1
|
Ren D, Xiong S, Ren Y, Yang X, Zhao X, Jin J, Xu M, Liang T, Guo L, Weng L. Advances in therapeutic cancer vaccines: Harnessing immune adjuvants for enhanced efficacy and future perspectives. Comput Struct Biotechnol J 2024; 23:1833-1843. [PMID: 38707540 PMCID: PMC11066472 DOI: 10.1016/j.csbj.2024.04.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 04/19/2024] [Accepted: 04/20/2024] [Indexed: 05/07/2024] Open
Abstract
Preventive cancer vaccines are highly effective in preventing viral infection-induced cancer, but advances in therapeutic cancer vaccines with a focus on eliminating cancer cells through immunotherapy are limited. To develop therapeutic cancer vaccines, the integration of optimal adjuvants is a potential strategy to enhance or complement existing therapeutic approaches. However, conventional adjuvants do not satisfy the criteria of clinical trials for therapeutic cancer vaccines. To improve the effects of adjuvants in therapeutic cancer vaccines, effective vaccination strategies must be formulated and novel adjuvants must be identified. This review offers an overview of the current advancements in therapeutic cancer vaccines and highlights in situ vaccination approaches that can be synergistically combined with other immunotherapies by harnessing the adjuvant effects. Additionally, the refinement of adjuvant systems using cutting-edge technologies and the elucidation of molecular mechanisms underlying immunogenic cell death to facilitate the development of innovative adjuvants have been discussed.
Collapse
Affiliation(s)
- Dekang Ren
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Shizheng Xiong
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Yujie Ren
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xueni Yang
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Xinmiao Zhao
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Jiaming Jin
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Miaomiao Xu
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Tingming Liang
- Jiangsu Key Laboratory for Molecular and Medical Biotechnology, School of Life Science, Nanjing Normal University, Nanjing 210023, China
| | - Li Guo
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory of Organic Electronics and Information Displays & Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing 210023, China
| |
Collapse
|
2
|
Oh SI, Sheet S, Bui VN, Dao DT, Bui NA, Kim TH, Cha J, Park MR, Hur TY, Jung YH, Kim B, Lee HS, Cho A, Lim D. Transcriptome profiles of organ tissues from pigs experimentally infected with African swine fever virus in early phase of infection. Emerg Microbes Infect 2024; 13:2366406. [PMID: 38847223 PMCID: PMC11210422 DOI: 10.1080/22221751.2024.2366406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Accepted: 06/05/2024] [Indexed: 06/27/2024]
Abstract
African swine fever, caused by African swine fever virus (ASFV), is a highly contagious and fatal disease that poses a significant threat to the global pig industry. The limited information on ASFV pathogenesis and ASFV-host interactions has recently prompted numerous transcriptomic studies. However, most of these studies have focused on elucidating the transcriptome profiles of ASFV-infected porcine alveolar macrophages in vitro. Here, we analyzed dynamic transcriptional patterns in vivo in nine organ tissues (spleen, submandibular lymph node, mesenteric lymph node, inguinal lymph node, tonsils, lungs, liver, kidneys, and heart) obtained from pigs in the early stages of ASFV infection (1 and 3 d after viremia). We observed rapid spread of ASFV to the spleen after viremia, followed by broad transmission to the liver and lungs and subsequently, the submandibular and inguinal lymph nodes. Profound variations in gene expression patterns were observed across all organs and at all time-points, providing an understanding of the distinct defence strategies employed by each organ against ASFV infection. All ASFV-infected organs exhibited a collaborative response, activating immune-associated genes such as S100A8, thereby triggering a pro-inflammatory cytokine storm and interferon activation. Functional analysis suggested that ASFV exploits the PI3K-Akt signalling pathway to evade the host immune system. Overall, our findings provide leads into the mechanisms underlying pathogenesis and host immune responses in different organs during the early stages of infection, which can guide further explorations, aid the development of efficacious antiviral strategies against ASFV, and identify valuable candidate gene targets for vaccine development.
Collapse
Affiliation(s)
- Sang-Ik Oh
- National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
- Laboratory of Veterinary Pathology and Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Sunirmal Sheet
- National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Vuong Nghia Bui
- Virology Department, National Institute of Veterinary Research, Hanoi, Vietnam
| | - Duy Tung Dao
- Virology Department, National Institute of Veterinary Research, Hanoi, Vietnam
| | - Ngoc Anh Bui
- Virology Department, National Institute of Veterinary Research, Hanoi, Vietnam
| | - Tae-Hun Kim
- National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
- TNT Research. Co., Ltd., R&D center, Sejong-si, Republic of Korea
| | - Jihye Cha
- National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Mi-Rim Park
- National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Tai-Young Hur
- National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Young-Hun Jung
- National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Bumseok Kim
- Laboratory of Veterinary Pathology and Biosafety Research Institute, College of Veterinary Medicine, Jeonbuk National University, Iksan, Republic of Korea
| | - Hu Suk Lee
- International Livestock Research Institute, Hanoi, Vietnam
- College of Veterinary Medicine, Chungnam National University, Daejoen, Republic of Korea
| | - Ara Cho
- National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
| | - Dajeong Lim
- National Institute of Animal Science, Rural Development Administration, Wanju, Republic of Korea
- Department of Animal Resources Science, College of Agriculture and Life Sciences, Chungnam National University, Daejoen, Republic of Korea
| |
Collapse
|
3
|
Roser LA, Sakellariou C, Lindstedt M, Neuhaus V, Dehmel S, Sommer C, Raasch M, Flandre T, Roesener S, Hewitt P, Parnham MJ, Sewald K, Schiffmann S. IL-2-mediated hepatotoxicity: knowledge gap identification based on the irAOP concept. J Immunotoxicol 2024; 21:2332177. [PMID: 38578203 DOI: 10.1080/1547691x.2024.2332177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 03/13/2024] [Indexed: 04/06/2024] Open
Abstract
Drug-induced hepatotoxicity constitutes a major reason for non-approval and post-marketing withdrawal of pharmaceuticals. In many cases, preclinical models lack predictive capacity for hepatic damage in humans. A vital concern is the integration of immune system effects in preclinical safety assessment. The immune-related Adverse Outcome Pathway (irAOP) approach, which is applied within the Immune Safety Avatar (imSAVAR) consortium, presents a novel method to understand and predict immune-mediated adverse events elicited by pharmaceuticals and thus targets this issue. It aims to dissect the molecular mechanisms involved and identify key players in drug-induced side effects. As irAOPs are still in their infancy, there is a need for a model irAOP to validate the suitability of this tool. For this purpose, we developed a hepatotoxicity-based model irAOP for recombinant human IL-2 (aldesleukin). Besides producing durable therapeutic responses against renal cell carcinoma and metastatic melanoma, the boosted immune activation upon IL-2 treatment elicits liver damage. The availability of extensive data regarding IL-2 allows both the generation of a comprehensive putative irAOP and to validate the predictability of the irAOP with clinical data. Moreover, IL-2, as one of the first cancer immunotherapeutics on the market, is a blueprint for various biological and novel treatment regimens that are under investigation today. This review provides a guideline for further irAOP-directed research in immune-mediated hepatotoxicity.
Collapse
Affiliation(s)
- Luise A Roser
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | | | - Malin Lindstedt
- Department of Immunotechnology, Lund University, Lund, Sweden
| | - Vanessa Neuhaus
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Susann Dehmel
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | - Charline Sommer
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | | | - Thierry Flandre
- Translational Medicine, Novartis Institutes of Biomedical Research, Basel, Switzerland
| | - Sigrid Roesener
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Michael J Parnham
- Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
- EpiEndo Pharmaceuticals ehf, Reykjavík, Iceland
| | - Katherina Sewald
- Fraunhofer Institute for Toxicology and Experimental Medicine (ITEM), Preclinical Pharmacology and In-Vitro Toxicology, Hannover, Germany
- Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Member of the German Center for Lung Research (DZL), Member of the Fraunhofer Cluster of Excellence Immune-Mediated Diseases CIMD, Hannover, Germany
| | | |
Collapse
|
4
|
Yao L, Xia Z, Tang P, Deng J, Hao E, Du Z, Jia F, Wang X, Li Z, Fan L, Hou X. Botany, traditional uses, phytochemistry, pharmacology, edible uses, and quality control of Lablab semen Album: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118507. [PMID: 38945467 DOI: 10.1016/j.jep.2024.118507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/02/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Lablab Semen Album (lablab), the white and dried mature fruit of Lablab purpureus in the Lablab genus of the Fabaceae family, is a renowned traditional medicinal herb with a long history of use in China. In Chinese medicine, lablab is often combined with other drugs to treat conditions such as weak spleen and stomach, loss of appetite, loose stools, excessive leucorrhoea, summer dampness and diarrhea, chest tightness, and abdominal distension. MATERIALS AND METHODS Comprehensive information on lablab was gathered from databases including Web of Science, Science Direct, Google Scholar, Springer, PubMed, CNKI, Wanfang, and ancient materia medica. RESULTS Lablab, a member of the lentil family, thrives in warm and humid climates, and is distributed across tropical and subtropical regions worldwide. Traditionally, lablab is used to treat various ailments, such as spleen and stomach weakness, loss of appetite, and diarrhea. Phytochemical analyses reveal that lablab is a rich source of triterpenoid saponins, glucosides, volatile components, polysaccharides, and amino acids. Lablab extracts exhibit diverse biological activities, including hypolipidemic, hypoglycemic, immunomodulatory, antioxidant, hepatoprotective, antitumoral, antiviral properties, and more. Besides its medicinal applications, lablab is extensively used in the food industry due to its high nutrient content. Additionally, the quality of lablab can be regulated by determining the levels of key chemical components pivotal to its medicinal effects, ensuring the herb's overall quality. CONCLUSION Lablab is a promising medicinal and edible plant ingredient with diverse pharmacological effects, making it a valuable ingredient for food, pharmaceuticals, and animal husbandry. However, it has inherent toxicity if not properly prepared. Additionally, some traditional uses and pharmacological activities lack scientific validation due to incomplete methods, unclear results, and insufficient clinical data. Thus, further in vivo and in vitro studies on its pharmacology, pharmacokinetics, and toxicology, along with clinical efficacy evaluations, are needed to ensure lablab's safety and effectiveness. As an important traditional Chinese medicine, lablab deserves more attention.
Collapse
Affiliation(s)
- Lihao Yao
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, 530200, China; Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Zhongshang Xia
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, 530200, China; Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Peiling Tang
- Department of Bioscience, Faculty of Applied Sciences, Tunku Abdul Rahman University of Management and Technology, Kuala Lumpur, Malaysia
| | - Jiagang Deng
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, 530200, China; Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Erwei Hao
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, 530200, China; Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Zhengcai Du
- Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, 530200, China; Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Fang Jia
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, 530200, China; Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Xiaodong Wang
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, 530200, China; Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Zihong Li
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China
| | - Lili Fan
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, 530200, China; Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| | - Xiaotao Hou
- School of Pharmacy, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Key Laboratory of Efficacy Study on Chinese Materia Medica, Guangxi University of Chinese Medicine, Nanning, 530200, China; Center for Research on Functional Ingredients of Agricultural Residues, Guangxi University of Chinese Medicine, Nanning, 530200, China; Guangxi Key Laboratory of TCM Formulas Theory and Transformation for Damp Diseases, Guangxi University of Chinese Medicine, Nanning, 530200, China.
| |
Collapse
|
5
|
Chia JE, Rousseau RP, Ozturk M, Poswayo SKL, Lucas R, Brombacher F, Parihar SP. The divergent outcome of IL-4Rα signalling on Foxp3 T regulatory cells in listeriosis and tuberculosis. Front Immunol 2024; 15:1427055. [PMID: 39483462 PMCID: PMC11524857 DOI: 10.3389/fimmu.2024.1427055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 09/18/2024] [Indexed: 11/03/2024] Open
Abstract
Introduction Forkhead box P3 (Foxp3) T regulatory cells are critical for maintaining self-tolerance, immune homeostasis, and regulating the immune system. Methods We investigated interleukin-4 receptor alpha (IL-4Rα) signalling on T regulatory cells (Tregs) during Listeria monocytogenes (L. monocytogenes) infection using a mouse model on a BALB/c background, specifically with IL-4Rα knockdown in Tregs (Foxp3creIL-4Rα-/lox). Results We showed an impairment of Treg responses, along with a decreased bacterial burden and diminished tissue pathology in the liver and spleen, which translated into better survival. Mechanistically, we observed an enhancement of the Th1 signature, characterised by increased expression of the T-bet transcription factor and a greater number of effector T cells producing IFN-γ, IL-2 following ex-vivo stimulation with heat-killed L. monocytogenes in Foxp3creIL-4Rα-/lox mice. Furthermore, CD8 T cells from Foxp3creIL-4Rα-/lox mice displayed increased cytotoxicity (Granzyme-B) with higher proliferation capacity (Ki-67), better survival (Bcl-2) with concomitant reduced apoptosis (activated caspase 3). In contrast to L. monocytogenes, Foxp3creIL-4Rα-/lox mice displayed similar bacterial burdens, lung pathology and survival during Mycobacterium tuberculosis (M. tuberculosis) infection, despite increased T cell numbers and IFN-γ, TNF and IL-17 production. Conclusion Our results demonstrated that the diminished IL-4Rα signalling on Foxp3+ T regulatory cells resulted in a loss of their functionality, leading to survival benefits in listeriosis but not in tuberculosis.
Collapse
Affiliation(s)
- Julius E. Chia
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Robert P. Rousseau
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Mumin Ozturk
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Sibongiseni K. L. Poswayo
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Rodney Lucas
- Research Animal Facility (RAF), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Frank Brombacher
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| | - Suraj P. Parihar
- Division of Immunology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Centre for Infectious Diseases Research in Africa (CIDRI-Africa), Institute of Infectious Diseases and Molecular Medicine (IDM), Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Medical Microbiology, Institute of Infectious Diseases and Molecular Medicine (IDM), Department of Pathology, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
- Division of Human Metabolomics, North-West University, Potchefstroom, South Africa
| |
Collapse
|
6
|
Li M, Jiang X, Gai X, Dai M, Li M, Wang Y, Wang H. CiteSpace-based visual analysis on transcutaneous electrical acupoint stimulation of clinical randomized controlled trial studies and its mechanism on perioperative disorders. Medicine (Baltimore) 2024; 103:e39893. [PMID: 39465871 PMCID: PMC11479488 DOI: 10.1097/md.0000000000039893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Accepted: 09/11/2024] [Indexed: 10/29/2024] Open
Abstract
To systematically present an overview of randomized controlled trials on transcutaneous electrical acupoint stimulation (TEAS) using bibliometric methods, and describe the role and mechanisms of TEAS in most prevalent diseases. Relevant literature was searched in China National Knowledge Infrastructure, Wanfang Data, VIP, SinoMed, PubMed, and Web of Science. The literature was imported and screened into NoteExpress, screened according to inclusion and exclusion criteria, and analyzed using Excel and CiteSpace 6.3R1 software. A total of 1296 documents were included. The number of publications increased annually after 2012. Junlu Wang was the most prolific author. The main research institutions were Peking University, The Third Affiliated Hospital of Zhejiang Chinese Medical University, Shuguang Hospital, and Tongde Hospital of Zhejiang Province. The research hotspots in this field include perioperative care, cancer, pain management, and stroke, primarily focusing on analgesia, immune enhancement, antihypertension, and reduction of gastrointestinal disorders. The main regulatory mechanisms of TEAS include the control of inflammation, oxidative stress, and regulation of the autonomic nervous system. TEAS is most widely used in the elderly, with PC6, ST36, and LI4 being the most frequently studied acupoints in clinical randomized controlled trials. The concept of accelerated rehabilitation is gradually being applied to TEAS, representing an emerging trend for future development. Clinical research on TEAS is rapidly developing, with a focus on applications in cancer and perioperative care. Future research should expand collaboration and conduct high-level clinical and mechanistic studies, which will contribute to the development of standardized protocols and clinical practice.
Collapse
Affiliation(s)
- Mengqi Li
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiaobo Jiang
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Xiangmu Gai
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mengyao Dai
- College of Acupuncture and Tuina, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Mengyuan Li
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Yanxin Wang
- Department of Cardiovascular Rehabilitation, The Third Clinical Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, Jilin, China
| | - Hongfeng Wang
- Northeast Asia Institute of Traditional Chinese Medicine, Changchun University of Chinese Medicine, Changchun, Jilin, China
| |
Collapse
|
7
|
Porier DL, Adam A, Kang L, Michalak P, Tupik J, Santos MA, Tanelus M, López K, Auguste DI, Lee C, Allen IC, Wang T, Auguste AJ. Humoral and T-cell-mediated responses to an insect-specific flavivirus-based Zika virus vaccine candidate. PLoS Pathog 2024; 20:e1012566. [PMID: 39388457 PMCID: PMC11495591 DOI: 10.1371/journal.ppat.1012566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 10/22/2024] [Accepted: 09/05/2024] [Indexed: 10/12/2024] Open
Abstract
Flaviviruses represent a significant global health threat and relatively few licensed vaccines exist to protect against them. Insect-specific flaviviruses (ISFVs) are incapable of replication in humans and have emerged as a novel and promising tool for flavivirus vaccine development. ISFV-based flavivirus vaccines have shown exceptional safety, immunogenicity, and efficacy, however, a detailed assessment of the correlates of protection and immune responses induced by these vaccines are still needed for vaccine optimization. Here, we explore the mechanisms of protective immunity induced by a previously created pre-clinical Zika virus (ZIKV) vaccine candidate, called Aripo/Zika (ARPV/ZIKV). In brief, immunocompromised IFN-αβR-/- mice passively immunized with ARPV/ZIKV immune sera experienced protection after lethal ZIKV challenge, although this protection was incomplete. ARPV/ZIKV-vaccinated IFN-αβR-/- mice depleted of CD4+ or CD8+ T-cells at the time of ZIKV challenge showed no morbidity or mortality. However, the adoptive transfer of ARPV/ZIKV-primed T-cells into recipient IFN-αβR-/- mice resulted in a two-day median increase in survival time compared to controls. Altogether, these results suggest that ARPV/ZIKV-induced protection is primarily mediated by neutralizing antibodies at the time of challenge and that T-cells may play a comparatively minor but cumulative role in the protection observed. Lastly, ARPV/ZIKV-vaccinated Tcra KO mice, which are deficient in T-cell responses, experienced significant mortality post-challenge. These results suggest that ARPV/ZIKV-induced cell-mediated responses are critical for development of protective immune responses at vaccination. Despite the strong focus on neutralizing antibody responses to novel flavivirus vaccine candidates, these results suggest that cell-mediated responses induced by ISFV-based vaccines remain important to overall protective responses.
Collapse
Affiliation(s)
- Danielle L. Porier
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Awadalkareem Adam
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Lin Kang
- Department of Biomedical Research, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States of America
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
- College of Pharmacy, University of Louisiana Monroe, Monroe, Louisiana, United States of America
| | - Pawel Michalak
- Department of Biomedical Research, Edward Via College of Osteopathic Medicine, Monroe, Louisiana, United States of America
- Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
- Institute of Evolution, University of Haifa, Haifa, Israel
| | - Juselyn Tupik
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
| | - Matthew A. Santos
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Manette Tanelus
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Krisangel López
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Dawn I. Auguste
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Christy Lee
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Irving C. Allen
- Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
| | - Tian Wang
- Department of Microbiology & Immunology, University of Texas Medical Branch, Galveston, Texas, United States of America
| | - Albert J. Auguste
- Department of Entomology, Virginia Tech, Blacksburg, Virginia, United States of America
- Center for Emerging, Zoonotic, and Arthropod-borne Pathogens, Virginia Tech, Blacksburg, Virginia, United States of America
| |
Collapse
|
8
|
Acúrcio RC, Kleiner R, Vaskovich‐Koubi D, Carreira B, Liubomirski Y, Palma C, Yeheskel A, Yeini E, Viana AS, Ferreira V, Araújo C, Mor M, Freund NT, Bacharach E, Gonçalves J, Toister‐Achituv M, Fabregue M, Matthieu S, Guerry C, Zarubica A, Aviel‐Ronen S, Florindo HF, Satchi‐Fainaro R. Intranasal Multiepitope PD-L1-siRNA-Based Nanovaccine: The Next-Gen COVID-19 Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2404159. [PMID: 39116324 PMCID: PMC11515909 DOI: 10.1002/advs.202404159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/28/2024] [Indexed: 08/10/2024]
Abstract
The first approved vaccines for human use against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) are nanotechnology-based. Although they are modular, rapidly produced, and can reduce disease severity, the currently available vaccines are restricted in preventing infection, stressing the global demand for novel preventive vaccine technologies. Bearing this in mind, we set out to develop a flexible nanovaccine platform for nasal administration to induce mucosal immunity, which is fundamental for optimal protection against respiratory virus infection. The next-generation multiepitope nanovaccines co-deliver immunogenic peptides, selected by an immunoinformatic workflow, along with adjuvants and regulators of the PD-L1 expression. As a case study, we focused on SARS-CoV-2 peptides as relevant antigens to validate the approach. This platform can evoke both local and systemic cellular- and humoral-specific responses against SARS-CoV-2. This led to the secretion of immunoglobulin A (IgA), capable of neutralizing SARS-CoV-2, including variants of concern, following a heterologous immunization strategy. Considering the limitations of the required cold chain distribution for current nanotechnology-based vaccines, it is shown that the lyophilized nanovaccine is stable for long-term at room temperature and retains its in vivo efficacy upon reconstitution. This makes it particularly relevant for developing countries and offers a modular system adaptable to future viral threats.
Collapse
Affiliation(s)
- Rita C. Acúrcio
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Ron Kleiner
- Department of Physiology and PharmacologyFaculty of MedicineTel Aviv UniversityTel Aviv6997801Israel
| | - Daniella Vaskovich‐Koubi
- Department of Physiology and PharmacologyFaculty of MedicineTel Aviv UniversityTel Aviv6997801Israel
| | - Bárbara Carreira
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Yulia Liubomirski
- Department of Physiology and PharmacologyFaculty of MedicineTel Aviv UniversityTel Aviv6997801Israel
| | - Carolina Palma
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Adva Yeheskel
- The Blavatnik Center for Drug DiscoveryTel Aviv UniversityTel Aviv6997801Israel
| | - Eilam Yeini
- Department of Physiology and PharmacologyFaculty of MedicineTel Aviv UniversityTel Aviv6997801Israel
| | - Ana S. Viana
- Center of Chemistry and BiochemistryFaculty of SciencesUniversity of LisbonLisbon1749‐016Portugal
| | - Vera Ferreira
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Carlos Araújo
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Michael Mor
- Department of Clinical Microbiology and ImmunologyFaculty of MedicineTel Aviv UniversityTel Aviv6997801Israel
| | - Natalia T. Freund
- Department of Clinical Microbiology and ImmunologyFaculty of MedicineTel Aviv UniversityTel Aviv6997801Israel
| | - Eran Bacharach
- The Shmunis School of Biomedicine and Cancer ResearchGeorge S. Wise Faculty of Life SciencesTel Aviv UniversityTel Aviv6997801Israel
| | - João Gonçalves
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | | | - Manon Fabregue
- Centre d'ImmunophénomiqueAix Marseille UniversitéInserm, CNRS, PHENOMINMarseille13284France
| | - Solene Matthieu
- Centre d'ImmunophénomiqueAix Marseille UniversitéInserm, CNRS, PHENOMINMarseille13284France
| | - Capucine Guerry
- Centre d'ImmunophénomiqueAix Marseille UniversitéInserm, CNRS, PHENOMINMarseille13284France
| | - Ana Zarubica
- Centre d'ImmunophénomiqueAix Marseille UniversitéInserm, CNRS, PHENOMINMarseille13284France
| | | | - Helena F. Florindo
- Research Institute for Medicines (iMed.ULisboa)Faculty of PharmacyUniversidade de LisboaLisbon1649‐003Portugal
| | - Ronit Satchi‐Fainaro
- Department of Physiology and PharmacologyFaculty of MedicineTel Aviv UniversityTel Aviv6997801Israel
- Sagol School of NeuroscienceTel Aviv UniversityTel Aviv6997801Israel
| |
Collapse
|
9
|
Zhu E, Yu J, Li YR, Ma F, Wang YC, Liu Y, Li M, Kim YJ, Zhu Y, Hahn Z, Zhou Y, Brown J, Zhang Y, Pelegrini M, Hsiai T, Yang L, Huang Y. Biomimetic cell stimulation with a graphene oxide antigen-presenting platform for developing T cell-based therapies. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01781-4. [PMID: 39313679 DOI: 10.1038/s41565-024-01781-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Accepted: 08/08/2024] [Indexed: 09/25/2024]
Abstract
Chimeric antigen receptor (CAR)-engineered T cells represent a front-line therapy for cancers. However, the current CAR T cell manufacturing protocols do not adequately reproduce immunological synapse formation. Here, in response to this limitation, we have developed a flexible graphene oxide antigen-presenting platform (GO-APP) that anchors antibodies onto graphene oxide. By decorating anti-CD3 (αCD3) and anti-CD28 (αCD28) on graphene oxide (GO-APP3/28), we achieved remarkable T cell proliferation. In vitro interactions between GO-APP3/28 and T cells closely mimic the in vivo immunological synapses between antigen-presenting cells and T cells. This immunological synapse mimicry shows a high capacity for stimulating T cell proliferation while preserving their multifunctionality and high potency. Meanwhile, it enhances CAR gene-engineering efficiency, yielding a more than fivefold increase in CAR T cell production compared with the standard protocol. Notably, GO-APP3/28 stimulated appropriate autocrine interleukin-2 (IL-2) in T cells and overcame the in vitro reliance on external IL-2 supplementation, offering an opportunity to culture T cell-based products independent of IL-2 supplementation.
Collapse
Affiliation(s)
- Enbo Zhu
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jiaji Yu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yan-Ruide Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Feiyang Ma
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu-Chen Wang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yang Liu
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Miao Li
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yu Jeong Kim
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yichen Zhu
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Zoe Hahn
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yang Zhou
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - James Brown
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Yuchong Zhang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Matteo Pelegrini
- Department of Molecular, Cell, and Developmental Biology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Tzung Hsiai
- Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
- Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Lili Yang
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, Los Angeles, CA, USA.
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| | - Yu Huang
- Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
- Jonsson Comprehensive Cancer Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA.
- California Nanosystems Institute, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
10
|
Zhao ZJ, Lian HY, Li WJ, Zhang Q, Ma HH, Wang D, Zhao YZ, Zhu T, Li HL, Huang XT, Wang TY, Zhang R, Cui L, Li ZG. The clinical impact of serum soluble CD25 levels in children with Langerhans cell histiocytosis. J Pediatr (Rio J) 2024:S0021-7557(24)00111-6. [PMID: 39265632 DOI: 10.1016/j.jped.2024.08.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/10/2024] [Accepted: 08/12/2024] [Indexed: 09/14/2024] Open
Abstract
OBJECTIVE Langerhans cell histiocytosis (LCH) is a rare myeloid neoplasm with inflammatory characteristics. This study aims to investigate the correlation between sCD25 levels and clinical characteristics and prognosis in pediatric LCH. METHODS Serum sCD25 levels were measured in 370 LCH patients under 18 years old using ELISA assays. The patients were divided into two cohorts based on different treatment regimens. The authors further assessed the predictive value for the prognosis impact of sCD25 in a test cohort, which was validated in the independent validation cohort. RESULTS The median serum sCD25 level at diagnosis was 3908 pg/ml (range: 231-44 000). sCD25 level was significantly higher in multi-system and risk organ positive (MS RO+) LCH patients compared to single-system(SS) LCH patients (p < 0.001). Patients with increased sCD25 were more likely to have involvement of risk organs, skin, lung, lymph node, or pituitary (all p < 0.05). sCD25 level could predict LCH progression and relapse with an area under the ROC curve of 60.6 %. The best cutoff value was determined at 2921 pg/ml. High-sCD25 group had a significantly worse progression-free survival than those in the low-sCD25 group (p < 0.05). CONCLUSION Elevated serum sCD25 levels at initial diagnosis were associated with high-risk clinical features and worse prognosis. sCD25 levels can predict the progression/recurrence of LCH after treatment with first-line chemotherapy.
Collapse
Affiliation(s)
- Zi-Jing Zhao
- Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing, China; Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China
| | - Hong-Yun Lian
- Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China; Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Department of Hematology, Hematology Center, Beijing, China
| | - Wei-Jing Li
- Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing, China; Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China
| | - Qing Zhang
- Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing, China; Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China
| | - Hong-Hao Ma
- Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China; Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Department of Hematology, Hematology Center, Beijing, China
| | - Dong Wang
- Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China; Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Department of Hematology, Hematology Center, Beijing, China
| | - Yun-Ze Zhao
- Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China; Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Department of Hematology, Hematology Center, Beijing, China
| | - Ting Zhu
- Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing, China; Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China
| | - Hua-Lin Li
- Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing, China; Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China
| | - Xiao-Tong Huang
- Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing, China; Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China
| | - Tian-You Wang
- Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China; Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Department of Hematology, Hematology Center, Beijing, China
| | - Rui Zhang
- Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China; Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Department of Hematology, Hematology Center, Beijing, China
| | - Lei Cui
- Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing, China; Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China
| | - Zhi-Gang Li
- Capital Medical University, Beijing Children's Hospital, National Center for Children's Health, Hematologic Diseases Laboratory, Beijing Pediatric Research Institute, Beijing, China; Capital Medical University, National Key Discipline of Pediatrics, Beijing, China; Ministry of Education, Key Laboratory of Major Diseases in Children, Beijing, China.
| |
Collapse
|
11
|
Erek M, Matur E. Effects of different housing systems on the oxidative defence system, heterophil functions, cellular immune response and cytokines in laying hens. Br Poult Sci 2024:1-9. [PMID: 39230878 DOI: 10.1080/00071668.2024.2395500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Accepted: 06/10/2024] [Indexed: 09/05/2024]
Abstract
1. This study investigated the effects of different housing systems on oxidative defence mechanisms, heterophil functions, cellular immune response and cytokine production in laying hens. One hundred and twenty laying hens were allocated into one of four groups: conventional cages, furnished cages, deep litter, and free range.2. Housing system did not affect malondialdehyde concentrations and enzymatic antioxidant status. Ascorbic acid values were higher in deep-litter hens than in those in conventional cages and free range.3. Phagocytic and chemotactic activities tended to rise in the deep-litter system, and oxidative burst was higher than in furnished cages. Cytotoxic T cells were decreased in furnished cages, both cytotoxic and helper T cells decreased in deep litter compared to free range.4. The IL-2 and IL-13 expression was higher in deep litter than in conventional cages, and IL-6 expression was higher in furnished cages than in free range.5. Housing system had no significant effects on the oxidative defence system; however, they affected heterophil functions, cellular defence mechanisms and cytokine production. The results suggested that breeders need to consider the housing system's potential effects on immune defence responses while applying a breeding strategy appropriate for animal welfare and consumer demand.
Collapse
Affiliation(s)
- M Erek
- Department of Physiology, Faculty of Veterinary Medicine, Van Yuzuncu Yil University, Van, Turkey
| | - E Matur
- Department of Physiology, Faculty of Veterinary Medicine, Istanbul University-Cerrahpasa, Istanbul, Turkey
| |
Collapse
|
12
|
Speeckaert R, Caelenberg EV, Belpaire A, Speeckaert MM, Geel NV. Vitiligo: From Pathogenesis to Treatment. J Clin Med 2024; 13:5225. [PMID: 39274437 PMCID: PMC11396398 DOI: 10.3390/jcm13175225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/16/2024] Open
Abstract
Recent advances in vitiligo have provided promising treatment options, particularly through understanding the immune-mediated mechanisms leading to depigmentation. The inflammatory components in both vitiligo (non-segmental) and segmental vitiligo have similarities. Both are believed to result from an immune-based destruction of melanocytes by anti-melanocyte-specific cytotoxic T cells. The JAK-STAT pathway is activated with IFN-γ as the crucial cytokine and Th1-associated chemokines such as CXCL9 and CXCL10 recruit immune cells towards vitiligo skin. Nonetheless, clear differences are also present, such as the localized nature of segmental vitiligo, likely due to somatic mosaicism and increased presence of poliosis. The differing prevalence of poliosis suggests that the follicular immune privilege, which is known to involve immune checkpoints, may be more important in vitiligo (non-segmental). Immunomodulatory therapies, especially those targeting the JAK-IFNγ pathway, are currently at the forefront, offering effective inhibition of melanocyte destruction by cytotoxic T cells. Although Janus Kinase (JAK) inhibitors demonstrate high repigmentation rates, optimal results can take several months to years. The influence of environmental UV exposure on repigmentation in patients receiving immunomodulating drugs remains largely underexplored. Nonetheless, the combined effect of phototherapy with JAK inhibitors is impressive and suggests a targeted immune-based treatment may still require additional stimulation of melanocytes for repigmentation. Identifying alternative melanocyte stimulants beyond UV light remains crucial for the future management of vitiligo.
Collapse
Affiliation(s)
| | | | - Arno Belpaire
- Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium
| | | | - Nanja van Geel
- Department of Dermatology, Ghent University Hospital, 9000 Ghent, Belgium
| |
Collapse
|
13
|
Hernandez F, Chavez H, Goemans SL, Kirakosyan Y, Luevano CD, Canfield D, Laurent LC, Jacobs M, Woelkers D, Tarsa M, Gyamfi-Bannerman C, Fisch KM. Aspirin resistance in pregnancy is associated with reduced interleukin-2 (IL-2) concentrations in maternal serum: Implications for aspirin prophylaxis for preeclampsia. Pregnancy Hypertens 2024; 37:101131. [PMID: 38851168 DOI: 10.1016/j.preghy.2024.101131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 04/19/2024] [Accepted: 05/30/2024] [Indexed: 06/10/2024]
Abstract
OBJECTIVES To evaluate the impact of aspirin resistance on the incidence of preeclampsia and maternal serum biomarker levels in pregnant individuals at high-risk of preeclampsia receiving low dose aspirin (LDA). STUDY DESIGN We performed a secondary analysis of a randomized, placebo-controlled trial of LDA (60 mg daily) for preeclampsia prevention in high-risk individuals (N = 524) on pregnancy outcomes and concentrations of PLGF, IL-2, IL-6, thromboxane B2 (TXB2), sTNF-R1 and sTNF-R2 from maternal serum. MAIN OUTCOME MEASURES LDA-resistant individuals were defined as those having a TXB2 concentration >10 ng/ml or <75 % reduction in concentration at 24-28 weeks after LDA administration. Comparisons of outcomes were performed using a Fisher's Exact Test. Mean concentrations of maternal serum biomarkers were compared using a Student's t-test. Pearson correlation was calculated for all pairwise biomarkers. Longitudinal analysis across gestation was performed using linear mixed-effects models accounting for repeated measures and including BMI and maternal age as covariates. RESULTS We classified 60/271 (22.1 %) individuals as LDA-resistant, 179/271 (66.1 %) as LDA-sensitive, and 32/271 (11.8 %) as non-adherent. The prevalence of preeclampsia was not significantly different between the LDA and placebo groups (OR = 1.43 (0.99-2.28), p-value = 0.12) nor between LDA-sensitive and LDA-resistant individuals (OR = 1.27 (0.61-2.8), p-value = 0.60). Mean maternal serum IL-2 concentrations were significantly lower in LDA-resistant individuals relative to LDA-sensitive individuals (FDR < 0.05). CONCLUSIONS These results suggest a potential role for IL-2 in the development of preeclampsia modulated by an individuals' response to aspirin, presenting an opportunity to optimize aspirin prophylaxis on an individual level to reduce the incidence of preeclampsia.
Collapse
Affiliation(s)
- Fernando Hernandez
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Hector Chavez
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Sophie L Goemans
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Yeva Kirakosyan
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Carolina Diaz Luevano
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Dana Canfield
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Louise C Laurent
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Marni Jacobs
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Doug Woelkers
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Maryam Tarsa
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Cynthia Gyamfi-Bannerman
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA
| | - Kathleen M Fisch
- Department of Obstetrics, Gynecology & Reproductive Sciences, University of California, San Diego, La Jolla, CA, USA.
| |
Collapse
|
14
|
Bhol NK, Bhanjadeo MM, Singh AK, Dash UC, Ojha RR, Majhi S, Duttaroy AK, Jena AB. The interplay between cytokines, inflammation, and antioxidants: mechanistic insights and therapeutic potentials of various antioxidants and anti-cytokine compounds. Biomed Pharmacother 2024; 178:117177. [PMID: 39053423 DOI: 10.1016/j.biopha.2024.117177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 07/27/2024] Open
Abstract
Cytokines regulate immune responses essential for maintaining immune homeostasis, as deregulated cytokine signaling can lead to detrimental outcomes, including inflammatory disorders. The antioxidants emerge as promising therapeutic agents because they mitigate oxidative stress and modulate inflammatory pathways. Antioxidants can potentially ameliorate inflammation-related disorders by counteracting excessive cytokine-mediated inflammatory responses. A comprehensive understanding of cytokine-mediated inflammatory pathways and the interplay with antioxidants is paramount for developing natural therapeutic agents targeting inflammation-related disorders and helping to improve clinical outcomes and enhance the quality of life for patients. Among these antioxidants, curcumin, vitamin C, vitamin D, propolis, allicin, and cinnamaldehyde have garnered attention for their anti-inflammatory properties and potential therapeutic benefits. This review highlights the interrelationship between cytokines-mediated disorders in various diseases and therapeutic approaches involving antioxidants.
Collapse
Affiliation(s)
- Nitish Kumar Bhol
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar, Odisha 751004, India
| | | | - Anup Kumar Singh
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India
| | - Umesh Chandra Dash
- Environmental Biotechnology Laboratory, KIIT School of Biotechnology, KIIT Deemed to be University, Bhubaneswar, Odisha, India
| | - Rakesh Ranjan Ojha
- Department of Bioinformatics, BJB (A) College, Bhubaneswar, Odisha-751014, India
| | - Sanatan Majhi
- Post Graduate Department of Biotechnology, Utkal University, Bhubaneswar, Odisha 751004, India
| | - Asim K Duttaroy
- Department of Nutrition, Institute of Medical Sciences, Faculty of Medicine, University of Oslo, Norway.
| | - Atala Bihari Jena
- National Centre for Cell Science, Savitribai Phule Pune University Campus, Ganeshkhind, Pune, India.
| |
Collapse
|
15
|
Chen W, Tan M, Zhang H, Gao T, Ren J, Cheng S, Chen J. Signaling molecules in the microenvironment of hepatocellular carcinoma. Funct Integr Genomics 2024; 24:146. [PMID: 39207523 DOI: 10.1007/s10142-024-01427-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 08/16/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024]
Abstract
Hepatocellular carcinoma (HCC) is a major fatal cancer that is known for its high recurrence and metastasis. An increasing number of studies have shown that the tumor microenvironment is closely related to the metastasis and invasion of HCC. The HCC microenvironment is a complex integrated system composed of cellular components, the extracellular matrix (ECM), and signaling molecules such as chemokines, growth factors, and cytokines, which are generally regarded as crucial molecules that regulate a series of important processes, such as the migration and invasion of HCC cells. Considering the crucial role of signaling molecules, this review aims to elucidate the regulatory effects of chemokines, growth factors, and cytokines on HCC cells in their microenvironment to provide important references for clarifying the development of HCC and exploring effective therapeutic targets.
Collapse
Affiliation(s)
- Wanjin Chen
- Key Laboratory of Clinical Laboratory Diagnostics (Ministry of Education), College of Laboratory Medicine, Chongqing Medical University, Chongqing, 400016, China
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Ming Tan
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Hui Zhang
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Tingting Gao
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Jihua Ren
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China
| | - Shengtao Cheng
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
| | - Juan Chen
- The Key Laboratory of Molecular Biology of Infectious Diseases Designated By the Chinese Ministry of Education, Chongqing Medical University, Chongqing, 400016, China.
- College of Biomedical Engineering, Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
16
|
Efremova I, Maslennikov R, Kudryavtseva A, Avdeeva A, Krasnov G, Diatroptov M, Bakhitov V, Aliev S, Sedova N, Fedorova M, Poluektova E, Zolnikova O, Aliev N, Levshina A, Ivashkin V. Gut Microbiota and Cytokine Profile in Cirrhosis. J Clin Transl Hepatol 2024; 12:689-700. [PMID: 39130620 PMCID: PMC11310756 DOI: 10.14218/jcth.2024.00090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/30/2024] [Accepted: 05/31/2024] [Indexed: 08/13/2024] Open
Abstract
Background and Aims Gut dysbiosis and abnormal cytokine profiles are common in cirrhosis. This study aimed to evaluate the correlations between them. Methods In the blood plasma of cirrhosis patients and controls, 27 cytokines were examined using a multiplex assay. The plasma levels of nitrites (stable metabolites of the endothelial dysfunction biomarker nitric oxide) and lipopolysaccharide (LPS) were examined. The fecal microbiota was assessed by 16S rRNA gene sequencing. Results Levels of IL-1b, IL-2, IL-6, IL-13, IP-10, IFN-g, TNF-a, LPS, and nitrites were higher in cirrhosis patients than in controls, while levels of IL-4, IL-7, and PDGF-BB were lower. The LPS level was directly correlated with the levels of IL-1b, IL1-Ra, IL-9, IL-17, PDGF-BB, IL-6, TNF-a, and nitrites. The nitrite level was significantly directly correlated with the levels of TNF-a, GM-CSF, IL-17, and IL-12, and inversely correlated with the IL-7 level. TNF-a levels were directly correlated with ascites severity and the abundance of Negativicutes, Enterobacteriaceae, Veillonellaceae, and Klebsiella, while inversely correlated with the abundance of Firmicutes, Clostridia, and Subdoligranulum. IFN-g levels were directly correlated with the abundance of Bacteroidaceae, Lactobacillaceae, Bacteroides, and Megasphaera, and inversely correlated with the abundance of Verrucomicrobiota, Akkermansiaceae, Coriobacteriaceae, Akkermansia, Collinsella, and Gemella. IL-1b levels were directly correlated with the abundance of Comamonadaceae and Enterobacteriaceae and inversely correlated with the abundance of Marinifilaceae and Dialister. IL-6 levels were directly correlated with the abundance of Enterobacteriaceae, hepatic encephalopathy, and ascites severity, and inversely correlated with the abundance of Peptostreptococcaceae, Streptococcaceae, and Streptococcus. Conclusions The abundance of harmful gut microbiota taxa and endotoxinemia directly correlates with the levels of proinflammatory cytokines.
Collapse
Affiliation(s)
- Irina Efremova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
| | - Roman Maslennikov
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
| | - Anna Kudryavtseva
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - George Krasnov
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | | | - Vyacheslav Bakhitov
- Consultative and Diagnostic Center 2 of the Moscow Health Department, Moscow, Russia
| | - Salekh Aliev
- Consultative and Diagnostic Center 2 of the Moscow Health Department, Moscow, Russia
- First Hospital Surgery Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Natalia Sedova
- Consultative and Diagnostic Center 2 of the Moscow Health Department, Moscow, Russia
- Department of Clinical Laboratory Diagnostics, FGBOU DPO “Russian Medical Academy of Continuing Professional Education of the Ministry of Health of the Russian Federation”, Moscow, Russia
| | - Maria Fedorova
- Post-Genomic Research Laboratory, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, Moscow, Russia
| | - Elena Poluektova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
- The Interregional Public Organization “Scientific Community for the Promotion of the Clinical Study”, Moscow, Russia
| | - Oxana Zolnikova
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
| | - Nariman Aliev
- Consultative and Diagnostic Center 2 of the Moscow Health Department, Moscow, Russia
- First Hospital Surgery Department, Pirogov Russian National Research Medical University, Moscow, Russia
| | - Anna Levshina
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
| | - Vladimir Ivashkin
- Department of Internal Medicine, Gastroenterology and Hepatology, Sechenov University, Moscow, Russia
| |
Collapse
|
17
|
Oğuzoğlu TÇ, Hanifehnezhad A, Khabbazi SD, Karayel-Hacıoğlu İ, Kaynarcalıdan O, Fırat Z, Filazi N, Erdem-Şahinkesen E, Gül B, Karabulut MC, Koba E, Adıgüzel E, Şenlik Eİ, Korkulu E, Demirden C, Şahinkesen İ, Ceylan A, Muratoğlu H, Vural S, Demirbağ Z, Özkul A. Immunogenicity and Protective Efficacy of Baculovirus-Expressed SARS-CoV-2 Envelope Protein in Mice as a Universal Vaccine Candidate. Vaccines (Basel) 2024; 12:977. [PMID: 39340009 PMCID: PMC11435448 DOI: 10.3390/vaccines12090977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/02/2024] [Accepted: 08/15/2024] [Indexed: 09/30/2024] Open
Abstract
The envelope (env) protein of SARS-CoV-2, a pivotal component of the viral architecture, plays a multifaceted role in viral assembly, replication, pathogenesis, and ion channel activity. These features make it a significant target for understanding virus-host interactions and developing vaccines to combat COVID-19. Recent structural studies provide valuable insights into the conformational dynamics and membrane topology of the SARS-CoV-2 env protein, shedding light on its functional mechanisms. The strong homology and highly conserved structure of the SARS-CoV-2 env protein shape its immunogenicity and functional characteristics. This study examines the ability of the recombinant SARS-CoV-2 env protein to stimulate an immune response. In this study, recombinant envelope proteins were produced using the baculovirus expression system, and their potential efficacy was evaluated in both in vivo and in vitro models. Our results reveal that the env protein of SARS-CoV-2 stimulates humoral and cellular responses and highlight its potential as a promising vaccine candidate for combating the ongoing pandemic.
Collapse
Affiliation(s)
- Tuba Çiğdem Oğuzoğlu
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara 06070, Türkiye
| | - Alireza Hanifehnezhad
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara 06070, Türkiye
| | - Saber Delpasand Khabbazi
- Department of Agriculture and Food, Institute of Hemp Research, Yozgat Bozok University, Yozgat 66900, Türkiye
| | - İlke Karayel-Hacıoğlu
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara 06070, Türkiye
| | - Onur Kaynarcalıdan
- Institute for Virology, Düsseldorf University Hospital, Heinrich-Heine-University, 40225 Düsseldorf, Germany
| | - Zehra Fırat
- Biotechnology Institute, Ankara University, Ankara 06560, Türkiye
| | - Nazlıcan Filazi
- Graduate School of Health Sciences, Ankara University, Ankara 06560, Türkiye
- Department of Virology, Faculty of Veterinary Medicine, Hatay Mustafa Kemal University, Hatay 31040, Türkiye
| | - Eda Erdem-Şahinkesen
- Graduate School of Health Sciences, Ankara University, Ankara 06560, Türkiye
- Department of Vaccine Technology, Vaccine Institute, Hacettepe University, Ankara 06100, Türkiye
| | - Buket Gül
- Graduate School of Health Sciences, Ankara University, Ankara 06560, Türkiye
| | - Muhammed Cesim Karabulut
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara 06070, Türkiye
- Graduate School of Health Sciences, Ankara University, Ankara 06560, Türkiye
| | - Enes Koba
- Graduate School of Health Sciences, Ankara University, Ankara 06560, Türkiye
| | - Ece Adıgüzel
- Republic of Türkiye Ministry of Agriculture and Forestry, Atkaracalar District Directorate, Çankırı 18310, Türkiye
| | - Elif İrem Şenlik
- Graduate School of Health Sciences, Ankara University, Ankara 06560, Türkiye
| | - Emrah Korkulu
- Graduate School of Health Sciences, Ankara University, Ankara 06560, Türkiye
- Department of Virology, Faculty of Veterinary Medicine, Kafkas University, Kars 36000, Türkiye
| | - Cansu Demirden
- Graduate School of Health Sciences, Ankara University, Ankara 06560, Türkiye
- Republic of Türkiye Ministry of Agriculture and Forestry, East Anatolian Agricultural Research Institute, Erzurum 25090, Türkiye
| | - İlker Şahinkesen
- Diagen Biotechnological Systems Health Services and Automation Industry, Ankara 06070, Türkiye
| | - Ahmet Ceylan
- Department of Histology and Embryology, Faculty of Veterinary Medicine, Ankara University, Ankara 06070, Türkiye
| | - Hacer Muratoğlu
- Department of Molecular Biology and Genetics, Faculty of Sciences, Karadeniz Technical University, Trabzon 61080, Türkiye
| | - Sevil Vural
- Department of Pathology, Faculty of Veterinary Medicine, Ankara University, Ankara 06070, Türkiye
| | - Zihni Demirbağ
- Department of Biology, Faculty of Sciences, Karadeniz Technical University, Trabzon 61080, Türkiye
| | - Aykut Özkul
- Department of Virology, Faculty of Veterinary Medicine, Ankara University, Ankara 06070, Türkiye
| |
Collapse
|
18
|
Park C, Lim W, Song R, Han J, You D, Kim S, Lee JE, van Noort D, Mandenius CF, Lee J, Hyun KA, Jung HI, Park S. Efficient separation of large particles and giant cancer cells using an isosceles trapezoidal spiral microchannel. Analyst 2024; 149:4496-4505. [PMID: 39049608 DOI: 10.1039/d4an00750f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Polyploid giant cancer cells (PGCCs) contribute to the genetic heterogeneity and evolutionary dynamics of tumors. Their size, however, complicates their isolation from mainstream tumor cell populations. Standard techniques like fluorescence-activated cell sorting (FACS) rely on fluorescent labeling, introducing potential challenges in subsequent PGCC analyses. In response, we developed the Isosceles Trapezoidal Spiral Microchannel (ITSμC), a microfluidic device optimizing the Dean drag force (FD) and exploiting uniform vortices for enhanced separation. Numerical simulations highlighted ITSμC's advantage in producing robust FD compared to rectangular and standard trapezoidal channels. Empirical results confirmed its ability to segregate larger polystyrene (PS) particles (avg. diameter: 50 μm) toward the inner wall, while directing smaller ones (avg. diameter: 23 μm) outward. Utilizing ITSμC, we efficiently isolated PGCCs from doxorubicin-resistant triple-negative breast cancer (DOXR-TNBC) and patient-derived cancer (PDC) cells, achieving outstanding purity, yield, and viability rates (all greater than 90%). This precision was accomplished without fluorescent markers, and the versatility of ITSμC suggests its potential in differentiating a wide range of heterogeneous cell populations.
Collapse
Affiliation(s)
- Chanyong Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| | - Wanyoung Lim
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Ryungeun Song
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| | - Jeonghun Han
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
| | - Daeun You
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul 06355, Korea
| | - Sangmin Kim
- Department of Breast Cancer Center, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul 06351, Korea
| | - Jeong Eon Lee
- Department of Health Sciences and Technology, Samsung Advanced Institute for Health Sciences & Technology (SAIHST), Sungkyunkwan University (SKKU), Seoul 06355, Korea
- Division of Breast Surgery, Department of Surgery, Samsung Medical Center, Sungkyunkwan University School of Medi-cine, Seoul 06351, Korea
| | - Danny van Noort
- Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Carl-Fredrik Mandenius
- Division of Biophysics and Bioengineering, Department of Physics, Chemistry and Biology (IFM), Linköping University, Linköping 58183, Sweden
| | - Jinkee Lee
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
- Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Korea
| | - Kyung-A Hyun
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Korea
| | - Hyo-Il Jung
- Department of Mechanical Engineering, Yonsei University, Seoul 03722, Korea
| | - Sungsu Park
- School of Mechanical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea.
- Department of Biomedical Engineering, Sungkyunkwan University (SKKU), Suwon 16419, Korea
- Department of Biophysics, Institute of Quantum Biophysics (IQB), Sungkyunkwan University (SKKU), Suwon 16419, Korea
| |
Collapse
|
19
|
Varma C, Schroeder MK, Price BR, Khan KA, Curty da Costa E, Hochman-Mendez C, Caldarone BJ, Lemere CA. Long-Term, Sex-Specific Effects of GCRsim and Gamma Irradiation on the Brains, Hearts, and Kidneys of Mice with Alzheimer's Disease Mutations. Int J Mol Sci 2024; 25:8948. [PMID: 39201636 PMCID: PMC11355020 DOI: 10.3390/ijms25168948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/14/2024] [Indexed: 09/02/2024] Open
Abstract
Understanding the hazards of space radiation is imperative as astronauts begin voyaging on missions with increasing distances from Earth's protective shield. Previous studies investigating the acute or long-term effects of specific ions comprising space radiation have revealed threats to organs generally considered radioresistant, like the brain, and have shown males to be more vulnerable than their female counterparts. However, astronauts will be exposed to a combination of ions that may result in additive effects differing from those of any one particle species. To better understand this nuance, we irradiated 4-month-old male and female, wild-type and Alzheimer's-like mice with 0, 0.5, or 0.75 Gy galactic cosmic ray simulation (GCRsim) or 0, 0.75, or 2 Gy gamma radiation (wild-type only). At 11 months, mice underwent brain and heart MRIs or behavioral tests, after which they were euthanized to assess amyloid-beta pathology, heart and kidney gene expression and fibrosis, and plasma cytokines. Although there were no changes in amyloid-beta pathology, we observed many differences in brain MRIs and behavior, including opposite effects of GCRsim on motor coordination in male and female transgenic mice. Additionally, several genes demonstrated persistent changes in the heart and kidney. Overall, we found sex- and genotype-specific, long-term effects of GCRsim and gamma radiation on the brain, heart, and kidney.
Collapse
Affiliation(s)
- Curran Varma
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (C.V.); (M.K.S.); (B.R.P.); (K.A.K.)
| | - Maren K. Schroeder
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (C.V.); (M.K.S.); (B.R.P.); (K.A.K.)
| | - Brittani R. Price
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (C.V.); (M.K.S.); (B.R.P.); (K.A.K.)
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Khyrul A. Khan
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (C.V.); (M.K.S.); (B.R.P.); (K.A.K.)
| | - Ernesto Curty da Costa
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, TX 77030, USA; (E.C.d.C.); (C.H.-M.)
| | - Camila Hochman-Mendez
- Department of Regenerative Medicine Research, Texas Heart Institute, Houston, TX 77030, USA; (E.C.d.C.); (C.H.-M.)
| | | | - Cynthia A. Lemere
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (C.V.); (M.K.S.); (B.R.P.); (K.A.K.)
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
20
|
Haller SD, Essani K. Oncolytic Tanapoxvirus Variants Expressing mIL-2 and mCCL-2 Regress Human Pancreatic Cancer Xenografts in Nude Mice. Biomedicines 2024; 12:1834. [PMID: 39200298 PMCID: PMC11351728 DOI: 10.3390/biomedicines12081834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/01/2024] [Accepted: 08/06/2024] [Indexed: 09/02/2024] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the fifth leading cause of cancer-related death and presents the lowest 5-year survival rate of any form of cancer in the US. Only 20% of PDAC patients are suitable for surgical resection and adjuvant chemotherapy, which remains the only curative treatment. Chemotherapeutic and gene therapy treatments are associated with adverse effects and lack specificity/efficacy. In this study, we assess the oncolytic potential of immuno-oncolytic tanapoxvirus (TPV) recombinants expressing mouse monocyte chemoattractant protein (mMCP-1 or mCCL2) and mouse interleukin (mIL)-2 in human pancreatic BxPc-3 cells using immunocompromised and CD-3+ T-cell-reconstituted mice. Intratumoral treatment with TPV/∆66R/mCCL2 and TPV/∆66R/mIL-2 resulted in a regression in BxPc-3 xenograft volume compared to control in immunocompromised mice; mCCL-2 expressing TPV OV resulted in a significant difference from control at p < 0.05. Histological analysis of immunocompromised mice treated with TPV/∆66R/mCCL2 or TPV/∆66R/mIL-2 demonstrated multiple biomarkers indicative of increased severity of chronic, active inflammation compared to controls. In conclusion, TPV recombinants expressing mCCL2 and mIL-2 demonstrated a therapeutic effect via regression in BxPc-3 tumor xenografts. Considering the enhanced oncolytic potency of TPV recombinants demonstrated against PDAC in this study, further investigation as an alternative or combination treatment option for human PDAC may be warranted.
Collapse
Affiliation(s)
| | - Karim Essani
- Laboratory of Virology, Department of Biological Sciences, Western Michigan University, Kalamazoo, MI 49008-5410, USA;
| |
Collapse
|
21
|
Ao L, Shi J, Gan J, Yu W, Du H. Effects of dexmedetomidine and ketorolac applied for patient‑controlled analgesia on the balance of Th1/Th2 and level of VEGF in patients undergoing laparoscopic surgery for cervical cancer: A randomized controlled trial. Oncol Lett 2024; 28:379. [PMID: 38939623 PMCID: PMC11209859 DOI: 10.3892/ol.2024.14512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 05/16/2024] [Indexed: 06/29/2024] Open
Abstract
The aim of the present study was to explore the effects of dexmedetomidine (DEX) combined with ketorolac on postoperative patient-controlled analgesia (PCA), the balance of Th1/Th2 and the level of vascular endothelial growth factor (VEGF) in patients with cervical cancer following laparoscopic radical surgery. A total of 70 women with cervical cancer undergoing laparoscopic radical hysterectomy were enrolled in the study to randomly receive postoperative dexmedetomidine combined with ketorolac analgesia (DK group) and postoperative sufentanil analgesia (SUF group). The primary outcomes were the serum levels of interleukin-4 (IL-4), interferon-γ (IFN-γ) and VEGF, and the IFN-γ/IL-4 ratio 30 min before induction (T0), and 24 and 48 h after surgery. Secondary outcomes included numerical rating scale scores at 0 h (T0), 4 h (T1), 12 h (T2), 24 h (T3) and 48 h (T4) postoperatively, cumulative times of rescue analgesia, as well as the incidence of postoperative side effects within 48 h from surgery. Patients in the DK group reported similar analgesic effects as patients in the SUF group at T2, T3 and T4, and the incidence of postoperative nausea and vomiting was significantly lower in the DK group. In the DK group, the serum concentration of IFN-γ and IFN-γ/IL-4 ratio at 24 and 48 h after surgery were higher compared with those in the SUF group. Conversely, the serum concentrations of IL-4 at 24 h after surgery and VEGF at 24 and 48 h after surgery were significantly lower. The results indicated that the combination of DEX and ketorolac for PCA significantly improved postoperative pain and decreased the serum level of VEGF, which are associated with tumor angiogenesis. In addition, it maintained the homeostasis of postoperative immune dysfunction of patients with cervical cancer by shifting the balance between type 1 T helper cells and type 2 T helper cell (Th1/Th2 balance) to Th1 (registration no. ChiCTR1900027979; December 7, 2019).
Collapse
Affiliation(s)
- Li Ao
- Department of Anesthesiology, The First Central Clinical School, Tianjin Medical University, Tianjin 300192, P.R. China
- Department of Anesthesiology, Tangshan Maternity and Child Healthcare Hospital, Tangshan, Hebei 063000, P.R. China
| | - Jinlin Shi
- Department of Anesthesiology, Tangshan People's Hospital and Tangshan Cancer Hospital, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Jianhui Gan
- Department of Anesthesiology, Tangshan People's Hospital and Tangshan Cancer Hospital, North China University of Science and Technology, Tangshan, Hebei 063000, P.R. China
| | - Wenli Yu
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| | - Hongyin Du
- Department of Anesthesiology, Tianjin First Central Hospital, Tianjin 300192, P.R. China
| |
Collapse
|
22
|
Goleij P, Rahimi M, Pourshahroudi M, Tabari MAK, Muhammad S, Suteja RC, Daglia M, Majma Sanaye P, Hadipour M, Khan H, Sadeghi P. The role of IL-2 cytokine family in asthma. Cytokine 2024; 180:156638. [PMID: 38761716 DOI: 10.1016/j.cyto.2024.156638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Revised: 04/25/2024] [Accepted: 05/02/2024] [Indexed: 05/20/2024]
Abstract
BACKGROUND The interleukin-2 (IL-2) family of cytokines, including IL-2, IL-4, IL-7, IL-9, IL-15, and IL-21, are pivotal regulators of the immune response, impacting both innate and adaptive immunity. Understanding their molecular characteristics, receptor interactions, and signalling pathways is essential for elucidating their roles in health and disease. OBJECTIVES This review provides a comprehensive overview of the IL-2 family of cytokines, highlighting their molecular biology, receptor interactions, and signalling mechanisms. Furthermore, it explores the involvement of IL-2 family cytokines in the pathogenesis of chronic respiratory diseases, with a specific focus on chronic obstructive pulmonary disease (COPD) and asthma. METHODS A thorough literature review was conducted to gather insights into the molecular biology, receptor interactions, and signalling pathways of IL-2 family cytokines. Additionally, studies investigating the roles of these cytokines in chronic respiratory diseases, particularly COPD and asthma, were analysed to discern their implications in wider pathophysiology of disease. RESULTS IL-2 family cytokines exert pleiotropic effects on immune cells, modulating cellular proliferation, differentiation, and survival. Dysregulation of IL-2 family cytokines has been implicated in the pathogenesis of chronic respiratory illnesses, including COPD and asthma. Elevated levels of IL-2 and IL-9 have been associated with disease severity in COPD, while IL-4 and IL-9 play crucial roles in asthma pathogenesis by promoting airway inflammation and remodelling. CONCLUSION Understanding the intricate roles of IL-2 family cytokines in chronic respiratory diseases provides valuable insights into potential therapeutic targets for these conditions. Targeting specific cytokines or their receptors may offer novel treatment modalities to attenuate disease progression and improve clinical outcomes in patients with COPD and asthma.
Collapse
Affiliation(s)
- Pouya Goleij
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran; Immunology Board for Transplantation and Cell-Based Therapeutics (ImmunoTACT), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Mohammad Rahimi
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran.
| | - Motahareh Pourshahroudi
- Department of Public Health, Faculty of Health, Education and Life Sciences, Birmingham City University, Birmingham, United Kingdom.
| | - Mohammad Amin Khazeei Tabari
- Student Research Committee, School of Medicine, Mazandaran University of Medical Sciences, Mazandaran, Iran; Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran.
| | - Syed Muhammad
- Farooqia College of Pharmacy, Mysuru, Karnataka, India.
| | | | - Maria Daglia
- Department of Pharmacy, University of Naples "Federico II", Via D. Montesano 49, 80131 Naples, Italy; International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China.
| | | | - Mahboube Hadipour
- Department of Biochemistry, School of Medicine, Hormozgan University of Medical Sciences, Bandar Abbas, Iran.
| | - Haroon Khan
- Department of Pharmacy, Faculty of Chemical and Life Sciences, Abdul Wali Khan University Mardan, Mardan 23200, Pakistan.
| | - Parniyan Sadeghi
- Network of Interdisciplinarity in Neonates and Infants (NINI), Universal Scientific Education and Research Network (USERN), Tehran, Iran; School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
23
|
Bin Y, Ren J, Zhang H, Zhang T, Liu P, Xin Z, Yang H, Feng Z, Chen Z, Zhang H. Against all odds: The road to success in the development of human immune reconstitution mice. Animal Model Exp Med 2024; 7:460-470. [PMID: 38591343 PMCID: PMC11369039 DOI: 10.1002/ame2.12407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 03/17/2024] [Indexed: 04/10/2024] Open
Abstract
The mouse genome has a high degree of homology with the human genome, and its physiological, biochemical, and developmental regulation mechanisms are similar to those of humans; therefore, mice are widely used as experimental animals. However, it is undeniable that interspecies differences between humans and mice can lead to experimental errors. The differences in the immune system have become an important factor limiting current immunological research. The application of immunodeficient mice provides a possible solution to these problems. By transplanting human immune cells or tissues, such as peripheral blood mononuclear cells or hematopoietic stem cells, into immunodeficient mice, a human immune system can be reconstituted in the mouse body, and the engrafted immune cells can elicit human-specific immune responses. Researchers have been actively exploring the development and differentiation conditions of host recipient animals and grafts in order to achieve better immune reconstitution. Through genetic engineering methods, immunodeficient mice can be further modified to provide a favorable developmental and differentiation microenvironment for the grafts. From initially only being able to reconstruct single T lymphocyte lineages, it is now possible to reconstruct lymphoid and myeloid cells, providing important research tools for immunology-related studies. In this review, we compare the differences in immune systems of humans and mice, describe the development history of human immune reconstitution from the perspectives of immunodeficient mice and grafts, and discuss the latest advances in enhancing the efficiency of human immune cell reconstitution, aiming to provide important references for immunological related researches.
Collapse
Affiliation(s)
- Yixiao Bin
- School of Basic Medical SciencesShaanxi University of Chinese MedicineXianyangChina
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Jing Ren
- School of Basic Medical SciencesShaanxi University of Chinese MedicineXianyangChina
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Haowei Zhang
- Department of Occupational & Environmental Health and the Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Public HealthFourth Military Medical UniversityXi'anChina
| | - Tianjiao Zhang
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Peijuan Liu
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Zhiqian Xin
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Haijiao Yang
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Zhuan Feng
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Zhinan Chen
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| | - Hai Zhang
- Department of Cell Biology, National Translational Science Center for Molecular MedicineFourth Military Medical UniversityXi'anChina
- State Key Laboratory of New Targets Discovery and Drug Development for Major DiseasesFourth Military Medical UniversityXi'anChina
| |
Collapse
|
24
|
Dong J, Jiang W, Zhang W, Hu R, Huang Z, Guo T, Du T, Jiang X. Genetic association of circulating interleukins and risk of colorectal cancer: A bidirectional Mendelian randomization study. ENVIRONMENTAL TOXICOLOGY 2024; 39:2706-2716. [PMID: 38240193 DOI: 10.1002/tox.24147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2023] [Revised: 12/31/2023] [Accepted: 01/06/2024] [Indexed: 04/17/2024]
Abstract
BACKGROUND Previous studies have reported that inflammation, especially interleukin family members, plays an important role in the development of colorectal cancer (CRC). However, because of various confounders and the lack of clinical randomized controlled trial, the causal relationship between genetically predicted level of interleukin family and CRC risk has not been fully explained. OBJECTIVE Bi-directional Mendelian randomization (MR) was conducted to investigate the causal association between interleukin family members and CRC. METHODS Several genetic variables were extracted as instrumental variables (IVs) from summary data of genome-wide association studies (GWAS) for interleukin and CRC. IVs of interleukin family were obtained from recently published GWAS studies and the summary data of CRC was from FinnGen Biobank. After a series of quality control measures and strict screening, six models were used to evaluate the causal relationship. Pleiotropy, heterogeneity test, and a variety of sensitivity analysis were also used to estimate the robustness of the model results. RESULTS Genetically predicted higher circulating levels of IL-2 (odds ratio [OR]: 0.76; 95% confidence interval [CI]: 0.63-0.92; p = .0043), IL-17F(OR: 0.78; 95% CI: 0.62-1.00; p = .015), and IL-31 (OR: 0.88; 95% CI: 0.79-0.98; p = .023) were suggestively associated with decreased CRC risk. However, higher level of IL-10 (OR: 1.40; 95% CI: 1.18-1.65; p = .000094) was causally associated with increased risk of CRC. Reverse MR results indicated that the exposure of CRC was suggestively associated with higher levels of IL-36α (OR: 1.23; 95% CI: 1.01-1.49; p = .040) and IL-17RD (OR: 1.22; 95% CI, 1.00-1.48; p = .048) and lower level of IL-13 (OR: 0.78; 95% CI: 0.65-0.95; p = .013). The overall MR results did not provide evidence for causal relationships between other interleukins and CRC (p > .05). CONCLUSION We offer suggestive evidence supporting a potential causal relationship between circulating interleukins and CRC, underscoring the significance of targeting circulating interleukins as a strategy to mitigate the incidence of CRC.
Collapse
Affiliation(s)
- Jiaxing Dong
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wanju Jiang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenjia Zhang
- Department of Respiratory Medicine, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Renhao Hu
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Zhiye Huang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Taohua Guo
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Tao Du
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Xiaohua Jiang
- Department of Gastrointestinal Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, China
| |
Collapse
|
25
|
Hossain MM, Khalid A, Akhter Z, Parveen S, Ayaz MO, Bhat AQ, Badesra N, Showket F, Dar MS, Ahmed F, Dhiman S, Kumar M, Singh U, Hussain R, Keshari P, Mustafa G, Nargorta A, Taneja N, Gupta S, Mir RA, Kshatri AS, Nandi U, Khan N, Ramajayan P, Yadav G, Ahmed Z, Singh PP, Dar MJ. Discovery of a novel and highly selective JAK3 inhibitor as a potent hair growth promoter. J Transl Med 2024; 22:370. [PMID: 38637842 PMCID: PMC11025159 DOI: 10.1186/s12967-024-05144-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 03/23/2024] [Indexed: 04/20/2024] Open
Abstract
JAK-STAT signalling pathway inhibitors have emerged as promising therapeutic agents for the treatment of hair loss. Among different JAK isoforms, JAK3 has become an ideal target for drug discovery because it only regulates a narrow spectrum of γc cytokines. Here, we report the discovery of MJ04, a novel and highly selective 3-pyrimidinylazaindole based JAK3 inhibitor, as a potential hair growth promoter with an IC50 of 2.03 nM. During in vivo efficacy assays, topical application of MJ04 on DHT-challenged AGA and athymic nude mice resulted in early onset of hair regrowth. Furthermore, MJ04 significantly promoted the growth of human hair follicles under ex-vivo conditions. MJ04 exhibited a reasonably good pharmacokinetic profile and demonstrated a favourable safety profile under in vivo and in vitro conditions. Taken together, we report MJ04 as a highly potent and selective JAK3 inhibitor that exhibits overall properties suitable for topical drug development and advancement to human clinical trials.
Collapse
Affiliation(s)
- Md Mehedi Hossain
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Arfan Khalid
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Zaheen Akhter
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Sabra Parveen
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Mir Owais Ayaz
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Aadil Qadir Bhat
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Neetu Badesra
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Farheen Showket
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Mohmmad Saleem Dar
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
| | - Farhan Ahmed
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India
| | - Sumit Dhiman
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Mukesh Kumar
- Medicinal Product Chemistry, Sussex Drug Discovery Centre, School of Life Sciences, University of Sussex, Falmer, Brighton, BN1 9QG, UK
| | - Umed Singh
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Razak Hussain
- Department of Entomology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Pankaj Keshari
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Ghulam Mustafa
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Amit Nargorta
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Neha Taneja
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - Somesh Gupta
- Department of Dermatology and Venereology, All India Institute of Medical Sciences, New Delhi, India
| | - Riyaz A Mir
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Aravind Singh Kshatri
- Division of Neuroscience and Ageing Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow, 226031, India
| | - Utpal Nandi
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Nooruddin Khan
- Department of Animal Biology, School of Life Sciences, University of Hyderabad, Gachibowli, Hyderabad, 500046, India
| | - P Ramajayan
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Govind Yadav
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Zabeer Ahmed
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India
| | - Parvinder Pal Singh
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.
- Natural Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India.
| | - Mohd Jamal Dar
- Laboratory of Cell and Molecular Biology, Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu, Jammu and Kashmir, 180001, India.
- Academy of Scientific & Innovative Research, Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
26
|
Jiang Y, Chen C, Liu Y, Wang R, Feng C, Cai L, Chang S, Zhao L. A novel dual mechanism-of-action bispecific PD-1-IL-2v armed by a "βγ-only" interleukin-2 variant. Front Immunol 2024; 15:1369376. [PMID: 38638426 PMCID: PMC11024467 DOI: 10.3389/fimmu.2024.1369376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 03/25/2024] [Indexed: 04/20/2024] Open
Abstract
Introduction Interleukin-2 (IL-2) is one of the first cytokines to be discovered as an immune agonist for cancer immunotherapy. Biased IL-2 variants had been discovered to eliminate Treg activation or enhance the tumor specific T cell cytotoxicity. However, all the biased IL-2 variants pose the risk to overstimulate immune response at a low-dose range. Here, we introduce a novel dual-MOA bispecific PD-1-IL-2v molecule with great anti-tumor efficacy in a high dosed manner. Methods The novel IL-2 variant was designed by structural truncation and shuffling. The single armed bispecific PD-1-IL-2v molecule and IL-2v were studied by immune cell activations in vitro and in vivo and anti-tumor efficacy in mouse model. Results and discussion The IL-2 variant in this bispecific antibody only binds to IL-2Rβγ complex in a fast-on/off manner without α, β or γ single receptor binding. This IL-2v mildly activates T and NK cells without over stimulation, meanwhile it diminishes Treg activation compared to the wild type IL-2. This unique bispecific molecule with "βγ-only" IL-2v can not only "in-cis" stimulate and expand CD8 T and NK cells moderately without Treg activation, but also block the PD-1/L1 interaction at a similar dose range with monoclonal antibody.
Collapse
Affiliation(s)
- Yongji Jiang
- Division of AAV Discovery, Department of Gene Therapy, Cure Genetics Co., LTD, Suzhou, China
| | - Chuyuan Chen
- Division of AAV Discovery, Department of Gene Therapy, Cure Genetics Co., LTD, Suzhou, China
| | - Yuan Liu
- Division of Research & Development, Department of Cell Therapy, Cure Genetics Co., LTD, Suzhou, China
| | - Rong Wang
- Division of Research & Development, Department of Cell Therapy, Cure Genetics Co., LTD, Suzhou, China
| | - Chuan Feng
- Division of Research & Development, Department of Cell Therapy, Cure Genetics Co., LTD, Suzhou, China
| | - Lili Cai
- Division of AAV Discovery, Department of Gene Therapy, Cure Genetics Co., LTD, Suzhou, China
| | - Shuang Chang
- Division of AAV Discovery, Department of Gene Therapy, Cure Genetics Co., LTD, Suzhou, China
| | - Lei Zhao
- Division of AAV Discovery, Department of Gene Therapy, Cure Genetics Co., LTD, Suzhou, China
| |
Collapse
|
27
|
Tomasovic LM, Liu K, VanDyke D, Fabilane CS, Spangler JB. Molecular Engineering of Interleukin-2 for Enhanced Therapeutic Activity in Autoimmune Diseases. BioDrugs 2024; 38:227-248. [PMID: 37999893 PMCID: PMC10947368 DOI: 10.1007/s40259-023-00635-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/18/2023] [Indexed: 11/25/2023]
Abstract
The interleukin-2 (IL-2) cytokine plays a crucial role in regulating immune responses and maintaining immune homeostasis. Its immunosuppressive effects have been harnessed therapeutically via administration of low cytokine doses. Low-dose IL-2 has shown promise in the treatment of various autoimmune and inflammatory diseases; however, the clinical use of IL-2 is complicated by its toxicity, its pleiotropic effects on both immunostimulatory and immunosuppressive cell subsets, and its short serum half-life, which collectively limit the therapeutic window. As a result, there remains a considerable need for IL-2-based autoimmune disease therapies that can selectively target regulatory T cells with minimal off-target binding to immune effector cells in order to prevent cytokine-mediated toxicities and optimize therapeutic efficacy. In this review, we discuss exciting advances in IL-2 engineering that are empowering the development of novel therapies to treat autoimmune conditions. We describe the structural mechanisms of IL-2 signaling, explore current applications of IL-2-based compounds as immunoregulatory interventions, and detail the progress and challenges associated with clinical adoption of IL-2 therapies. In particular, we focus on protein engineering approaches that have been employed to optimize the regulatory T-cell bias of IL-2, including structure-guided or computational design of cytokine mutants, conjugation to polyethylene glycol, and the development of IL-2 fusion proteins. We also consider future research directions for enhancing the translational potential of engineered IL-2-based therapies. Overall, this review highlights the immense potential to leverage the immunoregulatory properties of IL-2 for targeted treatment of autoimmune and inflammatory diseases.
Collapse
Affiliation(s)
- Luke M Tomasovic
- Medical Scientist Training Program, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Kathy Liu
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Derek VanDyke
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA
| | - Charina S Fabilane
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Program in Molecular Biophysics, Johns Hopkins University, Baltimore, MD, USA
| | - Jamie B Spangler
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Translational Tissue Engineering Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Chemical and Biomolecular Engineering, Johns Hopkins University, Baltimore, MD, USA.
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Sidney Kimmel Cancer Center, Johns Hopkins University, Baltimore, MD, USA.
- Bloomberg Kimmel Institute for Cancer Immunotherapy, Johns Hopkins University, Baltimore, MD, USA.
- Department of Ophthalmology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Molecular Microbiology and Immunology, Johns Hopkins University School of Public Health, Baltimore, MD, USA.
| |
Collapse
|
28
|
Yang M, Zhang CY. Interleukins in liver disease treatment. World J Hepatol 2024; 16:140-145. [PMID: 38495285 PMCID: PMC10941743 DOI: 10.4254/wjh.v16.i2.140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/22/2023] [Accepted: 01/08/2024] [Indexed: 02/27/2024] Open
Abstract
Cytokines play pleiotropic roles in human health and disease by regulating both innate and adaptive immune responses. Interleukins (ILs), a large group of cytokines, can be divided into seven families, including IL-1, IL-2, IL-6, IL-8, IL-10, IL-12, and IL-17 families. Here, we review the functions of ILs in the pathogenesis and resolution of liver diseases, such as liver inflammation (e.g., IL-35), alcohol-related liver disease (e.g., IL-11), non-alcoholic steatohepatitis (e.g., IL-22), liver fibrosis (e.g., Il-17a), and liver cancer (e.g., IL-8). Overall, IL-1 family members are implicated in liver inflammation induced by different etiologies, such as alcohol consumption, high-fat diet, and hepatitis viruses. IL-2 family members mainly regulate T lymphocyte and NK cell proliferation and activation, and the differentiation of T cells. IL-6 family cytokines play important roles in acute phase response in liver infection, liver regeneration, and metabolic regulation, as well as lymphocyte activation. IL-8, also known as CXCL8, is activated in chronic liver diseases, which is associated with the accumulation of neutrophils and macrophages. IL-10 family members contribute key roles to liver immune tolerance and immunosuppression in liver disease. IL-12 family cytokines influence T-cell differentiation and play an essential role in autoimmune liver disease. IL-17 subfamilies contribute to infection defense, liver inflammation, and Th17 cell differentiation. ILs interact with different type I and type II cytokine receptors to regulate intracellular signaling pathways that mediate their functions. However, most clinical studies are only performed to evaluate IL-mediated therapies on alcohol and hepatitis virus infection-induced hepatitis. More pre-clinical and clinical studies are required to evaluate IL-mediated monotherapy and synergistic therapies.
Collapse
Affiliation(s)
- Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65212, United States.
| | - Chun-Ye Zhang
- Bond Life Sciences Center, University of Missouri, Columbia, MO 65212, United States
| |
Collapse
|
29
|
Torres DJL, Dos Santos Oliveira KK, da Silva Barros M, Moreira LR, de Freitas Firmino L, da Piedade Costa Reis de Albuquerque M, da Glória Aureliano Melo Cavalcante M, Martins SM, de Oliveira Junior WA, da Silva Rabello MC, de Lorena VMB. TNF blockers alone and associated with Benznidazole impact in vitro cytokine dynamics in chronic Chagas disease. Parasite Immunol 2024; 46:e13024. [PMID: 38385576 DOI: 10.1111/pim.13024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 01/08/2024] [Accepted: 01/10/2024] [Indexed: 02/23/2024]
Abstract
Studies involving the immune response in Chagas disease suggest an imbalance in the immune response of symptomatic patients, with an inflammatory profile dominating in Chagas heart disease, mainly by tumour necrosis factor (TNF). TNF is considered a key cytokine in immunopathology in chronic carriers in several processes during the immune response. Our work aimed to evaluate regulatory (interleukin [IL]-4 and IL-10) and inflammatory (TNF, interferon-gamma [IFN-γ], IL-2 and IL-6) cytokines in peripheral blood mononuclear cells culture supernatants. of affected patients with undetermined clinical forms-IND (n = 13) mild heart form-CARD1 (n = 13) and severe cardiac form-CARD2 (n = 16), treated in vitro with two TNF blockers, Adalimumab (ADA) and Etanercept (ETA) alone or in association with Benznidazole (BZ). The results indicate that ADA was more competent in blocking TNF (compared to ETA) in all groups but with much lower levels in the CARD2 group. ETA statistically decreased TNF levels only in the CARD2 group. IFN-γ increased in the CARD2 group after treatment with ETA relative to ADA. IL-4 had its levels decreased when treated by both drugs. IL-2 was detected in cells from CARD2 carriers compared to the NEG group after treatment with both drugs. The association with BZ decreased levels of IL-2/TNF and increased IL-4. These data reinforce the participation of TNF in severe Chagas heart disease and bring perspectives on using these blockers in the immunological treatment of Chagas disease since the use of BZ is extremely limited in these patients.
Collapse
Affiliation(s)
- Diego José Lira Torres
- Universidade Federal de Pernambuco-UFPE, Recife, Pernambuco, Brazil
- Instituto Aggeu Magalhães-IAM/Fiocruz, Recife, Pernambuco, Brazil
| | - Kamila Kássia Dos Santos Oliveira
- Universidade Federal de Pernambuco-UFPE, Recife, Pernambuco, Brazil
- Instituto Aggeu Magalhães-IAM/Fiocruz, Recife, Pernambuco, Brazil
| | - Michelle da Silva Barros
- Universidade Federal de Pernambuco-UFPE, Recife, Pernambuco, Brazil
- Instituto Aggeu Magalhães-IAM/Fiocruz, Recife, Pernambuco, Brazil
| | - Leyllane Rafael Moreira
- Universidade Federal de Pernambuco-UFPE, Recife, Pernambuco, Brazil
- Instituto Aggeu Magalhães-IAM/Fiocruz, Recife, Pernambuco, Brazil
| | - Luciane de Freitas Firmino
- Universidade Federal de Pernambuco-UFPE, Recife, Pernambuco, Brazil
- Instituto Aggeu Magalhães-IAM/Fiocruz, Recife, Pernambuco, Brazil
| | | | | | - Sílvia Marinho Martins
- Ambulatório De Doença De Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico De Pernambuco, Recife, Pernambuco, Brazil
| | - Wilson Alves de Oliveira Junior
- Ambulatório De Doença De Chagas e Insuficiência Cardíaca do Pronto Socorro Cardiológico De Pernambuco, Recife, Pernambuco, Brazil
| | | | | |
Collapse
|
30
|
Wei SL, Yang CL, Si WY, Dong J, Zhao XL, Zhang P, Li H, Wang CC, Zhang M, Li XL, Duan RS. Altered serum levels of cytokines in patients with myasthenia gravis. Heliyon 2024; 10:e23745. [PMID: 38192761 PMCID: PMC10772159 DOI: 10.1016/j.heliyon.2023.e23745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 11/12/2023] [Accepted: 12/12/2023] [Indexed: 01/10/2024] Open
Abstract
Background Myasthenia gravis (MG) is an autoimmune disease characterized by generalized skeletal muscle contraction weakness due to autoantibodies targeting neural-muscular junctions. Here, we investigated the relationship between key cytokines and MG type, disease course, antibodies, and comorbidities. Method Cytokine levels in serum samples collected from MG (n = 45) and healthy control (HC, n = 38) patients from January 2020 to June 2022 were quantified via flow cytometry. Results Levels of IL-6 were higher in the MG group versus healthy individuals (p = 0.026) and in patients with generalized versus ocular MG (p = 0.019). IL-6 levels were positively correlated with QMG score. In patients with MG with both AChR and Titin antibodies, serum levels of sFas and granulysin were higher than in those with AChR alone (p = 0.036, and p = 0.028, respectively). LOMG had a reduction in serum levels of IL-2 compared to EOMG (p = 0.036). LOMG patients with diabetes had lower serum levels of IL-2, IL-4, and IFN-γ (p = 0.044, p = 0.038, and p = 0.047, respectively) versus those without diabetes. sFas in the MG with Abnormal thymus were reduced compared to those in MG with Normal thymus (p = 0.008). Conclusions This study revealed a positive correlation between IL-6 level and MG status. Serum cytokine levels of the AChR + Titin MG group differed from those of the AChR group. LOMG had a lower IL-2 level. Comorbidities affect some cytokines in peripheral blood in MG serum.
Collapse
Affiliation(s)
- Shu-Li Wei
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Chun-Lin Yang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, PR China
- Shandong Institute of Neuroimmunology, Jinan 250014, PR China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan 250014, PR China
| | - Wei-Yue Si
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
| | - Jing Dong
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, PR China
| | - Xue-Lu Zhao
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, PR China
| | - Peng Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, PR China
- Shandong Institute of Neuroimmunology, Jinan 250014, PR China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan 250014, PR China
| | - Heng Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, PR China
- Shandong Institute of Neuroimmunology, Jinan 250014, PR China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan 250014, PR China
| | - Cong-Cong Wang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, PR China
- Shandong Institute of Neuroimmunology, Jinan 250014, PR China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan 250014, PR China
| | - Min Zhang
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, PR China
- Shandong Institute of Neuroimmunology, Jinan 250014, PR China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan 250014, PR China
| | - Xiao-Li Li
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, PR China
- Shandong Institute of Neuroimmunology, Jinan 250014, PR China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan 250014, PR China
| | - Rui-Sheng Duan
- Department of Neurology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan 250014, PR China
- Department of Neurology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan 250014, PR China
- Shandong Institute of Neuroimmunology, Jinan 250014, PR China
- Shandong Provincial Medicine and Health Key Laboratory of Neuroimmunology, Jinan 250014, PR China
| |
Collapse
|
31
|
Liongue C, Sobah ML, Ward AC. Signal Transducer and Activator of Transcription Proteins at the Nexus of Immunodeficiency, Autoimmunity and Cancer. Biomedicines 2023; 12:45. [PMID: 38255152 PMCID: PMC10813391 DOI: 10.3390/biomedicines12010045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/24/2024] Open
Abstract
The signal transducer and activator of transcription (STAT) family of proteins has been demonstrated to perform pivotal roles downstream of a myriad of cytokines, particularly those that control immune cell production and function. This is highlighted by both gain-of-function (GOF) and loss-of-function (LOF) mutations being implicated in various diseases impacting cells of the immune system. These mutations are typically inherited, although somatic GOF mutations are commonly observed in certain immune cell malignancies. This review details the growing appreciation of STAT proteins as a key node linking immunodeficiency, autoimmunity and cancer.
Collapse
Affiliation(s)
- Clifford Liongue
- School of Medicine, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia; (C.L.); (M.L.S.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
| | - Mohamed Luban Sobah
- School of Medicine, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia; (C.L.); (M.L.S.)
| | - Alister C. Ward
- School of Medicine, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia; (C.L.); (M.L.S.)
- Institute for Mental and Physical Health and Clinical Translation, Deakin University, Waurn Ponds, Geelong, VIC 3216, Australia
| |
Collapse
|
32
|
Ratajczak M, Waszak M, Śliwicka E, Wendt M, Skrypnik D, Zieliński J, Krutki P. In search of biomarkers for low back pain: can traction therapy effectiveness be prognosed by surface electromyography or blood parameters? Front Physiol 2023; 14:1290409. [PMID: 38143914 PMCID: PMC10739392 DOI: 10.3389/fphys.2023.1290409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/17/2023] [Indexed: 12/26/2023] Open
Abstract
Background: Lumbar traction therapy is a common method to reduce low back pain (LBP) but is not always effective. The search for biomarkers that would prognose the effectiveness of LBP management is one priority for improving patients' quality of life. Objectives: 1) To determine the phenotype of patients benefiting most from lumbar traction therapy. 2) To correlate systemic and electromyographic biomarkers with pain and pain-related disability. Methods: Data on muscle bioelectrical activity (surface electromyography [SEMG]) in the flexion-extension task, the concentrations of twelve systemic biochemical factors, LBP intensity (Visual Analog Scale), the Oswestry Disability Index, and the Roland-Morris Disability Questionnaire (RMDQ) were collected before and 72 h after 20 sessions of lumbar traction therapy. Patients were divided into responders and nonresponders based on the criterion of a 50% reduction in maximal pain. Results: The responders had lower maximal muscle bioactivity in the extension phase on the left side (p < 0.01) and higher flexion-extension ratios on both sides of the body in the SEMG (left: p < 0.05; right: p < 0.01), and higher adipsin, interleukin-2, interleukin-4, and interleukin-10 concentrations (p < 0.05) than nonresponders. Patients with higher interleukin-4 concentrations before therapy achieved greater reductions in maximal pain in the sitting position, bioelectrical muscle activity in flexion, and flexion-relaxation ratio on the left side of the body. Changes in adipsin and interleukin-4 concentrations correlated with changes in LBP intensity (r = 0.68; r = -0.77). Changes in stem cell growth factor and interleukin-17A correlated with changes in RMDQ (R = 0.53) and bioelectrical muscle activity in extension (left: R = -0.67; right: R = -0.76), respectively. Conclusion: Responders to traction therapy had SEMG indices of less favorable muscle activity in the flexion-extension task and elevated indices of inflammation before the study. For the first time, interleukin-4 was indicated as a potential biomarker for prognosing post-therapy changes in pain intensity and muscle activity.
Collapse
Affiliation(s)
- Marzena Ratajczak
- Department of Medical Biology, Poznan University of Physical Education, Poznan, Poland
| | - Małgorzata Waszak
- Department of Medical Biology, Poznan University of Physical Education, Poznan, Poland
| | - Ewa Śliwicka
- Department of Physiology and Biochemistry, Poznan University of Physical Education, Poznan, Poland
| | - Michał Wendt
- Department of Medical Biology, Poznan University of Physical Education, Poznan, Poland
| | - Damian Skrypnik
- Department of Treatment of Obesity, Metabolic Disorders and Clinical Dietetics, Poznan University of Medical Sciences, Poznan, Poland
| | - Jacek Zieliński
- Department of Athletics, Strength and Conditioning, Poznan University of Physical Education, Poznan, Poland
| | - Piotr Krutki
- Department of Medical Biology, Poznan University of Physical Education, Poznan, Poland
| |
Collapse
|
33
|
Kmezic I, Gustafsson R, Fink K, Svenningsson A, Samuelsson K, Ingre C, Olsson T, Hansson M, Kockum I, Adzemovic MZ, Press R. Validation of elevated levels of interleukin-8 in the cerebrospinal fluid, and discovery of new biomarkers in patients with GBS and CIDP using a proximity extension assay. Front Immunol 2023; 14:1241199. [PMID: 38077366 PMCID: PMC10702497 DOI: 10.3389/fimmu.2023.1241199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Background Biomarkers for diagnosis of inflammatory neuropathies, assessment of prognosis, and treatment response are lacking. Methods CSF and EDTA plasma from patients with Guillain-Barré syndrome (GBS), chronic inflammatory demyelinating polyneuropathy (CIDP), healthy controls (HC) and disease controls were analyzed with Olink multiplex proximity extension assay (PEA) from two independent cohorts. Levels of interleukin-8 (IL8) were further analyzed with ELISA in patients with GBS, CIDP, paraproteinemia-related demyelinating polyneuropathy (PDN), multifocal motor neuropathy (MMN), HC and disease controls. ROC analysis was performed. Outcome was measured with the GBS-disability score (GBS-ds) or Inflammatory Neuropathy Cause and Treatment (INCAT) score. Results In CSF, multiplex PEA analysis revealed up-regulation of IL8 in GBS compared to CIDP and HC respectively, and CIDP compared to HC. In addition, levels of IL2RA were upregulated in GBS compared to both HC and CIDP, SELE in GBS compared to HC, and ITGAM, IL6, and NRP1 in GBS compared to CIDP. In plasma, levels of MMP3, THBD and ITGAM were upregulated in CIDP compared to HC. Validation of multiplex IL8 results using ELISA, revealed increased levels of IL8 in CSF in patients with GBS and CIDP versus HC and non-inflammatory polyneuropathies (NIP) respectively, as well as in PDN versus NIP and HC. Levels of IL8 in CSF correlated with impairment in the acute phase of GBS as well as outcome at 6-months follow up. Conclusion IL8 in CSF is validated as a diagnostic biomarker in GBS and CIDP, and a prognostic biomarker in GBS. Multiplex PEA hereby identifies several potential biomarkers in GBS and CIDP.
Collapse
Affiliation(s)
- Ivan Kmezic
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Rasmus Gustafsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Katharina Fink
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Anders Svenningsson
- Department of Clinical Sciences, Karolinska Institutet Danderyd Hospital, Stockholm, Sweden
| | - Kristin Samuelsson
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Caroline Ingre
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Tomas Olsson
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Magnus Hansson
- Department of Clinical Chemistry, Karolinska University Hospital, Stockholm, Sweden
- Department of Laboratory Medicine H5, Karolinska Institutet, Stockholm, Sweden
| | - Ingrid Kockum
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Milena Z. Adzemovic
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Centre for Neurology, Academic Specialist Centre, Stockholm Health Services, Stockholm, Sweden
| | - Rayomand Press
- Department of Neurology, Karolinska University Hospital, Stockholm, Sweden
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
34
|
de Arruda TB, Bavia L, Mosimann ALP, Aoki MN, Sarzi ML, Conchon-Costa I, Wowk PF, Duarte dos Santos CN, Pavanelli WR, Silveira GF, Bordignon J. Viremia and Inflammatory Cytokines in Dengue: Interleukin-2 as a Biomarker of Infection, and Interferon-α and -γ as Markers of Primary versus Secondary Infection. Pathogens 2023; 12:1362. [PMID: 38003826 PMCID: PMC10675515 DOI: 10.3390/pathogens12111362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/26/2023] [Accepted: 11/01/2023] [Indexed: 11/26/2023] Open
Abstract
The pathogenesis of Dengue virus (DENV) infection is complex and involves viral replication that may trigger an inflammatory response leading to severe disease. Here, we investigated the correlation between viremia and cytokine levels in the serum of DENV-infected patients. Between 2013 and 2014, 138 patients with a diagnosis of acute-phase DENV infection and 22 patients with a non-dengue acute febrile illness (AFI) were enrolled. Through a focus-forming assay (FFU), we determined the viremia levels in DENV-infected patients and observed a peak in the first two days after the onset of symptoms. A higher level of viremia was observed in primary versus secondary DENV-infected patients. Furthermore, no correlation was observed between viremia and inflammatory cytokine levels in DENV-infected patients. Receiver operating characteristic (ROC) curve analysis revealed that IL-2 has the potential to act as a marker to distinguish dengue from other febrile illnesses and is positively correlated with Th1 cytokines. IFN-α and IFN-γ appear to be potential markers of primary versus secondary infection in DENV-infected patients, respectively. The results also indicate that viremia levels are not the main driving force behind inflammation in dengue and that cytokines could be used as infection biomarkers and for differentiation between primary versus secondary infection.
Collapse
Affiliation(s)
- Thaís Bonato de Arruda
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
| | - Lorena Bavia
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
- Departamento de Biologia Celular, Setor de Ciências Biológicas, Universidade Federal do Paraná (UFPR), Curitiba 81531-980, Paraná, Brazil
| | - Ana Luiza Pamplona Mosimann
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
| | - Mateus Nobrega Aoki
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
- Laboratório de Ciências & Tecnologias Aplicadas a Saúde, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil
| | - Maria Lo Sarzi
- Secretaria Municipal de Saúde de Cambé, Cambé 86057-970, Paraná, Brazil
| | - Ivete Conchon-Costa
- Laboratório de Protozoologia Experimental, Universidade Estadual de Londrina, Londrina 86057-970, Paraná, Brazil (W.R.P.)
| | - Pryscilla Fanini Wowk
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
| | - Claudia Nunes Duarte dos Santos
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
| | - Wander Rogério Pavanelli
- Laboratório de Protozoologia Experimental, Universidade Estadual de Londrina, Londrina 86057-970, Paraná, Brazil (W.R.P.)
| | | | - Juliano Bordignon
- Laboratório de Virologia Molecular, Instituto Carlos Chagas, Fiocruz, Curitiba 81350-010, Paraná, Brazil; (T.B.d.A.); (A.L.P.M.)
| |
Collapse
|
35
|
Roser LA, Luckhardt S, Ziegler N, Thomas D, Wagner PV, Damm G, Scheffschick A, Hewitt P, Parnham MJ, Schiffmann S. Immuno-inflammatory in vitro hepatotoxicity models to assess side effects of biologicals exemplified by aldesleukin. Front Immunol 2023; 14:1275368. [PMID: 38045689 PMCID: PMC10693457 DOI: 10.3389/fimmu.2023.1275368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Accepted: 10/27/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Hepatotoxicity induced by immunotherapeutics is an appearing cause for immune-mediated drug-induced liver injury. Such immuno-toxic mechanisms are difficult to assess using current preclinical models and the incidence is too low to detect in clinical trials. As hepatotoxicity is a frequent reason for post-authorisation drug withdrawal, there is an urgent need for immuno-inflammatory in vitro models to assess the hepatotoxic potential of immuno-modulatory drug candidates. We developed several immuno-inflammatory hepatotoxicity test systems based on recombinant human interleukin-2 (aldesleukin). Methods Co-culture models of primary human CD8+ T cells or NK cells with the hepatocyte cell line HepaRG were established and validated with primary human hepatocytes (PHHs). Subsequently, the HepaRG model was refined by increasing complexity by inclusion of monocyte-derived macrophages (MdMs). The main readouts were cytotoxicity, inflammatory mediator release, surface marker expression and specific hepatocyte functions. Results We identified CD8+ T cells as possible mediators of aldesleukin-mediated hepatotoxicity, with MdMs being implicated in increased aldesleukin-induced inflammatory effects. In co-cultures of CD8+ T cells with MdMs and HepaRG cells, cytotoxicity was induced at intermediate/high aldesleukin concentrations and perforin was upregulated. A pro-inflammatory milieu was created measured by interleukin-6 (IL-6), c-reactive protein (CRP), interferon gamma (IFN-γ), and monocyte chemoattractant protein-1 (MCP-1) increase. NK cells responded to aldesleukin, however, only minor aldesleukin-induced cytotoxic effects were measured in co-cultures. Results obtained with HepaRG cells and with PHHs were comparable, especially regarding cytotoxicity, but high inter-donor variations limited meaningfulness of the PHH model. Discussion The in vitro test systems developed contribute to the understanding of potential key mechanisms in aldesleukin-mediated hepatotoxicity. In addition, they may aid assessment of immune-mediated hepatotoxicity during the development of novel immunotherapeutics.
Collapse
Affiliation(s)
- Luise A. Roser
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Sonja Luckhardt
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Nicole Ziegler
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Dominique Thomas
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
- pharmazentrum frankfurt/ZAFES, Department of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Pia Viktoria Wagner
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Georg Damm
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Andrea Scheffschick
- Department of Hepatobiliary Surgery and Visceral Transplantation, University Hospital, Leipzig University, Leipzig, Germany
| | - Philip Hewitt
- Chemical and Preclinical Safety, Merck Healthcare KGaA, Darmstadt, Germany
| | - Michael J. Parnham
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
| | - Susanne Schiffmann
- Department of Preclinical Research, Fraunhofer Institute for Translational Medicine and Pharmacology (ITMP), Frankfurt am Main, Germany
- pharmazentrum frankfurt/ZAFES, Department of Clinical Pharmacology, Goethe-University Hospital Frankfurt, Frankfurt am Main, Germany
- Fraunhofer Cluster of Excellence Immune-Mediated Diseases (CIMD), Frankfurt am Main, Germany
| |
Collapse
|
36
|
Afsar A, Chen M, Xuan Z, Zhang L. A glance through the effects of CD4 + T cells, CD8 + T cells, and cytokines on Alzheimer's disease. Comput Struct Biotechnol J 2023; 21:5662-5675. [PMID: 38053545 PMCID: PMC10694609 DOI: 10.1016/j.csbj.2023.10.058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 10/31/2023] [Accepted: 10/31/2023] [Indexed: 12/07/2023] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Unfortunately, despite numerous studies, an effective treatment for AD has not yet been established. There is remarkable evidence indicating that the innate immune mechanism and adaptive immune response play significant roles in the pathogenesis of AD. Several studies have reported changes in CD8+ and CD4+ T cells in AD patients. This mini-review article discusses the potential contribution of CD4+ and CD8+ T cells reactivity to amyloid β (Aβ) protein in individuals with AD. Moreover, this mini-review examines the potential associations between T cells, heme oxygenase (HO), and impaired mitochondria in the context of AD. While current mathematical models of AD have not extensively addressed the inclusion of CD4+ and CD8+ T cells, there exist models that can be extended to consider AD as an autoimmune disease involving these T cell types. Additionally, the mini-review covers recent research that has investigated the utilization of machine learning models, considering the impact of CD4+ and CD8+ T cells.
Collapse
Affiliation(s)
- Atefeh Afsar
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Min Chen
- Department of Mathematical Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Zhenyu Xuan
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| | - Li Zhang
- Department of Biological Sciences, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
37
|
Hudakova N, Mudronova D, Marcincakova D, Slovinska L, Majerova P, Maloveska M, Petrouskova P, Humenik F, Cizkova D. The role of primed and non-primed MSC-derived conditioned media in neuroregeneration. Front Mol Neurosci 2023; 16:1241432. [PMID: 38025267 PMCID: PMC10656692 DOI: 10.3389/fnmol.2023.1241432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Introduction With growing significance in nervous system repair, mesenchymal stem cell-derived conditioned media (MSCCM) have been used in cell-free therapies in regenerative medicine. However, the immunomodulatory and neuroregenerative effects of MSCCM and the influence of priming on these effects are still poorly understood. Methods In this study, by various methods focused on cell viability, proliferation, neuron-like differentiation, neurite outgrowth, cell migration and regrowth, we demonstrated that MSCCM derived from adipose tissue (AT-MSCCM) and amniotic membrane (AM-MSCCM) had different effects on SH-SY5Y cells. Results and discussion AT-MSCCM was found to have a higher proliferative capacity and the ability to impact neurite outgrowth during differentiation, while AM-MSCCM showed more pronounced immunomodulatory activity, migration, and re-growth of SH-SY5Y cells in the scratch model. Furthermore, priming of MSC with pro-inflammatory cytokine (IFN-γ) resulted in different proteomic profiles of conditioned media from both sources, which had the highest effect on SH-SY5Y proliferation and neurite outgrowth in terms of the length of neurites (pAT-MSCCM) compared to the control group (DMEM). Altogether, our results highlight the potential of primed and non-primed MSCCM as a therapeutic tool for neurodegenerative diseases, although some differences must be considered.
Collapse
Affiliation(s)
- Nikola Hudakova
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
| | - Dagmar Mudronova
- Department of Microbiology and Immunology, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
| | - Dana Marcincakova
- Department of Pharmacology and Toxicology, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
| | - Lucia Slovinska
- Associated Tissue Bank, Faculty of Medicine, Pavol Jozef Safarik University and Luis Pasteur University Hospital, Košice, Slovakia
| | - Petra Majerova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Marcela Maloveska
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
| | - Patricia Petrouskova
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
| | - Filip Humenik
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
| | - Dasa Cizkova
- Centre of Experimental and Clinical Regenerative Medicine, University of Veterinary Medicine and Pharmacy in Kosice, Košice, Slovakia
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia
| |
Collapse
|
38
|
Xie Y, Zhang T, Su R, Liu L, Jiang L, Xue H, Gao C, Li X, Wang C. Increased serum soluble interleukin-2 receptor levels in dermatomyositis are associated with Th17/Treg immune imbalance. Clin Exp Med 2023; 23:3605-3617. [PMID: 37528249 DOI: 10.1007/s10238-023-01155-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Accepted: 07/24/2023] [Indexed: 08/03/2023]
Abstract
Dermatomyositis (DM) represents a multifaceted chronic inflammatory myopathy, primarily manifesting as progressive deterioration of muscular and cutaneous tissues. Despite an incomplete comprehension of DM's etiology and pathogenesis, current evidence implicates the involvement of T lymphocyte infiltration, extensive cytokine release, myositis-specific antibodies, and myositis-associated antibodies in disease development. Serum soluble interleukin-2 receptor (sIL-2R) frequently serves as a marker for T cell activation; however, its role remains elusive. Consequently, this investigation sought to elucidate the association between sIL-2R levels, peripheral blood lymphocyte subset counts, and related cytokines in DM patients, with the aim of uncovering the intricate mechanisms underlying DM and establishing a theoretical foundation for the implementation of precise, targeted, individualized immunomodulatory therapy. In this study, a cohort of 60 dermatomyositis (DM) patients, comprising 32 with inactive DM and 28 with active DM, was enrolled and stratified into inactive and active groups based on the Myositis Disease Activity Visual Analogue Scale (MYOACT). Flow cytometry was employed to quantify the absolute counts of peripheral lymphocyte subsets and CD4+T cell subsets in each group, while a flow cytometry bead array was utilized to measure serum cytokine levels. In a comparative analysis between healthy individuals and patients diagnosed with DM, we observed a marked elevation in serum sIL-2R concentrations (P < 0.001) and T-helper 17 cell/regulatory T cell (Th17/Treg) ratios (P < 0.01) within the latter group. A positive correlation was identified between serum sIL-2R levels and various parameters, including ESR, CRP, VAS, AST, CKMB, LDH, HBDH, PT, APTT, DDi, IL-6, IL-10, and IFN-γlevels (P < 0.05). In contrast, serum sIL-2R levels demonstrated a negative correlation with LY, HGB, ALB, Th17 cell populations, and Th17/Treg cell ratios (P < 0.05). Employing multivariate logistic regression, we identified serum sIL-2R concentrations as an independent risk factor for both disease activity and hepatic involvement in DM patients. Moreover, receiver operating characteristic (ROC) curve analyses revealed that serum sIL-2R levels significantly contributed to the differentiation of disease activity and the detection of liver involvement in DM patients, with areas under the ROC curve (AUC) of 0.757 (95% CI 0.630-0.884, P = 0.001) and 0.826 (95% CI 0.717-0.935, P < 0.001), respectively. This study highlights the potential utility of serum sIL-2R levels as a valuable biomarker for assessing disease activity and liver involvement in dermatomyositis. Elevated serum concentrations of sIL-2R were observed in patients with DM, exhibiting significant associations with Th17 cell populations and Th17/ Treg ratios. These findings indicate that sIL-2R may be implicated in the immunopathogenesis of DM, thereby warranting further investigation to elucidate its role in the disease process.
Collapse
Affiliation(s)
- Yuhuan Xie
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Tingting Zhang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Rui Su
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Lu Liu
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Lei Jiang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Hongwei Xue
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Chong Gao
- Pathology, Joint Program in Transfusion Medicine, Brigham and Women's Hospital/Children's Hospital, Harvard Medical School, Boston, MA, USA
| | - Xiaofeng Li
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China
| | - Caihong Wang
- Department of Rheumatology, The Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.
- Shanxi Key Laboratory of Immunomicroecology, Taiyuan, Shanxi, China.
| |
Collapse
|
39
|
Yabas M, Hoyne GF. Immunological Phenotyping of Mice with a Point Mutation in Cdk4. Biomedicines 2023; 11:2847. [PMID: 37893220 PMCID: PMC10603874 DOI: 10.3390/biomedicines11102847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Cyclin-dependent kinases (CDKs) play a crucial role in regulation of the mammalian cell cycle. CDK4 and CDK6 control the G1/S restriction checkpoint through their ability to associate with cyclin D proteins in response to growth factor signals. CDK4 deficiency in mice gives rise to a range of endocrine-specific phenotypes including diabetes, infertility, dwarfism, and atrophy of the anterior pituitary. Although CDK6 deficiency can cause thymic atrophy due to a block in the double-negative (DN) to double-positive (DP) stage of T cell development, there are no overt defects in immune cell development reported for CDK4-deficient mice. Here, we examined the impact of a novel N-ethyl-N-nitrosourea-induced point mutation in the gene encoding CDK4 on immune cell development. Mutant mice (Cdk4wnch/wnch) showed normal development and differentiation of major immune cell subsets in the thymus and spleen. Moreover, T cells from Cdk4wnch/wnch mice exhibited normal cytokine production in response to in vitro stimulation. However, analysis of the mixed bone marrow chimeras revealed that Cdk4wnch/wnch-derived T cell subsets and NK cells are at a competitive disadvantage compared to Cdk4+/+-derived cells in the thymus and periphery of recipients. These results suggest a possible role for the CDK4wnch mutation in the development of some immune cells, which only becomes apparent when the Cdk4wnch/wnch mutant cells are in direct competition with wild-type immune cells in the mixed bone marrow chimera.
Collapse
Affiliation(s)
- Mehmet Yabas
- Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia
- Department of Immunology, Faculty of Medicine, Malatya Turgut Ozal University, Malatya 44210, Türkiye
| | - Gerard F. Hoyne
- Department of Immunology, The John Curtin School of Medical Research, The Australian National University, Canberra, ACT 0200, Australia
- School of Health Sciences and Physiotherapy, Faculty of Medicine, Nursing, Midwifery and Health Sciences, University of Notre Dame Australia, Fremantle, WA 6959, Australia
- Institute for Respiratory Health, QEII Medical Centre, Nedlands, WA 6009, Australia
| |
Collapse
|
40
|
Hagen M, Pangrazzi L, Rocamora-Reverte L, Weinberger B. Legend or Truth: Mature CD4 +CD8 + Double-Positive T Cells in the Periphery in Health and Disease. Biomedicines 2023; 11:2702. [PMID: 37893076 PMCID: PMC10603952 DOI: 10.3390/biomedicines11102702] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/29/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
The expression of CD4 and CD8 co-receptors defines two distinct T cell populations with specialized functions. While CD4+ T cells support and modulate immune responses through different T-helper (Th) and regulatory subtypes, CD8+ T cells eliminate cells that might threaten the organism, for example, virus-infected or tumor cells. However, a paradoxical population of CD4+CD8+ double-positive (DP) T cells challenging this paradigm has been found in the peripheral blood. This subset has been observed in healthy as well as pathological conditions, suggesting unique and well-defined functions. Furthermore, DP T cells express activation markers and exhibit memory-like features, displaying an effector memory (EM) and central memory (CM) phenotype. A subset expressing high CD4 (CD4bright+) and intermediate CD8 (CD8dim+) levels and a population of CD8bright+CD4dim+ T cells have been identified within DP T cells, suggesting that this small subpopulation may be heterogeneous. This review summarizes the current literature on DP T cells in humans in health and diseases. In addition, we point out that strategies to better characterize this minor T cell subset's role in regulating immune responses are necessary.
Collapse
Affiliation(s)
- Magdalena Hagen
- Institute for Biomedical Aging Research, University of Innsbruck, 6020 Innsbruck, Austria
| | | | | | | |
Collapse
|
41
|
Rusnak T, Azarcoya-Barrera J, Wollin B, Makarowski A, Nelson R, Field CJ, Jacobs RL, Richard C. A Physiologically Relevant Dose of 50% Egg-Phosphatidylcholine Is Sufficient in Improving Gut Permeability while Attenuating Immune Cell Dysfunction Induced by a High-Fat Diet in Male Wistar Rats. J Nutr 2023; 153:3131-3143. [PMID: 37586605 DOI: 10.1016/j.tjnut.2023.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 08/02/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
BACKGROUND Obesity is associated with increased intestinal permeability and a diminished immune response. Phosphatidylcholine (PC), a form of choline found in eggs, has been shown to beneficially modulate T-cell response in the context of obesity when provided as the sole form of choline in the diet. OBJECTIVE This study aimed to determine the impact of varying doses of PC as part of a high-fat diet (HFD) on immune cell function and intestinal permeability. METHODS Male Wistar rats 4 wk of age were randomly assigned to consume 1 of 6 diets for 12 wk containing the same amount of total choline but differing in the forms of choline: 1-control low-fat (CLF, 20% fat, 100% free choline [FC]); 2-control high-fat (CHF, 50% fat, 100% FC); 3-100% PC (100PC, 50% fat, 100% egg-PC); 4-75% PC (75PC, 50% fat, 75% egg-PC+25% FC); 5-50% PC (50PC, 50% fat, 50% egg-PC+50% FC); and 6-25% PC (25PC; 50% fat, 25% egg-PC+75% FC). Intestinal permeability was measured by fluorescein isothiocyanate-dextran. Immune function was assessed by ex vivo cytokine production of splenocytes and cells isolated from the mesenteric lymph node (MLN) after stimulation with different mitogens. RESULTS Feeding the CHF diet increased intestinal permeability compared with the CLF diet, and doses of PC 50% or greater returned permeability to levels similar to that of the CLF diet. Feeding the CHF diet lowered splenocyte production of interleukin (IL)-1β, IL-2, IL-10, and tumor necrosis factor-alpha, and MLN production of IL-2 compared with the CLF group. The 50PC diet most consistently significantly improved cytokine levels (IL-2, IL-10, tumor necrosis factor-alpha) compared with the CHF diet. CONCLUSIONS Our results show that a dose of 50% of total choline derived from egg-PC can ameliorate HFD-induced intestinal permeability and immune cell dysfunction.
Collapse
Affiliation(s)
- Tianna Rusnak
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Jessy Azarcoya-Barrera
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Bethany Wollin
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Alexander Makarowski
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Randal Nelson
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Catherine J Field
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - René L Jacobs
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada
| | - Caroline Richard
- Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, Alberta, Canada.
| |
Collapse
|
42
|
Xie Y, Jin C, Sang H, Liu W, Wang J. Ivermectin Protects Against Experimental Autoimmune Encephalomyelitis in Mice by Modulating the Th17/Treg Balance Involved in the IL-2/STAT5 Pathway. Inflammation 2023; 46:1626-1638. [PMID: 37227550 PMCID: PMC10209955 DOI: 10.1007/s10753-023-01829-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/21/2023] [Accepted: 04/30/2023] [Indexed: 05/26/2023]
Abstract
Multiple sclerosis (MS), a T-cell-mediated autoimmune disease that affects the central nervous system (CNS), is characterized by white matter demyelination, axon destruction, and oligodendrocyte degeneration. Ivermectin, an anti-parasitic drug, has anti-inflammatory, anti-tumor, and antiviral properties. However, to date, there are no in-depth studies on the effect of ivermectin on the function effector of T cells in murine experimental autoimmune encephalomyelitis (EAE), an animal model of MS. Here, we conducted in vitro experiments and found that ivermectin inhibited the proliferation of total T cells (CD3+) and their subsets (CD4+ and CD8+ T cells) as well as T cells secreting the pro-inflammatory cytokines IFN-γ and IL-17A; ivermectin also increased IL-2 production and IL-2Rα (CD25) expression, which was accompanied by an increase in the frequency of CD4+CD25+Foxp3+ regulatory T cells (Treg). Importantly, ivermectin administration reduced the clinical symptoms of EAE mice by preventing the infiltration of inflammatory cells into the CNS. Additional mechanisms showed that ivermectin promoted Treg cells while inhibiting pro-inflammatory Th1 and Th17 cells and their IFN-γ and IL-17 secretion; ivermectin also upregulated IL-2 production from MOG35-55-stimulated peripheral lymphocytes. Finally, ivermectin decreased IFN-γ and IL-17A production and increased IL-2 level, CD25 expression, and STAT5 phosphorylation in the CNS. These results reveal a previously unknown etiopathophysiological mechanism by which ivermectin attenuates the pathogenesis of EAE, indicating that it may be a promising option for T-cell-mediated autoimmune diseases such as MS.
Collapse
Affiliation(s)
- Yu Xie
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, China
- School of Medicine, Nankai University, Tianjin, 300071, China
| | - Chaolei Jin
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, China
| | - Hongzhen Sang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, China
| | - Wenhua Liu
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, China
| | - Junpeng Wang
- Infection and Immunity Institute and Translational Medical Center of Huaihe Hospital, Henan University, 115 Ximen Street, Kaifeng, 475000, China.
| |
Collapse
|
43
|
Park H, Lee S, Lee J, Moon H, Ro SW. Exploring the JAK/STAT Signaling Pathway in Hepatocellular Carcinoma: Unraveling Signaling Complexity and Therapeutic Implications. Int J Mol Sci 2023; 24:13764. [PMID: 37762066 PMCID: PMC10531214 DOI: 10.3390/ijms241813764] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 09/04/2023] [Accepted: 09/05/2023] [Indexed: 09/29/2023] Open
Abstract
Hepatocellular Carcinoma (HCC) continues to pose a substantial global health challenge due to its high incidence and limited therapeutic options. In recent years, the Janus Kinase (JAK) and Signal Transducer and Activator of Transcription (STAT) pathway has emerged as a critical signaling cascade in HCC pathogenesis. The review commences with an overview of the JAK/STAT pathway, delving into the dynamic interplay between the JAK/STAT pathway and its numerous upstream activators, such as cytokines and growth factors enriched in pathogenic livers afflicted with chronic inflammation and cirrhosis. This paper also elucidates how the persistent activation of JAK/STAT signaling leads to diverse oncogenic processes during hepatocarcinogenesis, including uncontrolled cell proliferation, evasion of apoptosis, and immune escape. In the context of therapeutic implications, this review summarizes recent advancements in targeting the JAK/STAT pathway for HCC treatment. Preclinical and clinical studies investigating inhibitors and modulators of JAK/STAT signaling are discussed, highlighting their potential in suppressing the deadly disease. The insights presented herein underscore the necessity for continued research into targeting the JAK/STAT signaling pathway as a promising avenue for HCC therapy.
Collapse
Affiliation(s)
| | | | | | | | - Simon Weonsang Ro
- Department of Genetics and Biotechnology, College of Life Sciences, Kyung Hee University, Yongin-si 17104, Republic of Korea; (H.P.); (S.L.); (J.L.); (H.M.)
| |
Collapse
|
44
|
La Cava A. Low-dose interleukin-2 therapy in systemic lupus erythematosus. RHEUMATOLOGY AND IMMUNOLOGY RESEARCH 2023; 4:150-156. [PMID: 37781677 PMCID: PMC10538619 DOI: 10.2478/rir-2023-0021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023]
Abstract
In systemic lupus erythematosus (SLE), T regulatory cells (Tregs) contribute to the inhibition of autoimmune responses by suppressing self-reactive immune cells. Interleukin (IL)-2 plays an essential role in the generation, function and homeostasis of the Tregs and is reduced in SLE. Several clinical studies, including randomized trials, have shown that low-dose IL-2 therapy in SLE patients is safe and effective and can reduce disease manifestations. This review discusses the rationale for the use of low-dose IL-2 therapy in SLE, the clinical responses in patients, and the effects of this therapy on different types of T cells. Considerations are made on the current and future directions of use of low-dose IL-2 regimens in SLE.
Collapse
Affiliation(s)
- Antonio La Cava
- Department of Medicine, University of California Los Angeles, Los Angeles, CA90095, USA
| |
Collapse
|
45
|
Xu L, Hao F, Jeong DG, Chen R, Gan Y, Zhang L, Yeom M, Lim JW, Yu Y, Bai Y, Zeng Z, Liu Y, Xiong Q, Shao G, Wu Y, Feng Z, Song D, Xie X. Mucosal and cellular immune responses elicited by nasal and intramuscular inoculation with ASFV candidate immunogens. Front Immunol 2023; 14:1200297. [PMID: 37720232 PMCID: PMC10502713 DOI: 10.3389/fimmu.2023.1200297] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/21/2023] [Indexed: 09/19/2023] Open
Abstract
African swine fever (ASF) is an infectious disease caused by African swine fever virus (ASFV) that is highly contagious and has an extremely high mortality rate (infected by virulent strains) among domestic and wild pigs, causing huge economic losses to the pig industry globally. In this study, SDS-PAGE gel bands hybridized with ASFV whole virus protein combined with ASFV-convalescent and ASFV-positive pig serum were identified by mass spectrometry. Six antigens were detected by positive serum reaction bands, and eight antigens were detected in ASFV-convalescent serum. In combination with previous literature reports and proteins corresponding to MHC-II presenting peptides screened from ASFV-positive pig urine conducted in our lab, seven candidate antigens, including KP177R (p22), K78R (p10), CP204L (p30), E183L (p54), B602L (B602L), EP402R-N (CD2V-N) and F317L (F317L), were selected. Subunit-Group 1 was prepared by mixing above-mentioned seven ASFV recombinant proteins with MONTANIDETM1313 VG N mucosal adjuvant and immunizing pigs intranasally and intramuscularly. Subunit-Group 2 was prepared by mixing four ASFV recombinant proteins (p22, p54, CD2V-N1, B602L) with Montanide ISA 51 VG adjuvant and immunizing pigs by intramuscular injection. Anticoagulated whole blood, serum, and oral fluid were collected during immunization for flow cytometry, serum IgG as well as secretory sIgA antibody secretion, and cytokine expression testing to conduct a comprehensive immunogenicity assessment. Both immunogen groups can effectively stimulate the host to produce ideal humoral, mucosal, and cellular immune responses, providing a theoretical basis for subsequent functional studies, such as immunogens challenge protection and elucidation of the pathogenic mechanism of ASFV.
Collapse
Affiliation(s)
- Lulu Xu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Fei Hao
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Dae Gwin Jeong
- Bionanotechnology Research Center, Korea Research Institute of Bioscience and Biotechnology, Daejeon, Republic of Korea
| | - Rong Chen
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Yuan Gan
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Lei Zhang
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Minjoo Yeom
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Jong-Woo Lim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Yanfei Yu
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Yun Bai
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Zhiyong Zeng
- College of Animal Science, Guizhou University, Guiyang, China
| | - Yongjie Liu
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
| | - Qiyan Xiong
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Guoqing Shao
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Yuzi Wu
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
| | - Zhixin Feng
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| | - Daesub Song
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul, Republic of Korea
| | - Xing Xie
- Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, China
- Key Laboratory for Veterinary Bio-Product Engineering, Ministry of Agriculture and Rural Affairs, Institute of Veterinary Medicine, Jiangsu Academy of Agricultural Sciences, Nanjing, China
- GuoTai (Taizhou) Center of Technology Innovation for Veterinary Biologicals, Taizhou, China
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, China
| |
Collapse
|
46
|
Wang H, Borlongan M, Hemminki A, Basnet S, Sah N, Kaufman HL, Rabkin SD, Saha D. Viral Vectors Expressing Interleukin 2 for Cancer Immunotherapy. Hum Gene Ther 2023; 34:878-895. [PMID: 37578106 PMCID: PMC10623065 DOI: 10.1089/hum.2023.099] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/09/2023] [Indexed: 08/15/2023] Open
Abstract
Interleukin 2 (IL-2) plays a crucial role in T cell growth and survival, enhancing the cytotoxic activity of natural killer and cytotoxic T cells and thus functioning as a versatile master proinflammatory anticancer cytokine. The FDA has approved IL-2 cytokine therapy for the treatment of metastatic melanoma and metastatic renal cell carcinoma. However, IL-2 therapy has significant constraints, including a short serum half-life, low tumor accumulation, and life-threatening toxicities associated with high doses. Oncolytic viruses (OVs) offer a promising option for cancer immunotherapy, selectively targeting and destroying cancer cells while sparing healthy cells. Numerous studies have demonstrated the successful delivery of IL-2 to the tumor microenvironment without compromising safety using OVs such as vaccinia, Sendai, parvo, Newcastle disease, tanapox, and adenoviruses. Additionally, by engineering OVs to coexpress IL-2 with other anticancer transgenes, the immune properties of IL-2 can be further enhanced. Preclinical and clinical studies have shown promising antitumor effects of IL-2-expressing viral vectors, either alone or in combination with other anticancer therapies. This review summarizes the therapeutic potential of IL-2-expressing viral vectors and their antitumor mechanisms of action.
Collapse
Affiliation(s)
- Hongbin Wang
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, California, USA
- Master of Pharmaceutical Sciences Program, College of Graduate Studies, California Northstate University, Elk Grove, California, USA
| | - Mia Borlongan
- Master of Pharmaceutical Sciences Program, College of Graduate Studies, California Northstate University, Elk Grove, California, USA
| | - Akseli Hemminki
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- TILT Biotherapeutics Ltd., Helsinki, Finland
- Comprehensive Cancer Center, Helsinki University Hospital, Helsinki, Finland
| | - Saru Basnet
- Cancer Gene Therapy Group, Translational Immunology Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Research Program Unit (RPU), University of Helsinki, Helsinki, Finland
| | - Naresh Sah
- Department of Immunotherapeutics and Biotechnology, Texas Tech University Health Sciences Center School of Pharmacy, Abilene, Texas, USA
| | - Howard L. Kaufman
- Department of Surgery, Massachusetts General Hospital, Boston, Massachusetts, USA
- Ankyra Therapeutics, Boston, Massachusetts, USA
- Department of Medicine, Harvard Medical School, Boston, Massachusetts, USA
| | - Samuel D. Rabkin
- Brain Tumor Research Center, Department of Neurosurgery, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Dipongkor Saha
- Department of Pharmaceutical and Biomedical Sciences, California Northstate University College of Pharmacy, Elk Grove, California, USA
| |
Collapse
|
47
|
Vasalou V, Kotidis E, Tatsis D, Boulogeorgou K, Grivas I, Koliakos G, Cheva A, Ioannidis O, Tsingotjidou A, Angelopoulos S. The Effects of Tissue Healing Factors in Wound Repair Involving Absorbable Meshes: A Narrative Review. J Clin Med 2023; 12:5683. [PMID: 37685753 PMCID: PMC10488606 DOI: 10.3390/jcm12175683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 08/17/2023] [Accepted: 08/26/2023] [Indexed: 09/10/2023] Open
Abstract
Wound healing is a complex and meticulously orchestrated process involving multiple phases and cellular interactions. This narrative review explores the intricate mechanisms behind wound healing, emphasizing the significance of cellular processes and molecular factors. The phases of wound healing are discussed, focusing on the roles of immune cells, growth factors, and extracellular matrix components. Cellular shape alterations driven by cytoskeletal modulation and the influence of the 'Formin' protein family are highlighted for their impact on wound healing processes. This review delves into the use of absorbable meshes in wound repair, discussing their categories and applications in different surgical scenarios. Interleukins (IL-2 and IL-6), CD31, CD34, platelet rich plasma (PRP), and adipose tissue-derived mesenchymal stem cells (ADSCs) are discussed in their respective roles in wound healing. The interactions between these factors and their potential synergies with absorbable meshes are explored, shedding light on how these combinations might enhance the healing process. Recent advances and challenges in the field are also presented, including insights into mesh integration, biocompatibility, infection prevention, and postoperative complications. This review underscores the importance of patient-specific factors and surgical techniques in optimizing mesh placement and healing outcomes. As wound healing remains a dynamic field, this narrative review provides a comprehensive overview of the current understanding and potential avenues for future research and clinical applications.
Collapse
Affiliation(s)
- Varvara Vasalou
- Fourth Surgical Department, School of Medicine, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
- Andreas Syggros Hospital, 11528 Athens, Greece
| | - Efstathios Kotidis
- Fourth Surgical Department, School of Medicine, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Dimitris Tatsis
- Fourth Surgical Department, School of Medicine, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
- Oral and Maxillofacial Surgery Department, School of Dentistry, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Kassiani Boulogeorgou
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.B.)
| | - Ioannis Grivas
- Laboratory of Anatomy, Histology & Embryology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Georgios Koliakos
- Department of Biochemistry, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Angeliki Cheva
- Department of Pathology, School of Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece; (K.B.)
| | - Orestis Ioannidis
- Fourth Surgical Department, School of Medicine, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| | - Anastasia Tsingotjidou
- Laboratory of Anatomy, Histology & Embryology, School of Veterinary Medicine, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Stamatis Angelopoulos
- Fourth Surgical Department, School of Medicine, Aristotle University of Thessaloniki, 57010 Thessaloniki, Greece
| |
Collapse
|
48
|
Kumar C, Chandan G, Kushwaha M, Kumar A, Kaur S, Kumar A, Yadav G, Gairola S, Vishwakarma RA, Satti NK, Verma MK. Discovery of Anti-NRLP3 Inflammasome, Immunomodulatory Phytochemicals from the Extract of Habenaria intermediaD. Don: An Unexplored Plant Species. ACS OMEGA 2023; 8:31112-31122. [PMID: 37663462 PMCID: PMC10468832 DOI: 10.1021/acsomega.3c03071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/20/2023] [Indexed: 09/05/2023]
Abstract
The present study describes the isolation, identification, and quantification of biomarker compounds in plant extracts of Habenaria intermedia D. Don (Orchidaceae). The isolation of the compounds was carried out from H. intermedia D. Don by repeated column chromatography of petroleum ether and ethanol fractions of extract of tubers. These compounds were characterized by 1H and 13C NMR and mass spectral data. A new quantitative method was established by using high-performance liquid chromatography (HPLC)-PDA. As a result, seven compounds were isolated and characterized. This is the first report of isolation of these compounds from this plant species H. intermedia D.Don. Out of seven isolated compounds, five were used for the quantitative study. A reliable and suitable HPLC method was developed for the well-resolved chromatogram of compounds. The proposed method was applied successfully to the detection and quantification of compounds. This study also represents the immunomodulatory and anti-inflammasome biological studies of isolated natural products. Loroglossol (HBR-4) has been reported to possess immunomodulatory activity. The immunostimulating assay indicated that HBR-4 could significantly promote the cell proliferation, especially via IL-2, TNF-α, and IFN-γ secretion from spleen cells. These results suggested the potential utilization of HBR-4 as an attractive functional health supplement candidate for hypoimmunity population. Additionally, cyclophosphamide-induced immunosuppression was counteracted by treatment with HBR-4, revealing significant increase in hemagglutinating antibody responses and hemolytic antibody responses. The current work revealed the potential anti-inflammasome and immunomodulatory activities of H. intermedia D. Don compounds and validates the usage of this prominent Rasayna plant.
Collapse
Affiliation(s)
- Chetan Kumar
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| | - Gourav Chandan
- School
of Biotechnology, Faculty of Applied Sciences and Biotechnology, Shoolini University of Biotechnology and Management
Sciences, Solan 173 229, Himachal Pradesh, India
| | - Manoj Kushwaha
- Fermentation
and Microbial Biotechnology Division, CSIR-Indian
Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Amit Kumar
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Sukhleen Kaur
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Ajay Kumar
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Govind Yadav
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
- Pharmacology
Division, CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Sumeet Gairola
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
- Plant Sciences
and Agrotechnology Division (PSA) CSIR-Indian Institute of Integrative
Medicine, Canal Road, Jammu 180001, India
| | - Ram A. Vishwakarma
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Naresh Kumar Satti
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
| | - Mahendra Kumar Verma
- Natural
Products and Medicinal Chemistry Division, CSIR-Indian Institute of Integrative Medicine, Canal Road, Jammu 180001, India
- Academy
of Scientific & Innovative Research (AcSIR), Ghaziabad 201 002, Uttar Pradesh, India
| |
Collapse
|
49
|
Ghanbari Naeini L, Abbasi L, Karimi F, Kokabian P, Abdi Abyaneh F, Naderi D. The Important Role of Interleukin-2 in COVID-19. J Immunol Res 2023; 2023:7097329. [PMID: 37649897 PMCID: PMC10465260 DOI: 10.1155/2023/7097329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 06/04/2023] [Accepted: 07/13/2023] [Indexed: 09/01/2023] Open
Abstract
There is controversial literature about the effects of the interleukin-2 (IL-2) cytokine family in COVID-19 pathogenesis and immunity. So we aimed to identify the potential in the role of the IL-2 family in COVID-19. A narrative review search was done through online databases, including PubMed, Scopus, and Web of Science. The search deadline was up to December 2022. We applied no time limits for the searching strategy. After retrieving articles from the databases, the authors summarized the data into two data extraction tables. The first data extraction table described the changes in the IL-2 cytokine family in COVID-19 and the second table described the therapeutic interventions targeting IL-2 family cytokines. The results of the literature on the role of the IL-2 cytokine family do not show a singular rule. IL-2 cytokine family can change during severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Some studies suggest that IL-2 cytokine family rise during the infection and cause severe inflammatory response and cytokine storm. These cytokines are shown to be increased in immunocompromised patients and worsen their prognosis. In individuals without underlying disease, the upregulation of the IL-2 family shows the clinical outcome of the disease and rises with disease severity. However, some other studies show that these cytokines do not significantly change. IL-2 cytokine family is mostly upregulated in healthy individuals who had vaccination, but immunocompromised patients did not show significant changes after a single dose of vaccines, which shows that these patients need booster doses for efficient immunity. IL-2 cytokine family can also be used as immunotherapy agents in COVID-19.
Collapse
Affiliation(s)
| | - Laleh Abbasi
- Guilan University of Medical Sciences, Rasht, Iran
| | | | - Pajman Kokabian
- School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | | | - Delaram Naderi
- Faculty of Medicine, Iran University of Medical Sciences (IUMS), Tehran, Iran
| |
Collapse
|
50
|
Tuazon JA, Read KA, Sreekumar BK, Roettger JE, Yaeger MJ, Varikuti S, Pokhrel S, Jones DM, Warren RT, Powell MD, Rasheed MN, Duncan EG, Childs LM, Gowdy KM, Oestreich KJ. Eos Promotes TH2 Differentiation by Interacting with and Propagating the Activity of STAT5. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2023; 211:365-376. [PMID: 37314436 PMCID: PMC10524986 DOI: 10.4049/jimmunol.2200861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 05/18/2023] [Indexed: 06/15/2023]
Abstract
The Ikaros zinc-finger transcription factor Eos has largely been associated with sustaining the immunosuppressive functions of regulatory T cells. Paradoxically, Eos has more recently been implicated in promoting proinflammatory responses in the dysregulated setting of autoimmunity. However, the precise role of Eos in regulating the differentiation and function of effector CD4+ T cell subsets remains unclear. In this study, we find that Eos is a positive regulator of the differentiation of murine CD4+ TH2 cells, an effector population that has been implicated in both immunity against helminthic parasites and the induction of allergic asthma. Using murine in vitro TH2 polarization and an in vivo house dust mite asthma model, we find that EosKO T cells exhibit reduced expression of key TH2 transcription factors, effector cytokines, and cytokine receptors. Mechanistically, we find that the IL-2/STAT5 axis and its downstream TH2 gene targets are one of the most significantly downregulated pathways in Eos-deficient cells. Consistent with these observations, we find that Eos forms, to our knowledge, a novel complex with and supports the tyrosine phosphorylation of STAT5. Collectively, these data define a regulatory mechanism whereby Eos propagates STAT5 activity to facilitate TH2 cell differentiation.
Collapse
Affiliation(s)
- Jasmine A. Tuazon
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, 43210; USA
- Medical Scientist Training Program, The Ohio State University College of Medicine, Columbus, OH, 43210; USA
| | - Kaitlin A. Read
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, 43210; USA
| | | | - Jack E. Roettger
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, 43210; USA
| | - Michael J. Yaeger
- Division of Pulmonary, Critical Care and Sleep Medicine; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| | - Sanjay Varikuti
- Division of Pulmonary, Critical Care and Sleep Medicine; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| | - Srijana Pokhrel
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| | - Devin M. Jones
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
- Biomedical Sciences Graduate Program, The Ohio State University College of Medicine, Columbus, OH, 43210; USA
| | - Robert T. Warren
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| | - Michael D. Powell
- Department of Microbiology and Immunology; Emory University School of Medicine, Atlanta, GA, 30322; USA
| | - Mustafa N. Rasheed
- Department of Emergency Medicine; Emory University Medical Center, Atlanta, GA, 30322; USA
| | | | - Lauren M. Childs
- Department of Mathematics; Virginia Tech, Blacksburg, VA, 24061; USA
| | - Kymberly M. Gowdy
- Division of Pulmonary, Critical Care and Sleep Medicine; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| | - Kenneth J. Oestreich
- Department of Microbial Infection and Immunity; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
- Pelotonia Institute for Immuno-Oncology; The Ohio State Comprehensive Cancer Center, Columbus, Ohio, 43210; USA
- Infectious Diseases Institute; The Ohio State University College of Medicine and Wexner Medical Center, Columbus, Ohio, 43210; USA
| |
Collapse
|