1
|
Would JA, Rühland KM, Simmatis B, Evans MS, Meyer-Jacob C, Smol JP. Trends in sedimentary Cladocera and metal(loid)s from Williams Lake (Washington, USA) track ∼125 years of trans-boundary contamination from smelter emissions in the upper Columbia River valley. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 953:175816. [PMID: 39197766 DOI: 10.1016/j.scitotenv.2024.175816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 08/08/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
The lead‑zinc smelter at Trail (British Columbia, Canada) has operated continuously for ∼125 years, with long-standing concerns that transboundary metal(loid) and sulphur emissions have contaminated water bodies in both western Canada and Washington (WA), USA. To assess aquatic ecosystems affected by over a century of industrial contamination requires an understanding of pre-smelting conditions. Here, we use a dated sediment core from Williams Lake (WA), downwind of both the Trail and the short-lived LeRoi (Northport, WA) smelters, to track regional contaminant history and other environmental stressors. Specifically, we examine a selection of chemical elements, cladoceran assemblages, visible range spectroscopy-inferred chlorophyll a (VRS-Chl a) and visible near-infrared spectroscopy-inferred lake-water total organic carbon (VNIRS-TOC). Sedimentary proxies recorded the onset of smelting in 1896 CE, peak periods of aerial emissions in the early to mid-20th century, and the history of emission controls. With a few exceptions, sedimentary metal(loid)s exceeded Canadian Interim Sediment Quality Guidelines during the height of the smelting era and have declined substantially since ca. 2000 CE. The loss of metal-sensitive Cladocera and declines in primary production (VRS-Chl a) at the onset of the regional smelting era indicate a strong biological response to airborne industrial contamination. The largest cladoceran change in the sediment record was concurrent with accelerated mitigation efforts at the Trail facilities following the 1960s; however, this compositional shift was between ecologically similar daphniid taxa. Steep declines in VNIRS-TOC concentrations during the period of peak emissions at Trail suggested an increase in sulphur deposition on the landscape that reduced terrestrial carbon supply. However, the persistence of calcium-sensitive daphniids throughout the record indicates that alkaline Williams Lake had not acidified. Current cladoceran assemblages remain substantially distinct from pre-industrial communities, demonstrating how paleoecotoxicological approaches can be used to track the effects of multiple stressors in a temporally appropriate context.
Collapse
Affiliation(s)
- Jamie A Would
- Paleoecological Environmental Assessment and Research Laboratory (PEARL), Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada.
| | - Kathleen M Rühland
- Paleoecological Environmental Assessment and Research Laboratory (PEARL), Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada.
| | - Brigitte Simmatis
- Paleoecological Environmental Assessment and Research Laboratory (PEARL), Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada.
| | - Marlene S Evans
- Environment and Climate Change Canada, 11 Innovation Blvd, Saskatoon, SK S7N 3H5, Canada.
| | - Carsten Meyer-Jacob
- Paleoecological Environmental Assessment and Research Laboratory (PEARL), Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada.
| | - John P Smol
- Paleoecological Environmental Assessment and Research Laboratory (PEARL), Queen's University, 116 Barrie St., Kingston, ON K7L 3N6, Canada.
| |
Collapse
|
2
|
Dijoux S, Smalås A, Primicerio R, Boukal DS. Differences in Tri-Trophic Community Responses to Temperature-Dependent Vital Rates, Thermal Niche Mismatches and Temperature-Size Rule. Ecol Lett 2024; 27:e70022. [PMID: 39623751 PMCID: PMC11612537 DOI: 10.1111/ele.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 12/06/2024]
Abstract
Warming climate impacts aquatic ectotherms by changes in individual vital rates and declines in body size, a phenomenon known as the temperature-size rule (TSR), and indirectly through altered species interactions and environmental feedbacks. The relative importance of these effects in shaping community responses to environmental change is incompletely understood. We employ a tri-trophic food chain model with size- and temperature-dependent vital rates and species interaction strengths to explore the role of direct kinetic effects of temperature and TSR on community structure along resource productivity and temperature gradients. We find that community structure, including the propensity for sudden collapse along resource productivity and temperature gradients, is primarily driven by the direct kinetic effects of temperature on vital rates and thermal mismatches between the consumer and predator species, overshadowing the TSR-mediated effects. Overall, our study enhances the understanding of the complex interplay between temperature, species traits and community dynamics in aquatic ecosystems.
Collapse
Affiliation(s)
- Samuel Dijoux
- Department of Ecosystems Biology, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Czech Academy of Sciences, Biology CentreInstitute of EntomologyČeské BudějoviceCzech Republic
| | - Aslak Smalås
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economy, UiTThe Arctic University of NorwayTromsøNorway
- SNA‐Skandinavisk naturoveråking AS (Scandinavian Nature‐Monitoring), DNVTromsøNorway
| | - Raul Primicerio
- Department of Arctic and Marine Biology, Faculty of Biosciences, Fisheries and Economy, UiTThe Arctic University of NorwayTromsøNorway
| | - David S. Boukal
- Department of Ecosystems Biology, Faculty of ScienceUniversity of South BohemiaČeské BudějoviceCzech Republic
- Czech Academy of Sciences, Biology CentreInstitute of EntomologyČeské BudějoviceCzech Republic
| |
Collapse
|
3
|
Clay CG, Dunhill AM, Reimer JD, Beger M. Trait networks: Assessing marine community resilience and extinction recovery. iScience 2024; 27:110962. [PMID: 39429771 PMCID: PMC11490707 DOI: 10.1016/j.isci.2024.110962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024] Open
Abstract
Extensive global habitat degradation and the climate crisis are tipping the biosphere toward a "sixth" mass extinction and marine communities will not be spared from this catastrophic loss of biodiversity. The resilience of marine communities following large-scale disturbances or extinction events is mediated by the life-history traits of species and their interplay within communities. The presence and abundance of traits in communities provide proxies of function, but whether the breakdown of their associations with species loss can delineate functional loss remains unclear. Here, we propose that relationships between traits within trait networks provide unique perspectives on the importance of specific traits, trait combinations, and their role in supporting the stability of communities, while exploring the vulnerability of both past deep time and present-day marine communities.
Collapse
Affiliation(s)
- Charlotte G. Clay
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
| | - Alexander M. Dunhill
- School of Earth and Environment, Faculty of Environment, University of Leeds, Leeds LS2 9JT, UK
| | - James D. Reimer
- Molecular Invertebrate Systematics and Ecology Laboratory, Graduate School of Engineering and Science, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
- Tropical Biosphere Research Center, University of the Ryukyus, 1 Senbaru, Nishihara, Okinawa 903-0213, Japan
| | - Maria Beger
- School of Biology, Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, UK
- Centre for Biodiversity and Conservation Science, School of Biological Sciences, University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
4
|
Morla J, Salin K, Lassus R, Favre-Marinet J, Sentis A, Daufresne M. Multigenerational exposure to temperature influences mitochondrial oxygen fluxes in the Medaka fish (Oryzias latipes). Acta Physiol (Oxf) 2024; 240:e14194. [PMID: 38924292 DOI: 10.1111/apha.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/08/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
AIM Thermal sensitivity of cellular metabolism is crucial for animal physiology and survival under climate change. Despite recent efforts, effects of multigenerational exposure to temperature on the metabolic functioning remain poorly understood. We aimed at determining whether multigenerational exposure to temperature modulate the mitochondrial respiratory response of Medaka fish. METHODS We conducted a multigenerational exposure with Medaka fish reared multiple generations at 20 and 30°C (COLD and WARM fish, respectively). We then measured the oxygen consumption of tail muscle at two assay temperatures (20 and 30°C). Mitochondrial function was determined as the respiration supporting ATP synthesis (OXPHOS) and the respiration required to offset proton leak (LEAK(Omy)) in a full factorial design (COLD-20°C; COLD-30°C; WARM-20°C; WARM-30°C). RESULTS We found that higher OXPHOS and LEAK fluxes at 30°C compared to 20°C assay temperature. At each assay temperature, WARM fish had lower tissue oxygen fluxes than COLD fish. Interestingly, we did not find significant differences in respiratory flux when mitochondria were assessed at the rearing temperature of the fish (i.e., COLD-20°C vs. WARM -30°C). CONCLUSION The lower OXPHOS and LEAK capacities in warm fish are likely the result of the multigenerational exposure to warm temperature. This is consistent with a modulatory response of mitochondrial capacity to compensate for potential detrimental effects of warming on metabolism. Finally, the absence of significant differences in respiratory fluxes between COLD-20°C and WARM-30°C fish likely reflects an optimal respiration flux when organisms adapt to their thermal conditions.
Collapse
Affiliation(s)
- Julie Morla
- INRAE, Aix-Marseille University, UMR RECOVER, Aix-en-Provence, France
| | - Karine Salin
- Départment of Environment and Resources, IFREMER, Unité de Physiologie Fonctionnelle des Organismes Marins-LEMAR UMR 6530, BP70, Plouzané, France
| | - Rémy Lassus
- INRAE, Aix-Marseille University, UMR RECOVER, Aix-en-Provence, France
| | | | - Arnaud Sentis
- INRAE, Aix-Marseille University, UMR RECOVER, Aix-en-Provence, France
| | - Martin Daufresne
- INRAE, Aix-Marseille University, UMR RECOVER, Aix-en-Provence, France
| |
Collapse
|
5
|
Thierry M, Cote J, Bestion E, Legrand D, Clobert J, Jacob S. The interplay between abiotic and biotic factors in dispersal decisions in metacommunities. Philos Trans R Soc Lond B Biol Sci 2024; 379:20230137. [PMID: 38913055 PMCID: PMC11391301 DOI: 10.1098/rstb.2023.0137] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 01/23/2024] [Accepted: 03/01/2024] [Indexed: 06/25/2024] Open
Abstract
Suitable conditions for species to survive and reproduce constitute their ecological niche, which is built by abiotic conditions and interactions with conspecifics and heterospecifics. Organisms should ideally assess and use information about all these environmental dimensions to adjust their dispersal decisions depending on their own internal conditions. Dispersal plasticity is often considered through its dependence on abiotic conditions or conspecific density and, to a lesser extent, with reference to the effects of interactions with heterospecifics, potentially leading to misinterpretation of dispersal drivers. Here, we first review the evidence for the effects of and the potential interplays between abiotic factors, biotic interactions with conspecifics and heterospecifics and phenotype on dispersal decisions. We then present an experimental test of these potential interplays, investigating the effects of density and interactions with conspecifics and heterospecifics on temperature-dependent dispersal in microcosms of Tetrahymena ciliates. We found significant differences in dispersal rates depending on the temperature, density and presence of another strain or species. However, the presence and density of conspecifics and heterospecifics had no effects on the thermal-dependency of dispersal. We discuss the causes and consequences of the (lack of) interplay between the different environmental dimensions and the phenotype for metacommunity assembly and dynamics. This article is part of the theme issue 'Diversity-dependence of dispersal: interspecific interactions determine spatial dynamics'.
Collapse
Affiliation(s)
- Mélanie Thierry
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Julien Cote
- Centre de Recherche sur la Biodiversité et l'Environnement (CRBE), UMR 5300 CNRS-IRD-TINP-UT3 Université Toulouse III - Paul Sabatier, Bât. 4R1, 118 route de Narbonne , Toulouse Cedex 9 31062, France
| | - Elvire Bestion
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Delphine Legrand
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Jean Clobert
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| | - Staffan Jacob
- Station d'Ecologie Théorique et Expérimentale, UAR 2029, CNRS , Moulis 09200, France
| |
Collapse
|
6
|
Ferveur JF, Cortot J, Cobb M, Everaerts C. Natural Diversity of Cuticular Pheromones in a Local Population of Drosophila after Laboratory Acclimation. INSECTS 2024; 15:273. [PMID: 38667403 PMCID: PMC11050499 DOI: 10.3390/insects15040273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 03/29/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024]
Abstract
Experimental studies of insects are often based on strains raised for many generations in constant laboratory conditions. However, laboratory acclimation could reduce species diversity reflecting adaptation to varied natural niches. Hydrocarbons covering the insect cuticle (cuticular hydrocarbons; CHCs) are reliable adaptation markers. They are involved in dehydration reduction and protection against harmful factors. CHCs can also be involved in chemical communication principally related to reproduction. However, the diversity of CHC profiles in nature and their evolution in the laboratory have rarely been investigated. Here, we sampled CHC natural diversity in Drosophila melanogaster flies from a particular location in a temperate region. We also measured cis-Vaccenyl acetate, a male-specific volatile pheromone. After trapping flies using varied fruit baits, we set up 21 D. melanogaster lines and analysed their pheromones at capture and after 1 to 40 generations in the laboratory. Under laboratory conditions, the broad initial pheromonal diversity found in male and female flies rapidly changed and became more limited. In some females, we detected CHCs only reported in tropical populations: the presence of flies with a novel CHC profile may reflect the rapid adaptation of this cosmopolitan species to global warming in a temperate area.
Collapse
Affiliation(s)
- Jean-François Ferveur
- Centre des Sciences du Goût et de l’Alimentation, Unité Mixte de Recherche 6265 Centre National de la Recherche Scientifique, Unité Mixte de Recherche 1324 Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000 Dijon, France; (J.C.); (C.E.)
| | - Jérôme Cortot
- Centre des Sciences du Goût et de l’Alimentation, Unité Mixte de Recherche 6265 Centre National de la Recherche Scientifique, Unité Mixte de Recherche 1324 Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000 Dijon, France; (J.C.); (C.E.)
| | - Matthew Cobb
- School of Biological Sciences, University of Manchester, Manchester M13 9PT, UK;
| | - Claude Everaerts
- Centre des Sciences du Goût et de l’Alimentation, Unité Mixte de Recherche 6265 Centre National de la Recherche Scientifique, Unité Mixte de Recherche 1324 Institut National de la Recherche Agronomique, Université de Bourgogne Franche-Comté, 6, Bd Gabriel, 21000 Dijon, France; (J.C.); (C.E.)
| |
Collapse
|
7
|
Truong AT, Edwards MS, Long JD. Season-specific impacts of climate change on canopy-forming seaweed communities. Ecol Evol 2024; 14:e10947. [PMID: 38357589 PMCID: PMC10864935 DOI: 10.1002/ece3.10947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 11/22/2023] [Accepted: 12/06/2023] [Indexed: 02/16/2024] Open
Abstract
Understory assemblages associated with canopy-forming species such as trees, kelps, and rockweeds should respond strongly to climate stressors due to strong canopy-understory interactions. Climate change can directly and indirectly modify these assemblages, particularly during more stressful seasons and climate scenarios. However, fully understanding the seasonal impacts of different climate conditions on canopy-reliant assemblages is difficult due to a continued emphasis on studying single-species responses to a single future climate scenario during a single season. To examine these emergent effects, we used mesocosm experiments to expose seaweed assemblages associated with the canopy-forming golden rockweed, Silvetia compressa, to elevated temperature and pCO2 conditions reflecting two projected greenhouse emission scenarios (RCP 2.6 [low] & RCP 4.5 [moderate]). Assemblages were grown in the presence and absence of Silvetia, and in two seasons. Relative to ambient conditions, predicted climate scenarios generally suppressed Silvetia biomass and photosynthetic efficiency. However, these effects varied seasonally-both future scenarios reduced Silvetia biomass in summer, but only the moderate scenario did so in winter. These reductions shifted the assemblage, with more extreme shifts occurring in summer. Contrarily, future scenarios did not shift assemblages within Silvetia Absent treatments, suggesting that climate primarily affected assemblages indirectly through changes in Silvetia. Mesocosm experiments were coupled with a field Silvetia removal experiment to simulate the effects of climate-mediated Silvetia loss on natural assemblages. Consistent with the mesocosm experiment, Silvetia loss resulted in season-specific assemblage shifts, with weaker effects observed in winter. Together, our study supports the hypotheses that climate-mediated changes to canopy-forming species can indirectly affect the associated assemblage, and that these effects vary seasonally. Such seasonality is important to consider as it may provide periods of recovery when conditions are less stressful, especially if we can reduce the severity of future climate scenarios.
Collapse
Affiliation(s)
- Anthony T. Truong
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
| | | | - Jeremy D. Long
- Department of BiologySan Diego State UniversitySan DiegoCaliforniaUSA
| |
Collapse
|
8
|
Ishiwaka N, Hashimoto K, Hiraiwa MK, Sánchez-Bayo F, Kadoya T, Hayasaka D. Can warming accelerate the decline of Odonata species in experimental paddies due to insecticide fipronil exposure? ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122831. [PMID: 37913977 DOI: 10.1016/j.envpol.2023.122831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/05/2023] [Accepted: 10/29/2023] [Indexed: 11/03/2023]
Abstract
Systemic insecticides are one of the causes of Odonata declines in paddy fields. Since rising temperatures associated with global warming can contribute to strengthen pesticide toxicity, insecticide exposures under increasing temperatures may accelerate the decline of Odonata species in the future. However, the combined effects of multiple stressors on Odonata diversity and abundance within ecosystems under various environmental conditions and species interactions are little known. Here, we evaluate the combined effects of the insecticide fipronil and warming on the abundance of Odonata nymphs in experimental paddies. We show that the stand-alone effect of the insecticide exposure caused a significant decrease in abundance of the Odonata community, while nymphs decreased synergistically in the combined treatments with temperature rise in paddy water. However, impacts of each stressor alone were different among species. This study provides experimental evidence that warming could accelerate a reduction in abundance of the Odonata community exposed to insecticides (synergistic effect), although the strength of that effect might vary with the community composition in targeted habitats, due mainly to different susceptibilities among species to each stressor. Community-based monitoring in actual fields is deemed necessary for a realistic evaluation of the combined effects of multiple stressors on biodiversity.
Collapse
Affiliation(s)
- Naoto Ishiwaka
- Graduate School of Agriculture, Kindai University, Nakamachi, 3327-204, Nara, Nara, 631-8505, Japan
| | - Koya Hashimoto
- Biodiversity Division, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan; Faculty of Agriculture and Life Science, Hirosaki University, Bunkyotyo 3, Hirosaki, Aomori, 036-8561, Japan
| | - Masayoshi K Hiraiwa
- Faculty of Agriculture, Kindai University, Nakamachi, 3327-204, Nara, Nara, 631-8505, Japan
| | - Francisco Sánchez-Bayo
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Taku Kadoya
- Biodiversity Division, National Institute for Environmental Studies, Onogawa 16-2, Tsukuba, Ibaraki, 305-8506, Japan
| | - Daisuke Hayasaka
- Faculty of Agriculture, Kindai University, Nakamachi, 3327-204, Nara, Nara, 631-8505, Japan.
| |
Collapse
|
9
|
Dijoux S, Pichon NA, Sentis A, Boukal DS. Body size and trophic position determine the outcomes of species invasions along temperature and productivity gradients. Ecol Lett 2024; 27:e14310. [PMID: 37811596 DOI: 10.1111/ele.14310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 08/29/2023] [Accepted: 09/13/2023] [Indexed: 10/10/2023]
Abstract
Species invasions are predicted to increase in frequency with global change, but quantitative predictions of how environmental filters and species traits influence the success and consequences of invasions for local communities are lacking. Here we investigate how invaders alter the structure, diversity and stability regime of simple communities across environmental gradients (habitat productivity, temperature) and community size structure. We simulate all three-species trophic modules (apparent and exploitative competition, trophic chain and intraguild predation). We predict that invasions most often succeed in warm and productive habitats and that successful invaders include smaller competitors, intraguild predators and comparatively small top predators. This suggests that species invasions and global change may facilitate the downsizing of food webs. Furthermore, we show that successful invasions leading to species substitutions rarely alter system stability, while invasions leading to increased diversity can destabilize or stabilize community dynamics depending on the environmental conditions and invader's trophic position.
Collapse
Affiliation(s)
- Samuel Dijoux
- Department of Ecosystems Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic
| | - Noémie A Pichon
- Ecology and Genetics Unit, Faculty of Science, University of Oulu, Oulu, Finland
- Swiss Federal Research Institute WSL, Birmensdorf, Switzerland
| | - Arnaud Sentis
- INRAE, Aix Marseille University, UMR RECOVER, Aix-en-Provence, France
| | - David S Boukal
- Department of Ecosystems Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic
- Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic
| |
Collapse
|
10
|
Bazin S, Hemmer‐Brepson C, Logez M, Sentis A, Daufresne M. Distinct impacts of feeding frequency and warming on life history traits affect population fitness in vertebrate ectotherms. Ecol Evol 2023; 13:e10770. [PMID: 38020679 PMCID: PMC10667609 DOI: 10.1002/ece3.10770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 11/01/2023] [Accepted: 11/11/2023] [Indexed: 12/01/2023] Open
Abstract
Body size shifts in ectotherms are mostly attributed to the Temperature Size Rule (TSR) stating that warming speeds up initial growth rate but leads to smaller size when food does not limit growth. Investigating the links between temperature, growth, and life history traits is key to understand the adaptive value of TSR, which might be context dependent. In particular, global warming can affect food quantity or quality which is another major driver of growth, fecundity, and survival. However, we have limited information on how temperature and food jointly influence life history traits in vertebrate predators and how changes in different life history traits combine to influence fitness and population demography. We investigate (1) whether TSR is maintained under different food conditions, (2) if food exacerbates or dampens the effects of temperature on growth and life history traits and (3) if food influences the adaptive value of TSR. We combine experiments on the medaka with Integral Projection Models to scale from life history traits to fitness consequences. Our results confirm that warming triggers a higher initial growth rate and a lower adult size, reduces generation time and increases mean fitness. A lower level of food exacerbates the effects of warming on growth trajectories. Although lower feeding frequency increased survival and decreased fecundity, it did not influence the effects of warming on fish development rates, fecundity, and survival. In contrast, feeding frequency influenced the adaptive value of TSR, as, under intermittent feeding, generation time decreased faster with warming and the increase in growth rate with warming was weaker compared to continuously fed fish. These results are of importance in the context of global warming as resources are expected to change with increasing temperatures but, surprisingly, our results suggest that feeding frequency have a lower impact on fitness at high temperature.
Collapse
Affiliation(s)
- Simon Bazin
- INRAE, Univ. Savoie Mont Blanc, CARRTELThonon‐les‐BainsFrance
- INRAE, Aix Marseille Univ., RECOVERAix‐en‐ProvenceFrance
| | | | - Maxime Logez
- INRAE, Aix Marseille Univ., RECOVERAix‐en‐ProvenceFrance
- INRAE, RIVERLYVilleurbanne CedexFrance
| | - Arnaud Sentis
- INRAE, Aix Marseille Univ., RECOVERAix‐en‐ProvenceFrance
| | | |
Collapse
|
11
|
Costanzo K, Occhino D. Effects of Temperature on Blood Feeding and Activity Levels in the Tiger Mosquito, Aedes albopictus. INSECTS 2023; 14:752. [PMID: 37754720 PMCID: PMC10531981 DOI: 10.3390/insects14090752] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023]
Abstract
Temperature has been shown to have profound effects on mosquito population dynamics and life history. Understanding these effects can provide insight into how mosquito populations and the diseases they transmit may vary across space and time and under the changes imposed by climate change. In this study, we evaluated how temperature affects the blood feeding and general activity patterns in the globally invasive mosquito species Aedes albopictus. We reared cohorts of Ae. albopictus from hatch through adulthood across three temperatures (26 °C, 29 °C, and 32 °C). The propensity of adult females to take a blood meal and the size of the blood meal were compared across temperatures. We also observed the overall activity levels of adult females over a 13.5 h period. At the highest temperature tested (32 °C), females were less likely to take a blood meal and were most active, as measured through frequency of movement. We postulate that our highest-temperature treatment imposes heat stress on adult female Ae. albopictus, where many abstain from blood feeding and increase movement in an attempt to escape the heat stress and find a more favorable resting location.
Collapse
Affiliation(s)
- Katie Costanzo
- Biology Department, Canisius University, 2001 Main St., Buffalo, NY 14208, USA;
| | | |
Collapse
|
12
|
Richard R, Zhang YK, Hung KW. Thermal dependence of Daphnia life history reveals asymmetries between key vital rates. J Therm Biol 2023; 115:103653. [PMID: 37453218 DOI: 10.1016/j.jtherbio.2023.103653] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/18/2023]
Abstract
Temperature variation affects virtually every aspect of ectotherms' ecological performance, such as their foraging rate, reproduction, and survival. Although these changes influence what happens at higher levels of organizations, such as populations and communities, qualitative changes in dynamics usually require some degree of asymmetry between key vital rates, i.e. that different vital rates, such as growth, development, fecundity and mortality rates, respond differently to temperature. In order to identify possible asymmetries among vital rates and/or life stages, we characterized the thermal response of individuals a clone of Daphnia sinensis, drawn from a high-mountain environment in Taiwan, and examined the temperature dependence of growth, maturation, reproduction, and mortality rates, as well as fitness measures (r and R0) at eight temperatures. Daphnia sinensis was able to maintain reproductive success over a broad range of temperatures, much wider than the one experienced in its environment. However, negative effects of temperature were perceptible at temperatures much lower than the highest one at which they can achieve reproductive success. Adult mortality greatly increased for temperatures above 23 °C, and other vital rates started to decelerate, resulting in a large drop in lifetime reproductive success. This finding implies that D. sinensis may be able to persist over a wide range of temperatures, but also that it may become more sensitive to the detrimental effect of species interactions at increased temperatures. Different vital rates responded relatively similarly at low temperatures, but the degree of asymmetry among these rates was much more pronounced at higher temperatures. In particular, rates associated with adult performance decelerated more strongly than juveniles' rates. These findings indicate that elevated temperatures affect the balance between juvenile and adult performance, which is known to have a crucial role in Daphnia population dynamics. We discuss the implications of these results for the dynamics of structured populations.
Collapse
Affiliation(s)
- Romain Richard
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan.
| | - Yi-Kuan Zhang
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan
| | - Kuan-Wei Hung
- Department of Biological Sciences, National Sun Yat-sen University, 70 Lienhai Rd., Kaohsiung, 80424, Taiwan
| |
Collapse
|
13
|
Wolmuth‐Gordon HS, Brown MJF. Transmission of a bumblebee parasite is robust despite parasite exposure to extreme temperatures. Ecol Evol 2023; 13:e10379. [PMID: 37502302 PMCID: PMC10368942 DOI: 10.1002/ece3.10379] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 07/12/2023] [Accepted: 07/13/2023] [Indexed: 07/29/2023] Open
Abstract
All organisms are exposed to fluctuating environmental conditions, such as temperature. How individuals respond to temperature affects their interactions with one another. Changes to the interaction between parasites and their hosts can have a large effect on disease dynamics. The gut parasite, Crithidia bombi, can be highly prevalent in the bumblebee, Bombus terrestris, and is an established epidemiological model. The parasite is transmitted between bumblebees via flowers, exposing it to a range of environmental temperatures prior to infection. We investigated whether incubation duration and temperature exposure, prior to infection, affects parasite infectivity. Prior to inoculation in B. terrestris, C. bombi was incubated at 10, 20, 30, 40 or 50°C for either 10 or 60 min. These times were chosen to reflect the length of time that the parasite remains infective when outside the host and the rate of floral visitation in bumblebees. Prevalence and infection intensity were measured in bees 1 week later. Incubation duration and the interaction between incubation temperature and duration affected the prevalence of C. bombi at 50°C, resulting in no infections after 60 min. Below 50°C, C. bombi prevalence was not affected by incubation temperature or duration. Extreme temperatures induced morphological changes in C. bombi cells; however, infection intensity was not affected by incubation duration or temperature. These results highlight that this parasite is robust to a wide range of temperatures. The parasite was not infective after being exposed to 50°C for 60 min, such temperatures likely exceed the flight abilities of bumblebees, and thus the potential for transmission. This study shows the importance of understanding the effects of environmental conditions on both hosts and parasites, which is needed to predict transmission under different environmental conditions.
Collapse
Affiliation(s)
| | - Mark J. F. Brown
- School of Life Sciences and the EnvironmentRoyal Holloway University of LondonEghamUK
| |
Collapse
|
14
|
Álvarez‐Codesal S, Faillace CA, Garreau A, Bestion E, Synodinos AD, Montoya JM. Thermal mismatches explain consumer-resource dynamics in response to environmental warming. Ecol Evol 2023; 13:e10179. [PMID: 37325725 PMCID: PMC10264966 DOI: 10.1002/ece3.10179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 04/18/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
Changing temperatures will impact food webs in ways we yet to fully understand. The thermal sensitivities of various physiological and ecological processes differ across organisms and study systems, hindering the generation of accurate predictions. One step towards improving this picture is to acquire a mechanistic understanding of how temperature change impacts trophic interactions before we can scale these insights up to food webs and ecosystems. Here, we implement a mechanistic approach centered on the thermal sensitivity of energetic balances in pairwise consumer-resource interactions, measuring the thermal dependence of energetic gain and loss for two resource and one consumer freshwater species. Quantifying the balance between energy gain and loss, we determined the temperature ranges where the balance decreased for each species in isolation (intraspecific thermal mismatch) and where a mismatch in the balance between consumer and resource species emerged (interspecific thermal mismatch). The latter reveals the temperatures for which consumer and resource energetic balances respond either differently or in the same way, which in turn informs us of the strength of top-down control. We found that warming improved the energetic balance for both resources, but reduces it for the consumer, due to the stronger thermal sensitivity of respiration compared to ingestion. The interspecific thermal mismatch yielded different patterns between the two consumer-resource pairs. In one case, the consumer-resource energetic balance became weaker throughout the temperature gradient, and in the other case it produced a U-shaped response. By also measuring interaction strength for these interaction pairs, we demonstrated the correspondence of interspecific thermal mismatches and interaction strength. Our approach accounts for the energetic traits of both consumer and resource species, which combined produce a good indication of the thermal sensitivity of interaction strength. Thus, this novel approach links thermal ecology with parameters typically explored in food-web studies.
Collapse
Affiliation(s)
| | - Cara A. Faillace
- Theoretical and Experimental Ecology StationCNRSMoulisFrance
- Present address:
Department of Biological SciencesUniversity of PittsburghPittsburghPennsylvaniaUSA
| | | | - Elvire Bestion
- Theoretical and Experimental Ecology StationCNRSMoulisFrance
| | | | - José M. Montoya
- Theoretical and Experimental Ecology StationCNRSMoulisFrance
| |
Collapse
|
15
|
Wenda C, Gaitán-Espitia JD, Solano-Iguaran JJ, Nakamura A, Majcher BM, Ashton LA. Heat tolerance variation reveals vulnerability of tropical herbivore-parasitoid interactions to climate change. Ecol Lett 2023; 26:278-290. [PMID: 36468222 DOI: 10.1111/ele.14150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/24/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022]
Abstract
Assessing the heat tolerance (CTmax) of organisms is central to understand the impact of climate change on biodiversity. While both environment and evolutionary history affect CTmax, it remains unclear how these factors and their interplay influence ecological interactions, communities and ecosystems under climate change. We collected and reared caterpillars and parasitoids from canopy and ground layers in different seasons in a tropical rainforest. We tested the CTmax and Thermal Safety Margins (TSM) of these food webs with implications for how species interactions could shift under climate change. We identified strong influence of phylogeny in herbivore-parasitoid community heat tolerance. The TSM of all insects were narrower in the canopy and parasitoids had lower heat tolerance compared to their hosts. Our CTmax-based simulation showed higher herbivore-parasitoid food web instability under climate change than previously assumed, highlighting the vulnerability of parasitoids and related herbivore control in tropical rainforests, particularly in the forest canopy.
Collapse
Affiliation(s)
- Cheng Wenda
- School of Ecology, Sun Yat-Sen University, Shenzhen, China.,State Key Laboratory of Biological Control, Sun Yat-sen University, Guangzhou, China
| | - Juan Diego Gaitán-Espitia
- SWIRE Institute of Marine Sciences, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Jaiber J Solano-Iguaran
- Departamento de Salud Hidrobiológica, División de Investigación en Acuicultura, Instituto de Fomento Pesquero, Puerto Montt, Chile
| | - Akihiro Nakamura
- CAS Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
| | - Bartosz M Majcher
- Ecology and Biodiversity Area, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| | - Louise A Ashton
- Ecology and Biodiversity Area, School of Biological Sciences, The University of Hong Kong, Hong Kong SAR, China
| |
Collapse
|
16
|
Samal I, Bhoi TK, Majhi PK, Murmu S, Pradhan AK, Kumar D, Saini V, Paschapur AU, Raj MN, Ankur, Manik S, Behera PP, Mahanta DK, Komal J, Alam P, Balawi TA. Combatting insects mediated biotic stress through plant associated endophytic entomopathogenic fungi in horticultural crops. FRONTIERS IN PLANT SCIENCE 2023; 13:1098673. [PMID: 36743574 PMCID: PMC9894630 DOI: 10.3389/fpls.2022.1098673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 12/16/2022] [Indexed: 09/12/2023]
Abstract
Horticultural production is a vital catalyst for economic growth, yet insect infestations reduce horticultural crop yield and quality. Pesticides and other pest control methods are used during planting to eliminate pests that cause direct and indirect losses. In such situations, endophytic entomo-pathogenic fungi (EEPF) can act as a potential tools for biological control. They protect plants by boosting growth, nutrition, morpho-physiology and salt or iron tolerance. Antixenosis, antibiosis and plant tolerance change insect performance and preferences. EEPF- plant colonisation slows herbivore development, food consumption, oviposition and larval survival. EEPF changes plant physio-chemical properties like volatile emission profile and secondary metabolite production to regulate insect pest defences. EEPF produces chitinases, laccases, amylases, and cellulases for plant defence. Recent studies focused on EEPF species' significance, isolation, identification and field application. Realizing their full potential is difficult due to insufficient mass production, storage stability and formulation. Genetic-molecular and bioinformatics can help to build EEPF-based biological control systems. Metagenomics helps study microbial EEPF taxonomy and function. Multi-omics and system biology can decode EEPF interactions with host plants and microorganisms. NGS (Next Generation Sequencing), comparative genomics, proteomics, transcriptomics, metabolomics, metatranscriptomics and microarrays are used to evaluate plant-EEPF relationships. IPM requires understanding the abiotic and biotic elements that influence plant-EEPF interaction and the physiological mechanisms of EEPF colonisation. Due to restricted research, there are hundreds of unexplored EEPFs, providing an urgent need to uncover and analyse them.
Collapse
Affiliation(s)
- Ipsita Samal
- Department of Entomology, Sri Sri University, Cuttack, Odisha, India
| | - Tanmaya Kumar Bhoi
- Forest Protection Division, Indian Council of Forestry Research and Education (ICFRE) - Arid Forest Research Institute (AFRI), Jodhpur, Rajasthan, India
| | - Prasanta Kumar Majhi
- Department of Plant Breeding and Genetics, Odisha University of Agriculture and Technology, Bhubaneswar, Odisha, India
| | - Sneha Murmu
- Division of Agricultural Bio-informatics, Indian Council of Agricultural Research (ICAR)- Indian Agricultural Statistics Research Institute, New Delhi, India
| | - Asit Kumar Pradhan
- Division, Social Science Division, Indian Council of Agricultural Research (ICAR)- National Rice Research Institute (NRRI), Cuttack, Odisha, India
| | - Dilip Kumar
- Division of Computer Application and IT, National Institute for Agricultural Economics and Policy Research (NIAP), New Delhi, National Capital Territory of Delhi, India
| | - Varun Saini
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India
| | - Amit Umesh Paschapur
- Crop Protection Division, Indian Council of Agricultural Research (ICAR) - Vivekananda Parvatiya Krishi Anusandhan Sansthan, Almora, Uttarakhand, India
| | - M Nikhil Raj
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - Ankur
- Division of Entomology, Indian Council of Agricultural Research (ICAR-IARI)- Indian Agricultural Research Institute, New Delhi, India
| | - Suryakant Manik
- Department of Seed Science and Technology, Chaudhary Charan Singh Haryana Agricultural University, Hisar, Haryana, India
| | - Partha Pratim Behera
- Department of Plant Breeding and Genetics, Assam Agricultural University, Jorhat, Assam, India
| | - Deepak Kumar Mahanta
- Department of Entomology, Dr. Rajendra Prasad Central Agricultural University, Samastipur, Bihar, India
| | - J. Komal
- Department of Entomology, Navsari Agricultural University, Navsari, Gujarat, India
| | - Pravej Alam
- Department of Biology, College of Science and Humanities in Al-Kharj, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| | - Thamer Al Balawi
- Department of Biology, College of Science and Humanities, Prince Sattam Bin Abdulaziz University, Al Kharj, Saudi Arabia
| |
Collapse
|
17
|
Ren X, Li X, Huang J, Zhang Z, Hafeez M, Zhang J, Chen L, Zhou S, Zhang L, Lu Y. Linking life table and predation rate for evaluating temperature effects on Orius strigicollis for the biological control of Frankliniella occidentalis. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.1026115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IntroductionOrius spp. are generalist predators released in horticultural and agricultural systems to control thrips. Understanding the effects of temperature on the development, predation rate, and population dynamics of Orius is essential for identifying the optimal timing of Orius release for establishing an adequate population to facilitate synchrony with thrips population growth and to prevent thrips outbreaks. The biological control efficiency of natural enemies as well as predator–prey relationships can be precisely described by integrating life table parameters and the predation rate.MethodsIn this study, the demographic features of Orius strigicollis fed on 2nd instar nymphs of western flower thrips (WFT), Frankliniella occidentalis, were compared at 18.5, 23.5, 27, and 33°C using the TWOSEX-MSChart program. The CONSUME-MSChart program was used to examine predation rates under different temperatures (18.5, 23.5, and 27°C).ResultsThe results showed no significant difference in fecundity among those reared at 18.5, 23.5, and 27°C, but fecundity at these temperatures was significantly higher than that at 33°C. The intrinsic rate of increase (r), finite rate of increase (λ), and net reproduction rate (R0) were the highest at 27°C. The net predation rate (C0) and transformation rate (Qp) were significantly higher at 18.5°C (C0 = 168.39 prey/predator, Qp = 8.22) and 23.5°C (C0 = 140.49 prey/predator, Qp = 6.03) than at 27°C (C0 = 138.39 prey/predator, Qp= 3.81); however, the finite predation rate (ω) showed the opposite trend. In addition to temperature, the stage of O. strigicollis at release can affect population dynamics.DiscussionOur study showed that temperature influenced the demographic traits and predation rates of O. strigicollis. When planning a release, the stage of O. strigicollis and temperature should be taken into account to establish an adequate population for the control of WFT.
Collapse
|
18
|
Composition and structure of winter aphid–parasitoid food webs along a latitudinal gradient in Chile. Oecologia 2022; 200:425-440. [DOI: 10.1007/s00442-022-05270-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/27/2022] [Indexed: 10/31/2022]
|
19
|
Stoks R, Tüzün N. Editorial overview: global change: coping with the complexity of interacting stressors, interacting responses, and their feedback loops. CURRENT OPINION IN INSECT SCIENCE 2022; 53:100949. [PMID: 35809858 DOI: 10.1016/j.cois.2022.100949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Affiliation(s)
- Robby Stoks
- Department of Biology, University of Leuven, Debériotstraat 32, B-3000 Leuven, Belgium.
| | - Nedim Tüzün
- Department of Evolutionary and Integrative Ecology, IGB Berlin (Leibniz Institute of freshwater Ecology and Inland Fisheries), Müggelseedamm 301, 12587 Berlin, Germany.
| |
Collapse
|
20
|
Sentis A, Hemptinne J, Magro A, Outreman Y. Biological control needs evolutionary perspectives of ecological interactions. Evol Appl 2022; 15:1537-1554. [PMID: 36330295 PMCID: PMC9624075 DOI: 10.1111/eva.13457] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 07/20/2022] [Accepted: 07/26/2022] [Indexed: 05/30/2024] Open
Abstract
While ecological interactions have been identified as determinant for biological control efficiency, the role of evolution remains largely underestimated in biological control programs. With the restrictions on the use of both pesticides and exotic biological control agents (BCAs), the evolutionary optimization of local BCAs becomes central for improving the efficiency and the resilience of biological control. In particular, we need to better account for the natural processes of evolution to fully understand the interactions of pests and BCAs, including in biocontrol strategies integrating human manipulations of evolution (i.e., artificial selection and genetic engineering). In agroecosystems, the evolution of BCAs traits and performance depends on heritable phenotypic variation, trait genetic architecture, selection strength, stochastic processes, and other selective forces. Humans can manipulate these natural processes to increase the likelihood of evolutionary trait improvement, by artificially increasing heritable phenotypic variation, strengthening selection, controlling stochastic processes, or overpassing evolution through genetic engineering. We highlight these facets by reviewing recent studies addressing the importance of natural processes of evolution and human manipulations of these processes in biological control. We then discuss the interactions between the natural processes of evolution occurring in agroecosystems and affecting the artificially improved BCAs after their release. We emphasize that biological control cannot be summarized by interactions between species pairs because pests and biological control agents are entangled in diverse communities and are exposed to a multitude of deterministic and stochastic selective forces that can change rapidly in direction and intensity. We conclude that the combination of different evolutionary approaches can help optimize BCAs to remain efficient under changing environmental conditions and, ultimately, favor agroecosystem sustainability.
Collapse
Affiliation(s)
- Arnaud Sentis
- INRAEAix Marseille University, UMR RECOVERAix‐en‐ProvenceFrance
| | - Jean‐Louis Hemptinne
- Laboratoire Évolution et Diversité biologiqueUMR 5174 CNRS/UPS/IRDToulouseFrance
- Université Fédérale de Toulouse Midi‐Pyrénées – ENSFEACastanet‐TolosanFrance
| | - Alexandra Magro
- Laboratoire Évolution et Diversité biologiqueUMR 5174 CNRS/UPS/IRDToulouseFrance
- Université Fédérale de Toulouse Midi‐Pyrénées – ENSFEACastanet‐TolosanFrance
| | | |
Collapse
|
21
|
Lemes P, Barbosa FG, Naimi B, Araújo MB. Dispersal abilities favor commensalism in animal-plant interactions under climate change. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 835:155157. [PMID: 35405230 DOI: 10.1016/j.scitotenv.2022.155157] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 04/06/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Scientists still poorly understand how biotic interactions and dispersal limitation jointly interact and affect the ability of species to track suitable habitats under climate change. Here, we examine how animal-plant interactions and dispersal limitations might affect the responses of Brazil nut-dependent frogs facing projected climate change. Using ecological niche modelling and dispersal simulations, we forecast the future distributions of the Brazil nut tree and three commensalist frog species over time (2030, 2050, 2070, and 2090) in the regional rivalry (SSP370) scenario that includes great challenges to mitigation and adaptation. With the exception of one species, projections point to a decrease in suitable habitats of up to 40.6%. For frog species with potential reductions of co-occurrence areas, this is expected to reduce up to 23.8% of suitable areas for binomial animal-plant relationships. Even so, biotic interactions should not be lost over time. Species will depend on their own dispersal abilities to reach analogous climates in the future for maintaining ecological and evolutionary processes associated with commensal taxa. However, ecological and evolutionary processes associated with commensal taxa should be maintained in accordance with their own dispersal ability. When dispersal limitation is included in the models, the suitable range of all three frog species is reduced considerably by the end of the century. This highlights the importance of dispersal limitation inclusion for forecasting future distribution ranges when biotic interactions matter.
Collapse
Affiliation(s)
- Priscila Lemes
- Laboratório de Ecologia e Biogeografia da Conservação, Departamento de Botânica e Ecologia, Instituto de Biologia, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | | | - Babak Naimi
- Rui Nabeiro Biodiversity Chair, MED Institute, University of Évora, Évora, Portugal
| | - Miguel B Araújo
- Rui Nabeiro Biodiversity Chair, MED Institute, University of Évora, Évora, Portugal; Department of Biogeography and Global Change, National Museum of Natural Sciences, CSIC, Madrid, Spain
| |
Collapse
|
22
|
Rahman T, Candolin U. Linking animal behavior to ecosystem change in disturbed environments. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.893453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Environmental disturbances often cause individuals to change their behavior. The behavioral responses can induce a chain of reactions through the network of species interactions, via consumptive and trait mediated connections. Given that species interactions define ecosystem structure and functioning, changes to these interactions often have ecological repercussions. Here, we explore the transmission of behavioral responses through the network of species interactions, and how the responses influence ecological conditions. We describe the underlying mechanisms and the ultimate impact that the behavioral responses can have on ecosystem structure and functioning, including biodiversity and ecosystems stability and services. We explain why behavioral responses of some species have a larger impact than that of others on ecosystems, and why research should focus on these species and their interactions. With the work, we synthesize existing theory and empirical evidence to provide a conceptual framework that links behavior responses to altered species interactions, community dynamics, and ecosystem processes. Considering that species interactions link biodiversity to ecosystem functioning, a deeper understanding of behavioral responses and their causes and consequences can improve our knowledge of the mechanisms and pathways through which human activities alter ecosystems. This knowledge can improve our ability to predict the effects of ongoing disturbances on communities and ecosystems and decide on the interventions needed to mitigate negative effects.
Collapse
|
23
|
Tokash-Peters AG, Jabon JD, Fung ME, Peters JA, Lopez SG, Woodhams DC. Trans-Generational Symbiont Transmission Reduced at High Temperatures in a West Nile Virus Vector Mosquito Culex quinquefasciatus. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.762132] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The influence of environmental factors on the efficacy of the endosymbiont Wolbachia used in mosquito and pathogen control are poorly characterized and may be critical for disease control. We studied the vector mosquito Culex pipiens quinquefasciatus (Say) to determine the effect of temperature on the composition of the relative abundance of Wolbachia spp. and the microbiome, as well as key immune genes of interest in the Toll and IMD pathways. 16S barcode sequencing was used to determine the microbiome composition and qPCR was used to determine the relative abundance of Wolbachia spp. based on the highly utilized marker Wolbachia surface protein (wsp) gene. We found no effect of temperature within a single generation on the relative abundance of Wolbachia or immune gene expression, nor on the alpha or beta diversity of the microbiome. However, there was a significant difference in the abundance of Wolbachia between generations at high temperatures (≥ 28°C), but not at lower temperatures (≤ 23°C). These results support the idea that Wolbachia are reduced at higher temperatures between generations, which has an influence on the establishment of pathogens including West Nile Virus (WNV). Modulation of the Toll or IMD mosquito immune pathways was not indicated. Wolbachia endosymbiosis and trans-generation transmission appears especially sensitive to high temperatures, which may have implications for Wolbachia-based vector control strategies under climate change scenarios.
Collapse
|
24
|
Kundu S, Pal S, Talukdar S, Mahato S, Singha P. Integration of satellite image-derived temperature and water depth for assessing fish habitability in dam controlled flood plain wetland. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:28083-28097. [PMID: 34988818 DOI: 10.1007/s11356-021-17869-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Accepted: 11/26/2021] [Indexed: 06/14/2023]
Abstract
The present study attempted to investigate the changes in temperature conducive to fish habitability during the summer months in a hydrologically modified wetland following damming over a river. Satellite image-driven temperature and depth data calibrated with field data were used to analyse fish habitability and the presence of thermally optimum habitable zones in some fishes, such as labeo rohita, cirrhinus mrigala, tilapia fish, small shrimp, and catfish. The study was conducted both at the water's surface and at the optimum depth of survival. It is very obvious from the analysis that a larger part of the wetland has become an area that destroyed aquatic habitat during the post-dam period, and existing wetlands have suffered significant shallowing of water depth. This has resulted in a shrinking of the thermally optimum area of fish survival in relation to surface water temperature (from 100.09 to 74.24 km2 before the dam to 93.97 to 0 km2 after the dam) and an improvement in the optimum habitable condition in the comfortable depth niche of survival. In the post-dam period, it increased from 75.49 to 99.76%. Since the damming effect causes a 30.53 to 100% depletion of the optimum depth niche, improving the thermal environment has no effect on fish habitability. More water must be released from dams for restoration. Image-driven depth and temperature data calibrated with field information has been successfully applied in data sparse conditions, and it is further recommended in future work.
Collapse
Affiliation(s)
- Sonali Kundu
- Department of Geography, University of Gour Banga, Malda, India
| | - Swades Pal
- Department of Geography, University of Gour Banga, Malda, India.
| | - Swapan Talukdar
- Department of Geography, Faculty of Natural Science, Jamia Millia Islamia, New Delhi, 110025, India
| | - Susanta Mahato
- Special Centre for Disaster Research, Jawaharlal Nehru University, New Delhi, 110 067, India.
| | - Pankaj Singha
- Department of Geography, University of Gour Banga, Malda, India
| |
Collapse
|
25
|
Sentis A, Veselý L, Let M, Musil M, Malinovska V, Kouba A. Short-term thermal acclimation modulates predator functional response. Ecol Evol 2022; 12:e8631. [PMID: 35222981 PMCID: PMC8855023 DOI: 10.1002/ece3.8631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 11/30/2021] [Accepted: 01/27/2022] [Indexed: 11/10/2022] Open
Abstract
Phenotypic plastic responses to temperature can modulate the kinetic effects of temperature on biological rates and traits and thus play an important role for species adaptation to climate change. However, there is little information on how these plastic responses to temperature can influence trophic interactions. Here, we conducted an experiment using marbled crayfish and their water louse prey to investigate how short-term thermal acclimation at two temperatures (16 and 24°C) modulates the predator functional response. We found that both functional response parameters (search rate and handling time) differed between the two experimental temperatures. However, the sign and magnitudes of these differences strongly depended on acclimation time. Acclimation to 16°C increased handling time and search rate whereas acclimation to 24°C leads to the opposite effects with shorter handling time and lower search rate for acclimated predators. Moreover, the strength of these effects increased with acclimation time so that the differences in search rate and handing time between the two temperatures were reversed between the treatment without acclimation and after 24 h of acclimation. Overall, we found that the magnitude of the acclimation effects can be as strong as the direct kinetic effects of temperature. Our study highlights the importance of taking into account short-term thermal plasticity to improve our understanding of the potential consequences of global warming on species interactions.
Collapse
Affiliation(s)
- Arnaud Sentis
- INRAEAix Marseille UniversityUMR RECOVERAix‐en‐ProvenceFrance
| | - Lukas Veselý
- Faculty of Fisheries and Protection of WatersSouth Bohemian Research Center of Aquaculture and Biodiversity of HydrocenosesUniversity of South Bohemia in České BudějoviceVodňanyCzech Republic
| | - Marek Let
- Faculty of Fisheries and Protection of WatersSouth Bohemian Research Center of Aquaculture and Biodiversity of HydrocenosesUniversity of South Bohemia in České BudějoviceVodňanyCzech Republic
| | - Martin Musil
- Faculty of Fisheries and Protection of WatersSouth Bohemian Research Center of Aquaculture and Biodiversity of HydrocenosesUniversity of South Bohemia in České BudějoviceVodňanyCzech Republic
| | - Viktoriia Malinovska
- Faculty of Fisheries and Protection of WatersSouth Bohemian Research Center of Aquaculture and Biodiversity of HydrocenosesUniversity of South Bohemia in České BudějoviceVodňanyCzech Republic
| | - Antonín Kouba
- Faculty of Fisheries and Protection of WatersSouth Bohemian Research Center of Aquaculture and Biodiversity of HydrocenosesUniversity of South Bohemia in České BudějoviceVodňanyCzech Republic
| |
Collapse
|
26
|
Terao M, Tokuda M, Shintani Y. Geographic Variation in Photoperiodic Response for Induction of Pseudopupal Diapause in Epicauta gorhami (Coleoptera: Meloidae). ENVIRONMENTAL ENTOMOLOGY 2021; 50:1145-1150. [PMID: 34169313 DOI: 10.1093/ee/nvab062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2021] [Indexed: 06/13/2023]
Abstract
Geographical variations in the threshold of environmental cues for diapause induction are important in understanding the life history strategy of insects. Larvae of the bean blister beetle, Epicauta gorhami (Coleoptera: Meloidae), feed on grasshopper eggs and undergo hypermetamorphosis. They normally enter diapause as a pseudopupa (fifth instar). However, when the larvae are reared under long-day and high-temperature conditions, they do not enter pseudopupal diapause but pupate directly from the fourth instar. In addition, this insect is known to modify its photoperiodic response for induction of pseudopupal diapause depending on food availability for larvae. In this study, the larval photoperiodic responses for diapause induction were examined for three populations of E. gorhami collected from the northernmost (Morioka, 39.7°N), central (Kazo, 36.1°N), and southernmost (Takanabe, 32.1°N) parts of its distribution range, and the responses were examined under both fully fed and food-deprived (FD) conditions. Diapause incidence decreased in FD larvae for all populations in long-day conditions, and the critical day-lengths for the diapause incidence were calculated as 14.81, 13.97, and 13.99 h in the Morioka, Kazo, and Takanabe populations, respectively. The results indicate the presence of a geographical variation in larval photoperiodic response, in which diapause is induced earlier in higher latitudinal areas. From these results, together with data for developmental threshold temperature and thermal constant, the Morioka and Kazo populations were suggested to have a partial bivoltine life cycle under the conditions of extremely early oviposition season, a sufficient summer temperature, and poor larval food availability.
Collapse
Affiliation(s)
- Misato Terao
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Field Center, Department of Environmental and Horticultural Sciences, Minami Kyushu University, 3764-1 Tateno, Miyakonojo, Miyazaki, Japan
| | - Makoto Tokuda
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
- Laboratory of Systems Ecology, Faculty of Agriculture, Saga University, Saga, Japan
| | - Yoshinori Shintani
- Laboratory of Entomology, Department of Environmental and Horticultural Sciences, Minami Kyushu University, 3764-1 Tateno, Miyakonojo, Miyazaki, Japan
| |
Collapse
|
27
|
Kharouba HM, Yang LH. Disentangling the direct, indirect, and combined effects of experimental warming on a plant–insect herbivore interaction. Ecosphere 2021. [DOI: 10.1002/ecs2.3778] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Affiliation(s)
- Heather M. Kharouba
- Center for Population Biology University of California Davis California 95616 USA
- Department of Biology University of Ottawa Ottawa Ontario K1N 9B4 Canada
| | - Louie H. Yang
- Department of Entomology and Nematology University of California Davis California 95616 USA
| |
Collapse
|
28
|
Faillace CA, Sentis A, Montoya JM. Eco-evolutionary consequences of habitat warming and fragmentation in communities. Biol Rev Camb Philos Soc 2021; 96:1933-1950. [PMID: 33998139 PMCID: PMC7614044 DOI: 10.1111/brv.12732] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 04/23/2021] [Accepted: 04/27/2021] [Indexed: 01/17/2023]
Abstract
Eco-evolutionary dynamics can mediate species and community responses to habitat warming and fragmentation, two of the largest threats to biodiversity and ecosystems. The eco-evolutionary consequences of warming and fragmentation are typically studied independently, hindering our understanding of their simultaneous impacts. Here, we provide a new perspective rooted in trade-offs among traits for understanding their eco-evolutionary consequences. On the one hand, temperature influences traits related to metabolism, such as resource acquisition and activity levels. Such traits are also likely to have trade-offs with other energetically costly traits, like antipredator defences or dispersal. On the other hand, fragmentation can influence a variety of traits (e.g. dispersal) through its effects on the spatial environment experienced by individuals, as well as properties of populations, such as genetic structure. The combined effects of warming and fragmentation on communities should thus reflect their collective impact on traits of individuals and populations, as well as trade-offs at multiple trophic levels, leading to unexpected dynamics when effects are not additive and when evolutionary responses modulate them. Here, we provide a road map to navigate this complexity. First, we review single-species responses to warming and fragmentation. Second, we focus on consumer-resource interactions, considering how eco-evolutionary dynamics can arise in response to warming, fragmentation, and their interaction. Third, we illustrate our perspective with several example scenarios in which trait trade-offs could result in significant eco-evolutionary dynamics. Specifically, we consider the possible eco-evolutionary consequences of (i) evolution in thermal performance of a species involved in a consumer-resource interaction, (ii) ecological or evolutionary changes to encounter and attack rates of consumers, and (iii) changes to top consumer body size in tri-trophic food chains. In these scenarios, we present a number of novel, sometimes counter-intuitive, potential outcomes. Some of these expectations contrast with those solely based on ecological dynamics, for example, evolutionary responses in unexpected directions for resource species or unanticipated population declines in top consumers. Finally, we identify several unanswered questions about the conditions most likely to yield strong eco-evolutionary dynamics, how better to incorporate the role of trade-offs among traits, and the role of eco-evolutionary dynamics in governing responses to warming in fragmented communities.
Collapse
Affiliation(s)
- Cara A. Faillace
- Theoretical and Experimental Ecology Station, French National Centre of Scientific Research (CNRS), 2 Route du CNRS, Moulis, 09200, France,Address for correspondence (Tel: +33 5 61 04 05 89; )
| | - Arnaud Sentis
- Theoretical and Experimental Ecology Station, French National Centre of Scientific Research (CNRS), 2 Route du CNRS, Moulis, 09200, France,INRAE, Aix Marseille University, UMR RECOVER, 3275 Route de Cézanne- CS 40061, Aix-en-Provence Cedex 5, 13182, France
| | - José M. Montoya
- Theoretical and Experimental Ecology Station, French National Centre of Scientific Research (CNRS), 2 Route du CNRS, Moulis, 09200, France
| |
Collapse
|
29
|
Lach L. Invasive ant establishment, spread, and management with changing climate. CURRENT OPINION IN INSECT SCIENCE 2021; 47:119-124. [PMID: 34252591 DOI: 10.1016/j.cois.2021.06.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/24/2021] [Accepted: 06/29/2021] [Indexed: 06/13/2023]
Abstract
Ant invasions and climate change both pose globally widespread threats to the environment and economy. I highlight our current knowledge of how climate change will affect invasive ant distributions, population growth, spread, impact, and invasive ant management. Invasive ants often have traits that enable rapid colony growth in a range of habitats. Consequently, many invasive ant species will continue to have large global distributions as environmental conditions change. Distributions and impacts at community scales will depend on how resident ant communities respond to local abiotic conditions as well as availability of plant-based carbohydrate resources. Though target species may change under an altered climate, invasive ant impacts are unlikely to diminish, and novel control methods will be necessary.
Collapse
Affiliation(s)
- Lori Lach
- James Cook University, College of Science and Engineering, PO Box 6811, Cairns, 4870 Australia.
| |
Collapse
|
30
|
Yang LH, Postema EG, Hayes TE, Lippey MK, MacArthur-Waltz DJ. The complexity of global change and its effects on insects. CURRENT OPINION IN INSECT SCIENCE 2021; 47:90-102. [PMID: 34004376 DOI: 10.1016/j.cois.2021.05.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/05/2021] [Accepted: 05/07/2021] [Indexed: 06/12/2023]
Abstract
Global change includes multiple overlapping and interacting drivers: 1) climate change, 2) land use change, 3) novel chemicals, and 4) the increased global transport of organisms. Recent studies have documented the complex and counterintuitive effects of these drivers on the behavior, life histories, distributions, and abundances of insects. This complexity arises from the indeterminacy of indirect, non-additive and combined effects. While there is wide consensus that global change is reorganizing communities, the available data are limited. As the pace of anthropogenic changes outstrips our ability to document its impacts, ongoing change may lead to increasingly unpredictable outcomes. This complexity and uncertainty argue for renewed efforts to address the fundamental drivers of global change.
Collapse
Affiliation(s)
- Louie H Yang
- Department of Entomology and Nematology, University of California, Davis, CA 95616 USA.
| | - Elizabeth G Postema
- Department of Entomology and Nematology, University of California, Davis, CA 95616 USA; Animal Behavior Graduate Group, University of California, Davis, CA 95616, USA
| | - Tracie E Hayes
- Department of Entomology and Nematology, University of California, Davis, CA 95616 USA; Population Biology Graduate Group, University of California, Davis, CA 95616, USA
| | - Mia K Lippey
- Department of Entomology and Nematology, University of California, Davis, CA 95616 USA; Entomology Graduate Group, University of California, Davis, CA 95616, USA
| | - Dylan J MacArthur-Waltz
- Department of Entomology and Nematology, University of California, Davis, CA 95616 USA; Population Biology Graduate Group, University of California, Davis, CA 95616, USA
| |
Collapse
|
31
|
Rodríguez BM, Bhuiyan MKA, Freitas R, Conradi M. Mission impossible: Reach the carrion in a lithium pollution and marine warming scenario. ENVIRONMENTAL RESEARCH 2021; 199:111332. [PMID: 34004168 DOI: 10.1016/j.envres.2021.111332] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Revised: 05/08/2021] [Accepted: 05/11/2021] [Indexed: 06/12/2023]
Abstract
In this study we investigated the independent and synergistic effects of lithium (Li, 0.08 mM) contamination and the rising seawater temperature (21 °C; control- 15 °C) on survival and trophic interactions (foraging behaviour, success, search time, carrion preference, feeding time, and tissue consumption-the dry weight basis) of the opportunistic intertidal scavenger Tritia neritea. Trophic interactions were assessed in a two-choice test using a Y-maze design using the same amount of two carrion species (Solen marginatus and Mytilus galloprovincialis) given to all snails simultaneously. Lithium pollution and synergestic warming have the effect of reducing the survival rate of T. neritea, triggering potential global change scenarios. The foraging behaviour of T. neritea under Li-contaminated conditions was characterised by a decrease in the snail's effectiveness in finding a carrion. Lithium changes the feeding behaviour as well as increasing the time it takes for snails to reach their food. T. neritea did not show preference for any of the carrion species offered in controls, but a shift in feeding behaviour towards more energetic carrion under Li contamination which may indicate a strategy to compensate for the greater energy expenditure necessary to survive. There were no differences in feeding time at the different treatments and regardless of the treatment tested T. neritea consumed more mussels tissue probably due to its greater palatability. Results showing foraging modifications in an intertidal scavenger mollusc in global change scenarios indicate potential changes in complex trophic interactions of marine food webs.
Collapse
Affiliation(s)
- Belén Marín Rodríguez
- Department of Zoology, Faculty of Biology, University of Sevilla, Av. Reina Mercedes s/n, 41012, Sevilla, Spain
| | - Md Khurshid Alam Bhuiyan
- Department of Physical Chemistry, Faculty of Marine and Environmental Sciences, University of Cádiz, Polígono Río San Pedro s/n, 11510, Puerto Real, Cádiz, Spain
| | - Rosa Freitas
- Department of Biology & Center for Environmental and Marine Studies (CESAM), University of Aveiro, 3810-193, Aveiro, Portugal.
| | - Mercedes Conradi
- Department of Zoology, Faculty of Biology, University of Sevilla, Av. Reina Mercedes s/n, 41012, Sevilla, Spain.
| |
Collapse
|
32
|
Lee M, Kim Y, Park J, Cho K. Prediction of changing predator–prey interactions under warming: A simulation study using two aphid–ladybird systems. Ecol Res 2021. [DOI: 10.1111/1440-1703.12243] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Minyoung Lee
- Department of Environmental Science and Ecological Engineering Korea University Seoul South Korea
| | - Yongeun Kim
- Ojeong Resilience Institute, Korea University Seoul South Korea
| | - Jung‐Joon Park
- Department of Applied Biology Institute of Agricultural and Life Science, Gyeongsang National University Jinju South Korea
| | - Kijong Cho
- Department of Environmental Science and Ecological Engineering Korea University Seoul South Korea
| |
Collapse
|
33
|
Ma G, Bai C, Rudolf VHW, Ma C. Night warming alters mean warming effects on predator–prey interactions by modifying predator demographics and interaction strengths. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13833] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Gang Ma
- Climate Change Biology Research Group State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China
| | - Chun‐Ming Bai
- Climate Change Biology Research Group State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China
| | | | - Chun‐Sen Ma
- Climate Change Biology Research Group State Key Laboratory for Biology of Plant Diseases and Insect Pests Institute of Plant Protection Chinese Academy of Agricultural Sciences Beijing China
| |
Collapse
|
34
|
Wang Y, Sentis A, Tüzün N, Stoks R. Thermal evolution ameliorates the long‐term plastic effects of warming, temperature fluctuations and heat waves on predator–prey interaction strength. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13810] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Ying‐Jie Wang
- Evolutionary Stress Ecology and Ecotoxicology University of Leuven Leuven Belgium
| | - Arnaud Sentis
- INRAE, Aix‐Marseille Université, UMR RECOVER Aix‐en‐Provence France
| | - Nedim Tüzün
- Evolutionary Stress Ecology and Ecotoxicology University of Leuven Leuven Belgium
| | - Robby Stoks
- Evolutionary Stress Ecology and Ecotoxicology University of Leuven Leuven Belgium
| |
Collapse
|
35
|
van Doan C, Pfander M, Guyer AS, Zhang X, Maurer C, Robert CA. Natural enemies of herbivores maintain their biological control potential under short-term exposure to future CO 2, temperature, and precipitation patterns. Ecol Evol 2021; 11:4182-4192. [PMID: 33976802 PMCID: PMC8093683 DOI: 10.1002/ece3.7314] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Climate change will profoundly alter the physiology and ecology of plants, insect herbivores, and their natural enemies, resulting in strong effects on multitrophic interactions. Yet, manipulative studies that investigate the direct combined impacts of changes in CO2, temperature, and precipitation on the third trophic level remain rare. Here, we assessed how exposure to elevated CO2, increased temperature, and decreased precipitation directly affect the performance and predation success of species from four major groups of herbivore natural enemies: an entomopathogenic nematode, a wolf spider, a ladybug, and a parasitoid wasp. A four-day exposure to future climatic conditions (RCP 8.5), entailing a 28% decrease in precipitation, a 3.4°C raise in temperature, and a 400 ppm increase in CO2 levels, slightly reduced the survival of entomopathogenic nematodes, but had no effect on the survival of other species. Predation success was not negatively affected in any of the tested species, but it was even increased for wolf spiders and entomopathogenic nematodes. Factorial manipulation of climate variables revealed a positive effect of reduced soil moisture on nematode infectivity, but not of increased temperature or elevated CO2. These results suggest that natural enemies of herbivores may be well adapted to short-term changes in climatic conditions. These findings provide mechanistic insights that will inform future efforts to disentangle the complex interplay of biotic and abiotic factors that drive climate-dependent changes in multitrophic interaction networks.
Collapse
Affiliation(s)
- Cong van Doan
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Oeschger Centre for Climate Change Research (OCCR)University of BernBernSwitzerland
| | - Marc Pfander
- Institute of Plant SciencesUniversity of BernBernSwitzerland
| | - Anouk S. Guyer
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Present address:
AgroscopeWädenswilSwitzerland
| | - Xi Zhang
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Present address:
Key Laboratory of Plant Stress BiologyState Key Laboratory of Cotton BiologySchool of Life SciencesHenan UniversityKaifengChina
| | - Corina Maurer
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Present address:
Agroecology and EnvironmentAgroscopeZürichSwitzerland
| | - Christelle A.M. Robert
- Institute of Plant SciencesUniversity of BernBernSwitzerland
- Oeschger Centre for Climate Change Research (OCCR)University of BernBernSwitzerland
| |
Collapse
|
36
|
Sentis A, Montoya JM, Lurgi M. Warming indirectly increases invasion success in food webs. Proc Biol Sci 2021; 288:20202622. [PMID: 33726601 PMCID: PMC8059653 DOI: 10.1098/rspb.2020.2622] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Climate warming and biological invasions are key drivers of biodiversity change. Their combined effects on ecological communities remain largely unexplored. We investigated the direct and indirect influences of temperature on invasion success, and their synergistic effects on community structure and dynamics. Using size-structured food web models, we found that higher temperatures increased invasion success. The direct physiological effects of temperature on invasions were minimal in comparison with indirect effects mediated by changes on food web structure and stability. Warmer communities with less connectivity, shortened food chains and reduced temporal variability were more susceptible to invasions. The directionality and magnitude of invasions effects on food webs varied across temperature regimes. When invaded, warmer communities became smaller, more connected and with more predator species than their colder counterparts. They were also less stable and their species more abundant. Considering food web structure is crucial to predict invasion success and its impacts along temperature gradients.
Collapse
Affiliation(s)
- Arnaud Sentis
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200 Moulis, France,INRAE, Aix-Marseille University, UMR RECOVER, 3275 route Cézanne, 13182 Aix-en-Provence, France
| | - Jose M. Montoya
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200 Moulis, France
| | - Miguel Lurgi
- Centre for Biodiversity Theory and Modelling, Theoretical and Experimental Ecology Station, CNRS, 2 route du CNRS, 09200 Moulis, France,Department of Biosciences, Swansea University, Singleton Park, Swansea SA2 8PP, UK
| |
Collapse
|
37
|
Delnat V, Verborgt J, Janssens L, Stoks R. Daily temperature variation lowers the lethal and sublethal impact of a pesticide pulse due to a higher degradation rate. CHEMOSPHERE 2021; 263:128114. [PMID: 33297107 DOI: 10.1016/j.chemosphere.2020.128114] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 08/23/2020] [Accepted: 08/24/2020] [Indexed: 05/12/2023]
Abstract
Daily temperature variation (DTV) is an important warming-related stressor that may magnify pesticide toxicity. Yet, it is unknown whether the pesticide impact under DTV is partly ameliorated by a faster pesticide degradation caused by cyclically higher temperatures under DTV. As synergisms may be more likely under energy-limiting conditions, the impact of the pesticide chlorpyrifos was tested under DTV on the mosquito Culex pipiens in the absence and presence of interspecific competition with the water flea Daphnia magna. Chlorpyrifos exposure at a constant temperature without interspecific competition caused considerable mortality, decreased development time, and increased pupal mass of C. pipiens. Competition with D. magna had negative sublethal effects, but it did not affect the toxicity of chlorpyrifos. In contrast, the presence of C. pipiens decreased the impact of chlorpyrifos on D. magna probably due to corporal absorption of chlorpyrifos by C. pipiens. A key finding was that chlorpyrifos no longer caused lethal effects on C. pipiens under DTV, despite DTV on its own being mildly lethal. Additionally, chlorpyrifos exposure under DTV decreased development time less and had no effect anymore on pupal mass compared to chlorpyrifos exposure at a constant temperature. Similarly, the negative chlorpyrifos impact on adult survival of D. magna was less under DTV than at the constant temperature. This could be explained by a faster chlorpyrifos degradation under DTV. This antagonism between pesticide exposure and DTV is likely widespread because organisms experience DTV, many pesticides are applied in pulses, and pesticide degradation is faster at higher temperatures.
Collapse
Affiliation(s)
- Vienna Delnat
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium.
| | - Jonathan Verborgt
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium
| | - Lizanne Janssens
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium
| | - Robby Stoks
- Laboratory of Evolutionary Stress Ecology and Ecotoxicology, University of Leuven, Charles Deberiotstraat 32, 3000, Leuven, Belgium
| |
Collapse
|
38
|
Bideault A, Galiana N, Zelnik YR, Gravel D, Loreau M, Barbier M, Sentis A. Thermal mismatches in biological rates determine trophic control and biomass distribution under warming. GLOBAL CHANGE BIOLOGY 2021; 27:257-269. [PMID: 33084162 DOI: 10.1111/gcb.15395] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Accepted: 10/04/2020] [Indexed: 06/11/2023]
Abstract
Temperature has numerous effects on the structure and dynamics of ecological communities. Yet, there is no general trend or consensus on the magnitude and directions of these effects. To fill this gap, we propose a mechanistic framework based on key biological rates that predicts how temperature influences biomass distribution and trophic control in food webs. We show that these predictions arise from thermal mismatches between biological rates and across trophic levels. We couple our theory with experimental data for a wide range of species and find that warming should lead to top-heavier terrestrial food chains and stronger top-down control in aquatic environments. We then derive predictions for the effects of temperature on herbivory and validate them with data on stream grazers. Our study provides a mechanistic explanation of thermal effects on consumer-resource systems which is crucial to better understand the biogeography and the consequences of global warming on trophic dynamics.
Collapse
Affiliation(s)
- Azenor Bideault
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
- Center for Biodiversity Theory and Modelling, Experimental Ecology Station, Centre National de la Recherche Scientifique, Moulis, France
| | - Núria Galiana
- Center for Biodiversity Theory and Modelling, Experimental Ecology Station, Centre National de la Recherche Scientifique, Moulis, France
| | - Yuval R Zelnik
- Center for Biodiversity Theory and Modelling, Experimental Ecology Station, Centre National de la Recherche Scientifique, Moulis, France
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Dominique Gravel
- Département de biologie, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Michel Loreau
- Center for Biodiversity Theory and Modelling, Experimental Ecology Station, Centre National de la Recherche Scientifique, Moulis, France
| | - Matthieu Barbier
- Center for Biodiversity Theory and Modelling, Experimental Ecology Station, Centre National de la Recherche Scientifique, Moulis, France
| | - Arnaud Sentis
- INRAE, Aix Marseille Univ., UMR RECOVER, Aix-en-Provence, France
| |
Collapse
|
39
|
Gvoždík L, Boukal DS. Impacts of predator-induced behavioural plasticity on the temperature dependence of predator-prey activity and population dynamics. J Anim Ecol 2020; 90:503-514. [PMID: 33159686 DOI: 10.1111/1365-2656.13383] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Accepted: 11/04/2020] [Indexed: 11/28/2022]
Abstract
Predation is a key ecological interaction affecting populations and communities. Climate warming can modify this interaction both directly by the kinetic effects of temperature on biological rates and indirectly through integrated behavioural and physiological responses of the predators and prey. Temperature dependence of predation rates can further be altered by predator-induced plasticity of prey locomotor activity, but empirical data about this effect are lacking. We propose a general framework to understand the influence of predator-induced developmental plasticity on behavioural thermal reaction norms in prey and their consequences for predator-prey dynamics. Using a mesocosm experiment with dragonfly larvae (predator) and newt larvae (prey), we tested if the predator-induced plasticity alters the elevation or the slope of the thermal reaction norms for locomotor activity metrics in prey. We also estimated the joint predator-prey thermal response in mean locomotor speed, which determines prey encounter rate, and modelled the effect of both phenomena on predator-prey population dynamics. Thermal reaction norms for locomotor activity in prey were affected by predation risk cues but with minor influence on the joint predator-prey behavioural response. We found that predation risk cues significantly decreased the intercept of thermal reaction norm for total activity rate (i.e. all body movements) but not the other locomotor activity metrics in the prey, and that prey locomotor activity rate and locomotor speed increased with prey density. Temperature had opposite effects on the mean relative speed of predator and prey as individual speed increased with temperature in predators but decreased in prey. This led to a negligible effect of body temperature on predicted prey encounter rates and predator-prey dynamics. The behavioural component of predator-prey interaction varied much more between individuals than with temperature and the presence of predation risk cues in our system. We conclude that within-population variation in locomotor activity can buffer the influence of body temperature and predation risk cues on predator-prey interactions, and further research should focus on the magnitude and sources of behavioural variation in interacting species to predict the impact of climate change on predator-prey interactions and food web dynamics.
Collapse
Affiliation(s)
- Lumír Gvoždík
- Czech Academy of Sciences, Institute of Vertebrate Biology, Brno, Czech Republic
| | - David S Boukal
- Department of Ecosystem Biology, Faculty of Science, University of South Bohemia, České Budějovice, Czech Republic.,Czech Academy of Sciences, Biology Centre, Institute of Entomology, České Budějovice, Czech Republic
| |
Collapse
|
40
|
Simulated climate change, but not predation risk, accelerates Aedes aegypti emergence in a microcosm experiment in western Amazonia. PLoS One 2020; 15:e0241070. [PMID: 33079970 PMCID: PMC7575111 DOI: 10.1371/journal.pone.0241070] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 10/08/2020] [Indexed: 11/24/2022] Open
Abstract
Climate change affects individual life-history characteristics and species interactions, including predator-prey interactions. While effects of warming on Aedes aegypti adults are well known, clarity the interactive effects of climate change (temperature and CO2 concentration) and predation risk on the larval stage remains unexplored. In this study, we performed a microcosm experiment simulating temperature and CO2 changes in Manaus, Amazonas, Brazil, for the year 2100. Simulated climate change scenarios (SCCS) were in accordance with the Fourth Assessment Report of Intergovernmental Panel on Climate Change (IPCC). Used SCCS were: Control (real-time current conditions in Manaus: average temperature is ~25.76°C ± 0.71°C and ~477.26 ± 9.38 parts per million by volume (ppmv) CO2); Light: increase of ~1,7°C and ~218 ppmv CO2; Intermediate: increase of ~2.4°C and ~446 ppmv CO2; and Extreme: increase of ~4.5°C and ~861 ppmv CO2, all increases were relative to a Control SCCS. Light, Intermediate and Extreme SCCS reproduced, respectively, the B1, A1B, and A2 climatic scenarios predicted by IPCC (2007). We analyzed Aedes aegypti larval survivorship and adult emergence pattern with a factorial design combining predation risk (control and predator presence–Toxorhynchites haemorrhoidalis larvae) and SCCS. Neither SCCS nor predation risk affected Aedes aegypti larval survivorship, but adult emergence pattern was affected by SCCS. Accordingly, our results did not indicate interactive effects of SCCS and predation risk on larval survivorship and emergence pattern of Aedes aegypti reared in SCCS in western Amazonia. Aedes aegypti is resistant to SCCS conditions tested, mainly due to high larval survivorship, even under Extreme SCCS, and warmer scenarios increase adult Aedes aegypti emergence. Considering that Aedes aegypti is a health problem in western Amazonia, an implication of our findings is that the use of predation cues as biocontrol strategies will not provide a viable means of controlling the accelerated adult emergence expected under the IPCC climatic scenarios.
Collapse
|
41
|
Sui L, Zhu H, Xu W, Guo Q, Wang L, Zhang Z, Li Q, Wang D. Elevated air temperature shifts the interactions between plants and endophytic fungal entomopathogens in an agroecosystem. FUNGAL ECOL 2020. [DOI: 10.1016/j.funeco.2020.100940] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
42
|
Kingsolver JG, Buckley LB. Ontogenetic variation in thermal sensitivity shapes insect ecological responses to climate change. CURRENT OPINION IN INSECT SCIENCE 2020; 41:17-24. [PMID: 32599547 DOI: 10.1016/j.cois.2020.05.005] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2020] [Revised: 05/06/2020] [Accepted: 05/12/2020] [Indexed: 06/11/2023]
Abstract
Insects have distinct life stages that can differ in their responses to environmental factors. We discuss empirical evidence and theoretical models for ontogenetic variation in thermal sensitivity and performance curves (TPCs). Data on lower thermal limits for development (T0) demonstrate variation between stages within a species that is of comparable magnitude to variation among species; we illustrate the consequences of such ontogenetic variation for developmental responses to changing temperature. Ontogenetic variation in optimal temperatures and upper thermal limits has been reported in some systems, but current data are too limited to identify general patterns. The shapes of TPCs for different fitness components such as juvenile survival, adult fecundity, and generation time differ in characteristic ways, with important consequences for understanding fitness in varying thermal environments. We highlight a theoretical framework for incorporating ontogenetic variation into process-based models of population responses to seasonal variation and climate change.
Collapse
Affiliation(s)
- Joel G Kingsolver
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, United States.
| | - Lauren B Buckley
- Department of Biology, University of Washington, Seattle, WA 98195, United States
| |
Collapse
|
43
|
Stay cool or get hot? An applied primer for using temperature in forensic entomological case work. Sci Justice 2020; 60:415-422. [PMID: 32873381 DOI: 10.1016/j.scijus.2020.05.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/07/2020] [Accepted: 05/17/2020] [Indexed: 12/20/2022]
Abstract
The reliable reconstruction of the temperature conditions at a crime scene is still a great challenge in forensic-entomological case work. Despite many published standards and guidelines for reconstructing temperature, and studies analysing the influence of various factors on the accuracy on such reconstructions, there are astonishingly many cases in the literature in which the temperature at the place of discovery is not reconstructed at all, i.e. the most common method is using the data of the nearest meteorological weather station without any correlation with on-site data. This study summarizes the state of the art in temperature reconstruction from an entomological point of view and compares the application of generalized additive models (GAMs) and linear regression on the basis of hypothetical death scenarios with various post mortem intervals (PMI) and measurement periods for the correlation between crime scene and weather station. We show that GAMs i.e. analysing the potential delay effect of temperature within a day, are the tools of choice because they give better, i.e. more accurate estimations than linear regression in 95,6% of all analysed cases regardless of the PMI, body discovery site and correlation period. Nevertheless, each case and crime scene is unique and therefore each entomological expertise should discuss the possible strengths and weaknesses of its temperature reconstruction. Even if temperature is not or cannot be reconstructed for various reasons, a comparison of on-site data with those of a meteorological weather station is the minimum forensic experts should do.
Collapse
|
44
|
Thakur MP. The role of predators in driving warming-prey diversity relationships: An invertebrate perspective. Basic Appl Ecol 2020. [DOI: 10.1016/j.baae.2020.06.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
45
|
Cariveau DP, Bruninga-Socolar B, Pardee GL. A review of the challenges and opportunities for restoring animal-mediated pollination of native plants. Emerg Top Life Sci 2020; 4:ETLS20190073. [PMID: 32556128 PMCID: PMC7326338 DOI: 10.1042/etls20190073] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Revised: 05/26/2020] [Accepted: 05/27/2020] [Indexed: 01/08/2023]
Abstract
Ecological restoration is increasingly implemented to reverse habitat loss and concomitant declines in biological diversity. Typically, restoration success is evaluated by measuring the abundance and/or diversity of a single taxon. However, for a restoration to be successful and persistent, critical ecosystem functions such as animal-mediated pollination must be maintained. In this review, we focus on three aspects of pollination within ecological restorations. First, we address the need to measure pollination directly in restored habitats. Proxies such as pollinator abundance and richness do not always accurately assess pollination function. Pollen supplementation experiments, pollen deposition studies, and pollen transport networks are more robust methods for assessing pollination function within restorations. Second, we highlight how local-scale management and landscape-level factors may influence pollination within restorations. Local-scale management actions such as prescribed fire and removal of non-native species can have large impacts on pollinator communities and ultimately on pollination services. In addition, landscape context including proximity and connectivity to natural habitats may be an important factor for land managers and conservation practitioners to consider to maximize restoration success. Third, as climate change is predicted to be a primary driver of future loss in biodiversity, we discuss the potential effects climate change may have on animal-mediated pollination within restorations. An increased mechanistic understanding of how climate change affects pollination and incorporation of climate change predictions will help practitioners design stable, functioning restorations into the future.
Collapse
Affiliation(s)
- Daniel P Cariveau
- Department of Entomology, University of Minnesota, St. Paul, MN, U.S.A
| | | | | |
Collapse
|
46
|
Bestion E, Soriano-Redondo A, Cucherousset J, Jacob S, White J, Zinger L, Fourtune L, Di Gesu L, Teyssier A, Cote J. Altered trophic interactions in warming climates: consequences for predator diet breadth and fitness. Proc Biol Sci 2019; 286:20192227. [PMID: 31662087 DOI: 10.1098/rspb.2019.2227] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Species interactions are central in predicting the impairment of biodiversity with climate change. Trophic interactions may be altered through climate-dependent changes in either predator food preferences or prey communities. Yet, climate change impacts on predator diet remain surprisingly poorly understood. We experimentally studied the consequences of 2°C warmer climatic conditions on the trophic niche of a generalist lizard predator. We used a system of semi-natural mesocosms housing a variety of invertebrate species and in which climatic conditions were manipulated. Lizards in warmer climatic conditions ate at a greater predatory to phytophagous invertebrate ratio and had smaller individual dietary breadths. These shifts mainly arose from direct impacts of climate on lizard diets rather than from changes in prey communities. Dietary changes were associated with negative changes in fitness-related traits (body condition, gut microbiota) and survival. We demonstrate that climate change alters trophic interactions through top-predator dietary shifts, which might disrupt eco-evolutionary dynamics.
Collapse
Affiliation(s)
- Elvire Bestion
- CNRS, Université Toulouse III Paul Sabatier, UMR 5321, Station d'Ecologie Théorique et Expérimentale, 09200 Moulis, France.,Environmental and Sustainability Institute, College of Life and Environmental Sciences, University of Exeter, Penryn, Cornwall TR10 9FE, UK
| | - Andrea Soriano-Redondo
- Centre for Ecology and Conservation, College of Life and Environmental Sciences, University of Exeter, Cornwall Campus, Penryn, Cornwall TR10 9EZ, UK
| | - Julien Cucherousset
- CNRS, Université Toulouse III Paul Sabatier, ENSFEA, IRD; UMR5174, Laboratoire Évolution & Diversité Biologique, 118 route de Narbonne, 31062 Toulouse, France
| | - Staffan Jacob
- CNRS, Université Toulouse III Paul Sabatier, UMR 5321, Station d'Ecologie Théorique et Expérimentale, 09200 Moulis, France
| | - Joël White
- CNRS, Université Toulouse III Paul Sabatier, ENSFEA, IRD; UMR5174, Laboratoire Évolution & Diversité Biologique, 118 route de Narbonne, 31062 Toulouse, France
| | - Lucie Zinger
- Institut de Biologie de l'École Normale Supérieure, École Normale Superieure, Paris Sciences et Lettres Research University, CNRS UMR 8197, INSERM U1024, 75005 Paris, France
| | - Lisa Fourtune
- CNRS, Université Toulouse III Paul Sabatier, UMR 5321, Station d'Ecologie Théorique et Expérimentale, 09200 Moulis, France
| | - Lucie Di Gesu
- CNRS, Université Toulouse III Paul Sabatier, ENSFEA, IRD; UMR5174, Laboratoire Évolution & Diversité Biologique, 118 route de Narbonne, 31062 Toulouse, France
| | - Aimeric Teyssier
- CNRS, Université Toulouse III Paul Sabatier, ENSFEA, IRD; UMR5174, Laboratoire Évolution & Diversité Biologique, 118 route de Narbonne, 31062 Toulouse, France.,Terrestrial Ecology Unit, Department of Biology, Ghent University, K. L. Ledeganckstraat 35, 9000, Ghent, Belgium
| | - Julien Cote
- CNRS, Université Toulouse III Paul Sabatier, ENSFEA, IRD; UMR5174, Laboratoire Évolution & Diversité Biologique, 118 route de Narbonne, 31062 Toulouse, France
| |
Collapse
|
47
|
Sentis A, Desneux N. Editorial overview: Global change: integrating ecological and evolutionary consequences across time and space. CURRENT OPINION IN INSECT SCIENCE 2019; 35:iii-vi. [PMID: 31629476 DOI: 10.1016/j.cois.2019.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Affiliation(s)
- Arnaud Sentis
- National Research Institute of Science and Technology for Environment and Agriculture (IRSTEA), Centre d'Aix-en-Provence, 3275 route Cézanne, 13182 Aix-en-Provence, France.
| | - Nicolas Desneux
- Université Côte d'Azur, INRA, CNRS, UMR ISA, 06000 Nice, France.
| |
Collapse
|