1
|
Szachniewicz MM, Neustrup MA, van den Eeden SJF, van Meijgaarden KE, Franken KLMC, van Veen S, Koning RI, Limpens RWAL, Geluk A, Bouwstra JA, Ottenhoff THM. Evaluation of PLGA, lipid-PLGA hybrid nanoparticles, and cationic pH-sensitive liposomes as tuberculosis vaccine delivery systems in a Mycobacterium tuberculosis challenge mouse model - A comparison. Int J Pharm 2024; 666:124842. [PMID: 39424087 DOI: 10.1016/j.ijpharm.2024.124842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 10/13/2024] [Accepted: 10/14/2024] [Indexed: 10/21/2024]
Abstract
Tuberculosis (TB) continues to pose a global threat for millennia, currently affecting over 2 billion people and causing 10.6 million new cases and 1.3 million deaths annually. The only existing vaccine, Mycobacterium Bovis Bacillus Calmette-Guérin (BCG), provides highly variable and inadequate protection in adults and adolescents. This study explores newly developed subunit tuberculosis vaccines that use a multistage protein fusion antigen Ag85b-ESAT6-Rv2034 (AER). The protection efficacy, as well as in vivo induced immune responses, were compared for five vaccines: BCG; AER-CpG/MPLA mix; poly(D,L-lactic-co-glycolic acid) (PLGA); lipid-PLGA hybrid nanoparticles (NPs); and cationic pH-sensitive liposomes (the latter three delivering AER together with CpG and MPLA). All vaccines, except the AER-adjuvant mix, induced protection in Mycobacterium tuberculosis (Mtb)-challenged C57/Bl6 mice as indicated by a significant reduction in bacterial burden in lungs and spleens of the animals. Four AER-based vaccines significantly increased the number of circulating multifunctional CD4+ and CD8+ T-cells producing IL-2, IFNγ, and TNFα, exhibiting a central memory phenotype. Furthermore, AER-based vaccines induced an increase in CD69+ B-cell counts as well as high antigen-specific antibody titers. Unexpectedly, none of the observed immune responses were associated with the bacterial burden outcome, such that the mechanism responsible for the observed vaccine-induced protection of these vaccines remains unclear. These findings suggest the existence of non-classical protective mechanisms for Mtb infection, which could, once identified, provide interesting targets for novel vaccines.
Collapse
Affiliation(s)
- Mikołaj M Szachniewicz
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands.
| | - Malene A Neustrup
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, the Netherlands
| | - Susan J F van den Eeden
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Krista E van Meijgaarden
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Kees L M C Franken
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Suzanne van Veen
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Roman I Koning
- Electron Microscopy Facility, Leiden University Medical Center (LUMC), the Netherlands
| | - Ronald W A L Limpens
- Electron Microscopy Facility, Leiden University Medical Center (LUMC), the Netherlands
| | - Annemieke Geluk
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| | - Joke A Bouwstra
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, the Netherlands
| | - Tom H M Ottenhoff
- Leiden University Center for Infectious Diseases (LUCID), Leiden University Medical Center (LUMC), the Netherlands
| |
Collapse
|
2
|
Goodarzi MM, Mosayebi G, Ganji A, Raoufi E, Sadelaji S, Babaei S, Abtahi H. HPV16 mutant E6/E7 construct is protective in mouse model. BMC Biotechnol 2024; 24:71. [PMID: 39350162 PMCID: PMC11443707 DOI: 10.1186/s12896-024-00893-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 09/05/2024] [Indexed: 10/04/2024] Open
Abstract
BACKGROUND Human papillomavirus type 16 (HPV-16) infection is strongly associated with considerable parts of cervical, neck, and head cancers. Performed investigations have had moderate clinical success, so research to reach an efficient vaccine has been of great interest. In the present study, the immunization potential of a newly designed HPV-16 construct was evaluated in a mouse model. RESULTS Initially, a construct containing HPV-16 mutant (m) E6/E7 fusion gene was designed and antigen produced in two platforms (i.e., DNA vaccine and recombinant protein). Subsequently, the immunogenicity of these platforms was investigated in five mice) C57BL/6 (groups based on several administration strategies. Three mice groups were immunized recombinant protein, DNA vaccine, and a combination of them, and two other groups were negative controls. The peripheral blood mononuclear cells (PBMCs) proliferation, Interleukin-5 (IL-5) and interferon-γ (IFN-γ) cytokines, IgG1 and IgG2a antibody levels were measured. After two weeks, TC-1 tumor cells were injected into all mice groups, and subsequently further analysis of tumor growth and metastasis and mice survival were performed according to the schedule. Overall, the results obtained from in vitro immunology and tumor cells challenging assays indicated the potential of the mE6/E7 construct as an HPV16 therapeutic vaccine candidate. The results demonstrated a significant increase in IFN-γ cytokine (P value < 0.05) in the Protein/Protein (D) and DNA/Protein (E) groups. This finding was in agreement with in vivo assays. Control groups show a 10.5-fold increase (P value < 0.001) and (C) DNA/DNA group shows a 2.5-fold increase (P value < 0.01) in tumor growth compared to D and E groups. Also, a significant increase in survival of D and E (P value < 0.001) and C (P value < 0.01) groups were observed. CONCLUSIONS So, according to the findings, the recombinant protein could induce stronger protection compared to the DNA vaccine form. Protein/Protein and DNA/Protein are promising administration strategies for presenting this construct to develop an HPV-16 therapeutic vaccine candidate.
Collapse
Affiliation(s)
- Maryam Moazami Goodarzi
- Department of Medical Biotechnology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ghasem Mosayebi
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ali Ganji
- Department of Microbiology and Immunology, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Ehsan Raoufi
- Vaccine research center, Iran University of Medical Sciences, Tehran, Iran
| | - Samira Sadelaji
- Department of Microbiology and Immunology, Faculty of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Saeid Babaei
- Department of Anatomy, School of Medicine, Arak University of Medical Sciences, Arak, Iran
| | - Hamid Abtahi
- Molecular and Medicine Research Center, Arak University of Medical Sciences, Arak, Iran.
| |
Collapse
|
3
|
Perez RL, Chase J, Tanner R. Shared challenges to the control of complex intracellular neglected pathogens. Front Public Health 2024; 12:1423420. [PMID: 39324165 PMCID: PMC11422159 DOI: 10.3389/fpubh.2024.1423420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/13/2024] [Indexed: 09/27/2024] Open
Abstract
The complex intracellular pathogens Mycobacterium tuberculosis, Mycobacterium leprae, Leishmania spp., and Burkholderia pseudomallei, which cause tuberculosis, leprosy, leishmaniasis, and melioidosis respectively, represent major health threats with a significant global burden concentrated in low- and middle-income countries. While these diseases vary in their aetiology, pathology and epidemiology, they share key similarities in the biological and sociodemographic factors influencing their incidence and impact worldwide. In particular, their occurrence in resource-limited settings has important implications for research and development, disease prevalence and associated risk factors, as well as access to diagnostics and therapeutics. In accordance with the vision of the VALIDATE (VAccine deveLopment for complex Intracellular neglecteD pAThogeEns) Network, we consider shared challenges to the effective prevention, diagnosis and treatment of these diseases as shaped by both biological and social factors, illustrating the importance of taking an interdisciplinary approach. We further highlight how a cross-pathogen perspective may provide valuable insights for understanding and addressing challenges to the control of all four pathogens.
Collapse
Affiliation(s)
- Rebecca Lynn Perez
- Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom
- Wadham College, University of Oxford, Oxford, United Kingdom
| | - Jemima Chase
- Wadham College, University of Oxford, Oxford, United Kingdom
| | - Rachel Tanner
- Wadham College, University of Oxford, Oxford, United Kingdom
- Department of Biology, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
4
|
Barra C, Nilsson JB, Saksager A, Carri I, Deleuran S, Garcia Alvarez HM, Høie MH, Li Y, Clifford JN, Wan YTR, Moreta LS, Nielsen M. In Silico Tools for Predicting Novel Epitopes. Methods Mol Biol 2024; 2813:245-280. [PMID: 38888783 DOI: 10.1007/978-1-0716-3890-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Identifying antigens within a pathogen is a critical task to develop effective vaccines and diagnostic methods, as well as understanding the evolution and adaptation to host immune responses. Historically, antigenicity was studied with experiments that evaluate the immune response against selected fragments of pathogens. Using this approach, the scientific community has gathered abundant information regarding which pathogenic fragments are immunogenic. The systematic collection of this data has enabled unraveling many of the fundamental rules underlying the properties defining epitopes and immunogenicity, and has resulted in the creation of a large panel of immunologically relevant predictive (in silico) tools. The development and application of such tools have proven to accelerate the identification of novel epitopes within biomedical applications reducing experimental costs. This chapter introduces some basic concepts about MHC presentation, T cell and B cell epitopes, the experimental efforts to determine those, and focuses on state-of-the-art methods for epitope prediction, highlighting their strengths and limitations, and catering instructions for their rational use.
Collapse
Affiliation(s)
- Carolina Barra
- Section for Bioinformatics, Health Tech, Technical University of Denmark, Lyngby, Denmark.
| | | | - Astrid Saksager
- Section for Bioinformatics, Health Tech, Technical University of Denmark, Lyngby, Denmark
| | - Ibel Carri
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
| | - Sebastian Deleuran
- Section for Bioinformatics, Health Tech, Technical University of Denmark, Lyngby, Denmark
| | - Heli M Garcia Alvarez
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
| | - Magnus Haraldson Høie
- Section for Bioinformatics, Health Tech, Technical University of Denmark, Lyngby, Denmark
| | - Yuchen Li
- Section for Bioinformatics, Health Tech, Technical University of Denmark, Lyngby, Denmark
| | | | - Yat-Tsai Richie Wan
- Section for Bioinformatics, Health Tech, Technical University of Denmark, Lyngby, Denmark
| | - Lys Sanz Moreta
- Section for Bioinformatics, Health Tech, Technical University of Denmark, Lyngby, Denmark
| | - Morten Nielsen
- Section for Bioinformatics, Health Tech, Technical University of Denmark, Lyngby, Denmark
- Instituto de Investigaciones Biotecnológicas, Universidad Nacional de San Martín (UNSAM) - Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), San Martín, Argentina
| |
Collapse
|
5
|
Kim CG, Kim WK, Kim N, Pyung YJ, Park DJ, Lee JC, Cho CS, Chu H, Yun CH. Intranasal Immunization With Nanoparticles Containing an Orientia tsutsugamushi Protein Vaccine Candidate and a Polysorbitol Transporter Adjuvant Enhances Both Humoral and Cellular Immune Responses. Immune Netw 2023; 23:e47. [PMID: 38188601 PMCID: PMC10767547 DOI: 10.4110/in.2023.23.e47] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 12/08/2023] [Accepted: 12/10/2023] [Indexed: 01/09/2024] Open
Abstract
Scrub typhus, a mite-borne infectious disease, is caused by Orientia tsutsugamushi. Despite many attempts to develop a protective strategy, an effective preventive vaccine has not been developed. The identification of appropriate Ags that cover diverse antigenic strains and provide long-lasting immunity is a fundamental challenge in the development of a scrub typhus vaccine. We investigated whether this limitation could be overcome by harnessing the nanoparticle-forming polysorbitol transporter (PST) for an O. tsutsugamushi vaccine strategy. Two target proteins, 56-kDa type-specific Ag (TSA56) and surface cell Ag A (ScaA) were used as vaccine candidates. PST formed stable nano-size complexes with TSA56 (TSA56-PST) and ScaA (ScaA-PST); neither exhibited cytotoxicity. The formation of Ag-specific IgG2a, IgG2b, and IgA in mice was enhanced by intranasal vaccination with TSA56-PST or ScaA-PST. The vaccines containing PST induced Ag-specific proliferation of CD8+ and CD4+ T cells. Furthermore, the vaccines containing PST improved the mouse survival against O. tsutsugamushi infection. Collectively, the present study indicated that PST could enhance both Ag-specific humoral immunity and T cell response, which are essential to effectively confer protective immunity against O. tsutsugamushi infection. These findings suggest that PST has potential for use in an intranasal vaccination strategy.
Collapse
Affiliation(s)
- Cheol Gyun Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Bio-MAX/N-Bio, Seoul National University, Seoul 08826, Korea
| | - Won Kyong Kim
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, National Institute of Health, Cheongju 28159, Korea
| | - Narae Kim
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Young Jin Pyung
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Da-Jeong Park
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Jeong-Cheol Lee
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Chong-Su Cho
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
| | - Hyuk Chu
- Division of Zoonotic and Vector Borne Disease Research, Center for Infectious Disease Research, National Institute of Health, Cheongju 28159, Korea
| | - Cheol-Heui Yun
- Department of Agricultural Biotechnology, and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul 08826, Korea
- Institutes of Green-bio Science and Technology, Seoul National University, Pyeongchang 25354, Korea
- Interdisciplinary Programs in Agricultural Genomics, Seoul National University, Seoul 08826, Korea
| |
Collapse
|
6
|
Ouédraogo A, Bougouma EC, Palacpac NMQ, Houard S, Nebie I, Sawadogo J, Berges GD, Soulama I, Diarra A, Hien D, Ouedraogo AZ, Konaté AT, Kouanda S, Myoui A, Ezoe S, Ishii KJ, Sato T, D’Alessio F, Leroy O, Tiono AB, Cousens S, Horii T, Sirima SB. Safety and immunogenicity of BK-SE36/CpG malaria vaccine in healthy Burkinabe adults and children: a phase 1b randomised, controlled, double-blinded, age de-escalation trial. Front Immunol 2023; 14:1267372. [PMID: 37908361 PMCID: PMC10613650 DOI: 10.3389/fimmu.2023.1267372] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 09/25/2023] [Indexed: 11/02/2023] Open
Abstract
Background BK-SE36/CpG is a recombinant blood-stage malaria vaccine candidate based on the N-terminal Plasmodium falciparum serine repeat antigen5 (SE36), adsorbed to aluminium hydroxide gel and reconstituted, prior to administration, with synthetic oligodeoxynucleotides bearing CpG motifs. In healthy Japanese adult males, BK-SE36/CpG was well tolerated. This study assessed its safety and immunogenicity in healthy malaria-exposed African adults and children. Methods A double-blind, randomised, controlled, age de-escalating clinical trial was conducted in an urban area of Ouagadougou, Burkina Faso. Healthy participants (n=135) aged 21-45 years (Cohort 1), 5-10 years (Cohort 2) and 12-24 months (Cohort 3) were randomised to receive three vaccine doses (Day 0, 28 and 112) of BK-SE36/CpG or rabies vaccine by intramuscular injection. Results One hundred thirty-four of 135 (99.2%) subjects received all three scheduled vaccine doses. Vaccinations were well tolerated with no related Grade 3 (severe) adverse events (AEs). Pain/limitation of limb movement, headache in adults and fever in younger children (all mild to moderate in intensity) were the most frequently observed local and systemic AEs. Eighty-three of BK-SE36/CpG (91%) recipients and 37 of control subjects (84%) had Grade 1/2 events within 28 days post vaccination. Events considered by the investigator to be vaccine related were experienced by 38% and 14% of subjects in BK-SE36/CpG and control arms, respectively. Throughout the trial, six Grade 3 events (in 4 subjects), not related to vaccination, were recorded in the BK-SE36/CpG arm: 5 events (in 3 subjects) within 28 days of vaccination. All serious adverse events (SAEs) (n=5) were due to severe malaria (52-226 days post vaccination) and not related to vaccination. In all cohorts, BK-SE36/CpG arm had higher antibody titres after Dose 3 than after Dose 2. Younger cohorts had stronger immune responses (12-24-month-old > 5-10 years-old > 21-45 years-old). Sera predominantly reacted to peptides that lie in intrinsically unstructured regions of SE36. In the control arm, there were no marked fold changes in antibody titres and participants' sera reacted poorly to all peptides spanning SE36. Conclusion BK-SE36/CpG was well-tolerated and immunogenic. These results pave the way for further proof-of-concept studies to demonstrate vaccine efficacy. Clinical trial registration https://pactr.samrc.ac.za/TrialDisplay.aspx?TrialID=1921, PACTR201701001921166.
Collapse
Affiliation(s)
| | | | - Nirianne Marie Q. Palacpac
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | - Sophie Houard
- European Vaccine Initiative (EVI), Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Issa Nebie
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Jean Sawadogo
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | | | - Issiaka Soulama
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Amidou Diarra
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Denise Hien
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | | | - Amadou T. Konaté
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Seni Kouanda
- Institut de Recherche en Sciences de la Santé, Ouagadougou, Burkina Faso
| | - Akira Myoui
- Medical Center for Translational Research, Osaka University Hospital, Suita, Japan
| | - Sachiko Ezoe
- Medical Center for Translational Research, Osaka University Hospital, Suita, Japan
- Department of Space Infection Control, Graduate School of Medicine, Division of Health Sciences, Osaka University, Osaka, Japan
| | - Ken J. Ishii
- Center for Vaccine and Adjuvant Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan
- Laboratory of Vaccine Science, Immunology Frontier Research Center, Osaka University, Suita, Japan
- Division of Vaccine Science, Department of Microbiology and Immunology, The Institute of Medical Science, The University of Tokyo, Tokyo, Japan
| | - Takanobu Sato
- Research and Development Division, Nobelpharma Co., Ltd., Tokyo, Japan
| | - Flavia D’Alessio
- European Vaccine Initiative (EVI), Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Odile Leroy
- European Vaccine Initiative (EVI), Universitäts Klinikum Heidelberg, Heidelberg, Germany
| | - Alfred B. Tiono
- Groupe de Recherche Action en Santé (GRAS), Ouagadougou, Burkina Faso
| | - Simon Cousens
- Department of Infectious Disease Epidemiology, London School of Hygiene and Tropical Medicine (LSHTM), London, United Kingdom
| | - Toshihiro Horii
- Department of Malaria Vaccine Development, Research Institute for Microbial Diseases, Osaka University, Suita, Japan
| | | |
Collapse
|
7
|
Duong VT, Skwarczynski M, Toth I. Towards the development of subunit vaccines against tuberculosis: The key role of adjuvant. Tuberculosis (Edinb) 2023; 139:102307. [PMID: 36706503 DOI: 10.1016/j.tube.2023.102307] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 12/22/2022] [Accepted: 01/12/2023] [Indexed: 01/15/2023]
Abstract
According to the World Health Organization (WHO), tuberculosis (TB) is the leading cause of death triggered by a single infectious agent, worldwide. Bacillus Calmette-Guerin (BCG) is the only currently licensed anti-TB vaccine. However, other strategies, including modification of recombinant BCG vaccine, attenuated Mycobacterium tuberculosis (Mtb) mutant constructs, DNA and protein subunit vaccines, are under extensive investigation. As whole pathogen vaccines can trigger serious adverse reactions, most current strategies are focused on the development of safe anti-TB subunit vaccines; this is especially important given the rising TB infection rate in immunocompromised HIV patients. The whole Mtb genome has been mapped and major antigens have been identified; however, optimal vaccine delivery mode is still to be established. Isolated protein antigens are typically poorly immunogenic so adjuvants are required to induce strong and long-lasting immune responses. This article aims to review the developmental status of anti-TB subunit vaccine adjuvants.
Collapse
Affiliation(s)
- Viet Tram Duong
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Mariusz Skwarczynski
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia.
| | - Istvan Toth
- School of Chemistry and Molecular Biosciences, The University of Queensland, St Lucia, QLD, 4072, Australia; Institute for Molecular Bioscience, The University of Queensland, St Lucia, QLD, 4072, Australia; School of Pharmacy, The University of Queensland, Woolloongabba, QLD, 4102, Australia.
| |
Collapse
|
8
|
Stahl M, Holzinger J, Bülow S, Goepferich AM. Enzyme-triggered antigen release enhances cross-presentation by dendritic cells. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 42:102545. [PMID: 35283290 DOI: 10.1016/j.nano.2022.102545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 03/01/2022] [Indexed: 01/12/2023]
Abstract
Nanoparticles hold great potential as vaccine carriers due to their highly versatile structure and the possibility to influence intracellular trafficking and antigen presentation by their design. In this study, we developed a nanoparticulate system with a new enzyme-triggered antigen release mechanism. For this novel approach, nanoparticle and model antigen ovalbumin were linked with a substrate of the early endosomal protease cathepsin S. This construct enabled the transfer of antigens delivered to bone marrow-derived dendritic cells from the endo-lysosomal compartments in the cytosol. Consecutively, our particles enhanced cross-presentation on dendritic cells and subsequently promoted a stronger activation of CD8+ T cells. Our findings suggest that enzyme-triggered antigen release allows the endosomal escape of the antigen, leading to increased MHC-I presentation. Since T cell immunity is central for the control of viral infections and cancer, this release mechanism offers a promising approach for the development of both prophylactic and therapeutic vaccines.
Collapse
Affiliation(s)
- Monika Stahl
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Germany.
| | - Jonas Holzinger
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany.
| | - Sigrid Bülow
- Institute of Clinical Microbiology and Hygiene, University Hospital Regensburg, Regensburg, Germany.
| | - Achim M Goepferich
- Department of Pharmaceutical Technology, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
9
|
Gomez M, Ahmed M, Das S, McCollum J, Mellett L, Swanson R, Gupta A, Carrigy NB, Wang H, Barona D, Bachchhav S, Gerhardt A, Press C, Archer MC, Liang H, Seydoux E, Kramer RM, Kuehl PJ, Vehring R, Khader SA, Fox CB. Development and Testing of a Spray-Dried Tuberculosis Vaccine Candidate in a Mouse Model. Front Pharmacol 2022; 12:799034. [PMID: 35126135 PMCID: PMC8814656 DOI: 10.3389/fphar.2021.799034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 12/27/2021] [Indexed: 11/15/2022] Open
Abstract
Converting a vaccine into a thermostable dry powder is advantageous as it reduces the resource burden linked with the cold chain and provides flexibility in dosage and administration through different routes. Such a dry powder presentation may be especially useful in the development of a vaccine towards the respiratory infectious disease tuberculosis (TB). This study assesses the immunogenicity and protective efficacy of spray-dried ID93+GLA-SE, a promising TB vaccine candidate, against Mycobacterium tuberculosis (Mtb) in a murine model when administered via different routes. Four administration routes for the spray-dried ID93+GLA-SE were evaluated along with relevant controls—1) reconstitution and intramuscular injection, 2) reconstitution and intranasal delivery, 3) nasal dry powder delivery via inhalation, and 4) pulmonary dry powder delivery via inhalation. Dry powder intranasal and pulmonary delivery was achieved using a custom nose-only inhalation device, and optimization using representative vaccine-free powder demonstrated that approximately 10 and 44% of the maximum possible delivered dose would be delivered for intranasal delivery and pulmonary delivery, respectively. Spray-dried powder was engineered according to the different administration routes including maintaining approximately equivalent delivered doses of ID93 and GLA. Vaccine properties of the different spray-dried lots were assessed for quality control in terms of nanoemulsion droplet diameter, polydispersity index, adjuvant content, and antigen content. Our results using the Mtb mouse challenge model show that both intranasal reconstituted vaccine delivery as well as pulmonary dry powder vaccine delivery resulted in Mtb control in infected mice comparable to traditional intramuscular delivery. Improved protection in these two vaccinated groups over their respective control groups coincided with the presence of cytokine-producing T cell responses. In summary, our results provide novel vaccine formulations and delivery routes that can be harnessed to provide protection against Mtb infection.
Collapse
Affiliation(s)
- Mellissa Gomez
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Shibali Das
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Joseph McCollum
- Infectious Disease Research Institute, Seattle, WA, United States
| | - Leah Mellett
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Rosemary Swanson
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Ananya Gupta
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
| | - Nicholas B. Carrigy
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Hui Wang
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - David Barona
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Shital Bachchhav
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Alana Gerhardt
- Infectious Disease Research Institute, Seattle, WA, United States
| | - Chris Press
- Infectious Disease Research Institute, Seattle, WA, United States
| | | | - Hong Liang
- Infectious Disease Research Institute, Seattle, WA, United States
| | - Emilie Seydoux
- Infectious Disease Research Institute, Seattle, WA, United States
| | - Ryan M. Kramer
- Infectious Disease Research Institute, Seattle, WA, United States
| | | | - Reinhard Vehring
- Department of Mechanical Engineering, University of Alberta, Edmonton, AB, Canada
| | - Shabaana A. Khader
- Department of Molecular Microbiology, Washington University in St. Louis, School of Medicine, St. Louis, MO, United States
- *Correspondence: Shabaana A. Khader, ; Christopher B. Fox,
| | - Christopher B. Fox
- Infectious Disease Research Institute, Seattle, WA, United States
- Department of Global Health, University of Washington, Seattle, WA, United States
- *Correspondence: Shabaana A. Khader, ; Christopher B. Fox,
| |
Collapse
|
10
|
Ahmed A, Rakshit S, Adiga V, Dias M, Dwarkanath P, D'Souza G, Vyakarnam A. A century of BCG: Impact on tuberculosis control and beyond. Immunol Rev 2021; 301:98-121. [PMID: 33955564 DOI: 10.1111/imr.12968] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/13/2021] [Accepted: 03/13/2021] [Indexed: 12/14/2022]
Abstract
BCG turns 100 this year and while it might not be the perfect vaccine, it has certainly contributed significantly towards eradication and prevention of spread of tuberculosis (TB). The search for newer and better vaccines for TB is an ongoing endeavor and latest results from trials of candidate TB vaccines such as M72AS01 look promising. However, recent encouraging data from BCG revaccination trials in adults combined with studies on mucosal and intravenous routes of BCG vaccination in non-human primate models have renewed interest in BCG for TB prevention. In addition, several well-demonstrated non-specific effects of BCG, for example, prevention of viral and respiratory infections, give BCG an added advantage. Also, BCG vaccination is currently being widely tested in human clinical trials to determine whether it protects against SARS-CoV-2 infection and/or death with detailed analyses and outcomes from several ongoing trials across the world awaited. Through this review, we attempt to bring together information on various aspects of the BCG-induced immune response, its efficacy in TB control, comparison with other candidate TB vaccines and strategies to improve its efficiency including revaccination and alternate routes of administration. Finally, we discuss the future relevance of BCG use especially in light of its several heterologous benefits.
Collapse
Affiliation(s)
- Asma Ahmed
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Srabanti Rakshit
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Vasista Adiga
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India
| | - Mary Dias
- Division of Infectious Diseases, St John's Research Institute, Bangalore, India
| | | | - George D'Souza
- Division of Infectious Diseases, St John's Research Institute, Bangalore, India.,Department of Pulmonary Medicine, St John's Medical College, Bangalore, India
| | - Annapurna Vyakarnam
- Laboratory of Immunology of HIV-TB co-infection, Centre for Infectious Disease Research, Indian Institute of Science, Bangalore, India.,Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, Faculty of Life Sciences and Medicine, Guy's Hospital, King's College London, London, UK
| |
Collapse
|
11
|
Shivam S, El-Matbouli M, Kumar G. Development of Fish Parasite Vaccines in the OMICs Era: Progress and Opportunities. Vaccines (Basel) 2021; 9:179. [PMID: 33672552 PMCID: PMC7923790 DOI: 10.3390/vaccines9020179] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/16/2021] [Accepted: 02/17/2021] [Indexed: 02/07/2023] Open
Abstract
Globally, parasites are increasingly being recognized as catastrophic agents in both aquaculture sector and in the wild aquatic habitats leading to an estimated annual loss between 1.05 billion and 9.58 billion USD. The currently available therapeutic and control measures are accompanied by many limitations. Hence, vaccines are recommended as the "only green and effective solution" to address these concerns and protect fish from pathogens. However, vaccine development warrants a better understanding of host-parasite interaction and parasite biology. Currently, only one commercial parasite vaccine is available against the ectoparasite sea lice. Additionally, only a few trials have reported potential vaccine candidates against endoparasites. Transcriptome, genome, and proteomic data at present are available only for a limited number of aquatic parasites. Omics-based interventions can be significant in the identification of suitable vaccine candidates, finally leading to the development of multivalent vaccines for significant protection against parasitic infections in fish. The present review highlights the progress in the immunobiology of pathogenic parasites and the prospects of vaccine development. Finally, an approach for developing a multivalent vaccine for parasitic diseases is presented. Data sources to prepare this review included Pubmed, google scholar, official reports, and websites.
Collapse
Affiliation(s)
- Saloni Shivam
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (M.E.-M.)
- Central Marine Fisheries Research Institute, Karwar 581301, India
| | - Mansour El-Matbouli
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (M.E.-M.)
| | - Gokhlesh Kumar
- Clinical Division of Fish Medicine, University of Veterinary Medicine Vienna, 1210 Vienna, Austria; (S.S.); (M.E.-M.)
| |
Collapse
|
12
|
Alginate-chitosan microcapsules improve vaccine potential of gamma-irradiated Listeria monocytogenes against listeriosis in murine model. Int J Biol Macromol 2021; 176:567-577. [PMID: 33581203 DOI: 10.1016/j.ijbiomac.2021.02.056] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 02/05/2021] [Accepted: 02/07/2021] [Indexed: 12/27/2022]
Abstract
Listeria monocytogenes is a cause of infectious food-borne disease in humans, characterized by neurological manifestations, abortion, and neonatal septicemia. It is intracellular bacterium, which limits the development of protective inactivated vacines. Adjuvants capable of stimulating cellular immune response are important tools for developing novel vaccines against intracellular bacteria. The aim of this study was to evaluate the vaccine potential of L. monocytogenes inactivated by gamma irradiation (KLM-γ) encapsulated in alginate microcapsules associated or not with chitosan against listeriosis in the murine model. At the fourth day after challenge there was a reduction in bacterial recovery in mice vaccinated with KLM-γ encapsulated with alginate or alginate-chitosan, with lower bacterial loads in the spleen (10 fold) and liver (100 fold) when compared to non-vaccinated mice. In vitro stimulation of splenocytes from mice vaccinated with alginate-chitosan-encapsulated KLM-γ resulted in lymphocyte proliferation, increase of proportion of memory CD4+ and CD8+ T cell and production of IL-10 and IFN-γ. Interestingly, the group vaccinated with alginate-chitosan-encapsulated KLM-γ had increased survival to lethal infection with lower L. monocytogenes-induced hepatic inflammation and necrosis. Therefore, KLM-γ encapsulation with alginate-chitosan proved to have potential for development of novel and safe inactivated vaccine formulations against listeriosis.
Collapse
|
13
|
Wibowo D, Jorritsma SHT, Gonzaga ZJ, Evert B, Chen S, Rehm BHA. Polymeric nanoparticle vaccines to combat emerging and pandemic threats. Biomaterials 2020; 268:120597. [PMID: 33360074 PMCID: PMC7834201 DOI: 10.1016/j.biomaterials.2020.120597] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023]
Abstract
Subunit vaccines are more advantageous than live attenuated vaccines in terms of safety and scale-up manufacture. However, this often comes as a trade-off to their efficacy. Over the years, polymeric nanoparticles have been developed to improve vaccine potency, by engineering their physicochemical properties to incorporate multiple immunological cues to mimic pathogenic microbes and viruses. This review covers recent advances in polymeric nanostructures developed toward particulate vaccines. It focuses on the impact of microbe mimicry (e.g. size, charge, hydrophobicity, and surface chemistry) on modulation of the nanoparticles’ delivery, trafficking, and targeting antigen-presenting cells to elicit potent humoral and cellular immune responses. This review also provides up-to-date progresses on rational designs of a wide variety of polymeric nanostructures that are loaded with antigens and immunostimulatory molecules, ranging from particles, micelles, nanogels, and polymersomes to advanced core-shell structures where polymeric particles are coated with lipids, cell membranes, or proteins.
Collapse
Affiliation(s)
- David Wibowo
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia.
| | - Sytze H T Jorritsma
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia
| | - Zennia Jean Gonzaga
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia
| | - Benjamin Evert
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia
| | - Shuxiong Chen
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia.
| |
Collapse
|
14
|
Lakho SA, Haseeb M, Huang J, Yang Z, Hasan MW, Aleem MT, Naqvi MAUH, Memon MA, Song X, Yan R, Xu L, Li X. Glyceraldehyde-3-phosphate dehydrogenase from Eimeria acervulina modulates the functions of chicken dendritic cells to boost Th1 type immune response and stimulates autologous CD4 + T cells differentiation in-vitro. Vet Res 2020; 51:138. [PMID: 33203464 PMCID: PMC7672913 DOI: 10.1186/s13567-020-00864-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2020] [Accepted: 10/26/2020] [Indexed: 12/02/2022] Open
Abstract
Dendritic cells (DCs) play a pivotal role to amplify antigen-specific immune responses. Antigens that sensitize T cells via antigen-presentation by DCs could enhance the capacity of host immunity to fight infections. In this study, we tested the immunogenic profiles of chicken DCs towards Glyceraldehyde-3-phosphate dehydrogenase from Eimeria acervulina (EaGAPDH). Immunoblot analysis showed that recombinant EaGAPDH (rEaGAPDH) protein was successfully recognized by rat sera generated against rEaGAPDH. Interaction and internalisation of rEaGAPDH by chicken splenic-derived DCs (chSPDCs) was confirmed by immunofluorescence analysis. Flow cytometry revealed that chSPDCs upregulated MHCII, CD1.1, CD11c, CD80, and CD86 cell-surface markers. Moreover, mRNA expressions of DC maturation biomarkers (CCL5, CCR7, and CD83) and TLR signalling genes (TLR15 and MyD88) were also upregulated whereas those of Wnt signalling were non-significant compared to negative controls. rEaGAPDH treatment induced IL-12 and IFN-γ secretion in chSPDCs but had no effect on IL-10 and TGF-β. Likewise, DC-T cell co-culture promoted IFN-γ secretion and the level of IL-4 was unaffected. Proliferation of T cells and their differentiation into CD3+/CD4+ T cells were triggered in chSPDCs-T cells co-culture system. Taken together, rEaGAPDH could promote Th1 polarization by activating both host DCs and T cells and sheds new light on the role of this important molecule which might contribute to the development of new DCs-based immunotherapeutic strategies against coccidiosis.
Collapse
Affiliation(s)
- Shakeel Ahmed Lakho
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Muhammad Haseeb
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Jianmei Huang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Zhang Yang
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Muhammad Waqqas Hasan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Muhammad Tahir Aleem
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Muhammad Ali-Ul-Husnain Naqvi
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Muhammad Ali Memon
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - XiaoKai Song
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - RuoFeng Yan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - Lixin Xu
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China
| | - XiangRui Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
15
|
Promotion of Cellular and Humoral Immunity against Foot-and-Mouth Disease Virus by Immunization with Virus-Like Particles Encapsulated in Monophosphoryl Lipid A and Liposomes. Vaccines (Basel) 2020; 8:vaccines8040633. [PMID: 33142799 PMCID: PMC7712044 DOI: 10.3390/vaccines8040633] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 10/29/2020] [Accepted: 10/30/2020] [Indexed: 01/08/2023] Open
Abstract
Virus-like particles (VLPs) have emerged as promising vaccine candidates against foot-and-mouth disease (FMD). However, such vaccines provide a relatively low level of protection against FMD virus (FMDV) because of their poor immunogenicity. Therefore, it is necessary to design effective vaccine strategies that induce more potent immunogenicity. In order to investigate the means to improve FMD VLP vaccine (VLPFMDV) immunogenicity, we encapsulated VLPs (MPL/DDA-VLPFMDV) with cationic liposomes based on dimethyldioctadecylammonium bromide (DDA) and/or monophosphoryl lipid A (MPL, TLR4 agonist) as adjuvants. Unlike inactivated whole-cell vaccines, VLPFMDV were successfully encapsulated in this MPL/DDA system. We found that MPL/DDA-VLPFMDV could induce strong cell-mediated immune responses by inducing not only VLP-specific IFN-γ+CD4+ (Th1), IL-17A+CD4+ (Th17), and IFN-γ+CD8+ (activated CD8 response) T cells, but also the development of VLP-specific multifunctional CD4+ and CD8+ memory T cells co-expressing IFN-γ, TNF-α, and IL-2. In addition, the MPL/DDA-VLPFMDV vaccine markedly induced VLP-specific antibody titers; in particular, the vaccine induced greater Th1-predominant IgG responses than VLPFMDV only and DDA-VLPFMDV. These results are expected to provide important clues for the development of an effective VLPFMDV that can induce cellular and humoral immune responses, and address the limitations seen in current VLP vaccines for various diseases.
Collapse
|
16
|
Semple SL, Dixon B. Salmonid Antibacterial Immunity: An Aquaculture Perspective. BIOLOGY 2020; 9:E331. [PMID: 33050557 PMCID: PMC7599743 DOI: 10.3390/biology9100331] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 10/07/2020] [Accepted: 10/08/2020] [Indexed: 02/08/2023]
Abstract
The aquaculture industry is continuously threatened by infectious diseases, including those of bacterial origin. Regardless of the disease burden, aquaculture is already the main method for producing fish protein, having displaced capture fisheries. One attractive sector within this industry is the culture of salmonids, which are (a) uniquely under pressure due to overfishing and (b) the most valuable finfish per unit of weight. There are still knowledge gaps in the understanding of fish immunity, leading to vaccines that are not as effective as in terrestrial species, thus a common method to combat bacterial disease outbreaks is the use of antibiotics. Though effective, this method increases both the prevalence and risk of generating antibiotic-resistant bacteria. To facilitate vaccine design and/or alternative treatment efforts, a deeper understanding of the teleost immune system is essential. This review highlights the current state of teleost antibacterial immunity in the context of salmonid aquaculture. Additionally, the success of current techniques/methods used to combat bacterial diseases in salmonid aquaculture will be addressed. Filling the immunology knowledge gaps highlighted here will assist in reducing aquaculture losses in the future.
Collapse
Affiliation(s)
| | - Brian Dixon
- Department of Biology, University of Waterloo, Waterloo, ON N2L 3G1, Canada;
| |
Collapse
|
17
|
Taki AC, Francis JE, Skakic I, Dekiwadia C, McLean TR, Bansal V, Smooker PM. Protein-only nanocapsules induce cross-presentation in dendritic cells, demonstrating potential as an antigen delivery system. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2020; 28:102234. [PMID: 32522709 DOI: 10.1016/j.nano.2020.102234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 05/12/2020] [Accepted: 05/28/2020] [Indexed: 01/19/2023]
Abstract
Templating has been demonstrated to be an efficient method of nanocapsule preparation. However, there have been no reports of using protein-only nanocapsules as an antigen delivery system. Such a system would enable the delivery of antigen without additional polymers. This study focused on defining the structural and cellular characteristics of nanocapsules consisting of antigen (ovalbumin) alone, synthesized by the templating method using highly monodispersed solid core mesoporous shell (SC/MS) and mesoporous (MS) silica nanoparticles of 410 nm and 41 nm in diameter, respectively. The synthesized ovalbumin nanocapsules were homogeneous in structure, and cellular uptake was observed in DC2.4 murine immature dendritic cells with minimal cytotoxicity. The nanocapsules were localized intracellularly and induced antigen presentation by the cross-presentation pathway. The templating system, using SC/MS and MS silica nanoparticles, was demonstrated to be an effective nanocapsule synthesis method for a new antigen delivery system.
Collapse
Affiliation(s)
- Aya C Taki
- Bioscience and Food Technology, School of Science, RMIT University, Bundoora, VIC, Australia.
| | - Jasmine E Francis
- Bioscience and Food Technology, School of Science, RMIT University, Bundoora, VIC, Australia.
| | - Ivana Skakic
- Bioscience and Food Technology, School of Science, RMIT University, Bundoora, VIC, Australia.
| | - Chaitali Dekiwadia
- RMIT Microscopy and Microanalysis Facility, RMIT University, Melbourne, VIC, Australia.
| | - Thomas R McLean
- Bioscience and Food Technology, School of Science, RMIT University, Bundoora, VIC, Australia.
| | - Vipul Bansal
- RMIT NanoBiotechnology Research Laboratory, Ian Potter NanoBioSensing Facility, School of Science, RMIT University, Melbourne, VIC, Australia.
| | - Peter M Smooker
- Bioscience and Food Technology, School of Science, RMIT University, Bundoora, VIC, Australia.
| |
Collapse
|
18
|
Shim S, Park HE, Soh SH, Im YB, Yoo HS. Induction of Th2 response through TLR2-mediated MyD88-dependent pathway in human microfold cells stimulated with chitosan nanoparticles loaded with Brucella abortus Mdh. Microb Pathog 2020; 142:104040. [PMID: 32032767 DOI: 10.1016/j.micpath.2020.104040] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 02/03/2020] [Accepted: 02/03/2020] [Indexed: 01/18/2023]
Abstract
Drug delivery by the nasal or oral route is considered the preferred route of administration because it can induce systemic mucosal immunity. However, few studies have examined the immunogenicity and transport of antigen at the level of the microfold (M) cell, the epithelial cell that specializes in antigen sampling at mucosal surfaces. In our previous study, Brucella abortus malate dehydrogenase (Mdh) was loaded in chitosan nanoparticles (CNs), and it induced high production of proinflammatory cytokines in THP-1 cells and systemic IgA in BALB/C mice. In the present study, an in vitro M cell model was used in which Caco-2 cells and Raji B cells were co-cultured to investigate the impact of the uptake and immunogenicity of B. abortus Mdh on nanoparticle transport in human M cells. Our results showed that loaded CNs induced enhanced transport of Mdh in the M cell model. ELISAs showed significantly higher production of IL-1β and IL-6 in the CN-Mdh stimulation group than that seen in the Mdh stimulation group. The observed increase of gene expression of TLR2, MyD88, TRAF6, IRF4 and CD14 implied that MyD88-dependent TLR2 signaling was activated by stimulation with CNs-Mdh. These results suggest that Mdh and CNs may function synergistically to enhance Th2-related responses triggered by the MyD88-dependent TLR2 signaling pathway and could induce an inflammatory response in M cells as an M cell-targeted delivery system. This study will contribute to the development of not only effective antigens for intracellular bacteria, including B. abortus, but also vaccine delivery systems that target M cells.
Collapse
Affiliation(s)
- Soojin Shim
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Hyun-Eui Park
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Sang Hee Soh
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Young Bin Im
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826, South Korea; BioMax/N-Bio Institute, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
19
|
Solodushko V, Bitko V, Barrington R, Fouty B. A DNA Vaccine in Which the RSV-F Ectodomain Is Covalently Linked to the Burkholderia pseudomallei Antigens TssM and Hcp1 Augments the Humoral and Cytotoxic Response in Mice. Front Immunol 2019; 10:2411. [PMID: 31681300 PMCID: PMC6797551 DOI: 10.3389/fimmu.2019.02411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 09/26/2019] [Indexed: 12/14/2022] Open
Abstract
DNA vaccines have great potential to control infectious disease, particularly those caused by intracellular organisms. They are inexpensive to produce and can be quickly modified to combat emerging infectious threats, but often fail to generate a strong immunologic response limiting enthusiasm for their use in humans and animals. To improve the immunogenic response, we developed a DNA vaccine in which the F protein ectodomain of Respiratory Syncytial Virus (RSV-F) was covalently linked to specific antigens of interest. The presence of the RSV-F ectodomain allowed secretion of the translated fusion product out of the originally transfected cells followed by its active binding to adjacent cells. This allowed the targeting of a greater number of cells than those originally transfected, enhancing both humoral and cytotoxic immune responses against the expressed antigen(s). We developed an engrafted mouse model that used antigen-expressing tumor cells to assess the in vivo cytotoxic immune response to specific antigens. We then used this model to demonstrate that a DNA vaccine in which the RSV-F ectodomain is fused to two antigens expressed by Burkholderia pseudomallei, the intracellular gram-negative organism that causes melioidosis, generated a stronger cytotoxic response than a DNA vaccine that lacked the RSV-F sequence while still generating a robust humoral response.
Collapse
Affiliation(s)
- Victor Solodushko
- Department of Pharmacology, University of South Alabama School of Medicine, Mobile, AL, United States.,Center for Lung Biology, University of South Alabama School of Medicine, Mobile, AL, United States
| | - Vira Bitko
- Emergent BioSolutions, Gaithersburg, MD, United States
| | - Robert Barrington
- Center for Lung Biology, University of South Alabama School of Medicine, Mobile, AL, United States.,Department of Microbiology and Immunology, University of South Alabama School of Medicine, Mobile, AL, United States
| | - Brian Fouty
- Department of Pharmacology, University of South Alabama School of Medicine, Mobile, AL, United States.,Center for Lung Biology, University of South Alabama School of Medicine, Mobile, AL, United States.,Department of Internal Medicine, University of South Alabama School of Medicine, Mobile, AL, United States
| |
Collapse
|
20
|
Côté-Gravel J, Malouin F. Symposium review: Features of Staphylococcus aureus mastitis pathogenesis that guide vaccine development strategies. J Dairy Sci 2018; 102:4727-4740. [PMID: 30580940 DOI: 10.3168/jds.2018-15272] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Accepted: 10/07/2018] [Indexed: 12/25/2022]
Abstract
Bovine mastitis affects animal health and welfare and milk production and quality, and it challenges the economic success of dairy farms. Staphylococcus aureus is one of the most commonly found pathogens in clinical mastitis but it also causes subclinical, persistent, and difficult-to-treat intramammary infections. Because of the failure of conventional antibiotic treatments and increasing pressure and concern from experts and consumers over the use of antibiotics in the dairy industry, many attempts have been made over the years to develop a vaccine for the prevention and control of Staph. aureus intramammary infections. Still, no commercially available vaccine formulation demonstrates sufficient protection and cost-effective potential. Multiple factors account for the lack of protection, including inadequate vaccine targets, high diversity among mastitis-provoking strains, cow-to-cow variation in immune response, and a failure to elicit an immune response that is appropriate for protection against a highly complex pathogen. The purpose of this review is to summarize key concepts related to the pathogenesis of Staph. aureus, and its interaction with the host, as well as to describe recent vaccine development strategies for prevention and control of Staph. aureus mastitis.
Collapse
Affiliation(s)
- Julie Côté-Gravel
- Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Canada, J1K 2R1
| | - François Malouin
- Centre d'Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de biologie, Faculté des sciences, Université de Sherbrooke, Sherbrooke, Canada, J1K 2R1.
| |
Collapse
|
21
|
Nazir Z, Afridi SG, Shah M, Shams S, Khan A. Reverse vaccinology and subtractive genomics-based putative vaccine targets identification for Burkholderia pseudomallei Bp1651. Microb Pathog 2018; 125:219-229. [PMID: 30243554 DOI: 10.1016/j.micpath.2018.09.033] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 09/16/2018] [Accepted: 09/18/2018] [Indexed: 12/16/2022]
Abstract
The Burkholderia pseudomallei is a unique bio-threat and causative agent of melioidosis. The B. pseudomallei Bp1651 strain has been isolated from a chronic cystic fibrosis patient. The genome-level DNA sequences information of this strain has recently been published. Unfortunately, there is no commercial vaccine available till date to combat B. pseudomallei infection. The genome-wide prioritization approaches are widely used for the identification of potential therapeutic candidates against pathogens. In the present study, we utilized the recently available annotated genomic information of B. pseudomallei Bp1651 through subtractive genomics and reverse-vaccinology strategies to identify its potential vaccine targets. The analyses identified more than 60 pathogen-specific, human host non-homologous proteins that may prioritize in future studies to investigate therapeutic targets for B. pseudomallei Bp1651. The potential B and T-cells antigenic determinant peptides from these pathogen-specific proteins were cataloged using antigenicity and epitope prediction tools. The analyses unveiled a promising antigenic peptide "FQWEFSLSV" from protein-export membrane protein (SecF) of Bp1651 strain, which was predicted to interact with multiple class I and class II MHC alleles with IC50 value < 100 nM. The molecular docking analysis verified favorable molecular interaction of this lead antigenic peptide with the ligand-binding pocket residues of HLA A*02:06 human host immune cell surface receptor. This peptide is predicted to be a suitable epitope capable to elicit the cell-mediated immune response against the B. pseudomallei pathogen. The putative epitopes and proteins identified in this study may be promising vaccine targets against Bp1651 as well as other pathogenic strains of B. pseudomallei.
Collapse
Affiliation(s)
- Zarghoona Nazir
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan
| | - Sahib Gul Afridi
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan
| | - Mohibullah Shah
- Department of Biochemistry, Bahauddin Zakariya University Multan, Punjab, Pakistan
| | - Sulaiman Shams
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan
| | - Asifullah Khan
- Department of Biochemistry, Abdul Wali Khan University Mardan, Mardan, 23200, Khyber Pakhtunkhwa, Pakistan.
| |
Collapse
|
22
|
Remakus S, Ma X, Tang L, Xu RH, Knudson C, Melo-Silva CR, Rubio D, Kuo YM, Andrews A, Sigal LJ. Cutting Edge: Protection by Antiviral Memory CD8 T Cells Requires Rapidly Produced Antigen in Large Amounts. THE JOURNAL OF IMMUNOLOGY 2018; 200:3347-3352. [PMID: 29643193 DOI: 10.4049/jimmunol.1701568] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Accepted: 03/20/2018] [Indexed: 11/19/2022]
Abstract
Numerous attempts to produce antiviral vaccines by harnessing memory CD8 T cells have failed. A barrier to progress is that we do not know what makes an Ag a viable target of protective CD8 T cell memory. We found that in mice susceptible to lethal mousepox (the mouse homolog of human smallpox), a dendritic cell vaccine that induced memory CD8 T cells fully protected mice when the infecting virus produced Ag in large quantities and with rapid kinetics. Protection did not occur when the Ag was produced in low amounts, even with rapid kinetics, and protection was only partial when the Ag was produced in large quantities but with slow kinetics. Hence, the amount and timing of Ag expression appear to be key determinants of memory CD8 T cell antiviral protective immunity. These findings may have important implications for vaccine design.
Collapse
Affiliation(s)
- Sanda Remakus
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107; and.,Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Xueying Ma
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Lingjuan Tang
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Ren-Huan Xu
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Cory Knudson
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Carolina R Melo-Silva
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107; and
| | - Daniel Rubio
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Yin-Ming Kuo
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Andrew Andrews
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA 19111
| | - Luis J Sigal
- Department of Microbiology and Immunology, Thomas Jefferson University, Philadelphia, PA 19107; and
| |
Collapse
|
23
|
Yang G, Richt JA, Driver JP. Harnessing Invariant NKT Cells to Improve Influenza Vaccines: A Pig Perspective. Int J Mol Sci 2017; 19:68. [PMID: 29280974 PMCID: PMC5796018 DOI: 10.3390/ijms19010068] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 12/21/2017] [Accepted: 12/25/2017] [Indexed: 12/20/2022] Open
Abstract
Invariant natural killer T (iNKT) cells are an "innate-like" T cell lineage that recognize glycolipid rather than peptide antigens by their semi-invariant T cell receptors. Because iNKT cells can stimulate an extensive array of immune responses, there is considerable interest in targeting these cells to enhance human vaccines against a wide range of microbial pathogens. However, long overlooked is the potential to harness iNKT cell antigens as vaccine adjuvants for domestic animal species that express the iNKT cell-CD1d system. In this review, we discuss the prospect of targeting porcine iNKT cells as a strategy to enhance the efficiency of swine influenza vaccines. In addition, we compare the phenotype and tissue distribution of porcine iNKT cells. Finally, we discuss the challenges that must be overcome before iNKT cell agonists can be contemplated for veterinary use in livestock.
Collapse
Affiliation(s)
- Guan Yang
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA.
| | - Jürgen A Richt
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA.
- Diagnostic Medicine/Pathobiology and Center of Excellence for Emerging and Zoonotic Animal Diseases (CEEZAD), Manhattan, KS 66502, USA.
| | - John P Driver
- Department of Animal Sciences, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
24
|
Khademi F, Yousefi-Avarvand A, Derakhshan M, Meshkat Z, Tafaghodi M, Ghazvini K, Aryan E, Sankian M. Mycobacterium tuberculosis HspX/EsxS Fusion Protein: Gene Cloning, Protein Expression, and Purification in Escherichia coli. Rep Biochem Mol Biol 2017; 6:15-21. [PMID: 29090225 PMCID: PMC5643456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/31/2016] [Indexed: 06/07/2023]
Abstract
BACKGROUND The purpose of this study was to clone, express, and purify a novel multidomain fusion protein of Micobacterium tuberculosis (Mtb) in a prokaryotic system. METHODS An hspX/esxS gene construct was synthesized and ligated into a pGH plasmid, E. coli TOP10 cells were transformed, and the vector was purified. The vector containing the construct and pET-21b (+) plasmid were digested with the same enzymes and the construct was ligated into pET-21b (+). The accuracy of cloning was confirmed by colony PCR and sequencing. E. coli BL21 cells were transformed with the pET-21b (+)/hspX/esxS expression vector and protein expression was evaluated. Finally, the expressed fusion protein was purified on a Ni-IDA column and verified by SDS-PAGE and western blotting. RESULTS The hspX/esxS gene construct was inserted into pET-21b (+) and recombinant protein expression was induced with IPTG in E. coli BL21 cells. Various concentrations of IPTG were tested to determine the optimum concentration for expression induction. The recombinant protein was expressed in insoluble inclusion bodies. Three molar guanidine HCl was used to solubilize the insoluble protein. CONCLUSION An HspX/EsxS Mtb fusion protein was expressed in E. coli and the recombinant protein was purified. After immunological analysis, the HspX/EsxS fusion protein might be an anti-tuberculosis vaccine candidate in future clinical trial studies.
Collapse
Affiliation(s)
- Farzad Khademi
- Antimicrobial Resistance Research Center, Department of Medical Bacteriology and Virology, Qaem University Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Arshid Yousefi-Avarvand
- Antimicrobial Resistance Research Center, Department of Medical Bacteriology and Virology, Qaem University Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohammad Derakhshan
- Antimicrobial Resistance Research Center, Department of Medical Bacteriology and Virology, Qaem University Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Zahra Meshkat
- Antimicrobial Resistance Research Center, Department of Medical Bacteriology and Virology, Qaem University Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mohsen Tafaghodi
- Nanotechnology Research Center, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Kiarash Ghazvini
- Antimicrobial Resistance Research Center, Department of Medical Bacteriology and Virology, Qaem University Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Ehsan Aryan
- Antimicrobial Resistance Research Center, Department of Medical Bacteriology and Virology, Qaem University Hospital, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mojtaba Sankian
- Immunobiochemistry Lab, Immunology Research Center, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
25
|
Jeyanathan M, Afkhami S, Khera A, Mandur T, Damjanovic D, Yao Y, Lai R, Haddadi S, Dvorkin-Gheva A, Jordana M, Kunkel SL, Xing Z. CXCR3 Signaling Is Required for Restricted Homing of Parenteral Tuberculosis Vaccine-Induced T Cells to Both the Lung Parenchyma and Airway. THE JOURNAL OF IMMUNOLOGY 2017; 199:2555-2569. [PMID: 28827285 DOI: 10.4049/jimmunol.1700382] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/24/2017] [Indexed: 01/19/2023]
Abstract
Although most novel tuberculosis (TB) vaccines are designed for delivery via the muscle or skin for enhanced protection in the lung, it has remained poorly understood whether systemic vaccine-induced memory T cells can readily home to the lung mucosa prior to and shortly after pathogen exposure. We have investigated this issue by using a model of parenteral TB immunization and intravascular immunostaining. We find that systemically induced memory T cells are restricted to the blood vessels in the lung, unable to populate either the lung parenchymal tissue or the airway under homeostatic conditions. We further find that after pulmonary TB infection, it still takes many days before such T cells can enter the lung parenchymal tissue and airway. We have identified the acquisition of CXCR3 expression by circulating T cells to be critical for their entry to these lung mucosal compartments. Our findings offer new insights into mucosal T cell biology and have important implications in vaccine strategies against pulmonary TB and other intracellular infections in the lung.
Collapse
Affiliation(s)
- Mangalakumari Jeyanathan
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Sam Afkhami
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Amandeep Khera
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Talveer Mandur
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Daniela Damjanovic
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Yushi Yao
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Rocky Lai
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Siamak Haddadi
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Anna Dvorkin-Gheva
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Manel Jordana
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada.,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| | - Steven L Kunkel
- Department of Pathology, University of Michigan Medical School, Ann Arbor, MI 48109
| | - Zhou Xing
- Department of Pathology and Molecular Medicine, McMaster Immunology Research Centre, McMaster University, Hamilton, Ontario L8S 4K1, Canada; .,Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario L8N 3Z5, Canada; and
| |
Collapse
|
26
|
da Silva TA, Zorzetto-Fernandes ALV, Cecílio NT, Sardinha-Silva A, Fernandes FF, Roque-Barreira MC. CD14 is critical for TLR2-mediated M1 macrophage activation triggered by N-glycan recognition. Sci Rep 2017; 7:7083. [PMID: 28765651 PMCID: PMC5539197 DOI: 10.1038/s41598-017-07397-0] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2016] [Accepted: 06/28/2017] [Indexed: 12/22/2022] Open
Abstract
Agonist interaction with Toll-like receptors (TLRs) induces T cell-mediated immunity, which is effective against intracellular pathogens. Consequently, TLR agonists are being tried as immunomodulatory agents. The lectin ArtinM targets TLR2 N-glycans on macrophages, induces cytokines production, and promotes T helper-1 immunity, a process that culminates in resistance to several parasitic and fungal infections in vivo. Because co-receptors influence agonist binding to TLRs, we investigated whether CD14 is required for macrophage activation induced by ArtinM. Macrophages from wild-type mice stimulated by ArtinM not only produced cytokines but also had the following activation profile: (i) expression of M1 polarization markers; (ii) nitrite oxide production; (iii) cellular migration; (iv) enhanced phagocytic and fungicide activity; (v) modulation of TLR2 expression; and (vi) activation of NF-κB pathway. This activation profile induced by ArtinM was evaluated in macrophages lacking CD14 that showed none of the ArtinM effects. We demonstrated by immunoprecipitation and sugar inhibition assays the physical interaction of ArtinM, TLR2, and CD14, which depends on recognition of the trimannoside that constitutes the core of N-glycans. Thus, our study showed that CD14 is critical for ArtinM-induced macrophage activation, providing fundamental insight into the design of anti-infective therapies based on carbohydrate recognition.
Collapse
Affiliation(s)
- Thiago Aparecido da Silva
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto-USP, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - André L V Zorzetto-Fernandes
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto-USP, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Nerry T Cecílio
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto-USP, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Aline Sardinha-Silva
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto-USP, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Fabrício Freitas Fernandes
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto-USP, Ribeirão Preto, 14049-900, São Paulo, Brazil
| | - Maria Cristina Roque-Barreira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto-USP, Ribeirão Preto, 14049-900, São Paulo, Brazil.
| |
Collapse
|
27
|
Ahmed M, Smith DM, Hamouda T, Rangel-Moreno J, Fattom A, Khader SA. A novel nanoemulsion vaccine induces mucosal Interleukin-17 responses and confers protection upon Mycobacterium tuberculosis challenge in mice. Vaccine 2017; 35:4983-4989. [PMID: 28774560 DOI: 10.1016/j.vaccine.2017.07.073] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Revised: 07/13/2017] [Accepted: 07/21/2017] [Indexed: 01/08/2023]
Abstract
Tuberculosis (TB), caused by Mycobacterium tuberculosis (Mtb) is contracted via aerosol infection, typically affecting the lungs. Mycobacterium bovis bacillus Calmette-Guerin (BCG) is the only licensed vaccine and has variable efficacy in protecting against pulmonary TB. Additionally, chemotherapy is associated with low compliance contributing to development of multidrug-resistant (MDR) and extensively drug-resistant (XDR) Mtb. Thus, there is an urgent need for the design of more effective vaccines against TB. Experimental vaccines delivered through the mucosal route induce robust T helper type 17 (Th17)/ Interleukin (IL) -17 responses and provide superior protection against Mtb infection. Thus, the development of safe mucosal adjuvants for human use is critical. In this study, we demonstrate that nanoemulsion (NE)-based adjuvants when delivered intranasally along with Mtb specific immunodominant antigens (NE-TB vaccine) induce potent mucosal IL-17T-cell responses. Additionally, the NE-TB vaccine confers significant protection against Mtb infection, and when delivered along with BCG, is associated with decreased disease severity. These findings strongly support the development of a NE-TB vaccine as a novel, safe and effective, first-of-kind IL-17 inducing mucosal vaccine for potential use in humans.
Collapse
Affiliation(s)
- Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, United States
| | | | - Tarek Hamouda
- NanoBio Corporation, Ann Arbor, MI 48105, United States
| | - Javier Rangel-Moreno
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY 14624, United States
| | - Ali Fattom
- NanoBio Corporation, Ann Arbor, MI 48105, United States
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, MO 63110, United States.
| |
Collapse
|
28
|
Yin L, Chai D, Yue Y, Dong C, Xiong S. AIM2 Co-immunization with VP1 Is Associated with Increased Memory CD8 T Cells and Mounts Long Lasting Protection against Coxsackievirus B3 Challenge. Front Cell Infect Microbiol 2017. [PMID: 28642849 PMCID: PMC5462951 DOI: 10.3389/fcimb.2017.00247] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
The recurrent Coxsackievirus B3 (CVB3) infection is the most important cause of intractable myocarditis which often leads to chronic myocarditis and even dilated cardiomyopathy. Therefore, enhanced DNA vaccines capable of memory CD8 T cells are essential for long-lasting immunological protection against CVB3 infection. In this study, absent in melanoma 2 (AIM2) was used as an adjuvant to enhance the induction of memory CD8 T cells elicited by VP1 (viral capsid protein 1) vaccine. Mice were intramuscularly injected with 50 μg AIM2 plasmid and equal amount of VP1 plasmid (pAIM2/pVP1) vaccine 4 times at 2 week-intervals. We observed that the protection of pAIM2/pVP1 vaccine against CVB3 challenge was evidenced by significantly improved cardiac function, reduced myocardial injuries, and increased survival rate when compared with immunization with pVP1. Co-immunization with pAIM2/pVP1 robustly augmented T lymphocytes proliferation and CVB3-specific cytotoxic T lymphocyte responses. Importantly, 16 weeks after the last immunization, pAIM2/pVP1 co-immunization significantly enhanced the expression of Bcl-6, SOCS3, and Sca-1 which are critical for memory CD8 T cells as compared with pVP1 immunization. Notably, CD8 T cells that are likely vaccine-induced memory T cells were responsible for the protective efficacy of pAIM2/pVP1 vaccine by abolition of a CD8 T cell immune response following a lethal dose of CVB3 infection. Our results indicate that AIM2-adjuvanted vaccine could be a potential and promising approach to promote a long-lasting protection against CVB3-induced myocarditis.
Collapse
Affiliation(s)
- Liang Yin
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow UniversitySuzhou, China
| | - Dafei Chai
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow UniversitySuzhou, China
| | - Yan Yue
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow UniversitySuzhou, China
| | - Chunsheng Dong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow UniversitySuzhou, China
| | - Sidong Xiong
- Jiangsu Key Laboratory of Infection and Immunity, Institutes of Biology and Medical Sciences, Soochow UniversitySuzhou, China
| |
Collapse
|
29
|
Karuturi BVK, Tallapaka SB, Yeapuri P, Curran SM, Sanderson SD, Vetro JA. Encapsulation of an EP67-Conjugated CTL Peptide Vaccine in Nanoscale Biodegradable Particles Increases the Efficacy of Respiratory Immunization and Affects the Magnitude and Memory Subsets of Vaccine-Generated Mucosal and Systemic CD8 + T Cells in a Diameter-Dependent Manner. Mol Pharm 2017; 14:1469-1481. [PMID: 28319404 DOI: 10.1021/acs.molpharmaceut.6b01088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
The diameter of biodegradable particles used to coencapsulate immunostimulants and subunit vaccines affects the magnitude of memory CD8+ T cells generated by systemic immunization. Possible effects on the magnitude of CD8+ T cells generated by mucosal immunization or memory subsets that potentially correlate more strongly with protection against certain pathogens, however, are unknown. In this study, we conjugated our novel host-derived mucosal immunostimulant, EP67, to the protective MCMV CTL epitope, pp89, through a lysosomal protease-labile double arginine linker (pp89-RR-EP67) and encapsulated in PLGA 50:50 micro- or nanoparticles. We then compared total magnitude, effector/central memory (CD127/KRLG1/CD62L), and IFN-γ/TNF-α/IL-2 secreting subsets of pp89-specific CD8+ T cells as well as protection of naive female BALB/c mice against primary respiratory infection with MCMV 21 days after respiratory immunization. We found that decreasing the diameter of encapsulating particle from ∼5.4 μm to ∼350 nm (i) increased the magnitude of pp89-specific CD8+ T cells in the lungs and spleen; (ii) partially changed CD127/KLRG1 effector memory subsets in the lungs but not the spleen; (iii) changed CD127/KRLG1/CD62L effector/central memory subsets in the spleen; (iv) changed pp89-responsive IFN-γ/TNF-α/IL-2 secreting subsets in the lungs and spleen; (v) did not affect the extent to which encapsulation increased efficacy against primary MCMV respiratory infection over unencapsulated pp89-RR-EP67. Thus, although not observed under our current experimental conditions with MCMV, varying the diameter of nanoscale biodegradable particles may increase the efficacy of mucosal immunization with coencapsulated immunostimulant/subunit vaccines against certain pathogens by selectively increasing memory subset(s) of CD8+ T cells that correlate the strongest with protection.
Collapse
Affiliation(s)
- Bala V K Karuturi
- Center for Drug Delivery and Nanomedicine and §Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Shailendra B Tallapaka
- Center for Drug Delivery and Nanomedicine and §Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Pravin Yeapuri
- Center for Drug Delivery and Nanomedicine and §Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Stephen M Curran
- Center for Drug Delivery and Nanomedicine and §Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Sam D Sanderson
- Center for Drug Delivery and Nanomedicine and §Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| | - Joseph A Vetro
- Center for Drug Delivery and Nanomedicine and §Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center , 986025 Nebraska Medical Center, Omaha, Nebraska 68198-6025, United States
| |
Collapse
|
30
|
Ducournau C, Nguyen TT, Carpentier R, Lantier I, Germon S, Précausta F, Pisella PJ, Leroux H, Van Langendonck N, Betbeder D, Dimier-Poisson I. Synthetic parasites: a successful mucosal nanoparticle vaccine against Toxoplasma congenital infection in mice. Future Microbiol 2017; 12:393-405. [PMID: 28339296 DOI: 10.2217/fmb-2016-0146] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
AIM Development of protein vaccine to prevent congenital infection is a major public health priority. Our goal is the design of mucosal synthetic pathogen inducing protective immune responses against congenital toxoplasmosis. MATERIALS & METHODS Mice were immunized intranasally, establishing pregnancy and challenging orally. Placental immune response, congenital infection, pup growth, parasitic load rates were studied. RESULTS Pups born to vaccinated infected dams had significantly fewer brain cysts, no intraocular inflammation and normal growth. Protection was associated with a placental cellular Th1 response downregulated by IL-6 and correlated with persistence of vaccine for few hours in the nose before being totally eliminated. CONCLUSION Our vaccine conferred high protection against congenital toxoplasmosis. These results provide support for future studies of other congenital vaccine.
Collapse
Affiliation(s)
- Céline Ducournau
- Immunologie Parasitaire et Vaccinologie, Biothérapies Anti-Infectieuses, Université de Tours-INRA, UMR1282 Infectiologie et Santé Publique, UFR Pharmacie, F-37000 Tours, France
| | - Thi Tl Nguyen
- Immunologie Parasitaire et Vaccinologie, Biothérapies Anti-Infectieuses, Université de Tours-INRA, UMR1282 Infectiologie et Santé Publique, UFR Pharmacie, F-37000 Tours, France
| | - Rodolphe Carpentier
- Centre International de Recherche sur l'Inflammation de Lille LIRIC -UMR 995 Inserm/Université Lille 2/CHRU Lille. Innovation thérapeutique ciblant l'inflammation. Groupe Nanomédecine, Faculté de Médecine, F-59045 Lille Cedex, France.,Université d'Artois, rue du Temple, 62030 ARRAS, France
| | - Isabelle Lantier
- Laboratoire d'Expertise en Infection Animale, INRA-Université de Tours, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | - Stéphanie Germon
- Immunologie Parasitaire et Vaccinologie, Biothérapies Anti-Infectieuses, Université de Tours-INRA, UMR1282 Infectiologie et Santé Publique, UFR Pharmacie, F-37000 Tours, France
| | - Flavien Précausta
- Immunologie Parasitaire et Vaccinologie, Biothérapies Anti-Infectieuses, Université de Tours-INRA, UMR1282 Infectiologie et Santé Publique, UFR Pharmacie, F-37000 Tours, France
| | - Pierre-Jean Pisella
- Immunologie Parasitaire et Vaccinologie, Biothérapies Anti-Infectieuses, Université de Tours-INRA, UMR1282 Infectiologie et Santé Publique, UFR Pharmacie, F-37000 Tours, France
| | - Hervé Leroux
- Laboratoire d'Expertise en Infection Animale, INRA-Université de Tours, UMR1282 Infectiologie et Santé Publique, F-37380 Nouzilly, France
| | | | - Didier Betbeder
- Centre International de Recherche sur l'Inflammation de Lille LIRIC -UMR 995 Inserm/Université Lille 2/CHRU Lille. Innovation thérapeutique ciblant l'inflammation. Groupe Nanomédecine, Faculté de Médecine, F-59045 Lille Cedex, France.,Université d'Artois, rue du Temple, 62030 ARRAS, France
| | - Isabelle Dimier-Poisson
- Immunologie Parasitaire et Vaccinologie, Biothérapies Anti-Infectieuses, Université de Tours-INRA, UMR1282 Infectiologie et Santé Publique, UFR Pharmacie, F-37000 Tours, France
| |
Collapse
|
31
|
Ahmed M, Jiao H, Domingo-Gonzalez R, Das S, Griffiths KL, Rangel-Moreno J, Nagarajan UM, Khader SA. Rationalized design of a mucosal vaccine protects against Mycobacterium tuberculosis challenge in mice. J Leukoc Biol 2017; 101:1373-1381. [PMID: 28258153 DOI: 10.1189/jlb.4a0616-270r] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Revised: 01/23/2017] [Accepted: 02/15/2017] [Indexed: 12/20/2022] Open
Abstract
Pulmonary tuberculosis (TB) caused by Mycobacterium tuberculosis (Mtb) is a leading cause of global morbidity and mortality. The only licensed TB vaccine, Mycobacterium bovis bacillus Calmette-Guerin (BCG), has variable efficacy in protecting against pulmonary TB. Thus, the development of more effective TB vaccines is critical to control the TB epidemic. Specifically, vaccines delivered through the mucosal route are known to induce Th17 responses and provide superior protection against Mtb infection. However, already tested Th17-inducing mucosal adjuvants, such as heat-labile enterotoxins and cholera toxins, are not considered safe for use in humans. In the current study, we rationally screened adjuvants for their ability to induce Th17-polarizing cytokines in dendritic cells (DCs) and determined whether they could be used in a protective mucosal TB vaccine. Our new studies show that monophosphoryl lipid A (MPL), when used in combination with chitosan, potently induces Th17-polarizing cytokines in DCs and downstream Th17/Th1 mucosal responses and confers significant protection in mice challenged with a clinical Mtb strain. Additionally, we show that both TLRs and the inflammasome pathways are activated in DCs by MPL-chitosan to mediate induction of Th17-polarizing cytokines. Together, our studies put forward the potential of a new, protective mucosal TB vaccine candidate, which incorporates safe adjuvants already approved for use in humans.
Collapse
Affiliation(s)
- Mushtaq Ahmed
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Hongmei Jiao
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA.,School of Medicine, Yangzhou University, Yangzhou, People's Republic of China
| | - Racquel Domingo-Gonzalez
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Shibali Das
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Kristin L Griffiths
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA
| | - Javier Rangel-Moreno
- Department of Medicine, Division of Allergy, Immunology, and Rheumatology, University of Rochester Medical Center, Rochester, New York, USA; and
| | - Uma M Nagarajan
- Department of Pediatrics and Microbiology/Immunology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Shabaana A Khader
- Department of Molecular Microbiology, Washington University in St. Louis, St. Louis, Missouri, USA;
| |
Collapse
|
32
|
Luo J, Zhang M, Yan B, Zhang K, Chen M, Deng S. Imbalance of Th17 and Treg in peripheral blood mononuclear cells of active tuberculosis patients. Braz J Infect Dis 2017; 21:155-161. [PMID: 27932286 PMCID: PMC9427603 DOI: 10.1016/j.bjid.2016.10.011] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2016] [Revised: 10/09/2016] [Accepted: 10/13/2016] [Indexed: 11/17/2022] Open
Abstract
Objective Maintaining a right balance between Th17 and Treg might be critical to the immunopathogenesis of active tuberculosis (TB). This study aimed to assess whether the Th17/Treg balance is altered in active TB patients. Methods 250 study subjects (90 active TB patients, 80 latent TB subjects, and 80 healthy controls) were recruited for the study. The expression of Th17 and Treg in peripheral blood mononuclear cells (PBMCs) in the 250 subjects was investigated by flow cytometry. Plasma levels of cytokines IL-17 and IL-10, which are related to Th17 and Treg, respectively, were determined by ELISA. Results The percentages of Th17 and Treg in PBMCs from active TB patients were significantly higher than those from latent TB or control groups (Th17: 4.31 ± 1.35% vs. 1.58 ± 0.71% or 1.15 ± 0.49%, p < 0.05; Treg: 11.44 ± 2.69% vs. 7.54 ± 1.56% or 4.10 ± 0.99%, p < 0.05). The expression of IL-17 and IL-10 was significantly increased in active TB patients in comparison to that in latent TB or control groups (IL-17: 16.85 ± 9.68 vs. 7.23 ± 5.19 or 8.21 ± 5.51 pg/mL, p < 0.05; IL-10: 28.70 ± 11.27 vs. 20.25 ± 8.57 or 13.94 ± 9.00 pg/mL, p < 0.05). Conclusions Our study demonstrated an altered balance of Treg/Th17 in active TB patients, with higher percentages of Th17 and Treg in PBMCs. Further research on this imbalance may offer a new direction for TB treatment.
Collapse
|
33
|
Vance RE, Eichberg MJ, Portnoy DA, Raulet DH. Listening to each other: Infectious disease and cancer immunology. Sci Immunol 2017; 2:eaai9339. [PMID: 28783669 PMCID: PMC5927821 DOI: 10.1126/sciimmunol.aai9339] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2016] [Accepted: 12/21/2016] [Indexed: 12/21/2022]
Abstract
The immune system provides defense against tumors and pathogens. Here, we propose that by elucidating the shared principles of immunity that underlie cancer and infectious disease, oncologists and microbiologists can learn from each other and achieve the deeper mechanistic understanding critical the development of therapeutic approaches.
Collapse
Affiliation(s)
- Russell E Vance
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA.
- Cancer Research Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
- Immunotherapeutics and Vaccine Research Initiative, University of California, Berkeley, Berkeley, CA 94720, USA
- Center for Emerging and Neglected Disease, University of California, Berkeley, Berkeley, CA 94720, USA
- Howard Hughes Medical Institute, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Michael J Eichberg
- Immunotherapeutics and Vaccine Research Initiative, University of California, Berkeley, Berkeley, CA 94720, USA
- Center for Emerging and Neglected Disease, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Daniel A Portnoy
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Cancer Research Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
- Immunotherapeutics and Vaccine Research Initiative, University of California, Berkeley, Berkeley, CA 94720, USA
- Center for Emerging and Neglected Disease, University of California, Berkeley, Berkeley, CA 94720, USA
- School of Public Health, University of California, Berkeley, Berkeley, CA 94720, USA
| | - David H Raulet
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Cancer Research Laboratory, University of California, Berkeley, Berkeley, CA 94720, USA
- Immunotherapeutics and Vaccine Research Initiative, University of California, Berkeley, Berkeley, CA 94720, USA
- Center for Emerging and Neglected Disease, University of California, Berkeley, Berkeley, CA 94720, USA
| |
Collapse
|
34
|
Immunogenic Properties of Lactobacillus plantarum Producing Surface-Displayed Mycobacterium tuberculosis Antigens. Appl Environ Microbiol 2016; 83:AEM.02782-16. [PMID: 27815271 DOI: 10.1128/aem.02782-16] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Accepted: 10/27/2016] [Indexed: 12/18/2022] Open
Abstract
Tuberculosis (TB) remains among the most deadly diseases in the world. The only available vaccine against tuberculosis is the bacille Calmette-Guérin (BCG) vaccine, which does not ensure full protection in adults. There is a global urgency for the development of an effective vaccine for preventing disease transmission, and it requires novel approaches. We are exploring the use of lactic acid bacteria (LAB) as a vector for antigen delivery to mucosal sites. Here, we demonstrate the successful expression and surface display of a Mycobacterium tuberculosis fusion antigen (comprising Ag85B and ESAT-6, referred to as AgE6) on Lactobacillus plantarum The AgE6 fusion antigen was targeted to the bacterial surface using two different anchors, a lipoprotein anchor directing the protein to the cell membrane and a covalent cell wall anchor. AgE6-producing L. plantarum strains using each of the two anchors induced antigen-specific proliferative responses in lymphocytes purified from TB-positive donors. Similarly, both strains induced immune responses in mice after nasal or oral immunization. The impact of the anchoring strategies was reflected in dissimilarities in the immune responses generated by the two L. plantarum strains in vivo The present study comprises an initial step toward the development of L. plantarum as a vector for M. tuberculosis antigen delivery. IMPORTANCE This work presents the development of Lactobacillus plantarum as a candidate mucosal vaccine against tuberculosis. Tuberculosis remains one of the top infectious diseases worldwide, and the only available vaccine, bacille Calmette-Guérin (BCG), fails to protect adults and adolescents. Direct antigen delivery to mucosal sites is a promising strategy in tuberculosis vaccine development, and lactic acid bacteria potentially provide easy, safe, and low-cost delivery vehicles for mucosal immunization. We have engineered L. plantarum strains to produce a Mycobacterium tuberculosis fusion antigen and to anchor this antigen to the bacterial cell wall or to the cell membrane. The recombinant strains elicited proliferative antigen-specific T-cell responses in white blood cells from tuberculosis-positive humans and induced specific immune responses after nasal and oral administrations in mice.
Collapse
|
35
|
Targeting dendritic cells to accelerate T-cell activation overcomes a bottleneck in tuberculosis vaccine efficacy. Nat Commun 2016; 7:13894. [PMID: 28004802 PMCID: PMC5192216 DOI: 10.1038/ncomms13894] [Citation(s) in RCA: 79] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Accepted: 11/08/2016] [Indexed: 12/11/2022] Open
Abstract
The development of a tuberculosis (TB) vaccine that induces sterilizing immunity to Mycobacterium tuberculosis infection has been elusive. Absence of sterilizing immunity induced by TB vaccines may be due to delayed activation of mucosal dendritic cells (DCs), and subsequent delay in antigen presentation and activation of vaccine-induced CD4+ T-cell responses. Here we show that pulmonary delivery of activated M. tuberculosis antigen-primed DCs into vaccinated mice, at the time of M. tuberculosis exposure, can overcome the delay in accumulation of vaccine-induced CD4+ T-cell responses. In addition, activating endogenous host CD103+ DCs and the CD40–CD40L pathway can similarly induce rapid accumulation of vaccine-induced lung CD4+ T-cell responses and limit early M. tuberculosis growth. Thus, our study provides proof of concept that targeting mucosal DCs can accelerate vaccine-induced T-cell responses on M. tuberculosis infection, and provide insights to overcome bottlenecks in TB vaccine efficacy. A delay in T cell responses is postulated as a possible explanation for the limited efficacy of vaccines against tuberculosis. Here the authors demonstrate this T-cell block and remove it by activating endogenous dendritic cells or delivering activated dendritic cells to the lungs, enhancing immunity of mice to Mycobacterium tuberculosis.
Collapse
|
36
|
Ma Y, Cheng L, Yuan B, Zhang Y, Zhang C, Zhang Y, Tang K, Zhuang R, Chen L, Yang K, Zhang F, Jin B. Structure and Function of HLA-A*02-Restricted Hantaan Virus Cytotoxic T-Cell Epitope That Mediates Effective Protective Responses in HLA-A2.1/K(b) Transgenic Mice. Front Immunol 2016; 7:298. [PMID: 27551282 PMCID: PMC4976285 DOI: 10.3389/fimmu.2016.00298] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2016] [Accepted: 07/22/2016] [Indexed: 12/11/2022] Open
Abstract
Hantavirus infections cause severe emerging diseases in humans and are associated with high mortality rates; therefore, they have become a global public health concern. Our previous study showed that the CD8(+) T-cell epitope aa129-aa137 (FVVPILLKA, FA9) of the Hantaan virus (HTNV) nucleoprotein (NP), restricted by human leukocyte antigen (HLA)-A*02, induced specific CD8(+) T-cell responses that controlled HTNV infection in humans. However, the in vivo immunogenicity of peptide FA9 and the effect of FA9-specific CD8(+) T-cell immunity remain unclear. Here, based on a detailed structural analysis of the peptide FA9/HLA-A*0201 complex and functional investigations using HLA-A2.1/K(b) transgenic (Tg) mice, we found that the overall structure of the peptide FA9/HLA-A*0201 complex displayed a typical MHC class I fold with Val2 and Ala9 as primary anchor residues and Val3 and Leu7 as secondary anchor residues that allow peptide FA9 to bind tightly with an HLA-A*0201 molecule. Residues in the middle portion of peptide FA9 extruding out of the binding groove may be the sites that allow for recognition by T-cell receptors. Immunization with peptide FA9 in HLA-A2.1/K(b) Tg mice induced FA9-specific cytotoxic T-cell responses characterized by the induction of high expression levels of interferon-γ, tumor necrosis factor-α, granzyme B, and CD107a. In an HTNV challenge trial, significant reductions in the levels of both the antigens and the HTNV RNA loads were observed in the liver, spleen, and kidneys of Tg mice pre-vaccinated with peptide FA9. Thus, our findings highlight the ability of HTNV epitope-specific CD8(+) T-cell immunity to control HTNV and support the possibility that the HTNV-NP FA9 peptide, naturally processed in vivo in an HLA-A*02-restriction manner, may be a good candidate for the development HTNV peptide vaccines.
Collapse
Affiliation(s)
- Ying Ma
- Department of Immunology, The Fourth Military Medical University , Xi'an , China
| | - Linfeng Cheng
- Department of Microbiology, The Fourth Military Medical University , Xi'an , China
| | - Bin Yuan
- Institute of Orthopaedics of Xijing Hospital, The Fourth Military Medical University , Xi'an , China
| | - Yusi Zhang
- Department of Immunology, The Fourth Military Medical University , Xi'an , China
| | - Chunmei Zhang
- Department of Immunology, The Fourth Military Medical University , Xi'an , China
| | - Yun Zhang
- Department of Immunology, The Fourth Military Medical University , Xi'an , China
| | - Kang Tang
- Department of Immunology, The Fourth Military Medical University , Xi'an , China
| | - Ran Zhuang
- Department of Immunology, The Fourth Military Medical University , Xi'an , China
| | - Lihua Chen
- Department of Immunology, The Fourth Military Medical University , Xi'an , China
| | - Kun Yang
- Department of Immunology, The Fourth Military Medical University , Xi'an , China
| | - Fanglin Zhang
- Department of Microbiology, The Fourth Military Medical University , Xi'an , China
| | - Boquan Jin
- Department of Immunology, The Fourth Military Medical University , Xi'an , China
| |
Collapse
|
37
|
Ricci-Azevedo R, Oliveira AF, Conrado MCAV, Carvalho FC, Roque-Barreira MC. Neutrophils Contribute to the Protection Conferred by ArtinM against Intracellular Pathogens: A Study on Leishmania major. PLoS Negl Trop Dis 2016; 10:e0004609. [PMID: 27058234 PMCID: PMC4825989 DOI: 10.1371/journal.pntd.0004609] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Accepted: 03/14/2016] [Indexed: 12/20/2022] Open
Abstract
ArtinM, a D-mannose binding lectin from Artocarpus heterophyllus, has immunomodulatory activities through its interaction with N-glycans of immune cells, culminating with the establishment of T helper type 1 (Th1) immunity. This interaction protects mice against intracellular pathogens, including Leishmania major and Leishmania amazonensis. ArtinM induces neutrophils activation, which is known to account for both resistance to pathogens and host tissue injury. Although exacerbated inflammation was not observed in ArtinM-treated animals, assessment of neutrophil responses to ArtinM is required to envisage its possible application to design a novel immunomodulatory agent based on carbohydrate recognition. Herein, we focus on the mechanisms through which neutrophils contribute to ArtinM-induced protection against Leishmania, without exacerbating inflammation. For this purpose, human neutrophils treated with ArtinM and infected with Leishmania major were analyzed together with untreated and uninfected controls, based on their ability to eliminate the parasite, release cytokines, degranulate, produce reactive oxygen species (ROS), form neutrophil extracellular traps (NETs) and change life span. We demonstrate that ArtinM-stimulated neutrophils enhanced L. major clearance and at least duplicated tumor necrosis factor (TNF) and interleukin-1beta (IL-1β) release; otherwise, transforming growth factor-beta (TGF-β) production was reduced by half. Furthermore, ROS production and cell degranulation were augmented. The life span of ArtinM-stimulated neutrophils decreased and they did not form NETs when infected with L. major. We postulate that the enhanced leishmanicidal ability of ArtinM-stimulated neutrophils is due to augmented release of inflammatory cytokines, ROS production, and cell degranulation, whereas host tissue integrity is favored by their shortened life span and the absence of NET formation. Our results reinforce the idea that ArtinM may be considered an appropriate molecular template for the construction of an efficient anti-infective agent. Vaccination is a successful way to eliminate infectious diseases. The generated antibodies neutralize the invading microbe and avoid the establishment of infection. Vaccines are efficient to prevent infections by pathogens living outside rather than inside the host`s cells. This occurs because protection against intracellular pathogens requires the engagement of T lymphocytes. The discovery of receptors on innate immunity cells opened new perspectives in trying manners to stimulate effective response against intracellular pathogens. Frequently the microbial sensing by Toll-like receptors (TLRs) besides triggering immediate defense also orchestrates adaptative immunity towards T-cell response. Therefore, TLR ligands started to be assayed in new anti-infective approaches. Our laboratory has been investigating the immunomodulation induced by lectins, which are ubiquitous sugar-binding proteins. Our primary model is ArtinM, from the seeds of jackfruit, a lectin that binds to TLR2 sugar chains on macrophages and dendritic cells and promotes production of cytokines that engages T lymphocytes in a process that culminate with elimination of intracellular pathogens. Concomitantly, ArtinM activates other immune cells, including neutrophils, which contributes to the pathogen elimination, but may also account for tissue damage. This last possibility led us to investigate the lectin effects on neutrophils deeply. We analyzed neutrophils treated with ArtinM and infected with Leishmania major. We concluded that the leishmanicidal ability of ArtinM-stimulated neutrophils was due to augmented release of inflammatory cytokines, ROS production, and cell degranulation. Otherwise, host tissue integrity is favored by shortened cells lifespan and absence of NET formation. This work reinforces the idea that ArtinM can be an appropriate molecular template for the construction of an efficient anti-infective agent.
Collapse
Affiliation(s)
- Rafael Ricci-Azevedo
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Aline Ferreira Oliveira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Marina C. A. V. Conrado
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Fernanda Caroline Carvalho
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
| | - Maria Cristina Roque-Barreira
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, São Paulo, Brasil
- * E-mail:
| |
Collapse
|
38
|
Seyed N, Taheri T, Rafati S. Post-Genomics and Vaccine Improvement for Leishmania. Front Microbiol 2016; 7:467. [PMID: 27092123 PMCID: PMC4822237 DOI: 10.3389/fmicb.2016.00467] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Accepted: 03/21/2016] [Indexed: 01/27/2023] Open
Abstract
Leishmaniasis is a parasitic disease that primarily affects Asia, Africa, South America, and the Mediterranean basin. Despite extensive efforts to develop an effective prophylactic vaccine, no promising vaccine is available yet. However, recent advancements in computational vaccinology on the one hand and genome sequencing approaches on the other have generated new hopes in vaccine development. Computational genome mining for new vaccine candidates is known as reverse vaccinology and is believed to further extend the current list of Leishmania vaccine candidates. Reverse vaccinology can also reduce the intrinsic risks associated with live attenuated vaccines. Individual epitopes arranged in tandem as polytopes are also a possible outcome of reverse genome mining. Here, we will briefly compare reverse vaccinology with conventional vaccinology in respect to Leishmania vaccine, and we will discuss how it influences the aforementioned topics. We will also introduce new in vivo models that will bridge the gap between human and laboratory animal models in future studies.
Collapse
Affiliation(s)
- Negar Seyed
- Department of Immunotherapy and Leishmania Vaccine Research, Pasteur Institute of IranTehran, Iran
| | | | | |
Collapse
|
39
|
Morris MC, Surendran N. Neonatal Vaccination: Challenges and Intervention Strategies. Neonatology 2016; 109:161-9. [PMID: 26757146 PMCID: PMC4749499 DOI: 10.1159/000442460] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2015] [Accepted: 11/16/2015] [Indexed: 12/20/2022]
Abstract
BACKGROUND While vaccines have been tremendously successful in reducing the incidence of serious infectious diseases, newborns remain particularly vulnerable in the first few months of their life to life-threatening infections. A number of challenges exist to neonatal vaccination. However, recent advances in the understanding of neonatal immunology offer insights to overcome many of those challenges. OBJECTIVE This review will present an overview of the features of neonatal immunity which make vaccination difficult, survey the mechanisms of action of available vaccine adjuvants with respect to the unique features of neonatal immunity, and propose a possible mechanism contributing to the inability of neonates to generate protective immune responses to vaccines. METHODS We surveyed recent published findings on the challenges to neonatal vaccination and possible intervention strategies including the use of novel vaccine adjuvants to develop efficacious neonatal vaccines. RESULTS Challenges in the vaccination of neonates include interference from maternal antibody and excessive skewing towards Th2 immunity, which can be counteracted by the use of proper adjuvants. CONCLUSION Synergistic stimulation of multiple Toll-like receptors by incorporating well-defined agonist-adjuvant combinations to vaccines is a promising strategy to ensure a protective vaccine response in neonates.
Collapse
Affiliation(s)
- Matthew C Morris
- Research Institute, Rochester Regional Health Systems, Rochester, N.Y., USA
| | | |
Collapse
|
40
|
Jeyanathan M, Thanthrige-Don N, Afkhami S, Lai R, Damjanovic D, Zganiacz A, Feng X, Yao XD, Rosenthal KL, Medina MF, Gauldie J, Ertl HC, Xing Z. Novel chimpanzee adenovirus-vectored respiratory mucosal tuberculosis vaccine: overcoming local anti-human adenovirus immunity for potent TB protection. Mucosal Immunol 2015; 8:1373-87. [PMID: 25872483 DOI: 10.1038/mi.2015.29] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 03/20/2015] [Indexed: 02/07/2023]
Abstract
Pulmonary tuberculosis (TB) remains to be a major global health problem despite many decades of parenteral use of Bacillus Calmette-Guérin (BCG) vaccine. Developing safe and effective respiratory mucosal TB vaccines represents a unique challenge. Over the past decade or so, the human serotype 5 adenovirus (AdHu5)-based TB vaccine has emerged as one of the most promising candidates based on a plethora of preclinical and early clinical studies. However, anti-AdHu5 immunity widely present in the lung of humans poses a serious gap and limitation to its real-world applications. In this study we have developed a novel chimpanzee adenovirus 68 (AdCh68)-vectored TB vaccine amenable to the respiratory route of vaccination. We have evaluated AdCh68-based TB vaccine for its safety, T-cell immunogenicity, and protective efficacy in relevant animal models of human pulmonary TB with or without parenteral BCG priming. We have also compared AdCh68-based TB vaccine with its AdHu5 counterpart in both naive animals and those with preexisting anti-AdHu5 immunity in the lung. We provide compelling evidence that AdCh68-based TB vaccine is not only safe when delivered to the respiratory tract but, importantly, is also superior to its AdHu5 counterpart in induction of T-cell responses and immune protection, and limiting lung immunopathology in the presence of preexisting anti-AdHu5 immunity in the lung. Our findings thus suggest AdCh68-based TB vaccine to be an ideal candidate for respiratory mucosal immunization, endorsing its further clinical development in humans.
Collapse
Affiliation(s)
- M Jeyanathan
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - N Thanthrige-Don
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - S Afkhami
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - R Lai
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - D Damjanovic
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - A Zganiacz
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - X Feng
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - X-D Yao
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - K L Rosenthal
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - M Fe Medina
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - J Gauldie
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| | - H C Ertl
- Department of Immunology, The Wistar Institute, Philadelphia, Pennsylvania, USA
| | - Z Xing
- McMaster Immunology Research Centre, Department of Pathology and Molecular Medicine and Michael G. DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
41
|
Monin L, Griffiths K, Slight S, Lin YY, Rangel-Moreno J, Khader SA. Immune requirements for protective Th17 recall responses to Mycobacterium tuberculosis challenge. Mucosal Immunol 2015; 8:1099-109. [PMID: 25627812 PMCID: PMC4517980 DOI: 10.1038/mi.2014.136] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2014] [Accepted: 12/14/2014] [Indexed: 02/04/2023]
Abstract
Tuberculosis (TB) vaccine development has focused largely on targeting T helper type 1 (Th1) cells. However, despite inducing Th1 cells, the recombinant TB vaccine MVA85A failed to enhance protection against TB disease in humans. In recent years, Th17 cells have emerged as key players in vaccine-induced protection against TB. However, the exact cytokine and immune requirements that enable Th17-induced recall protection remain unclear. In this study, we have investigated the requirements for Th17 cell-induced recall protection against Mycobacterium tuberculosis (Mtb) challenge by utilizing a tractable adoptive transfer model in mice. We demonstrate that adoptive transfer of Mtb-specific Th17 cells into naive hosts, and upon Mtb challenge, results in Th17 recall responses that confer protection at levels similar to vaccination strategies. Importantly, although interleukin (IL)-23 is critical, IL-12 and IL-21 are dispensable for protective Th17 recall responses. Unexpectedly, we demonstrate that interferon-γ (IFN-γ) produced by adoptively transferred Th17 cells impairs long-lasting protective recall immunity against Mtb challenge. In contrast, CXCR5 expression is crucial for localization of Th17 cells near macrophages within well-formed B-cell follicles to mediate Mtb control. Thus, our data identify new immune characteristics that can be harnessed to improve Th17 recall responses for enhancing vaccine design against TB.
Collapse
Affiliation(s)
- Leticia Monin
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224,Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Kristin Griffiths
- Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110
| | - Samantha Slight
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Yin-yao Lin
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224
| | - Javier Rangel-Moreno
- Department of Medicine, Division of Allergy, Immunology and Rheumatology, University of Rochester Medical Center, Rochester, NY, 14642
| | - Shabaana A. Khader
- Department of Pediatrics, Division of Infectious Diseases, University of Pittsburgh School of Medicine, Pittsburgh, PA 15224,Department of Molecular Microbiology, Washington University School of Medicine in St. Louis, St. Louis, MO 63110,Corresponding Author: Shabaana A. Khader, Department of Molecular Microbiology, Campus Box 8230, 660 South Euclid Avenue, St. Louis, MO 63110-1093, Phone: (314) 286-1590 Fax: (314) 362-1232,
| |
Collapse
|
42
|
Dunston CR, Herbert R, Griffiths HR. Improving T cell-induced response to subunit vaccines: opportunities for a proteomic systems approach. ACTA ACUST UNITED AC 2015; 67:290-9. [PMID: 25708693 DOI: 10.1111/jphp.12383] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2014] [Accepted: 11/23/2014] [Indexed: 11/30/2022]
Abstract
UNLABELLED Prophylactic vaccines are an effective strategy to prevent development of many infectious diseases. With new and re-emerging infections posing increasing risks to food stocks and the health of the population in general, there is a need to improve the rationale of vaccine development. One key challenge lies in development of an effective T cell-induced response to subunit vaccines at specific sites and in different populations. OBJECTIVES In this review, we consider how a proteomic systems-based approach can be used to identify putative novel vaccine targets, may be adopted to characterise subunit vaccines and adjuvants fully. KEY FINDINGS Despite the extensive potential for proteomics to aid our understanding of subunit vaccine nature, little work has been reported on identifying MHC 1-binding peptides for subunit vaccines generating T cell responses in the literature to date. SUMMARY In combination with predictive and structural biology approaches to mapping antigen presentation, proteomics offers a powerful and as yet un-tapped addition to the armoury of vaccine discovery to predict T-cell subset responses and improve vaccine design strategies.
Collapse
Affiliation(s)
- Christopher R Dunston
- Life & Health Sciences, Aston University, Birmingham, West Midlands, UK; Mologic, Bedford Technology Park, Thurleigh, Bedfordshire, MK44 2YP
| | | | | |
Collapse
|
43
|
Lim YT. Vaccine adjuvant materials for cancer immunotherapy and control of infectious disease. Clin Exp Vaccine Res 2015; 4:54-8. [PMID: 25648865 PMCID: PMC4313109 DOI: 10.7774/cevr.2015.4.1.54] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2014] [Revised: 12/28/2014] [Accepted: 12/31/2014] [Indexed: 12/17/2022] Open
Abstract
Adjuvants can be defined as pharmacological and immunological components that are able to modify and/or enhance antigen-specific immune responses. Based on the interdisciplinary research between immunology and material science/engineering, various vaccine adjuvant materials have been developed. By rational design and engineering of antigen or adjuvant materials, immune-modulatory vaccine systems generated to activate immune system. Here, we review the current progress of bioengineered prophylactic and/or therapeutic vaccine adjuvant for cancer and/or infectious disease, and discuss the prospect of future vaccine adjuvant materials.
Collapse
Affiliation(s)
- Yong Taik Lim
- SKKU Advanced Institute of Nanotechnology, School of Chemical Engineering, Sungkyunkwan University, Suwon, Korea
| |
Collapse
|