1
|
Jiang H, Li J, Jian Y, Yang T, Zhang J, Li J. Expression, purification, and crystal structure of mpox virus A41 protein. Protein Expr Purif 2024; 219:106480. [PMID: 38588871 DOI: 10.1016/j.pep.2024.106480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Revised: 04/01/2024] [Accepted: 04/02/2024] [Indexed: 04/10/2024]
Abstract
Mpox is a zoonotic disease that was once endemic in Africa countries caused by mpox virus. However, cases recently have been confirmed in many non-endemic countries outside of Africa. The rapidly increasing number of confirmed mpox cases poses a threat to the international community. In-depth studies of key viral factors are urgently needed, which will inform the design of multiple antiviral agents. Mpox virus A41L gene encodes a secreted protein, A41, that is nonessential for viral replication, but could affect the host response to infection via interacting with chemokines. Here, mpox virus A41 protein was expressed in Sf9 cells, and purified by affinity chromatography followed by gel filtration. Surface plasmon resonance spectroscopy showed that purified A41 binds a certain human chemokine CXCL8 with the equilibrium dissociation constant (KD) being 1.22 × 10-6 M. The crystal structure of mpox virus A41 protein was solved at 1.92 Å. Structural analysis and comparison revealed that mpox virus A41 protein adopts a characteristic β-sheet topology, showing minor differences with that of vaccinia virus. These preliminary structural and functional studies of A41 protein from mpox virus will help us better understand its role in chemokine subversion, and contributing to the knowledge to viral chemokine binding proteins.
Collapse
Affiliation(s)
- Haihai Jiang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Juncheng Li
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Yuxin Jian
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Tingting Yang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China
| | - Jin Zhang
- School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330031, China.
| | - Jian Li
- College of Pharmaceutical Sciences, Gannan Medical University, Ganzhou, 341000, China.
| |
Collapse
|
2
|
Grudzien P, Neufeld H, Ebe Eyenga M, Gaponenko V. Development of tolerance to chemokine receptor antagonists: current paradigms and the need for further investigation. Front Immunol 2023; 14:1184014. [PMID: 37575219 PMCID: PMC10420067 DOI: 10.3389/fimmu.2023.1184014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 06/27/2023] [Indexed: 08/15/2023] Open
Abstract
Chemokine G-protein coupled receptors are validated drug targets for many diseases, including cancer, neurological, and inflammatory disorders. Despite much time and effort spent on therapeutic development, very few chemokine receptor antagonists are approved for clinical use. Among potential reasons for the slow progress in developing chemokine receptor inhibitors, antagonist tolerance, a progressive reduction in drug efficacy after repeated administration, is likely to play a key role. The mechanisms leading to antagonist tolerance remain poorly understood. In many cases, antagonist tolerance is accompanied by increased receptor concentration on the cell surface after prolonged exposure to chemokine receptor antagonists. This points to a possible role of altered receptor internalization and presentation on the cell surface, as has been shown for agonist (primarily opioid) tolerance. In addition, examples of antagonist tolerance in the context of other G-protein coupled receptors suggest the involvement of noncanonical signal transduction in opposing the effects of the antagonists. In this review, we summarize the available progress and challenges in therapeutic development of chemokine receptor antagonists, describe the available knowledge about antagonist tolerance, and propose new avenues for future investigation of this important phenomenon. Furthermore, we highlight the modern methodologies that have the potential to reveal novel mechanisms leading to antagonist tolerance and to propel the field forward by advancing the development of potent "tolerance-free" antagonists of chemokine receptors.
Collapse
Affiliation(s)
| | | | | | - Vadim Gaponenko
- Department of Biochemistry and Molecular Genetics, College of Medicine, University of Illinois at Chicago, Chicago, IL, United States
| |
Collapse
|
3
|
Singhvi N, Talwar C, Mahanta U, Kaur J, Mondal K, Ahmad N, Tyagi I, Sharma G, Gupta V. Comparative genomics and integrated system biology approach unveiled undirected phylogeny patterns, mutational hotspots, functional patterns, and molecule repurposing for monkeypox virus. Funct Integr Genomics 2023; 23:231. [PMID: 37432480 DOI: 10.1007/s10142-023-01168-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/08/2023] [Accepted: 07/03/2023] [Indexed: 07/12/2023]
Abstract
Monkeypox is a viral zoonosis with symptoms that are reminiscent of those experienced in previous smallpox cases. The GSAID database (Global Initiative on Sharing Avian Influenza Data) was used to assess 630 genomes of MPXV. The phylogenetic study revealed six primary clades, as well as a smaller percentage in radiating clades. Individual clades that make up various nationalities may have formed as a result of a particular SNP hotspot type that mutated in a specific population. The most significant mutation based on a mutational hotspot analysis was found at G3729A and G5143A. The gene ORF138, which encodes the Ankyrin repeat (ANK) protein, was found to have the most mutations. This protein mediates molecular recognition via protein-protein interactions. It was shown that 243 host proteins interacted with 10 monkeypox proteins identified as the hub proteins E3, SPI2, C5, K7, E8, G6, N2, B14, CRMB, and A41 through 262 direct connections. The interaction with chemokine system-related proteins provides further evidence that the monkeypox virus suppresses human proteins to facilitate its survival against innate immunity. Several FDA-approved molecules were evaluated as possible inhibitors of F13, a significant envelope protein on the membrane of extracellular versions of the virus. A total of 2500 putative ligands were individually docked with the F13 protein. The interaction between the F13 protein and these molecules may help prevent the monkeypox virus from spreading. After being confirmed by experiments, these putative inhibitors could have an impact on the activity of these proteins and be used in monkeypox treatments.
Collapse
Affiliation(s)
- Nirjara Singhvi
- Department of Zoology, School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, 248007, India
| | - Chandni Talwar
- Department of Zoology, University of Delhi, Delhi, India, 110007
| | - Utkarsha Mahanta
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, 560100, India
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, 502284, India
| | - Jasvinder Kaur
- Department of Zoology, Gargi College, University of Delhi, New Delhi, 110049, India
| | - Krishnendu Mondal
- Ministry of Environment, Forest and Climate Change, Integrated Regional Office, Dehradun, 248001, India
| | - Nabeel Ahmad
- Department of Biotechnology, School of Allied Sciences, Dev Bhoomi Uttarakhand University, Dehradun, 248007, India
| | - Inderjeet Tyagi
- Centre of DNA Taxonomy, Molecular Systematics Division, Zoological Survey of India,, Kolkata, 700053, India
| | - Gaurav Sharma
- Institute of Bioinformatics and Applied Biotechnology (IBAB), Bengaluru, Karnataka, 560100, India
- Department of Biotechnology, Indian Institute of Technology Hyderabad, Telangana, 502284, India
| | - Vipin Gupta
- Ministry of Environment, Forest and Climate Change, Integrated Regional Office, Dehradun, 248001, India.
| |
Collapse
|
4
|
Franzoni G, Pedrera M, Sánchez-Cordón PJ. African Swine Fever Virus Infection and Cytokine Response In Vivo: An Update. Viruses 2023; 15:233. [PMID: 36680273 PMCID: PMC9864779 DOI: 10.3390/v15010233] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 01/03/2023] [Accepted: 01/10/2023] [Indexed: 01/17/2023] Open
Abstract
African swine fever (ASF) is a hemorrhagic viral disease of domestic pigs and wild suids (all Sus scrofa) caused by the ASF virus (ASFV). The disease is spreading worldwide without control, threatening pig production due to the absence of licensed vaccine or commercially available treatments. A thorough understanding of the immunopathogenic mechanisms behind ASFV infection is required to better fight the disease. Cytokines are small, non-structural proteins, which play a crucial role in many aspects of the immune responses to viruses, including ASFV. Infection with virulent ASFV isolates often results in exacerbated immune responses, with increased levels of serum pro-inflammatory interleukins (IL-1α, IL-1β, IL-6), TNF and chemokines (CCL2, CCL5, CXCL10). Increased levels of IL-1, IL-6 and TNF are often detected in several tissues during acute ASFV infections and associated with lymphoid depletion, hemorrhages and oedemas. IL-1Ra is frequently released during ASFV infection to block further IL-1 activity, with its implication in ASFV immunopathology having been suggested. Increased levels of IFN-α and of the anti-inflammatory IL-10 seem to be negatively correlated with animal survival, whereas some correlation between virus-specific IFN-γ-producing cells and protection has been suggested in different studies where different vaccine candidates were tested, although future works should elucidate whether IFN-γ release by specific cell types is related to protection or disease development.
Collapse
Affiliation(s)
- Giulia Franzoni
- Department of Animal Health, Istituto Zooprofilattico Sperimentale della Sardegna, 07100 Sassari, Italy
| | - Miriam Pedrera
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| | - Pedro J. Sánchez-Cordón
- Centro de Investigación en Sanidad Animal (CISA), Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria (INIA), Consejo Superior de Investigaciones Científicas (CSIC), Valdeolmos, 28130 Madrid, Spain
| |
Collapse
|
5
|
Torbati E, Stuart G, Krause K, Brown C, Wise L. Methods to Assess Chemokine Binding and Anti-chemotactic Activity of Virus Proteins. Methods Mol Biol 2023; 2597:217-234. [PMID: 36374424 DOI: 10.1007/978-1-0716-2835-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chemokines are key instigators of inflammatory and immune responses. Viruses can suppress these responses by secreting proteins that interfere with chemokine action. These proteins bind to chemokines and block the host's ability to recruit immune cells to sites of infection, thus facilitating virus replication and spread. When produced recombinantly, chemokine binding proteins provide a formidable resource to deploy against human disease. Here, we describe an enzyme-linked immunosorbent inhibition assay and a chemotaxis inhibition assay that are employed to assess the chemokine binding strength and anti-chemotactic activity of viral proteins. These assays are quick and reproducible, and are thus ideal for screening putative or modified chemokine binding proteins as the first step in their development as therapeutics.
Collapse
Affiliation(s)
- Elham Torbati
- Department of Microbiology and Immunology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Gabriella Stuart
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Kurt Krause
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Chris Brown
- Department of Biochemistry, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand
| | - Lyn Wise
- Department of Pharmacology and Toxicology, School of Biomedical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
6
|
Chemokines induced by PEDV infection and chemotactic effects on monocyte, T and B cells. Vet Microbiol 2022; 275:109599. [DOI: 10.1016/j.vetmic.2022.109599] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2022] [Revised: 10/24/2022] [Accepted: 10/27/2022] [Indexed: 11/06/2022]
|
7
|
Genetic analysis of two viroceptor genes of orf virus. Arch Virol 2022; 167:1577-1582. [PMID: 35567695 DOI: 10.1007/s00705-022-05447-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 03/09/2022] [Indexed: 01/02/2023]
Abstract
In the present study, we analyzed the chemokine-binding protein (CBP) and the GM-CSF/IL-2 inhibition factor (GIF) of orf virus (ORFV) isolates of sheep and goat origin from different geographical regions of India. Both are immunomodulatory proteins known for their unique strategy of establishing short-term immunity and re-infection in their host. The GIF gene is highly conserved, whereas the CBP gene is highly variable. Both the proteins have conserved potential N-glycosylation sites. The GIF protein contains the "WDPWV" motif responsible for receptor activation. In addition, the SUSHI/short consensus repeats (SCR) domain is reported for the first time in ORFV. Both proteins could potentially be used as immunotherapeutic agents in inflammatory diseases related to the overexpression of specific cytokines.
Collapse
|
8
|
Kumar NP, Banurekha VV, C P GK, Nancy A, Padmapriyadarsini C, Mary AS, Devi KRU, Murhekar M, Babu S. Prime-Boost Vaccination With Covaxin/BBV152 Induces Heightened Systemic Cytokine and Chemokine Responses. Front Immunol 2021; 12:752397. [PMID: 34721425 PMCID: PMC8554328 DOI: 10.3389/fimmu.2021.752397] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/22/2021] [Indexed: 11/13/2022] Open
Abstract
Covaxin/BBV152 is a whole virion inactivated SARS-CoV-2 vaccine. The effect of prime-boost vaccination with Covaxin on systemic immune responses is not known. We investigated the effect of Covaxin on the plasma levels of a wide panel of cytokines and chemokines at baseline (M0) and at months 1 (M1), 2 (M2) and 3 (M3) following prime-boost vaccination in healthy volunteers. Our results demonstrate that Covaxin induces enhanced plasma levels of Type 1 cytokines (IFNγ, IL-2, TNFα), Type 2/regulatory cytokines (IL-4, IL-5, IL-10 and IL-13), Type 17 cytokine (IL-17A), other pro-inflammatory cytokines (IL-6, IL-12, IL-1α, IL-1β) and other cytokines (IL-3 and IL-7) but diminished plasma levels of IL-25, IL-33, GM-CSF and Type 1 IFNs. Covaxin also induced enhanced plasma levels of CC chemokine (CCL4) and CXC chemokines (CXCL1, CXCL2 and CX3CL1) but diminished levels of CXCL10. Covaxin vaccination induces enhanced cytokine and chemokine responses as early as month 1, following prime-boost vaccination, indicating robust activation of innate and adaptive immune responses in vaccine recipients.
Collapse
Affiliation(s)
- Nathella Pavan Kumar
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| | - V V Banurekha
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| | - Girish Kumar C P
- Indian Council of Medical Research-National Institute of Epidemiology, Chennai, India
| | - Arul Nancy
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| | - C Padmapriyadarsini
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| | - A Stella Mary
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| | - K R Uma Devi
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| | - Manoj Murhekar
- Indian Council of Medical Research-National Institute of Epidemiology, Chennai, India
| | - Subash Babu
- Indian Council of Medical Research (ICMR)-National Institute for Research in Tuberculosis, Chennai, India
| |
Collapse
|
9
|
Yang B, Shen C, Zhang D, Zhang T, Shi X, Yang J, Hao Y, Zhao D, Cui H, Yuan X, Chen X, Zhang K, Zheng H, Liu X. Mechanism of interaction between virus and host is inferred from the changes of gene expression in macrophages infected with African swine fever virus CN/GS/2018 strain. Virol J 2021; 18:170. [PMID: 34412678 PMCID: PMC8375147 DOI: 10.1186/s12985-021-01637-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 08/09/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND African swine fever virus (ASFV) is a highly lethal virus that can infect porcine alveolar macrophages (PAMs). Since ASFV, China has dealt with a heavy blow to the pig industry. However, the effect of infection of ASFV strains isolated from China on PAM transcription level is not yet clarified. METHODS In this study, RNA sequencing (RNA-seq) was used to detect the differential expression of genes in PAMs at different time points after ASFV-CN/GS/2018 infection. The fluorescent quantitative polymerase chain reaction (qPCR) method was used to confirm the altered expression of related genes in PAMs infected with ASFV. RESULTS A total of 1154 differentially expressed genes were identified after ASFV-CN/GS/2018 infection, of which 816 were upregulated, and 338 were downregulated. GO and KEGG analysis showed that these genes were dynamically enriched in various biological processes, including innate immune response, inflammatory response, chemokines, and apoptosis. Furthermore, qPCR verified that the DEAD box polypeptide 58 (DDX58), Interferon-induced helicase C domain-containing protein 1 (IFIH1), Toll-like receptor 3 (TLR3), and TLR7 of PAMs were upregulated after ASFV infection, while TLR4 and TLR6 had a significant downward trend during ASFV infection. The expression of some factors related to antiviral and inflammation was altered significantly after ASFV infection, among which interferon-induced protein with tetratricopeptide repeats 1 (IFIT1), IFIT2, Interleukin-6 (IL-6) were upregulated, and Ewing's tumor-associated antigen 1 homolog (ETAA1) and Prosaposin receptor GPR37 (GPR37) were downregulated. In addition, we discovered that ASFV infection is involved in the regulation of chemokine expression in PAMs, and the chemokines, such as C-X-C motif chemokine 8 (CXCL8) and CXCL10, were upregulated after infection. However, the expression of chemokine receptor C-X-C chemokine receptor type 2 (CXCR2) is downregulated. Also, that the transcriptional levels of pro-apoptotic and anti-apoptotic factors changed after infection. CONCLUSIONS After ASFV-CN/GS/2018 infection, the expression of some antiviral and inflammatory factors in PAMs changed significantly. The ASFV infection may activates the RLR and TLR signaling pathways. In addition, ASFV infection is involved in regulating of chemokine expression in PAMs and host cell apoptosis.
Collapse
Affiliation(s)
- Bo Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| | - Chaochao Shen
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| | - Dajun Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| | - Ting Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| | - Xijuan Shi
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| | - Jinke Yang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| | - Yu Hao
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| | - Dengshuai Zhao
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| | - Huimei Cui
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| | - Xingguo Yuan
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| | - Xuehui Chen
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| | - Keshan Zhang
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot-and-Mouth Disease Reference Laboratory, Lanzhou Veterinary Research Institute, Chinese Academy of Agriculture Science, Lanzhou, 73004 China
| |
Collapse
|
10
|
Stark LE, Guan W, Colvin ME, LiWang PJ. The binding and specificity of chemokine binding proteins, through the lens of experiment and computation. Biomed J 2021; 45:439-453. [PMID: 34311129 PMCID: PMC9421921 DOI: 10.1016/j.bj.2021.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 07/16/2021] [Accepted: 07/19/2021] [Indexed: 11/26/2022] Open
Abstract
Chemokines are small proteins that are critical for immune function, being primarily responsible for the activation and chemotaxis of leukocytes. As such, many viruses, as well as parasitic arthropods, have evolved systems to counteract chemokine function in order to maintain virulence, such as binding chemokines, mimicking chemokines, or producing analogs of transmembrane chemokine receptors that strongly bind their targets. The focus of this review is the large group of chemokine binding proteins (CBP) with an emphasis on those produced by mammalian viruses. Because many chemokines mediate inflammation, these CBP could possibly be used pharmaceutically as anti-inflammatory agents. In this review, we summarize the structural properties of a diverse set of CBP and describe in detail the chemokine binding properties of the poxvirus-encoded CBP called vCCI (viral CC Chemokine Inhibitor). Finally, we describe the current and emerging capabilities of combining computational simulation, structural analysis, and biochemical/biophysical experimentation to understand, and possibly re-engineer, protein–protein interactions.
Collapse
Affiliation(s)
- Lauren E Stark
- Quantitative and Systems Biology Graduate Group, University of California, 5200 N. Lake Rd., Merced, CA 95343
| | - Wenyan Guan
- Materials and Biomaterials Science and Engineering, University of California, 5200 N. Lake Rd., Merced, CA 95343
| | - Michael E Colvin
- Quantitative and Systems Biology Graduate Group, University of California, 5200 N. Lake Rd., Merced, CA 95343; Department of Chemistry and Biochemistry, University of California, 5200 N. Lake Rd., Merced, CA 95343
| | - Patricia J LiWang
- Quantitative and Systems Biology Graduate Group, University of California, 5200 N. Lake Rd., Merced, CA 95343; Materials and Biomaterials Science and Engineering, University of California, 5200 N. Lake Rd., Merced, CA 95343; Department of Molecular and Cell Biology, University of California, 5200 N. Lake Rd., Merced, CA 95343.
| |
Collapse
|
11
|
Mavri M, Spiess K, Rosenkilde MM, Rutland CS, Vrecl M, Kubale V. Methods for Studying Endocytotic Pathways of Herpesvirus Encoded G Protein-Coupled Receptors. Molecules 2020; 25:E5710. [PMID: 33287269 PMCID: PMC7730005 DOI: 10.3390/molecules25235710] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 11/20/2020] [Accepted: 12/01/2020] [Indexed: 12/20/2022] Open
Abstract
Endocytosis is a fundamental process involved in trafficking of various extracellular and transmembrane molecules from the cell surface to its interior. This enables cells to communicate and respond to external environments, maintain cellular homeostasis, and transduce signals. G protein-coupled receptors (GPCRs) constitute a family of receptors with seven transmembrane alpha-helical domains (7TM receptors) expressed at the cell surface, where they regulate physiological and pathological cellular processes. Several herpesviruses encode receptors (vGPCRs) which benefits the virus by avoiding host immune surveillance, supporting viral dissemination, and thereby establishing widespread and lifelong infection, processes where receptor signaling and/or endocytosis seem central. vGPCRs are rising as potential drug targets as exemplified by the cytomegalovirus-encoded receptor US28, where its constitutive internalization has been exploited for selective drug delivery in virus infected cells. Therefore, studying GPCR trafficking is of great importance. This review provides an overview of the current knowledge of endocytic and cell localization properties of vGPCRs and methodological approaches used for studying receptor internalization. Using such novel approaches, we show constitutive internalization of the BILF1 receptor from human and porcine γ-1 herpesviruses and present motifs from the eukaryotic linear motif (ELM) resources with importance for vGPCR endocytosis.
Collapse
Affiliation(s)
- Maša Mavri
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (M.M.); (M.V.)
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (M.M.R.)
| | - Katja Spiess
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (M.M.R.)
| | - Mette Marie Rosenkilde
- Department of Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 Copenhagen, Denmark; (K.S.); (M.M.R.)
| | - Catrin Sian Rutland
- School of Veterinary Medicine and Science, Medical Faculty, Sutton, Bonington Campus, University of Nottingham, Sutton Bonington LE12 5RD, UK;
| | - Milka Vrecl
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (M.M.); (M.V.)
| | - Valentina Kubale
- Department of Anatomy, Histology with Embryology and Cytology, Institute of Preclinical Sciences, Veterinary Faculty, University of Ljubljana, Gerbičeva 60, 1000 Ljubljana, Slovenia; (M.M.); (M.V.)
| |
Collapse
|
12
|
He D, Hu J, Yang R, Zeng B, Yang D, Li D, Zhang M, Yang M, Ni Q, Ning R, Fan X, Li X, Mao X, Li Y. Evolutionary analysis of chemokine CXCL16 and its receptor CXCR6 in murine rodents. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 109:103718. [PMID: 32360411 DOI: 10.1016/j.dci.2020.103718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 06/11/2023]
Abstract
The chemokine CXCL16 and its receptor CXCR6 are implicated in various physiological and pathological processes in cooperative and/or stand-alone fashions. Despite the significance of rodent animal models in elucidating the function and clinical relevance of the chemokine and its receptor, the evolutionary characterization of these molecules remains deficient for this taxon to a certain extent. In this study, we implemented a comparison of synonymous and nonsynonymous variation rates in combination with the maximum likelihood (ML) analysis and Tajima's test to evaluate the interspecific and intraspecific evolutions of CXCL16 and CXCR6 in murine rodents. Our results indicate that adaptive selection has frequently contributed to genetic diversity of both CXCL16 and CXCR6 in the murine lineage that is asynchronous with a relative dependence between these genes. This signature is radically different from the lineage-specific and concordant adaptive diversity of the primate homologues of these genes, which was reported in a previous study. The diversity identified in the present study shed further light on molecular strategies against the challenges towards CXCL16 and CXCR6.
Collapse
Affiliation(s)
- Dan He
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Jia Hu
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Rongrong Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Bo Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Deying Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Diyan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Mingwang Zhang
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Mingyao Yang
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Qingyong Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Ruihong Ning
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Xiaolan Fan
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Xiaoyan Li
- Beijing Anzhen Hospital, Capital Medical University, Beijing, People's Republic of China; The Key Laboratory of Remodeling-Related Cardiovascular Diseases, Capital Medical University, Ministry of Education, Beijing Institute of Heart, Lung and Blood Vessel Diseases, Beijing, People's Republic of China
| | - Xueping Mao
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China.
| |
Collapse
|
13
|
Yaron JR, Zhang L, Guo Q, Burgin M, Schutz LN, Awo E, Wise L, Krause KL, Ildefonso CJ, Kwiecien JM, Juby M, Rahman MM, Chen H, Moyer RW, Alcami A, McFadden G, Lucas AR. Deriving Immune Modulating Drugs from Viruses-A New Class of Biologics. J Clin Med 2020; 9:E972. [PMID: 32244484 PMCID: PMC7230489 DOI: 10.3390/jcm9040972] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 03/19/2020] [Accepted: 03/23/2020] [Indexed: 02/07/2023] Open
Abstract
Viruses are widely used as a platform for the production of therapeutics. Vaccines containing live, dead and components of viruses, gene therapy vectors and oncolytic viruses are key examples of clinically-approved therapeutic uses for viruses. Despite this, the use of virus-derived proteins as natural sources for immune modulators remains in the early stages of development. Viruses have evolved complex, highly effective approaches for immune evasion. Originally developed for protection against host immune responses, viral immune-modulating proteins are extraordinarily potent, often functioning at picomolar concentrations. These complex viral intracellular parasites have "performed the R&D", developing highly effective immune evasive strategies over millions of years. These proteins provide a new and natural source for immune-modulating therapeutics, similar in many ways to penicillin being developed from mold or streptokinase from bacteria. Virus-derived serine proteinase inhibitors (serpins), chemokine modulating proteins, complement control, inflammasome inhibition, growth factors (e.g., viral vascular endothelial growth factor) and cytokine mimics (e.g., viral interleukin 10) and/or inhibitors (e.g., tumor necrosis factor) have now been identified that target central immunological response pathways. We review here current development of virus-derived immune-modulating biologics with efficacy demonstrated in pre-clinical or clinical studies, focusing on pox and herpesviruses-derived immune-modulating therapeutics.
Collapse
Affiliation(s)
- Jordan R. Yaron
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Liqiang Zhang
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Qiuyun Guo
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Michelle Burgin
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Lauren N. Schutz
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Enkidia Awo
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Lyn Wise
- University of Otago, Dunedin 9054, New Zealand; (L.W.); (K.L.K.)
| | - Kurt L. Krause
- University of Otago, Dunedin 9054, New Zealand; (L.W.); (K.L.K.)
| | | | - Jacek M. Kwiecien
- Department of Pathology and Molecular Medicine, McMaster University, Hamilton, ON L8S4L8, Canada
| | - Michael Juby
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Masmudur M. Rahman
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Hao Chen
- The Department of Tumor Surgery, Second Hospital of Lanzhou University, Lanzhou 730030, China;
| | - Richard W. Moyer
- Department of Molecular Genetics and Microbiology, University of Florida, Gainesville, FL 32610, USA;
| | - Antonio Alcami
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain;
| | - Grant McFadden
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
| | - Alexandra R. Lucas
- Center for Personalized Diagnostics, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA; (J.R.Y.); (L.Z.); (Q.G.); (M.B.); (L.N.S.); (E.A.); (M.J.)
- Center for Immunotherapy, Vaccines and Virotherapy, Biodesign Institute, Arizona State University, Tempe, AZ 85281, USA (G.M.)
- St Joseph Hospital, Dignity Health, Creighton University, Phoenix, AZ 85013, USA
| |
Collapse
|
14
|
Piesz JL, Barker SE, Bricknell IR. Anti-chemotactic activity in the secretory/excretory products of Lepeophtheirus salmonis. FISH & SHELLFISH IMMUNOLOGY 2020; 98:296-300. [PMID: 31945482 DOI: 10.1016/j.fsi.2020.01.023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2019] [Revised: 01/07/2020] [Accepted: 01/12/2020] [Indexed: 06/10/2023]
Abstract
The ectoparasite, Lepeophtheirus salmonis (Kroyer 1837), is effective at avoiding elimination from its host, Atlantic salmon, Salmo salar L., by inhibiting the recruitment of immune cells to the site of attachment. In other ectoparasitic arthropods, numerous factors have been identified that bind or neutralize chemokines preventing their interaction with receptors on the surfaces of immune cells. To determine if L. salmonis is utilizing a similar mechanism of immune modulation, the chemotactic activity of peripheral blood leukocytes (PBL) to leukotriene B4 (LTB4) and the secreted/excreted products (SEPs) of the sea louse were investigated in vitro. The results showed that incubation of LTB4 with SEPs reduced leukocyte migration compared to LTB4 immune stimulation alone. Data suggests that one of the mechanisms L. salmonis may be using to regulate immune cell recruitment in Atlantic salmon is by inhibiting or neutralizing the activity of chemokines.
Collapse
Affiliation(s)
- Jessica L Piesz
- Molecular and Biomedical Sciences, The University of Maine, Orono, ME, 04469, USA; Aquaculture Research Institute, The University of Maine, Orono, ME, 04469, USA.
| | - Sarah E Barker
- Aquaculture Research Institute, The University of Maine, Orono, ME, 04469, USA
| | - Ian R Bricknell
- Aquaculture Research Institute, The University of Maine, Orono, ME, 04469, USA; School of Marine Sciences, The University of Maine, Orono, ME, 04469, USA
| |
Collapse
|
15
|
Abstract
The etiopathogenesis of severe periodontitis includes herpesvirus-bacteria coinfection. This article evaluates the pathogenicity of herpesviruses (cytomegalovirus and Epstein-Barr virus) and periodontopathic bacteria (Aggregatibacter actinomycetemcomitans and Porphyromonas gingivalis) and coinfection of these infectious agents in the initiation and progression of periodontitis. Cytomegalovirus and A. actinomycetemcomitans/P. gingivalis exercise synergistic pathogenicity in the development of localized ("aggressive") juvenile periodontitis. Cytomegalovirus and Epstein-Barr virus are associated with P. gingivalis in adult types of periodontitis. Periodontal herpesviruses that enter the general circulation may also contribute to disease development in various organ systems. A 2-way interaction is likely to occur between periodontal herpesviruses and periodontopathic bacteria, with herpesviruses promoting bacterial upgrowth, and bacterial factors reactivating latent herpesviruses. Bacterial-induced gingivitis may facilitate herpesvirus colonization of the periodontium, and herpesvirus infections may impede the antibacterial host defense and alter periodontal cells to predispose for bacterial adherence and invasion. Herpesvirus-bacteria synergistic interactions, are likely to comprise an important pathogenic determinant of aggressive periodontitis. However, mechanistic investigations into the molecular and cellular interaction between periodontal herpesviruses and bacteria are still scarce. Herpesvirus-bacteria coinfection studies may yield significant new discoveries of pathogenic determinants, and drug and vaccine targets to minimize or prevent periodontitis and periodontitis-related systemic diseases.
Collapse
Affiliation(s)
- Casey Chen
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Pinghui Feng
- Section of Infection and Immunity, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| | - Jørgen Slots
- Division of Periodontology, Diagnostic Sciences & Dental Hygiene, Herman Ostrow School of Dentistry, University of Southern California, Los Angeles, California, USA
| |
Collapse
|
16
|
Alejo A, Sánchez C, Amu S, Fallon PG, Alcamí A. Addition of a Viral Immunomodulatory Domain to Etanercept Generates a Bifunctional Chemokine and TNF Inhibitor. J Clin Med 2019; 9:E25. [PMID: 31877657 PMCID: PMC7020083 DOI: 10.3390/jcm9010025] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/17/2022] Open
Abstract
The inhibition of tumor necrosis factor (TNF) through the use of either antibodies or soluble receptors is a highly effective strategy for the clinical control of chronic inflammatory conditions such as rheumatoid arthritis. Different viruses have similarly exploited this concept by expressing a set of specifically tailored secreted TNF decoy receptors to block host inflammatory responses. Poxviruses have been shown to encode at least two distinct molecules, termed Cytokine response modifier D (CrmD) and CrmB, in which a TNF inhibitor is combined with a chemokine inhibitor on the same molecule. The ectromelia virus CrmD protein was found to be a critical determinant of virulence in vivo, being able to control local inflammation to allow further viral spread and the establishment of a lethal infection. Strikingly, both the TNF and the chemokine inhibitory domains are required for the full activity of CrmD, suggesting a model in which inhibition of TNF is supported by the concomitant blockade of a reduced set of chemokines. Inspired by this model, we reasoned that a similar strategy could be applied to modify the clinically used human TNF receptor (etanercept), producing a generation of novel, more effective therapeutic agents. Here we show the analysis of a set of fusion proteins derived from etanercept by addition of a viral chemokine-binding protein. A bifunctional inhibitor capable of binding to and blocking the activity of TNF as well as a set of chemokines is generated that is active in the prevention of arthritis in a murine disease model.
Collapse
Affiliation(s)
- Alí Alejo
- Centro de Investigación en Sanidad Animal, Instituto Nacional de Investigación y Tecnología Agraria y Alimentaria, Valdeolmos, 28130 Madrid, Spain
| | - Carolina Sánchez
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain;
| | - Sylvie Amu
- Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 Dublin 2, Ireland; (S.A.); (P.G.F.)
| | - Padraic G. Fallon
- Trinity Biomedical Sciences Institute, Trinity College Dublin, D02 Dublin 2, Ireland; (S.A.); (P.G.F.)
| | - Antonio Alcamí
- Centro de Biología Molecular Severo Ochoa (Consejo Superior de Investigaciones Científicas and Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain;
| |
Collapse
|
17
|
Xu F, He D, Ning R, Zeng B, Thompson CW, Li Y, Wang D, Li Y. Genetic diversity of chemokine XCL1 and its receptor XCR1 in murine rodents. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 98:80-88. [PMID: 31026469 DOI: 10.1016/j.dci.2019.04.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/21/2019] [Accepted: 04/21/2019] [Indexed: 06/09/2023]
Abstract
The chemokine ligand XCL1 plays critical roles in immune responses with diverse physiological and pathological implications through interactions with a cognate G protein-coupled receptor XCR1. To shed insight into their versatile nature, we analyzed genetic variations of XCL1 and XCR1 in murine rodents, including commonly-used model organisms Mus musculus (house mouse) and Rattus norvegicus (Norway rat). Our results showed that adaptive selection has contributed to the genetic diversification of these proteins in murine lineage. Moreover, in both M. musculus and R. norvegicus, the chemokine and its receptor exhibit similar signs of selective sweeps resulting from positive selection. In light of currently available structural and interaction information for chemokines and their receptors, the similarity of XCL1/XCR1 evolutionary patterns among murine species and the parallels of their evolutionary footprints within individual species suggest that interplay could exist between the adaptively selected changes, or between the domains on which the identified changes are located, and consequently preserve the physiological interaction of XCL1 and XCR1.
Collapse
Affiliation(s)
- Feifei Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Dan He
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Ruihong Ning
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Bo Zeng
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Cody W Thompson
- Department of Ecology and Evolutionary Biology and Museum of Zoology, University of Michigan, Ann Arbor, USA
| | - Ying Li
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Dawei Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, People's Republic of China
| | - Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China.
| |
Collapse
|
18
|
Šebová R, Bauerová-Hlinková V, Beck K, Nemčovičová I, Bauer J, Kúdelová M. Residue Mutations in Murine Herpesvirus 68 Immunomodulatory Protein M3 Reveal Specific Modulation of Chemokine Binding. Front Cell Infect Microbiol 2019; 9:210. [PMID: 31293981 PMCID: PMC6603146 DOI: 10.3389/fcimb.2019.00210] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 05/31/2019] [Indexed: 11/29/2022] Open
Abstract
The M3 protein (M3) encoded by murine gammaherpesvirus 68 (MHV-68) is a unique viral immunomodulator with a high-affinity for a broad spectrum of chemokines, key mediators responsible for the migration of immune cells to sites of inflammation. M3 is currently being studied as a very attractive and desirable tool for blocking the chemokine signaling involved in some inflammatory diseases and cancers. In this study, we elucidated the role of M3 residues E70 and T272 in binding to chemokines by examining the effects of the E70A and T272G mutations on the ability of recombinant M3, prepared in Escherichia coli cells, to bind the human chemokines CCL5 and CXCL8. We found that the E70A mutation enhanced binding of M3 to CCL5 two-fold but had little effect on its binding to CXCL8. In contrast, the T272G mutation was found to be important for the thermal stability of M3 and significantly decreased M3's binding to both CCL5 (by about 4×) and CXCL8 (by about 5×). We also constructed in silico models of the wild-type M3-CCL5 and M3-CCL8 complexes and found substantial differences in their physical and chemical properties. M3 models with single mutation E70A and T272G suggested the role of E70 and T272 in binding M3 protein to chemokines. In sum, we have confirmed that site-directed mutagenesis could be an effective tool for modulating the blockade of particular chemokines by M3, as desired in therapeutic treatments for severe inflammatory illnesses arising from chemokine network dysregulation.
Collapse
Affiliation(s)
- Radka Šebová
- Department of Viral Immunology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vladena Bauerová-Hlinková
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Konrad Beck
- Cardiff University School of Dentistry, Heath Park, Cardiff, United Kingdom
| | - Ivana Nemčovičová
- Department of Viral Immunology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Jacob Bauer
- Department of Biochemistry and Structural Biology, Institute of Molecular Biology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marcela Kúdelová
- Department of Viral Immunology, Biomedical Research Center, Institute of Virology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
19
|
Yu L, Dong J, Wang Y, Zhang P, Liu Y, Zhang L, Liang P, Wang L, Song C. Porcine epidemic diarrhea virus nsp4 induces pro-inflammatory cytokine and chemokine expression inhibiting viral replication in vitro. Arch Virol 2019; 164:1147-1157. [DOI: 10.1007/s00705-019-04176-2] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Accepted: 01/17/2019] [Indexed: 12/19/2022]
|
20
|
Xu F, He D, Liu J, Ni Q, Lyu Y, Xiong S, Li Y. Genetic diversification of chemokine CXCL16 and its receptor CXCR6 in primates. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 85:86-94. [PMID: 29635005 DOI: 10.1016/j.dci.2018.04.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 04/06/2018] [Accepted: 04/06/2018] [Indexed: 06/08/2023]
Abstract
Chemokine CXCL16 and its receptor CXCR6 are associated with a series of physiological and pathological processes in cooperative and stand-alone fashions. To shed insight into their versatile nature, we studied genetic variations of CXCL16 and CXCR6 in primates. Evolutionary analyses revealed that these genes underwent a similar evolutionary fate. Both genes experienced adaptive diversification with the phylogenetic division of cercopithecoids (Old World monkeys) and hominoids (humans, great apes, and gibbons) from their common ancestor. In contrast, they were conserved in the periods preceding and following the dividing process. In terms of the adaptive diversification between cercopithecoids and hominoids, the adaptive genetic changes have occurred in the mucin-like and chemokine domains of CXCL16 and the N-terminus and transmembrane helixes of CXCR6. In combination with currently available structural and functional information for CXCL16 and CXCR6, the parallels between the evolutionary footprints and the co-occurrence of adaptive diversification at some evolutionary stage suggest that interplay could exist between the diversification-related amino acid sites, or between the domains on which the identified sites are located, in physiological processes such as chemotaxis and/or cell adhesion.
Collapse
Affiliation(s)
- Feifei Xu
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Dan He
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Jiabin Liu
- Sichuan Key Laboratory of Conservation Biology for Endangered Wildlife, Chengdu Research Base of Giant Panda Breeding, People's Republic of China
| | - Qingyong Ni
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China
| | - Yongqing Lyu
- The First Hospital of Kunming Calmette International Hospital, People's Republic of China
| | - Shiqiu Xiong
- Cancer Research Centre, University of Leicester, United Kingdom
| | - Yan Li
- College of Animal Science and Technology, Sichuan Agricultural University, Wenjiang, People's Republic of China; Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Wenjiang, People's Republic of China.
| |
Collapse
|
21
|
Hughes CE, Nibbs RJB. A guide to chemokines and their receptors. FEBS J 2018; 285:2944-2971. [PMID: 29637711 PMCID: PMC6120486 DOI: 10.1111/febs.14466] [Citation(s) in RCA: 792] [Impact Index Per Article: 113.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Revised: 03/25/2018] [Accepted: 04/03/2018] [Indexed: 12/12/2022]
Abstract
The chemokines (or chemotactic cytokines) are a large family of small, secreted proteins that signal through cell surface G protein-coupled heptahelical chemokine receptors. They are best known for their ability to stimulate the migration of cells, most notably white blood cells (leukocytes). Consequently, chemokines play a central role in the development and homeostasis of the immune system, and are involved in all protective or destructive immune and inflammatory responses. Classically viewed as inducers of directed chemotactic migration, it is now clear that chemokines can stimulate a variety of other types of directed and undirected migratory behavior, such as haptotaxis, chemokinesis, and haptokinesis, in addition to inducing cell arrest or adhesion. However, chemokine receptors on leukocytes can do more than just direct migration, and these molecules can also be expressed on, and regulate the biology of, many nonleukocytic cell types. Chemokines are profoundly affected by post-translational modification, by interaction with the extracellular matrix (ECM), and by binding to heptahelical 'atypical' chemokine receptors that regulate chemokine localization and abundance. This guide gives a broad overview of the chemokine and chemokine receptor families; summarizes the complex physical interactions that occur in the chemokine network; and, using specific examples, discusses general principles of chemokine function, focusing particularly on their ability to direct leukocyte migration.
Collapse
Affiliation(s)
- Catherine E Hughes
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Robert J B Nibbs
- Institute of Infection, Inflammation & Immunity, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
22
|
McNaughton EF, Eustace AD, King S, Sessions RB, Kay A, Farris M, Broadbridge R, Kehoe O, Kungl AJ, Middleton J. Novel Anti-Inflammatory Peptides Based on Chemokine-Glycosaminoglycan Interactions Reduce Leukocyte Migration and Disease Severity in a Model of Rheumatoid Arthritis. THE JOURNAL OF IMMUNOLOGY 2018; 200:3201-3217. [PMID: 29572348 DOI: 10.4049/jimmunol.1701187] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 02/22/2018] [Indexed: 11/19/2022]
Abstract
Inflammation is characterized by the infiltration of leukocytes from the circulation and into the inflamed area. Leukocytes are guided throughout this process by chemokines. These are basic proteins that interact with leukocytes to initiate their activation and extravasation via chemokine receptors. This is enabled through chemokine immobilization by glycosaminoglycans (GAGs) at the luminal endothelial surface of blood vessels. A specific stretch of basic amino acids on the chemokine, often at the C terminus, interacts with the negatively charged GAGs, which is considered an essential interaction for the chemokine function. Short-chain peptides based on this GAG-binding region of the chemokines CCL5, CXCL8, and CXCL12γ were synthesized using standard Fmoc chemistry. These peptides were found to bind to GAGs with high affinity, which translated into a reduction of leukocyte migration across a cultured human endothelial monolayer in response to chemokines. The leukocyte migration was inhibited upon removal of heparan sulfate from the endothelial surface and was found to reduce the ability of the chemokine and peptide to bind to endothelial cells in binding assays and to human rheumatoid arthritis tissue. The data suggest that the peptide competes with the wild-type chemokine for binding to GAGs such as HS and thereby reduces chemokine presentation and subsequent leukocyte migration. Furthermore, the lead peptide based on CXCL8 could reduce the disease severity and serum levels of the proinflammatory cytokine TNF-α in a murine Ag-induced arthritis model. Taken together, evidence is provided for interfering with the chemokine-GAG interaction as a relevant therapeutic approach.
Collapse
Affiliation(s)
- Emily F McNaughton
- School of Oral and Dental Sciences, Faculty of Health Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom
| | - Andrew D Eustace
- School of Oral and Dental Sciences, Faculty of Health Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom
| | - Sophie King
- School of Oral and Dental Sciences, Faculty of Health Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom
| | - Richard B Sessions
- School of Biochemistry, Faculty of Biomedical Sciences, University of Bristol, Bristol BS8 1TD, United Kingdom
| | - Alasdair Kay
- Leopold Muller Arthritis Research Centre, Institute for Science and Technology in Medicine, Robert Jones and Agnes Hunt Orthopaedic Hospital, Medical School, Keele University, Keele SY10 7AG, United Kingdom
| | - Michele Farris
- Peptide Protein Research Ltd., Bishop's Waltham SO32 1QD, United Kingdom; and
| | - Robert Broadbridge
- Peptide Protein Research Ltd., Bishop's Waltham SO32 1QD, United Kingdom; and
| | - Oksana Kehoe
- Leopold Muller Arthritis Research Centre, Institute for Science and Technology in Medicine, Robert Jones and Agnes Hunt Orthopaedic Hospital, Medical School, Keele University, Keele SY10 7AG, United Kingdom
| | | | - Jim Middleton
- School of Oral and Dental Sciences, Faculty of Health Sciences, University of Bristol, Bristol BS1 2LY, United Kingdom;
| |
Collapse
|
23
|
Pontejo SM, Murphy PM. Chemokines encoded by herpesviruses. J Leukoc Biol 2017; 102:1199-1217. [PMID: 28848041 DOI: 10.1189/jlb.4ru0417-145rr] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/15/2022] Open
Abstract
Viruses use diverse strategies to elude the immune system, including copying and repurposing host cytokine and cytokine receptor genes. For herpesviruses, the chemokine system of chemotactic cytokines and receptors is a common source of copied genes. Here, we review the current state of knowledge about herpesvirus-encoded chemokines and discuss their possible roles in viral pathogenesis, as well as their clinical potential as novel anti-inflammatory agents or targets for new antiviral strategies.
Collapse
Affiliation(s)
- Sergio M Pontejo
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Philip M Murphy
- Laboratory of Molecular Immunology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
24
|
González-Motos V, Kropp KA, Viejo-Borbolla A. Chemokine binding proteins: An immunomodulatory strategy going viral. Cytokine Growth Factor Rev 2016; 30:71-80. [DOI: 10.1016/j.cytogfr.2016.02.007] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 02/27/2016] [Indexed: 01/13/2023]
|
25
|
|
26
|
Szpakowska M, Chevigné A. vCCL2/vMIP-II, the viral master KEYmokine. J Leukoc Biol 2015; 99:893-900. [DOI: 10.1189/jlb.2mr0815-383r] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 11/20/2015] [Indexed: 11/24/2022] Open
|
27
|
Lubman OY, Fremont DH. Parallel Evolution of Chemokine Binding by Structurally Related Herpesvirus Decoy Receptors. Structure 2015; 24:57-69. [PMID: 26671708 DOI: 10.1016/j.str.2015.10.018] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 10/16/2015] [Accepted: 10/20/2015] [Indexed: 11/29/2022]
Abstract
A wide variety of pathogens targets chemokine signaling networks in order to disrupt host immune surveillance and defense. Here, we report a structural and mutational analysis of rodent herpesvirus Peru encoded R17, a potent chemokine inhibitor that sequesters CC and C chemokines with high affinity. R17 consists of a pair of β-sandwich domains linked together by a bridging sheet, which form an acidic binding cleft for the chemokine CCL3 on the opposite face of a basic surface cluster that binds glycosaminoglycans. R17 promiscuously engages chemokines primarily through the same N-loop determinants used for host receptor recognition while residues located in the chemokine 40s loop drive kinetically stable complex formation. The core fold adopted by R17 is unexpectedly similar to that of the M3 chemokine decoy receptor encoded by MHV-68, although, strikingly, neither the location of ligand engagement nor the stoichiometry of binding is conserved, suggesting that their functions evolved independently.
Collapse
Affiliation(s)
- Olga Y Lubman
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Daved H Fremont
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Biochemistry and Molecular Biophysics, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Molecular Microbiology, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
28
|
Hydrodynamic Gene Delivery of CC Chemokine Binding Fc Fusion Proteins to Target Acute Vascular Inflammation In Vivo. Sci Rep 2015; 5:17404. [PMID: 26620767 PMCID: PMC4664965 DOI: 10.1038/srep17404] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 10/29/2015] [Indexed: 11/17/2022] Open
Abstract
Blockade of CC chemokines is an attractive yet under utilized therapeutic strategy. We report the in vivo pharmacokinetics of a broad-spectrum vaccinia virus CC chemokine binding protein (35 K) fused to human IgG1 Fc. We demonstrate that the in vivo efficacy of the protein can be interrogated using hydrodynamic gene delivery of a standard mammalian expression plasmid. High plasma levels of the 35 K-Fc protein are maintained for at least 14 days post gene transfer, with the protein still detectable at 5 weeks. We confirm that the protein has biological activity in acute inflammation, causing a significant reduction in monocyte recruitment during zymosan induced peritonitis. The ability of 35 K-Fc to block more complex pathologies is demonstrated using aortic digests to assess angiotensin II mediated leukocyte recruitment to the aorta. Angiotensin II causes upregulation of mCCL2 in the aorta causing the accumulation of CCR2+ cells. Peak monocyte recruitment to the aorta occurs within 3 days and this process is CC chemokine dependent, being significantly reduced by hydrodynamic delivery of 35 K-Fc.
Collapse
|
29
|
Rodríguez-Frade JM, Martínez-Muñoz L, Villares R, Cascio G, Lucas P, Gomariz RP, Mellado M. Chemokine Detection Using Receptors Immobilized on an SPR Sensor Surface. Methods Enzymol 2015; 570:1-18. [PMID: 26921939 DOI: 10.1016/bs.mie.2015.09.013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/10/2022]
Abstract
Chemokines and their receptors take part in many physiological and pathological processes, and their dysregulated expression is linked to chronic inflammatory and autoimmune diseases, immunodeficiencies, and cancer. The chemokine receptors, members of the G protein-coupled receptor family, are integral membrane proteins, with seven-transmembrane domains that bind the chemokines and transmit signals through GTP-binding proteins. Many assays used to study the structure, conformation, or activation mechanism of these receptors are based on ligand-binding measurement, as are techniques to detect new agonists and antagonists that modulate chemokine function. Such methods require labeling of the chemokine and/or its receptor, which can alter their binding characteristics. Surface plasmon resonance (SPR) is a powerful technique for analysis of the interaction between immobilized receptors and ligands in solution, in real time, and without labeling. SPR measurements nonetheless require expression and purification steps that can alter the conformation, stability, and function of the chemokine and/or the chemokine receptor. In this review, we focus on distinct methods to immobilize chemokine receptors on the surface of an optical biosensor. We expose the advantages and disadvantages of different protocols used and describe in detail the method to retain viral particles as receptor carriers that can be used for SPR determinations.
Collapse
Affiliation(s)
| | - Laura Martínez-Muñoz
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB/CSIC), Madrid, Spain
| | - Ricardo Villares
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB/CSIC), Madrid, Spain
| | - Graciela Cascio
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB/CSIC), Madrid, Spain
| | - Pilar Lucas
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB/CSIC), Madrid, Spain
| | - Rosa P Gomariz
- Department of Cell Biology, Universidad Complutense de Madrid, Madrid, Spain
| | - Mario Mellado
- Department of Immunology and Oncology, Centro Nacional de Biotecnología (CNB/CSIC), Madrid, Spain.
| |
Collapse
|
30
|
Vanheule V, Janssens R, Boff D, Kitic N, Berghmans N, Ronsse I, Kungl AJ, Amaral FA, Teixeira MM, Van Damme J, Proost P, Mortier A. The Positively Charged COOH-terminal Glycosaminoglycan-binding CXCL9(74-103) Peptide Inhibits CXCL8-induced Neutrophil Extravasation and Monosodium Urate Crystal-induced Gout in Mice. J Biol Chem 2015; 290:21292-304. [PMID: 26183778 DOI: 10.1074/jbc.m115.649855] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Indexed: 12/11/2022] Open
Abstract
The ELR(-)CXC chemokine CXCL9 is characterized by a long, highly positively charged COOH-terminal region, absent in most other chemokines. Several natural leukocyte- and fibroblast-derived COOH-terminally truncated CXCL9 forms missing up to 30 amino acids were identified. To investigate the role of the COOH-terminal region of CXCL9, several COOH-terminal peptides were chemically synthesized. These peptides display high affinity for glycosaminoglycans (GAGs) and compete with functional intact chemokines for GAG binding, the longest peptide (CXCL9(74-103)) being the most potent. The COOH-terminal peptide CXCL9(74-103) does not signal through or act as an antagonist for CXCR3, the G protein-coupled CXCL9 receptor, and does not influence neutrophil chemotactic activity of CXCL8 in vitro. Based on the GAG binding data, an anti-inflammatory role for CXCL9(74-103) was further evidenced in vivo. Simultaneous intravenous injection of CXCL9(74-103) with CXCL8 injection in the joint diminished CXCL8-induced neutrophil extravasation. Analogously, monosodium urate crystal-induced neutrophil migration to the tibiofemural articulation, a murine model of gout, is highly reduced by intravenous injection of CXCL9(74-103). These data show that chemokine-derived peptides with high affinity for GAGs may be used as anti-inflammatory peptides; by competing with active chemokines for binding and immobilization on GAGs, these peptides may lower chemokine presentation on the endothelium and disrupt the generation of a chemokine gradient, thereby preventing a chemokine from properly performing its chemotactic function. The CXCL9 peptide may serve as a lead molecule for further development of inhibitors of inflammation based on interference with chemokine-GAG interactions.
Collapse
Affiliation(s)
- Vincent Vanheule
- From the Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Rik Janssens
- From the Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Daiane Boff
- the Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil, and
| | - Nikola Kitic
- the Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Karl-Franzes Universität, 8010 Graz, Austria
| | - Nele Berghmans
- From the Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Isabelle Ronsse
- From the Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Andreas J Kungl
- the Department of Pharmaceutical Chemistry, Institute of Pharmaceutical Sciences, Karl-Franzes Universität, 8010 Graz, Austria
| | - Flavio Almeida Amaral
- the Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil, and
| | - Mauro Martins Teixeira
- the Departamento de Fisiologia e Biofisica, Instituto de Ciencias Biologicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais 31270-901, Brazil, and
| | - Jo Van Damme
- From the Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| | - Paul Proost
- From the Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium,
| | - Anneleen Mortier
- From the Laboratory of Molecular Immunology, Department of Microbiology and Immunology, Rega Institute, KU Leuven, 3000 Leuven, Belgium
| |
Collapse
|
31
|
Christiaansen A, Varga SM, Spencer JV. Viral manipulation of the host immune response. Curr Opin Immunol 2015; 36:54-60. [PMID: 26177523 DOI: 10.1016/j.coi.2015.06.012] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2015] [Revised: 06/20/2015] [Accepted: 06/23/2015] [Indexed: 12/01/2022]
Abstract
Viruses are obligate intracellular parasites that require a host for essential machinery to replicate and ultimately be transmitted to new susceptible hosts. At the same time, the immune system has evolved to protect the human body from invasion by viruses and other pathogens. To counter this, viruses have developed an arsenal of strategies to not only avoid immune detection but to actively manipulate host immune responses to create an environment more favorable for infection. Here, we describe recent advances uncovering novel mechanisms by which viruses skew host immune responses through modulation of cytokine and chemokine signaling networks, interference with antigen presentation and T cell responses, and preventing antibody production.
Collapse
Affiliation(s)
- Allison Christiaansen
- Department of Microbiology, The University of Iowa, 51 Newton Road, 3-532 Bowen Science Building, Iowa City, IA 52242, USA
| | - Steven M Varga
- Department of Microbiology, The University of Iowa, 51 Newton Road, 3-532 Bowen Science Building, Iowa City, IA 52242, USA; Department of Pathology, The University of Iowa, 51 Newton Road, 3-532 Bowen Science Building, Iowa City, IA 52242, USA; Interdisciplinary Graduate Program in Immunology, The University of Iowa, 51 Newton Road, 3-532 Bowen Science Building, Iowa City, IA 52242, USA
| | - Juliet V Spencer
- Department of Biology, University of San Francisco, Harney Science Center, 2130 Fulton Street, San Francisco, CA 94117, USA.
| |
Collapse
|
32
|
Identification and functional comparison of seven-transmembrane G-protein-coupled BILF1 receptors in recently discovered nonhuman primate lymphocryptoviruses. J Virol 2014; 89:2253-67. [PMID: 25505061 DOI: 10.1128/jvi.02716-14] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Coevolution of herpesviruses with their respective host has resulted in a delicate balance between virus-encoded immune evasion mechanisms and host antiviral immunity. BILF1 encoded by human Epstein-Barr virus (EBV) is a 7-transmembrane (7TM) G-protein-coupled receptor (GPCR) with multiple immunomodulatory functions, including attenuation of PKR phosphorylation, activation of G-protein signaling, and downregulation of major histocompatibility complex (MHC) class I surface expression. In this study, we explored the evolutionary and functional relationships between BILF1 receptor family members from EBV and 12 previously uncharacterized nonhuman primate (NHP) lymphocryptoviruses (LCVs). Phylogenetic analysis defined 3 BILF1 clades, corresponding to LCVs of New World monkeys (clade A) or Old World monkeys and great apes (clades B and C). Common functional properties were suggested by a high degree of sequence conservation in functionally important regions of the BILF1 molecules. A subset of BILF1 receptors from EBV and LCVs from NHPs (chimpanzee, orangutan, marmoset, and siamang) were selected for multifunctional analysis. All receptors exhibited constitutive signaling activity via G protein Gαi and induced activation of the NF-κB transcription factor. In contrast, only 3 of 5 were able to activate NFAT (nuclear factor of activated T cells); chimpanzee and orangutan BILF1 molecules were unable to activate NFAT. Similarly, although all receptors were internalized, BILF1 from the chimpanzee and orangutan displayed an altered cellular localization pattern with predominant cell surface expression. This study shows how biochemical characterization of functionally important orthologous viral proteins can be used to complement phylogenetic analysis to provide further insight into diverse microbial evolutionary relationships and immune evasion function. IMPORTANCE Epstein-Barr virus (EBV), known as an oncovirus, is the only human herpesvirus in the genus Lymphocryptovirus (LCV). EBV uses multiple strategies to hijack infected host cells, establish persistent infection in B cells, and evade antiviral immune responses. As part of EBV's immune evasion strategy, the virus encodes a multifunctional 7-transmembrane (7TM) G-protein-coupled receptor (GPCR), EBV BILF1. In addition to multiple immune evasion-associated functions, EBV BILF1 has transforming properties, which are linked to its high constitutive activity. We identified BILF1 receptor orthologues in 12 previously uncharacterized LCVs from nonhuman primates (NHPs) of Old and New World origin. As 7TM receptors are excellent drug targets, our unique insight into the molecular mechanism of action of the BILF1 family and into the evolution of primate LCVs may enable validation of EBV BILF1 as a drug target for EBV-mediated diseases, as well as facilitating the design of drugs targeting EBV BILF1.
Collapse
|
33
|
Baker L, Chitas AML, Hartley CA, Coppo MJC, Vaz PK, Stent A, Gilkerson JR, Devlin JM, Every AL. Recombinant herpesvirus glycoprotein G improves the protective immune response to Helicobacter pylori vaccination in a mouse model of disease. PLoS One 2014; 9:e96563. [PMID: 24794215 PMCID: PMC4008605 DOI: 10.1371/journal.pone.0096563] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Accepted: 04/08/2014] [Indexed: 12/12/2022] Open
Abstract
Alphaherpesviruses, which have co-evolved with their hosts for more than 200 million years, evade and subvert host immune responses, in part, by expression of immuno-modulatory molecules. Alphaherpesviruses express a single, broadly conserved chemokine decoy receptor, glycoprotein G (gG), which can bind multiple chemokine classes from multiple species, including human and mouse. Previously, we demonstrated that infection of chickens with an infectious laryngotracheitis virus (ILTV) mutant deficient in gG resulted in altered host immune responses compared to infection with wild-type virus. The ability of gG to disrupt the chemokine network has the potential to be used therapeutically. Here we investigated whether gG from ILTV or equine herpesvirus 1 (EHV-1) could modulate the protective immune response induced by the Helicobacter pylori vaccine antigen, catalase (KatA). Subcutaneous immunisation of mice with KatA together with EHV-1 gG, but not ILTV gG, induced significantly higher anti-KatA IgG than KatA alone. Importantly, subcutaneous or intranasal immunisation with KatA and EHV-1 gG both resulted in significantly lower colonization levels of H. pylori colonization following challenge, compared to mice vaccinated with KatA alone. Indeed, the lowest colonization levels were observed in mice vaccinated with KatA and EHV-1 gG, subcutaneously. In contrast, formulations containing ILTV gG did not affect H. pylori colonisation levels. The difference in efficacy between EHV-1 gG and ILTV gG may reflect the different spectrum of chemokines bound by the two proteins. Together, these data indicate that the immuno-modulatory properties of viral gGs could be harnessed for improving immune responses to vaccine antigens. Future studies should focus on the mechanism of action and whether gG may have other therapeutic applications.
Collapse
Affiliation(s)
- Louise Baker
- Centre for Animal Biotechnology, Faculty of Veterinary Science, The University of Melbourne, Parkville, VIC, Australia
| | - Andre M. L. Chitas
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville, VIC, Australia
| | - Carol A. Hartley
- Centre for Equine Infectious Disease, Faculty of Veterinary Science, The University of Melbourne, Parkville, VIC, Australia
| | - Mauricio J. C. Coppo
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville, VIC, Australia
| | - Paola K. Vaz
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville, VIC, Australia
| | - Andrew Stent
- Centre for Animal Biotechnology, Faculty of Veterinary Science, The University of Melbourne, Parkville, VIC, Australia
| | - James R. Gilkerson
- Centre for Equine Infectious Disease, Faculty of Veterinary Science, The University of Melbourne, Parkville, VIC, Australia
| | - Joanne M. Devlin
- Asia-Pacific Centre for Animal Health, Faculty of Veterinary Science, The University of Melbourne, Parkville, VIC, Australia
| | - Alison L. Every
- Centre for Animal Biotechnology, Faculty of Veterinary Science, The University of Melbourne, Parkville, VIC, Australia
- * E-mail:
| |
Collapse
|
34
|
Alzhanova D, Hammarlund E, Reed J, Meermeier E, Rawlings S, Ray CA, Edwards DM, Bimber B, Legasse A, Planer S, Sprague J, Axthelm MK, Pickup DJ, Lewinsohn DM, Gold MC, Wong SW, Sacha JB, Slifka MK, Früh K. T cell inactivation by poxviral B22 family proteins increases viral virulence. PLoS Pathog 2014; 10:e1004123. [PMID: 24832205 PMCID: PMC4022744 DOI: 10.1371/journal.ppat.1004123] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2013] [Accepted: 04/02/2014] [Indexed: 11/19/2022] Open
Abstract
Infections with monkeypox, cowpox and weaponized variola virus remain a threat to the increasingly unvaccinated human population, but little is known about their mechanisms of virulence and immune evasion. We now demonstrate that B22 proteins, encoded by the largest genes of these viruses, render human T cells unresponsive to stimulation of the T cell receptor by MHC-dependent antigen presentation or by MHC-independent stimulation. In contrast, stimuli that bypass TCR-signaling are not inhibited. In a non-human primate model of monkeypox, virus lacking the B22R homologue (MPXVΔ197) caused only mild disease with lower viremia and cutaneous pox lesions compared to wild type MPXV which caused high viremia, morbidity and mortality. Since MPXVΔ197-infected animals displayed accelerated T cell responses and less T cell dysregulation than MPXV US2003, we conclude that B22 family proteins cause viral virulence by suppressing T cell control of viral dissemination.
Collapse
Affiliation(s)
- Dina Alzhanova
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Erika Hammarlund
- Division of Neuroscience, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Jason Reed
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Erin Meermeier
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
| | - Stephanie Rawlings
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Caroline A. Ray
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David M. Edwards
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Ben Bimber
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Alfred Legasse
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Shannon Planer
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Jerald Sprague
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Michael K. Axthelm
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - David J. Pickup
- Department of Molecular Genetics and Microbiology, Duke University Medical Center, Durham, North Carolina, United States of America
| | - David M. Lewinsohn
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
| | - Marielle C. Gold
- Department of Pulmonary and Critical Care Medicine, Oregon Health & Science University, Portland, Oregon, United States of America
- Portland Veterans Administration Medical Center, Portland, Oregon, United States of America
| | - Scott W. Wong
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Jonah B. Sacha
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Mark K. Slifka
- Division of Neuroscience, Oregon National Primate Research Center, Portland, Oregon, United States of America
| | - Klaus Früh
- Vaccine and Gene Therapy Institute, Oregon National Primate Research Center, Portland, Oregon, United States of America
- Division of Pathobiology and Immunology, Oregon National Primate Research Center, Portland, Oregon, United States of America
| |
Collapse
|
35
|
Abstract
Viruses have long been studied not only for their pathology and associated disease but also as model systems for understanding cellular and immunological processes. Rodent herpesvirus Peru (RHVP) is a recently characterized rhadinovirus related to murine gammaherpesvirus 68 (MHV68) and Kaposi's sarcoma-associated herpesvirus (KSHV) that establishes acute and latent infection in laboratory mice. RHVP encodes numerous unique proteins that we hypothesize might facilitate host immune evasion during infection. We report here that open reading frame (ORF) R17 encodes a high-affinity chemokine binding protein that broadly recognizes human and murine CC and C chemokines. The interaction of R17 with chemokines is generally characterized by rapid association kinetics, and in the case of CCL3, CCL4, CCL5, CCL24, and XCL1, extremely stable complexes are formed. Functionally, R17 potently inhibited CCL2-driven chemotaxis of the human monocytic cell line THP-1, CCL3-driven chemotaxis of peripheral blood mononuclear cells, and CCL2-mediated calcium flux. Our studies also reveal that R17 binds to glycosaminoglycans (GAGs) in a process dependent upon two BBXB motifs and that chemokine and GAG binding can occur simultaneously at distinct sites. Collectively, these studies suggest that R17 may play a role in RHVP immune evasion through the targeted sabotage of chemokine-mediated immune surveillance.
Collapse
|
36
|
Fishbourne E, Hutet E, Abrams C, Cariolet R, Le Potier MF, Takamatsu HH, Dixon LK. Increase in chemokines CXCL10 and CCL2 in blood from pigs infected with high compared to low virulence African swine fever virus isolates. Vet Res 2013; 44:87. [PMID: 24083897 PMCID: PMC3832245 DOI: 10.1186/1297-9716-44-87] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Accepted: 09/05/2013] [Indexed: 11/17/2022] Open
Abstract
Modulation of the expression of chemokines and chemokine receptors in whole blood was compared following infection of pigs with high and low virulence isolates of African swine fever virus. Levels of mRNAs for CCL2, CCL3L1, CCL4, CXCL10, CCR1 and CCR5 were significantly increased in at least one time point following infection in two experiments and CCL5, CCR9 and CXCR4 mRNA were significantly increased in one of the experiments. The results showed that greatest fold increases in mRNAs for CXCL10 and CCL2 were observed following infection of pigs. CXCL10 mRNA was increased by up to 15 fold in infected compared to uninfected pigs. CXCL10 protein was also detected in serum from pigs infected with the high virulence Benin 97/1 isolate. Levels of CCL2 mRNA were increased in pigs infected with high virulence Benin 97/1 isolate compared to low virulence OURT88/3 isolate and this correlated with an increase of greater than 30 fold in levels of CCL2 protein detected in serum from pigs infected with this isolate. An increase in overall chemotaxis active compounds in defibrinated plasma samples from Benin 97/1 infected pigs was observed at 3 days post-infection (dpi) and a decrease by 7 dpi as measured by chemotaxis assay using normal pig leucocytes in vitro. Increased levels of CXCL10 may either contribute to the activation of lymphocyte priming toward the Th1 phenotype or induction of T lymphocyte apoptosis. Increased levels of CCL2, a chemoattractant for macrophages, may result in increased recruitment of monocytes from bone marrow thus increasing the pool of cells susceptible to infection.
Collapse
Affiliation(s)
- Emma Fishbourne
- The Pirbright Institute, Pirbright, Woking, Surrey GU24 0NF, UK.
| | | | | | | | | | | | | |
Collapse
|
37
|
A chemokine-like viral protein enhances alpha interferon production by plasmacytoid dendritic cells but delays CD8+ T cell activation and impairs viral clearance. J Virol 2013; 87:7911-20. [PMID: 23658453 DOI: 10.1128/jvi.00187-13] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Murine cytomegalovirus encodes numerous proteins that act on a variety of pathways to modulate the innate and adaptive immune responses. Here, we demonstrate that a chemokine-like protein encoded by murine cytomegalovirus activates the early innate immune response and delays adaptive immunity, thereby impairing viral clearance. The protein, m131/129 (also known as MCK-2), is not required to establish infection in the spleen; however, a mutant virus lacking m131/129 was cleared more rapidly from this organ. In the absence of m131/129 expression, there was enhanced activation of dendritic cells (DC), and virus-specific CD8(+) T cells were recruited into the immune response earlier. Viral mutants lacking m131/129 elicited weaker production of alpha interferon (IFN-α) at 40 h postinfection, indicating that this protein exerts its effects during early rounds of viral replication in the spleen. Furthermore, while wild-type and mutant viruses activated plasmacytoid dendritic cells (pDC) equally at this time, as measured by the upregulation of costimulatory molecules, the presence of m131/129 stimulated more pDC to secrete IFN-α, accounting for the stronger IFN-α response than from the wild-type virus. These data provide evidence for a novel immunomodulatory function of a viral chemokine and expose the multifunctionality of immune evasion proteins. In addition, these results broaden our understanding of the interplay between innate and adaptive immunity.
Collapse
|
38
|
Gabriel P, Babiarova K, Zurkova K, Krystofova J, Hainz P, Kutinova L, Nemeckova S. Chemokine binding protein vCCI attenuates vaccinia virus without affecting the cellular response elicited by immunization with a recombinant vaccinia vector carrying the HPV16 E7 gene. Viral Immunol 2013; 25:411-22. [PMID: 23035852 DOI: 10.1089/vim.2011.0090] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Viral CC chemokine inhibitor (vCCI) of the clone P13 vaccinia virus (VACV) strain PRAHA lacks eight amino acids in the signal peptide sequence. To study the influence of vCCI on virus biology, a virus with the vCCI gene coding for a prolonged signal sequence was prepared. We found that secreted vCCI attenuated the virus in vivo, and that it correlated with decreased levels of RANTES, eotaxin, TARC, and MDC in the blood in comparison with the parental virus. We determined the influence of vCCI on the CTL response against VACV E3((140-148)) (VGPSNSPTF) and HPV16 E7((49-57)) (RAHYNIVTF) H-2D(b)-restricted epitopes. The examination of the specific CTL response elicited by immunization with the recombinant VACV-expressing tumor-associated HPV16 E7 antigen by IFN-γ ELISPOT showed that the immunogenicity of the recombinant VACV-producing secretory vCCI was similar to that of the parent virus or deletion mutant in the C23L/B29R locus. Immunization with the secretory vCCI-producing recombinant virus has a lower therapeutic anti-tumor effect against TC-1 tumors. Viral CCI downregulated the E7-specific response induced by gene gun immunization with the DNA vaccines pBSC-SigE7 LAMP and pBSC-vCCI. We also observed that the immune response against vCCI elicited by the DNA vaccine did not affect the multiplication of VACV in vivo.
Collapse
Affiliation(s)
- Pavel Gabriel
- Department of Experimental Virology, Institute of Hematology and Blood Transfusion, Prague, Czech Republic
| | | | | | | | | | | | | |
Collapse
|
39
|
Interferon-γ mediates chemokine-dependent recruitment of natural killer cells during viral infection. Proc Natl Acad Sci U S A 2012; 110:E50-9. [PMID: 23248310 DOI: 10.1073/pnas.1220456110] [Citation(s) in RCA: 75] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Natural killer (NK) cells provide in vivo control of orthopoxvirus infections in association with their expansion in the draining lymph node (LN), where they are normally very rare. The mechanism of this expansion is unclear. Herein, we determined that NK-cell depletion results in enhanced infection following footpad inoculation of cowpox virus, a natural pathogen of rodents. Following cowpox virus infection in normal mice, NK cells were greatly expanded in the draining LN, were not replicating, and displayed markers similar to splenic NK cells, suggesting specific recruitment of splenic NK cells rather than in situ proliferation. Moreover, NK-cell expansion was abrogated by prior injection of clodronate-loaded liposomes, indicating a role for subcapsular sinus macrophages. Furthermore, recruitment of transferred splenic NK cells to the draining LN was pertussis toxin-sensitive, suggesting involvement of chemokine receptors. Comprehensive analysis of chemokine mRNA expression in the draining LN following infection suggested the selective involvement of CCR2, CCR5, and/or CXCR3. Mice deficient for CCR2 or CCR5 had normal NK-cell recruitment, whereas CXCR3-deficient mice displayed a major defect, which was NK cell-intrinsic. Interestingly, both induction of transcripts for CXCR3 ligands (Cxcl9 and Cxcl10) and NK-cell recruitment required IFN-γ. These data indicate that NK-cell recruitment is mediated by subcapsular sinus macrophages, IFN-γ, and CXCR3 during orthopoxvirus infection.
Collapse
|
40
|
Bourquain D, Nitsche A. Cowpox virus but not Vaccinia virus induces secretion of CXCL1, IL-8 and IL-6 and chemotaxis of monocytes in vitro. Virus Res 2012. [PMID: 23207068 PMCID: PMC9533815 DOI: 10.1016/j.virusres.2012.11.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Orthopoxviruses are large DNA viruses which can cause disease in numerous host species. Today, after eradication of Variola virus and the end of vaccination against smallpox, zoonotic Orthopoxvirus infections are emerging as potential threat to human health. The most common causes of zoonotic Orthopoxvirus infections are Cowpox virus in Europe, Monkeypox virus in Africa and Vaccinia virus in South America. Although all three viruses are genetically and antigenically closely related, the human diseases caused by each virus differ considerably. This observation may reflect different capabilities of these viruses to modulate the hosts' immune response. Therefore, we aimed at characterizing the specific cytokine response induced by Orthopoxvirus infection in vitro. We analysed the gene expression of nine human pro-inflammatory cytokines and chemokines in response to infection of HeLa cells and could identify an upregulation of cytokine gene expression following Cowpox virus and Monkeypox virus infection but not following Vaccinia virus infection. This was verified by a strong induction of especially IL-6, IL-8 and CXCL1 secretion into the cell culture supernatant following Cowpox virus infection. We could further show that supernatants derived from Cowpox virus-infected cells exhibit an increased chemotactic activity towards monocytic and macrophage-like cells. On the one hand, increased cytokine secretion by Cowpox virus-infected cells and subsequent monocyte/macrophage recruitment may contribute to host defence and facilitate clearance of the infection. On the other hand, given the assumed important role of circulating macrophages in viral spread, this may also point towards a mechanism facilitating delivery of the virus to further tissues in vivo.
Collapse
Affiliation(s)
- Daniel Bourquain
- Centre for Biological Security 1, Robert Koch Institute, Nordufer 20, 13353 Berlin, Germany.
| | | |
Collapse
|
41
|
Modulation of chemokine and chemokine receptor expression following infection of porcine macrophages with African swine fever virus. Vet Microbiol 2012; 162:937-943. [PMID: 23265239 PMCID: PMC3605585 DOI: 10.1016/j.vetmic.2012.11.027] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 11/13/2012] [Accepted: 11/22/2012] [Indexed: 11/22/2022]
Abstract
African swine fever virus (ASFV) is the only member of the Asfarviridae, a large DNA virus family which replicates predominantly in the cytoplasm. Most isolates cause a fatal haemorrhagic disease in domestic pigs, although some low virulence isolates cause little or no mortality. The modulation of chemokine responses following infection of porcine macrophages with low and high virulence isolates was studied to indicate how this may be involved in the induction of pathogenesis and of effective immune responses. Infection with both low and high virulence isolates resulted in down-regulation of mRNA levels for chemokines CCL2, CCL3L, CXCL2 and chemokine receptors CCR1, CCR5, CXCR3, CXCR4 and up-regulation in expression of mRNAs for CCL4, CXCL10 and chemokine receptor CCR7. Levels of CCL4, CXCL8, CXCL10 mRNAs were higher in macrophages infected with low virulence isolate OURT88/3 compared to high virulence isolate Benin 97/1. Levels of CXCL8 and CCL2 protein were significantly reduced in supernatants from macrophages infected with Benin 97/1 isolate compared to OURT88/3 and mock-infected macrophages. There was also a decreased chemotactic response of donor cells exposed to supernatants from Benin 97/1 infected macrophages compared to those from OURT88/3 and mock-infected macrophages. The data show that infection of macrophages with the low virulence strain OURT88/3 induces higher expression of key inflammatory chemokines compared to infection with high virulence strain Benin 97/1. This may be important for the induction of effective protective immunity that has been observed in pigs immunised with the OURT88/3 isolate.
Collapse
|
42
|
Horizontal transfer and the evolution of host-pathogen interactions. INTERNATIONAL JOURNAL OF EVOLUTIONARY BIOLOGY 2012; 2012:679045. [PMID: 23227424 PMCID: PMC3513734 DOI: 10.1155/2012/679045] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2012] [Accepted: 10/26/2012] [Indexed: 12/16/2022]
Abstract
Horizontal gene transfer has been long known in viruses and prokaryotes, but its importance in eukaryotes has been only acknowledged recently. Close contact between organisms, as it occurs between pathogens and their hosts, facilitates the occurrence of DNA transfer events. Once inserted in a foreign genome, DNA sequences have sometimes been coopted by pathogens to improve their survival or infectivity, or by hosts to protect themselves against the harm of pathogens. Hence, horizontal transfer constitutes a source of novel sequences that can be adopted to change the host-pathogen interactions. Therefore, horizontal transfer can have an important impact on the coevolution of pathogens and their hosts.
Collapse
|
43
|
Van de Walle GR, Osterrieder N. Profiling chemokine–glycoprotein G interactions: implications for alphaherpesviral immune evasion. Future Virol 2012. [DOI: 10.2217/fvl.12.31] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Evaluation of: Viejo-Borbolla A, Martinez-Martín N, Nel HJ et al. Enhancement of chemokine function as an immunomodulatory strategy employed by human herpesviruses. PLoS Pathog. 8(2), e1002497 (2012). The study of immunomodulation by alphaherpesviral proteins targeting the chemokine network remains an area of active research. The article by Viejo-Borbolla et al. evaluates the modulation of chemokines by human HSV-1 and HSV-2. The authors report that secreted recombinant glycoprotein G (gG) of both viruses was able to bind with high affinity to a wide range of CC and CXC chemokines. Interestingly, and in contrast to other viral chemokine binding proteins produced by animal herpesviruses, the investigators found that human herpesvirus-encoded secreted gG1 and secreted gG2 do enhance and not inhibit chemotaxis. This article provides additional insights into the role in immune evasion of alphaherpesviral gGs, but at the same time raises intriguing questions. Among those questions are why and when animal and human alphaherpesviruses diverged in their strategies to manipulate the actions of chemokines and how these apparent differences influence pathogenesis and the final outcome of infection.
Collapse
Affiliation(s)
- Gerlinde R Van de Walle
- Department of Comparative Physiology & Biometrics, Faculty of Veterinary Medicine, Ghent University, B-9820 Merelbeke, Belgium
| | - Nikolaus Osterrieder
- Institute für Virologie, Freie Universität Berlin, Philippstraße 13, 10115 Berlin, Germany
| |
Collapse
|
44
|
Enhancement of chemokine function as an immunomodulatory strategy employed by human herpesviruses. PLoS Pathog 2012; 8:e1002497. [PMID: 22319442 PMCID: PMC3271085 DOI: 10.1371/journal.ppat.1002497] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 12/06/2011] [Indexed: 01/10/2023] Open
Abstract
Herpes simplex virus (HSV) types 1 and 2 are highly prevalent human neurotropic pathogens that cause a variety of diseases, including lethal encephalitis. The relationship between HSV and the host immune system is one of the main determinants of the infection outcome. Chemokines play relevant roles in antiviral response and immunopathology, but the modulation of chemokine function by HSV is not well understood. We have addressed the modulation of chemokine function mediated by HSV. By using surface plasmon resonance and crosslinking assays we show that secreted glycoprotein G (SgG) from both HSV-1 and HSV-2 binds chemokines with high affinity. Chemokine binding activity was also observed in the supernatant of HSV-2 infected cells and in the plasma membrane of cells infected with HSV-1 wild type but not with a gG deficient HSV-1 mutant. Cell-binding and competition experiments indicate that the interaction takes place through the glycosaminoglycan-binding domain of the chemokine. The functional relevance of the interaction was determined both in vitro, by performing transwell assays, time-lapse microscopy, and signal transduction experiments; and in vivo, using the air pouch model of inflammation. Interestingly, and in contrast to what has been observed for previously described viral chemokine binding proteins, HSV SgGs do not inhibit chemokine function. On the contrary, HSV SgGs enhance chemotaxis both in vitro and in vivo through increasing directionality, potency and receptor signaling. This is the first report, to our knowledge, of a viral chemokine binding protein from a human pathogen that increases chemokine function and points towards a previously undescribed strategy of immune modulation mediated by viruses. Chemokines are chemotactic cytokines that direct the flux of leukocytes to the site of injury and infection, playing a relevant role in the antiviral response. An uncontrolled, unorganized chemokine response is beneath the onset and maintenance of several immunopathologies. During millions of years of evolution, viruses have developed strategies to modulate the host immune system. One of such strategies consists on the secretion of viral proteins that bind to and inhibit the function of chemokines. However, the modulation of the chemokine network mediated by the highly prevalent human pathogen herpes simplex virus (HSV) is unknown. We have addressed this issue and show that HSV-1, causing cold sores and encephalitis and HSV-2, causing urogenital tract infections, interact with chemokines. We determined that the viral protein responsible for such activity is glycoprotein G (gG). gG binds chemokines with high affinity and, in contrast to all viral chemokine binding proteins described to date that inhibit chemokine function, we found that HSV gG potentiates chemokine function in vitro and in vivo. The implications of such potentiation in HSV viral cycle, pathogenesis and chemokine function are discussed.
Collapse
|
45
|
Lin YZ, Cao XZ, Li L, Li L, Jiang CG, Wang XF, Ma J, Zhou JH. The pathogenic and vaccine strains of equine infectious anemia virus differentially induce cytokine and chemokine expression and apoptosis in macrophages. Virus Res 2011; 160:274-82. [PMID: 21782860 DOI: 10.1016/j.virusres.2011.06.028] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2011] [Revised: 06/23/2011] [Accepted: 06/30/2011] [Indexed: 11/26/2022]
Abstract
The attenuated equine infectious anemia virus (EIAV) vaccine was the first attenuated lentivirus vaccine to be used in a large-scale application and has been used to successfully control the spread of equine infectious anemia (EIA) in China. To better understand the potential role of cytokines in the pathogenesis of EIAV infection and resulting immune response, we used branched DNA technology to compare the mRNA expression levels of 12 cytokines and chemokines, including IL-1α, IL-1β, IL-4, IL-10, TNF-α, IFN-γ, IP-10, IL-8, MIP-1α, MIP-1β, MCP-1, and MCP-2, in equine monocyte-derived macrophages (eMDMs) infected with the EIAV(DLV121) vaccine strain or the parental EIAV(DLV34) pathogenic strain. Infection with EIAV(DLV34) and EIAV(DLV121) both caused changes in the mRNA levels of various cytokines and chemokines in eMDMs. In the early stage of infection with EIAV(DLV34) (0-24h), the expression of the pro-inflammatory cytokines TNF-α and IL-1β were significantly up-regulated, while with EIAV(DLV121), expression of the anti-inflammatory cytokine IL-4 was markedly up-regulated. The effects on the expression of other cytokines and chemokines were similar between these two strains of virus. During the first 4 days after infection, the expression level of IL-4 in cells infected with the pathogenic strain were significantly higher than that in cells infected with the vaccine strain, but the expression of IL-1α and IL-1β induced by the vaccine strain was significantly higher than that observed with the pathogenic strain. In addition, after 4 days of infection with the pathogenic strain, the expression levels of 5 chemokines, but not IP-10, were markedly increased in eMDMs. In contrast, the vaccine strain did not up-regulate these chemokines to this level. Contrary to our expectation, induced apoptosis in eMDMs infected with the vaccine strain was significantly higher than that infected with the pathogenic strain 4 days and 6 days after infection. Together, these results contribute to a greater understanding of the pathogenesis of EIAV and of the mechanisms by which the immune response is induced after EIAV infection.
Collapse
Affiliation(s)
- Yue-Zhi Lin
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin, China
| | | | | | | | | | | | | | | |
Collapse
|
46
|
Contribution of cytokines to pathology and protection in virus infection. Curr Opin Virol 2011; 1:184-95. [PMID: 22440716 DOI: 10.1016/j.coviro.2011.05.015] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2011] [Accepted: 05/23/2011] [Indexed: 01/09/2023]
Abstract
Acute and chronic viral infections greatly contribute to global health burden. While concerted action of multiple elements of the immune system help the host cope with most viruses, some infections lead to host damage or death. Cytokines are central drivers and controllers of both immune-mediated virus elimination and of immunopathology. Here, we review recent progress in understanding the protective and damaging roles in viral infections of cytokines and chemokines associated with innate, regulatory, and Th1, Th2 and Th17 responses.
Collapse
|
47
|
Matsushima K, Terashima Y, Toda E, Shand F, Ueha S. Chemokines in inflammatory and immune diseases. Inflamm Regen 2011. [DOI: 10.2492/inflammregen.31.11] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|