1
|
Demeter DV, Greene DJ. The promise of precision functional mapping for neuroimaging in psychiatry. Neuropsychopharmacology 2024; 50:16-28. [PMID: 39085426 PMCID: PMC11526039 DOI: 10.1038/s41386-024-01941-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 06/14/2024] [Accepted: 07/17/2024] [Indexed: 08/02/2024]
Abstract
Precision functional mapping (PFM) is a neuroimaging approach to reliably estimate metrics of brain function from individual people via the collection of large amounts of fMRI data (hours per person). This method has revealed much about the inter-individual variation of functional brain networks. While standard group-level studies, in which we average brain measures across groups of people, are important in understanding the generalizable neural underpinnings of neuropsychiatric disorders, many disorders are heterogeneous in nature. This heterogeneity often complicates clinical care, leading to patient uncertainty when considering prognosis or treatment options. We posit that PFM methods may help streamline clinical care in the future, fast-tracking the choice of personalized treatment that is most compatible with the individual. In this review, we provide a history of PFM studies, foundational results highlighting the benefits of PFM methods in the pursuit of an advanced understanding of individual differences in functional network organization, and possible avenues where PFM can contribute to clinical translation of neuroimaging research results in the way of personalized treatment in psychiatry.
Collapse
Affiliation(s)
- Damion V Demeter
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA.
| | - Deanna J Greene
- Department of Cognitive Science, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
2
|
Argiris G, Stern Y, Habeck C. Cross-sectional and Longitudinal Age-related Disintegration in Functional Connectivity: Reference Ability Neural Network Cohort. J Cogn Neurosci 2024; 36:2045-2066. [PMID: 38739573 PMCID: PMC11498141 DOI: 10.1162/jocn_a_02188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Some theories of aging have linked age-related cognitive decline to a reduction in distinctiveness of neural processing. Observed age-related correlation increases among disparate cognitive tasks have supported the dedifferentiation hypothesis. We previously showed cross-sectional evidence for age-related correlation decreases instead, supporting an alternative disintegration hypothesis. In the current study, we extended our previous research to a longitudinal sample. We tested 135 participants (20-80 years) at two time points-baseline and 5-year follow-up-on a battery of 12 in-scanner tests, each tapping one of four reference abilities. We performed between-tasks correlations within domain (convergent) and between domain (discriminant) at both the behavioral and neural level, calculating a single measure of construct validity (convergent - discriminant). Cross-sectionally, behavioral construct validity was significantly different from chance at each time point, but longitudinal change was not significant. Analysis by median age split revealed that older adults showed higher behavioral validity, driven by higher discriminant validity (lower between-tasks correlations). Participant-level neural validity decreased over time, with convergent validity consistently greater than discriminant validity; this finding was also observed at the cross-sectional level. In addition, a disproportionate decrease in neural validity with age remained significant after controlling for demographic factors. Factors predicting longitudinal changes in global cognition (mean performance across all 12 tasks) included age, change in neural validity, education, and National Adult Reading Test (premorbid intelligence). Change in neural validity partially mediated the effect of age on change in global cognition. Our findings support the theory of age-related disintegration, linking cognitive decline to changes in neural representations over time.
Collapse
|
3
|
Philips R, Baeken C, Billieux J, Harris JM, Maurage P, Muela I, Öz İT, Pabst A, Sescousse G, Vögele C, Brevers D. Brain mechanisms discriminating enactive mental simulations of running and plogging. Hum Brain Mapp 2024; 45:e26807. [PMID: 39185739 PMCID: PMC11345703 DOI: 10.1002/hbm.26807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 06/27/2024] [Accepted: 07/21/2024] [Indexed: 08/27/2024] Open
Abstract
Enactive cognition emphasizes co-constructive roles of humans and their environment in shaping cognitive processes. It is specifically engaged in the mental simulation of behaviors, enhancing the connection between perception and action. Here we investigated the core network of brain regions involved in enactive cognition as applied to mental simulations of physical exercise. We used a neuroimaging paradigm in which participants (N = 103) were required to project themselves running or plogging (running while picking-up litter) along an image-guided naturalistic trail. Using both univariate and multivariate brain imaging analyses, we find that a broad spectrum of brain activation discriminates between the mental simulation of plogging versus running. Critically, we show that self-reported ratings of daily life running engagement and the quality of mental simulation (how well participants were able to imagine themselves running) modulate the brain reactivity to plogging versus running. Finally, we undertook functional connectivity analyses centered on the insular cortex, which is a key region in the dynamic interplay between neurocognitive processes. This analysis revealed increased positive and negative patterns of insular-centered functional connectivity in the plogging condition (as compared to the running condition), thereby confirming the key role of the insular cortex in action simulation involving complex sets of mental mechanisms. Taken together, the present findings provide new insights into the brain networks involved in the enactive mental simulation of physical exercise.
Collapse
Affiliation(s)
- Roxane Philips
- Department of Behavioural and Cognitive Sciences, Institute for Health and BehaviourUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Chris Baeken
- Department of PsychiatryUniversity Hospital, UZ BrusselBrusselsBelgium
- Ghent Experimental Psychiatry (GHEP) Lab, Department of Head and Skin, Ghent University HospitalGhent UniversityGhentBelgium
- Department of Electrical EngineeringEindhoven University of TechnologyEindhovenThe Netherlands
| | - Joël Billieux
- Institute of PsychologyUniversity of LausanneLausanneSwitzerland
- Centre for Excessive Gambling, Addiction MedicineLausanne University Hospitals (CHUV)LausanneSwitzerland
| | - James Madog Harris
- Department of Behavioural and Cognitive Sciences, Institute for Health and BehaviourUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Pierre Maurage
- Louvain Experimental Psychopathology Research Group (LEP)Psychological Sciences Research Institute, UCLouvainLouvain‐la‐NeuveBelgium
| | - Ismael Muela
- Department of Experimental Psychology; Mind, Brain and Behavior Research Center (CIMCYC)University of GranadaGranadaSpain
| | - İrem Tuğçe Öz
- Louvain Experimental Psychopathology Research Group (LEP)Psychological Sciences Research Institute, UCLouvainLouvain‐la‐NeuveBelgium
| | - Arthur Pabst
- Louvain Experimental Psychopathology Research Group (LEP)Psychological Sciences Research Institute, UCLouvainLouvain‐la‐NeuveBelgium
| | - Guillaume Sescousse
- Lyon Neuroscience Research Center, INSERM U1028, CNRS UMR5292, PSYR2 TeamUniversity of LyonLyonFrance
| | - Claus Vögele
- Department of Behavioural and Cognitive Sciences, Institute for Health and BehaviourUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
| | - Damien Brevers
- Department of Behavioural and Cognitive Sciences, Institute for Health and BehaviourUniversity of LuxembourgEsch‐sur‐AlzetteLuxembourg
- Ghent Experimental Psychiatry (GHEP) Lab, Department of Head and Skin, Ghent University HospitalGhent UniversityGhentBelgium
- Louvain Experimental Psychopathology Research Group (LEP)Psychological Sciences Research Institute, UCLouvainLouvain‐la‐NeuveBelgium
| |
Collapse
|
4
|
Das A, Menon V. Frequency-specific directed connectivity between the hippocampus and parietal cortex during verbal and spatial episodic memory: an intracranial EEG replication. Cereb Cortex 2024; 34:bhae287. [PMID: 39042030 PMCID: PMC11264422 DOI: 10.1093/cercor/bhae287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 05/23/2024] [Indexed: 07/24/2024] Open
Abstract
Hippocampus-parietal cortex circuits are thought to play a crucial role in memory and attention, but their neural basis remains poorly understood. We employed intracranial intracranial electroencephalography (iEEG) to investigate the neurophysiological underpinning of these circuits across three memory tasks spanning verbal and spatial domains. We uncovered a consistent pattern of higher causal directed connectivity from the hippocampus to both lateral parietal cortex (supramarginal and angular gyrus) and medial parietal cortex (posterior cingulate cortex) in the delta-theta band during memory encoding and recall. This connectivity was independent of activation or suppression states in the hippocampus or parietal cortex. Crucially, directed connectivity from the supramarginal gyrus to the hippocampus was enhanced in participants with higher memory recall, highlighting its behavioral significance. Our findings align with the attention-to-memory model, which posits that attention directs cognitive resources toward pertinent information during memory formation. The robustness of these results was demonstrated through Bayesian replication analysis of the memory encoding and recall periods across the three tasks. Our study sheds light on the neural basis of casual signaling within hippocampus-parietal circuits, broadening our understanding of their critical roles in human cognition.
Collapse
Affiliation(s)
- Anup Das
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
| | - Vinod Menon
- Department of Psychiatry & Behavioral Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Department of Neurology & Neurological Sciences, Stanford University School of Medicine, Stanford, CA 94305
- Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA 94305
| |
Collapse
|
5
|
Häkkinen S, Voorhies WI, Willbrand EH, Tsai YH, Gagnant T, Yao JK, Weiner KS, Bunge SA. Lateral frontoparietal functional connectivity based on individual sulcal morphology. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590165. [PMID: 38659961 PMCID: PMC11042283 DOI: 10.1101/2024.04.18.590165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
A salient neuroanatomical feature of the human brain is its pronounced cortical folding, and there is mounting evidence that sulcal morphology is relevant to functional brain architecture and cognition. Recent studies have emphasized putative tertiary sulci (pTS): small, shallow, late-developing, and evolutionarily new sulci that have been posited to serve as functional landmarks in association cortices. A fruitful approach to characterizing brain architecture has been to delineate regions based on transitions in fMRI-based functional connectivity profiles; however, exact regional boundaries can change depending on the data used to generate the parcellation. As sulci are fixed neuroanatomical structures, here, we propose to anchor functional connectivity to individual-level sulcal anatomy. We characterized fine-grained patterns of functional connectivity across 42 sulci in lateral prefrontal (LPFC) and lateral parietal cortices (LPC) in a pediatric sample (N = 43; 20 female; ages 7-18). Further, we test for relationships between pTS morphology and functional network architecture, focusing on depth as a defining characteristic of these shallow sulci, and one that has been linked to variability in cognition. We find that 1) individual sulci have distinct patterns of connectivity, but nonetheless cluster together into groups with similar patterns - in some cases with distant rather than neighboring sulci, 2) there is moderate agreement in cluster assignments at the group and individual levels, underscoring the need for individual-level analyses, and 3) across individuals, greater depth was associated with higher network centrality for several pTS. These results highlight the importance of considering individual sulcal morphology for understanding functional brain organization. Significance Statement A salient, and functionally relevant, feature of the human brain is its pronounced cortical folding. However, the links between sulcal anatomy and brain function are still poorly understood - particularly for small, shallow, individually variable sulci in association cortices. Here, we explore functional connectivity among individually defined sulci in lateral prefrontal and parietal regions. We find that individual sulci have distinct patterns of connectivity but nonetheless cluster together into groups with similar connectivity - in some cases spanning lateral prefrontal and parietal sulci. We further show that the network centrality of specific sulci is positively associated with their depth, thereby helping to bridge the gap between individual differences in brain anatomy and functional networks leveraging the sulcal anatomy of the individual.
Collapse
Affiliation(s)
- Suvi Häkkinen
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720 USA
| | - Willa I. Voorhies
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
| | - Ethan H. Willbrand
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Medical Scientist Training Program, School of Medicine and Public Health, University of Wisconsin–Madison, Madison, WI, 53726 USA
| | - Yi-Heng Tsai
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Department of Psychology and Neuroscience, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599 USA
| | - Thomas Gagnant
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Medical Science Faculty, University of Bordeaux, Bordeaux, France
| | | | - Kevin S. Weiner
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720 USA
| | - Silvia A. Bunge
- Department of Psychology, University of California, Berkeley, Berkeley, CA, 94720 USA
- Helen Wills Neuroscience Institute, University of California, Berkeley, Berkeley, CA, 94720 USA
| |
Collapse
|
6
|
Agron AM, Martin A, Gilmore AW. Scene construction and autobiographical memory retrieval in autism spectrum disorder. Autism Res 2024; 17:204-214. [PMID: 38037250 PMCID: PMC10922094 DOI: 10.1002/aur.3066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 11/06/2023] [Indexed: 12/02/2023]
Abstract
Individuals with autism spectrum disorder (ASD) frequently exhibit difficulties in retrieving autobiographical memories (AMs) of specific events from their life. Such memory deficits are frequently attributed to underlying disruptions in self-referential or social cognition processes. This makes intuitive sense as these are hallmarks of ASD. However, an emerging literature suggests that parallel deficits also exist in ASD individuals' ability to reconstruct the rich spatial contexts in which events occur. This is a capacity known as scene construction, and in typically developing individuals is considered a core process in retrieving AMs. In this review, we discuss evidence of difficulties with scene construction in ASD, drawing upon experiments that involve AM retrieval, other forms of mental time travel, and spatial navigation. We also highlight aspects of extant data that cannot be accounted for using purely social explanations of memory deficits in ASD. We conclude by identifying key questions raised by our framework and suggest how they might be addressed in future research.
Collapse
Affiliation(s)
- Anna M. Agron
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH/NIH, Bethesda, MD 20892
| | - Alex Martin
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH/NIH, Bethesda, MD 20892
| | - Adrian W. Gilmore
- Section on Cognitive Neuropsychology, Laboratory of Brain and Cognition, NIMH/NIH, Bethesda, MD 20892
| |
Collapse
|
7
|
Krimmel SR, Laumann TO, Chauvin RJ, Hershey T, Roland JL, Shimony JS, Willie JT, Norris SA, Marek S, Van AN, Monk J, Scheidter KM, Whiting F, Ramirez-Perez N, Metoki A, Wang A, Kay BP, Nahman-Averbuch H, Fair DA, Lynch CJ, Raichle ME, Gordon EM, Dosenbach NUF. The brainstem's red nucleus was evolutionarily upgraded to support goal-directed action. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.12.30.573730. [PMID: 38260662 PMCID: PMC10802246 DOI: 10.1101/2023.12.30.573730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
The red nucleus is a large brainstem structure that coordinates limb movement for locomotion in quadrupedal animals (Basile et al., 2021). The humans red nucleus has a different pattern of anatomical connectivity compared to quadrupeds, suggesting a unique purpose (Hatschek, 1907). Previously the function of the human red nucleus remained unclear at least partly due to methodological limitations with brainstem functional neuroimaging (Sclocco et al., 2018). Here, we used our most advanced resting-state functional connectivity (RSFC) based precision functional mapping (PFM) in highly sampled individuals (n = 5) and large group-averaged datasets (combined N ~ 45,000), to precisely examine red nucleus functional connectivity. Notably, red nucleus functional connectivity to motor-effector networks (somatomotor hand, foot, and mouth) was minimal. Instead, red nucleus functional connectivity along the central sulcus was specific to regions of the recently discovered somato-cognitive action network (SCAN; (Gordon et al., 2023)). Outside of primary motor cortex, red nucleus connectivity was strongest to the cingulo-opercular (CON) and salience networks, involved in action/cognitive control (Dosenbach et al., 2007; Newbold et al., 2021) and reward/motivated behavior (Seeley, 2019), respectively. Functional connectivity to these two networks was organized into discrete dorsal-medial and ventral-lateral zones. Red nucleus functional connectivity to the thalamus recapitulated known structural connectivity of the dento-rubral thalamic tract (DRTT) and could prove clinically useful in functionally targeting the ventral intermediate (VIM) nucleus. In total, our results indicate that far from being a 'motor' structure, the red nucleus is better understood as a brainstem nucleus for implementing goal-directed behavior, integrating behavioral valence and action plans.
Collapse
Affiliation(s)
- Samuel R Krimmel
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Timothy O Laumann
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Roselyne J Chauvin
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Tamara Hershey
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychological & Brain Sciences, Washington University, St. Louis, Missouri, USA
| | - Jarod L Roland
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Joshua S Shimony
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Jon T Willie
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychiatry, Weill Cornell Medicine, New York, New York, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri
| | - Scott A Norris
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Scott Marek
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Andrew N Van
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Julia Monk
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Kristen M Scheidter
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Forrest Whiting
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nadeshka Ramirez-Perez
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurosurgery, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Athanasia Metoki
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Anxu Wang
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Division of Computation and Data Science, Washington University, St. Louis, Missouri, USA
| | - Benjamin P Kay
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Hadas Nahman-Averbuch
- Washington University Pain Center, Department of Anesthesiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Damien A Fair
- Department of Pediatrics, University of Minnesota, Minneapolis, Minnesota, USA
- Masonic Institute for the Developing Brain, University of Minnesota, Minneapolis, Minnesota, USA
- Institute of Child Development, University of Minnesota, Minneapolis, Minnesota, USA
| | - Charles J Lynch
- Department of Psychiatry, Weill Cornell Medicine, New York, New York, USA
| | - Marcus E Raichle
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychological & Brain Sciences, Washington University, St. Louis, Missouri, USA
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
| | - Evan M Gordon
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nico U F Dosenbach
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Psychological & Brain Sciences, Washington University, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri
- Program in Occupational Therapy, Washington University, St. Louis, Missouri, USA
- Department of Pediatrics, Washington University School of Medicine, St. Louis, Missouri, USA
| |
Collapse
|
8
|
Nakuci J, Yeon J, Xue K, Kim JH, Kim SP, Rahnev D. Quantifying the contribution of subject and group factors in brain activation. Cereb Cortex 2023; 33:11092-11101. [PMID: 37771044 PMCID: PMC10646690 DOI: 10.1093/cercor/bhad348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 09/05/2023] [Accepted: 09/06/2023] [Indexed: 09/30/2023] Open
Abstract
Research in neuroscience often assumes universal neural mechanisms, but increasing evidence points toward sizeable individual differences in brain activations. What remains unclear is the extent of the idiosyncrasy and whether different types of analyses are associated with different levels of idiosyncrasy. Here we develop a new method for addressing these questions. The method consists of computing the within-subject reliability and subject-to-group similarity of brain activations and submitting these values to a computational model that quantifies the relative strength of group- and subject-level factors. We apply this method to a perceptual decision-making task (n = 50) and find that activations related to task, reaction time, and confidence are influenced equally strongly by group- and subject-level factors. Both group- and subject-level factors are dwarfed by a noise factor, though higher levels of smoothing increases their contributions relative to noise. Overall, our method allows for the quantification of group- and subject-level factors of brain activations and thus provides a more detailed understanding of the idiosyncrasy levels in brain activations.
Collapse
Affiliation(s)
- Johan Nakuci
- School of Psychology, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Jiwon Yeon
- Department of Psychology, Stanford University, Stanford, CA 94305, United States
| | - Kai Xue
- School of Psychology, Georgia Institute of Technology, Atlanta, GA 30332, United States
| | - Ji-Hyun Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Sung-Phil Kim
- Department of Biomedical Engineering, Ulsan National Institute of Science and Technology, Ulsan 44919, South Korea
| | - Dobromir Rahnev
- School of Psychology, Georgia Institute of Technology, Atlanta, GA 30332, United States
| |
Collapse
|
9
|
Tripathi V, Somers DC. Predicting an individual's cerebellar activity from functional connectivity fingerprints. Neuroimage 2023; 281:120360. [PMID: 37717715 DOI: 10.1016/j.neuroimage.2023.120360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/26/2023] [Accepted: 08/31/2023] [Indexed: 09/19/2023] Open
Abstract
The cerebellum is gaining scientific attention as a key neural substrate of cognitive function; however, individual differences in the cerebellar organization have not yet been well studied. Individual differences in functional brain organization can be closely tied to individual differences in brain connectivity. 'Connectome Fingerprinting' is a modeling approach that predicts an individual's brain activity from their connectome. Here, we extend 'Connectome Fingerprinting' (CF) to the cerebellum. We examined functional MRI data from 160 subjects (98 females) of the Human Connectome Project young adult dataset. For each of seven cognitive task paradigms, we constructed CF models from task activation maps and resting-state cortico-cerebellar functional connectomes, using a set of training subjects. For each model, we then predicted task activation in novel individual subjects, using their resting-state functional connectomes. In each cognitive paradigm, the CF models predicted individual subject cerebellar activity patterns with significantly greater precision than did predictions from the group average task activation. Examination of the CF models revealed that the cortico-cerebellar connections that carried the most information were those made with the non-motor portions of the cerebral cortex. These results demonstrate that the fine-scale functional connectivity between the cerebral cortex and cerebellum carries important information about individual differences in cerebellar functional organization. Additionally, CF modeling may be useful in the examination of patients with cerebellar dysfunction, since model predictions require only resting-state fMRI data which is more easily obtained than task fMRI.
Collapse
Affiliation(s)
- Vaibhav Tripathi
- Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA 02215, USA.
| | - David C Somers
- Psychological and Brain Sciences, Boston University, 64 Cummington Mall, Boston, MA 02215, USA
| |
Collapse
|
10
|
Uddin LQ, Betzel RF, Cohen JR, Damoiseaux JS, De Brigard F, Eickhoff SB, Fornito A, Gratton C, Gordon EM, Laird AR, Larson-Prior L, McIntosh AR, Nickerson LD, Pessoa L, Pinho AL, Poldrack RA, Razi A, Sadaghiani S, Shine JM, Yendiki A, Yeo BTT, Spreng RN. Controversies and progress on standardization of large-scale brain network nomenclature. Netw Neurosci 2023; 7:864-905. [PMID: 37781138 PMCID: PMC10473266 DOI: 10.1162/netn_a_00323] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 05/10/2023] [Indexed: 10/03/2023] Open
Abstract
Progress in scientific disciplines is accompanied by standardization of terminology. Network neuroscience, at the level of macroscale organization of the brain, is beginning to confront the challenges associated with developing a taxonomy of its fundamental explanatory constructs. The Workgroup for HArmonized Taxonomy of NETworks (WHATNET) was formed in 2020 as an Organization for Human Brain Mapping (OHBM)-endorsed best practices committee to provide recommendations on points of consensus, identify open questions, and highlight areas of ongoing debate in the service of moving the field toward standardized reporting of network neuroscience results. The committee conducted a survey to catalog current practices in large-scale brain network nomenclature. A few well-known network names (e.g., default mode network) dominated responses to the survey, and a number of illuminating points of disagreement emerged. We summarize survey results and provide initial considerations and recommendations from the workgroup. This perspective piece includes a selective review of challenges to this enterprise, including (1) network scale, resolution, and hierarchies; (2) interindividual variability of networks; (3) dynamics and nonstationarity of networks; (4) consideration of network affiliations of subcortical structures; and (5) consideration of multimodal information. We close with minimal reporting guidelines for the cognitive and network neuroscience communities to adopt.
Collapse
Affiliation(s)
- Lucina Q. Uddin
- Department of Psychiatry and Biobehavioral Sciences and Department of Psychology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Richard F. Betzel
- Department of Psychological and Brain Sciences, Indiana University, Bloomington, IN, USA
| | - Jessica R. Cohen
- Department of Psychology and Neuroscience, University of North Carolina, Chapel Hill, NC, USA
| | - Jessica S. Damoiseaux
- Institute of Gerontology and Department of Psychology, Wayne State University, Detroit, MI, USA
| | | | - Simon B. Eickhoff
- Institute of Systems Neuroscience, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Alex Fornito
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Caterina Gratton
- Department of Psychology, Northwestern University, Evanston, IL, USA
| | - Evan M. Gordon
- Mallinckrodt Institute of Radiology, Washington University, St. Louis, MO, USA
| | - Angela R. Laird
- Department of Physics, Florida International University, Miami, FL, USA
| | - Linda Larson-Prior
- Deptartment of Psychiatry and Department of Neurobiology and Developmental Sciences, University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - A. Randal McIntosh
- Institute for Neuroscience and Neurotechnology, Simon Fraser University, Vancouver, BC, Canada
| | | | - Luiz Pessoa
- Department of Psychology, University of Maryland, College Park, MD, USA
| | - Ana Luísa Pinho
- Brain and Mind Institute, Western University, London, Ontario, Canada
| | | | - Adeel Razi
- Turner Institute for Brain and Mental Health, Monash University, Melbourne, Australia
| | - Sepideh Sadaghiani
- Department of Psychology, University of Illinois, Urbana Champaign, IL, USA
| | - James M. Shine
- Brain and Mind Center, University of Sydney, Sydney, Australia
| | - Anastasia Yendiki
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA
| | - B. T. Thomas Yeo
- Department of Electrical and Computer Engineering, National University of Singapore, Singapore
| | - R. Nathan Spreng
- Department of Neurology and Neurosurgery, McGill University, Montreal, Canada
| |
Collapse
|
11
|
Koslov SR, Kable JW, Foster BL. Dissociable contributions of the medial parietal cortex to recognition memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.12.557048. [PMID: 37745317 PMCID: PMC10515876 DOI: 10.1101/2023.09.12.557048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Human neuroimaging studies of episodic memory retrieval routinely observe the engagement of specific cortical regions beyond the medial temporal lobe. Of these, medial parietal cortex (MPC) is of particular interest given its ubiquitous, and yet distinct, functional characteristics during different types of retrieval tasks. Specifically, while recognition memory and autobiographical recall tasks are both used to probe episodic retrieval, these paradigms consistently drive distinct patterns of response within MPC. This dissociation adds to growing evidence suggesting a common principle of functional organization across memory related brain structures, specifically regarding the control or content demands of memory-based decisions. To carefully examine this putative organization, we used a high-resolution fMRI dataset collected at ultra-high field (7T) while subjects performed thousands of recognition-memory trials to identify MPC regions responsive to recognition-decisions or semantic content of stimuli within and across individuals. We observed interleaving, though distinct, functional subregions of MPC where responses were sensitive to either recognition decisions or the semantic representation of stimuli, but rarely both. In addition, this functional dissociation within MPC was further accentuated by distinct profiles of connectivity bias with the hippocampus during task and rest. Finally, we show that recent observations of person and place selectivity within MPC reflect category specific responses from within identified semantic regions that are sensitive to mnemonic demands. Together, these data better account for how distinct patterns of MPC responses can occur as a result of task demands during episodic retrieval and may reflect a common principle of organization throughout hippocampal-neocortical memory systems.
Collapse
Affiliation(s)
- Seth R. Koslov
- Department of Neurosurgery, Perelman School of Medicine; University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Joseph W. Kable
- Department of Psychology; University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| | - Brett L. Foster
- Department of Neurosurgery, Perelman School of Medicine; University of Pennsylvania, Philadelphia, Pennsylvania, 19104, USA
| |
Collapse
|
12
|
Kwon Y, Salvo JJ, Anderson N, Holubecki AM, Lakshman M, Yoo K, Kay K, Gratton C, Braga RM. Situating the parietal memory network in the context of multiple parallel distributed networks using high-resolution functional connectivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.16.553585. [PMID: 37645962 PMCID: PMC10462098 DOI: 10.1101/2023.08.16.553585] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
A principle of brain organization is that networks serving higher cognitive functions are widely distributed across the brain. One exception has been the parietal memory network (PMN), which plays a role in recognition memory but is often defined as being restricted to posteromedial association cortex. We hypothesized that high-resolution estimates of the PMN would reveal small regions that had been missed by prior approaches. High-field 7T functional magnetic resonance imaging (fMRI) data from extensively sampled participants was used to define the PMN within individuals. The PMN consistently extended beyond the core posteromedial set to include regions in the inferior parietal lobule; rostral, dorsal, medial, and ventromedial prefrontal cortex; the anterior insula; and ramus marginalis of the cingulate sulcus. The results suggest that, when fine-scale anatomy is considered, the PMN matches the expected distributed architecture of other association networks, reinforcing that parallel distributed networks are an organizing principle of association cortex.
Collapse
Affiliation(s)
- Y Kwon
- Northwestern University Department of Neurology
| | - J J Salvo
- Northwestern University Department of Neurology
| | - N Anderson
- Northwestern University Department of Neurology
| | | | - M Lakshman
- Northwestern University Department of Neurology
| | - K Yoo
- Yale University Department of Psychology
| | - K Kay
- University of Minnesota Department of Radiology
| | - C Gratton
- Florida State University Department of Psychology
| | - R M Braga
- Northwestern University Department of Neurology
| |
Collapse
|
13
|
Soleimani G, Nitsche MA, Bergmann TO, Towhidkhah F, Violante IR, Lorenz R, Kuplicki R, Tsuchiyagaito A, Mulyana B, Mayeli A, Ghobadi-Azbari P, Mosayebi-Samani M, Zilverstand A, Paulus MP, Bikson M, Ekhtiari H. Closing the loop between brain and electrical stimulation: towards precision neuromodulation treatments. Transl Psychiatry 2023; 13:279. [PMID: 37582922 PMCID: PMC10427701 DOI: 10.1038/s41398-023-02565-5] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/06/2023] [Accepted: 07/20/2023] [Indexed: 08/17/2023] Open
Abstract
One of the most critical challenges in using noninvasive brain stimulation (NIBS) techniques for the treatment of psychiatric and neurologic disorders is inter- and intra-individual variability in response to NIBS. Response variations in previous findings suggest that the one-size-fits-all approach does not seem the most appropriate option for enhancing stimulation outcomes. While there is a growing body of evidence for the feasibility and effectiveness of individualized NIBS approaches, the optimal way to achieve this is yet to be determined. Transcranial electrical stimulation (tES) is one of the NIBS techniques showing promising results in modulating treatment outcomes in several psychiatric and neurologic disorders, but it faces the same challenge for individual optimization. With new computational and methodological advances, tES can be integrated with real-time functional magnetic resonance imaging (rtfMRI) to establish closed-loop tES-fMRI for individually optimized neuromodulation. Closed-loop tES-fMRI systems aim to optimize stimulation parameters based on minimizing differences between the model of the current brain state and the desired value to maximize the expected clinical outcome. The methodological space to optimize closed-loop tES fMRI for clinical applications includes (1) stimulation vs. data acquisition timing, (2) fMRI context (task-based or resting-state), (3) inherent brain oscillations, (4) dose-response function, (5) brain target trait and state and (6) optimization algorithm. Closed-loop tES-fMRI technology has several advantages over non-individualized or open-loop systems to reshape the future of neuromodulation with objective optimization in a clinically relevant context such as drug cue reactivity for substance use disorder considering both inter and intra-individual variations. Using multi-level brain and behavior measures as input and desired outcomes to individualize stimulation parameters provides a framework for designing personalized tES protocols in precision psychiatry.
Collapse
Affiliation(s)
- Ghazaleh Soleimani
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Michael A Nitsche
- Department of Psychology and Neuroscience, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
- Bielefeld University, University Hospital OWL, Protestant Hospital of Bethel Foundation, University Clinic of Psychiatry and Psychotherapy, and University Clinic of Child and Adolescent Psychiatry and Psychotherapy, Bielefeld, Germany
| | - Til Ole Bergmann
- Neuroimaging Center, Focus Program Translational Neuroscience, Johannes Gutenberg University Medical Center Mainz, Mainz, Germany
- Leibniz Institute for Resilience Research, Mainz, Germany
| | - Farzad Towhidkhah
- Department of Biomedical Engineering, Amirkabir University of Technology, Tehran, Iran
| | - Ines R Violante
- School of Psychology, Faculty of Health and Medical Sciences, University of Surrey, Guilford, UK
| | - Romy Lorenz
- Department of Psychology, Stanford University, Stanford, CA, USA
- MRC CBU, University of Cambridge, Cambridge, UK
- Department of Neurophysics, MPI, Leipzig, Germany
| | | | | | - Beni Mulyana
- Laureate Institute for Brain Research, Tulsa, OK, USA
- School of Electrical and Computer Engineering, University of Oklahoma, Tulsa, OK, USA
| | - Ahmad Mayeli
- University of Pittsburgh Medical Center, Pittsburg, PA, USA
| | - Peyman Ghobadi-Azbari
- Department of Biomedical Engineering, Shahed University, Tehran, Iran
- Iranian National Center for Addiction Studies, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohsen Mosayebi-Samani
- Department of Psychology and Neuroscience, Leibniz Research Center for Working Environment and Human Factors, Dortmund, Germany
| | - Anna Zilverstand
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA
| | | | | | - Hamed Ekhtiari
- Department of Psychiatry & Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
- Laureate Institute for Brain Research, Tulsa, OK, USA.
| |
Collapse
|
14
|
Abstract
In a complex world, we are constantly faced with environmental stimuli that shape our moment-to-moment experiences. But just as rich and complex as the external world is the internal milieu-our imagination. Imagination offers a powerful vehicle for playing out hypothetical experiences in the mind's eye. It allows us to mentally time travel to behold what the future might bring, including our greatest desires or fears. Indeed, imagined experiences tend to be emotion-laden. How and why are humans capable of this remarkable feat? Based on psychological findings, we highlight the importance of imagination for emotional aspects of cognition and behavior, namely in the generation and regulation of emotions. Based on recent cognitive neuroscience work, we identify putative neural networks that are most critical for emotional imagination, with a major focus on the default mode network. Finally, we briefly highlight the possible functional implications of individual differences in imagination. Overall, we hope to address why humans have the capacity to simulate hypothetical emotional experiences and how this ability can be harnessed in adaptive (and sometimes maladaptive) ways. We end by discussing open questions.
Collapse
Affiliation(s)
- Chantelle M Cocquyt
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| | - Daniela J Palombo
- Department of Psychology, University of British Columbia, Vancouver, British Columbia, Canada
| |
Collapse
|
15
|
Bradley MM, Sambuco N, Lang PJ. Neural correlates of repeated retrieval of emotional autobiographical events. Neuropsychologia 2022; 169:108203. [DOI: 10.1016/j.neuropsychologia.2022.108203] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 03/01/2022] [Accepted: 03/02/2022] [Indexed: 12/29/2022]
|
16
|
Three types of individual variation in brain networks revealed by single-subject functional connectivity analyses. Curr Opin Behav Sci 2021. [DOI: 10.1016/j.cobeha.2021.02.014] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
17
|
Gratton C, Braga RM. Editorial overview: Deep imaging of the individual brain: past, practice, and promise. Curr Opin Behav Sci 2021. [DOI: 10.1016/j.cobeha.2021.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|