1
|
Wu Y, Yang L, Jiang W, Zhang X, Yao Z. Glycolytic dysregulation in Alzheimer's disease: unveiling new avenues for understanding pathogenesis and improving therapy. Neural Regen Res 2025; 20:2264-2278. [PMID: 39101629 DOI: 10.4103/nrr.nrr-d-24-00190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 06/20/2024] [Indexed: 08/06/2024] Open
Abstract
Alzheimer's disease poses a significant global health challenge owing to the progressive cognitive decline of patients and absence of curative treatments. The current therapeutic strategies, primarily based on cholinesterase inhibitors and N-methyl-D-aspartate receptor antagonists, offer limited symptomatic relief without halting disease progression, highlighting an urgent need for novel research directions that address the key mechanisms underlying Alzheimer's disease. Recent studies have provided insights into the critical role of glycolysis, a fundamental energy metabolism pathway in the brain, in the pathogenesis of Alzheimer's disease. Alterations in glycolytic processes within neurons and glial cells, including microglia, astrocytes, and oligodendrocytes, have been identified as significant contributors to the pathological landscape of Alzheimer's disease. Glycolytic changes impact neuronal health and function, thus offering promising targets for therapeutic intervention. The purpose of this review is to consolidate current knowledge on the modifications in glycolysis associated with Alzheimer's disease and explore the mechanisms by which these abnormalities contribute to disease onset and progression. Comprehensive focus on the pathways through which glycolytic dysfunction influences Alzheimer's disease pathology should provide insights into potential therapeutic targets and strategies that pave the way for groundbreaking treatments, emphasizing the importance of understanding metabolic processes in the quest for clarification and management of Alzheimer's disease.
Collapse
Affiliation(s)
- You Wu
- Department of Geriatrics, Renmin Hospital of Wuhan University, Wuhan, Hubei Province, China
| | | | | | | | | |
Collapse
|
2
|
Zhou W, Tang Z, Li Y, Lu L, Bi T, Zhan L. Hippocampal PDHA1 gene knockout inhibits the Warburg effect leading to cognitive dysfunction and attenuates the beneficial effects of ZiBuPiYin recipe on cognition. JOURNAL OF ETHNOPHARMACOLOGY 2025; 337:118895. [PMID: 39374880 DOI: 10.1016/j.jep.2024.118895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 09/25/2024] [Accepted: 10/01/2024] [Indexed: 10/09/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The attenuation of the Warburg effect is an important pathological feature of cognitive dysfunction, and enhancing the Warburg effect is conducive to improving cognitive function. However, the pathogenic mechanisms underlying cognitive dysfunction remain incompletely elucidated. ZiBuPiYin Recipe (ZBPYR) is a traditional Chinese herbal compound used clinically for the treatment of cognitive dysfunction with significant efficacy. Nonetheless, the molecular mechanism underlying its beneficial effects remains elusive. AIM OF THE STUDY The objective of this study is to investigate whether the attenuation of the Warburg effect exists in a mouse model of cognitive dysfunction induced by knockout of the pyruvate dehydrogenase E1 component subunit alpha (PDHA1) gene in the hippocampus, as well as the interventional effect of ZBPYR. MATERIALS AND METHODS Using mice with PDHA1 gene knockout in the hippocampus and their littermate control mice as study subjects, behavioral experiments were conducted to assess the impact of PDHA1 gene knockout on cognitive function and the interventional effect of ZBPYR. We detected the expression of the Warburg effect-associated rate-limiting enzymes and PI3K/AKT pathway-related proteins. Subsequently, in PC12 cells, we explored the effect of the Warburg effect on cell apoptosis as well as the role of PDHA1 in the regulation of the PI3K/AKT-Warburg effect and the potential mechanism of ZBPYR in improving cognitive function. RESULTS Mice with knockout of the PDHA1 gene in the hippocampus exhibited cognitive dysfunction, inhibition of the PI3K/AKT pathway, reduction of the Warburg effect, and neuronal damage. In vitro experiments indicated that silencing of PDHA1 in the hippocampus inhibited the PI3K/AKT-Warburg effect, leading to cell apoptosis and mediated the effect of ZBPYR in improving cognitive function. CONCLUSION Our data not only suggest that the hippocampal PDHA1-PI3K/AKT-Warburg effect may be involved in the pathogenesis of cognitive dysfunction, but also demonstrate that PDHA1 knockout can abolish the beneficial effects of ZBPYR on cognition. This research aids in unraveling the cause of cognitive dysfunction and, therefore, offers a promising and innovative therapeutic target for these patients.
Collapse
Affiliation(s)
- Wen Zhou
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Zhijuan Tang
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Yuan Li
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Linfeng Lu
- School of Traditional Chinese Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Tingting Bi
- School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, China.
| | - Libin Zhan
- Key Laboratory of Ministry of Education for TCM Viscera-State Theory and Applications, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China; Modern Research Key Laboratory of Spleen Visceral Manifestations Theory, Liaoning University of Traditional Chinese Medicine, Shenyang, 110847, China.
| |
Collapse
|
3
|
Zeng Z, You M, Fan C, Jang J, Xia X. FABP5 regulates ROS-NLRP3 inflammasome in glutamate-induced retinal excitotoxic glaucomatous model. FASEB J 2025; 39:e70281. [PMID: 39792326 DOI: 10.1096/fj.202400435r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 11/30/2024] [Accepted: 12/20/2024] [Indexed: 01/12/2025]
Abstract
Fatty acid binding proteins (FABPs) are a class of small molecular mass intracellular lipid chaperone proteins that bind to hydrophobic ligands, such as long-chain fatty acids. FABP5 expression was significantly upregulated in the N-methyl-d-aspartic acid (NMDA) model, the microbead-induced chronic glaucoma model, and the DBA/2J mice. Previous studies have demonstrated that FABP5 can mediate mitochondrial dysfunction and oxidative stress in ischemic neurons, but the role of FABP5 in oxidative stress and cell death in retina NMDA injury models is unclear. In this study, we found that FABP5 is significantly altered in a model of glutamate excitotoxicity and is regulated by Stat3. Inhibition of FABP5 alleviated oxidative stress imbalance and activation of NLRP3 inflammasome, reduced the release of inflammatory factors, and ultimately attenuated glutamate excitotoxicity-induced retinal ganglion cell loss. Meanwhile, caspase1 inhibitors could alleviate the retinal ganglion cell loss induced by glutamate excitotoxicity. In conclusion, FABP5 inhibition protects retina ganglion cells from excitotoxic damage by suppressing the ROS-NLRP3 inflammasome pathway. FABP5 maybe a promising new target for glaucoma diagnosis and treatment.
Collapse
Affiliation(s)
- Zhou Zeng
- Department of Eye Center, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Mengling You
- Department of Eye Center, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Cong Fan
- Department of Eye Center, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Jiang Jang
- Department of Eye Center, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Xiaobo Xia
- Department of Eye Center, Xiangya Hospital, Central South University, Changsha, China
- Hunan Key Laboratory of Ophthalmology, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
4
|
Liu Q, Jiang M, Wang Z, Meng J, Jia H, Li J, Lin J, Guo L, Gao L. SENP1 inhibits aerobic glycolysis in Aβ 1-42-incubated astrocytes by promoting PUM2 deSUMOylation. Cell Biol Toxicol 2025; 41:28. [PMID: 39794619 DOI: 10.1007/s10565-025-09986-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025]
Abstract
Alzheimer's disease (AD), the most prevalent form of dementia in the elderly, involves critical changes such as reduced aerobic glycolysis in astrocytes and increased neuronal apoptosis, both of which are significant in the disease's pathology. In our study, astrocytes treated with amyloid β1-42 (Aβ1-42) to simulate AD conditions exhibited upregulated expressions of small ubiquitin-like modifier (SUMO)-specific protease 1 (SENP1) and Pumilio RNA Binding Family Member 2 (PUM2), alongside decreased levels of Nuclear factor erythroid 2-related factor 2 (NRF2). SENP1 is notably the most upregulated SUMOylation enzyme in Aβ1-42-exposed astrocytes. Functional assays including Ni2+-Nitrilotriacetic acid (NTA) agarose bead pull-down and co-immunoprecipitation (Co-IP) confirmed SENP1's role in actively deSUMOylating PUM2, thereby enhancing its stability and expression. The interaction between PUM2 and the 3' untranslated region (3'UTR) of NRF2 mRNA reduces NRF2 levels, subsequently diminishing the transcriptional activation of critical glycolytic enzymes, Hexokinase 1 (HK1) and Glucose Transporter 1 (GLUT1). These changes contribute to the observed reduction in glycolytic function in astrocytes, exacerbating neuronal apoptosis. Targeted interventions, such as knockdown of Senp1 or Pum2 or overexpression of NRF2 in APPswe/PSEN1dE9 (APP/PS1) transgenic mice, effectively increased HK1 and GLUT1 levels, decreased apoptosis, and alleviated cognitive impairment. These findings highlight the important roles of the SENP1/PUM2/NRF2 pathway in influencing glucose metabolism in astrocytes, presenting new potential therapeutic targets for AD.
Collapse
Affiliation(s)
- Qianshuo Liu
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Meixi Jiang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Zhengze Wang
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jihong Meng
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, China
| | - Hui Jia
- Department of Medical Administration, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jing Li
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Jiacai Lin
- Department of Neurology, Hainan Hospital of Chinese PLA General Hospital, Sanya, China.
| | - Libin Guo
- The Second Cardiovascular Endocrine Department, Shenyang Ninth People's Hospital, Shenyang, China.
| | - Lianbo Gao
- Department of Neurology, The Fourth Affiliated Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
5
|
Wang J, Zhang X, Zhan S, Han F, Wang Q, Liu Y, Huang Z. Possible Metabolic Remodeling based on de novo Biosynthesis of L-serine in Se-Subtoxic or -Deficient Mammals. J Nutr 2025; 155:9-26. [PMID: 39477017 DOI: 10.1016/j.tjnut.2024.10.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Revised: 09/23/2024] [Accepted: 10/20/2024] [Indexed: 11/18/2024] Open
Abstract
Current research studies point to an increased risk of diabetes with selenium (Se) intake beyond the physiological requirement used to prevent cancers. The existing hypothesis of "selenoprotein overexpression leads to intracellular redox imbalance" cannot clearly explain the U-shaped dose-effect relationship between Se intake and the risk of diabetes. In this review, it is speculated that metabolic remodeling based on the de novo biosynthesis of L-serine may occur in mammals at supranutritional or subtoxic levels of Se. It is also speculated that a large amount of L-serine is consumed by the body during insufficient Se intake, thus resulting in similar metabolic reprogramming. The increase in atypical ceramide and its derivatives due to the lack of L-serine may also play a role in the development of diabetes.
Collapse
Affiliation(s)
- Jianrong Wang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Xue Zhang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Shuo Zhan
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Feng Han
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Qin Wang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China
| | - Yiqun Liu
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China.
| | - Zhenwu Huang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, Beijing, PR China; Key Laboratory of Public Nutrition and Health, National Health Commission, Beijing, PR China.
| |
Collapse
|
6
|
Wen H, Fang Z, Cui S, Xu M. Astrocyte death in Alzheimer's disease: Current insights and future innovations. Asian J Surg 2024:S1015-9584(24)02898-7. [PMID: 39690029 DOI: 10.1016/j.asjsur.2024.11.249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Accepted: 11/25/2024] [Indexed: 12/19/2024] Open
Affiliation(s)
- Huaneng Wen
- Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518100, China
| | - Zijie Fang
- Dachong Community Health Service Center, Headquarters of Shenzhen Nanshan District Medical Group, Shenzhen, 518000, China
| | - Shaoyang Cui
- Department of Rehabilitation Medicine, Shenzhen Hospital of Guangzhou University of Chinese Medicine (Futian), Shenzhen, 518034, China.
| | - Mingzhu Xu
- Department of Rehabilitation Medicine, Shenzhen Hospital, Southern Medical University, Shenzhen, 518100, China.
| |
Collapse
|
7
|
Akdas S, Yuksel D, Yazihan N. Assessment of the Relationship Between Amino Acid Status and Parkinson's Disease: A Comprehensive Review and Meta-analysis. Can J Neurol Sci 2024:1-17. [PMID: 39651578 DOI: 10.1017/cjn.2024.310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
BACKGROUND Parkinson's disease (PD) is characterized by the inability of dopamine production from amino acids. Therefore, changes in amino acid profile in PD patients are very critical for understanding disease development. Determination of amino acid levels in PD patients with a cumulative approach may enlighten the disease pathophysiology. METHODS A systematic search was performed until February 2023, resulting in 733 articles in PubMed, Web of Science and Scopus databases to evaluate the serum amino acid profile of PD patients. Relevant articles in English with mean/standard deviation values of serum amino acid levels of patients and their healthy controls were included in the meta-analysis. RESULTS Our results suggest that valine, proline, ornithine and homocysteine levels were increased, while aspartate, citrulline, lysine and serine levels were significantly decreased in PD patients compared to healthy controls. Homocysteine showed positive correlations with glutamate and ornithine levels. We also analyzed the disease stage parameters: Unified Parkinson's Disease Rating Scale III (UPDRS III) score, Hoehn-Yahr Stage Score, disease duration and levodopa equivalent daily dose (LEDD) of patients. It was observed that LEDD has a negative correlation with arginine levels in patients. UPDRS III score is negatively correlated with phenylalanine levels, and it also tends to show a negative correlation with tyrosine levels. Disease duration tends to be negatively correlated with citrulline levels in PD patients. CONCLUSION This cumulative analysis shows evidence of the relation between the mechanisms underlying amino acid metabolism in PD, which may have a great impact on disease development and new therapeutic strategies.
Collapse
Affiliation(s)
- Sevginur Akdas
- Interdisciplinary Food Metabolism and Clinical Nutrition Department, Ankara University, Institute of Health Sciences, Ankara, Turkey
| | - Demir Yuksel
- Department of Molecular Biology and Genetics, Faculty of Science and Letters, Baskent University, Ankara, Turkey
| | - Nuray Yazihan
- Interdisciplinary Food Metabolism and Clinical Nutrition Department, Ankara University, Institute of Health Sciences, Ankara, Turkey
- Department of Pathophysiology, Internal Medicine, Faculty of Medicine, Ankara University, Ankara, Turkey
| |
Collapse
|
8
|
Li JM, Bai YZ, Zhang SQ. Advances and challenges in serine in the central nervous system: physicochemistry, physiology, and pharmacology. Metab Brain Dis 2024; 39:1637-1647. [PMID: 39186223 DOI: 10.1007/s11011-024-01418-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/18/2024] [Indexed: 08/27/2024]
Abstract
Neurological disorders are the primary cause of human disability and mortality globally, however, current medications slightly alleviate some symptoms of degenerative diseases. Serine is an important amino acid for the brain function and involved in a variety of biosynthetic pathways and signal transduction processes. The imbalance of serine metabolism is associated with neurodegeneration, including neuroinflammation, oxidative stress and apoptosis. Altered activities of serine metabolizing enzymes and accumulation of serine metabolites affect the survival and function of nerve cells. Abnormal serine levels are observed in animal models with neurological diseases, but not all human studies, therefore, the maintenance of serine homeostasis is a potentially therapeutic strategy for neurological disorders. To date, physiological and pharmacological roles of serine in neurological diseases have not been systemically recapitulated, and the association between serine and neurological diseases is controversial. In this review, we summarize physicochemical properties of serine, biological processes of serine in the brain (source, biotransformation, and transport), and the application of serine in neurological diseases including Alzheimer's disease, schizophrenia, and depression. Here, we highlight physicochemistry, physiology, pharmacology, and therapeutic potentials of serine in the prevention and treatment of neurological dysfunction. Our work provides valuable hints for future investigation that will lead to a comprehensive understanding of serine and its metabolism in cellular physiology and pharmacology. Although broad by necessity, the review helps researchers to understand great potentials of serine in the prevention and treatment of neurological dysfunction.
Collapse
Affiliation(s)
- Jia-Meng Li
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing, 100050, China
| | - Ya-Zhi Bai
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing, 100050, China
| | - Shuang-Qing Zhang
- National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing, 100050, China.
| |
Collapse
|
9
|
Hu D, Liu X, Yao Y, Wei S, Ji H, Yang Y, Chen J, Chen L. Development of a rapid and robust hydrop interaction liquid chromatography tandem mass spectrometry method for the detection of 13 endogenous amino acids as well as trimethylamine oxide in serum and tissues of the mice. Biomed Chromatogr 2024; 38:e6010. [PMID: 39385620 DOI: 10.1002/bmc.6010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 08/26/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024]
Abstract
This work aimed to establish an HILIC-MS/MS method to simultaneously determine the levels of 13 endogenous amino acids and trimethylamine oxide in the biological samples from the mice. Electrospray ion source was used for the analysis of mass spectrometry. The 20 min separation was applied in a Dikma Inspire Hilic column (2.1 × 100.0 mm, 3 μM). Positive ion mode under an MRM model gave a satisfying response value. The limits of quantitation were evaluated by accuracy from -12.59% to 7.89% and precision from 1.77% to 14.00% as well as acceptable interday and intraday precision, matrix effect, recovery, and stability. Later, the assay was successfully used to measure the concentrations of the determinands in the biological samples. Individual and tissue distribution differences for these metabolites were observable. The amino acids had a consistent highest content in the spleens, while the lowest levels were found in the livers. Alanine was the most abundant amino acid in the serum, and taurine kept the highest content in all of the tissues. Trimethylamine oxide remained low level, especially in the liver samples.
Collapse
Affiliation(s)
- Didi Hu
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Xudong Liu
- Institute of Clinical Pharmacology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Ying Yao
- The Laboratory of Clinical Pharmacy, The Sixth Affiliated Hospital of Wenzhou Medical University, The People's Hospital of Lishui, Wenzhou, China
| | - Shijie Wei
- Institute of Clinical Pharmacology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Hongyan Ji
- Institute of Clinical Pharmacology, General Hospital of Ningxia Medical University, Yinchuan, China
| | - Yang Yang
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Jing Chen
- Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, China
- Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zonoses, Yangzhou, China
| | - Linwei Chen
- Department of Pharmacy, The Affiliated Taizhou People's Hospital of Nanjing Medical University, Taizhou, China
| |
Collapse
|
10
|
Shan S, Hoffman JM. Serine metabolism in aging and age-related diseases. GeroScience 2024:10.1007/s11357-024-01444-1. [PMID: 39585647 DOI: 10.1007/s11357-024-01444-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Accepted: 11/13/2024] [Indexed: 11/26/2024] Open
Abstract
Non-essential amino acids are often overlooked in biomedical research; however, they are crucial components of organismal metabolism. One such metabolite that is integral to physiological function is serine. Serine acts as a pivotal link connecting glycolysis with one-carbon and lipid metabolism, as well as with pyruvate and glutathione syntheses. Interestingly, increasing evidence suggests that serine metabolism may impact the aging process, and supplementation with serine may confer benefits in safeguarding against aging and age-related disorders. This review synthesizes recent insights into the regulation of serine metabolism during aging and its potential to promote healthy lifespan and mitigate a spectrum of age-related diseases.
Collapse
Affiliation(s)
- Shengshuai Shan
- Department of Biological Sciences, Augusta University, Augusta, GA, 30912, USA.
| | - Jessica M Hoffman
- Department of Biological Sciences, Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
11
|
Ali A, Milman S, Weiss EF, Gao T, Napolioni V, Barzilai N, Zhang ZD, Lin JR. Genetic variants associated with age-related episodic memory decline implicate distinct memory pathologies. Alzheimers Dement 2024. [PMID: 39559945 DOI: 10.1002/alz.14379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/30/2024] [Accepted: 10/11/2024] [Indexed: 11/20/2024]
Abstract
BACKGROUND Approximately 40% of people aged ≥ 65 experience memory loss, particularly in episodic memory. Identifying the genetic basis of episodic memory decline is crucial for uncovering its underlying causes. METHODS We investigated common and rare genetic variants associated with episodic memory decline in 742 (632 for rare variants) Ashkenazi Jewish individuals (mean age 75) from the LonGenity study. All-atom molecular dynamics simulations were performed to uncover mechanistic insights underlying rare variants associated with episodic memory decline. RESULTS In addition to the common polygenic risk of Alzheimer's disease, we identified and replicated rare variant associations in ITSN1 and CRHR2. Structural analyses revealed distinct memory pathologies mediated by interfacial rare coding variants such as impaired receptor activation of corticotropin releasing hormone and dysregulated L-serine synthesis. DISCUSSION Our study uncovers novel risk loci for episodic memory decline. The identified underlying mechanisms point toward heterogenous memory pathologies mediated by rare coding variants. HIGHLIGHTS We demonstrated the contribution of the common polygenic risk of Alzheimer's disease to episodic memory decline. We discovered and replicated two risk genes associated with episodic memory decline implicated by rare variants, were discovered and replicated. We demonstrated molecular mechanisms and potential novel memory pathologies underlying interfacial rare coding variants. Molecular dynamics simulations were performed to understand the downstream effects of risk rare coding variants.
Collapse
Affiliation(s)
- Amanat Ali
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Sofiya Milman
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Erica F Weiss
- Department of Neurology, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Tina Gao
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Valerio Napolioni
- School of Biosciences and Veterinary Medicine, University of Camerino, Camerino, Italy
| | - Nir Barzilai
- Department of Medicine, Albert Einstein College of Medicine, Bronx, New York, USA
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Zhengdong D Zhang
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| | - Jhih-Rong Lin
- Department of Genetics, Albert Einstein College of Medicine, Bronx, New York, USA
| |
Collapse
|
12
|
Paidlewar M, Kumari S, Dhapola R, Sharma P, HariKrishnaReddy D. Unveiling the role of astrogliosis in Alzheimer's disease Pathology: Insights into mechanisms and therapeutic approaches. Int Immunopharmacol 2024; 141:112940. [PMID: 39154532 DOI: 10.1016/j.intimp.2024.112940] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 08/20/2024]
Abstract
Alzheimer's disease (AD) is one of the most debilitating age-related disorders that affect people globally. It impacts social and cognitive behavior of the individual and is characterized by phosphorylated tau and Aβ accumulation. Astrocytesmaintain a quiescent, anti-inflammatory state on anatomical level, expressing few cytokines and exhibit phagocytic activity to remove misfolded proteins. But in AD, in response to specific stimuli, astrocytes overstimulate their phagocytic character with overexpressing cytokine gene modules. Upon interaction with generated Aβ and neurofibrillary tangle, astrocytes that are continuously activated release a large number of inflammatory cytokines. This cytokine storm leads to neuroinflammation which is also one of the recognizable features of AD. Astrogliosis eventually promotes cholinergic dysfunction, calcium imbalance, oxidative stress and excitotoxicity. Furthermore, C5aR1, Lcn2/, BDNF/TrkB and PPARα/TFEB signaling dysregulation has a major impact on the disease progression. This review clarifies numerous ways that lead to astrogliosis, which is stimulated by a variety of processes that exacerbate AD pathology and make it a suitable target for AD treatment. Drugs under clinical and preclinical investigations that target several pathways managing astrogliosis and are efficacious in ameliorating the pathology of the disease are also included in this study. D-ALA2GIP, TRAM-34, Genistein, L-serine, MW150 and XPro1595 are examples of few drugs targeting astrogliosis. Therefore, this study may aid in the development of a potent therapeutic agent for ameliorating astrogliosis mediated AD progression.
Collapse
Affiliation(s)
- Mohit Paidlewar
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Sneha Kumari
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Rishika Dhapola
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Prajjwal Sharma
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India
| | - Dibbanti HariKrishnaReddy
- Advanced Pharmacology and Neuroscience Laboratory, Department of Pharmacology, School of Health Sciences, Central University of Punjab, Bathinda-151401, Punjab, India.
| |
Collapse
|
13
|
Shao J, Deng Q, Feng S, Wu C, Liu X, Yang L. Role of astrocytes in Alzheimer's disease pathogenesis and the impact of exercise-induced remodeling. Biochem Biophys Res Commun 2024; 732:150418. [PMID: 39032410 DOI: 10.1016/j.bbrc.2024.150418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/11/2024] [Accepted: 07/16/2024] [Indexed: 07/23/2024]
Abstract
Alzheimer's disease (AD) is a prevalent and debilitating brain disorder that worsens progressively with age, characterized by cognitive decline and memory impairment. The accumulation of amyloid-beta (Aβ) leading to amyloid plaques and hyperphosphorylation of Tau, resulting in intracellular neurofibrillary tangles (NFTs), are primary pathological features of AD. Despite significant research investment and effort, therapies targeting Aβ and NFTs have proven limited in efficacy for treating or slowing AD progression. Consequently, there is a growing interest in non-invasive therapeutic strategies for AD prevention. Exercise, a low-cost and non-invasive intervention, has demonstrated promising neuroprotective potential in AD prevention. Astrocytes, among the most abundant glial cells in the brain, play essential roles in various physiological processes and are implicated in AD initiation and progression. Exercise delays pathological progression and mitigates cognitive dysfunction in AD by modulating astrocyte morphological and phenotypic changes and fostering crosstalk with other glial cells. This review aims to consolidate the current understanding of how exercise influences astrocyte dynamics in AD, with a focus on elucidating the molecular and cellular mechanisms underlying astrocyte remodeling. The review begins with an overview of the neuropathological changes observed in AD, followed by an examination of astrocyte dysfunction as a feature of the disease. Lastly, the review explores the potential therapeutic implications of exercise-induced astrocyte remodeling in the context of AD.
Collapse
Affiliation(s)
- Jie Shao
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Qianting Deng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Shu Feng
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China
| | - Chongyun Wu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Xiaocao Liu
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| | - Luodan Yang
- Laboratory of Exercise and Neurobiology, School of Physical Education and Sports Science, South China Normal University, Guangzhou, 510006, China.
| |
Collapse
|
14
|
Kamatham PT, Shukla R, Khatri DK, Vora LK. Pathogenesis, diagnostics, and therapeutics for Alzheimer's disease: Breaking the memory barrier. Ageing Res Rev 2024; 101:102481. [PMID: 39236855 DOI: 10.1016/j.arr.2024.102481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 06/28/2024] [Accepted: 08/29/2024] [Indexed: 09/07/2024]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia and accounts for 60-70 % of all cases. It affects millions of people worldwide. AD poses a substantial economic burden on societies and healthcare systems. AD is a progressive neurodegenerative disorder characterized by cognitive decline, memory loss, and impaired daily functioning. As the prevalence of AD continues to increase, understanding its pathogenesis, improving diagnostic methods, and developing effective therapeutics have become paramount. This comprehensive review delves into the intricate mechanisms underlying AD, explores the current state of diagnostic techniques, and examines emerging therapeutic strategies. By revealing the complexities of AD, this review aims to contribute to the growing body of knowledge surrounding this devastating disease.
Collapse
Affiliation(s)
- Pushpa Tryphena Kamatham
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Rashi Shukla
- Molecular and Cellular Neuroscience Laboratory, Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research (NIPER), Hyderabad, Telangana 500037, India
| | - Dharmendra Kumar Khatri
- Department of Pharmacology, Nims Institute of Pharmacy, Nims University Rajasthan, Jaipur, India.
| | - Lalitkumar K Vora
- School of Pharmacy, Medical Biology Centre, Queen's University Belfast, 97 Lisburn Road, Belfast, Northern Ireland BT9 7BL, UK.
| |
Collapse
|
15
|
Shichkova P, Coggan JS, Markram H, Keller D. Brain Metabolism in Health and Neurodegeneration: The Interplay Among Neurons and Astrocytes. Cells 2024; 13:1714. [PMID: 39451233 PMCID: PMC11506225 DOI: 10.3390/cells13201714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 08/31/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024] Open
Abstract
The regulation of energy in the brain has garnered substantial attention in recent years due to its significant implications in various disorders and aging. The brain's energy metabolism is a dynamic and tightly regulated network that balances energy demand and supply by engaging complementary molecular pathways. The crosstalk among these pathways enables the system to switch its preferred fuel source based on substrate availability, activity levels, and cell state-related factors such as redox balance. Brain energy production relies on multi-cellular cooperation and is continuously supplied by fuel from the blood due to limited internal energy stores. Astrocytes, which interface with neurons and blood vessels, play a crucial role in coordinating the brain's metabolic activity, and their dysfunction can have detrimental effects on brain health. This review characterizes the major energy substrates (glucose, lactate, glycogen, ketones and lipids) in astrocyte metabolism and their role in brain health, focusing on recent developments in the field.
Collapse
Affiliation(s)
- Polina Shichkova
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Jay S. Coggan
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| | - Henry Markram
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
- Laboratory of Neural Microcircuitry, Brain Mind Institute, École Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Daniel Keller
- Blue Brain Project, École Polytechnique Fédérale de Lausanne, 1202 Geneva, Switzerland
| |
Collapse
|
16
|
Wohlfert AJ, Phares J, Granholm AC. The mTOR Pathway: A Common Link Between Alzheimer's Disease and Down Syndrome. J Clin Med 2024; 13:6183. [PMID: 39458132 PMCID: PMC11508835 DOI: 10.3390/jcm13206183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/12/2024] [Accepted: 10/15/2024] [Indexed: 10/28/2024] Open
Abstract
Down syndrome (DS) is a chromosomal condition that causes many systemic dysregulations, leading to several possible age-related diseases including Alzheimer's disease (AD). This may be due to the triplication of the Amyloid precursor protein (APP) gene or other alterations in mechanistic pathways, such as the mTOR pathway. Impairments to upstream regulators of mTOR, such as insulin, PI3K/AKT, AMPK, and amino acid signaling, have been linked to amyloid beta plaques (Aβ) and neurofibrillary tangles (NFT), the most common AD pathologies. However, the mechanisms involved in the progression of pathology in human DS-related AD (DS-AD) are not fully investigated to date. Recent advancements in omics platforms are uncovering new insights into neurodegeneration. Genomics, spatial transcriptomics, proteomics, and metabolomics are novel methodologies that provide more data in greater detail than ever before; however, these methods have not been used to analyze the mTOR pathways in connection to DS-AD. Using these new techniques can unveil unexpected insights into pathological cellular mechanisms through an unbiased approach.
Collapse
Affiliation(s)
- Abigail J. Wohlfert
- Department of Modern Human Anatomy and Cell & Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA;
| | - Jeremiah Phares
- Department of Neurosurgery, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA;
| | - Ann-Charlotte Granholm
- Department of Neurosurgery, University of Colorado Anschutz Medical Center, Aurora, CO 80045, USA;
| |
Collapse
|
17
|
Fanlo-Ucar H, Picón-Pagès P, Herrera-Fernández V, ILL-Raga G, Muñoz FJ. The Dual Role of Amyloid Beta-Peptide in Oxidative Stress and Inflammation: Unveiling Their Connections in Alzheimer's Disease Etiopathology. Antioxidants (Basel) 2024; 13:1208. [PMID: 39456461 PMCID: PMC11505517 DOI: 10.3390/antiox13101208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/03/2024] [Accepted: 10/05/2024] [Indexed: 10/28/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease, and it is currently the seventh leading cause of death worldwide. It is characterized by the extracellular aggregation of the amyloid β-peptide (Aβ) into oligomers and fibrils that cause synaptotoxicity and neuronal death. Aβ exhibits a dual role in promoting oxidative stress and inflammation. This review aims to unravel the intricate connection between these processes and their contribution to AD progression. The review delves into oxidative stress in AD, focusing on the involvement of metals, mitochondrial dysfunction, and biomolecule oxidation. The distinct yet overlapping concept of nitro-oxidative stress is also discussed, detailing the roles of nitric oxide, mitochondrial perturbations, and their cumulative impact on Aβ production and neurotoxicity. Inflammation is examined through astroglia and microglia function, elucidating their response to Aβ and their contribution to oxidative stress within the AD brain. The blood-brain barrier and oligodendrocytes are also considered in the context of AD pathophysiology. We also review current diagnostic methodologies and emerging therapeutic strategies aimed at mitigating oxidative stress and inflammation, thereby offering potential treatments for halting or slowing AD progression. This comprehensive synthesis underscores the pivotal role of Aβ in bridging oxidative stress and inflammation, advancing our understanding of AD and informing future research and treatment paradigms.
Collapse
Affiliation(s)
- Hugo Fanlo-Ucar
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Pol Picón-Pagès
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
- Laboratory of Molecular and Cellular Neurobiotechnology, Institute of Bioengineering of Catalonia (IBEC), 08028 Barcelona, Spain
- Centro de Investigación Biomédica en Red sobre Enfermedades Neurodegenerativas (CIBERNED), 08028 Barcelona, Spain
| | - Víctor Herrera-Fernández
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Gerard ILL-Raga
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| | - Francisco J. Muñoz
- Laboratory of Molecular Physiology, Department of Medicine and Life Sciences, Faculty of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain; (H.F.-U.); (P.P.-P.); (V.H.-F.); (G.I.-R.)
| |
Collapse
|
18
|
Lu J, Quan J, Zhou J, Liu Z, Ding J, Shang T, Zhao G, Li L, Zhao Y, Li X, Wu J. Combined transcriptomics and metabolomics to reveal the effects of copper exposure on the liver of rainbow trout(Oncorhynchus mykiss). ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116996. [PMID: 39244881 DOI: 10.1016/j.ecoenv.2024.116996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/23/2024] [Accepted: 09/01/2024] [Indexed: 09/10/2024]
Abstract
Copper (Cu) is recognized as an essential trace elements for the body; However, excessive levels of Cu can lead to toxic effects. We investigated the effects of Cu2+(75 μg/L, 150 μg/L, and 300 μg/L) on the rainbow trout liver. Combination of transcriptome and metabolome analyses, the regulatory mechanisms of the liver under Cu stress were elucidated. The results showed that Cu affected the antioxidant levels, leading to disruptions in the normal tissue structure of the liver. Combined transcriptome and metabolome analyses revealed significant enrichment of the insulin signaling pathway and the adipocytokine signaling pathway. Additionally, Cu2+ stress altered the amino acid metabolism in rainbow trout by reducing serine and arginine levels while increasing proline content. Apoptosis is inhibited and autophagy and lipid metabolism are suppressed; In summary, Cu2+ stress affects energy and lipid metabolism, and the reduction of serine and arginine represents a decrease in the antioxidant capacity, whereas the increase in proline and the promotion of apoptosis potentially serving as crucial strategies for Cu2+ resistance in rainbow trout. These findings provided insights into the regulatory mechanisms of rainbow trout under Cu2+ stress and informed the prevention of heavy metal pollution and the selection of biomarkers under Cu pollution.
Collapse
Affiliation(s)
- Junhao Lu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jinqiang Quan
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China.
| | - Jing Zhou
- Gansu Academy of Eco-environmental Sciences, Lanzhou 730022, PR China
| | - Zhe Liu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jieping Ding
- Gansu Academy of Eco-environmental Sciences, Lanzhou 730022, PR China
| | - Tingting Shang
- Gansu Academy of Eco-environmental Sciences, Lanzhou 730022, PR China
| | - Guiyan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Lanlan Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Yingcan Zhao
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Xiangru Li
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| | - Jiajun Wu
- College of Animal Science & Technology, Gansu Agricultural University, Lanzhou 730070, PR China
| |
Collapse
|
19
|
Chen B, Jin K, Dong J, Cheng S, Kong L, Hu S, Chen Z, Lu J. Hypocretin-1/Hypocretin Receptor 1 Regulates Neuroplasticity and Cognitive Function through Hippocampal Lactate Homeostasis in Depressed Model. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405354. [PMID: 39119889 PMCID: PMC11481194 DOI: 10.1002/advs.202405354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/11/2024] [Indexed: 08/10/2024]
Abstract
Cognitive dysfunction is not only a common symptom of major depressive disorder, but also a more common residual symptom after antidepressant treatment and a risk factor for chronic and recurrent disease. The disruption of hypocretin regulation is known to be associated with depression, however, their exact correlation is remains to be elucidated. Hypocretin-1 levels are increased in the plasma and hypothalamus from chronic unpredictable mild stress (CUMS) model mice. Excessive hypocretin-1 conducted with hypocretin receptor 1 (HCRTR1) reduced lactate production and brain-derived neurotrophic factor (BDNF) expression by hypoxia-inducible factor-1α (HIF-1α), thus impairing adult hippocampal neuroplasticity, and cognitive impairment in CUMS model. Subsequently, it is found that HCRTR1 antagonists can reverse these changes. The direct effect of hypocretin-1 on hippocampal lactate production and cognitive behavior is further confirmed by intraventricular injection of hypocretin-1 and microPET-CT in rats. In addition, these mechanisms are further validated in astrocytes and neurons in vitro. Moreover, these phenotypes and changes in molecules of lactate transport pathway can be duplicated by specifically knockdown of HCRTR1 in hippocampal astrocytes. In summary, the results provide molecular and functional insights for involvement of hypocretin-1-HCRTR1 in altered cognitive function in depression.
Collapse
Affiliation(s)
- Bing Chen
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Kangyu Jin
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Jingyi Dong
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Shangping Cheng
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Lingzhuo Kong
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Shaohua Hu
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Zhejiang Key Laboratory of Precision psychiatryHangzhou310003China
| | - Zuobing Chen
- Department of Rehabilitation MedicineThe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
| | - Jing Lu
- Department of Psychiatrythe First Affiliated HospitalZhejiang University School of MedicineHangzhou310003China
- Zhejiang Key Laboratory of Precision psychiatryHangzhou310003China
| |
Collapse
|
20
|
Doran MM, Bermingham KP, Tricklebank MD, Lowry JP. Characterisation of a microelectrochemical biosensor for real-time detection of brain extracellular d-serine. Talanta 2024; 278:126458. [PMID: 38955102 DOI: 10.1016/j.talanta.2024.126458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 06/14/2024] [Accepted: 06/19/2024] [Indexed: 07/04/2024]
Abstract
A modified development protocol and concomitant characterisation of a first generation biosensor for the detection of brain extracellular d-serine is reported. Functional parameters important for neurochemical monitoring, including sensor sensitivity, O2 interference, selectivity, shelf-life and biocompatibility were examined. Construction and development involved the enzyme d-amino acid oxidase (DAAO), utilising a dip-coating immobilisation method employing a new extended drying approach. The resultant Pt-based polymer enzyme composite sensor achieved high sensitivity to d-serine (0.76 ± 0.04 nA mm-2. μM-1) and a low μM limit of detection (0.33 ± 0.02 μM). The in-vitro response time was within the solution stirring time, suggesting potential sub-second in-vivo response characteristics. Oxygen interference studies demonstrated a 1 % reduction in current at 50 μM O2 when compared to atmospheric O2 levels (200 μM), indicating that the sensor can be used for reliable neurochemical monitoring of d-serine, free from changes in current associated with physiological O2 fluctuations. Potential interference signals generated by the principal electroactive analytes present in the brain were minimised by using a permselective layer of poly(o-phenylenediamine), and although several d-amino acids are possible substrates for DAAO, their physiologically relevant signals were small relative to that for d-serine. Additionally, changing both temperature and pH over possible in vivo ranges (34-40 °C and 7.2-7.6 respectively) resulted in no significant effect on performance. Finally, the biosensor was implanted in the striatum of freely moving rats and used to monitor physiological changes in d-serine over a two-week period.
Collapse
Affiliation(s)
- Michelle M Doran
- Neurochemistry Laboratory, Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland.
| | - Kobi P Bermingham
- Neurochemistry Laboratory, Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland
| | - Mark D Tricklebank
- Department of Neuroimaging Sciences, Institute of Psychiatry, Psychology & Neuroscience, King's College London, UK
| | - John P Lowry
- Neurochemistry Laboratory, Maynooth University Department of Chemistry, Maynooth University, Maynooth, Co. Kildare, Ireland.
| |
Collapse
|
21
|
Lim EW, Fallon RJ, Bates C, Ideguchi Y, Nagasaki T, Handzlik MK, Joulia E, Bonelli R, Green CR, Ansell BRE, Kitano M, Polis I, Roberts AJ, Furuya S, Allikmets R, Wallace M, Friedlander M, Metallo CM, Gantner ML. Serine and glycine physiology reversibly modulate retinal and peripheral nerve function. Cell Metab 2024; 36:2315-2328.e6. [PMID: 39191258 DOI: 10.1016/j.cmet.2024.07.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 05/11/2024] [Accepted: 07/30/2024] [Indexed: 08/29/2024]
Abstract
Metabolic homeostasis is maintained by redundant pathways to ensure adequate nutrient supply during fasting and other stresses. These pathways are regulated locally in tissues and systemically via the liver, kidney, and circulation. Here, we characterize how serine, glycine, and one-carbon (SGOC) metabolism fluxes across the eye, liver, and kidney sustain retinal amino acid levels and function. Individuals with macular telangiectasia (MacTel), an age-related retinal disease with reduced circulating serine and glycine, carrying deleterious alleles in SGOC metabolic enzymes exhibit an exaggerated reduction in circulating serine. A Phgdh+/- mouse model of this haploinsufficiency experiences accelerated retinal defects upon dietary serine/glycine restriction, highlighting how otherwise silent haploinsufficiencies can impact retinal health. We demonstrate that serine-associated retinopathy and peripheral neuropathy are reversible, as both are restored in mice upon serine supplementation. These data provide molecular insights into the genetic and metabolic drivers of neuro-retinal dysfunction while highlighting therapeutic opportunities to ameliorate this pathogenesis.
Collapse
Affiliation(s)
- Esther W Lim
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA
| | - Regis J Fallon
- Lowy Medical Research Institute, La Jolla, CA 92037, USA
| | - Caleb Bates
- Lowy Medical Research Institute, La Jolla, CA 92037, USA
| | | | | | - Michal K Handzlik
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Emeline Joulia
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Roberto Bonelli
- Lowy Medical Research Institute, La Jolla, CA 92037, USA; Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Courtney R Green
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA
| | - Brendan R E Ansell
- Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia; Department of Medical Biology, University of Melbourne, Parkville, VIC 3052, Australia
| | - Maki Kitano
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Ilham Polis
- The Scripps Research Institute, La Jolla, CA 92037, USA
| | | | - Shigeki Furuya
- Department of Bioscience and Biotechnology, Kyushu University, Fukuoka 812-0053, Japan
| | | | - Martina Wallace
- School of Agriculture and Food Science, University College Dublin, Dublin 4, Ireland
| | - Martin Friedlander
- Lowy Medical Research Institute, La Jolla, CA 92037, USA; The Scripps Research Institute, La Jolla, CA 92037, USA
| | - Christian M Metallo
- Molecular and Cellular Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA 92037, USA; Department of Bioengineering, University of California, San Diego, La Jolla, CA 92093, USA.
| | | |
Collapse
|
22
|
Yang X, Chen YH, Liu L, Gu Z, You Y, Hao JR, Sun N, Gao C. Regulation of glycolysis-derived L-lactate production in astrocytes rescues the memory deficits and Aβ burden in early Alzheimer's disease models. Pharmacol Res 2024; 208:107357. [PMID: 39159732 DOI: 10.1016/j.phrs.2024.107357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 07/17/2024] [Accepted: 08/15/2024] [Indexed: 08/21/2024]
Abstract
Aberrant energy metabolism in the brain is a common pathological feature in the preclinical Alzheimer's Disease (AD). Recent studies have reported the early elevations of glycolysis-involved enzymes in AD brain and cerebrospinal fluid according to a large-scale proteomic analysis. It's well-known that astrocytes exhibit strong glycolytic metabolic ability and play a key role in the regulation of brain homeostasis. However, its relationship with glycolytic changes and cognitive deficits in early AD patients is unclear. Here, we investigated the mechanisms by which astrocyte glycolysis is involved in early AD and its potential as a therapeutic target. Our results suggest that Aβ-activated microglia can induce glycolytic-enhanced astrocytes in vitro, and that these processes are dependent on the activation of the AKT-mTOR-HIF-1α pathway. In early AD models, the increase in L-lactate produced by enhanced glycolysis of astrocytes leads to spatial cognitive impairment by disrupting synaptic plasticity and accelerating Aβ aggregation. Furthermore, we find rapamycin, the mTOR inhibitor, can rescue the impaired spatial memory and Aβ burden by inhibiting the glycolysis-derived L-lactate in the early AD models. In conclusion, we highlight that astrocytic glycolysis plays a critical role in the early onset of AD and that the modulation of glycolysis-derived L-lactate by rapamycin provides a new strategy for the treatment of AD.
Collapse
Affiliation(s)
- Xiu Yang
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China; Department of Anesthesiology, First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, China
| | - Yuan-Hao Chen
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Le Liu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Zheng Gu
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Yue You
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Jing-Ru Hao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Nan Sun
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China
| | - Can Gao
- NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Jiangsu Province Key Laboratory of Anesthesiology, Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application, Xuzhou Medical University, Xuzhou, Jiangsu 221004, China.
| |
Collapse
|
23
|
Barros LF, Schirmeier S, Weber B. The Astrocyte: Metabolic Hub of the Brain. Cold Spring Harb Perspect Biol 2024; 16:a041355. [PMID: 38438188 PMCID: PMC11368191 DOI: 10.1101/cshperspect.a041355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2024]
Abstract
Astrocytic metabolism has taken center stage. Interposed between the neuron and the vasculature, astrocytes exert control over the fluxes of energy and building blocks required for neuronal activity and plasticity. They are also key to local detoxification and waste recycling. Whereas neurons are metabolically rigid, astrocytes can switch between different metabolic profiles according to local demand and the nutritional state of the organism. Their metabolic state even seems to be instructive for peripheral nutrient mobilization and has been implicated in information processing and behavior. Here, we summarize recent progress in our understanding of astrocytic metabolism and its effects on metabolic homeostasis and cognition.
Collapse
Affiliation(s)
- L Felipe Barros
- Centro de Estudios Científicos, Valdivia 5110465, Chile
- Universidad San Sebastián, Facultad de Medicina y Ciencia, Valdivia 5110693, Chile
| | - Stefanie Schirmeier
- Technische Universität Dresden, Department of Biology, 01217 Dresden, Germany
| | - Bruno Weber
- University of Zurich, Institute of Pharmacology and Toxicology, 8057 Zurich, Switzerland
| |
Collapse
|
24
|
Liu X, Ding Y, Jiang C, Xin Y, Ma X, Xu M, Wang Q, Hou B, Li Y, Zhang S, Shao B. Astragaloside IV mediates radiation-induced neuronal damage through activation of BDNF-TrkB signaling. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 132:155803. [PMID: 38876008 DOI: 10.1016/j.phymed.2024.155803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/06/2024] [Accepted: 06/02/2024] [Indexed: 06/16/2024]
Abstract
BACKGROUND Electromagnetic radiation is relevant to human life, and radiation can trigger neurodegenerative diseases by altering the function of the central nervous system through oxidative stress, mitochondrial dysfunction, and protein degradation. Astragaloside IV (AS-IV) is anti-oxidative, anti-apoptotic, activates the BDNF-TrkB pathway and enhances synaptic plasticity in radiated mice, which can exert its neuroprotection. However, the exact molecular mechanisms are still unclear. PURPOSE This study investigated whether AS-IV could play a neuroprotective role by regulating BDNF-TrkB pathway in radiation damage and its underlying molecular mechanisms. METHODS Transgenic mice (Thy1-YFP line H) were injected with AS-IV (40 mg/kg/day body weight) by intraperitoneal injection daily for 4 weeks, followed by X-rays. PC12 cells and primary cortical neurons were also exposed to UVA after 24 h of AS-IV treatment (25 μg/ml and 50 μg/ml) in vitro. The impact of radiation on learning and cognitive functions was visualized in the Morris water maze assay. Subsequently, Immunofluorescence and Golgi-Cox staining analyses were utilized to investigate the structural damage of neuronal dendrites and the density of dendritic spines. Transmission electron microscopy was performed to examine how the radiation affected the ultrastructure of neurons. Finally, western blotting analysis and Quantitative RT-PCR were used to evaluate the expression levels and locations of proteins in vitro and in vivo. RESULTS Radiation induced BDNF-TrkB signaling dysregulation and decreased the levels of neuron-related functional genes (Ngf, Bdnf, Gap-43, Ras, Psd-95, Arc, Creb, c-Fos), PSD-95 and F-actin, which subsequently led to damage of neuronal ultrastructure and dendrites, loss of dendritic spines, and decreased dendritic complexity index, contributing to spatial learning and memory deficits. These abnormalities were prevented by AS-IV treatment. In addition, TrkB receptor antagonists antagonized these neuroprotective actions of AS-IV. 7,8-dihydroxyflavone and AS-IV had neuroprotective effects after radiation. CONCLUSION AS-IV inhibits morphological damage of neurons and cognitive dysfunction in mice after radiation exposure, resulting in a neuroprotective effect, which were mediated by activating the BDNF-TrkB pathway.
Collapse
Affiliation(s)
- Xin Liu
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Yanping Ding
- School of Life Sciences, Northwest Normal University, Lanzhou 730070, Gansu Province, PR China
| | - Chenxin Jiang
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Yuanyuan Xin
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Xin Ma
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Min Xu
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Qianhao Wang
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Boru Hou
- Department of Neurosurgery, Second Hospital of Lanzhou University, Lanzhou 730030, Gansu Province, PR China
| | - Yingdong Li
- School of Traditional Chinese and Western Medicine, Gansu University of Chinese Medicine, Lanzhou 730000, Gansu Province, PR China
| | - Shengxiang Zhang
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China
| | - Baoping Shao
- School of Life Sciences, Lanzhou University, Key Laboratory of Biomonitoring and Bioremediation for Environmental Pollution, Lanzhou 730000, Gansu Province, PR China.
| |
Collapse
|
25
|
Conger KO, Chidley C, Ozgurses ME, Zhao H, Kim Y, Semina SE, Burns P, Rawat V, Lietuvninkas L, Sheldon R, Ben-Sahra I, Frasor J, Sorger PK, DeNicola GM, Coloff JL. ASCT2 is a major contributor to serine uptake in cancer cells. Cell Rep 2024; 43:114552. [PMID: 39068660 PMCID: PMC11406281 DOI: 10.1016/j.celrep.2024.114552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 05/23/2024] [Accepted: 07/12/2024] [Indexed: 07/30/2024] Open
Abstract
The non-essential amino acid serine is a critical nutrient for cancer cells due to its diverse biosynthetic functions. While some tumors can synthesize serine de novo, others are auxotrophic and therefore reliant on serine uptake. Importantly, despite several transporters being known to be capable of transporting serine, the transporters that mediate serine uptake in cancer cells are not known. Here, we characterize the amino acid transporter ASCT2 (SLC1A5) as a major contributor to serine uptake in cancer cells. ASCT2 is well known as a glutamine transporter in cancer, and our work demonstrates that serine and glutamine compete for uptake through ASCT2. We further show that ASCT2-mediated serine uptake is essential for purine nucleotide biosynthesis and that estrogen receptor α (ERα) promotes serine uptake by directly activating SLC1A5 transcription. Collectively, our work defines an additional important role for ASCT2 as a serine transporter in cancer and evaluates ASCT2 as a potential therapeutic target.
Collapse
Affiliation(s)
- Kelly O Conger
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Christopher Chidley
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA
| | - Mete Emir Ozgurses
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Huiping Zhao
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Yumi Kim
- Department of Cancer Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL, USA
| | - Svetlana E Semina
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Philippa Burns
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Vipin Rawat
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Lina Lietuvninkas
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Ryan Sheldon
- Metabolic and Nutritional Programming, Center for Cancer and Cell Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - Issam Ben-Sahra
- Robert H. Lurie Cancer Center, Department of Biochemistry and Molecular Genetics, Northwestern University, Chicago, IL, USA
| | - Jonna Frasor
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA
| | - Peter K Sorger
- Laboratory of Systems Pharmacology, Harvard Program in Therapeutic Science, Harvard Medical School, Boston, MA, USA; Department of Systems Biology, Harvard Medical School, Boston, MA, USA
| | - Gina M DeNicola
- Department of Cancer Metabolism and Physiology, H. Lee. Moffitt Cancer Center, Tampa, FL, USA
| | - Jonathan L Coloff
- Department of Physiology and Biophysics, University of Illinois Cancer Center, University of Illinois College of Medicine, Chicago, IL, USA.
| |
Collapse
|
26
|
Fernández-Moncada I, Lavanco G, Fundazuri UB, Bollmohr N, Mountadem S, Dalla Tor T, Hachaguer P, Julio-Kalajzic F, Gisquet D, Serrat R, Bellocchio L, Cannich A, Fortunato-Marsol B, Nasu Y, Campbell RE, Drago F, Cannizzaro C, Ferreira G, Bouzier-Sore AK, Pellerin L, Bolaños JP, Bonvento G, Barros LF, Oliet SHR, Panatier A, Marsicano G. A lactate-dependent shift of glycolysis mediates synaptic and cognitive processes in male mice. Nat Commun 2024; 15:6842. [PMID: 39122700 PMCID: PMC11316019 DOI: 10.1038/s41467-024-51008-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
Astrocytes control brain activity via both metabolic processes and gliotransmission, but the physiological links between these functions are scantly known. Here we show that endogenous activation of astrocyte type-1 cannabinoid (CB1) receptors determines a shift of glycolysis towards the lactate-dependent production of D-serine, thereby gating synaptic and cognitive functions in male mice. Mutant mice lacking the CB1 receptor gene in astrocytes (GFAP-CB1-KO) are impaired in novel object recognition (NOR) memory. This phenotype is rescued by the gliotransmitter D-serine, by its precursor L-serine, and also by lactate and 3,5-DHBA, an agonist of the lactate receptor HCAR1. Such lactate-dependent effect is abolished when the astrocyte-specific phosphorylated-pathway (PP), which diverts glycolysis towards L-serine synthesis, is blocked. Consistently, lactate and 3,5-DHBA promoted the co-agonist binding site occupancy of CA1 post-synaptic NMDA receptors in hippocampal slices in a PP-dependent manner. Thus, a tight cross-talk between astrocytic energy metabolism and gliotransmission determines synaptic and cognitive processes.
Collapse
Affiliation(s)
| | - Gianluca Lavanco
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
- Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, ''G. D'Alessandro", University of Palermo, Palermo, Italy
| | - Unai B Fundazuri
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Nasrin Bollmohr
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Sarah Mountadem
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Tommaso Dalla Tor
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Pauline Hachaguer
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | | | - Doriane Gisquet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Roman Serrat
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Luigi Bellocchio
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Astrid Cannich
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | | | - Yusuke Nasu
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- PRESTO, Japan Science and Technology Agency, Chiyoda-ku, Tokyo, Japan
| | - Robert E Campbell
- Department of Chemistry, School of Science, The University of Tokyo, Bunkyo-ku, Tokyo, Japan
- CERVO Brain Research Center and Department of Biochemistry, Microbiology, and Bioinformatics, Université Laval, Québec City, QC, Canada
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Carla Cannizzaro
- Department of Biomedicine, Neuroscience and Advanced Diagnostics, University of Palermo, Palermo, Italy
| | - Guillaume Ferreira
- Univ. Bordeaux, INRAE, Bordeaux INP, NutriNeuro, UMR 1286, F-33000, Bordeaux, France
| | - Anne-Karine Bouzier-Sore
- Univ. Bordeaux, CNRS, Centre de Résonance Magnétique des Systèmes Biologiques, UMR 5536, F-33000, Bordeaux, France
| | - Luc Pellerin
- Université de Poitiers et CHU de Poitiers, INSERM, IRMETIST, U1313, Poitiers, France
| | - Juan P Bolaños
- Institute of Functional Biology and Genomics (IBFG), Universidad de Salamanca, CSIC, Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), Hospital Universitario de Salamanca, Salamanca, Spain
- Centro de Investigación Biomédica en Red de Fragilidad y Envejecimiento Saludable (CIBERFES), Madrid, Spain
| | - Gilles Bonvento
- Universite Paris-Saclay, CEA, CNRS, MIRCen, Laboratoire des Maladies Neurodegeneratives, Fontenay-aux-Roses, France
| | - L Felipe Barros
- Centro de Estudios Cientificos, Valdivia, Chile
- Facultad de Medicina y Ciencia, Universidad San Sebastián, Valdivia, Chile
| | - Stephane H R Oliet
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Aude Panatier
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France
| | - Giovanni Marsicano
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, F-33000, Bordeaux, France.
| |
Collapse
|
27
|
Theparambil SM, Kopach O, Braga A, Nizari S, Hosford PS, Sagi-Kiss V, Hadjihambi A, Konstantinou C, Esteras N, Gutierrez Del Arroyo A, Ackland GL, Teschemacher AG, Dale N, Eckle T, Andrikopoulos P, Rusakov DA, Kasparov S, Gourine AV. Adenosine signalling to astrocytes coordinates brain metabolism and function. Nature 2024; 632:139-146. [PMID: 38961289 PMCID: PMC11291286 DOI: 10.1038/s41586-024-07611-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Accepted: 05/27/2024] [Indexed: 07/05/2024]
Abstract
Brain computation performed by billions of nerve cells relies on a sufficient and uninterrupted nutrient and oxygen supply1,2. Astrocytes, the ubiquitous glial neighbours of neurons, govern brain glucose uptake and metabolism3,4, but the exact mechanisms of metabolic coupling between neurons and astrocytes that ensure on-demand support of neuronal energy needs are not fully understood5,6. Here we show, using experimental in vitro and in vivo animal models, that neuronal activity-dependent metabolic activation of astrocytes is mediated by neuromodulator adenosine acting on astrocytic A2B receptors. Stimulation of A2B receptors recruits the canonical cyclic adenosine 3',5'-monophosphate-protein kinase A signalling pathway, leading to rapid activation of astrocyte glucose metabolism and the release of lactate, which supplements the extracellular pool of readily available energy substrates. Experimental mouse models involving conditional deletion of the gene encoding A2B receptors in astrocytes showed that adenosine-mediated metabolic signalling is essential for maintaining synaptic function, especially under conditions of high energy demand or reduced energy supply. Knockdown of A2B receptor expression in astrocytes led to a major reprogramming of brain energy metabolism, prevented synaptic plasticity in the hippocampus, severely impaired recognition memory and disrupted sleep. These data identify the adenosine A2B receptor as an astrocytic sensor of neuronal activity and show that cAMP signalling in astrocytes tunes brain energy metabolism to support its fundamental functions such as sleep and memory.
Collapse
Affiliation(s)
- Shefeeq M Theparambil
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK.
- Department of Biomedical and Life Sciences, Lancaster University, Lancaster, UK.
| | - Olga Kopach
- Institute of Neurology, University College London, London, UK
| | - Alice Braga
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Shereen Nizari
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Patrick S Hosford
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Virag Sagi-Kiss
- Section of Bioanalytical Chemistry, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | - Anna Hadjihambi
- The Roger Williams Institute of Hepatology, Foundation for Liver Research & Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Christos Konstantinou
- The Roger Williams Institute of Hepatology, Foundation for Liver Research & Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Noemi Esteras
- Institute of Neurology, University College London, London, UK
| | - Ana Gutierrez Del Arroyo
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Gareth L Ackland
- Translational Medicine and Therapeutics, William Harvey Research Institute, Queen Mary University of London, London, UK
| | - Anja G Teschemacher
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Nicholas Dale
- School of Life Sciences, University of Warwick, Coventry, UK
| | - Tobias Eckle
- Department of Anesthesiology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Petros Andrikopoulos
- Section of Biomolecular Medicine, Department of Metabolism, Digestion and Reproduction, Imperial College London, London, UK
| | | | - Sergey Kasparov
- Physiology, Pharmacology, and Neuroscience, University of Bristol, Bristol, UK
| | - Alexander V Gourine
- Centre for Cardiovascular and Metabolic Neuroscience, Neuroscience, Physiology and Pharmacology, University College London, London, UK.
| |
Collapse
|
28
|
Kim H, Choi S, Lee E, Koh W, Lee CJ. Tonic NMDA Receptor Currents in the Brain: Regulation and Cognitive Functions. Biol Psychiatry 2024; 96:164-175. [PMID: 38490367 DOI: 10.1016/j.biopsych.2024.03.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/20/2024] [Accepted: 03/04/2024] [Indexed: 03/17/2024]
Abstract
Synaptically localized NMDA receptors (NMDARs) play a crucial role in important cognitive functions by mediating synaptic transmission and plasticity. In contrast, a tonic NMDAR current, thought to be mediated by extrasynaptic NMDARs, has a less clear function. This review provides a comprehensive overview of tonic NMDAR currents, focusing on their roles in synaptic transmission/plasticity and their impact on cognitive functions and psychiatric disorders. We discuss the roles of 3 endogenous ligands (i.e., glutamate, glycine, and D-serine) and receptors in mediating tonic NMDAR currents and explore the diverse mechanisms that regulate tonic NMDAR currents. In light of recent controversies surrounding the source of D-serine, we highlight the recent findings suggesting that astrocytes release D-serine to modulate tonic NMDAR currents and control cognitive flexibility. Furthermore, we propose distinct roles of neuronal and astrocytic D-serine in different locations and their implications for synaptic regulation and cognitive functions. The potential roles of tonic NMDAR currents in various psychiatric disorders, such as schizophrenia and autism spectrum disorder, are discussed in the context of the NMDAR hypofunction hypothesis. By presenting the mechanisms by which various cells, particularly astrocytes, regulate tonic NMDAR currents, we aim to stimulate future research in NMDAR hypofunction- or hyperfunction-related psychiatric disorders. This review not only provides a better understanding of the complex interplay between tonic NMDAR currents and cognitive functions but also sheds light on its potential therapeutic target for the treatment of various psychiatric disorders.
Collapse
Affiliation(s)
- Hayoung Kim
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science, Daejeon, South Korea
| | - Sunyeong Choi
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science, Daejeon, South Korea
| | - Euisun Lee
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science, Daejeon, South Korea
| | - Wuhyun Koh
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science, Daejeon, South Korea.
| | - C Justin Lee
- Center for Cognition and Sociality, Life Science Institute, Institute for Basic Science, Daejeon, South Korea.
| |
Collapse
|
29
|
Prajapati SK, Pathak A, Samaiya PK. Alzheimer's disease: from early pathogenesis to novel therapeutic approaches. Metab Brain Dis 2024; 39:1231-1254. [PMID: 39046584 DOI: 10.1007/s11011-024-01389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
The mainstay behind Alzheimer's disease (AD) remains unknown due to the elusive pathophysiology of the disease. Beta-amyloid and phosphorylated Tau is still widely incorporated in various research studies while studying AD. However, they are not sufficient. Therefore, many scientists and researchers have dug into AD studies to deliver many innovations in this field. Many novel biomarkers, such as phosphoglycerate-dehydrogenase, clusterin, microRNA, and a new peptide ratio (Aβ37/Aβ42) in cerebral-spinal fluid, plasma glial-fibrillary-acidic-protein, and lipid peroxidation biomarkers, are mushrooming. They are helping scientists find breakthroughs and substantiating their research on the early detection of AD. Neurovascular unit dysfunction in AD is a significant discovery that can help us understand the relationship between neuronal activity and cerebral blood flow. These new biomarkers are promising and can take these AD studies to another level. There have also been big steps forward in diagnosing and finding AD. One example is self-administered-gerocognitive-examination, which is less expensive and better at finding AD early on than mini-mental-state-examination. Quantum brain sensors and electrochemical biosensors are innovations in the detection field that must be explored and incorporated into the studies. Finally, novel innovations in AD studies like nanotheranostics are the future of AD treatment, which can not only diagnose and detect AD but also offer treatment. Non-pharmacological strategies to treat AD have also yielded interesting results. Our literature review spans from 1957 to 2022, capturing research and trends in the field over six decades. This review article is an update not only on the recent advances in the search for credible biomarkers but also on the newer detection techniques and therapeutic approaches targeting AD.
Collapse
Affiliation(s)
- Santosh Kumar Prajapati
- Bhavdiya Institute of Pharmaceutical Sciences and Research, Ayodhya, UP, India
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, 33613, USA
| | - Arjit Pathak
- Department of Pharmacy Shri G.S. Institute of Technology and Science, Indore, 452003, Madhya Pradesh, India
| | - Puneet K Samaiya
- Department of Pharmacy Shri G.S. Institute of Technology and Science, Indore, 452003, Madhya Pradesh, India.
| |
Collapse
|
30
|
Riva D, Orlando M, Rabattoni V, Pollegioni L. On the quaternary structure of human D-3-phosphoglycerate dehydrogenase. Protein Sci 2024; 33:e5089. [PMID: 39012001 PMCID: PMC11250409 DOI: 10.1002/pro.5089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/27/2024] [Accepted: 06/10/2024] [Indexed: 07/17/2024]
Abstract
D-3-phosphoglycerate dehydrogenase (PHGDH) catalyzes the NAD+-dependent conversion of D-3-phospho-glycerate to 3-phosphohydroxypyruvate, the first step in the phosphorylated pathway for L-serine (L-Ser) biosynthesis. L-Ser plays different relevant metabolic roles in eukaryotic cells: alterations in L-Ser metabolism have been linked to serious neurological disorders. The human PHGDH (hPHGDH), showing a homotetrameric state in solution, is made of four domains, among which there are two regulatory domains at the C-terminus: the aspartate kinase-chorismate mutase-tyrA prephenate dehydrogenase (ACT) and allosteric substrate-binding (ASB) domains. The structure of hPHGDH was solved only for a truncated, dimeric form harboring the N-terminal end containing the substrate and the cofactor binding domains. A model ensemble of the tetrameric hPHGDH was generated using AlphaFold coupled with molecular dynamics refinement. By analyzing the inter-subunit interactions at the tetrameric interface, the residues F418, L478, P479, R454, and Y495 were selected and their role was studied by the alanine-scanning mutagenesis approach. The F418A variant modifies the putative ASB, slightly alters the activity, the fraction of protein in the tetrameric state, and the protein stability; it seems relevant in dimers' recognition to yield the tetrameric oligomer. On the contrary, the R454A, L478A, P479A, and Y495A variants (ACT domain) determine a loss of the tetrameric assembly, resulting in low stability and misfolding, triggering the aggregation and hampering the activity. The predicted tetrameric interface seems mediated by residues at the ACT domain, and the tetramer formation seems crucial for proper folding of hPHGDH, which, in turn, is essential for both stability and functionality.
Collapse
Affiliation(s)
- Daniele Riva
- Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
| | - Marco Orlando
- Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
- Present address:
Department of Biotechnology and BiosciencesUniversity of Milano‐BicoccaMilanItaly
| | - Valentina Rabattoni
- Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
| | - Loredano Pollegioni
- Department of Biotechnology and Life SciencesUniversity of InsubriaVareseItaly
| |
Collapse
|
31
|
Liu X, Li Y, Huang L, Kuang Y, Wu X, Ma X, Zhao B, Lan J. Unlocking the therapeutic potential of P2X7 receptor: a comprehensive review of its role in neurodegenerative disorders. Front Pharmacol 2024; 15:1450704. [PMID: 39139642 PMCID: PMC11319138 DOI: 10.3389/fphar.2024.1450704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 07/19/2024] [Indexed: 08/15/2024] Open
Abstract
The P2X7 receptor (P2X7R), an ATP-gated ion channel, has emerged as a crucial player in neuroinflammation and a promising therapeutic target for neurodegenerative disorders. This review explores the current understanding of P2X7R's structure, activation, and physiological roles, focusing on its expression and function in microglial cells. The article examines the receptor's involvement in calcium signaling, microglial activation, and polarization, as well as its role in the pathogenesis of Alzheimer's disease, Parkinson's disease, multiple sclerosis, and amyotrophic lateral sclerosis. The review highlights the complex nature of P2X7R signaling, discussing its potential neuroprotective and neurotoxic effects depending on the disease stage and context. It also addresses the development of P2X7R antagonists and their progress in clinical trials, identifying key research gaps and future perspectives for P2X7R-targeted therapy development. By providing a comprehensive overview of the current state of knowledge and future directions, this review serves as a valuable resource for researchers and clinicians interested in exploring the therapeutic potential of targeting P2X7R for the treatment of neurodegenerative disorders.
Collapse
Affiliation(s)
- Xiaoming Liu
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Yiwen Li
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Liting Huang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Yingyan Kuang
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiaoxiong Wu
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Xiangqiong Ma
- Henan Hospital of Integrated Chinese and Western Medicine, Zhengzhou, China
| | - Beibei Zhao
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| | - Jiao Lan
- Shenzhen Baoan District Hospital of Traditional Chinese Medicine, Shenzhen, China
| |
Collapse
|
32
|
Liu Q, Ai K, Jiang XR, Yang JJ, Chen L, Cao SH, He HL, Liu X, Liu M. Research on acupuncture and glial cells: A bibliometric analysis. Medicine (Baltimore) 2024; 103:e38898. [PMID: 38996108 PMCID: PMC11245203 DOI: 10.1097/md.0000000000038898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND There are a growing number of studies on the effect of acupuncture on glial cells in the central nervous system; however, there are few related bibliometric analyses in this area. Therefore, the purpose of this bibliometric study was to visualize the literature on acupuncture-regulated glial cells. METHODS On November 23, 2022, regular and review articles on acupuncture and glial cell-related research were retrieved from the Web of Science Core Collection database. The R package "bibliometrix" was used to summarize the main findings, count the occurrences of the top keywords, visualize the international collaboration network, and generate a 3-field plot. The VOSviewer software was used to conduct both co-authorship and co-occurrence analyses. CiteSpace was used to identify the best references and keywords with the highest citation rates. RESULTS Overall, 348 publications on acupuncture and glial cells were included. The publications were primarily from China, Korea, and the United States of America. The majority of publications were found in relevant journals. Apart from "acupuncture" and "glial cells," the most frequently used keywords were "neuroinflammation," "hyperalgesia," and "pain." CONCLUSION This bibliometric study mapped a fundamental knowledge structure comprising countries, institutions, authors, journals, and articles in the research fields of acupuncture and glial cells over the last 3 decades. These results provide a comprehensive perspective on the wider landscape of this research area.
Collapse
Affiliation(s)
- Qiong Liu
- College of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Kun Ai
- College of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Xin-Ru Jiang
- College of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Jing-Jing Yang
- College of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Lin Chen
- College of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Si-Hui Cao
- College of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Hao-Long He
- College of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| | - Xia Liu
- Department of Traditional Chinese Medicine, Chongqing Three Gorges Medical College, Chongqing, China
| | - Mi Liu
- College of Acupuncture & Tuina and Rehabilitation, Hunan University of Chinese Medicine, Changsha, China
| |
Collapse
|
33
|
Zhou X, Xiao Q, Liu Y, Chen S, Xu X, Zhang Z, Hong Y, Shao J, Chen Y, Chen Y, Wang L, Yang F, Tu J. Astrocyte-mediated regulation of BLA WFS1 neurons alleviates risk-assessment deficits in DISC1-N mice. Neuron 2024; 112:2197-2217.e7. [PMID: 38642554 DOI: 10.1016/j.neuron.2024.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 02/10/2024] [Accepted: 03/27/2024] [Indexed: 04/22/2024]
Abstract
Assessing and responding to threats is vital in everyday life. Unfortunately, many mental illnesses involve impaired risk assessment, affecting patients, families, and society. The brain processes behind these behaviors are not well understood. We developed a transgenic mouse model (disrupted-in-schizophrenia 1 [DISC1]-N) with a disrupted avoidance response in risky settings. Our study utilized single-nucleus RNA sequencing and path-clamp coupling with real-time RT-PCR to uncover a previously undescribed group of glutamatergic neurons in the basolateral amygdala (BLA) marked by Wolfram syndrome 1 (WFS1) expression, whose activity is modulated by adjacent astrocytes. These neurons in DISC1-N mice exhibited diminished firing ability and impaired communication with the astrocytes. Remarkably, optogenetic activation of these astrocytes reinstated neuronal excitability via D-serine acting on BLAWFS1 neurons' NMDA receptors, leading to improved risk-assessment behavior in the DISC1-N mice. Our findings point to BLA astrocytes as a promising target for treating risk-assessment dysfunctions in mental disorders.
Collapse
Affiliation(s)
- Xinyi Zhou
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurology, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Qian Xiao
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yaohui Liu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shandong Provincial Key Laboratory of Animal Resistance Biology, College of Life Sciences, Shandong Normal University, No. 88 East Wenhua Road, Jinan 250014, China
| | - Shuai Chen
- University of Chinese of Academy of Sciences, Beijing 100049, China
| | - Xirong Xu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China
| | - Zhigang Zhang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yuchuan Hong
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China
| | - Jie Shao
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Department of Neurology, The Second Clinical Medical College, Jinan University, Shenzhen People's Hospital, Shenzhen 518020, China; The First Affiliated Hospital, Jinan University, Guangzhou 510632, China
| | - Yuewen Chen
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yu Chen
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Liping Wang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Fan Yang
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| | - Jie Tu
- CAS Key Laboratory of Brain Connectome and Manipulation, Shenzhen-Hong Kong Institute of Brain Science, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Shenzhen Key Laboratory of Neuroimmunomodulation for Neurological Diseases, The Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; Guangdong Provincial Key Laboratory of Brain Connectome and Behavior, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese of Academy of Sciences, Beijing 100049, China; Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China.
| |
Collapse
|
34
|
Cueto R, Shen W, Liu L, Wang X, Wu S, Mohsin S, Yang L, Khan M, Hu W, Snyder N, Wu Q, Ji Y, Yang XF, Wang H. SAH is a major metabolic sensor mediating worsening metabolic crosstalk in metabolic syndrome. Redox Biol 2024; 73:103139. [PMID: 38696898 PMCID: PMC11070633 DOI: 10.1016/j.redox.2024.103139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 03/26/2024] [Indexed: 05/04/2024] Open
Abstract
In this study, we observed worsening metabolic crosstalk in mouse models with concomitant metabolic disorders such as hyperhomocysteinemia (HHcy), hyperlipidemia, and hyperglycemia and in human coronary artery disease by analyzing metabolic profiles. We found that HHcy worsening is most sensitive to other metabolic disorders. To identify metabolic genes and metabolites responsible for the worsening metabolic crosstalk, we examined mRNA levels of 324 metabolic genes in Hcy, glucose-related and lipid metabolic systems. We examined Hcy-metabolites (Hcy, SAH and SAM) by LS-ESI-MS/MS in 6 organs (heart, liver, brain, lung, spleen, and kidney) from C57BL/6J mice. Through linear regression analysis of Hcy-metabolites and metabolic gene mRNA levels, we discovered that SAH-responsive genes were responsible for most metabolic changes and all metabolic crosstalk mediated by Serine, Taurine, and G3P. SAH-responsive genes worsen glucose metabolism and cause upper glycolysis activation and lower glycolysis suppression, indicative of the accumulation of glucose/glycogen and G3P, Serine synthesis inhibition, and ATP depletion. Insufficient Serine due to negative correlation of PHGDH with SAH concentration may inhibit the folate cycle and transsulfurarion pathway and consequential reduced antioxidant power, including glutathione, taurine, NADPH, and NAD+. Additionally, we identified SAH-activated pathological TG loop as the consequence of increased fatty acid (FA) uptake, FA β-oxidation and Ac-CoA production along with lysosomal damage. We concluded that HHcy is most responsive to other metabolic changes in concomitant metabolic disorders and mediates worsening metabolic crosstalk mainly via SAH-responsive genes, that organ-specific Hcy metabolism determines organ-specific worsening metabolic reprogramming, and that SAH, acetyl-CoA, Serine and Taurine are critical metabolites mediating worsening metabolic crosstalk, redox disturbance, hypomethylation and hyperacetylation linking worsening metabolic reprogramming in metabolic syndrome.
Collapse
Affiliation(s)
- Ramon Cueto
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Wen Shen
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA; Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China
| | - Lu Liu
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Xianwei Wang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sheng Wu
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Sadia Mohsin
- Cardiovascular Research Center, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Ling Yang
- Medical Genetics & Molecular Biochemistry, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Mohsin Khan
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Wenhui Hu
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Nathaniel Snyder
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Qinghua Wu
- Department of Cardiovascular Medicine, The Second Affiliated Hospital of Nanchang University, China
| | - Yong Ji
- Key Laboratory of Cardiovascular Disease and Molecular Intervention, Nanjing Medical University, China
| | - Xiao-Feng Yang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA; Cardiovascular Research Center, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA
| | - Hong Wang
- Center for Metabolic Disease Research, Lewis Kats School of Medicine, Temple University, Philadelphia, PA, USA.
| |
Collapse
|
35
|
Zhang H, Zheng Q, Guo T, Zhang S, Zheng S, Wang R, Deng Q, Yang G, Zhang S, Tang L, Qi Q, Zhu L, Zhang XF, Luo H, Zhang X, Sun H, Gao Y, Zhang H, Zhou Y, Han A, Zhang CS, Xu H, Wang X. Metabolic reprogramming in astrocytes results in neuronal dysfunction in intellectual disability. Mol Psychiatry 2024; 29:1569-1582. [PMID: 35338313 DOI: 10.1038/s41380-022-01521-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/21/2021] [Revised: 03/03/2022] [Accepted: 03/10/2022] [Indexed: 11/08/2022]
Abstract
Astrocyte aerobic glycolysis provides vital trophic support for central nervous system neurons. However, whether and how astrocytic metabolic dysregulation contributes to neuronal dysfunction in intellectual disability (ID) remain unclear. Here, we demonstrate a causal role for an ID-associated SNX27 mutation (R198W) in cognitive deficits involving reshaping astrocytic metabolism. We generated SNX27R196W (equivalent to human R198W) knock-in mice and found that they displayed deficits in synaptic function and learning behaviors. SNX27R196W resulted in attenuated astrocytic glucose uptake via GLUT1, leading to reduced lactate production and a switch from homeostatic to reactive astrocytes. Importantly, lactate supplementation or a ketogenic diet restored neuronal oxidative phosphorylation and reversed cognitive deficits in SNX27R196W mice. In summary, we illustrate a key role for astrocytic SNX27 in maintaining glucose supply and glycolysis and reveal that altered astrocytic metabolism disrupts the astrocyte-neuron interaction, which contributes to ID. Our work also suggests a feasible strategy for treating ID by restoring astrocytic metabolic function.
Collapse
Affiliation(s)
- Haibin Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong, 518057, China
| | - Qiuyang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong, 518057, China
| | - Tiantian Guo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shijun Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shuang Zheng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ruimin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qingfang Deng
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Guowei Yang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Shuo Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Linxin Tang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Qiuping Qi
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Lin Zhu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xiu-Fang Zhang
- Department of Pediatrics, Xiang'an Hospital of Xiamen University, Xiamen, Fujian, 361102, China
| | - Hong Luo
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xian Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Hao Sun
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Yue Gao
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Hongfeng Zhang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Ying Zhou
- Department of Translational Medicine, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Aidong Han
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Chen-Song Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian, 361102, China
| | - Huaxi Xu
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China
| | - Xin Wang
- State Key Laboratory of Cellular Stress Biology, Fujian Provincial Key Laboratory of Neurodegenerative Disease and Aging Research, Institute of Neuroscience, Department of Neurosurgery, the First Affiliated Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen, Fujian, 361102, China.
- Shenzhen Research Institute of Xiamen University, Shenzhen, Guangdong, 518057, China.
| |
Collapse
|
36
|
Ali A, Milman S, Weiss EF, Gao T, Napolioni V, Barzilai N, Zhang ZD, Lin JR. Rare genetic coding variants associated with age-related episodic memory decline implicate distinct memory pathologies in the hippocampus. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.05.21.24307692. [PMID: 38826255 PMCID: PMC11142267 DOI: 10.1101/2024.05.21.24307692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
Background Approximately 40% of people aged 65 or older experience memory loss, particularly in episodic memory. Identifying the genetic basis of episodic memory decline is crucial for uncovering its underlying causes. Methods We investigated common and rare genetic variants associated with episodic memory decline in 742 (632 for rare variants) Ashkenazi Jewish individuals (mean age 75) from the LonGenity study. All-atom MD simulations were performed to uncover mechanistic insights underlying rare variants associated with episodic memory decline. Results In addition to the common polygenic risk of Alzheimer's Disease (AD), we identified and replicated rare variant association in ITSN1 and CRHR2 . Structural analyses revealed distinct memory pathologies mediated by interfacial rare coding variants such as impaired receptor activation of corticotropin releasing hormone and dysregulated L-serine synthesis. Discussion Our study uncovers novel risk loci for episodic memory decline. The identified underlying mechanisms point toward heterogeneous memory pathologies mediated by rare coding variants.
Collapse
|
37
|
Guan S, Li Y, Xin Y, Wang D, Lu P, Han F, Xu H. Deciphering the dual role of N-methyl-D-Aspartate receptor in postoperative cognitive dysfunction: A comprehensive review. Eur J Pharmacol 2024; 971:176520. [PMID: 38527701 DOI: 10.1016/j.ejphar.2024.176520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 03/03/2024] [Accepted: 03/20/2024] [Indexed: 03/27/2024]
Abstract
Postoperative cognitive dysfunction (POCD) is a common complication following surgery, adversely impacting patients' recovery, increasing the risk of negative outcomes, prolonged hospitalization, and higher mortality rates. The N-methyl-D-aspartate (NMDA) receptor, crucial for learning, memory, and synaptic plasticity, plays a significant role in the development of POCD. Various perioperative factors, including age and anesthetic use, can reduce NMDA receptor function, while surgical stress, inflammation, and pain may lead to its excessive activation. This review consolidates preclinical and clinical research to explore the intricate relationship between perioperative factors affecting NMDA receptor functionality and the onset of POCD. It discusses the influence of aging, anesthetic administration, perioperative injury, pain, and inflammation on the NMDA receptor-related pathophysiology of POCD. The comprehensive analysis presented aims to identify effective treatment targets for POCD, contributing to the improvement of patient outcomes post-surgery.
Collapse
Affiliation(s)
- Shaodi Guan
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yali Li
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yueyang Xin
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Danning Wang
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Pei Lu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Fanglong Han
- Department of Anesthesiology, Xiangyang Maternal and Child Health Hospital, Xiangyang, 441003, China
| | - Hui Xu
- Department of Anesthesiology and Pain Medicine, Hubei Key Laboratory of Geriatric Anesthesia and Perioperative Brain Health, and Wuhan Clinical Research Center for Geriatric Anesthesia, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
38
|
Bou Ghanem GO, Wareham LK, Calkins DJ. Addressing neurodegeneration in glaucoma: Mechanisms, challenges, and treatments. Prog Retin Eye Res 2024; 100:101261. [PMID: 38527623 DOI: 10.1016/j.preteyeres.2024.101261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 03/15/2024] [Accepted: 03/19/2024] [Indexed: 03/27/2024]
Abstract
Glaucoma is the leading cause of irreversible blindness globally. The disease causes vision loss due to neurodegeneration of the retinal ganglion cell (RGC) projection to the brain through the optic nerve. Glaucoma is associated with sensitivity to intraocular pressure (IOP). Thus, mainstay treatments seek to manage IOP, though many patients continue to lose vision. To address neurodegeneration directly, numerous preclinical studies seek to develop protective or reparative therapies that act independently of IOP. These include growth factors, compounds targeting metabolism, anti-inflammatory and antioxidant agents, and neuromodulators. Despite success in experimental models, many of these approaches fail to translate into clinical benefits. Several factors contribute to this challenge. Firstly, the anatomic structure of the optic nerve head differs between rodents, nonhuman primates, and humans. Additionally, animal models do not replicate the complex glaucoma pathophysiology in humans. Therefore, to enhance the success of translating these findings, we propose two approaches. First, thorough evaluation of experimental targets in multiple animal models, including nonhuman primates, should precede clinical trials. Second, we advocate for combination therapy, which involves using multiple agents simultaneously, especially in the early and potentially reversible stages of the disease. These strategies aim to increase the chances of successful neuroprotective treatment for glaucoma.
Collapse
Affiliation(s)
- Ghazi O Bou Ghanem
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - Lauren K Wareham
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| | - David J Calkins
- Vanderbilt Eye Institute, Department of Ophthalmology and Visual Sciences, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
39
|
Altay O, Yang H, Yildirim S, Bayram C, Bolat I, Oner S, Tozlu OO, Arslan ME, Hacimuftuoglu A, Shoaie S, Zhang C, Borén J, Uhlén M, Turkez H, Mardinoglu A. Combined Metabolic Activators with Different NAD+ Precursors Improve Metabolic Functions in the Animal Models of Neurodegenerative Diseases. Biomedicines 2024; 12:927. [PMID: 38672280 PMCID: PMC11048203 DOI: 10.3390/biomedicines12040927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 04/08/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Mitochondrial dysfunction and metabolic abnormalities are acknowledged as significant factors in the onset of neurodegenerative disorders such as Parkinson's disease (PD) and Alzheimer's disease (AD). Our research has demonstrated that the use of combined metabolic activators (CMA) may alleviate metabolic dysfunctions and stimulate mitochondrial metabolism. Therefore, the use of CMA could potentially be an effective therapeutic strategy to slow down or halt the progression of PD and AD. CMAs include substances such as the glutathione precursors (L-serine and N-acetyl cysteine), the NAD+ precursor (nicotinamide riboside), and L-carnitine tartrate. METHODS Here, we tested the effect of two different formulations, including CMA1 (nicotinamide riboside, L-serine, N-acetyl cysteine, L-carnitine tartrate), and CMA2 (nicotinamide, L-serine, N-acetyl cysteine, L-carnitine tartrate), as well as their individual components, on the animal models of AD and PD. We assessed the brain and liver tissues for pathological changes and immunohistochemical markers. Additionally, in the case of PD, we performed behavioral tests and measured responses to apomorphine-induced rotations. FINDINGS Histological analysis showed that the administration of both CMA1 and CMA2 formulations led to improvements in hyperemia, degeneration, and necrosis in neurons for both AD and PD models. Moreover, the administration of CMA2 showed a superior effect compared to CMA1. This was further corroborated by immunohistochemical data, which indicated a reduction in immunoreactivity in the neurons. Additionally, notable metabolic enhancements in liver tissues were observed using both formulations. In PD rat models, the administration of both formulations positively influenced the behavioral functions of the animals. INTERPRETATION Our findings suggest that the administration of both CMA1 and CMA2 markedly enhanced metabolic and behavioral outcomes, aligning with neuro-histological observations. These findings underscore the promise of CMA2 administration as an effective therapeutic strategy for enhancing metabolic parameters and cognitive function in AD and PD patients.
Collapse
Affiliation(s)
- Ozlem Altay
- Science for Life Laboratory, KTH—Royal Institute of Technology, 171 65 Stockholm, Sweden; (O.A.); (H.Y.); (C.Z.); (M.U.)
| | - Hong Yang
- Science for Life Laboratory, KTH—Royal Institute of Technology, 171 65 Stockholm, Sweden; (O.A.); (H.Y.); (C.Z.); (M.U.)
| | - Serkan Yildirim
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum 25240, Turkey; (S.Y.); (I.B.)
| | - Cemil Bayram
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Atatürk University, Erzurum 25240, Turkey;
| | - Ismail Bolat
- Department of Pathology, Faculty of Veterinary Medicine, Atatürk University, Erzurum 25240, Turkey; (S.Y.); (I.B.)
| | - Sena Oner
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum 25240, Turkey; (S.O.); (O.O.T.); (M.E.A.)
| | - Ozlem Ozdemir Tozlu
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum 25240, Turkey; (S.O.); (O.O.T.); (M.E.A.)
| | - Mehmet Enes Arslan
- Department of Molecular Biology and Genetics, Faculty of Science, Erzurum Technical University, Erzurum 25240, Turkey; (S.O.); (O.O.T.); (M.E.A.)
| | - Ahmet Hacimuftuoglu
- Department of Medical Pharmacology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey;
| | - Saeed Shoaie
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK;
| | - Cheng Zhang
- Science for Life Laboratory, KTH—Royal Institute of Technology, 171 65 Stockholm, Sweden; (O.A.); (H.Y.); (C.Z.); (M.U.)
| | - Jan Borén
- Department of Molecular and Clinical Medicine, Sahlgrenska University Hospital, University of Gothenburg, 413 45 Gothenburg, Sweden;
| | - Mathias Uhlén
- Science for Life Laboratory, KTH—Royal Institute of Technology, 171 65 Stockholm, Sweden; (O.A.); (H.Y.); (C.Z.); (M.U.)
| | - Hasan Turkez
- Department of Medical Biology, Faculty of Medicine, Atatürk University, Erzurum 25240, Turkey;
| | - Adil Mardinoglu
- Science for Life Laboratory, KTH—Royal Institute of Technology, 171 65 Stockholm, Sweden; (O.A.); (H.Y.); (C.Z.); (M.U.)
- Centre for Host-Microbiome Interactions, Faculty of Dentistry, Oral & Craniofacial Sciences, King’s College London, London SE1 9RT, UK;
| |
Collapse
|
40
|
Lu LP, Chang WH, Mao YW, Cheng MC, Zhuang XY, Kuo CS, Lai YA, Shih TM, Chou TY, Tsai GE. The Development of a Regulator of Human Serine Racemase for N-Methyl-D-aspartate Function. Biomedicines 2024; 12:853. [PMID: 38672207 PMCID: PMC11048566 DOI: 10.3390/biomedicines12040853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
It is crucial to regulate N-methyl-D-aspartate (NMDA) function bivalently depending on the central nervous system (CNS) conditions. CNS disorders with NMDA hyperfunction are involved in the pathogenesis of neurotoxic and/or neurodegenerative disorders with elevated D-serine, one of the NMDA receptor co-agonists. On the contrary, NMDA-enhancing agents have been demonstrated to improve psychotic symptoms and cognition in CNS disorders with NMDA hypofunction. Serine racemase (SR), the enzyme regulating both D- and L-serine levels through both racemization (catalysis from L-serine to D-serine) and β-elimination (degradation of both D- and L-serine), emerges as a promising target for bidirectional regulation of NMDA function. In this study, we explored using dimethyl malonate (DMM), a pro-drug of the SR inhibitor malonate, to modulate NMDA activity in C57BL/6J male mice via intravenous administration. Unexpectedly, 400 mg/kg DMM significantly elevated, rather than decreased (as a racemization inhibitor), D-serine levels in the cerebral cortex and plasma. This outcome prompted us to investigate the regulatory effects of dodecagalloyl-α-D-xylose (α12G), a synthesized tannic acid analog, on SR activity. Our findings showed that α12G enhanced the racemization activity of human SR by about 8-fold. The simulated and fluorescent assay of binding affinity suggested a noncooperative binding close to the catalytic residues, Lys56 and Ser84. Moreover, α12G treatment can improve behaviors associated with major CNS disorders with NMDA hypofunction including hyperactivity, prepulse inhibition deficit, and memory impairment in animal models of positive symptoms and cognitive impairment of psychosis. In sum, our findings suggested α12G is a potential therapeutic for treating CNS disorders with NMDA hypofunction.
Collapse
Affiliation(s)
- Lu-Ping Lu
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Wei-Hua Chang
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
| | - Yi-Wen Mao
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
| | - Min-Chi Cheng
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
| | - Xiao-Yi Zhuang
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
| | - Chi-Sheng Kuo
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
| | - Yi-An Lai
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
| | - Tsai-Miao Shih
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
| | - Teh-Ying Chou
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Graduate Institute of Clinical Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Department of Pathology and Precision Medicine Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei 112304, Taiwan
| | - Guochuan Emil Tsai
- Department of Research and Development, SyneuRx International (Taiwan) Corp., New Taipei 221416, Taiwan; (L.-P.L.); (W.-H.C.); (Y.-W.M.); (M.-C.C.); (X.-Y.Z.); (C.-S.K.); (Y.-A.L.); (T.-M.S.)
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
- Department of Psychiatry and Biobehavioral Science, UCLA School of Medicine, Los Angeles, CA 90024, USA
| |
Collapse
|
41
|
Zimmer TS, Orr AL, Orr AG. Astrocytes in selective vulnerability to neurodegenerative disease. Trends Neurosci 2024; 47:289-302. [PMID: 38521710 PMCID: PMC11006581 DOI: 10.1016/j.tins.2024.02.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 02/06/2024] [Accepted: 02/26/2024] [Indexed: 03/25/2024]
Abstract
Selective vulnerability of specific brain regions and cell populations is a hallmark of neurodegenerative disorders. Mechanisms of selective vulnerability involve neuronal heterogeneity, functional specializations, and differential sensitivities to stressors and pathogenic factors. In this review we discuss the growing body of literature suggesting that, like neurons, astrocytes are heterogeneous and specialized, respond to and integrate diverse inputs, and induce selective effects on brain function. In disease, astrocytes undergo specific, context-dependent changes that promote different pathogenic trajectories and functional outcomes. We propose that astrocytes contribute to selective vulnerability through maladaptive transitions to context-divergent phenotypes that impair specific brain regions and functions. Further studies on the multifaceted roles of astrocytes in disease may provide new therapeutic approaches to enhance resilience against neurodegenerative disorders.
Collapse
Affiliation(s)
- Till S Zimmer
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Adam L Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA
| | - Anna G Orr
- Appel Alzheimer's Disease Research Institute, Weill Cornell Medicine, New York, NY, USA; Feil Family Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA; Neuroscience Graduate Program, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
42
|
Liang J, Wang Y, Liu B, Dong X, Cai W, Zhang N, Zhang H. Deciphering the intricate linkage between the gut microbiota and Alzheimer's disease: Elucidating mechanistic pathways promising therapeutic strategies. CNS Neurosci Ther 2024; 30:e14704. [PMID: 38584341 PMCID: PMC10999574 DOI: 10.1111/cns.14704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/15/2023] [Accepted: 03/25/2024] [Indexed: 04/09/2024] Open
Abstract
BACKGROUND The gut microbiome is composed of various microorganisms such as bacteria, fungi, and protozoa, and constitutes an important part of the human gut. Its composition is closely related to human health and disease. Alzheimer's disease (AD) is a neurodegenerative disease whose underlying mechanism has not been fully elucidated. Recent research has shown that there are significant differences in the gut microbiota between AD patients and healthy individuals. Changes in the composition of gut microbiota may lead to the development of harmful factors associated with AD. In addition, the gut microbiota may play a role in the development and progression of AD through the gut-brain axis. However, the exact nature of this relationship has not been fully understood. AIMS This review will elucidate the types and functions of gut microbiota and their relationship with AD and explore in depth the potential mechanisms of gut microbiota in the occurrence of AD and the prospects for treatment strategies. METHODS Reviewed literature from PubMed and Web of Science using key terminologies related to AD and the gut microbiome. RESULTS Research indicates that the gut microbiota can directly or indirectly influence the occurrence and progression of AD through metabolites, endotoxins, and the vagus nerve. DISCUSSION This review discusses the future challenges and research directions regarding the gut microbiota in AD. CONCLUSION While many unresolved issues remain regarding the gut microbiota and AD, the feasibility and immense potential of treating AD by modulating the gut microbiota are evident.
Collapse
Affiliation(s)
- Junyi Liang
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Yueyang Wang
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Bin Liu
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Xiaohong Dong
- Jiamusi CollegeHeilongjiang University of Traditional Chinese MedicineJiamusiHeilongjiang ProvinceChina
| | - Wenhui Cai
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Ning Zhang
- Heilongjiang University of Traditional Chinese MedicineHarbinHeilongjiang ProvinceChina
| | - Hong Zhang
- Heilongjiang Jiamusi Central HospitalJiamusiHeilongjiang ProvinceChina
| |
Collapse
|
43
|
Cohen J, Mathew A, Dourvetakis KD, Sanchez-Guerrero E, Pangeni RP, Gurusamy N, Aenlle KK, Ravindran G, Twahir A, Isler D, Sosa-Garcia SR, Llizo A, Bested AC, Theoharides TC, Klimas NG, Kempuraj D. Recent Research Trends in Neuroinflammatory and Neurodegenerative Disorders. Cells 2024; 13:511. [PMID: 38534355 DOI: 10.3390/cells13060511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Neuroinflammatory and neurodegenerative disorders including Alzheimer's disease (AD), Parkinson's disease (PD), traumatic brain injury (TBI) and Amyotrophic lateral sclerosis (ALS) are chronic major health disorders. The exact mechanism of the neuroimmune dysfunctions of these disease pathogeneses is currently not clearly understood. These disorders show dysregulated neuroimmune and inflammatory responses, including activation of neurons, glial cells, and neurovascular unit damage associated with excessive release of proinflammatory cytokines, chemokines, neurotoxic mediators, and infiltration of peripheral immune cells into the brain, as well as entry of inflammatory mediators through damaged neurovascular endothelial cells, blood-brain barrier and tight junction proteins. Activation of glial cells and immune cells leads to the release of many inflammatory and neurotoxic molecules that cause neuroinflammation and neurodegeneration. Gulf War Illness (GWI) and myalgic encephalomyelitis/chronic fatigue syndrome (ME/CFS) are chronic disorders that are also associated with neuroimmune dysfunctions. Currently, there are no effective disease-modifying therapeutic options available for these diseases. Human induced pluripotent stem cell (iPSC)-derived neurons, astrocytes, microglia, endothelial cells and pericytes are currently used for many disease models for drug discovery. This review highlights certain recent trends in neuroinflammatory responses and iPSC-derived brain cell applications in neuroinflammatory disorders.
Collapse
Affiliation(s)
- Jessica Cohen
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Annette Mathew
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Kirk D Dourvetakis
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Estella Sanchez-Guerrero
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Rajendra P Pangeni
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Narasimman Gurusamy
- Department of Pharmaceutical Sciences, Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Kristina K Aenlle
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
- Miami VA Geriatric Research Education and Clinical Center (GRECC), Miami Veterans Affairs Healthcare System, Miami, FL 33125, USA
| | - Geeta Ravindran
- Cell Therapy Institute, Dr. Kiran C. Patel College of Allopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Assma Twahir
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Dylan Isler
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Sara Rukmini Sosa-Garcia
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Axel Llizo
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Alison C Bested
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| | - Theoharis C Theoharides
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
- Laboratory of Molecular Immunopharmacology and Drug Discovery, Department of Immunology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Nancy G Klimas
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
- Miami VA Geriatric Research Education and Clinical Center (GRECC), Miami Veterans Affairs Healthcare System, Miami, FL 33125, USA
| | - Duraisamy Kempuraj
- Institute for Neuro-Immune Medicine, Dr. Kiran C. Patel College of Osteopathic Medicine, Nova Southeastern University, Ft. Lauderdale, FL 33328, USA
| |
Collapse
|
44
|
Wu D, Zhang K, Khan FA, Pandupuspitasari NS, Guan K, Sun F, Huang C. A comprehensive review on signaling attributes of serine and serine metabolism in health and disease. Int J Biol Macromol 2024; 260:129607. [PMID: 38253153 DOI: 10.1016/j.ijbiomac.2024.129607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Revised: 01/17/2024] [Accepted: 01/17/2024] [Indexed: 01/24/2024]
Abstract
Serine is a metabolite with ever-expanding metabolic and non-metabolic signaling attributes. By providing one‑carbon units for macromolecule biosynthesis and functional modifications, serine and serine metabolism largely impinge on cellular survival and function. Cancer cells frequently have a preference for serine metabolic reprogramming to create a conducive metabolic state for survival and aggressiveness, making intervention of cancer-associated rewiring of serine metabolism a promising therapeutic strategy for cancer treatment. Beyond providing methyl donors for methylation in modulation of innate immunity, serine metabolism generates formyl donors for mitochondrial tRNA formylation which is required for mitochondrial function. Interestingly, fully developed neurons lack the machinery for serine biosynthesis and rely heavily on astrocytic l-serine for production of d-serine to shape synaptic plasticity. Here, we recapitulate recent discoveries that address the medical significance of serine and serine metabolism in malignancies, mitochondrial-associated disorders, and neurodegenerative pathologies. Metabolic control and epigenetic- and posttranslational regulation of serine metabolism are also discussed. Given the metabolic similarities between cancer cells, neurons and germ cells, we further propose the relevance of serine metabolism in testicular homeostasis. Our work provides valuable hints for future investigations that will lead to a deeper understanding of serine and serine metabolism in cellular physiology and pathology.
Collapse
Affiliation(s)
- Di Wu
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Kejia Zhang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China
| | - Faheem Ahmed Khan
- Research Center for Animal Husbandry, National Research and Innovation Agency, Jakarta Pusat 10340, Indonesia
| | | | - Kaifeng Guan
- School of Advanced Agricultural Sciences, Peking University, Beijing 100871, China.
| | - Fei Sun
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| | - Chunjie Huang
- Institute of Reproductive Medicine, School of Medicine, Nantong University, Nantong 226001, China.
| |
Collapse
|
45
|
Liu Y, Liu Q, Wang H, Qiu Y, Lin J, Wu W, Wang N, Dong W, Wan J, Chen C, Li S, Zheng H, Wu Y. Hippocampal synaptic plasticity injury mediated by SIRT1 downregulation is involved in chronic pain-related cognitive dysfunction. CNS Neurosci Ther 2024; 30:e14410. [PMID: 37592394 PMCID: PMC10848102 DOI: 10.1111/cns.14410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/19/2023] [Accepted: 08/01/2023] [Indexed: 08/19/2023] Open
Abstract
AIMS Cognitive dysfunction associated with chronic pain may be caused by impaired synaptic plasticity. Considering the impact of silent information regulator 1 (SIRT1) on synaptic plasticity, we explored the exact role of SIRT1 in cognitive impairment caused by chronic pain. METHODS We evaluated the memory ability of mice with the fear conditioning test (FCT) after spared nerve injury (SNI) model. Western blotting and immunofluorescence were used to analyze the expression levels of SIRT1. Hippocampal synaptic plasticity was detected with Golgi staining, transmission electron microscopy, and long-term potentiation (LTP). In the intervention study, AAV9-CaMKIIα-Cre-EGFP was injected to SIRT1flox/flox mice to knockdown the expression levels of SIRT1. Besides, SNI mice were injected with AAV2/9-CaMKIIα-SIRT1-3*Flag-GFP or SRT1720 to increase the expression levels or enzymatic activity of SIRT1. RESULTS Our current results indicated that cognitive function in SNI mice was impaired, SIRT1 expression in glutaminergic neurons in the hippocampal CA1 area was downregulated, and synaptic plasticity was altered. Selective knockdown of SIRT1 in hippocampus damaged synaptic plasticity and cognitive function of healthy mice. In addition, the impaired synaptic plasticity and cognitive dysfunction of SNI mice could be improved by the upregulation of SIRT1 expression or enzyme activity. CONCLUSIONS Reduced SIRT1 expression in hippocampus of SNI mice may induce cognitive impairment associated with chronic pain by mediating the impaired synaptic plasticity.
Collapse
Affiliation(s)
- Yanping Liu
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Qiang Liu
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Haibi Wang
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Yongkang Qiu
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Jiatao Lin
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Weifeng Wu
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Ning Wang
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Wei Dong
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Jie Wan
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Chen Chen
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| | - Shuai Li
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Hui Zheng
- Department of Anesthesiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer HospitalChinese Academy of Medical Sciences and Peking Union Medical CollegeBeijingChina
| | - Yuqing Wu
- Jiangsu Province Key Laboratory of Anesthesiology/NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic DrugsXuzhou Medical UniversityXuzhouChina
| |
Collapse
|
46
|
Zhang X, Zheng H, Ni Z, Shen Y, Wang D, Li W, Zhao L, Li C, Gao H. Fibroblast growth factor 21 alleviates diabetes-induced cognitive decline. Cereb Cortex 2024; 34:bhad502. [PMID: 38220573 PMCID: PMC10839844 DOI: 10.1093/cercor/bhad502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024] Open
Abstract
Diabetes mellitus (DM) causes damage to the central nervous system, resulting in cognitive impairment. Fibroblast growth factor 21 (FGF21) exhibits the potential to alleviate neurodegeneration. However, the therapeutic effect of intracerebroventricular (i.c.v) FGF21 infusion on diabetes-induced cognitive decline (DICD) and its potential mechanisms remain unclear. In this study, the impact of FGF21 on DICD was explored, and 1H nuclear magnetic resonance (NMR)-based metabolomics plus 13C NMR spectroscopy in combine with intravenous [1-13C]-glucose infusion were used to investigate the underlying metabolic mechanism. Results revealed that i.c.v FGF21 infusion effectively improved learning and memory performance of DICD mice; neuron loss and apoptosis in hippocampus and cortex were significantly blocked, suggesting a potential neuroprotective role of FGF21 in DICD. Metabolomics results revealed that FGF21 modulated DICD metabolic alterations related to glucose and neurotransmitter metabolism, which are characterized by distinct recovered enrichment of [3-13C]-lactate, [3-13C]-aspartate, [4-13C]-glutamine, [3-13C]-glutamine, [4-13C]-glutamate, and [4-13C]- γ-aminobutyric acid (GABA) from [1-13C]-glucose. Moreover, diabetes-induced neuron injury and metabolic dysfunctions might be mediated by PI3K/AKT/GSK-3β signaling pathway inactivation in the hippocampus and cortex, which were activated by i.c.v injection of FGF21. These findings indicate that i.c.v FGF21 infusion exerts its neuroprotective effect on DICD by remodeling cerebral glucose and neurotransmitter metabolism by activating the PI3K/AKT/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Xi Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Hong Zheng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhitao Ni
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuyin Shen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Die Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenqing Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Liangcai Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Chen Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Hongchang Gao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
47
|
Bai YZ, Li JM, Zhang SQ. Potential novel mechanism of selenium on cognition. Metab Brain Dis 2024; 39:249-251. [PMID: 37698770 DOI: 10.1007/s11011-023-01289-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 09/01/2023] [Indexed: 09/13/2023]
Affiliation(s)
- Ya-Zhi Bai
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing, 100050, China
| | - Jia-Meng Li
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing, 100050, China
| | - Shuang-Qing Zhang
- Department of Nutrition and Metabolism, National Institute for Nutrition and Health, Chinese Center for Disease Control and Prevention, 27 Nanwei Road, Beijing, 100050, China.
| |
Collapse
|
48
|
Wang H, Li J, Tu W, Wang Z, Zhang Y, Chang L, Wu Y, Zhang X. Identification of Blood Biomarkers Related to Energy Metabolism and Construction of Diagnostic Prediction Model Based on Three Independent Alzheimer's Disease Cohorts. J Alzheimers Dis 2024; 100:1261-1287. [PMID: 39093073 PMCID: PMC11380308 DOI: 10.3233/jad-240301] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Background Blood biomarkers are crucial for the diagnosis and therapy of Alzheimer's disease (AD). Energy metabolism disturbances are closely related to AD. However, research on blood biomarkers related to energy metabolism is still insufficient. Objective This study aims to explore the diagnostic and therapeutic significance of energy metabolism-related genes in AD. Methods AD cohorts were obtained from GEO database and single center. Machine learning algorithms were used to identify key genes. GSEA was used for functional analysis. Six algorithms were utilized to establish and evaluate diagnostic models. Key gene-related drugs were screened through network pharmacology. Results We identified 4 energy metabolism genes, NDUFA1, MECOM, RPL26, and RPS27. These genes have been confirmed to be closely related to multiple energy metabolic pathways and different types of T cell immune infiltration. Additionally, the transcription factors INSM2 and 4 lncRNAs were involved in regulating 4 genes. Further analysis showed that all biomarkers were downregulated in the AD cohorts and not affected by aging and gender. More importantly, we constructed a diagnostic prediction model of 4 biomarkers, which has been validated by various algorithms for its diagnostic performance. Furthermore, we found that valproic acid mainly interacted with these biomarkers through hydrogen bonding, salt bonding, and hydrophobic interaction. Conclusions We constructed a predictive model based on 4 energy metabolism genes, which may be helpful for the diagnosis of AD. The 4 validated genes could serve as promising blood biomarkers for AD. Their interaction with valproic acid may play a crucial role in the therapy of AD.
Collapse
Affiliation(s)
- Hongqi Wang
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jilai Li
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Wenjun Tu
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Zhiqun Wang
- Department of Radiology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
| | - Yiming Zhang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Lirong Chang
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Yan Wu
- Department of Anatomy, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xia Zhang
- Department of Neurology, Aerospace Center Hospital, Peking University Aerospace School of Clinical Medicine, Beijing, China
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
49
|
Yang C, Pan RY, Guan F, Yuan Z. Lactate metabolism in neurodegenerative diseases. Neural Regen Res 2024; 19:69-74. [PMID: 37488846 PMCID: PMC10479854 DOI: 10.4103/1673-5374.374142] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 03/08/2023] [Accepted: 03/30/2023] [Indexed: 07/26/2023] Open
Abstract
Lactate, a byproduct of glycolysis, was thought to be a metabolic waste until the discovery of the Warburg effect. Lactate not only functions as a metabolic substrate to provide energy but can also function as a signaling molecule to modulate cellular functions under pathophysiological conditions. The Astrocyte-Neuron Lactate Shuttle has clarified that lactate plays a pivotal role in the central nervous system. Moreover, protein lactylation highlights the novel role of lactate in regulating transcription, cellular functions, and disease development. This review summarizes the recent advances in lactate metabolism and its role in neurodegenerative diseases, thus providing optimal perspectives for future research.
Collapse
Affiliation(s)
- Chaoguang Yang
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Rui-Yuan Pan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| | - Fangxia Guan
- School of Life Sciences, Zhengzhou University, Zhengzhou, Henan Province, China
| | - Zengqiang Yuan
- The Brain Science Center, Beijing Institute of Basic Medical Sciences, Beijing, China
| |
Collapse
|
50
|
Zhang XQ, Xu L, Zhu XY, Tang ZH, Dong YB, Yu ZP, Shang Q, Wang ZC, Shen HW. D-serine reconstitutes synaptic and intrinsic inhibitory control of pyramidal neurons in a neurodevelopmental mouse model for schizophrenia. Nat Commun 2023; 14:8255. [PMID: 38086803 PMCID: PMC10716516 DOI: 10.1038/s41467-023-43930-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/24/2023] [Indexed: 12/18/2023] Open
Abstract
The hypothesis of N-methyl-D-aspartate receptor (NMDAR) dysfunction for cognitive impairment in schizophrenia constitutes the theoretical basis for the translational application of NMDAR co-agonist D-serine or its analogs. However, the cellular mechanism underlying the therapeutic effect of D-serine remains unclear. In this study, we utilize a mouse neurodevelopmental model for schizophrenia that mimics prenatal pathogenesis and exhibits hypoexcitability of parvalbumin-positive (PV) neurons, as well as PV-preferential NMDAR dysfunction. We find that D-serine restores excitation/inhibition balance by reconstituting both synaptic and intrinsic inhibitory control of cingulate pyramidal neurons through facilitating PV excitability and activating small-conductance Ca2+-activated K+ (SK) channels in pyramidal neurons, respectively. Either amplifying inhibitory drive via directly strengthening PV neuron activity or inhibiting pyramidal excitability via activating SK channels is sufficient to improve cognitive function in this model. These findings unveil a dual mechanism for how D-serine improves cognitive function in this model.
Collapse
Affiliation(s)
- Xiao-Qin Zhang
- Department of Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Le Xu
- Department of Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Xin-Yi Zhu
- Department of Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Zi-Hang Tang
- Department of Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Yi-Bei Dong
- Department of Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Zhi-Peng Yu
- Department of Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Qing Shang
- Department of Neurology, The First Affiliated Hospital of Ningbo University, 59 Liuting Street, Haishu District, Ningbo, Zhejiang, 315211, China
| | - Zheng-Chun Wang
- Department of Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China
| | - Hao-Wei Shen
- Department of Pharmacology, School of Medicine, Ningbo University, 818 Fenghua Rd, Ningbo, Zhejiang, 315211, China.
| |
Collapse
|