1
|
Tang L, Nozdriukhin D, Kalva SK, Zhou Q, Özsoy Ç, Lyu S, Reiss M, Vidal A, Torres A, Deán-Ben XL, Razansky D. Scalable Copper Sulfide Formulations for Super-Resolution Optoacoustic Brain Imaging in the Second Near-Infrared Window. SMALL METHODS 2024:e2400927. [PMID: 39449221 DOI: 10.1002/smtd.202400927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/10/2024] [Indexed: 10/26/2024]
Abstract
Optoacoustic imaging offers label-free multi-parametric characterization of cerebrovascular morphology and hemodynamics at depths and spatiotemporal resolution unattainable with optical microscopy. Effective imaging depth can greatly be enhanced by employing photons in the second near-infrared (NIR-II) window. However, diminished absorption by hemoglobin along with a lack of suitable contrast agents hinder an efficient application of the technique in this spectral range. Herein, copper sulfide (CuS) micro- and nano-formulations for multi-scale optoacoustic imaging in the NIR-II window are introduced. Dynamic contrast enhancement induced by intravenously administered CuS nanoparticles facilitated visualization of blood perfusion in murine cerebrovascular networks. The individual calcium carbonate microparticles carrying CuS are further shown to generate sufficient responses to enable super-resolution microvascular imaging and blood flow velocity mapping with localization optoacoustic tomography.
Collapse
Affiliation(s)
- Lin Tang
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Daniil Nozdriukhin
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Sandeep Kumar Kalva
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, 8093, Switzerland
- Department of Biosciences and Bioengineering, Indian Institute of Technology Bombay, Mumbai, 400076, India
| | - Quanyu Zhou
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Çağla Özsoy
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Shuxin Lyu
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, 8093, Switzerland
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, 030001, China
| | - Michael Reiss
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Anxo Vidal
- Center for Research in Molecular Medicine and Chronic Diseases (CiMUS) and Health Research Institute of Santiago de Compostela (IDIS), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Ana Torres
- Experimental Biomedicine Centre (CEBEGA), University of Santiago de Compostela, Santiago de Compostela, 15782, Spain
| | - Xosé Luís Deán-Ben
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, 8093, Switzerland
| | - Daniel Razansky
- Institute of Pharmacology and Toxicology and Institute for Biomedical Engineering, Faculty of Medicine, University of Zurich, Zurich, 8057, Switzerland
- Institute for Biomedical Engineering, Department of Information Technology and Electrical Engineering, ETH Zurich, Zurich, 8093, Switzerland
- Zurich Neuroscience Center (ZNZ), Zurich, 8057, Switzerland
| |
Collapse
|
2
|
Combes BF, Kalva SK, Benveniste PL, Tournant A, Law MH, Newton J, Krüger M, Weber RZ, Dias I, Noain D, Dean-Ben XL, Konietzko U, Baumann CR, Gillberg PG, Hock C, Nitsch RM, Cohen-Adad J, Razansky D, Ni R. Spiral volumetric optoacoustic tomography of reduced oxygen saturation in the spinal cord of M83 mouse model of Parkinson's disease. Eur J Nucl Med Mol Imaging 2024:10.1007/s00259-024-06938-w. [PMID: 39382580 DOI: 10.1007/s00259-024-06938-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/29/2024] [Indexed: 10/10/2024]
Abstract
PURPOSE Metabolism and bioenergetics in the central nervous system play important roles in the pathophysiology of Parkinson's disease (PD). Here, we employed a multimodal imaging approach to assess oxygenation changes in the spinal cord of the transgenic M83 murine model of PD overexpressing the mutated A53T alpha-synuclein form in comparison with non-transgenic littermates. METHODS In vivo spiral volumetric optoacoustic tomography (SVOT) was performed to assess oxygen saturation (sO2) in the spinal cords of M83 mice and non-transgenic littermates. Ex vivo high-field T1-weighted (T1w) magnetic resonance imaging (MRI) at 9.4T was used to assess volumetric alterations in the spinal cord. 3D SVOT analysis and deep learning-based automatic segmentation of T1w MRI data for the mouse spinal cord were developed for quantification. Immunostaining for phosphorylated alpha-synuclein (pS129 α-syn), as well as vascular organization (CD31 and GLUT1), was performed after MRI scan. RESULTS In vivo SVOT imaging revealed a lower sO2SVOT in the spinal cord of M83 mice compared to non-transgenic littermates at sub-100 μm spatial resolution. Ex vivo MRI-assisted by in-house developed deep learning-based automatic segmentation (validated by manual analysis) revealed no volumetric atrophy in the spinal cord of M83 mice compared to non-transgenic littermates at 50 μm spatial resolution. The vascular network was not impaired in the spinal cord of M83 mice in the presence of pS129 α-syn accumulation. CONCLUSION We developed tools for deep-learning-based analysis for the segmentation of mouse spinal cord structural MRI data, and volumetric analysis of sO2SVOT data. We demonstrated non-invasive high-resolution imaging of reduced sO2SVOT in the absence of volumetric structural changes in the spinal cord of PD M83 mouse model.
Collapse
Affiliation(s)
- Benjamin F Combes
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Sandeep Kumar Kalva
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Pierre-Louis Benveniste
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
| | - Agathe Tournant
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
| | - Man Hoi Law
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Joshua Newton
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
| | - Maik Krüger
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Rebecca Z Weber
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Inês Dias
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Daniela Noain
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
- Center of Competence Sleep and Health Zurich, University of Zurich, Zurich, Switzerland
| | - Xose Luis Dean-Ben
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Uwe Konietzko
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
| | - Christian R Baumann
- Department of Neurology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Neuroscience Center Zurich (ZNZ), University of Zurich, Zurich, Switzerland
- Center of Competence Sleep and Health Zurich, University of Zurich, Zurich, Switzerland
| | - Per-Göran Gillberg
- Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Stockholm, Sweden
| | - Christoph Hock
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Neurimmune, Schlieren, Switzerland
| | - Roger M Nitsch
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland
- Neurimmune, Schlieren, Switzerland
| | - Julien Cohen-Adad
- NeuroPoly Lab, Institute of Biomedical Engineering, Polytechnique Montreal, Montreal, QC, Canada
- Mila - Quebec AI Institute, Montreal, QC, Canada
| | - Daniel Razansky
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland.
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland.
| | - Ruiqing Ni
- Institute for Regenerative Medicine, University of Zurich, Zurich, Switzerland.
- Institute for Biomedical Engineering, University of Zurich & ETH Zurich, Zurich, Switzerland.
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland.
| |
Collapse
|
3
|
Hankir MK. Creating a picture of brown fat with creatine-CEST. Trends Endocrinol Metab 2024:S1043-2760(24)00252-2. [PMID: 39256118 DOI: 10.1016/j.tem.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 08/29/2024] [Accepted: 08/29/2024] [Indexed: 09/12/2024]
Abstract
Accurate assessment of brown fat thermogenesis by non-invasive means remains challenging. Writing in Nature Metabolism, Cai et al. leverage the futile creatine cycling characteristic of thermogenic adipocytes to show that a type of magnetic resonance imaging (MRI) technique sensitive to endogenous creatine levels faithfully tracks brown fat thermogenesis in rodents and in humans.
Collapse
Affiliation(s)
- Mohammed K Hankir
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland.
| |
Collapse
|
4
|
Wang Z, Yang F, Zhang W, Xiong K, Yang S. Towards in vivo photoacoustic human imaging: Shining a new light on clinical diagnostics. FUNDAMENTAL RESEARCH 2024; 4:1314-1330. [PMID: 39431136 PMCID: PMC11489505 DOI: 10.1016/j.fmre.2023.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 12/14/2022] [Accepted: 01/12/2023] [Indexed: 02/16/2023] Open
Abstract
Multiscale visualization of human anatomical structures is revolutionizing clinical diagnosis and treatment. As one of the most promising clinical diagnostic techniques, photoacoustic imaging (PAI), or optoacoustic imaging, bridges the spatial-resolution gap between pure optical and ultrasonic imaging techniques, by the modes of optical illumination and acoustic detection. PAI can non-invasively capture multiple optical contrasts from the endogenous agents such as oxygenated/deoxygenated hemoglobin, lipid and melanin or a variety of exogenous specific biomarkers to reveal anatomy, function, and molecular for biological tissues in vivo, showing significant potential in clinical diagnostics. In 2001, the worldwide first clinical prototype of the photoacoustic system was used to screen breast cancer in vivo, which opened the prelude to photoacoustic clinical diagnostics. Over the past two decades, PAI has achieved monumental discoveries and applications in human imaging. Progress towards preclinical/clinical applications includes breast, skin, lymphatics, bowel, thyroid, ovarian, prostate, and brain imaging, etc., and there is no doubt that PAI is opening new avenues to realize early diagnosis and precise treatment of human diseases. In this review, the breakthrough researches and key applications of photoacoustic human imaging in vivo are emphatically summarized, which demonstrates the technical superiorities and emerging applications of photoacoustic human imaging in clinical diagnostics, providing clinical translational orientations for the photoacoustic community and clinicians. The perspectives on potential improvements of photoacoustic human imaging are finally highlighted.
Collapse
Affiliation(s)
- Zhiyang Wang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Fei Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Wuyu Zhang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Kedi Xiong
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| | - Sihua Yang
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, School of Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
5
|
Cai Z, Zhong Q, Zhang D, Feng Y, Wang Q, Yang Y, Xu Y, Liang C, Liu Z, Cai K. Z-Spectral MRI Quantifies the Mass and Metabolic Activity of Adipose Tissues With Fat-Water-Fraction and Amide-Proton-Transfer Contrasts. J Magn Reson Imaging 2024. [PMID: 39215496 DOI: 10.1002/jmri.29598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
BACKGROUND Brown adipose tissue (BAT) is metabolically activatable and plays an important role in obesity and metabolic diseases. With reduced fat-water-fraction (FWF) compared with white adipose tissue (WAT), BAT mass and its functional activation may be quantified with Z-spectra MRI, with built-in FWF and the metabolic amide proton transfer (APT) contrasts. PURPOSE To investigate if Z-spectral MRI can quantify the mass and metabolic activity of adipose tissues. STUDY TYPE Prospective. SUBJECTS Seven groups of 8-week-old male rats, including two groups (n = 7 per group) for in vivo MRI study and five groups (n = 5 per group) for ex vivo validation; 12 young and healthy volunteers with 6 male and 6 female. FIELD STRENGTH/SEQUENCE The 7 T small animal and 3 T clinical systems, T2-weighted imaging, Rapid Acquisition with Relaxation Enhancement (RARE) readout based chemical exchange saturation transfer (CEST) Z-spectral MRI sequence. ASSESSMENT Quantified FWF and APT from Z-spectra in rats before and after norepinephrine (NE) stimulation and in healthy human subjects; ex vivo measurements of total proteins in BAT from rats. STATISTICAL TESTS Two-tailed unpaired Student's t-tests and repeated measures ANOVA. P-value <0.05 was considered significant. RESULTS Decreased FWF (from 39.6% ± 7.2% before NE injection to 16.4% ± 7.2% 120 minutes after NE injection, P < 0.0001) and elevated APT (from 1.1% ± 0.5% before NE injection to 2.9% ± 0.5% 120 minutes after NE injection, P < 0.0001) signals in BAT were observed with in vivo Z-spectral MRI in rats injected with NE at 7 T MRI. At clinical 3 T, Z-spectral MRI was used to quantify the FWF (58.5% ± 7.2% in BAT and 73.7% ± 6.5% in WAT with P < 0.0001) and APT (2.6% ± 0.8% in BAT and 0.9% ± 0.3% in WAT with P < 0.0001) signals in healthy volunteers. APT signals of BAT were negatively correlated with the BMI in humans (r = 0.71). DATA CONCLUSION Endogenous Z-spectral MRI was demonstrated to simultaneously quantify BAT mass and function based on its FWF and APT contrasts. LEVEL OF EVIDENCE: 2 TECHNICAL EFFICACY STAGE 1.
Collapse
Affiliation(s)
- Zimeng Cai
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Qiaoling Zhong
- Department of Radiology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, China
| | - Daming Zhang
- State Key Laboratory of Bioactive Molecules and Draggability Assessment, The Biomedical Translational Research Institute, Health Science Center, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou, China
| | - Yanqiu Feng
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing & Guangdong Province Engineering Laboratory for Medical Imaging and Diagnostic Technology, Southern Medical University, Guangzhou, China
- Guangdong-Hong Kong-Macao Greater Bay Area Center for Brain Science and Brain-Inspired Intelligence & Key Laboratory of Mental Health of the Ministry of Education, Southern Medical University, Guangzhou, China
- Department of Radiology, Shunde Hospital, Southern Medical University, The First People's Hospital of Shunde, Foshan, China
| | - Qian Wang
- State Key Laboratory of Bioactive Molecules and Draggability Assessment, The Biomedical Translational Research Institute, Health Science Center, School of Medicine, Jinan University, Guangzhou, China
- Key Laboratory of Viral Pathogenesis & Infection Prevention and Control, Jinan University, Ministry of Education, Guangzhou, China
| | - Yuanbo Yang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | | | - Changhong Liang
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Zaiyi Liu
- School of Medicine, South China University of Technology, Guangzhou, China
- Department of Radiology, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Artificial Intelligence in Medical Image Analysis and Application, Guangzhou, China
| | - Kejia Cai
- Radiology Department, University of Illinois at Chicago, Chicago, Illinois, USA
- Biomedical Engineering Department, University of Illinois at Chicago, Chicago, Illinois, USA
| |
Collapse
|
6
|
Huang S, He H, Tom RZ, Glasl S, Anzenhofer P, Stiel AC, Hofmann SM, Ntziachristos V. Non-invasive optoacoustic imaging of dermal microcirculatory revascularization in diet-induced obese mice undergoing exercise intervention. PHOTOACOUSTICS 2024; 38:100628. [PMID: 39055739 PMCID: PMC11269314 DOI: 10.1016/j.pacs.2024.100628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
Microcirculatory dysfunction has been observed in the dermal white adipose tissue (dWAT) and subcutaneous white adipose tissue (scWAT) of obese humans and has been proposed as an early prediction marker for cardio-metabolic disease progression. In-vivo visualization and longitudinal monitoring of microvascular remodeling in these tissues remains challenging. We compare the performance of two optoacoustic imaging methods, i.e. multi-spectral optoacoustic tomography (MSOT) and raster-scanning optoacoustic mesoscopy (RSOM) in visualizing lipid and hemoglobin contrast in scWAT and dWAT in a mouse model of diet-induced obesity (DIO) undergoing voluntary wheel running intervention for 32 weeks. MSOT visualized lipid and hemoglobin contrast in murine fat depots in a quantitative manner even at early stages of DIO. We show for the first time to our knowledge that RSOM allows precise visualization of the dWAT microvasculature and provides quantitative readouts of skin layer thickness and vascular density in dWAT and dermis. Combination of MSOT and RSOM resolved exercise-induced morphological changes in microvasculature density, tissue oxygen saturation, lipid and blood volume content in dWAT and scWAT. The combination of MSOT and RSOM may allow precise monitoring of microcirculatory dysfunction and intervention response in dWAT and scWAT in a mouse model for DIO. Our findings have laid out the foundation for future clinical studies using optoacoustic-derived vascular readouts from adipose tissues as a biomarker for monitoring microcirculatory function in metabolic disease.
Collapse
Affiliation(s)
- Shan Huang
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Hailong He
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Robby Zachariah Tom
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München (GmbH), Neuherberg, Germany
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
| | - Sarah Glasl
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Pia Anzenhofer
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| | - Andre C. Stiel
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- University of Regensburg, Faculty for Biology, Regensburg, Germany
| | - Susanna M. Hofmann
- Institute of Diabetes and Regeneration Research, Helmholtz Zentrum München (GmbH), Neuherberg, Germany
- Department of Medicine IV, LMU University Hospital, LMU Munich, Munich, Germany
- German Center for Diabetes Research (DZD), Neuherberg 85764, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine and Health, Technical University of Munich, Munich, Germany
| |
Collapse
|
7
|
Kong S, Zuo H, Wu C, Liu MY, Ma C. Oxygenation heterogeneity facilitates spatiotemporal flow pattern visualization inside human blood vessels using photoacoustic computed tomography. BIOMEDICAL OPTICS EXPRESS 2024; 15:2741-2752. [PMID: 38855671 PMCID: PMC11161372 DOI: 10.1364/boe.518895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 03/21/2024] [Accepted: 03/23/2024] [Indexed: 06/11/2024]
Abstract
Hemodynamics can be explored through various biomedical imaging techniques. However, observing transient spatiotemporal variations in the saturation of oxygen (sO2) within human blood vessels proves challenging with conventional methods. In this study, we employed photoacoustic computed tomography (PACT) to reconstruct the evolving spatiotemporal patterns in a human vein. Through analysis of the multi-wavelength photoacoustic (PA) spectrum, we illustrated the dynamic distribution within blood vessels. Additionally, we computationally rendered the dynamic process of venous blood flowing into the major vein and entering a branching vessel. Notably, we successfully recovered, in real time, the parabolic wavefront profile of laminar flow inside a deep vein in vivo-a first-time achievement. While the study is preliminary, the demonstrated capability of dynamic sO2 imaging holds promise for new applications in biology and medicine.
Collapse
Affiliation(s)
- Siying Kong
- Tsinghua University, Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Beijing 100084, China
| | - Hongzhi Zuo
- Tsinghua University, Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Beijing 100084, China
| | - Chuhua Wu
- Tsinghua University, Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Beijing 100084, China
| | - Ming-Yuan Liu
- Department of Vascular Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing 100050, China
| | - Cheng Ma
- Tsinghua University, Department of Electronic Engineering, Beijing National Research Center for Information Science and Technology, Beijing 100084, China
- Institute for Precision Healthcare, Tsinghua University, Beijing 100084, China
- Institute for Intelligent Healthcare, Tsinghua University, Beijing 100084, China
| |
Collapse
|
8
|
Vu T, Klippel P, Canning AJ, Ma C, Zhang H, Kasatkina LA, Tang Y, Xia J, Verkhusha VV, Vo-Dinh T, Jing Y, Yao J. On the Importance of Low-Frequency Signals in Functional and Molecular Photoacoustic Computed Tomography. IEEE TRANSACTIONS ON MEDICAL IMAGING 2024; 43:771-783. [PMID: 37773898 PMCID: PMC10932611 DOI: 10.1109/tmi.2023.3320668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/01/2023]
Abstract
In photoacoustic computed tomography (PACT) with short-pulsed laser excitation, wideband acoustic signals are generated in biological tissues with frequencies related to the effective shapes and sizes of the optically absorbing targets. Low-frequency photoacoustic signal components correspond to slowly varying spatial features and are often omitted during imaging due to the limited detection bandwidth of the ultrasound transducer, or during image reconstruction as undesired background that degrades image contrast. Here we demonstrate that low-frequency photoacoustic signals, in fact, contain functional and molecular information, and can be used to enhance structural visibility, improve quantitative accuracy, and reduce spare-sampling artifacts. We provide an in-depth theoretical analysis of low-frequency signals in PACT, and experimentally evaluate their impact on several representative PACT applications, such as mapping temperature in photothermal treatment, measuring blood oxygenation in a hypoxia challenge, and detecting photoswitchable molecular probes in deep organs. Our results strongly suggest that low-frequency signals are important for functional and molecular PACT.
Collapse
|
9
|
Sarkar M, Perez-Liva M, Renault G, Tavitian B, Gateau J. Motion Rejection and Spectral Unmixing for Accurate Estimation of In Vivo Oxygen Saturation Using Multispectral Optoacoustic Tomography. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2023; 70:1671-1681. [PMID: 37603493 DOI: 10.1109/tuffc.2023.3306592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
Multispectral optoacoustic tomography (MSOT) uniquely enables spatial mapping in high resolution of oxygen saturation (SO2), with potential applications in studying pathological complications and therapy efficacy. MSOT offers seamless integration with ultrasonography, by using a common ultrasound (US) detector array. However, MSOT relies on multiple successive acquisitions of optoacoustic (OA) images at different optical wavelengths and the low frame rate of OA imaging makes the MSOT acquisition sensitive to body/respiratory motion. Moreover, the estimation of SO2 is highly sensitive to noise, and artifacts related to the respiratory motion of the animal were identified as the primary source of noise in MSOT. In this work, we propose a two-step image processing method for SO2 estimation in deep tissues. First, to mitigate motion artifacts, we propose a method of selection of OA images acquired only during the respiratory pause of the animal, using ultrafast ultrasound (US) images acquired immediately after each OA acquisition (US image acquisition duration of 1.4 ms and a total delay of 7 ms). We show that gating is more effective using US images than OA images at different optical wavelengths. Second, we propose a novel method that can estimate directly the SO2 value of a pixel and at the same time evaluate the amount of noise present in that pixel. Hence, the method can efficiently eliminate the pixels dominated by noise from the final SO2 map. Our postprocessing method is shown to outperform conventional methods for SO2 estimation, and the method was validated by in vivo oxygen challenge experiments.
Collapse
|
10
|
Avtanski D, Hadzi-Petrushev N, Josifovska S, Mladenov M, Reddy V. Emerging technologies in adipose tissue research. Adipocyte 2023; 12:2248673. [PMID: 37599422 PMCID: PMC10443968 DOI: 10.1080/21623945.2023.2248673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 08/03/2023] [Accepted: 08/07/2023] [Indexed: 08/22/2023] Open
Abstract
Technologies are transforming the understanding of adipose tissue as a complex and dynamic tissue that plays a critical role in energy homoeostasis and metabolic health. This mini-review provides a brief overview of the potential impact of novel technologies in biomedical research and aims to identify areas where these technologies can make the most significant contribution to adipose tissue research. It discusses the impact of cutting-edge technologies such as single-cell sequencing, multi-omics analyses, spatial transcriptomics, live imaging, 3D tissue engineering, microbiome analysis, in vivo imaging, and artificial intelligence/machine learning. As these technologies continue to evolve, we can expect them to play an increasingly important role in advancing our understanding of adipose tissue and improving the treatment of related diseases.
Collapse
Affiliation(s)
- Dimiter Avtanski
- Friedman Diabetes Institute, Lenox Hill Hospital, New York, NY, USA
- Institute of Bioelectronic Medicine, Feinstein Institutes for Medical Research, Manhasset, NY, USA
- Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY, USA
| | - Nikola Hadzi-Petrushev
- Faculty of Natural Sciences and Mathematics, Institute of Biology, “Ss. Cyril and Methodius” University, Skopje, North Macedonia
| | - Slavica Josifovska
- Faculty of Natural Sciences and Mathematics, Institute of Biology, “Ss. Cyril and Methodius” University, Skopje, North Macedonia
| | - Mitko Mladenov
- Faculty of Natural Sciences and Mathematics, Institute of Biology, “Ss. Cyril and Methodius” University, Skopje, North Macedonia
| | - Varun Reddy
- New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, USA
| |
Collapse
|
11
|
Sweeney A, Arora A, Edwards S, Mallidi S. Ultrasound-guided Photoacoustic image Annotation Toolkit in MATLAB (PHANTOM) for preclinical applications. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.07.565885. [PMID: 37986998 PMCID: PMC10659350 DOI: 10.1101/2023.11.07.565885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Depth-dependent fluence-compensation in photoacoustic (PA) imaging is paramount for accurate quantification of chromophores from deep tissues. Here we present a user-friendly toolkit named PHANTOM (PHotoacoustic ANnotation TOolkit for MATLAB) that includes a graphical interface and assists in the segmentation of ultrasound-guided PA images. We modelled the light source configuration with Monte Carlo eXtreme and utilized 3D segmented tissues from ultrasound to generate fluence maps to depth compensate PA images. The methodology was used to analyze PA images of phantoms with varying blood oxygenation and results were validated with oxygen electrode measurements. Two preclinical models, a subcutaneous tumor and a calcified placenta, were imaged and fluence-compensated using the PHANTOM toolkit and the results were verified with immunohistochemistry. The PHANTOM toolkit provides scripts and auxiliary functions to enable biomedical researchers not specialized in optical imaging to apply fluence correction to PA images, enhancing accessibility of quantitative PAI for researchers in various fields.
Collapse
Affiliation(s)
- Allison Sweeney
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Aayush Arora
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Skye Edwards
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
| | - Srivalleesha Mallidi
- Department of Biomedical Engineering, Tufts University, Medford, MA, United States
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, United States
| |
Collapse
|
12
|
Fasoula NA, Xie Y, Katsouli N, Reidl M, Kallmayer MA, Eckstein HH, Ntziachristos V, Hadjileontiadis L, Avgerinos DV, Briasoulis A, Siasos G, Hosseini K, Doulamis I, Kampaktsis PN, Karlas A. Clinical and Translational Imaging and Sensing of Diabetic Microangiopathy: A Narrative Review. J Cardiovasc Dev Dis 2023; 10:383. [PMID: 37754812 PMCID: PMC10531807 DOI: 10.3390/jcdd10090383] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/21/2023] [Accepted: 08/25/2023] [Indexed: 09/28/2023] Open
Abstract
Microvascular changes in diabetes affect the function of several critical organs, such as the kidneys, heart, brain, eye, and skin, among others. The possibility of detecting such changes early enough in order to take appropriate actions renders the development of appropriate tools and techniques an imperative need. To this end, several sensing and imaging techniques have been developed or employed in the assessment of microangiopathy in patients with diabetes. Herein, we present such techniques; we provide insights into their principles of operation while discussing the characteristics that make them appropriate for such use. Finally, apart from already established techniques, we present novel ones with great translational potential, such as optoacoustic technologies, which are expected to enter clinical practice in the foreseeable future.
Collapse
Affiliation(s)
- Nikolina-Alexia Fasoula
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Yi Xie
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Nikoletta Katsouli
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Mario Reidl
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
| | - Michael A. Kallmayer
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.A.K.); (H.-H.E.)
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.A.K.); (H.-H.E.)
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| | - Leontios Hadjileontiadis
- Department of Biomedical Engineering, Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates;
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | | | - Alexandros Briasoulis
- Aleksandra Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Gerasimos Siasos
- Sotiria Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece;
| | - Kaveh Hosseini
- Cardiac Primary Prevention Research Center, Cardiovascular Disease Research Institute, Tehran University of Medical Sciences, Tehran 1411713138, Iran;
| | - Ilias Doulamis
- Department of Surgery, The Johns Hopkins Hospital, School of Medicine, Baltimore, MD 21287, USA;
| | | | - Angelos Karlas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany; (N.-A.F.); (Y.X.); (N.K.); (V.N.)
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich (TUM), 81675 Munich, Germany; (M.A.K.); (H.-H.E.)
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, 80336 Munich, Germany
| |
Collapse
|
13
|
Li J, Guo Y, Ren P, Zhang Y, Han R, Xiong L. Triglyceride-Rich Lipoprotein-Mediated Polymer Dots for Multimodal Imaging Interscapular Brown Adipose Tissue Capillaries. ACS APPLIED MATERIALS & INTERFACES 2023; 15:28981-28992. [PMID: 37289581 DOI: 10.1021/acsami.3c04525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Brown adipose tissues (BATs) have been identified as a promising target of metabolism disorders. [18F]FDG-PET (FDG = fluorodeoxyglucose; PET = positron emission tomography) has been predominantly employed for BAT imaging, but its limitations drive the urgent need for novel functional probes combined with multimodal imaging approaches. It has been reported that polymer dots (Pdots) display rapid BAT imaging without additional cold stimulation. However, the mechanism by which Pdots image BAT remains unclear. Here, we made an intensive study of the imaging mechanism and found that Pdots can bind to triglyceride-rich lipoproteins (TRLs). By virtue of their high affinity to TRLs, Pdots selectively accumulate in capillary endothelial cells (ECs) in interscapular brown adipose tissues (iBATs). Compared to poly(styrene-co-maleic anhydride)cumene terminated (PSMAC)-Pdots with a short half-life and polyethylene glycol (PEG)-Pdots with low lipophilicity, naked-Pdots have good lipophilicity, with a half-life of about 30 min and up to 94% uptake in capillary ECs within 5 min, increasing rapidly after acute cold stimulation. These results suggested that the accumulation changes of Pdots in iBAT can reflect iBAT activity sensitively. Based on this mechanism, we further developed a strategy to detect iBAT activity and quantify the TRL uptake in vivo using multimodal Pdots.
Collapse
Affiliation(s)
- Jingru Li
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Yixiao Guo
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Panting Ren
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Yufan Zhang
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Ruijun Han
- Department of Ultrasound, Renji Hospital of Shanghai Jiaotong University, Shanghai 200127, P. R. China
| | - Liqin Xiong
- Shanghai Med-X Engineering Center for Medical Equipment and Technology, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
14
|
Sardjoe Mishre ASD, Martinez-Tellez B, Straat ME, Boon MR, Dzyubachyk O, Webb AG, Rensen PCN, Kan HE. Image registration and mutual thresholding enable low interimage variability across dynamic MRI measurements of supraclavicular brown adipose tissue during mild cold exposure. Magn Reson Med 2023. [PMID: 37183785 DOI: 10.1002/mrm.29707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 04/26/2023] [Accepted: 04/27/2023] [Indexed: 05/16/2023]
Abstract
PURPOSE Activated brown adipose tissue (BAT) enhances lipid catabolism and improves cardiometabolic health. Quantitative MRI of the fat fraction (FF) of supraclavicular BAT (scBAT) is a promising noninvasive measure to assess BAT activity but suffers from high scan variability. We aimed to test the effects of coregistration and mutual thresholding on the scan variability in a fast (1 min) time-resolution MRI protocol for assessing scBAT FF changes during cold exposure. METHODS Ten volunteers (age 24.8 ± 3.0 years; body mass index 21.2 ± 2.1 kg/m2 ) were scanned during thermoneutrality (32°C; 10 min) and mild cold exposure (18°C; 60 min) using a 12-point gradient-echo sequence (70 consecutive scans with breath-holds, 1.03 min per dynamic). Dynamics were coregistered to the first thermoneutral scan, which enabled drawing of single regions of interest in the scBAT depot. Voxel-wise FF changes were calculated at each time point and averaged across regions of interest. We applied mutual FF thresholding, in which voxels were included if their FF was greater than 30% FF in the reference scan and the registered dynamic. The efficacy of the coregistration was determined by using a moving average and comparing the mean squared error of residuals between registered and nonregistered data. Registered scBAT ΔFF was compared with single-scan thresholding using the moving average method. RESULTS Registered scBAT ΔFF had lower mean square error values than nonregistered data (0.07 ± 0.05% vs. 0.16 ± 0.14%; p < 0.05), and mutual thresholding reduced the scBAT ΔFF variability by 30%. CONCLUSION We demonstrate that coregistration and mutual thresholding improve stability of the data 2-fold, enabling assessment of small changes in FF following cold exposure.
Collapse
Affiliation(s)
- Aashley S D Sardjoe Mishre
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
- Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, the Netherlands
| | - Borja Martinez-Tellez
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Maaike E Straat
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Mariëtte R Boon
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Oleh Dzyubachyk
- Department of Radiology, Division of Image Processing, Leiden University Medical Center, Leiden, the Netherlands
- Department of Cell and Chemical Biology, Electron Microscopy Section, Leiden University Medical Center, Leiden, the Netherlands
| | - Andrew G Webb
- Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, the Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, Leiden University Medical Center, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, Leiden, the Netherlands
| | - Hermien E Kan
- Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
15
|
Jüstel D, Irl H, Hinterwimmer F, Dehner C, Simson W, Navab N, Schneider G, Ntziachristos V. Spotlight on Nerves: Portable Multispectral Optoacoustic Imaging of Peripheral Nerve Vascularization and Morphology. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2301322. [PMID: 37092572 DOI: 10.1002/advs.202301322] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Indexed: 05/03/2023]
Abstract
Various morphological and functional parameters of peripheral nerves and their vascular supply are indicative of pathological changes due to injury or disease. Based on recent improvements in optoacoustic image quality, the ability of multispectral optoacoustic tomography, to investigate the vascular environment and morphology of peripheral nerves is explored in vivo in a pilot study on healthy volunteers in tandem with ultrasound imaging (OPUS). The unique ability of optoacoustic imaging to visualize the vasa nervorum by observing intraneural vessels in healthy nerves is showcased in vivo for the first time. In addition, it is demonstrated that the label-free spectral optoacoustic contrast of the perfused connective tissue of peripheral nerves can be linked to the endogenous contrast of hemoglobin and collagen. Metrics are introduced to analyze the composition of tissue based on its optoacoustic contrast and show that the high-resolution spectral contrast reveals specific differences between nervous tissue and reference tissue in the nerve's surrounding. How this showcased extraction of peripheral nerve characteristics using multispectral optoacoustic and ultrasound imaging could offer new insights into the pathophysiology of nerve damage and neuropathies, for example, in the context of diabetes is discussed.
Collapse
Affiliation(s)
- Dominik Jüstel
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
- Institute of Computational Biology, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, D-81675, Munich, Germany
| | - Hedwig Irl
- Department of Anesthesiology and Intensive Care, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Florian Hinterwimmer
- Department of Orthopaedics and Sport Orthopaedics, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Christoph Dehner
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, D-81675, Munich, Germany
| | - Walter Simson
- Chair for Computer Aided Medical Procedures and Augmented Reality, Technical University of Munich, D-80333, Munich, Germany
| | - Nassir Navab
- Chair for Computer Aided Medical Procedures and Augmented Reality, Technical University of Munich, D-80333, Munich, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, D-80992, Munich, Germany
| | - Gerhard Schneider
- Department of Anesthesiology and Intensive Care, School of Medicine, Klinikum Rechts Der Isar, Technical University of Munich, D-81675, Munich, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, D-85764, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, D-81675, Munich, Germany
- Munich Institute of Robotics and Machine Intelligence, Technical University of Munich, D-80992, Munich, Germany
| |
Collapse
|
16
|
Karlas A, Fasoula NA, Katsouli N, Kallmayer M, Sieber S, Schmidt S, Liapis E, Halle M, Eckstein HH, Ntziachristos V. Skeletal muscle optoacoustics reveals patterns of circulatory function and oxygen metabolism during exercise. PHOTOACOUSTICS 2023; 30:100468. [PMID: 36950518 PMCID: PMC10025091 DOI: 10.1016/j.pacs.2023.100468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 06/18/2023]
Abstract
Imaging skeletal muscle function and metabolism, as reported by local hemodynamics and oxygen kinetics, can elucidate muscle performance, severity of an underlying disease or outcome of a treatment. Herein, we used multispectral optoacoustic tomography (MSOT) to image hemodynamics and oxygen kinetics within muscle during exercise. Four healthy volunteers underwent three different hand-grip exercise challenges (60s isometric, 120s intermittent isometric and 60s isotonic). During isometric contraction, MSOT showed a decrease of HbO2, Hb and total blood volume (TBV), followed by a prominent increase after the end of contraction. Corresponding hemodynamic behaviors were recorded during the intermittent isometric and isotonic exercises. A more detailed analysis of MSOT readouts revealed insights into arteriovenous oxygen differences and muscle oxygen consumption during all exercise schemes. These results demonstrate an excellent capability of visualizing both circulatory function and oxygen metabolism within skeletal muscle under exercise, with great potential implications for muscle research, including relevant disease diagnostics.
Collapse
Affiliation(s)
- Angelos Karlas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Nikolina-Alexia Fasoula
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Nikoletta Katsouli
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Michael Kallmayer
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sabine Sieber
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Sebastian Schmidt
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Evangelos Liapis
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
| | - Martin Halle
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
- Department of Prevention and Sports Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
17
|
Gu Y, Sun Y, Wang X, Li H, Qiu J, Lu W. Application of photoacoustic computed tomography in biomedical imaging: A literature review. Bioeng Transl Med 2023; 8:e10419. [PMID: 36925681 PMCID: PMC10013779 DOI: 10.1002/btm2.10419] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 09/11/2022] [Accepted: 09/18/2022] [Indexed: 11/06/2022] Open
Abstract
Photoacoustic computed tomography (PACT) is a hybrid imaging modality that combines optical excitation and acoustic detection techniques. It obtains high-resolution deep-tissue images based on the deep penetration of light, the anisotropy of light absorption in objects, and the photoacoustic effect. Hence, PACT shows great potential in biomedical sample imaging. Recently, due to its advantages of high sensitivity to optical absorption and wide scalability of spatial resolution with the desired imaging depth, PACT has received increasing attention in preclinical and clinical practice. To date, there has been a proliferation of PACT systems designed for specific biomedical imaging applications, from small animals to human organs, from ex vivo to in vivo real-time imaging, and from simple structural imaging to functional and molecular imaging with external contrast agents. Therefore, it is of great importance to summarize the previous applications of PACT systems in biomedical imaging and clinical practice. In this review, we searched for studies related to PACT imaging of biomedical tissues and samples over the past two decades; divided the studies into two categories, PACT imaging of preclinical animals and PACT imaging of human organs and body parts; and discussed the significance of the studies. Finally, we pointed out the future directions of PACT in biomedical applications. With the development of exogenous contrast agents and advances of imaging technique, in the future, PACT will enable biomedical imaging from organs to whole bodies, from superficial vasculature to internal organs, from anatomy to functions, and will play an increasingly important role in biomedical research and clinical practice.
Collapse
Affiliation(s)
- Yanru Gu
- Department of RadiologyThe Second Affiliated Hospital of Shandong First Medical UniversityTaianChina
- Department of RadiologyShandong First Medical University and Shandong Academy of Medical SciencesTaianChina
| | - Yuanyuan Sun
- Department of RadiologyShandong First Medical University and Shandong Academy of Medical SciencesTaianChina
| | - Xiao Wang
- College of Ocean Science and EngineeringShandong University of Science and TechnologyQingdaoChina
| | - Hongyu Li
- College of Ocean Science and EngineeringShandong University of Science and TechnologyQingdaoChina
| | - Jianfeng Qiu
- Department of RadiologyShandong First Medical University and Shandong Academy of Medical SciencesTaianChina
| | - Weizhao Lu
- Department of RadiologyThe Second Affiliated Hospital of Shandong First Medical UniversityTaianChina
- Department of RadiologyShandong First Medical University and Shandong Academy of Medical SciencesTaianChina
| |
Collapse
|
18
|
Thompson WR, Brecht HPF, Ivanov V, Yu AM, Dumani DS, Lawrence DJ, Emelianov SY, Ermilov SA. Characterizing a photoacoustic and fluorescence imaging platform for preclinical murine longitudinal studies. JOURNAL OF BIOMEDICAL OPTICS 2023; 28:036001. [PMID: 36895414 PMCID: PMC9990133 DOI: 10.1117/1.jbo.28.3.036001] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 02/07/2023] [Indexed: 06/18/2023]
Abstract
Significance To effectively study preclinical animal models, medical imaging technology must be developed with a high enough resolution and sensitivity to perform anatomical, functional, and molecular assessments. Photoacoustic (PA) tomography provides high resolution and specificity, and fluorescence (FL) molecular tomography provides high sensitivity; the combination of these imaging modes will enable a wide range of research applications to be studied in small animals. Aim We introduce and characterize a dual-modality PA and FL imaging platform using in vivo and phantom experiments. Approach The imaging platform's detection limits were characterized through phantom studies that determined the PA spatial resolution, PA sensitivity, optical spatial resolution, and FL sensitivity. Results The system characterization yielded a PA spatial resolution of 173 ± 17 μ m in the transverse plane and 640 ± 120 μ m in the longitudinal axis, a PA sensitivity detection limit not less than that of a sample with absorption coefficient μ a = 0.258 cm - 1 , an optical spatial resolution of 70 μ m in the vertical axis and 112 μ m in the horizontal axis, and a FL sensitivity detection limit not < 0.9 μ M concentration of IR-800. The scanned animals displayed in three-dimensional renders showed high-resolution anatomical detail of organs. Conclusions The combined PA and FL imaging system has been characterized and has demonstrated its ability to image mice in vivo, proving its suitability for biomedical imaging research applications.
Collapse
Affiliation(s)
| | | | - Vassili Ivanov
- PhotoSound Technologies, Inc., Houston, Texas, United States
| | - Anthony M. Yu
- Georgia Institute of Technology, Department of Biomedical Engineering, Atlanta, Georgia, United States
| | - Diego S. Dumani
- Georgia Institute of Technology, Department of Biomedical Engineering, Atlanta, Georgia, United States
| | | | - Stanislav Y. Emelianov
- Georgia Institute of Technology, Department of Biomedical Engineering, Atlanta, Georgia, United States
| | | |
Collapse
|
19
|
Fasoula NA, Karlas A, Prokopchuk O, Katsouli N, Bariotakis M, Liapis E, Goetz A, Kallmayer M, Reber J, Novotny A, Friess H, Ringelhan M, Schmid R, Eckstein HH, Hofmann S, Ntziachristos V. Non-invasive multispectral optoacoustic tomography resolves intrahepatic lipids in patients with hepatic steatosis. PHOTOACOUSTICS 2023; 29:100454. [PMID: 36794122 PMCID: PMC9922962 DOI: 10.1016/j.pacs.2023.100454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 01/12/2023] [Accepted: 01/18/2023] [Indexed: 06/18/2023]
Abstract
Hepatic steatosis is characterized by intrahepatic lipid accumulation and may lead to irreversible liver damage if untreated. Here, we investigate whether multispectral optoacoustic tomography (MSOT) can offer label-free detection of liver lipid content to enable non-invasive characterization of hepatic steatosis by analyzing the spectral region around 930 nm, where lipids characteristically absorb. In a pilot study, we apply MSOT to measure liver and surrounding tissues in five patients with liver steatosis and five healthy volunteers, revealing significantly higher absorptions at 930 nm in the patients, while no significant difference was observed in the subcutaneous adipose tissue of the two groups. We further corroborated the human observations with corresponding MSOT measurements in high fat diet (HFD) - and regular chow diet (CD)-fed mice. This study introduces MSOT as a potential non-invasive and portable technique for detecting/monitoring hepatic steatosis in clinical settings, providing justification for larger studies.
Collapse
Affiliation(s)
- Nikolina-Alexia Fasoula
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Angelos Karlas
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner Site Munich Heart Alliance, Munich, Germany
| | - Olga Prokopchuk
- Department of Visceral Surgery, Klinikum rechts der Isar, Munich, Germany
| | - Nikoletta Katsouli
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michail Bariotakis
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Evangelos Liapis
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Anna Goetz
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
| | - Michael Kallmayer
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Josefine Reber
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Alexander Novotny
- Department of Visceral Surgery, Klinikum rechts der Isar, Munich, Germany
| | - Helmut Friess
- Department of Visceral Surgery, Klinikum rechts der Isar, Munich, Germany
| | - Marc Ringelhan
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Roland Schmid
- Department of Internal Medicine II, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Hans-Henning Eckstein
- Department for Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner Site Munich Heart Alliance, Munich, Germany
| | - Susanna Hofmann
- Institute for Diabetes and Regeneration Research, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Internal Medicine IV, Klinikum der Ludwig Maximilian University of Munich, Munich, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner Site Munich Heart Alliance, Munich, Germany
| |
Collapse
|
20
|
Yin C, Li Y, Liao Z, Wang Z, Dai C, Wang W, Yang E, Guo F, Wright IR, Martin LL, Sun D. Live bio-nano-sonosensitizer targets malignant tumors in synergistic therapy. Acta Biomater 2023; 155:491-506. [PMID: 36427685 DOI: 10.1016/j.actbio.2022.11.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/19/2022] [Accepted: 11/16/2022] [Indexed: 11/25/2022]
Abstract
Sonosensitizers that can increase the concentration of reactive oxygen species (ROS) within a tumor microenvironment is a high priority for sonodynamic therapy (SDT). In this study, a functionalized, smart nanosonosensitizer based on Au-RuO2 nanoparticles (NPs) and selenium nanoparticles (Se NPs) that were electrostatically self-assembled onto the surface of Listeria innocua (LI) was used to create Bac@ARS. Au NPs provided the core in which RuO2 was deposited to form Au-RuO2 NPs. Additionally, the underlying properties of the Au NPs and Se NPs were used to optimize the sonosensitivity performance. Compared with pristine RuO2 NPs, Bac@ARS exhibits highly efficient ROS-producing activity. Furthermore, Bac@ARS remodeled the hypoxic tumor microenvironment, enabling overproduction of ROS. Importantly, Bac@ARS exploits the natural tropism of LI to selectively accumulate in tumors, which improved the treatment precision at hypoxic tumor sites after sonodynamic activation. However, the activity of LI was greatly reduced after ultrasound (US) irradiation, ensuring the biosafety of Bac@ARS. Bac@ARS was also used to monitor tumors, in real time, using photoacoustic imaging of the gold-based nanoparticles. Therefore, Bac@ARS is a promising microbial sonosensitizer providing a new platform for the optimization of sonosensitizers for tumor treatment. STATEMENT OF SIGNIFICANCE: A bio-nano-sonosensitizer was designed using a Au nanoparticle (NP) core modified with RuO2 NPs. The Au-RuO2 NPs together with Se-NPs are attached via electrostatic adsorption to a live bacterium Listeria innocua (LI), creating Bac@ARS. The role of the NPs was to optimize the sonosensitivity performance at the target tumor site. Bac@ARS reshaped the tumor microenvironment and overcame tumor hypoxia leading to ROS overproduction. This activated a potent ICD-mediated cellular immunity and anti-tumor activity. Importantly, Bac@ARS exploited the natural tropism of LI to selectively accumulate in tumors, resulting in more precise delivery of the therapeutic effect while exhibiting reduced effects on healthy tissues.
Collapse
Affiliation(s)
- Chenyang Yin
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Yuqing Li
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Ziyu Liao
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Zekun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Chunxue Dai
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Weiyun Wang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Endong Yang
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - Feng Guo
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China
| | - India R Wright
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia
| | - Lisandra L Martin
- School of Chemistry, Monash University, Clayton 3800, Victoria, Australia.
| | - Dongdong Sun
- School of Life Sciences, Anhui Agricultural University, Hefei 230036, China.
| |
Collapse
|
21
|
Dimaridis I, Sridharan P, Ntziachristos V, Karlas A, Hadjileontiadis L. Image Quality Improvement Techniques and Assessment Adequacy in Clinical Optoacoustic Imaging: A Systematic Review. BIOSENSORS 2022; 12:901. [PMID: 36291038 PMCID: PMC9599915 DOI: 10.3390/bios12100901] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 09/09/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
Optoacoustic imaging relies on the detection of optically induced acoustic waves to offer new possibilities in morphological and functional imaging. As the modality matures towards clinical application, research efforts aim to address multifactorial limitations that negatively impact the resulting image quality. In an endeavor to obtain a clear view on the limitations and their effects, as well as the status of this progressive refinement process, we conduct an extensive search for optoacoustic image quality improvement approaches that have been evaluated with humans in vivo, thus focusing on clinically relevant outcomes. We query six databases (PubMed, Scopus, Web of Science, IEEE Xplore, ACM Digital Library, and Google Scholar) for articles published from 1 January 2010 to 31 October 2021, and identify 45 relevant research works through a systematic screening process. We review the identified approaches, describing their primary objectives, targeted limitations, and key technical implementation details. Moreover, considering comprehensive and objective quality assessment as an essential prerequisite for the adoption of such approaches in clinical practice, we subject 36 of the 45 papers to a further in-depth analysis of the reported quality evaluation procedures, and elicit a set of criteria with the intent to capture key evaluation aspects. Through a comparative criteria-wise rating process, we seek research efforts that exhibit excellence in quality assessment of their proposed methods, and discuss features that distinguish them from works with similar objectives. Additionally, informed by the rating results, we highlight areas with improvement potential, and extract recommendations for designing quality assessment pipelines capable of providing rich evidence.
Collapse
Affiliation(s)
- Ioannis Dimaridis
- Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Patmaa Sridharan
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, 80992 Munich, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80636 Munich, Germany
| | - Angelos Karlas
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, 81675 Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, 85764 Neuherberg, Germany
- German Centre for Cardiovascular Research (DZHK), partner site Munich Heart Alliance, 80636 Munich, Germany
- Clinic for Vascular and Endovascular Surgery, Klinikum rechts der Isar, 81675 Munich, Germany
| | - Leontios Hadjileontiadis
- Department of Biomedical Engineering, Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Healthcare Engineering Innovation Center (HEIC), Khalifa University, Abu Dhabi P.O. Box 127788, United Arab Emirates
- Signal Processing and Biomedical Technology Unit, Telecommunications Laboratory, Department of Electrical and Computer Engineering, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| |
Collapse
|
22
|
Liu N, Mishra K, Stiel AC, Gujrati V, Ntziachristos V. The sound of drug delivery: Optoacoustic imaging in pharmacology. Adv Drug Deliv Rev 2022; 189:114506. [PMID: 35998826 DOI: 10.1016/j.addr.2022.114506] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 07/14/2022] [Accepted: 08/17/2022] [Indexed: 01/24/2023]
Abstract
Optoacoustic (photoacoustic) imaging offers unique opportunities for visualizing biological function in vivo by achieving high-resolution images of optical contrast much deeper than any other optical technique. The method detects ultrasound waves that are generated inside tissue by thermo-elastic expansion, i.e., the conversion of light absorption by tissue structures to ultrasound when the tissue is illuminated by the light of varying intensity. Listening instead of looking to light offers the major advantage of image formation with a resolution that obeys ultrasonic diffraction and not photon diffusion laws. While the technique has been widely used to explore contrast from endogenous photo-absorbing molecules, such as hemoglobin or melanin, the use of exogenous agents can extend applications to a larger range of biological and possible clinical applications, such as image-guided surgery, disease monitoring, and the evaluation of drug delivery, biodistribution, and kinetics. This review summarizes recent developments in optoacoustic agents, and highlights new functions visualized and potent pharmacology applications enabled with the use of external contrast agents.
Collapse
Affiliation(s)
- Nian Liu
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany; Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany; PET Center, Department of Nuclear Medicine, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, China
| | - Kanuj Mishra
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany
| | - Andre C Stiel
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany
| | - Vipul Gujrati
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany; Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), School of Medicine, Technical University of Munich, Munich 81675, Germany; Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg 85764, Germany; Munich Institute of Robotics and Machine Intelligence (MIRMI), Technical University of Munich, Munich 80992, Germany; DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany.
| |
Collapse
|
23
|
Kukačka J, Metz S, Dehner C, Muckenhuber A, Paul-Yuan K, Karlas A, Fallenberg EM, Rummeny E, Jüstel D, Ntziachristos V. Image processing improvements afford second-generation handheld optoacoustic imaging of breast cancer patients. PHOTOACOUSTICS 2022; 26:100343. [PMID: 35308306 PMCID: PMC8931444 DOI: 10.1016/j.pacs.2022.100343] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 02/22/2022] [Accepted: 03/01/2022] [Indexed: 05/09/2023]
Abstract
BACKGROUND Since the initial breast transillumination almost a century ago, breast cancer imaging using light has been considered in different implementations aiming to improve diagnostics, minimize the number of available biopsies, or monitor treatment. However, due to strong photon scattering, conventional optical imaging yields low resolution images, challenging quantification and interpretation. Optoacoustic imaging addresses the scattering limitation and yields high-resolution visualization of optical contrast, offering great potential value for breast cancer imaging. Nevertheless, the image quality of experimental systems remains limited due to a number of factors, including signal attenuation with depth and partial view angle and motion effects, particularly in multi-wavelength measurements. METHODS We developed data analytics methods to improve the accuracy of handheld optoacoustic breast cancer imaging, yielding second-generation optoacoustic imaging performance operating in tandem with ultrasonography. RESULTS We produced the most advanced images yet with handheld optoacoustic examinations of the human breast and breast cancer, in terms of resolution and contrast. Using these advances, we examined optoacoustic markers of malignancy, including vasculature abnormalities, hypoxia, and inflammation, on images obtained from breast cancer patients. CONCLUSIONS We achieved a new level of quality for optoacoustic images from a handheld examination of the human breast, advancing the diagnostic and theranostic potential of the hybrid optoacoustic-ultrasound (OPUS) examination over routine ultrasonography.
Collapse
Key Words
- 2G-OPUS, 2nd generation Multispectral Optoacoustic-Ultrasound Tomography
- Breast cancer
- CNR, Contrast-to-noise ratio
- DCIS, Ductal carcinoma in situ
- FOV, Field of view
- FWHM, Full width at half maximum
- ILC, Invasive lobular carcinoma
- Image quality enhancement
- In vivo imaging
- LCO, Lower cut-off
- MSOT, Multispectral Optoacoustic Tomography
- Multispectral optoacoustic tomography
- NAT, Neoadjuvant chemotherapy
- NST, No special type
- OA, Optoacoustics
- SoS, Speed-of-sound
- TIR, Total impulse response
- Tumor-associated microvasculature
- US, Ultrasound
- Ultrasound
Collapse
Affiliation(s)
- Jan Kukačka
- Helmholtz Zentrum München (GmbH), Institute of Biological and Medical Imaging, Neuherberg, Germany
- Technical University of Munich, School of Medicine, Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), Munich, Germany
| | - Stephan Metz
- Technical University of Munich, Department of Diagnostic and Interventional Radiology, Munich, Germany
| | - Christoph Dehner
- Helmholtz Zentrum München (GmbH), Institute of Biological and Medical Imaging, Neuherberg, Germany
- Technical University of Munich, School of Medicine, Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), Munich, Germany
| | - Alexander Muckenhuber
- Technical University of Munich, Institute of General and Surgical Pathology, Munich, Germany
| | - Korbinian Paul-Yuan
- Helmholtz Zentrum München (GmbH), Institute of Biological and Medical Imaging, Neuherberg, Germany
- Technical University of Munich, School of Medicine, Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), Munich, Germany
| | - Angelos Karlas
- Helmholtz Zentrum München (GmbH), Institute of Biological and Medical Imaging, Neuherberg, Germany
- Technical University of Munich, School of Medicine, Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), Munich, Germany
- Klinikum rechts der Isar, Clinic for Vascular and Endovascular Surgery, Munich, Germany
| | - Eva Maria Fallenberg
- Technical University of Munich, Department of Diagnostic and Interventional Radiology, Munich, Germany
| | - Ernst Rummeny
- Technical University of Munich, Department of Diagnostic and Interventional Radiology, Munich, Germany
| | - Dominik Jüstel
- Helmholtz Zentrum München (GmbH), Institute of Biological and Medical Imaging, Neuherberg, Germany
- Helmholtz Zentrum München (GmbH), Institute of Computational Biology, Neuherberg, Germany
- Technical University of Munich, School of Medicine, Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), Munich, Germany
| | - Vasilis Ntziachristos
- Helmholtz Zentrum München (GmbH), Institute of Biological and Medical Imaging, Neuherberg, Germany
- Technical University of Munich, School of Medicine, Chair of Biological Imaging at the Central Institute for Translational Cancer Research (TranslaTUM), Munich, Germany
- Technical University of Munich, Munich Institute of Robotics and Machine Intelligence (MIRMI), Munich, Germany
- Correspondence to: Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Building 56, Ingolstädter Landstr. 1, D-85764 Neuherberg, Germany.
| |
Collapse
|
24
|
Frankl JA, An Y, Sherwood A, Hao G, Huang FY, Thapa P, Clegg DJ, Sun X, Scherer PE, Öz OK. Comparison of BMIPP-SPECT/CT to 18FDG-PET/CT for Imaging Brown or Browning Fat in a Preclinical Model. Int J Mol Sci 2022; 23:4880. [PMID: 35563272 PMCID: PMC9101718 DOI: 10.3390/ijms23094880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 11/17/2022] Open
Abstract
Obesity is a leading cause of preventable death and morbidity. To elucidate the mechanisms connecting metabolically active brown adipose tissue (BAT) and metabolic health may provide insights into methods of treatment for obesity-related conditions. 18F-fluorodeoxyglucose positron emission tomography/computed tomography (18FDG-PET/CT) is traditionally used to image human BAT activity. However, the primary energy source of BAT is derived from intracellular fatty acids and not glucose. Beta-methyl-p-iodophenylpentadecanoic acid (BMIPP) is a fatty acid analogue amenable to in vivo imaging by single photon emission computed tomography/CT (SPECT/CT) when radiolabeled with iodine isotopes. In this study, we compare the use of 18FDG-PET/CT and 125I-BMIPP-SPECT/CT for fat imaging to ascertain whether BMIPP is a more robust candidate for the non-invasive evaluation of metabolically active adipose depots. Interscapular BAT, inguinal white adipose tissue (iWAT), and gonadal white adipose tissue (gWAT) uptake of 18FDG and 125I-BMIPP was quantified in mice following treatment with the BAT-stimulating drug CL-316,243 or saline vehicle control. After CL-316,243 treatment, uptake of both radiotracers increased in BAT and iWAT. The standard uptake value (SUVmean) for 18FDG and 125I-BMIPP significantly correlated in these depots, although uptake of 125I-BMIPP in BAT and iWAT more closely mimicked the fold-change in metabolic rate as measured by an extracellular flux analyzer. Herein, we find that imaging BAT with the radioiodinated fatty acid analogue BMIPP yields more physiologically relevant data than 18FDG-PET/CT, and its conventional use may be a pivotal tool for evaluating BAT in both mice and humans.
Collapse
Affiliation(s)
- Joseph A. Frankl
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; (J.A.F.); (A.S.); (G.H.); (P.T.); (X.S.)
| | - Yu An
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX 77030, USA;
| | - Amber Sherwood
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; (J.A.F.); (A.S.); (G.H.); (P.T.); (X.S.)
| | - Guiyang Hao
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; (J.A.F.); (A.S.); (G.H.); (P.T.); (X.S.)
| | - Feng-Yun Huang
- Department of Medical Imaging and Radiological Sciences, Central Taiwan University of Science and Technology, No. 666, Buzih Road, Beitun District, Taichung City 406053, Taiwan;
| | - Pawan Thapa
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; (J.A.F.); (A.S.); (G.H.); (P.T.); (X.S.)
| | - Deborah J. Clegg
- Department of Internal Medicine, Texas Tech Health Sciences Center, 5001 El Paso Dr, El Paso, TX 79905, USA;
| | - Xiankai Sun
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; (J.A.F.); (A.S.); (G.H.); (P.T.); (X.S.)
| | - Philipp E. Scherer
- Touchstone Diabetes Center, Department of Internal Medicine, Southwestern Medical Center, University of Texas, 5323 Harry Hines Blvd, Dallas, TX 75390, USA;
| | - Orhan K. Öz
- Department of Radiology, University of Texas Southwestern Medical Center, 5323 Harry Hines Blvd, Dallas, TX 75390, USA; (J.A.F.); (A.S.); (G.H.); (P.T.); (X.S.)
| |
Collapse
|
25
|
Fuenzalida-Werner JP, Mishra K, Stankevych M, Klemm U, Ntziachristos V, Stiel AC. Alginate beads as a highly versatile test-sample for optoacoustic imaging. PHOTOACOUSTICS 2022; 25:100301. [PMID: 35036313 PMCID: PMC8749058 DOI: 10.1016/j.pacs.2021.100301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 08/31/2021] [Accepted: 09/06/2021] [Indexed: 05/04/2023]
Abstract
Test-samples are necessary for the development of emerging imaging approaches such as optoacoustics (OA); these can be used to benchmark new labeling agents and instrumentation, or to characterize image analysis algorithms or the inversion required to form the three-dimensional reconstructions. Alginate beads (AlBes) loaded with labeled mammalian or bacterial cells provide a method of creating defined structures of controllable size and photophysical characteristics and are well-suited for both in vitro and in vivo use. Here we describe a simple and rapid method for efficient and reproducible production of AlBes with specific characteristics and show three example applications with multispectral OA tomography imaging. We show the advantage of AlBes for studying and eventually improving photo-switching OA imaging approaches. As highly defined, homogeneous, quasi point-like signal sources, AlBes might hold similar advantages for studying other agents, light-fluence models, or the impact of detection geometries on correct image formation in the near future.
Collapse
Affiliation(s)
- Juan Pablo Fuenzalida-Werner
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Chair of Biogenic Functional Materials, Technical University of Munich, D-94315 Straubing, Germany
| | - Kanuj Mishra
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Mariia Stankevych
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Uwe Klemm
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Chair of Biological Imaging, Technische Universität München, D-81675 München, Germany
- Center for Translational Cancer Research (TranslaTUM), D-81675 München, Germany
| | - Andre C. Stiel
- Institute of Biological and Medical Imaging (IBMI), Helmholtz Zentrum München, D-85764 Neuherberg, Germany
- Corresponding author.
| |
Collapse
|
26
|
Mahmoodkalayeh S, Kratkiewicz K, Manwar R, Shahbazi M, Ansari MA, Natarajan G, Asano E, Avanaki K. Wavelength and pulse energy optimization for detecting hypoxia in photoacoustic imaging of the neonatal brain: a simulation study. BIOMEDICAL OPTICS EXPRESS 2021; 12:7458-7477. [PMID: 35003846 PMCID: PMC8713673 DOI: 10.1364/boe.439147] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 10/10/2021] [Accepted: 10/20/2021] [Indexed: 05/03/2023]
Abstract
Cerebral hypoxia is a severe injury caused by oxygen deprivation to the brain. Hypoxia in the neonatal period increases the risk for the development of neurological disorders, including hypoxic-ischemic encephalopathy, cerebral palsy, periventricular leukomalacia, and hydrocephalus. It is crucial to recognize hypoxia as soon as possible because early intervention improves outcomes. Photoacoustic imaging, using at least two wavelengths, through a spectroscopic analysis, can measure brain oxygen saturation. Due to the spectral coloring effect arising from the dependency of optical properties of biological tissues to the wavelength of light, choosing the right wavelength-pair for efficient and most accurate oxygen saturation measurement and consequently quantifying hypoxia at a specific depth is critical. Using a realistic neonate head model and Monte Carlo simulations, we found practical wavelength-pairs that quantified regions with hypoxia most accurately at different depths down to 22 mm into the cortex neighboring the lateral ventricle. We also demonstrated, for the first time, that the accuracy of the sO2 measurement can be increased by adjusting the level of light energy for each wavelength-pair. Considering the growing interest in photoacoustic imaging of the brain, this work will assist in a more accurate use of photoacoustic spectroscopy and help in the clinical translation of this promising imaging modality. Please note that explaining the effect of acoustic aberration of the skull is not in the scope of this study.
Collapse
Affiliation(s)
- Sadreddin Mahmoodkalayeh
- Department of Physics, Shahid Beheshti University, Tehran, Iran
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
- These authors have contributed equally
| | - Karl Kratkiewicz
- Wayne State University, Bioengineering Department, Detroit, Michigan 48201, USA
| | - Rayyan Manwar
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
| | - Meysam Shahbazi
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Mohammad Ali Ansari
- Laser and Plasma Research Institute, Shahid Beheshti University, Tehran, Iran
| | - Girija Natarajan
- Wayne State University School of Medicine, Department of Neurology, Detroit, Michigan 48201, USA
- Wayne State University School of Medicine, Department of Pediatrics, Detroit, Michigan 48201, USA
| | - Eishi Asano
- Wayne State University School of Medicine, Department of Neurology, Detroit, Michigan 48201, USA
- Wayne State University School of Medicine, Department of Pediatrics, Detroit, Michigan 48201, USA
| | - Kamran Avanaki
- Richard and Loan Hill Department of Bioengineering, University of Illinois at Chicago, Chicago, Illinois 60607, USA
- Department of Dermatology, University of Illinois at Chicago, Chicago, Illinois 60607, USA
- These authors have contributed equally
| |
Collapse
|
27
|
Multi-Aspect Optoacoustic Imaging of Breast Tumors under Chemotherapy with Exogenous and Endogenous Contrasts: Focus on Apoptosis and Hypoxia. Biomedicines 2021; 9:biomedicines9111696. [PMID: 34829925 PMCID: PMC8615838 DOI: 10.3390/biomedicines9111696] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 10/29/2021] [Accepted: 11/08/2021] [Indexed: 12/01/2022] Open
Abstract
Breast cancer is a complex tumor type involving many biological processes. Most chemotherapeutic agents exert their antitumoral effects by rapid induction of apoptosis. Another main feature of breast cancer is hypoxia, which may drive malignant progression and confer resistance to various forms of therapy. Thus, multi-aspect imaging of both tumor apoptosis and oxygenation in vivo would be of enormous value for the effective evaluation of therapy response. Herein, we demonstrate the capability of a hybrid imaging modality known as multispectral optoacoustic tomography (MSOT) to provide high-resolution, simultaneous imaging of tumor apoptosis and oxygenation, based on both the exogenous contrast of an apoptosis-targeting dye and the endogenous contrast of hemoglobin. MSOT imaging was applied on mice bearing orthotopic 4T1 breast tumors before and following treatment with doxorubicin. Apoptosis was monitored over time by imaging the distribution of xPLORE-APOFL750©, a highly sensitive poly-caspase binding apoptotic probe, within the tumors. Oxygenation was monitored by tracking the distribution of oxy- and deoxygenated hemoglobin within the same tumor areas. Doxorubicin treatment induced an increase in apoptosis-depending optoacoustic signal of xPLORE-APOFL750© at 24 h after treatment. Furthermore, our results showed spatial correspondence between xPLORE-APO750© and deoxygenated hemoglobin. In vivo apoptotic status of the tumor tissue was independently verified by ex vivo fluorescence analysis. Overall, our results provide a rationale for the use of MSOT as an effective tool for simultaneously investigating various aspects of tumor pathophysiology and potential effects of therapeutic regimes based on both endogenous and exogenous molecular contrasts.
Collapse
|
28
|
Huang S, Blutke A, Feuchtinger A, Klemm U, Zachariah Tom R, Hofmann SM, Stiel AC, Ntziachristos V. Functional multispectral optoacoustic tomography imaging of hepatic steatosis development in mice. EMBO Mol Med 2021; 13:e13490. [PMID: 34411447 PMCID: PMC8422073 DOI: 10.15252/emmm.202013490] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 07/08/2021] [Accepted: 07/14/2021] [Indexed: 12/14/2022] Open
Abstract
The increasing worldwide prevalence of obesity, fatty liver diseases and the emerging understanding of the important roles lipids play in various other diseases is generating significant interest in lipid research. Lipid visualization in particular can play a critical role in understanding functional relations in lipid metabolism. We investigated the potential of multispectral optoacoustic tomography (MSOT) as a novel modality to non-invasively visualize lipids in laboratory mice around the 930nm spectral range. Using an obesity-induced non-alcoholic fatty liver disease (NAFLD) mouse model, we examined whether MSOT could detect and differentiate different grades of hepatic steatosis and monitor the accumulation of lipids in the liver quantitatively over time, without the use of contrast agents, i.e. in label-free mode. Moreover, we demonstrate the efficacy of using the real-time clearance kinetics of indocyanine green (ICG) in the liver, monitored by MSOT, as a biomarker to evaluate the organ's function and assess the severity of NAFLD. This study establishes MSOT as an efficient imaging tool for lipid visualization in preclinical studies, particularly for the assessment of NAFLD.
Collapse
Affiliation(s)
- Shan Huang
- Chair of Biological ImagingSchool of Medicine, Central Institute for Translational Cancer Research (TranslaTUM)Technical University of MunichGermany
- Institute of Biological and Medical ImagingHelmholtz Zentrum München (GmbH)NeuherbergGermany
| | - Andreas Blutke
- Research Unit Analytical PathologyHelmholtz Zentrum München (GmbH)NeuherbergGermany
| | - Annette Feuchtinger
- Research Unit Analytical PathologyHelmholtz Zentrum München (GmbH)NeuherbergGermany
| | - Uwe Klemm
- Chair of Biological ImagingSchool of Medicine, Central Institute for Translational Cancer Research (TranslaTUM)Technical University of MunichGermany
| | - Robby Zachariah Tom
- Institute of Diabetes and Regeneration ResearchHelmholtz Zentrum München (GmbH)NeuherbergGermany
- Medizinische Klinik und Poliklinik IVLudwig‐Maximilians‐Universität MünchenMunichGermany
| | - Susanna M Hofmann
- Institute of Diabetes and Regeneration ResearchHelmholtz Zentrum München (GmbH)NeuherbergGermany
| | - Andre C Stiel
- Chair of Biological ImagingSchool of Medicine, Central Institute for Translational Cancer Research (TranslaTUM)Technical University of MunichGermany
| | - Vasilis Ntziachristos
- Chair of Biological ImagingSchool of Medicine, Central Institute for Translational Cancer Research (TranslaTUM)Technical University of MunichGermany
- Institute of Biological and Medical ImagingHelmholtz Zentrum München (GmbH)NeuherbergGermany
| |
Collapse
|
29
|
Karlas A, Kallmayer M, Bariotakis M, Fasoula NA, Liapis E, Hyafil F, Pelisek J, Wildgruber M, Eckstein HH, Ntziachristos V. Multispectral optoacoustic tomography of lipid and hemoglobin contrast in human carotid atherosclerosis. PHOTOACOUSTICS 2021; 23:100283. [PMID: 34381689 PMCID: PMC8340302 DOI: 10.1016/j.pacs.2021.100283] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 07/07/2021] [Accepted: 07/08/2021] [Indexed: 05/09/2023]
Abstract
Several imaging techniques aim at identifying features of carotid plaque instability but come with limitations, such as the use of contrast agents, long examination times and poor portability. Multispectral optoacoustic tomography (MSOT) employs light and sound to resolve lipid and hemoglobin content, both features associated with plaque instability, in a label-free, fast and highly portable way. Herein, 5 patients with carotid atherosclerosis, 5 healthy volunteers and 2 excised plaques, were scanned with handheld MSOT. Spectral unmixing allowed visualization of lipid and hemoglobin content within three ROIs: whole arterial cross-section, plaque and arterial lumen. Calculation of the fat-blood-ratio (FBR) value within the ROIs enabled the differentiation between patients and healthy volunteers (P = 0.001) and between plaque and lumen in patients (P = 0.04). Our results introduce MSOT as a tool for molecular imaging of human carotid atherosclerosis and open new possibilities for research and clinical assessment of carotid plaques.
Collapse
Affiliation(s)
- Angelos Karlas
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
- Clinic for Vascular and Endovascular Surgery, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Michael Kallmayer
- Clinic for Vascular and Endovascular Surgery, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Michael Bariotakis
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Nikolina-Alexia Fasoula
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Evangelos Liapis
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
| | - Fabien Hyafil
- INSERM U1148, Laboratory for Vascular Translational Science (LVTS), DHU FIRE, University de Paris, Paris, France
- Department of Nuclear Medicine, Bichat University Hospital, Assistance-Publique-Hôpitaux de Paris, Paris, France
| | - Jaroslav Pelisek
- Clinic for Vascular and Endovascular Surgery, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
- Department of Vascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, LMU Munich, Munich, Germany
| | - Hans-Henning Eckstein
- Clinic for Vascular and Endovascular Surgery, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Helmholtz Zentrum München, Institute of Biological and Medical Imaging, Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Corresponding author at: Chair of Biological Imaging, Central Institute for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany.
| |
Collapse
|
30
|
A practical guide to photoswitching optoacoustics tomography. Methods Enzymol 2021; 657:365-383. [PMID: 34353495 DOI: 10.1016/bs.mie.2021.06.031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Photochromic proteins and photoswitching optoacoustics (OA) are a promising combination, that allows OA imaging of even small numbers of cells in whole live animals and thus can facilitate a more wide-spread use of OA in life-science and preclinical research. The concept relies on exploiting the modulation achieved by the photoswitching to discriminate the agents' signal from the non-modulating background. Here we share our analysis approaches that can be readily used on data generated with commercial OA tomography imaging instrumentation allowing-depending on the used photoswitching agent and sample-routine visualizations of as little as several hundreds of transgene labeled cells per imaging volume in the live animal.
Collapse
|
31
|
Crandall JP, Wahl RL. Perspectives on Brown Adipose Tissue Imaging: Insights from Preclinical and Clinical Observations from the Last and Current Century. J Nucl Med 2021; 62:34S-43S. [PMID: 34230071 DOI: 10.2967/jnumed.120.246991] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 12/22/2020] [Indexed: 11/16/2022] Open
Abstract
Brown adipose tissue (BAT) was first described in the 16th century, but until late last century had mainly been considered a tissue with the function of nonshivering thermogenesis, maintaining body temperature in key organs in newborns who have high body surface areas relative to their weight and thus marked radiative heat loss. BAT was believed to have substantially disappeared by adulthood. Molecular imaging with 18F-FDG PET and PET combined with CT, as well as imaging with 131I-metaiodobenzylguanidine (MIBG) beginning late last century have shown BAT to be present and active well into adulthood. This review highlights key aspects of BAT biology, early empiric observations misidentifying BAT, pitfalls in image interpretation, and methods to intentionally reduce BAT uptake, and outlines multiple imaging methods used to identify BAT in vivo. The therapeutic potential of increasing the amount or activity of BAT for weight loss and improvement of glucose and lipid profiles is highlighted as a major opportunity. Molecular imaging can help dissect the physiology of this complex dynamic tissue and offers the potential for addressing challenges separating "active BAT" from "total BAT." Research in BAT has grown extensively, and 18F-FDG PET is the key imaging procedure against which all other BAT imaging methods must be compared. Given the multiple functions of BAT, it is reasonable to consider it a previously unrecognized endocrine tissue and thus an appropriate topic for review in this supplement to The Journal of Nuclear Medicine.
Collapse
Affiliation(s)
- John P Crandall
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| | - Richard L Wahl
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri
| |
Collapse
|
32
|
Wang CH, Lundh M, Fu A, Kriszt R, Huang TL, Lynes MD, Leiria LO, Shamsi F, Darcy J, Greenwood BP, Narain NR, Tolstikov V, Smith KL, Emanuelli B, Chang YT, Hagen S, Danial NN, Kiebish MA, Tseng YH. CRISPR-engineered human brown-like adipocytes prevent diet-induced obesity and ameliorate metabolic syndrome in mice. Sci Transl Med 2021; 12:12/558/eaaz8664. [PMID: 32848096 DOI: 10.1126/scitranslmed.aaz8664] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 02/24/2020] [Accepted: 08/03/2020] [Indexed: 12/15/2022]
Abstract
Brown and brown-like beige/brite adipocytes dissipate energy and have been proposed as therapeutic targets to combat metabolic disorders. However, the therapeutic effects of cell-based therapy in humans remain unclear. Here, we created human brown-like (HUMBLE) cells by engineering human white preadipocytes using CRISPR-Cas9-SAM-gRNA to activate endogenous uncoupling protein 1 expression. Obese mice that received HUMBLE cell transplants showed a sustained improvement in glucose tolerance and insulin sensitivity, as well as increased energy expenditure. Mechanistically, increased arginine/nitric oxide (NO) metabolism in HUMBLE adipocytes promoted the production of NO that was carried by S-nitrosothiols and nitrite in red blood cells to activate endogenous brown fat and improved glucose homeostasis in recipient animals. Together, these data demonstrate the utility of using CRISPR-Cas9 technology to engineer human white adipocytes to display brown fat-like phenotypes and may open up cell-based therapeutic opportunities to combat obesity and diabetes.
Collapse
Affiliation(s)
- Chih-Hao Wang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA.,Graduate Institute of Biomedical Sciences, China Medical University, Taichung 40402, Taiwan
| | - Morten Lundh
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA.,Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Denmark.,Gubra Aps, Hørsholm, DK-2970, Denmark
| | - Accalia Fu
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA.,Department of Cell Biology, Harvard Medical School, Boston, MA 02215, USA
| | - Rókus Kriszt
- Department of Biomedical Engineering, National University of Singapore, Singapore, 117583.,Graduate School for Integrative Sciences and Engineering (NGS), National University of Singapore, Singapore 119077, Singapore
| | - Tian Lian Huang
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Matthew D Lynes
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Luiz O Leiria
- Department of Pharmacology, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900, Brazil.,Center of Research of Inflammatory Diseases, Ribeirao Preto Medical School, University of São Paulo, Ribeirão Preto, 14049-900, Brazil
| | - Farnaz Shamsi
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Justin Darcy
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | | | | | | | - Kyle L Smith
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Brice Emanuelli
- Novo Nordisk Foundation Center for Basic Metabolic Research, University of Copenhagen, DK-2200, Denmark
| | - Young-Tae Chang
- Center for Self-assembly and Complexity, Institute for Basic Science (IBS), Pohang 34126, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang 37673, Republic of Korea
| | - Susan Hagen
- Department of Surgery, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Nika N Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | | | - Yu-Hua Tseng
- Section on Integrative Physiology and Metabolism, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA. .,Harvard Stem Cell Institute, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
33
|
Wu Y, Zeng F, Zhao Y, Wu S. Emerging contrast agents for multispectral optoacoustic imaging and their biomedical applications. Chem Soc Rev 2021; 50:7924-7940. [PMID: 34114588 DOI: 10.1039/d1cs00358e] [Citation(s) in RCA: 50] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Optoacoustic imaging is a hybrid biomedical imaging modality which collects ultrasound waves generated via photoexciting contrast agents in tissues and produces images of high resolution and penetration depth. As a functional optoacoustic imaging technique, multispectral optoacoustic imaging, which can discriminate optoacoustic signals from different contrast agents by illuminating samples with multi-wavelength lasers and then processing the collected data with specific algorithms, assists in the identification of a specific contrast agent in target tissues and enables simultaneous molecular and physiological imaging. Moreover, multispectral optoacoustic imaging can also generate three-dimensional images for biological tissues/samples with high resolution and thus holds great potential in biomedical applications. Contrast agents play essential roles in optoacoustic imaging, and they have been widely explored and applied as probes and sensors in recent years, leading to the emergence of a variety of new contrast agents. In this review, we aim to summarize the latest advances in emerging contrast agents, especially the activatable ones which can respond to specific biological stimuli, as well as their preclinical and clinical applications. We highlight their design strategies, discuss the challenges and prospects in multispectral optoacoustic imaging, and outline the possibility of applying it in clinical translation and public health services using synthetic contrast agents.
Collapse
Affiliation(s)
- Yinglong Wu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, College of Materials Science and Engineering, South China University of Technology, Wushan Road 381, Guangzhou, 510640, China.
| | | | | | | |
Collapse
|
34
|
Karlas A, Pleitez MA, Aguirre J, Ntziachristos V. Optoacoustic imaging in endocrinology and metabolism. Nat Rev Endocrinol 2021; 17:323-335. [PMID: 33875856 DOI: 10.1038/s41574-021-00482-5] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/19/2021] [Indexed: 02/02/2023]
Abstract
Imaging is an essential tool in research, diagnostics and the management of endocrine disorders. Ultrasonography, nuclear medicine techniques, MRI, CT and optical methods are already used for applications in endocrinology. Optoacoustic imaging, also termed photoacoustic imaging, is emerging as a method for visualizing endocrine physiology and disease at different scales of detail: microscopic, mesoscopic and macroscopic. Optoacoustic contrast arises from endogenous light absorbers, such as oxygenated and deoxygenated haemoglobin, lipids and water, or exogenous contrast agents, and reveals tissue vasculature, perfusion, oxygenation, metabolic activity and inflammation. The development of high-performance optoacoustic scanners for use in humans has given rise to a variety of clinical investigations, which complement the use of the technology in preclinical research. Here, we review key progress with optoacoustic imaging technology as it relates to applications in endocrinology; for example, to visualize thyroid morphology and function, and the microvasculature in diabetes mellitus or adipose tissue metabolism, with particular focus on multispectral optoacoustic tomography and raster-scan optoacoustic mesoscopy. We explain the merits of optoacoustic microscopy and focus on mid-infrared optoacoustic microscopy, which enables label-free imaging of metabolites in cells and tissues. We showcase current optoacoustic applications within endocrinology and discuss the potential of these technologies to advance research and clinical practice.
Collapse
Affiliation(s)
- Angelos Karlas
- Chair of Biological Imaging, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
- Department of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
- Munich Partner Site, German Center for Cardiovascular Research (DZHK), Munich, Germany
| | - Miguel A Pleitez
- Chair of Biological Imaging, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Juan Aguirre
- Chair of Biological Imaging, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, Center for Translational Cancer Research (TranslaTUM), Technical University of Munich, Munich, Germany.
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Neuherberg, Germany.
| |
Collapse
|
35
|
Fasoula NA, Karlas A, Kallmayer M, Milik AB, Pelisek J, Eckstein HH, Klingenspor M, Ntziachristos V. Multicompartmental non-invasive sensing of postprandial lipemia in humans with multispectral optoacoustic tomography. Mol Metab 2021; 47:101184. [PMID: 33549846 PMCID: PMC7918675 DOI: 10.1016/j.molmet.2021.101184] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 12/26/2022] Open
Abstract
OBJECTIVE Postprandial lipid profiling (PLP), a risk indicator of cardiometabolic disease, is based on frequent blood sampling over several hours after a meal, an approach that is invasive and inconvenient. Non-invasive PLP may offer an alternative for disseminated human monitoring. Herein, we investigate the use of clinical multispectral optoacoustic tomography (MSOT) for non-invasive, label-free PLP via direct lipid-sensing in human vasculature and soft tissues. METHODS Four (n = 4) subjects (3 females and 1 male, age: 28 ± 7 years) were enrolled in the current pilot study. We longitudinally measured the lipid signals in arteries, veins, skeletal muscles, and adipose tissues of all participants at 30-min intervals for 6 h after the oral consumption of a high-fat meal. RESULTS Optoacoustic lipid-signal analysis showed on average a 63.4% intra-arterial increase at ~ 4 h postprandially, an 83.9% intra-venous increase at ~ 3 h, a 120.8% intra-muscular increase at ~ 3 h, and a 32.8% subcutaneous fat increase at ~ 4 h. CONCLUSION MSOT provides the potential to study lipid metabolism that could lead to novel diagnostics and prevention strategies by label-free, non-invasive detection of tissue biomarkers implicated in cardiometabolic diseases.
Collapse
Affiliation(s)
- Nikolina-Alexia Fasoula
- Technical University of Munich, School of Medicine, Chair of Biological Imaging, Germany; Helmholtz Zentrum München, Neuherberg, Institute of Biological and Medical Imaging, Germany
| | - Angelos Karlas
- Technical University of Munich, School of Medicine, Chair of Biological Imaging, Germany; Helmholtz Zentrum München, Neuherberg, Institute of Biological and Medical Imaging, Germany; Clinic of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Munich, Germany
| | - Michael Kallmayer
- Clinic of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Munich, Germany
| | - Anamaria Beatrice Milik
- Technical University of Munich, School of Medicine, Chair of Biological Imaging, Germany; Helmholtz Zentrum München, Neuherberg, Institute of Biological and Medical Imaging, Germany
| | - Jaroslav Pelisek
- Clinic of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Munich, Germany; Department of Vascular Surgery, University Hospital Zurich, Zurich, Switzerland
| | - Hans-Henning Eckstein
- Clinic of Vascular and Endovascular Surgery, Klinikum rechts der Isar, Munich, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany; EKFZ-Else Kröner-Fresenius Zentrum for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL-Institute for Food &Health, Technical University of Munich, Freising, Germany
| | - Vasilis Ntziachristos
- Technical University of Munich, School of Medicine, Chair of Biological Imaging, Germany; Helmholtz Zentrum München, Neuherberg, Institute of Biological and Medical Imaging, Germany.
| |
Collapse
|
36
|
Merdasa A, Bunke J, Naumovska M, Albinsson J, Erlöv T, Cinthio M, Reistad N, Sheikh R, Malmsjö M. Photoacoustic imaging of the spatial distribution of oxygen saturation in an ischemia-reperfusion model in humans. BIOMEDICAL OPTICS EXPRESS 2021; 12:2484-2495. [PMID: 33996242 PMCID: PMC8086473 DOI: 10.1364/boe.418397] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 02/11/2021] [Accepted: 02/15/2021] [Indexed: 05/25/2023]
Abstract
Photoacoustic imaging (PAI) is a novel hybrid imaging technique that combines the advantages of optical and ultrasound imaging to produce hyperspectral images of the tissue. The feasibility of measuring oxygen saturation (sO2) with PAI has been demonstrated pre-clinically, but has limited use in humans under conditions of ischemia and reperfusion. As an important step towards making PAI clinically available, we present a study in which PAI was used to estimate the spatial distribution of sO2 in vivo during and after occlusion of the finger of eight healthy volunteers. The results were compared with a commercial oxygen saturation monitor based on diffuse reflectance spectroscopy. We here describe the capability of PAI to provide spatially resolved picture of the evolution of sO2 during ischemia following vascular occlusion of a finger, demonstrating the clinical viability of PAI as a non-invasive diagnostic tool for diseases indicated by impaired microvascularization.
Collapse
Affiliation(s)
- Aboma Merdasa
- Department of Clinical Sciences Lund, Ophotalmology, Lund University and Skåne University Hospital, Lund, Sweden
- Department of Physics, Lund University, Sweden
| | - Josefine Bunke
- Department of Clinical Sciences Lund, Ophotalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Magdalena Naumovska
- Department of Clinical Sciences Lund, Ophotalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | - John Albinsson
- Department of Clinical Sciences Lund, Ophotalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Tobias Erlöv
- Department of Biomedical Engineering, Lund University, Sweden
| | - Magnus Cinthio
- Department of Biomedical Engineering, Lund University, Sweden
| | | | - Rafi Sheikh
- Department of Clinical Sciences Lund, Ophotalmology, Lund University and Skåne University Hospital, Lund, Sweden
| | - Malin Malmsjö
- Department of Clinical Sciences Lund, Ophotalmology, Lund University and Skåne University Hospital, Lund, Sweden
| |
Collapse
|
37
|
Chen R, Huang S, Lin T, Ma H, Shan W, Duan F, Lv J, Zhang J, Ren L, Nie L. Photoacoustic molecular imaging-escorted adipose photodynamic-browning synergy for fighting obesity with virus-like complexes. NATURE NANOTECHNOLOGY 2021; 16:455-465. [PMID: 33526836 DOI: 10.1038/s41565-020-00844-6] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 12/17/2020] [Indexed: 06/12/2023]
Abstract
Photodynamic therapy and adipose browning induction are two promising approaches to reverse obesity. The former strategy acts rapidly and locally, whereas the latter has a more gradual and widespread effect. Despite their complementarity, they have rarely been combined and imaged non-invasively in vivo. Here we introduce an adipose-targeting hepatitis B core protein complex that contains a traceable photosensitizer (ZnPcS4 (zinc phthalocyanine tetrasulfonate)) and a browning agent (rosiglitazone) that allows simultaneous photodynamic and browning treatments, with photoacoustic molecular imaging. After intravenous injection in obese mice, the complex binds specifically to white adipose tissues, especially those rich in blood supply, and drives adipose reduction thanks to the synergy of ZnPcS4 photodynamics and rosiglitazone browning. Using photoacoustic molecular imaging, we could monitor the changes induced by the treatment, which included complex activity, lipid catabolism and angiogenesis. Our findings demonstrate the anti-obesity potential of our feedback-based synergic regimen orchestrated by the targeted hepatitis B core complex.
Collapse
Affiliation(s)
- Ronghe Chen
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Shanshan Huang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Tongtong Lin
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surface, College of Materials, Xiamen University, Xiamen, China
| | - Haosong Ma
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Wenjun Shan
- Department of Pharmacology, College of Pharmacy, Army Medical University (Third Military Medical University), Chongqing, China
| | - Fei Duan
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Jing Lv
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Jinde Zhang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China
| | - Lei Ren
- Department of Biomaterials, Key Laboratory of Biomedical Engineering of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surface, College of Materials, Xiamen University, Xiamen, China
| | - Liming Nie
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnosis & Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen, China.
| |
Collapse
|
38
|
Notohamiprodjo S, Varasteh Z, Beer AJ, Niu G, Chen X(S, Weber W, Schwaiger M. Tumor Vasculature. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00090-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
39
|
Karlas A, Masthoff M, Kallmayer M, Helfen A, Bariotakis M, Fasoula NA, Schäfers M, Seidensticker M, Eckstein HH, Ntziachristos V, Wildgruber M. Multispectral optoacoustic tomography of peripheral arterial disease based on muscle hemoglobin gradients-a pilot clinical study. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:36. [PMID: 33553329 PMCID: PMC7859778 DOI: 10.21037/atm-20-3321] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 09/18/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Current imaging assessment of peripheral artery disease (PAD) relies on anatomical cross-sectional visualizations of the affected arteries. Multispectral optoacoustic tomography (MSOT) is a novel molecular imaging technique that provides direct and label-free visualizations of soft tissue perfusion and oxygenation. METHODS MSOT was prospectively assessed in a pilot trial in healthy volunteers (group n1=4, mean age 31, 50% male and group n3=4, mean age 37.3, 75% male) and patients with intermittent claudication (group n2=4, mean age 72, 75% male, PAD stage IIb). We conducted cuff-induced ischemia (group n1) and resting state measurements (groups n2 and n3) over the calf region. Spatially resolved mapping of oxygenated (HbO2), deoxygenated (Hb) and total (THb) hemoglobin, as well as oxygen saturation (SO2), were measured via hand-held hybrid MSOT-Ultrasound based purely on hemoglobin contrast. RESULTS Calf measurements in healthy volunteers revealed distinct dynamics for HbO2, Hb, THb and SO2 under cuff-induced ischemia. HbO2, THb and SO2 levels were significantly impaired in PAD patients compared to healthy volunteers (P<0.05 for all parameters). Revascularization led to significant improvements in HbO2 of the affected limb. CONCLUSIONS Clinical MSOT allows for non-invasive, label-free and real-time imaging of muscle oxygenation in health and disease with implications for diagnostics and therapy assessment in PAD.
Collapse
Affiliation(s)
- Angelos Karlas
- Chair of Biological Imaging, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg, Germany
- Clinic of Vascular and Endovascular Surgery, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Max Masthoff
- Department for Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Michael Kallmayer
- Clinic of Vascular and Endovascular Surgery, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
| | - Anne Helfen
- Department for Clinical Radiology, University Hospital Münster, Münster, Germany
| | - Michail Bariotakis
- Chair of Biological Imaging, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg, Germany
| | - Nikolina Alexia Fasoula
- Chair of Biological Imaging, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg, Germany
| | - Michael Schäfers
- Department for Nuclear Medicine and European Institute for Molecular Imaging, University Hospital Münster, Münster, Germany
| | - Max Seidensticker
- Department for Radiology, University Hospital, LMU Munich, München, Germany
| | - Hans-Henning Eckstein
- Clinic of Vascular and Endovascular Surgery, Technical University of Munich, Klinikum rechts der Isar, Munich, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Vasilis Ntziachristos
- Chair of Biological Imaging, School of Medicine, Technical University of Munich, Munich, Germany
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München (GmbH), Neuherberg, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Munich Heart Alliance, Munich, Germany
| | - Moritz Wildgruber
- Department for Clinical Radiology, University Hospital Münster, Münster, Germany
- Department for Radiology, University Hospital, LMU Munich, München, Germany
| |
Collapse
|
40
|
Balasundaram G, Krafft C, Zhang R, Dev K, Bi R, Moothanchery M, Popp J, Olivo M. Biophotonic technologies for assessment of breast tumor surgical margins-A review. JOURNAL OF BIOPHOTONICS 2021; 14:e202000280. [PMID: 32951321 DOI: 10.1002/jbio.202000280] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Revised: 09/15/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
Breast conserving surgery (BCS) offering similar surgical outcomes as mastectomy while retaining breast cosmesis is becoming increasingly popular for the management of early stage breast cancers. However, its association with reoperation rates of 20% to 40% following incomplete tumor removal warrants the need for a fast and accurate intraoperative surgical margin assessment tool that offers cellular, structural and molecular information of the whole specimen surface to a clinically relevant depth. Biophotonic technologies are evolving to qualify as such an intraoperative tool for clinical assessment of breast cancer surgical margins at the microscopic and macroscopic scale. Herein, we review the current research in the application of biophotonic technologies such as photoacoustic imaging, Raman spectroscopy, multimodal multiphoton imaging, diffuse optical imaging and fluorescence imaging using medically approved dyes for breast cancer detection and/or tumor subtype differentiation toward intraoperative assessment of surgical margins in BCS specimens, and possible challenges in their route to clinical translation.
Collapse
Affiliation(s)
- Ghayathri Balasundaram
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | | | - Ruochong Zhang
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Kapil Dev
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Renzhe Bi
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Mohesh Moothanchery
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Jürgen Popp
- Leibniz Institute of Photonic Technology, Jena, Germany
- Institute of Physical Chemistry and Abbe Center of Photonics, University Jena, Jena, Germany
| | - Malini Olivo
- Singapore Bioimaging Consortium, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
41
|
Humbert J, Will O, Peñate-Medina T, Peñate-Medina O, Jansen O, Both M, Glüer CC. Comparison of photoacoustic and fluorescence tomography for the in vivo imaging of ICG-labelled liposomes in the medullary cavity in mice. PHOTOACOUSTICS 2020; 20:100210. [PMID: 33101928 PMCID: PMC7569329 DOI: 10.1016/j.pacs.2020.100210] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 08/26/2020] [Accepted: 09/13/2020] [Indexed: 05/20/2023]
Abstract
Few reports quantitatively compare the performance of photoacoustic tomography (PAT) versus fluorescence molecular tomography (FMT) in vivo. We compared both modalities for the detection of signals from injected ICG liposomes in the tibial medullary space of 10 BALB/c mice in vivo and ex vivo. Signals significantly correlated between modalities (R² = 0.69) and within each modality in vivo versus ex vivo (PAT: R² = 0.70, FMT: R² = 0.76). Phantom studies showed that signals at 4 mm depth are detected down to 3.3 ng ICG by PAT and 33 ng by FMT, with a nominal spatial resolution below 0.5 mm in PAT and limited to 1 mm in FMT. Our study demonstrates comparable in vivo sensitivity, but superior ex vivo sensitivity and in vivo resolution for our ICG liposomes of the VevoLAZR versus the FMT2500. PAT provides a useful new tool for the high-resolution imaging of bone marrow signals, for example for monitoring drug delivery.
Collapse
Key Words
- % ID, percent initial dose
- % PA signal, percent photoacoustic signal
- BMD, bone mineral density
- Bone
- DXA, dual-energy x-ray absorptiometry
- FLI, fluorescence imaging
- FMT, fluorescence molecular tomography
- Fluorescence imaging
- Hb, deoxygenated hemoglobin
- HbO2, oxygenated hemoglobin
- ICG, indocyanine green
- In vivo imaging
- LDF, laser-doppler flowmetry
- Liposomes
- M, mean
- Medullary space
- NIR, near-infrared
- PAI, photoacoustic imaging
- PAT, photoacoustic tomography
- Photoacoustic imaging
- QUS, quantitative ultrasound
- RFU, relative fluorescence units
- SD, standard deviation
- SEM, standard error of the mean
- Tibia
- US, ultrasound
Collapse
Affiliation(s)
- Jana Humbert
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein Kiel, Kiel University, Arnold-Heller-Straße 3, 24105 Kiel, Germany
- Corresponding author at: Molecular Imaging North Competence Center (MOIN CC), Am Botanischen Garten 14, 24118 Kiel, Germany.
| | - Olga Will
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Tuula Peñate-Medina
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Oula Peñate-Medina
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| | - Olav Jansen
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein Kiel, Kiel University, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Marcus Both
- Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein Kiel, Kiel University, Arnold-Heller-Straße 3, 24105 Kiel, Germany
| | - Claus-Christian Glüer
- Section Biomedical Imaging, Molecular Imaging North Competence Center (MOIN CC), Department of Radiology and Neuroradiology, University Medical Center Schleswig-Holstein Kiel, Kiel University, Am Botanischen Garten 14, 24118 Kiel, Germany
| |
Collapse
|
42
|
Chlis NK, Karlas A, Fasoula NA, Kallmayer M, Eckstein HH, Theis FJ, Ntziachristos V, Marr C. A sparse deep learning approach for automatic segmentation of human vasculature in multispectral optoacoustic tomography. PHOTOACOUSTICS 2020; 20:100203. [PMID: 33194545 PMCID: PMC7644749 DOI: 10.1016/j.pacs.2020.100203] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 07/20/2020] [Accepted: 07/26/2020] [Indexed: 05/02/2023]
Abstract
Multispectral Optoacoustic Tomography (MSOT) resolves oxy- (HbO2) and deoxy-hemoglobin (Hb) to perform vascular imaging. MSOT suffers from gradual signal attenuation with depth due to light-tissue interactions: an effect that hinders the precise manual segmentation of vessels. Furthermore, vascular assessment requires functional tests, which last several minutes and result in recording thousands of images. Here, we introduce a deep learning approach with a sparse-UNET (S-UNET) for automatic vascular segmentation in MSOT images to avoid the rigorous and time-consuming manual segmentation. We evaluated the S-UNET on a test-set of 33 images, achieving a median DICE score of 0.88. Apart from high segmentation performance, our method based its decision on two wavelengths with physical meaning for the task-at-hand: 850 nm (peak absorption of oxy-hemoglobin) and 810 nm (isosbestic point of oxy-and deoxy-hemoglobin). Thus, our approach achieves precise data-driven vascular segmentation for automated vascular assessment and may boost MSOT further towards its clinical translation.
Collapse
Affiliation(s)
- Nikolaos-Kosmas Chlis
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- Institute of Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Roche Pharma Research and Early Development, Large Molecule Research, Roche Innovation Center Munich, Penzberg 82377, Germany
| | - Angelos Karlas
- Institute of Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Chair of Biological Imaging and Center for Translational Cancer Research (TranslaTUM), Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
- Clinic for Vascular and Endovascular Surgery, Rechts Der Isar Hospital, Munich, Germany
| | - Nikolina-Alexia Fasoula
- Institute of Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Chair of Biological Imaging and Center for Translational Cancer Research (TranslaTUM), Munich, Germany
| | - Michael Kallmayer
- Clinic for Vascular and Endovascular Surgery, Rechts Der Isar Hospital, Munich, Germany
| | - Hans-Henning Eckstein
- Clinic for Vascular and Endovascular Surgery, Rechts Der Isar Hospital, Munich, Germany
| | - Fabian J. Theis
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
- Department of Mathematics, Technical University of Munich, Munich, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Center Munich, Neuherberg, Germany
- Chair of Biological Imaging and Center for Translational Cancer Research (TranslaTUM), Munich, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Munich Heart Alliance, Munich, Germany
| | - Carsten Marr
- Institute of Computational Biology, Helmholtz Center Munich, Neuherberg, Germany
| |
Collapse
|
43
|
Olefir I, Tzoumas S, Restivo C, Mohajerani P, Xing L, Ntziachristos V. Deep Learning-Based Spectral Unmixing for Optoacoustic Imaging of Tissue Oxygen Saturation. IEEE TRANSACTIONS ON MEDICAL IMAGING 2020; 39:3643-3654. [PMID: 32746111 PMCID: PMC7671861 DOI: 10.1109/tmi.2020.3001750] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Label free imaging of oxygenation distribution in tissues is highly desired in numerous biomedical applications, but is still elusive, in particular in sub-epidermal measurements. Eigenspectra multispectral optoacoustic tomography (eMSOT) and its Bayesian-based implementation have been introduced to offer accurate label-free blood oxygen saturation (sO2) maps in tissues. The method uses the eigenspectra model of light fluence in tissue to account for the spectral changes due to the wavelength dependent attenuation of light with tissue depth. eMSOT relies on the solution of an inverse problem bounded by a number of ad hoc hand-engineered constraints. Despite the quantitative advantage offered by eMSOT, both the non-convex nature of the optimization problem and the possible sub-optimality of the constraints may lead to reduced accuracy. We present herein a neural network architecture that is able to learn how to solve the inverse problem of eMSOT by directly regressing from a set of input spectra to the desired fluence values. The architecture is composed of a combination of recurrent and convolutional layers and uses both spectral and spatial features for inference. We train an ensemble of such networks using solely simulated data and demonstrate how this approach can improve the accuracy of sO2 computation over the original eMSOT, not only in simulations but also in experimental datasets obtained from blood phantoms and small animals (mice) in vivo. The use of a deep-learning approach in optoacoustic sO2 imaging is confirmed herein for the first time on ground truth sO2 values experimentally obtained in vivo and ex vivo.
Collapse
|
44
|
Huang R, Ding Z, Jiang BP, Luo Z, Chen T, Guo Z, Ji SC, Liang H, Shen XC. Artificial Metalloprotein Nanoanalogues: In Situ Catalytic Production of Oxygen to Enhance Photoimmunotherapeutic Inhibition of Primary and Abscopal Tumor Growth. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2004345. [PMID: 33089606 DOI: 10.1002/smll.202004345] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 09/09/2020] [Indexed: 06/11/2023]
Abstract
Photoimmunotherapy (PIT) has shown enormous potential in not only eliminating primary tumors, but also inhibiting abscopal tumor growth. However, the efficacy of PIT is greatly limited by tumor hypoxia, which causes the attenuation of phototherapeutic efficacy and is a feature of the immunosuppressive tumor microenvironment (TME). In this study, one type of brand-new artificial metalloprotein nanoanalogues is developed via reasonable integration of a "phototherapy-enzymatic" RuO2 and a model antigen, ovalbumin (OVA) for enhanced PIT of cancers, namely, RuO2 -hybridized OVA nanoanalogues (RuO2 @OVA NAs). The RuO2 @OVA NAs exhibit remarkable photothermal/photodynamic capabilities under the near-infrared light irradiation. More importantly, the photoacoustic imaging and immunofluorescence staining confirm that RuO2 @OVA NAs can remarkably alleviate hypoxia via in situ catalysis of hydrogen peroxide overexpressed in the TME to produce oxygen (O2 ). This ushers a prospect of concurrently enhancing photodynamic therapy and reversing the immunosuppressive TME. Also, OVA, as a supplement to the immune stimulation induced by phototherapy, can activate immune responses. Finally, further combination with the cytotoxic T-lymphocyte-associated protein 4 checkpoint blockade is reported to effectively eliminate the primary tumor and inhibit distant tumor growth via the abscopal effect of antitumor immune responses, prolonging the survival.
Collapse
Affiliation(s)
- Rongtao Huang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Zhaoyang Ding
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Bang-Ping Jiang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Zilan Luo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Ting Chen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Zhengxi Guo
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Shi-Chen Ji
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Hong Liang
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| | - Xing-Can Shen
- State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin, 541004, P. R. China
| |
Collapse
|
45
|
Sanchez-Delgado G, Alcantara JMA, Acosta FM, Martinez-Tellez B, Amaro-Gahete FJ, Merchan-Ramirez E, Löf M, Labayen I, Ravussin E, Ruiz JR. Energy Expenditure and Macronutrient Oxidation in Response to an Individualized Nonshivering Cooling Protocol. Obesity (Silver Spring) 2020; 28:2175-2183. [PMID: 32985119 DOI: 10.1002/oby.22972] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Revised: 07/08/2020] [Accepted: 07/09/2020] [Indexed: 11/07/2022]
Abstract
OBJECTIVE This study aimed to describe the energy expenditure (EE) and macronutrient oxidation response to an individualized nonshivering cold exposure in young healthy adults. METHODS Two different groups of 44 (study 1: 22.1 [SD 2.1] years old, 25.6 [SD 5.2] kg/m2 , 34% men) and 13 young healthy adults (study 2: 25.6 [SD 3.0] years old, 23.6 [SD 2.4] kg/m2 , 54% men) participated in this study. Resting metabolic rate (RMR) and macronutrient oxidation rates were measured by indirect calorimetry under fasting conditions in a warm environment (for 30 minutes) and in mild cold conditions (for 65 minutes, with the individual wearing a water-perfused cooling vest set at an individualized temperature adjusted to the individual's shivering threshold). RESULTS In study 1, EE increased in the initial stage of cold exposure and remained stable for the whole cold exposure (P < 0.001). Mean cold-induced thermogenesis (9.56 ± 7.9 kcal/h) was 13.9% ± 11.6% of the RMR (range: -14.8% to 39.9% of the RMR). Carbohydrate oxidation decreased during the first 30 minutes of the cold exposure and later recovered up to the baseline values (P < 0.01) in parallel to opposite changes in fat oxidation (P < 0.01). Results were replicated in study 2. CONCLUSIONS A 1-hour mild cold exposure individually adjusted to elicit maximum nonshivering thermogenesis induces a very modest increase in EE and a shift of macronutrient oxidation that may underlie a shift in thermogenic tissue activity.
Collapse
Affiliation(s)
- Guillermo Sanchez-Delgado
- Promoting Fitness and Health Through Physical Activity Research Group, Sport and Health University Research Institute, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Physical Education and Sports, University of Granada, Granada, Spain
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Juan M A Alcantara
- Promoting Fitness and Health Through Physical Activity Research Group, Sport and Health University Research Institute, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Physical Education and Sports, University of Granada, Granada, Spain
| | - Francisco M Acosta
- Promoting Fitness and Health Through Physical Activity Research Group, Sport and Health University Research Institute, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Physical Education and Sports, University of Granada, Granada, Spain
| | - Borja Martinez-Tellez
- Promoting Fitness and Health Through Physical Activity Research Group, Sport and Health University Research Institute, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Physical Education and Sports, University of Granada, Granada, Spain
- Division of Endocrinology, Department of Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
- Einthoven Laboratory for Experimental Vascular Medicine, Department of Medicine, Leiden University Medical Center, Leiden University, Leiden, the Netherlands
| | - Francisco J Amaro-Gahete
- Promoting Fitness and Health Through Physical Activity Research Group, Sport and Health University Research Institute, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Physical Education and Sports, University of Granada, Granada, Spain
- Department of Medical Physiology, School of Medicine, University of Granada, Granada, Spain
| | - Elisa Merchan-Ramirez
- Promoting Fitness and Health Through Physical Activity Research Group, Sport and Health University Research Institute, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Physical Education and Sports, University of Granada, Granada, Spain
| | - Marie Löf
- Department of Biosciences and Nutrition, Karolinska Institutet, Huddinge, Sweden
- Department of Health, Medicine Caring Sciences, Linköping University, Linköping, Sweden
| | - Idoia Labayen
- Institute for Innovation and Sustainable Development in Food Chain, Navarra's Health Research Institute, Department of Health Sciences, Public University of Navarra, Pamplona, Spain
| | - Eric Ravussin
- Pennington Biomedical Research Center, Baton Rouge, Louisiana, USA
| | - Jonatan R Ruiz
- Promoting Fitness and Health Through Physical Activity Research Group, Sport and Health University Research Institute, Faculty of Sport Sciences, University of Granada, Granada, Spain
- Department of Physical Education and Sports, University of Granada, Granada, Spain
| |
Collapse
|
46
|
MacCuaig WM, Jones MA, Abeyakoon O, McNally LR. Development of Multispectral Optoacoustic Tomography as a Clinically Translatable Modality for Cancer Imaging. Radiol Imaging Cancer 2020; 2:e200066. [PMID: 33330850 PMCID: PMC7706874 DOI: 10.1148/rycan.2020200066] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 08/12/2020] [Accepted: 08/19/2020] [Indexed: 12/18/2022]
Abstract
The use of optoacoustic imaging takes advantage of the photoacoustic effect to generate high-contrast, high-resolution medical images at penetration depths of up to 5 cm. Multispectral optoacoustic tomography (MSOT) is a type of optoacoustic imaging system that has seen promising preclinical success with a recent emergence into the clinic. Multiwavelength illumination of tissue allows for the mapping of multiple chromophores, which are generated endogenously or exogenously. However, translation of MSOT to the clinic is still in its preliminary stages. For successful translation, MSOT requires refinement of probes and data-acquisition systems to tailor to the human body, along with more intuitive, real-time visualization settings. The possibilities of optoacoustic imaging, namely MSOT, in the clinic are reviewed here. ©RSNA, 2020.
Collapse
Affiliation(s)
| | | | - Oshaani Abeyakoon
- From the Stephenson Cancer Center (W.M.M., M.A.J., L.R.M.) and Department of Surgery (L.R.M.), University of Oklahoma, 755 Research Parkway, 1 Medical Center Blvd, Oklahoma City, OK 73104; Department of Biomedical Engineering, University of Oklahoma, Norman, Okla (W.M.M., M.A.J., L.R.M.); and Department of Interventional Radiology, University College Hospital London, London, England (O.A.)
| | - Lacey R. McNally
- From the Stephenson Cancer Center (W.M.M., M.A.J., L.R.M.) and Department of Surgery (L.R.M.), University of Oklahoma, 755 Research Parkway, 1 Medical Center Blvd, Oklahoma City, OK 73104; Department of Biomedical Engineering, University of Oklahoma, Norman, Okla (W.M.M., M.A.J., L.R.M.); and Department of Interventional Radiology, University College Hospital London, London, England (O.A.)
| |
Collapse
|
47
|
Functional characterization of human brown adipose tissue metabolism. Biochem J 2020; 477:1261-1286. [PMID: 32271883 DOI: 10.1042/bcj20190464] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023]
Abstract
Brown adipose tissue (BAT) has long been described according to its histological features as a multilocular, lipid-containing tissue, light brown in color, that is also responsive to the cold and found especially in hibernating mammals and human infants. Its presence in both hibernators and human infants, combined with its function as a heat-generating organ, raised many questions about its role in humans. Early characterizations of the tissue in humans focused on its progressive atrophy with age and its apparent importance for cold-exposed workers. However, the use of positron emission tomography (PET) with the glucose tracer [18F]fluorodeoxyglucose ([18F]FDG) made it possible to begin characterizing the possible function of BAT in adult humans, and whether it could play a role in the prevention or treatment of obesity and type 2 diabetes (T2D). This review focuses on the in vivo functional characterization of human BAT, the methodological approaches applied to examine these features and addresses critical gaps that remain in moving the field forward. Specifically, we describe the anatomical and biomolecular features of human BAT, the modalities and applications of non-invasive tools such as PET and magnetic resonance imaging coupled with spectroscopy (MRI/MRS) to study BAT morphology and function in vivo, and finally describe the functional characteristics of human BAT that have only been possible through the development and application of such tools.
Collapse
|
48
|
Zhao Y, Pilvar A, Tank A, Peterson H, Jiang J, Aster JC, Dumas JP, Pierce MC, Roblyer D. Shortwave-infrared meso-patterned imaging enables label-free mapping of tissue water and lipid content. Nat Commun 2020; 11:5355. [PMID: 33097705 PMCID: PMC7585425 DOI: 10.1038/s41467-020-19128-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Water and lipids are key participants in many biological processes, but there are few non-invasive methods that provide quantification of these components in vivo, and none that can isolate and quantify lipids in the blood. Here we develop a new imaging modality termed shortwave infrared meso-patterned imaging (SWIR-MPI) to provide label-free, non-contact, spatial mapping of water and lipid concentrations in tissue. The method utilizes patterned hyperspectral illumination to target chromophore absorption bands in the 900-1,300 nm wavelength range. We use SWIR-MPI to monitor clinically important physiological processes including edema, inflammation, and tumor lipid heterogeneity in preclinical models. We also show that SWIR-MPI can spatially map blood-lipids in humans, representing an example of non-invasive and contact-free measurements of in vivo blood lipids. Together, these results highlight the potential of SWIR-MPI to enable new capabilities in fundamental studies and clinical monitoring of major conditions including obesity, cancer, and cardiovascular disease.
Collapse
Affiliation(s)
- Yanyu Zhao
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, 100191, China
| | - Anahita Pilvar
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Anup Tank
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Hannah Peterson
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - John Jiang
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Jon C Aster
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA
| | - John Paul Dumas
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Mark C Pierce
- Department of Biomedical Engineering, Rutgers, The State University of New Jersey, 599 Taylor Road, Piscataway, NJ, 08854, USA
| | - Darren Roblyer
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
49
|
Richard G, Noll C, Archambault M, Lebel R, Tremblay L, Ait-Mohand S, Guérin B, Blondin DP, Carpentier AC, Lepage M. Contribution of perfusion to the 11 C-acetate signal in brown adipose tissue assessed by DCE-MRI and 68 Ga-DOTA PET in a rat model. Magn Reson Med 2020; 85:1625-1642. [PMID: 33010059 DOI: 10.1002/mrm.28535] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/15/2020] [Accepted: 09/07/2020] [Indexed: 12/29/2022]
Abstract
PURPOSE Determine if dynamic contrast enhanced (DCE) -MRI and/or 68 gallium 1,4,7,10-tetraazacyclododecane N, N', N″, N‴-tretraacetic acid (68 Ga-DOTA) positron emission tomography (PET) can assess perfusion in rat brown adipose tissue (BAT). Evaluate changes in perfusion between cold-stimulated and heat-inhibited BAT. Determine if the 11 C-acetate pharmacokinetic model can be constrained with perfusion information to improve assessment of BAT oxidative metabolism. METHODS Rats were split into three groups. In group 1 (N = 6), DCE-MRI with gadobutrol was compared directly to 68 Ga-DOTA PET following exposure to 10 °C for 48 h. 11 C-Acetate PET was also performed to assess oxidation. In group 2 (N = 4), only 68 Ga-DOTA PET was acquired following exposure to 10 °C for 48 h. Finally, in group 3 (N = 10), perfusion was assessed with DCE-MRI in rats exposed to 10 °C or 30 °C for 48 h, and oxidation was measured with 11 C-acetate. Perfusion was quantified with a two-compartment pharmacokinetic model, while oxidation was assessed by a four-compartment model. RESULTS DCE-MRI and 68 Ga-DOTA PET provided similar perfusion measures, but a decrease in the perfusion signal was noted with longer imaging sessions. Exposure to 10 °C or 30 °C did not affect the perfusion measures, but the 11 C-acetate signal increased in BAT at 10 °C. Without prior information about blood volume, the 11 C-acetate compartment model overestimated blood volume and underestimated oxidation in 10 °C BAT. CONCLUSION Precise assessment of oxidation via 11 C-acetate PET requires prior information about blood volume which can be obtained by DCE-MRI or 68 Ga-DOTA PET. Since perfusion can change rapidly, simultaneous PET-MRI would be preferred.
Collapse
Affiliation(s)
- Gabriel Richard
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Mélanie Archambault
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Réjean Lebel
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Luc Tremblay
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Samia Ait-Mohand
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Brigitte Guérin
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Denis P Blondin
- Division of Neurology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Martin Lepage
- Sherbrooke Molecular Imaging Center, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
50
|
Liapis E, Klemm U, Karlas A, Reber J, Ntziachristos V. Resolution of Spatial and Temporal Heterogeneity in Bevacizumab-Treated Breast Tumors by Eigenspectra Multispectral Optoacoustic Tomography. Cancer Res 2020; 80:5291-5304. [PMID: 32994204 DOI: 10.1158/0008-5472.can-20-1011] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Revised: 08/05/2020] [Accepted: 09/24/2020] [Indexed: 11/16/2022]
Abstract
Understanding temporal and spatial hemodynamic heterogeneity as a function of tumor growth or therapy affects the development of novel therapeutic strategies. In this study, we employed eigenspectra multispectral optoacoustic tomography (eMSOT) as a next-generation optoacoustic method to impart high accuracy in resolving tumor hemodynamics during bevacizumab therapy in two types of breast cancer xenografts (KPL-4 and MDA-MB-468). Patterns of tumor total hemoglobin concentration (THb) and oxygen saturation (sO2) were imaged in control and bevacizumab-treated tumors over the course of 58 days (KPL-4) and 16 days (MDA-MB-468), and the evolution of functional vasculature "normalization" was resolved macroscopically. An initial sharp drop in tumor sO2 and THb content shortly after the initiation of bevacizumab treatment was followed by a recovery in oxygenation levels. Rim-core subregion analysis revealed steep spatial oxygenation gradients in growing tumors that were reduced after bevacizumab treatment. Critically, eMSOT imaging findings were validated directly by histopathologic assessment of hypoxia (pimonidazole) and vascularity (CD31). These data demonstrate how eMSOT brings new abilities for accurate observation of entire tumor responses to challenges at spatial and temporal dimensions not available by other techniques today. SIGNIFICANCE: Accurate assessment of hypoxia and vascularization over space and time is critical for understanding tumor development and the role of spatial heterogeneity in tumor aggressiveness, metastasis, and response to treatment.
Collapse
Affiliation(s)
- Evangelos Liapis
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Munich, Neuherberg, Germany.
| | - Uwe Klemm
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Munich, Neuherberg, Germany
| | - Angelos Karlas
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Munich, Neuherberg, Germany.,Chair of Biological Imaging, TranslaTUM Technical University of Munich, Munich, Germany
| | - Josefine Reber
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Munich, Neuherberg, Germany
| | - Vasilis Ntziachristos
- Institute of Biological and Medical Imaging, Helmholtz Zentrum München, Munich, Neuherberg, Germany.,Chair of Biological Imaging, TranslaTUM Technical University of Munich, Munich, Germany
| |
Collapse
|