto
- Nucleolar Stress and Disease Group, Danish Cancer Institute, Strandboulevarden 49, Copenhagen, Denmark
| | - Daniel Solvie
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Carsten P Ade
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Peter Gallant
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Elmar Wolf
- Cancer Systems Biology Group, Theodor Boveri Institute, Biocenter, University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Dorthe H Larsen
- Nucleolar Stress and Disease Group, Danish Cancer Institute, Strandboulevarden 49, Copenhagen, Denmark
| | - Mathias Munschauer
- Helmholtz Institute for RNA-based Infection Research, Helmholtz-Center for Infection Research, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
| | - Kaspar Burger
- Mildred Scheel Early Career Center for Cancer Research (Mildred-Scheel-Nachwuchszentrum, MSNZ) Würzburg, University Hospital Würzburg, Josef-Schneider-Strasse 2, D-97080 Würzburg, Germany
- Department of Biochemistry and Molecular Biology, Biocenter of the University of Würzburg, Am Hubland, D-97074 Würzburg, Germany
| |
Collapse
|
11
|
Verma SK, Kuyumcu-Martinez MN. RNA binding proteins in cardiovascular development and disease. Curr Top Dev Biol 2024; 156:51-119. [PMID: 38556427 DOI: 10.1016/bs.ctdb.2024.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Congenital heart disease (CHD) is the most common birth defect affecting>1.35 million newborn babies worldwide. CHD can lead to prenatal, neonatal, postnatal lethality or life-long cardiac complications. RNA binding protein (RBP) mutations or variants are emerging as contributors to CHDs. RBPs are wizards of gene regulation and are major contributors to mRNA and protein landscape. However, not much is known about RBPs in the developing heart and their contributions to CHD. In this chapter, we will discuss our current knowledge about specific RBPs implicated in CHDs. We are in an exciting era to study RBPs using the currently available and highly successful RNA-based therapies and methodologies. Understanding how RBPs shape the developing heart will unveil their contributions to CHD. Identifying their target RNAs in the embryonic heart will ultimately lead to RNA-based treatments for congenital heart disease.
Collapse
Affiliation(s)
- Sunil K Verma
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States.
| | - Muge N Kuyumcu-Martinez
- Department of Molecular Physiology and Biological Physics, University of Virginia School of Medicine Charlottesville, VA, United States; Robert M. Berne Cardiovascular Research Center, University of Virginia School of Medicine, Charlottesville, VA, United States; University of Virginia Cancer Center, Charlottesville, VA, United States.
| |
Collapse
|
12
|
Webster NJG, Kumar D, Wu P. Dysregulation of RNA splicing in early non-alcoholic fatty liver disease through hepatocellular carcinoma. Sci Rep 2024; 14:2500. [PMID: 38291075 PMCID: PMC10828381 DOI: 10.1038/s41598-024-52237-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
While changes in RNA splicing have been extensively studied in hepatocellular carcinoma (HCC), no studies have systematically investigated changes in RNA splicing during earlier liver disease. Mouse studies have shown that disruption of RNA splicing can trigger liver disease and we have shown that the splicing factor SRSF3 is decreased in the diseased human liver, so we profiled RNA splicing in liver samples from twenty-nine individuals with no-history of liver disease or varying degrees of non-alcoholic fatty liver disease (NAFLD). We compared our results with three publicly available transcriptome datasets that we re-analyzed for splicing events (SEs). We found many changes in SEs occurred during early liver disease, with fewer events occurring with the onset of inflammation and fibrosis. Many of these early SEs were enriched for SRSF3-dependent events and were associated with SRSF3 binding sites. Mapping the early and late changes to gene ontologies and pathways showed that the genes harboring these early SEs were involved in normal liver metabolism, whereas those harboring late SEs were involved in inflammation, fibrosis and proliferation. We compared the SEs with HCC data from the TCGA and observed that many of these early disease SEs are found in HCC samples and, furthermore, are correlated with disease survival. Changes in splicing factor expression are also observed, which may be associated with distinct subsets of the SEs. The maintenance of these SEs through the multi-year oncogenic process suggests that they may be causative. Understanding the role of these splice variants in metabolic liver disease progression may shed light on the triggers of liver disease progression and the pathogenesis of HCC.
Collapse
Affiliation(s)
- Nicholas J G Webster
- Jennifer Moreno VA Medical Center, San Diego, CA, 92161, USA.
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, 92093, USA.
- Moores Cancer Center, University of California, San Diego, CA, 92093, USA.
| | - Deepak Kumar
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, 92093, USA
| | - Panyisha Wu
- Division of Endocrinology and Metabolism, Department of Medicine, University of California, San Diego, CA, 92093, USA
| |
Collapse
|
13
|
Yu D, Huang CJ, Tucker HO. Established and Evolving Roles of the Multifunctional Non-POU Domain-Containing Octamer-Binding Protein (NonO) and Splicing Factor Proline- and Glutamine-Rich (SFPQ). J Dev Biol 2024; 12:3. [PMID: 38248868 PMCID: PMC10801543 DOI: 10.3390/jdb12010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/25/2023] [Accepted: 12/28/2023] [Indexed: 01/23/2024] Open
Abstract
It has been more than three decades since the discovery of multifunctional factors, the Non-POU-Domain-Containing Octamer-Binding Protein, NonO, and the Splicing Factor Proline- and Glutamine-Rich, SFPQ. Some of their functions, including their participation in transcriptional and posttranscriptional regulation as well as their contribution to paraspeckle subnuclear body organization, have been well documented. In this review, we focus on several other established roles of NonO and SFPQ, including their participation in the cell cycle, nonhomologous end-joining (NHEJ), homologous recombination (HR), telomere stability, childhood birth defects and cancer. In each of these contexts, the absence or malfunction of either or both NonO and SFPQ leads to either genome instability, tumor development or mental impairment.
Collapse
Affiliation(s)
- Danyang Yu
- Department of Biology, New York University in Shanghai, Shanghai 200122, China;
| | - Ching-Jung Huang
- Department of Biology, New York University in Shanghai, Shanghai 200122, China;
| | - Haley O. Tucker
- Molecular Biosciences, Institute for Cellular and Molecular Biology, University of Texas at Austin, 1 University Station A5000, Austin, TX 78712, USA
| |
Collapse
|
14
|
Takeiwa T, Ikeda K, Horie K, Inoue S. Role of RNA binding proteins of the Drosophila behavior and human splicing (DBHS) family in health and cancer. RNA Biol 2024; 21:1-17. [PMID: 38551131 PMCID: PMC10984136 DOI: 10.1080/15476286.2024.2332855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/19/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
RNA-binding proteins (RBPs) play crucial roles in the functions and homoeostasis of various tissues by regulating multiple events of RNA processing including RNA splicing, intracellular RNA transport, and mRNA translation. The Drosophila behavior and human splicing (DBHS) family proteins including PSF/SFPQ, NONO, and PSPC1 are ubiquitously expressed RBPs that contribute to the physiology of several tissues. In mammals, DBHS proteins have been reported to contribute to neurological diseases and play crucial roles in cancers, such as prostate, breast, and liver cancers, by regulating cancer-specific gene expression. Notably, in recent years, multiple small molecules targeting DBHS family proteins have been developed for application as cancer therapeutics. This review provides a recent overview of the functions of DBHS family in physiology and pathophysiology, and discusses the application of DBHS family proteins as promising diagnostic and therapeutic targets for cancers.
Collapse
Affiliation(s)
- Toshihiko Takeiwa
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Kuniko Horie
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo, Japan
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| |
Collapse
|
15
|
Brooks TG, Manjrekar A, Mrcˇela A, Grant GR. Meta-analysis of Diurnal Transcriptomics in Mouse Liver Reveals Low Repeatability of Rhythm Analyses. J Biol Rhythms 2023; 38:556-570. [PMID: 37382061 PMCID: PMC10615793 DOI: 10.1177/07487304231179600] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/30/2023]
Abstract
To assess the consistency of biological rhythms across studies, 57 public mouse liver tissue timeseries totaling 1096 RNA-seq samples were obtained and analyzed. Only the control groups of each study were included, to create comparable data. Technical factors in RNA-seq library preparation were the largest contributors to transcriptome-level differences, beyond biological or experiment-specific factors such as lighting conditions. Core clock genes were remarkably consistent in phase across all studies. Overlap of genes identified as rhythmic across studies was generally low, with no pair of studies having over 60% overlap. Distributions of phases of significant genes were remarkably inconsistent across studies, but the genes that consistently identified as rhythmic had acrophase clustering near ZT0 and ZT12. Despite the discrepancies between single-study analyses, cross-study analyses found substantial consistency. Running compareRhythms on each pair of studies identified a median of only 11% of the identified rhythmic genes as rhythmic in only 1 of the 2 studies. Data were integrated across studies in a joint and individual variance estimate (JIVE) analysis, which showed that the top 2 components of joint within-study variation are determined by time of day. A shape-invariant model with random effects was fit to the genes to identify the underlying shape of the rhythms, consistent across all studies, including identifying 72 genes with consistently multiple peaks.
Collapse
Affiliation(s)
- Thomas G. Brooks
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Aditi Manjrekar
- Department of Neuroscience, The University of Texas at Dallas, Richardson, Texas
| | - Antonijo Mrcˇela
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Gregory R. Grant
- Institute for Translational Medicine and Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Genetics, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
16
|
Jobbins AM, Yu S, Paterson HAB, Maude H, Kefala-Stavridi A, Speck C, Cebola I, Vernia S. Pre-RNA splicing in metabolic homeostasis and liver disease. Trends Endocrinol Metab 2023; 34:823-837. [PMID: 37673766 DOI: 10.1016/j.tem.2023.08.007] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 09/08/2023]
Abstract
The liver plays a key role in sensing nutritional and hormonal inputs to maintain metabolic homeostasis. Recent studies into pre-mRNA splicing and alternative splicing (AS) and their effects on gene expression have revealed considerable transcriptional complexity in the liver, both in health and disease. While the contribution of these mechanisms to cell and tissue identity is widely accepted, their role in physiological and pathological contexts within tissues is just beginning to be appreciated. In this review, we showcase recent studies on the splicing and AS of key genes in metabolic pathways in the liver, the effect of metabolic signals on the spliceosome, and therapeutic intervention points based on RNA splicing.
Collapse
Affiliation(s)
- Andrew M Jobbins
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Sijia Yu
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Helen A B Paterson
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Hannah Maude
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Antonia Kefala-Stavridi
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Christian Speck
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK
| | - Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Santiago Vernia
- MRC (Medical Research Council) London Institute of Medical Sciences, Du Cane Road, London, W12 0NN, UK; Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London, W12 0NN, UK.
| |
Collapse
|
17
|
Li H, Jiao W, Song J, Wang J, Chen G, Li D, Wang X, Bao B, Du X, Cheng Y, Yang C, Tong Q, Zheng L. circ-hnRNPU inhibits NONO-mediated c-Myc transactivation and mRNA stabilization essential for glycosylation and cancer progression. J Exp Clin Cancer Res 2023; 42:313. [PMID: 37993881 PMCID: PMC10666356 DOI: 10.1186/s13046-023-02898-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 11/12/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Recent evidence reveals the emerging functions of circular RNA (circRNA) and protein glycosylation in cancer progression. However, the roles of circRNA in regulating glycosyltransferase expression in gastric cancer remain to be determined. METHODS Circular RNAs (circRNAs) were validated by Sanger sequencing. Co-immunoprecipitation, mass spectrometry, and RNA sequencing assays were applied to explore protein interaction and target genes. Gene expression regulation was observed by chromatin immunoprecipitation, RNA immunoprecipitation, dual-luciferase reporter, real-time quantitative RT-PCR, and western blot assays. Gain- and loss-of-function studies were performed to observe the impacts of circRNA and its partners on the glycosylation, growth, invasion, and metastasis of gastric cancer cells. RESULTS Circ-hnRNPU, an exonic circRNA derived from heterogenous nuclear ribonuclear protein U (hnRNPU), was identified to exert tumor suppressive roles in protein glycosylation and progression of gastric cancer. Mechanistically, circ-hnRNPU physically interacted with non-POU domain containing octamer binding (NONO) protein to induce its cytoplasmic retention, resulting in down-regulation of glycosyltransferases (GALNT2, GALNT6, MGAT1) and parental gene hnRNPU via repression of nuclear NONO-mediated c-Myc transactivation or cytoplasmic NONO-facilitated mRNA stability. Rescue studies indicated that circ-hnRNPU inhibited the N- and O-glycosylation, growth, invasion, and metastasis of gastric cancer cells via interacting with NONO protein. Pre-clinically, administration of lentivirus carrying circ-hnRNPU suppressed the protein glycosylation, tumorigenesis, and aggressiveness of gastric cancer xenografts. In clinical cases, low circ-hnRNPU levels and high NONO or c-Myc expression were associated with poor survival outcome of gastric cancer patients. CONCLUSIONS These findings indicate that circ-hnRNPU inhibits NONO-mediated c-Myc transactivation and mRNA stabilization essential for glycosylation and cancer progression.
Collapse
Affiliation(s)
- Hongjun Li
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, P. R. China
| | - Wanju Jiao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, P. R. China
| | - Jiyu Song
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, P. R. China
| | - Jianqun Wang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, P. R. China
| | - Guo Chen
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, P. R. China
| | - Dan Li
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, P. R. China
| | - Xiaojing Wang
- Department of Geriatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, P. R. China
| | - Banghe Bao
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, P. R. China
| | - Xinyi Du
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, P. R. China
| | - Yang Cheng
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, P. R. China
| | - Chunhui Yang
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, P. R. China
| | - Qiangsong Tong
- Department of Pediatric Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, P. R. China.
| | - Liduan Zheng
- Department of Pathology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, Hubei Province, 430022, P. R. China.
| |
Collapse
|
18
|
Nazari E, Khalili-Tanha G, Asadnia A, Pourali G, Maftooh M, Khazaei M, Nasiri M, Hassanian SM, Ghayour-Mobarhan M, Ferns GA, Kiani MA, Avan A. Bioinformatics analysis and machine learning approach applied to the identification of novel key genes involved in non-alcoholic fatty liver disease. Sci Rep 2023; 13:20489. [PMID: 37993474 PMCID: PMC10665370 DOI: 10.1038/s41598-023-46711-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) comprises a range of chronic liver diseases that result from the accumulation of excess triglycerides in the liver, and which, in its early phases, is categorized NAFLD, or hepato-steatosis with pure fatty liver. The mortality rate of non-alcoholic steatohepatitis (NASH) is more than NAFLD; therefore, diagnosing the disease in its early stages may decrease liver damage and increase the survival rate. In the current study, we screened the gene expression data of NAFLD patients and control samples from the public dataset GEO to detect DEGs. Then, the correlation betweenbetween the top selected DEGs and clinical data was evaluated. In the present study, two GEO datasets (GSE48452, GSE126848) were downloaded. The dysregulated expressed genes (DEGs) were identified by machine learning methods (Penalize regression models). Then, the shared DEGs between the two training datasets were validated using validation datasets. ROC-curve analysis was used to identify diagnostic markers. R software analyzed the interactions between DEGs, clinical data, and fatty liver. Ten novel genes, including ABCF1, SART3, APC5, NONO, KAT7, ZPR1, RABGAP1, SLC7A8, SPAG9, and KAT6A were found to have a differential expression between NAFLD and healthy individuals. Based on validation results and ROC analysis, NR4A2 and IGFBP1b were identified as diagnostic markers. These key genes may be predictive markers for the development of fatty liver. It is recommended that these key genes are assessed further as possible predictive markers during the development of fatty liver.
Collapse
Affiliation(s)
- Elham Nazari
- Department of Health Information Technology and Management, School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Alireza Asadnia
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ghazaleh Pourali
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mina Maftooh
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammadreza Nasiri
- Recombinant Proteins Research Group, The Research Institute of Biotechnology, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Seyed Mahdi Hassanian
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
- Basic Sciences Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Ghayour-Mobarhan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Gordon A Ferns
- Division of Medical Education, Brighton & Sussex Medical School, Falmer, Brighton, BN1 9PH, Sussex, UK
| | - Mohammad Ali Kiani
- Department of Pediatrics, Ghaem Hospital, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- College of Medicine, University of Warith Al-Anbiyaa, Karbala, Iraq.
- Faculty of Health, School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, 4000, Australia.
| |
Collapse
|
19
|
Wang YL, Zhao WW, Shi J, Wan XB, Zheng J, Fan XJ. Liquid-liquid phase separation in DNA double-strand breaks repair. Cell Death Dis 2023; 14:746. [PMID: 37968256 PMCID: PMC10651886 DOI: 10.1038/s41419-023-06267-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 10/23/2023] [Accepted: 11/01/2023] [Indexed: 11/17/2023]
Abstract
DNA double-strand breaks (DSBs) are the fatal type of DNA damage mostly induced by exposure genome to ionizing radiation or genotoxic chemicals. DSBs are mainly repaired by homologous recombination (HR) and nonhomologous end joining (NHEJ). To repair DSBs, a large amount of DNA repair factors was observed to be concentrated at the end of DSBs in a specific spatiotemporal manner to form a repair center. Recently, this repair center was characterized as a condensate derived from liquid-liquid phase separation (LLPS) of key DSBs repair factors. LLPS has been found to be the mechanism of membraneless organelles formation and plays key roles in a variety of biological processes. In this review, the recent advances and mechanisms of LLPS in the formation of DSBs repair-related condensates are summarized.
Collapse
Affiliation(s)
- Yun-Long Wang
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Wan-Wen Zhao
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Jie Shi
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Xiang-Bo Wan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Jian Zheng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China
| | - Xin-Juan Fan
- Henan Provincial Key Laboratory of Radiation Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
- Academy of Medical Sciences, Zhengzhou University, Zhengzhou, Henan, 450052, PR China.
- GuangDong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510655, PR China.
| |
Collapse
|
20
|
Ye S, Wang Z, Ma JH, Ji S, Peng Y, Huang Y, Chen J, Tang S. Diabetes Reshapes the Circadian Transcriptome Profile in Murine Retina. Invest Ophthalmol Vis Sci 2023; 64:3. [PMID: 37788001 PMCID: PMC10552875 DOI: 10.1167/iovs.64.13.3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/09/2023] [Indexed: 10/04/2023] Open
Abstract
Purpose Diabetic retinopathy (DR) is a common complication of diabetes and has a high prevalence. Dysregulation of circadian rhythmicity is associated with the development of DR. This research aimed to investigate rhythmical transcriptome alterations in the retina of diabetic mice. Methods C57BL/6J mice were used to establish a diabetes model by intraperitoneal injection of streptozotocin (STZ). After 12 weeks, retinas were collected continuously at 4-hour intervals over 1 day. Total RNA was extracted from normal and STZ-treated retinas and RNA sequencing was performed. Meta2d algorithm, Kyoto Encyclopedia of Genes, Phase Set Enrichment Analysis, and time-series cluster analysis were used to identify, analyze and annotate the composition, phase, and molecular functions of rhythmic transcripts in retinas. Results The retina exhibited powerful transcriptome rhythmicity. STZ-induced diabetes markedly modified the transcriptome characteristics of the circadian transcriptome in the retina, including composition, phase, and amplitude. Moreover, the diabetic mice led to re-organized temporal and clustering enrichment pathways in space and time and affected core clock machinery. Conclusions Diabetes impairs the circadian rhythm of the transcriptomic profile of retinas. This study offers new perspectives on the negative effects of diabetes on the retina, which may provide important information for the development of new treatments for DR.
Collapse
Affiliation(s)
- Suna Ye
- AIER Eye Hospital, Jinan University, Guangzhou, China
- AIER Eye Institute, Changsha, China
| | | | | | | | | | | | - Jiansu Chen
- AIER Eye Hospital, Jinan University, Guangzhou, China
- AIER Eye Institute, Changsha, China
| | - Shibo Tang
- AIER Eye Hospital, Jinan University, Guangzhou, China
- AIER Eye Institute, Changsha, China
| |
Collapse
|
21
|
Mitamura R, Nakano M, Isono M, Kurosawa K, Fukami T, Nakajima M. NEAT1_2 and DAZAP1, Paraspeckle Components, Interact with PXR to Negatively Regulate CYP3A4 Induction. Drug Metab Dispos 2023; 51:1230-1237. [PMID: 37349114 DOI: 10.1124/dmd.122.001065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 05/22/2023] [Accepted: 06/07/2023] [Indexed: 06/24/2023] Open
Abstract
Human pregnane X receptor (PXR) is a major nuclear receptor that upregulates the expression of drug-metabolizing enzymes such as CYP3A4. In our recent study, it was revealed that PXR interacts with DAZ-associated protein 1 (DAZAP1), which is an essential component of the paraspeckle, a membraneless nuclear body, and the interaction was disassociated by rifampicin, a ligand of PXR. The purpose of this study was to clarify the roles of paraspeckles in PXR-mediated transcriptional regulation. Immunoprecipitation assays using PXR-overexpressing HepG2 (ShP51) cells revealed that PXR interacts with not only DAZAP1 but also NEAT1_2, a long noncoding RNA included in the paraspeckle, and that the interaction between PXR and NEAT1_2 was disassociated by rifampicin. These results suggest that PXR is trapped in paraspeckles and that the activation of PXR by its ligands facilitates its disassociation from paraspeckles. Induction of CYP3A4 by rifampicin was significantly enhanced by the knockdown of NEAT1_2 or DAZAP1 in ShP51 cells and their parental HepG2 cells. A luciferase assay using a plasmid containing the PXR response elements of CYP3A4 revealed that the increased CYP3A4 induction by siNEAT1_2 or siDAZAP1 was due to the increased transactivation by PXR. These results suggest that paraspeckles play a role in trapping nuclear PXR in the absence of the ligand to negatively regulate transactivation of its downstream gene. Collectively, this is the first study to demonstrate that the paraspeckle components NEAT1_2 and DAZAP1 negatively regulate CYP3A4 induction by PXR. SIGNIFICANCE STATEMENT: This study revealed that PXR interacts with paraspeckle components NEAT1_2 and DAZAP1 to suppress CYP3A4 induction by PXR, and the interaction is dissociated by PXR ligands. This finding provides a novel concept that paraspeckles formed by liquid-liquid phase separation potentially affect drug metabolism via negative regulation of PXR function.
Collapse
Affiliation(s)
- Rei Mitamura
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (R.M., Ma.N., M.I., K.K., T.F., Mi.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (Ma.N., K.K., T.F., Mi.N.), Kanazawa University, Kanazawa, Japan
| | - Masataka Nakano
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (R.M., Ma.N., M.I., K.K., T.F., Mi.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (Ma.N., K.K., T.F., Mi.N.), Kanazawa University, Kanazawa, Japan
| | - Motoki Isono
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (R.M., Ma.N., M.I., K.K., T.F., Mi.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (Ma.N., K.K., T.F., Mi.N.), Kanazawa University, Kanazawa, Japan
| | - Kiamu Kurosawa
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (R.M., Ma.N., M.I., K.K., T.F., Mi.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (Ma.N., K.K., T.F., Mi.N.), Kanazawa University, Kanazawa, Japan
| | - Tatsuki Fukami
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (R.M., Ma.N., M.I., K.K., T.F., Mi.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (Ma.N., K.K., T.F., Mi.N.), Kanazawa University, Kanazawa, Japan
| | - Miki Nakajima
- Drug Metabolism and Toxicology, Faculty of Pharmaceutical Sciences (R.M., Ma.N., M.I., K.K., T.F., Mi.N.) and WPI Nano Life Science Institute (WPI-NanoLSI) (Ma.N., K.K., T.F., Mi.N.), Kanazawa University, Kanazawa, Japan
| |
Collapse
|
22
|
Qin Y, Ashrafizadeh M, Mongiardini V, Grimaldi B, Crea F, Rietdorf K, Győrffy B, Klionsky DJ, Ren J, Zhang W, Zhang X. Autophagy and cancer drug resistance in dialogue: Pre-clinical and clinical evidence. Cancer Lett 2023; 570:216307. [PMID: 37451426 DOI: 10.1016/j.canlet.2023.216307] [Citation(s) in RCA: 119] [Impact Index Per Article: 59.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
The emergence of drug resistance is a major challenge for oncologists. Resistance can be categorized as acquired or intrinsic; the alteration of several biological mechanisms contributes to both intrinsic and acquired resistance. Macroautophagy/autophagy is the primary process in eukaryotes for the degradation of macromolecules and organelles. This process is critical in maintaining cellular homeostasis. Given its function as either a pro-survival or a pro-death phenomenon, autophagy has a complex physio-pathological role. In some circumstances, autophagy can confer chemoresistance and promote cell survival, whereas in others it can promote chemosensitivity and contribute to cell death. The role of autophagy in the modulation of cancer drug resistance reflects its impact on apoptosis and metastasis. The regulation of autophagy in cancer is mediated by various factors including AMP-activated protein kinase (AMPK), MAPK, phosphoinositide 3-kinase (PI3K)-AKT, BECN1 and ATG proteins. Non-coding RNAs are among the main regulators of autophagy, e.g., via the modulation of chemoresistance pathways. Due to the significant contribution of autophagy in cancer drug resistance, small molecule modulators and natural compounds targeting autophagy have been introduced to alter the response of cancer cells to chemotherapy. Furthermore, nanotherapeutic approaches based on autophagy regulation have been introduced in pre-clinical cancer therapy. In this review we consider the potential for using autophagy regulators for the clinical treatment of malignancies.
Collapse
Affiliation(s)
- Yi Qin
- Department of Lab, Chifeng Cancer Hospital (The 2nd Affliated Hospital of Chifeng University), Chifeng University, Chifeng City, Inner Mongolia Autonomous Region, 024000, China.
| | - Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China; Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| | - Vera Mongiardini
- Molecular Medicine Research Line, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, 16163, Italy
| | - Benedetto Grimaldi
- Molecular Medicine Research Line, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa, 16163, Italy
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Katja Rietdorf
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Milton Keynes, UK
| | - Balázs Győrffy
- Department of Bioinformatics, Semmelweis University, Tüzoltó u. 7-9, 1094, Budapest, Hungary; Department of Pediatrics, Semmelweis University, Tüzoltó u. 7-9, 1094, Budapest, Hungary; Cancer Biomarker Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Magyar tudosok korutja 2, 1117, Budapest, Hungary
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jun Ren
- Shanghai Institute of Cardiovascular Diseases, Department of Cardiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, Guangdong, 518055, China.
| |
Collapse
|
23
|
Sen D, Maniyadath B, Chowdhury S, Kaur A, Khatri S, Chakraborty A, Mehendale N, Nadagouda S, Sandra U, Kamat SS, Kolthur-Seetharam U. Metabolic regulation of CTCF expression and chromatin association dictates starvation response in mice and flies. iScience 2023; 26:107128. [PMID: 37416476 PMCID: PMC10320512 DOI: 10.1016/j.isci.2023.107128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 05/16/2023] [Accepted: 06/10/2023] [Indexed: 07/08/2023] Open
Abstract
Coordinated temporal control of gene expression is essential for physiological homeostasis, especially during metabolic transitions. However, the interplay between chromatin architectural proteins and metabolism in regulating transcription is less understood. Here, we demonstrate a conserved bidirectional interplay between CTCF (CCCTC-binding factor) expression/function and metabolic inputs during feed-fast cycles. Our results indicate that its loci-specific functional diversity is associated with physiological plasticity in mouse hepatocytes. CTCF differential expression and long non-coding RNA-Jpx mediated changes in chromatin occupancy, unraveled its paradoxical yet tuneable functions, which are governed by metabolic inputs. We illustrate the key role of CTCF in controlling temporal cascade of transcriptional response, with effects on hepatic mitochondrial energetics and lipidome. Underscoring the evolutionary conservation of CTCF-dependent metabolic homeostasis, CTCF knockdown in flies abrogated starvation resistance. In summary, we demonstrate the interplay between CTCF and metabolic inputs that highlights the coupled plasticity of physiological responses and chromatin function.
Collapse
Affiliation(s)
- Devashish Sen
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Babukrishna Maniyadath
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Shreyam Chowdhury
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Arshdeep Kaur
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Subhash Khatri
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Arnab Chakraborty
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Neelay Mehendale
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Snigdha Nadagouda
- Tata Institute of Fundamental Research- Hyderabad (TIFR-H), Hyderabad, Telangana 500046, India
| | - U.S. Sandra
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
| | - Siddhesh S. Kamat
- Department of Biology, Indian Institute of Science Education and Research, Pune, Maharashtra 411008, India
| | - Ullas Kolthur-Seetharam
- Department of Biological Sciences, Tata Institute of Fundamental Research, Mumbai, Maharashtra 400005, India
- Tata Institute of Fundamental Research- Hyderabad (TIFR-H), Hyderabad, Telangana 500046, India
| |
Collapse
|
24
|
Xu X, Wang J, Wang W, Zhang Y, Wan B, Miao Z, Xu X. 5hmC modification regulates R-loop accumulation in response to stress. Front Psychiatry 2023; 14:1198502. [PMID: 37363169 PMCID: PMC10289295 DOI: 10.3389/fpsyt.2023.1198502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Accepted: 05/16/2023] [Indexed: 06/28/2023] Open
Abstract
R-loop, an RNA-DNA hybrid structure, arises as a transcriptional by-product and has been implicated in DNA damage and genomic instability when excessive R-loop is accumulated. Although previous study demonstrated that R-loop is associated with ten-eleven translocation (Tet) proteins, which oxidize 5-methylcytosine to 5-hydroxymethylcytosine (5hmC), the sixth base of DNA. However, the relationship between R-loop and DNA 5hmC modification remains unclear. In this study, we found that chronic restraint stress increased R-loop accumulation and decreased 5hmC modification in the prefrontal cortex (PFC) of the stressed mice. The increase of DNA 5hmC modification by vitamin C was accompanied with the decrease of R-loop levels; on the contrary, the decrease of DNA 5hmC modification by a small compound SC-1 increased the R-loop levels, indicating that 5hmC modification inversely regulates R-loop accumulation. Further, we showed that Tet deficiency-induced reduction of DNA 5hmC promoted R-loop accumulation. In addition, Tet proteins immunoprecipitated with Non-POU domain-containing octamer-binding (NONO) proteins. The deficiency of Tet proteins or NONO increased R-loop levels, but silencing Tet proteins and NONO did not further increase the increase accumulation, suggesting that NONO and Tet proteins formed a complex to inhibit R-loop formation. It was worth noting that NONO protein levels decreased in the PFC of stressed mice with R-loop accumulation. The administration of antidepressant fluoxetine to stressed mice increased NONO protein levels, and effectively decreased R-loop accumulation and DNA damage. In conclusion, we showed that DNA 5hmC modification negatively regulates R-loop accumulation by the NONO-Tet complex under stress. Our findings provide potential therapeutic targets for depression.
Collapse
Affiliation(s)
- Xingyun Xu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Junjie Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Wenjuan Wang
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Yutong Zhang
- Department of Neurology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
| | - Bo Wan
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Zhigang Miao
- Institute of Neuroscience, Soochow University, Suzhou, China
| | - Xingshun Xu
- Department of Neurology, The First Affiliated Hospital of Soochow University, Soochow University, Suzhou, China
- Institute of Neuroscience, Soochow University, Suzhou, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
25
|
Zhang Y, Cui D, Huang M, Zheng Y, Zheng B, Chen L, Chen Q. NONO regulates B-cell development and B-cell receptor signaling. FASEB J 2023; 37:e22862. [PMID: 36906291 DOI: 10.1096/fj.202201909rr] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/20/2023] [Accepted: 02/24/2023] [Indexed: 03/13/2023]
Abstract
The paraspeckle protein NONO is a multifunctional nuclear protein participating in the regulation of transcriptional regulation, mRNA splicing and DNA repair. However, whether NONO plays a role in lymphopoiesis is not known. In this study, we generated mice with global deletion of NONO and bone marrow (BM) chimeric mice in which NONO is deleted in all of mature B cells. We found that the global deletion of NONO in mice did not affect T-cell development but impaired early B-cell development in BM at pro- to pre-B-cell transition stage and B-cell maturation in the spleen. Studies of BM chimeric mice demonstrated that the impaired B-cell development in NONO-deficient mice is B-cell-intrinsic. NONO-deficient B cells displayed normal BCR-induced cell proliferation but increased BCR-induced cell apoptosis. Moreover, we found that NONO deficiency impaired BCR-induced activation of ERK, AKT, and NF-κB pathways in B cells, and altered BCR-induced gene expression profile. Thus, NONO plays a critical role in B-cell development and BCR-induced B-cell activation.
Collapse
Affiliation(s)
- Yongguang Zhang
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, China
| | - Dongya Cui
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, China
| | - Miaohui Huang
- Department of Reproductive Medicine, Zhangzhou Affiliated Hospital of Fujian Medical University, Zhangzhou, China
| | - Yongwei Zheng
- Guangzhou Bio-Gene Technology Co., Ltd, Guangzhou, China
| | - Baijiao Zheng
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, China
| | - Liling Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, China
| | - Qi Chen
- Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, College of Life Science, Fujian Normal University Qishan Campus, Fuzhou, China
| |
Collapse
|
26
|
Kompotis K, Landolt HP. In memoriam: Professor Steven A. Brown, PhD (1970-2022). J Sleep Res 2023:e13836. [PMID: 36756725 DOI: 10.1111/jsr.13836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 01/12/2023] [Indexed: 02/10/2023]
Affiliation(s)
- Konstantinos Kompotis
- Section of Chronobiology and Sleep Research, Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| | - Hans-Peter Landolt
- Section of Chronobiology and Sleep Research, Institute of Pharmacology and Toxicology, University of Zürich, Zürich, Switzerland
| |
Collapse
|
27
|
Arif W, Mathur B, Saikali MF, Chembazhi UV, Toohill K, Song YJ, Hao Q, Karimi S, Blue SM, Yee BA, Van Nostrand EL, Bangru S, Guzman G, Yeo GW, Prasanth KV, Anakk S, Cummins CL, Kalsotra A. Splicing factor SRSF1 deficiency in the liver triggers NASH-like pathology and cell death. Nat Commun 2023; 14:551. [PMID: 36759613 PMCID: PMC9911759 DOI: 10.1038/s41467-023-35932-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/09/2023] [Indexed: 02/11/2023] Open
Abstract
Regulation of RNA processing contributes profoundly to tissue development and physiology. Here, we report that serine-arginine-rich splicing factor 1 (SRSF1) is essential for hepatocyte function and survival. Although SRSF1 is mainly known for its many roles in mRNA metabolism, it is also crucial for maintaining genome stability. We show that acute liver damage in the setting of targeted SRSF1 deletion in mice is associated with the excessive formation of deleterious RNA-DNA hybrids (R-loops), which induce DNA damage. Combining hepatocyte-specific transcriptome, proteome, and RNA binding analyses, we demonstrate that widespread genotoxic stress following SRSF1 depletion results in global inhibition of mRNA transcription and protein synthesis, leading to impaired metabolism and trafficking of lipids. Lipid accumulation in SRSF1-deficient hepatocytes is followed by necroptotic cell death, inflammation, and fibrosis, resulting in NASH-like liver pathology. Importantly, SRSF1-depleted human liver cancer cells recapitulate this pathogenesis, illustrating a conserved and fundamental role for SRSF1 in preserving genome integrity and tissue homeostasis. Thus, our study uncovers how the accumulation of detrimental R-loops impedes hepatocellular gene expression, triggering metabolic derangements and liver damage.
Collapse
Affiliation(s)
- Waqar Arif
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- College of Medicine, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Bhoomika Mathur
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Michael F Saikali
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Ullas V Chembazhi
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Katelyn Toohill
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - You Jin Song
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Qinyu Hao
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Saman Karimi
- Department of Pathology, College of Medicine, Cancer Center, University of Illinois Hospital and Health Science Chicago, Chicago, IL, USA
| | - Steven M Blue
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Brian A Yee
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Eric L Van Nostrand
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center @ Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Grace Guzman
- Department of Pathology, College of Medicine, Cancer Center, University of Illinois Hospital and Health Science Chicago, Chicago, IL, USA
| | - Gene W Yeo
- Department of Cellular and Molecular Medicine, University of California at San Diego, La Jolla, CA, USA
- Institute for Genomic Medicine, University of California at San Diego, La Jolla, CA, USA
| | - Kannanganattu V Prasanth
- Department of Cell and Developmental Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center @ Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Sayeepriyadarshini Anakk
- Department of Molecular and Integrative Physiology, University of Illinois Urbana-Champaign, Urbana, IL, USA
- Cancer Center @ Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA
| | - Carolyn L Cummins
- Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, University of Toronto, Toronto, ON, Canada
| | - Auinash Kalsotra
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Cancer Center @ Illinois, University of Illinois Urbana-Champaign, Urbana, IL, USA.
- Carl R. Woese Institute of Genomic Biology, University of Illinois Urbana-Champaign, Urbana, IL, USA.
| |
Collapse
|
28
|
Zhang S, Cooper JAL, Chong YS, Naveed A, Mayoh C, Jayatilleke N, Liu T, Amos S, Kobelke S, Marshall AC, Meers O, Choi YS, Bond CS, Fox AH. NONO enhances mRNA processing of super-enhancer-associated GATA2 and HAND2 genes in neuroblastoma. EMBO Rep 2023; 24:e54977. [PMID: 36416237 PMCID: PMC9900351 DOI: 10.15252/embr.202254977] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 11/02/2022] [Accepted: 11/07/2022] [Indexed: 11/24/2022] Open
Abstract
High-risk neuroblastoma patients have poor survival rates and require better therapeutic options. High expression of a multifunctional DNA and RNA-binding protein, NONO, in neuroblastoma is associated with poor patient outcome; however, there is little understanding of the mechanism of NONO-dependent oncogenic gene regulatory activity in neuroblastoma. Here, we used cell imaging, biochemical and genome-wide molecular analysis to reveal complex NONO-dependent regulation of gene expression. NONO forms RNA- and DNA-tethered condensates throughout the nucleus and undergoes phase separation in vitro, modulated by nucleic acid binding. CLIP analyses show that NONO mainly binds to the 5' end of pre-mRNAs and modulates pre-mRNA processing, dependent on its RNA-binding activity. NONO regulates super-enhancer-associated genes, including HAND2 and GATA2. Abrogating NONO RNA binding, or phase separation activity, results in decreased expression of HAND2 and GATA2. Thus, future development of agents that target RNA-binding activity of NONO may have therapeutic potential in this cancer context.
Collapse
Affiliation(s)
- Song Zhang
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Jack AL Cooper
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Yee Seng Chong
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Alina Naveed
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Chelsea Mayoh
- Children's Cancer Institute AustraliaRandwickNSWAustralia
- Centre for Childhood Cancer ResearchUNSW SydneyKensingtonNSWAustralia
- School of Women's and Children's HealthUNSW SydneyKensingtonNSWAustralia
| | - Nisitha Jayatilleke
- Children's Cancer Institute AustraliaRandwickNSWAustralia
- Centre for Childhood Cancer ResearchUNSW SydneyKensingtonNSWAustralia
| | - Tao Liu
- Children's Cancer Institute AustraliaRandwickNSWAustralia
- Centre for Childhood Cancer ResearchUNSW SydneyKensingtonNSWAustralia
| | - Sebastian Amos
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Simon Kobelke
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Andrew C Marshall
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Oliver Meers
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Yu Suk Choi
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Charles S Bond
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| | - Archa H Fox
- School of Human SciencesThe University of Western AustraliaCrawleyWAAustralia
- School of Molecular SciencesThe University of Western AustraliaCrawleyWAAustralia
| |
Collapse
|
29
|
Obodo D, Outland EH, Hughey JJ. Sex Inclusion in Transcriptome Studies of Daily Rhythms. J Biol Rhythms 2023; 38:3-14. [PMID: 36419398 PMCID: PMC9903005 DOI: 10.1177/07487304221134160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Biomedical research on mammals has traditionally neglected females, raising the concern that some scientific findings may generalize poorly to half the population. Although this lack of sex inclusion has been broadly documented, its extent within circadian genomics remains undescribed. To address this gap, we examined sex inclusion practices in a comprehensive collection of publicly available transcriptome studies on daily rhythms. Among 148 studies having samples from mammals in vivo, we found strong underrepresentation of females across organisms and tissues. Overall, only 23 of 123 studies in mice, 0 of 10 studies in rats, and 9 of 15 studies in humans included samples from females. In addition, studies having samples from both sexes tended to have more samples from males than from females. These trends appear to have changed little over time, including since 2016, when the US National Institutes of Health began requiring investigators to consider sex as a biological variable. Our findings highlight an opportunity to dramatically improve representation of females in circadian research and to explore sex differences in daily rhythms at the genome level.
Collapse
Affiliation(s)
- Dora Obodo
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee,Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee
| | - Elliot H. Outland
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jacob J. Hughey
- Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, Tennessee,Program in Chemical and Physical Biology, Vanderbilt University School of Medicine, Nashville, Tennessee,Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee,Jacob J. Hughey, Department of Biomedical Informatics, Vanderbilt University Medical Center, 2525 West End Ave., Suite 1475, Nashville, TN 37232, USA; e-mail:
| |
Collapse
|
30
|
Paterson HAB, Yu S, Artigas N, Prado MA, Haberman N, Wang YF, Jobbins AM, Pahita E, Mokochinski J, Hall Z, Guerin M, Paulo JA, Ng SS, Villarroya F, Rashid ST, Le Goff W, Lenhard B, Cebola I, Finley D, Gygi SP, Sibley CR, Vernia S. Liver RBFOX2 regulates cholesterol homeostasis via Scarb1 alternative splicing in mice. Nat Metab 2022; 4:1812-1829. [PMID: 36536133 PMCID: PMC9771820 DOI: 10.1038/s42255-022-00681-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2021] [Accepted: 10/10/2022] [Indexed: 12/24/2022]
Abstract
RNA alternative splicing (AS) expands the regulatory potential of eukaryotic genomes. The mechanisms regulating liver-specific AS profiles and their contribution to liver function are poorly understood. Here, we identify a key role for the splicing factor RNA-binding Fox protein 2 (RBFOX2) in maintaining cholesterol homeostasis in a lipogenic environment in the liver. Using enhanced individual-nucleotide-resolution ultra-violet cross-linking and immunoprecipitation, we identify physiologically relevant targets of RBFOX2 in mouse liver, including the scavenger receptor class B type I (Scarb1). RBFOX2 function is decreased in the liver in diet-induced obesity, causing a Scarb1 isoform switch and alteration of hepatocyte lipid homeostasis. Our findings demonstrate that specific AS programmes actively maintain liver physiology, and underlie the lipotoxic effects of obesogenic diets when dysregulated. Splice-switching oligonucleotides targeting this network alleviate obesity-induced inflammation in the liver and promote an anti-atherogenic lipoprotein profile in the blood, underscoring the potential of isoform-specific RNA therapeutics for treating metabolism-associated diseases.
Collapse
Affiliation(s)
- Helen A B Paterson
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Sijia Yu
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Natalia Artigas
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Miguel A Prado
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Instituto de Investigación Sanitaria del Principado de Asturias, Avenida Hospital Universitario, Oviedo, Spain
| | - Nejc Haberman
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Yi-Fang Wang
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Andrew M Jobbins
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Elena Pahita
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Joao Mokochinski
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Zoe Hall
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Maryse Guerin
- Sorbonne Université, Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Paris, France
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Soon Seng Ng
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Francesc Villarroya
- Biochemistry and Molecular Biomedicine Department, Institute of Biomedicine, University of Barcelona & Research Institute Sant Joan de Déu, Barcelona, Spain
- Centro de Investigación Biomédica en Red de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), ISCIII, Madrid, Spain
| | - Sheikh Tamir Rashid
- Division of Systems Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Wilfried Le Goff
- Sorbonne Université, Inserm, Institute of Cardiometabolism and Nutrition (ICAN), UMR_S1166, Paris, France
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, London, UK
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion and Reproduction, Imperial College London, Hammersmith Hospital Campus, London, UK
| | - Daniel Finley
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Christopher R Sibley
- Institute of Quantitative Biology, Biochemistry and Biotechnology. School of Biological Sciences, University of Edinburgh, Edinburgh, UK
| | - Santiago Vernia
- MRC London Institute of Medical Sciences, London, UK.
- Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, London, UK.
| |
Collapse
|
31
|
Wang YL, Zhao WW, Bai SM, Ma Y, Yin XK, Feng LL, Zeng GD, Wang F, Feng WX, Zheng J, Wang YN, Zeng B, Liu Q, Hung MC, Wan XB. DNA damage-induced paraspeckle formation enhances DNA repair and tumor radioresistance by recruiting ribosomal protein P0. Cell Death Dis 2022; 13:709. [PMID: 35974014 PMCID: PMC9381602 DOI: 10.1038/s41419-022-05092-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 07/07/2022] [Accepted: 07/11/2022] [Indexed: 01/21/2023]
Abstract
Paraspeckles are mammal-specific membraneless nuclear bodies that participate in various biological processes. NONO, a central paraspeckle component, has been shown to play pivotal roles in DNA double-strand breaks (DSB) repair, whereas its underlying mechanism needs to be further disclosed. Here, using co-immunoprecipitation and mass spectrum, we identified ribosomal protein P0 (RPLP0) as a DSB-induced NONO-binding protein; RPLP0 binds to the RRM1 and RRM2 domains of NONO. Similar to NONO, RPLP0 enhances non-homologous end joining-mediated DSB repair, which was ascribed to a ribosome-independent manner. Interestingly, paraspeckles were induced as early as 15 min after irradiation; it further recruited nuclear RPLP0 to enhance its interaction with NONO. Radiation-induced NONO/RPLP0 complex subsequently anchored at the damaged DNA and increased the autophosphorylation of DNA-PK at Thr2609, thereby enhancing DSB repair. Consistently, in vivo and in vitro experiments showed that depletion of NONO sensitizes tumor cells to radiation. For patients with locally advanced rectal cancer, NONO expression was remarkably increased in tumor tissues and correlated with a poor response to radiochemotherapy. Our findings suggest a pivotal role of radiation-induced paraspeckles in DNA repair and tumor radioresistance, and provide a new insight into the ribosome-independent function of ribosomal proteins.
Collapse
Affiliation(s)
- Yun-Long Wang
- grid.12981.330000 0001 2360 039XGuangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China ,grid.12981.330000 0001 2360 039XDepartment of Radiation Oncology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China
| | - Wan-Wen Zhao
- grid.12981.330000 0001 2360 039XGuangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China
| | - Shao-Mei Bai
- grid.12981.330000 0001 2360 039XGuangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China
| | - Yan Ma
- grid.12981.330000 0001 2360 039XDepartment of Radiation Oncology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China
| | - Xin-Ke Yin
- grid.12981.330000 0001 2360 039XGuangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China
| | - Li-Li Feng
- grid.12981.330000 0001 2360 039XGuangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China
| | - Guang-Dong Zeng
- grid.12981.330000 0001 2360 039XGuangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China
| | - Fang Wang
- grid.12981.330000 0001 2360 039XGuangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China
| | - Wei-Xing Feng
- grid.12981.330000 0001 2360 039XGuangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China ,grid.12981.330000 0001 2360 039XDepartment of Radiation Oncology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China
| | - Jian Zheng
- grid.12981.330000 0001 2360 039XDepartment of Radiation Oncology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China
| | - Ying-Nai Wang
- grid.240145.60000 0001 2291 4776Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA
| | - Bing Zeng
- grid.12981.330000 0001 2360 039XGuangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China
| | - Quentin Liu
- grid.411971.b0000 0000 9558 1426Institute of Cancer Stem Cell, Dalian Medical University, Dalian, Liaoning 116044 People’s Republic of China ,grid.12981.330000 0001 2360 039XState Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen University, Guangzhou, Guangdong 510060 People’s Republic of China
| | - Mien-Chie Hung
- grid.240145.60000 0001 2291 4776Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030 USA ,grid.254145.30000 0001 0083 6092Graduate Institute of Biomedical Sciences and Research Centers for Cancer Biology and Molecular Medicine, China Medical University, Taichung, 404 Taiwan ,grid.252470.60000 0000 9263 9645Department of Biotechnology, Asia University, Taichung, 413 Taiwan
| | - Xiang-Bo Wan
- grid.12981.330000 0001 2360 039XGuangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China ,grid.12981.330000 0001 2360 039XDepartment of Radiation Oncology, the Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong 510655 People’s Republic of China
| |
Collapse
|
32
|
Comprehensive analysis of the circadian nuclear and cytoplasmic transcriptome in mouse liver. PLoS Genet 2022; 18:e1009903. [PMID: 35921362 PMCID: PMC9377612 DOI: 10.1371/journal.pgen.1009903] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 08/15/2022] [Accepted: 07/06/2022] [Indexed: 11/19/2022] Open
Abstract
In eukaryotes, RNA is synthesised in the nucleus, spliced, and exported to the cytoplasm where it is translated and finally degraded. Any of these steps could be subject to temporal regulation during the circadian cycle, resulting in daily fluctuations of RNA accumulation and affecting the distribution of transcripts in different subcellular compartments. Our study analysed the nuclear and cytoplasmic, poly(A) and total transcriptomes of mouse livers collected over the course of a day. These data provide a genome-wide temporal inventory of enrichment in subcellular RNA, and revealed specific signatures of splicing, nuclear export and cytoplasmic mRNA stability related to transcript and gene lengths. Combined with a mathematical model describing rhythmic RNA profiles, we could test the rhythmicity of export rates and cytoplasmic degradation rates of approximately 1400 genes. With nuclear export times usually much shorter than cytoplasmic half-lives, we found that nuclear export contributes to the modulation and generation of rhythmic profiles of 10% of the cycling nuclear mRNAs. This study contributes to a better understanding of the dynamic regulation of the transcriptome during the day-night cycle.
Collapse
|
33
|
Zhang F, Sun J, Tang X, Liang Y, Jiao Q, Yu B, Dai Z, Yuan X, Li J, Yan J, Zhang Z, Fan S, Wang M, Hu H, Zhang C, Lv XB. Stabilization of SAMHD1 by NONO is crucial for Ara-C resistance in AML. Cell Death Dis 2022; 13:590. [PMID: 35803902 PMCID: PMC9270467 DOI: 10.1038/s41419-022-05023-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 06/11/2022] [Accepted: 06/13/2022] [Indexed: 01/21/2023]
Abstract
Cytarabine (Ara-C) is the first-line drug for the treatment of acute myelogenous leukemia (AML). However, resistance eventually develops, decreasing the efficacy of Ara-C in AML patients. The expression of SAMHD1, a deoxynucleoside triphosphate (dNTP) triphosphohydrolase, has been reported to be elevated in Ara-C-resistant AML patients and to play a crucial role in mediating Ara-C resistance in AML. However, the mechanism by which SAMHD1 is upregulated in resistant AML remains unknown. In this study, NONO interacted with and stabilized SAMHD1 by inhibiting DCAF1-mediated ubiquitination/degradation of SAMHD1. Overexpression of NONO increased SAMHD1 expression and reduced the sensitivity of AML cells to Ara-C, and downregulation of NONO had the opposite effects. In addition, the DNA-damaging agents DDP and adriamycin (ADM) reduced NONO/SAMHD1 expression and sensitized AML cells to Ara-C. More importantly, NONO was upregulated in Ara-C-resistant AML cells, resulting in increased SAMHD1 expression in resistant AML cells, and DDP and ADM treatment resensitized resistant AML cells to Ara-C. This study revealed the mechanism by which SAMHD1 is upregulated in Ara-C-resistant AML cells and provided novel therapeutic strategies for Ara-C-resistant AML.
Collapse
Affiliation(s)
- Feifei Zhang
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Jun Sun
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China ,College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004 China
| | - Xiaofeng Tang
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Yiping Liang
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Quanhui Jiao
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China ,College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004 China
| | - Bo Yu
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China ,grid.479689.dDepartment of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Zhengzai Dai
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China ,grid.479689.dDepartment of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Xuhui Yuan
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China ,grid.479689.dDepartment of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Jiayu Li
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China ,grid.479689.dDepartment of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Jinhua Yan
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Zhiping Zhang
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China ,grid.479689.dDepartment of Orthopedics, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| | - Song Fan
- grid.412536.70000 0004 1791 7851Department of Oral and Maxillofacial Surgery, Sun Yat-Sen Memorial Hospital of Sun Yat-Sen University, Guangzhou, 510120 China
| | - Min Wang
- grid.412645.00000 0004 1757 9434Tianjin Key Laboratory of Lung Cancer Metastasis and Tumor Microenvironment, Tianjin Lung Cancer Institute, Tianjin Medical University General Hospital, Tianjin, 300052 China
| | - Haiyan Hu
- grid.412528.80000 0004 1798 5117Oncology Department of Shanghai Jiao Tong University Affiliated Sixth People’s Hospital, Shanghai, 200233 China
| | - Changhua Zhang
- College of Pharmacy, Jiangxi University of Chinese Medicine, Nanchang, 330004 China
| | - Xiao-Bin Lv
- grid.479689.dJiangxi Key Laboratory of Cancer Metastasis and Precision Treatment, Central Laboratory, The First Hospital of Nanchang, The Third Affiliated Hospital of Nanchang University, North 128 Xiangshan Road, Nanchang, 330008 China
| |
Collapse
|
34
|
Jobbins AM, Haberman N, Artigas N, Amourda C, Paterson HAB, Yu S, Blackford SJI, Montoya A, Dore M, Wang YF, Sardini A, Cebola I, Zuber J, Rashid ST, Lenhard B, Vernia S. Dysregulated RNA polyadenylation contributes to metabolic impairment in non-alcoholic fatty liver disease. Nucleic Acids Res 2022; 50:3379-3393. [PMID: 35293570 PMCID: PMC8989518 DOI: 10.1093/nar/gkac165] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 11/19/2022] Open
Abstract
Pre-mRNA processing is an essential mechanism for the generation of mature mRNA and the regulation of gene expression in eukaryotic cells. While defects in pre-mRNA processing have been implicated in a number of diseases their involvement in metabolic pathologies is still unclear. Here, we show that both alternative splicing and alternative polyadenylation, two major steps in pre-mRNA processing, are significantly altered in non-alcoholic fatty liver disease (NAFLD). Moreover, we find that Serine and Arginine Rich Splicing Factor 10 (SRSF10) binding is enriched adjacent to consensus polyadenylation motifs and its expression is significantly decreased in NAFLD, suggesting a role mediating pre-mRNA dysregulation in this condition. Consistently, inactivation of SRSF10 in mouse and human hepatocytes in vitro, and in mouse liver in vivo, was found to dysregulate polyadenylation of key metabolic genes such as peroxisome proliferator-activated receptor alpha (PPARA) and exacerbate diet-induced metabolic dysfunction. Collectively our work implicates dysregulated pre-mRNA polyadenylation in obesity-induced liver disease and uncovers a novel role for SRSF10 in this process.
Collapse
Affiliation(s)
- Andrew M Jobbins
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Nejc Haberman
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Natalia Artigas
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Christopher Amourda
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Helen A B Paterson
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Sijia Yu
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Samuel J I Blackford
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London W12 0NN, UK
| | - Alex Montoya
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Marian Dore
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Yi-Fang Wang
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Alessandro Sardini
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Inês Cebola
- Section of Genetics and Genomics, Department of Metabolism, Digestion & Reproduction, Imperial College London, London W12 0NN, UK
| | - Johannes Zuber
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), 1030 Vienna, Austria
| | - Sheikh Tamir Rashid
- Department of Metabolism, Digestion & Reproduction, Imperial College London, London W12 0NN, UK
| | - Boris Lenhard
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| | - Santiago Vernia
- MRC London Institute of Medical Sciences, Du Cane Road, London W12 0NN, UK.,Institute of Clinical Sciences, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0NN, UK
| |
Collapse
|
35
|
Subramanian P, Gargani S, Palladini A, Chatzimike M, Grzybek M, Peitzsch M, Papanastasiou AD, Pyrina I, Ntafis V, Gercken B, Lesche M, Petzold A, Sinha A, Nati M, Thangapandi VR, Kourtzelis I, Andreadou M, Witt A, Dahl A, Burkhardt R, Haase R, Domingues AMDJ, Henry I, Zamboni N, Mirtschink P, Chung KJ, Hampe J, Coskun Ü, Kontoyiannis DL, Chavakis T. The RNA binding protein human antigen R is a gatekeeper of liver homeostasis. Hepatology 2022; 75:881-897. [PMID: 34519101 DOI: 10.1002/hep.32153] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/12/2022]
Abstract
BACKGROUND AND AIMS NAFLD is initiated by steatosis and can progress through fibrosis and cirrhosis to HCC. The RNA binding protein human antigen R (HuR) controls RNAs at the posttranscriptional level; hepatocyte HuR has been implicated in the regulation of diet-induced hepatic steatosis. The present study aimed to understand the role of hepatocyte HuR in NAFLD development and progression to fibrosis and HCC. APPROACH AND RESULTS Hepatocyte-specific, HuR-deficient mice and control HuR-sufficient mice were fed either a normal diet or an NAFLD-inducing diet. Hepatic lipid accumulation, inflammation, fibrosis, and HCC development were studied by histology, flow cytometry, quantitative PCR, and RNA sequencing. The liver lipidome was characterized by lipidomics analysis, and the HuR-RNA interactions in the liver were mapped by RNA immunoprecipitation sequencing. Hepatocyte-specific, HuR-deficient mice displayed spontaneous hepatic steatosis and fibrosis predisposition compared to control HuR-sufficient mice. On an NAFLD-inducing diet, hepatocyte-specific HuR deficiency resulted in exacerbated inflammation, fibrosis, and HCC-like tumor development. A multi-omic approach, including lipidomics, transcriptomics, and RNA immunoprecipitation sequencing revealed that HuR orchestrates a protective network of hepatic-metabolic and lipid homeostasis-maintaining pathways. Consistently, HuR-deficient livers accumulated, already at steady state, a triglyceride signature resembling that of NAFLD livers. Moreover, up-regulation of secreted phosphoprotein 1 expression mediated, at least partially, fibrosis development in hepatocyte-specific HuR deficiency on an NAFLD-inducing diet, as shown by experiments using antibody blockade of osteopontin. CONCLUSIONS HuR is a gatekeeper of liver homeostasis, preventing NAFLD-related fibrosis and HCC, suggesting that the HuR-dependent network could be exploited therapeutically.
Collapse
Affiliation(s)
- Pallavi Subramanian
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Sofia Gargani
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Centre "Alexander Fleming"VariGreece
| | - Alessandra Palladini
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of MedicineTechnische Universität DresdenDresdenGermany.,German Center for Diabetes ResearchNeuherbergGermany
| | - Margarita Chatzimike
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Centre "Alexander Fleming"VariGreece
| | - Michal Grzybek
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of MedicineTechnische Universität DresdenDresdenGermany.,German Center for Diabetes ResearchNeuherbergGermany
| | - Mirko Peitzsch
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Anastasios D Papanastasiou
- Department of Biomedical SciencesUniversity of West AtticaAthensGreece.,Histopathology UnitBiomedical Sciences Research Center "Alexander Fleming"VariGreece
| | - Iryna Pyrina
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Vasileios Ntafis
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Centre "Alexander Fleming"VariGreece
| | - Bettina Gercken
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Mathias Lesche
- DRESDEN-concept Genome CenterCenter for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Andreas Petzold
- DRESDEN-concept Genome CenterCenter for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Anupam Sinha
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Marina Nati
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Veera Raghavan Thangapandi
- Department of Internal Medicine IUniversity Hospital and Faculty of Medicine, Technische Universität DresdenDresdenGermany
| | - Ioannis Kourtzelis
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany.,National Center for Tumor DiseasesPartner Site Dresden, Dresden and German Cancer Research CenterHeidelbergGermany.,York Biomedical Research Institute, Hull York Medical SchoolUniversity of YorkYorkUK
| | - Margarita Andreadou
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Centre "Alexander Fleming"VariGreece
| | - Anke Witt
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Andreas Dahl
- DRESDEN-concept Genome CenterCenter for Molecular and Cellular BioengineeringTechnische Universität DresdenDresdenGermany
| | - Ralph Burkhardt
- Institute of Clinical Chemistry and Laboratory MedicineUniversity Hospital RegensburgRegensburgGermany
| | - Robert Haase
- Scientific Computing FacilityMax Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | | | - Ian Henry
- Scientific Computing FacilityMax Planck Institute of Molecular Cell Biology and GeneticsDresdenGermany
| | - Nicola Zamboni
- Institute of Molecular Systems BiologyETH ZurichZurichSwitzerland
| | - Peter Mirtschink
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Kyoung-Jin Chung
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany
| | - Jochen Hampe
- Department of Internal Medicine IUniversity Hospital and Faculty of Medicine, Technische Universität DresdenDresdenGermany
| | - Ünal Coskun
- Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of MedicineTechnische Universität DresdenDresdenGermany.,German Center for Diabetes ResearchNeuherbergGermany
| | - Dimitris L Kontoyiannis
- Institute for Fundamental Biomedical Research (IFBR), Biomedical Sciences Research Centre "Alexander Fleming"VariGreece.,Department of Genetics, Development & Molecular Biology, School of BiologyAristotle University of ThessalonikiThessalonikiGreece
| | - Triantafyllos Chavakis
- Institute for Clinical Chemistry and Laboratory MedicineFaculty of MedicineTechnische Universität DresdenDresdenGermany.,Paul Langerhans Institute Dresden, Helmholtz Zentrum München, University Hospital and Faculty of MedicineTechnische Universität DresdenDresdenGermany.,German Center for Diabetes ResearchNeuherbergGermany.,National Center for Tumor DiseasesPartner Site Dresden, Dresden and German Cancer Research CenterHeidelbergGermany
| |
Collapse
|
36
|
Li D, Yao Y, Rao Y, Huang X, Wei L, You Z, Zheng G, Hou X, Su Y, Varghese Z, Moorhead JF, Chen Y, Ruan XZ. Cholesterol sensor SCAP contributes to sorafenib resistance by regulating autophagy in hepatocellular carcinoma. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2022; 41:116. [PMID: 35354475 PMCID: PMC8966370 DOI: 10.1186/s13046-022-02306-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 02/28/2022] [Indexed: 01/08/2023]
Abstract
Background Hepatocellular carcinoma (HCC) is one of the most malignant tumors and the fourth leading cause of cancer-related death worldwide. Sorafenib is currently acknowledged as a standard therapy for advanced HCC. However, acquired resistance substantially limits the clinical efficacy of sorafenib. Therefore, further investigations of the associated risk factors are highly warranted. Methods We analysed a group of 78 HCC patients who received sorafenib treatment after liver resection surgery. The expression of SCAP and its correlation with sorafenib resistance in HCC clinical samples were determined by immunohistochemical analyses. Overexpression and knockdown approaches in vitro were used to characterize the functional roles of SCAP in regulating sorafenib resistance. The effects of SCAP inhibition in HCC cell lines were analysed in proliferation, apoptosis, and colony formation assays. Autophagic regulation by SCAP was assessed by immunoblotting, immunofluorescence and immunoprecipitation assays. The combinatorial effect of a SCAP inhibitor and sorafenib was tested using nude mice. Results Hypercholesterolemia was associated with sorafenib resistance in HCC treatment. The degree of sorafenib resistance was correlated with the expression of the cholesterol sensor SCAP and consequent deposition of cholesterol. SCAP is overexpressed in HCC tissues and hepatocellular carcinoma cell lines with sorafenib resistance, while SCAP inhibition could improve sorafenib sensitivity in sorafenib-resistant HCC cells. Furthermore, we found that SCAP-mediated sorafenib resistance was related to decreased autophagy, which was connected to decreased AMPK activity. A clinically significant finding was that lycorine, a specific SCAP inhibitor, could reverse acquired resistance to sorafenib in vitro and in vivo. Conclusions SCAP contributes to sorafenib resistance through AMPK-mediated autophagic regulation. The combination of sorafenib and SCAP targeted therapy provides a novel personalized treatment to enhance sensitivity in sorafenib-resistant HCC. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-022-02306-4.
Collapse
Affiliation(s)
- Danyang Li
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Yingcheng Yao
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Yuhan Rao
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Xinyu Huang
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Li Wei
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Zhimei You
- Department of General Medicine, Affiliated Cancer Hospital of Chongqing University, Chongqing, 400016, China
| | - Guo Zheng
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Xiaoli Hou
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Yu Su
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China
| | - Zac Varghese
- John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - John F Moorhead
- John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, NW3 2PF, UK
| | - Yaxi Chen
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China.
| | - Xiong Z Ruan
- Centre for Lipid Research & Key Laboratory of Molecular Biology for Infectious Diseases (Ministry of Education), Institute for Viral Hepatitis, Department of Infectious Diseases, the Second Affiliated Hospital, Chongqing Medical University, 400016, Chongqing, China. .,John Moorhead Research Laboratory, Centre for Nephrology, University College London Medical School, Royal Free Campus, University College London, London, NW3 2PF, UK.
| |
Collapse
|
37
|
Schell B, Legrand P, Fribourg S. Crystal structure of SFPQ-NONO heterodimer. Biochimie 2022; 198:1-7. [PMID: 35245601 DOI: 10.1016/j.biochi.2022.02.011] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/18/2022] [Accepted: 02/25/2022] [Indexed: 12/20/2022]
Abstract
The Drosophila behavior/human splicing (DBHS) protein family is composed of the three members SFPQ, NONO and PSPC1. These proteins share a strong sequence and structural homology within the core-structured domains forming obligate homo- and heterodimers. This feature may lead to the simultaneous existence of six different dimeric complexes that sustain their function in many cellular processes such as pre-mRNA splicing, innate immunity, transcriptional regulation. In order to perform a complete structural analysis of all possible DBHS dimers, we have solved the crystal structure of the missing DBHS heterodimer SFPQ-NONO at 3.0 Å resolution. We identify subtle changes in amino acid composition and local secondary structure of the NOPS region orientation that may modulate affinity between complexes. Interestingly this area is found mutated in aggressive skin cancers and adenocarcinomas.
Collapse
Affiliation(s)
- Bianca Schell
- INSERM U1212 - CNRS 5320 & Université de Bordeaux, 146 Rue Léo Saignat, 33000, Bordeaux, France; Universität Konstanz, 78457, Konstanz, Germany
| | - Pierre Legrand
- Synchrotron SOLEIL, L'Orme des Merisiers, Gif-sur-Yvette, 91192, France
| | - Sébastien Fribourg
- INSERM U1212 - CNRS 5320 & Université de Bordeaux, 146 Rue Léo Saignat, 33000, Bordeaux, France.
| |
Collapse
|
38
|
Tartour K, Padmanabhan K. The Clock Takes Shape-24 h Dynamics in Genome Topology. Front Cell Dev Biol 2022; 9:799971. [PMID: 35047508 PMCID: PMC8762244 DOI: 10.3389/fcell.2021.799971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/14/2021] [Indexed: 11/20/2022] Open
Abstract
Circadian rhythms orchestrate organismal physiology and behavior in order to anticipate daily changes in the environment. Virtually all cells have an internal rhythm that is synchronized every day by Zeitgebers (environmental cues). The synchrony between clocks within the animal enables the fitness and the health of organisms. Conversely, disruption of rhythms is linked to a variety of disorders: aging, cancer, metabolic diseases, and psychological disorders among others. At the cellular level, mammalian circadian rhythms are built on several layers of complexity. The transcriptional-translational feedback loop (TTFL) was the first to be described in the 90s. Thereafter oscillations in epigenetic marks highlighted the role of chromatin state in organizing the TTFL. More recently, studies on the 3D organization of the genome suggest that genome topology could be yet another layer of control on cellular circadian rhythms. The dynamic nature of genome topology over a solar day implies that the 3D mammalian genome has to be considered in the fourth dimension-in time. Whether oscillations in genome topology are a consequence of 24 h gene-expression or a driver of transcriptional cycles remains an open question. All said and done, circadian clock-gated phenomena such as gene expression, DNA damage response, cell metabolism and animal behavior-go hand in hand with 24 h rhythms in genome topology.
Collapse
Affiliation(s)
- Kévin Tartour
- Institut de Genomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard, Lyon, France
| | - Kiran Padmanabhan
- Institut de Genomique Fonctionnelle de Lyon, CNRS UMR 5242, Ecole Normale Supérieure de Lyon, Université Claude Bernard, Lyon, France
| |
Collapse
|
39
|
Abstract
A molecular circadian clock exists not only in the brain, but also in most cells of the body. Research over the past two decades has demonstrated that it directs daily rhythmicity of nearly every aspect of metabolism. It also consolidates sleep-wake behavior each day into an activity/feeding period and a sleep/fasting period. Otherwise, sleep-wake states are mostly controlled by hypothalamic and thalamic regulatory circuits in the brain that direct overall brain state. Recent evidence suggests that hypothalamic control of appetite and metabolism may be concomitant with sleep-wake regulation, and even share the same control centers. Thus, circadian control of metabolic pathways might be overlaid by sleep-wake control of the same pathways, providing a flexible and redundant system to modify metabolism according to both activity and environment.
Collapse
|
40
|
Præstholm SM, Correia CM, Goitea VE, Siersbæk MS, Jørgensen M, Havelund JF, Pedersen TÅ, Færgeman NJ, Grøntved L. Impaired glucocorticoid receptor expression in liver disrupts feeding-induced gene expression, glucose uptake, and glycogen storage. Cell Rep 2021; 37:109938. [PMID: 34731602 DOI: 10.1016/j.celrep.2021.109938] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/08/2021] [Accepted: 10/13/2021] [Indexed: 10/19/2022] Open
Abstract
The transition from a fasted to a fed state is associated with extensive transcriptional remodeling in hepatocytes facilitated by hormonal- and nutritional-regulated transcription factors. Here, we use a liver-specific glucocorticoid receptor (GR) knockout (L-GRKO) model to investigate the temporal hepatic expression of GR target genes in response to feeding. Interestingly, in addition to the well-described fasting-regulated genes, we identify a subset of hepatic feeding-induced genes that requires GR for full expression. This includes Gck, which is important for hepatic glucose uptake, utilization, and storage. We show that insulin and glucocorticoids cooperatively regulate hepatic Gck expression in a direct GR-dependent manner by a 4.6 kb upstream GR binding site operating as a Gck enhancer. L-GRKO blunts preprandial and early postprandial Gck expression, which ultimately affects early postprandial hepatic glucose uptake, phosphorylation, and glycogen storage. Thus, GR is positively involved in feeding-induced gene expression and important for postprandial glucose metabolism in the liver.
Collapse
Affiliation(s)
- Stine M Præstholm
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Catarina M Correia
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Victor E Goitea
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Majken S Siersbæk
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Mathilde Jørgensen
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Jesper F Havelund
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | | | - Nils J Færgeman
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark
| | - Lars Grøntved
- Department of Biochemistry and Molecular Biology, University of Southern Denmark, 5230 Odense M, Denmark.
| |
Collapse
|
41
|
Li X, Chen M, Liu B, Lu P, Lv X, Zhao X, Cui S, Xu P, Nakamura Y, Kurita R, Chen B, Huang DCS, Liu DP, Liu M, Zhao Q. Transcriptional silencing of fetal hemoglobin expression by NonO. Nucleic Acids Res 2021; 49:9711-9723. [PMID: 34379783 PMCID: PMC8464040 DOI: 10.1093/nar/gkab671] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Revised: 07/19/2021] [Accepted: 07/23/2021] [Indexed: 12/21/2022] Open
Abstract
Human fetal globin (γ-globin) genes are developmentally silenced after birth, and reactivation of γ-globin expression in adulthood ameliorates symptoms of hemoglobin disorders, such as sickle cell disease (SCD) and β-thalassemia. However, the mechanisms by which γ-globin expression is precisely regulated are still incompletely understood. Here, we found that NonO (non-POU domain-containing octamer-binding protein) interacted directly with SOX6, and repressed the expression of γ-globin gene in human erythroid cells. We showed that NonO bound to the octamer binding motif, ATGCAAAT, of the γ-globin proximal promoter, resulting in inhibition of γ-globin transcription. Depletion of NonO resulted in significant activation of γ-globin expression in K562, HUDEP-2, and primary human erythroid progenitor cells. To confirm the role of NonO in vivo, we further generated a conditional knockout of NonO by using IFN-inducible Mx1-Cre transgenic mice. We found that induced NonO deletion reactivated murine embryonic globin and human γ-globin gene expression in adult β-YAC mice, suggesting a conserved role for NonO during mammalian evolution. Thus, our data indicate that NonO acts as a novel transcriptional repressor of γ-globin gene expression through direct promoter binding, and is essential for γ-globin gene silencing.
Collapse
Affiliation(s)
- Xinyu Li
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Mengxia Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Biru Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Peifen Lu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Xiang Lv
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiang Zhao
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuaiying Cui
- Section of Hematology-Medical Oncology, Department of Medicine, Boston University School of Medicine, Boston, MA, USA
| | - Peipei Xu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Yukio Nakamura
- Cell Engineering Division, RIKEN BioResource Center, Tsukuba, Ibaraki 305-0074, Japan
| | - Ryo Kurita
- Department of Research and Development, Central Blood Institute, Japanese Red Cross Society, Tokyo, Japan
| | - Bing Chen
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - David C S Huang
- The Walter and Eliza Hall Institute of Medical Research, Department of Medical Biology, University of Melbourne, Melbourne, VIC, Australia
| | - De-Pei Liu
- State Key Laboratory of Medical Molecular Biology, Department of Biochemistry and Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Liu
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| | - Quan Zhao
- The State Key Laboratory of Pharmaceutical Biotechnology, Department of Hematology and Urology, the Affiliated Drum Tower Hospital of Nanjing University Medical School, China-Australia Institute of Translational Medicine, School of Life Sciences, Nanjing University, Nanjing, China
| |
Collapse
|
42
|
Greco CM, Koronowski KB, Smith JG, Shi J, Kunderfranco P, Carriero R, Chen S, Samad M, Welz PS, Zinna VM, Mortimer T, Chun SK, Shimaji K, Sato T, Petrus P, Kumar A, Vaca-Dempere M, Deryagian O, Van C, Kuhn JMM, Lutter D, Seldin MM, Masri S, Li W, Baldi P, Dyar KA, Muñoz-Cánoves P, Benitah SA, Sassone-Corsi P. Integration of feeding behavior by the liver circadian clock reveals network dependency of metabolic rhythms. SCIENCE ADVANCES 2021; 7:eabi7828. [PMID: 34550736 PMCID: PMC8457671 DOI: 10.1126/sciadv.abi7828] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 07/29/2021] [Indexed: 05/28/2023]
Abstract
The mammalian circadian clock, expressed throughout the brain and body, controls daily metabolic homeostasis. Clock function in peripheral tissues is required, but not sufficient, for this task. Because of the lack of specialized animal models, it is unclear how tissue clocks interact with extrinsic signals to drive molecular oscillations. Here, we isolated the interaction between feeding and the liver clock by reconstituting Bmal1 exclusively in hepatocytes (Liver-RE), in otherwise clock-less mice, and controlling timing of food intake. We found that the cooperative action of BMAL1 and the transcription factor CEBPB regulates daily liver metabolic transcriptional programs. Functionally, the liver clock and feeding rhythm are sufficient to drive temporal carbohydrate homeostasis. By contrast, liver rhythms tied to redox and lipid metabolism required communication with the skeletal muscle clock, demonstrating peripheral clock cross-talk. Our results highlight how the inner workings of the clock system rely on communicating signals to maintain daily metabolism.
Collapse
Affiliation(s)
- Carolina M. Greco
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Kevin B. Koronowski
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jacob G. Smith
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Jiejun Shi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Paolo Kunderfranco
- Bioinformatics Unit, Humanitas Clinical and Research Center–IRCCS, Rozzano 20089, Italy
| | - Roberta Carriero
- Bioinformatics Unit, Humanitas Clinical and Research Center–IRCCS, Rozzano 20089, Italy
| | - Siwei Chen
- Institute for Genomics and Bioinformatics, Department of Computer Science, UCI, Irvine, CA 92697, USA
| | - Muntaha Samad
- Institute for Genomics and Bioinformatics, Department of Computer Science, UCI, Irvine, CA 92697, USA
| | - Patrick-Simon Welz
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- Program in Cancer Research, Hospital del Mar Medical Research Institute (IMIM), Dr. Aiguader 88, Barcelona 08003, Spain
| | - Valentina M. Zinna
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Thomas Mortimer
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
| | - Sung Kook Chun
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Kohei Shimaji
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Tomoki Sato
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Paul Petrus
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Arun Kumar
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona 08003, Spain
| | - Mireia Vaca-Dempere
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona 08003, Spain
| | - Oleg Deryagian
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona 08003, Spain
| | - Cassandra Van
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - José Manuel Monroy Kuhn
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, Neuherberg, Germany
| | - Dominik Lutter
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Computational Discovery Research, Institute for Diabetes and Obesity (IDO), Helmholtz Diabetes Center (HDC), Helmholtz Zentrum München, Neuherberg, Germany
| | - Marcus M. Seldin
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Selma Masri
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Wei Li
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Pierre Baldi
- Institute for Genomics and Bioinformatics, Department of Computer Science, UCI, Irvine, CA 92697, USA
| | - Kenneth A. Dyar
- German Center for Diabetes Research (DZD), Neuherberg, Germany
- Metabolic Physiology, Institute for Diabetes and Cancer (IDC), Helmholtz Diabetes Center, Helmholtz Zentrum München, Neuherberg, Germany
| | - Pura Muñoz-Cánoves
- Department of Experimental and Health Sciences, Pompeu Fabra University (UPF), CIBER on Neurodegenerative Diseases (CIBERNED), Barcelona 08003, Spain
- Spanish National Center on Cardiovascular Research (CNIC), Madrid 28029, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | - Salvador Aznar Benitah
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology (BIST), Barcelona 08028, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona 08010, Spain
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
43
|
Kinouchi K, Mikami Y, Kanai T, Itoh H. Circadian rhythms in the tissue-specificity from metabolism to immunity; insights from omics studies. Mol Aspects Med 2021; 80:100984. [PMID: 34158177 DOI: 10.1016/j.mam.2021.100984] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 05/04/2021] [Accepted: 06/07/2021] [Indexed: 12/31/2022]
Abstract
Creatures on earth have the capacity to preserve homeostasis in response to changing environments. The circadian clock enables organisms to adapt to daily predictable rhythms in surrounding conditions. In mammals, circadian clocks constitute hierarchical network, where the central pacemaker in hypothalamic suprachiasmatic nucleus (SCN) serves as a time-keeping machinery and governs peripheral clocks in every other organ through descending neural and humoral factors. The central clock in SCN is reset by light, whilst peripheral clocks are entrained by feeding-fasting rhythms, emphasizing the point that temporal patterns of nutrient availability specifies peripheral clock functions. Indeed, emerging evidence revealed various types of diets or timing of food intake reprogram circadian rhythms in a tissue specific manner. This advancement in understanding of mechanisms underlying tissue specific responsiveness of circadian oscillators to nutrients at the genomic and epigenomic levels is largely owing to employment of state-of-the-art technologies. Specifically, high-throughput transcriptome, proteome, and metabolome have provided insights into how genes, proteins, and metabolites behave over circadian cycles in a given tissue under a certain dietary condition in an unbiased fashion. Additionally, combinations with specialized types of sequencing such as nascent-seq and ribosomal profiling allow us to dissect how circadian rhythms are generated or obliterated at each step of gene regulation. Importantly, chromatin immunoprecipitation followed by deep sequencing methods provide chromatin landscape in terms of regulatory mechanisms of circadian gene expression. In this review, we outline recent discoveries on temporal genomic and epigenomic regulation of circadian rhythms, discussing entrainment of the circadian rhythms by feeding as a fundamental new comprehension of metabolism and immune response, and as a potential therapeutic strategy of metabolic and inflammatory diseases.
Collapse
Affiliation(s)
- Kenichiro Kinouchi
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan.
| | - Yohei Mikami
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan.
| | - Takanori Kanai
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Hiroshi Itoh
- Division of Endocrinology, Metabolism, and Nephrology, Department of Internal Medicine, Keio University School of Medicine, Tokyo, 160-8582, Japan
| |
Collapse
|
44
|
Fan XJ, Wang YL, Zhao WW, Bai SM, Ma Y, Yin XK, Feng LL, Feng WX, Wang YN, Liu Q, Hung MC, Wan XB. NONO phase separation enhances DNA damage repair by accelerating nuclear EGFR-induced DNA-PK activation. Am J Cancer Res 2021; 11:2838-2852. [PMID: 34249431 PMCID: PMC8263645] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Accepted: 04/25/2021] [Indexed: 06/13/2023] Open
Abstract
Radioresistance is one of the main causes of cancer treatment failure, which leads to relapse and inferior survival outcome of cancer patients. Liquid-liquid phase separation (LLPS) of proteins is known to be involved in various biological processes, whereas its role in the regulation of radiosensitivity remains largely unknown. In this study, we characterized NONO, an RNA/DNA binding protein with LLPS capacity, as an essential regulator of tumor radioresistance. In vitro assay showed that NONO involved in DNA repair via non-homologous end joining (NHEJ) manner. NONO knockout significantly reduced DNA damage repair and sensitized tumor cells to irradiation in vitro and in vivo. NONO overexpression was correlated with an inferior survival outcome in cancer patients. Mechanically, NONO was associated with nuclear EGFR (nEGFR). Both irradiation and EGF treatment induced nEGFR accumulation, thereby increased the association between NONO and nEGFR. However, NONO was not a substrate of EGFR kinase. Furthermore, NONO promoted DNA damage-induced DNA-PK phosphorylation at T2609 by enhancing the interaction between EGFR and DNA-PK. Importantly, NONO protein formed high concentration LLPS droplets in vitro, and recruited EGFR and DNA-PK. Disruption of NONO droplets with LLPS inhibitor significantly reduced the interaction between EGFR and DNA-PK, and suppressed DNA damage-induced phosphorylation of T2609-DNA-PK. Taken together, LLPS of NONO recruits nuclear EGFR and DNA-PK and enhances their interaction, further increases DNA damage-activated pT2609-DNA-PK and promotes NHEJ-mediated DNA repair, finally leads to tumor radioresistance. NONO phase separation-mediated radioresistance may serve as a novel molecular target to sensitize tumor cell to radiotherapy.
Collapse
Affiliation(s)
- Xin-Juan Fan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510655, Guangdong, P. R. China
- Department of Pathology, The Sixth Affiliated Hospital of Sun Yat-sen UniversityGuangzhou 510655, Guangdong, P. R. China
| | - Yun-Long Wang
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510655, Guangdong, P. R. China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510655, Guangdong, P. R. China
| | - Wan-Wen Zhao
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510655, Guangdong, P. R. China
| | - Shao-Mei Bai
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510655, Guangdong, P. R. China
| | - Yan Ma
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510655, Guangdong, P. R. China
| | - Xin-Ke Yin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510655, Guangdong, P. R. China
| | - Li-Li Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510655, Guangdong, P. R. China
| | - Wei-Xing Feng
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510655, Guangdong, P. R. China
| | - Ying-Nai Wang
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
| | - Quentin Liu
- Institute of Cancer Stem Cell, Dalian Medical UniversityDalian 116044, Liaoning, P. R. China
- State Key Laboratory of Oncology in South China, Cancer Center, Sun Yat-sen UniversityGuangzhou 510060, Guangdong, P. R. China
| | - Mien-Chie Hung
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer CenterHouston 77030, Texas, USA
- Graduate Institute of Biomedical Sciences and Research Centers for Cancer Biology and Molecular Medicine, China Medical UniversityTaichung 404, Taiwan
- Department of Biotechnology, Asia UniversityTaichung 413, Taiwan
| | - Xiang-Bo Wan
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510655, Guangdong, P. R. China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510655, Guangdong, P. R. China
- Department of Medical Engineering, The Sixth Affiliated Hospital, Sun Yat-sen UniversityGuangzhou 510655, Guangdong, P. R. China
| |
Collapse
|
45
|
Nuclear scaffold protein p54 nrb/NONO facilitates the hypoxia-enhanced progression of hepatocellular carcinoma. Oncogene 2021; 40:4167-4183. [PMID: 34079086 PMCID: PMC8211563 DOI: 10.1038/s41388-021-01848-9] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 04/28/2021] [Accepted: 05/17/2021] [Indexed: 12/14/2022]
Abstract
Hypoxia and related oxidative stress are closely related to the development and treatment of hepatocellular carcinoma (HCC). However, the mechanism mediated by hypoxia in HCC has not yet been elucidated. Here, we found multifunction scaffold protein p54nrb/NONO exerted pleiotropic effects to regulate hypoxia transcription signals, thereby enhancing the progression of liver cancer. Extensive analysis of clinical data demonstrated that NONO was significantly upregulated and represented as a poor prognostic indicator of HCC. The crucial role of NONO in driving angiogenesis and glycolysis, two well-known cancer phenotypes mediated by hypoxia, was examined in vitro an in vivo. Mechanistically, NONO interacted with and stabilized both HIF-1 and HIF-2 complexes thus activating the transcription of hypoxia-induced genes. Besides, NONO bound pre-mRNA and subsequent mRNA of these genes to facilitate them splicing and mRNA stability, respectively. Thus, NONO knockout seriously disrupted the expression of a cluster of HIF-1/2 targets and impeded hypoxia-enhanced progression in HCC. In conclusion, NONO functioned as a multipurpose scaffold that interacted with HIF-1/2 complex and their downstream transcripts to facilitate the expression of hypoxia-induced genes, allowing malignant proliferation, indicating that NONO might be a potential therapeutic target for HCC.
Collapse
|
46
|
Na Y, Kim H, Choi Y, Shin S, Jung JH, Kwon SC, Kim VN, Kim JS. FAX-RIC enables robust profiling of dynamic RNP complex formation in multicellular organisms in vivo. Nucleic Acids Res 2021; 49:e28. [PMID: 33332543 PMCID: PMC7968992 DOI: 10.1093/nar/gkaa1194] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/11/2020] [Accepted: 11/24/2020] [Indexed: 02/05/2023] Open
Abstract
RNA-protein interaction is central to post-transcriptional gene regulation. Identification of RNA-binding proteins relies mainly on UV-induced crosslinking (UVX) followed by the enrichment of RNA-protein conjugates and LC-MS/MS analysis. However, UVX has limited applicability in tissues of multicellular organisms due to its low penetration depth. Here, we introduce formaldehyde crosslinking (FAX) as an alternative chemical crosslinking for RNA interactome capture (RIC). Mild FAX captures RNA-protein interaction with high specificity and efficiency in cell culture. Unlike UVX-RIC, FAX-RIC robustly detects proteins that bind to structured RNAs or uracil-poor RNAs (e.g. AGO1, STAU1, UPF1, NCBP2, EIF4E, YTHDF proteins and PABP), broadening the coverage. Applied to Xenopus laevis oocytes and embryos, FAX-RIC provided comprehensive and unbiased RNA interactome, revealing dynamic remodeling of RNA-protein complexes. Notably, translation machinery changes during oocyte-to-embryo transition, for instance, from canonical eIF4E to noncanonical eIF4E3. Furthermore, using Mus musculus liver, we demonstrate that FAX-RIC is applicable to mammalian tissue samples. Taken together, we report that FAX can extend the RNA interactome profiling into multicellular organisms.
Collapse
Affiliation(s)
- Yongwoo Na
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyunjoon Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Yeon Choi
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Sanghee Shin
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jae Hun Jung
- Department of Applied Chemistry, Kyung Hee University, Yongin 17104, Korea
| | - S Chul Kwon
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| | - Jong-Seo Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea.,School of Biological Sciences, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
47
|
Koronowski KB, Sassone-Corsi P. Communicating clocks shape circadian homeostasis. Science 2021; 371:371/6530/eabd0951. [PMID: 33574181 DOI: 10.1126/science.abd0951] [Citation(s) in RCA: 148] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Circadian clocks temporally coordinate physiology and align it with geophysical time, which enables diverse life-forms to anticipate daily environmental cycles. In complex organisms, clock function originates from the molecular oscillator within each cell and builds upward anatomically into an organism-wide system. Recent advances have transformed our understanding of how clocks are connected to achieve coherence across tissues. Circadian misalignment, often imposed in modern society, disrupts coordination among clocks and has been linked to diseases ranging from metabolic syndrome to cancer. Thus, uncovering the physiological circuits whereby biological clocks achieve coherence will inform on both challenges and opportunities in human health.
Collapse
Affiliation(s)
- Kevin B Koronowski
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, CA 92697, USA.
| | - Paolo Sassone-Corsi
- Center for Epigenetics and Metabolism, U1233 INSERM, Department of Biological Chemistry, University of California, Irvine, CA 92697, USA
| |
Collapse
|
48
|
Wu P, Zhang M, Webster NJG. Alternative RNA Splicing in Fatty Liver Disease. Front Endocrinol (Lausanne) 2021; 12:613213. [PMID: 33716968 PMCID: PMC7953061 DOI: 10.3389/fendo.2021.613213] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 01/13/2021] [Indexed: 12/12/2022] Open
Abstract
Alternative RNA splicing is a process by which introns are removed and exons are assembled to construct different RNA transcript isoforms from a single pre-mRNA. Previous studies have demonstrated an association between dysregulation of RNA splicing and a number of clinical syndromes, but the generality to common disease has not been established. Non-alcoholic fatty liver disease (NAFLD) is the most common liver disease affecting one-third of adults worldwide, increasing the risk of cirrhosis and hepatocellular carcinoma (HCC). In this review we focus on the change in alternative RNA splicing in fatty liver disease and the role for splicing regulation in disease progression.
Collapse
Affiliation(s)
- Panyisha Wu
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, United States
| | - Moya Zhang
- University of California Los Angeles, Los Angeles, CA, United States
| | - Nicholas J. G. Webster
- VA San Diego Healthcare System, San Diego, CA, United States
- Department of Medicine, Division of Endocrinology and Metabolism, University of California San Diego, La Jolla, CA, United States
- Moores Cancer Center, University of California, San Diego, La Jolla, CA, United States
| |
Collapse
|
49
|
Xu (徐兴丽) X, Xu (徐兴华) X, Mao (毛洋) Y, Lu (卢琳) L, Ma (马静) J, Zheng (郑腾飞) T, Zhang (张杰) J, Zhang (章萌) M, Meng (孟霖霖) L, Ma (马连越) L, Cheng (程晶) J, Chen (陈文强) W, Jiang (姜虹) H, Zhang (张运) Y, Zhang (张澄) C. Knockout of the NONO Gene Inhibits Neointima Formation in a Mouse Model of Vascular Injury. Arterioscler Thromb Vasc Biol 2021; 41:1428-1445. [PMID: 33626912 DOI: 10.1161/atvbaha.119.313581] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Xingli Xu (徐兴丽)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.).,Ultrasound in Cardiac Electrophysiology and Biomechanics Key Laboratory of Sichuan Province, Sichuan Provincial People’s Hospital, University of Electronic Science and Technology of China, Chengdu (Xingli Xu).,Chinese Academy of Sciences Sichuan Translational Medicine Research Hospital, Chengdu, China (Xingli Xu)
| | - Xinghua Xu (徐兴华)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.).,Department of Histology and Embryology, Shandong First Medical University and Shandong Academy of Medical Science, Taian, China (Xinghua Xu)
| | - Yang Mao (毛洋)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.)
| | - Lin Lu (卢琳)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.)
| | - Jing Ma (马静)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.)
| | - Tengfei Zheng (郑腾飞)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.)
| | - Jie Zhang (张杰)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.)
| | - Meng Zhang (章萌)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.)
| | - Linlin Meng (孟霖霖)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.)
| | - Lianyue Ma (马连越)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.)
| | - Jing Cheng (程晶)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.)
| | - Wenqiang Chen (陈文强)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.)
| | - Hong Jiang (姜虹)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.)
| | - Yun Zhang (张运)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.)
| | - Cheng Zhang (张澄)
- Key Laboratory of Cardiovascular Remodeling and Function Research, Chinese Ministry of Education, Chinese National Health Commission and Chinese Academy of Medical Sciences, The State and Shandong Province Joint Key Laboratory of Translational Cardiovascular Medicine, Department of Cardiology, Qilu Hospital of Shandong University, Jinan, China (Xingli Xu, Xinghua Xu, Y.M., L.L., J.M., T.Z., J.Z., M.Z., L. Meng, L. Ma, J.C., W.C., H.J., Y.Z., C.Z.)
| |
Collapse
|
50
|
Xie R, Chen X, Cheng L, Huang M, Zhou Q, Zhang J, Chen Y, Peng S, Chen Z, Dong W, Huang J, Lin T. NONO Inhibits Lymphatic Metastasis of Bladder Cancer via Alternative Splicing of SETMAR. Mol Ther 2020; 29:291-307. [PMID: 32950106 DOI: 10.1016/j.ymthe.2020.08.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Revised: 07/13/2020] [Accepted: 08/21/2020] [Indexed: 12/25/2022] Open
Abstract
Bladder cancer patients with lymph node (LN) metastasis have an extremely poor prognosis and no effective treatment. The alternative splicing of precursor (pre-)mRNA participates in the progression of various tumors. However, the precise mechanisms of splicing factors and cancer-related variants in LN metastasis of bladder cancer remain largely unknown. The present study identified a splicing factor, non-POU domain-containing octamer-binding protein (NONO), that was significantly downregulated in bladder cancer tissues and correlated with LN metastasis status, tumor stage, and prognosis. Functionally, NONO markedly inhibited bladder cancer cell migration and invasion in vitro and LN metastasis in vivo. Mechanistically, NONO regulated the exon skipping of SETMAR by binding to its motif, mainly through the RRM2 domain. NONO directly interacted with splicing factor proline/glutamine rich (SFPQ) to regulate the splicing of SETMAR, and it induced metastasis suppression of bladder cancer cells. SETMAR-L overexpression significantly reversed the metastasis of NONO-knockdown bladder cancer cells, both in vitro and in vivo. The further analysis revealed that NONO-mediated SETMAR-L can induce H3K27me3 at the promotor of metastatic oncogenes and inhibit their transcription, ultimately resulting in metastasis suppression. Therefore, the present findings uncover the molecular mechanism of lymphatic metastasis in bladder cancer, which may provide novel clinical markers and therapeutic strategies for LN-metastatic bladder cancer.
Collapse
Affiliation(s)
- Ruihui Xie
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Xu Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China.
| | - Liang Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ming Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qianghua Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Jingtong Zhang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Yuelong Chen
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Ziyue Chen
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Wen Dong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jian Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.
| | - Tianxin Lin
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China; Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China; Department of Urology, The Affiliated Kashi Hospital, Sun Yat-sen University, Kashi, China.
| |
Collapse
|