1
|
Jha B, Majie A, Roy K, Lim WM, Gorain B. Glycyrrhizic Acid-Loaded Poloxamer and HPMC-Based In Situ Forming Gel of Acacia Honey for Improved Wound Dressing: Formulation Optimization and Characterization for Wound Treatment. ACS APPLIED BIO MATERIALS 2025; 8:310-328. [PMID: 39657741 DOI: 10.1021/acsabm.4c01212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2024]
Abstract
The present study aims to formulate a stimuli-responsive in situ hydrogel system to codeliver acacia honey and glycyrrhizic acid for topical application that will aid in absorbing wound exudates, control microbial infestation, and produce angiogenic and antioxidant effects to accelerate wound healing. Therefore, both the natural active constituents were incorporated within an in situ hydrogel composed of poloxamer and hydroxypropyl methylcellulose (HPMC), where the concentrations of the polymers were optimized using Design-Expert software considering optimum values of the dependent variables, gelation temperature (34-37 °C), gelation time (<10 min), and the viscosity (2000-3500 cPs). The optimized formulation showed improved physicochemical properties such as mucoadhesiveness, porosity, swelling, and spreadability, which makes it suitable for wound application. Additionally, the in situ hydrogel exhibited potent in vitro and ex vivo antioxidant effects, in vitro antimicrobial activities, and ex ovo angiogenic effects. Furthermore, the optimized formulation was found to be nontoxic while tested in the HaCaT cell line and acute dermal irritation and corrosion study. The findings of the in vivo wound-healing studies in experimental animal models showed complete wound closure within 15 days of treatment and accelerated development of the extracellular matrix. In addition, the antioxidant, antimicrobial, angiogenic, and wound-healing properties of acacia honey and glycyrrhizic acid coloaded in situ hydrogel were also found to be promising when compared to the standard treatments. Overall, it can be concluded that the optimized stimuli-responsive in situ hydrogel containing two natural compounds could be an alternative to existing topical formulations for acute wounds.
Collapse
Affiliation(s)
- Bhawana Jha
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Ankit Majie
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Kankan Roy
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| | - Wei Meng Lim
- School of Pharmacy, Monash University, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Bapi Gorain
- Department of Pharmaceutical Sciences and Technology, Birla Institute of Technology, Mesra, Ranchi 835215, Jharkhand, India
| |
Collapse
|
2
|
Joos M, Vackier T, Mees MA, Coppola G, Alexandris S, Geunes R, Thielemans W, Steenackers HPL. Antimicrobial Activity of Glycyrrhizinic Acid Is pH-Dependent. ACS APPLIED BIO MATERIALS 2024; 7:8223-8235. [PMID: 39592134 DOI: 10.1021/acsabm.4c00942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2024]
Abstract
In recent years, antimicrobial hydrogels have attracted much attention in biomedical applications due to their biocompatibility and high water content. Glycyrrhizin (GA) is an antimicrobial that can form pH-dependent hydrogels due to the three carboxyl groups of GA that differ in pKa value. The influence of GA protonation on the antimicrobial activity, however, has never been studied before. Therefore, we investigated the effect of the pH on the antimicrobial activity of GA against Pseudomonas aeruginosa, Staphylococcus aureus, MRSA, Staphylococcus epidermidis, Acinetobacter baumannii, Klebsiella pneumoniae, Klebsiella aerogenes, and two strains of Escherichia coli. In general, the antimicrobial activity of GA increases as a function of decreasing pH (and thus increasing protonation of GA). More specifically, fully protonated GA hydrogels (pH = 3) are required for growth inhibition and killing of E. coli UTI89 and Klebsiella in the suspension above the hydrogel, while the staphylococci strains and A. baumannii are already inhibited by fully deprotonated GA (pH = 6.8). P. aeruginosa and E. coli DH5α showed moderate susceptibility, as they are completely inhibited by a hydrogel at pH 3.8, containing partly protonated GA, but not by fully deprotonated GA (pH = 6.8). The antimicrobial activity of the hydrogel cannot solely be attributed to the resulting pH decrease of the suspension, as the presence of GA significantly increases the activity. Instead, this increased activity is due to the release of GA from the hydrogel into the suspension, where it directly interacts with the bacteria. Moreover, we provide evidence indicating that the pH dependency of the antimicrobial activity is due to differences in GA protonation state by treating the pathogens with GA solutions differing in their GA protonation distribution. Finally, we show by LC-MS that there is no chemical or enzymatic breakdown of GA. Overall, our results demonstrate that the pH influences not only the physical but also the antimicrobial properties of the GA hydrogels.
Collapse
Affiliation(s)
- Mathieu Joos
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven 3001, Belgium
| | - Thijs Vackier
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven 3001, Belgium
| | - Maarten A Mees
- Department of Chemical Engineering, KU Leuven, Sustainable Materials Lab (SusMat), Kortrijk 8500, Belgium
| | - Guglielmo Coppola
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven 3001, Belgium
- Department of Chemistry, KU Leuven - Laboratory for Organic & Microwave-Assisted Chemistry (LOMAC), Leuven 3001, Belgium
| | - Stelios Alexandris
- Department of Chemical Engineering, KU Leuven - Laboratory for Soft Matter, Rheology and Technology (SMaRT), Leuven 3001, Belgium
| | - Robbe Geunes
- Department of Chemical Engineering, KU Leuven, Sustainable Materials Lab (SusMat), Kortrijk 8500, Belgium
| | - Wim Thielemans
- Department of Chemical Engineering, KU Leuven, Sustainable Materials Lab (SusMat), Kortrijk 8500, Belgium
| | - Hans P L Steenackers
- Department of Microbial and Molecular Systems, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Leuven 3001, Belgium
| |
Collapse
|
3
|
Lokole PB, Ngombe NK, Motomba DI, Safari JB, Mpuza MK, Krause RW, Mutwale PK, Nkanga CI. Preparation and characterization of micellar nanoparticles using crude saponins from five Congolese plant species. PHARMACEUTICAL SCIENCE ADVANCES 2024; 2:100055. [DOI: 10.1016/j.pscia.2024.100055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
4
|
Xiao M, Guo Z, Yang Y, Hu C, Cheng Q, Zhang C, Wu Y, Cheng Y, Benson WLM, Shamay SMN, Leung GPH, Li J, Gao H, Zhang J. Glycyrrhizic acid-based multifunctional nanoplatform for tumor microenvironment regulation. Chin J Nat Med 2024; 22:1089-1099. [PMID: 39725510 DOI: 10.1016/s1875-5364(24)60685-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Indexed: 12/28/2024]
Abstract
Natural compounds demonstrate unique therapeutic advantages for cancer treatment, primarily through direct tumor suppression or interference with the tumor microenvironment (TME). Glycyrrhizic acid (GL), a bioactive ingredient derived from the medicinal herb Glycyrrhiza uralensis Fisch., and its sapogenin glycyrrhetinic acid (GA), have been recognized for their ability to inhibit angiogenesis and remodel the TME. Consequently, the combination of GL with other therapeutic agents offers superior therapeutic benefits. Given GL's amphiphilic structure, self-assembly capability, and liver cancer targeting capacity, various GL-based nanoscale drug delivery systems have been developed. These GL-based nanosystems exhibit angiogenesis suppression and TME regulation properties, synergistically enhancing anti-cancer effects. This review summarizes recent advances in GL-based nanosystems, including polymer-drug micelles, drug-drug assembly nanoparticles (NPs), liposomes, and nanogels, for cancer treatment and tumor postoperative care, providing new insights into the anti-cancer potential of natural compounds. Additionally, the review discusses existing challenges and future perspectives for translating GL-based nanosystems from bench to bedside.
Collapse
Affiliation(s)
- Meng Xiao
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Zhiqing Guo
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu 610072, China
| | - Yating Yang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chuan Hu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qian Cheng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Chen Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yihan Wu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Yanfen Cheng
- School of Medicine, Chengdu University, Chengdu 610106, China
| | - Wui Lau Man Benson
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Sheung Mei Ng Shamay
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong 999077, China
| | - George Pak-Heng Leung
- Department of Pharmacology and Pharmacy, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong 999077, China
| | - Jingjing Li
- Department of Rehabilitation Sciences, Faculty of Health and Social Sciences, Hong Kong Polytechnic University, Hong Kong 999077, China; The Research Centre for Chinese Medicine Innovation, Hong Kong Polytechnic University, Hong Kong 999077, China.
| | - Huile Gao
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China.
| | - Jinming Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
5
|
Hernández M, Lima E, Magaña JJ, Ganem-Rondero A. Glycyrrhizic Acid Formulated in Hydrotalcite Nanocarriers Intended to Act as a Hepatoprotective Agent. AAPS J 2024; 27:2. [PMID: 39562487 DOI: 10.1208/s12248-024-00986-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/17/2024] [Indexed: 11/21/2024] Open
Abstract
The article focuses on preparing a nanoformulation based on hydrotalcite and glycyrrhizic acid (GA), seeking a hepatoprotective effect. For this purpose, hydrotalcite-GA formulations were prepared by varying the following conditions to obtain optimal systems in terms of size and PDI (the lowest values), and Z potential (the highest values): (i) type of hydrotalcite (obtained by co-precipitation or calcined hydrotalcite); method used (ultrasound or high shear stirring), and (iii) type of stabilizer (Tween®80 or Pluronic® F-127). The best results were obtained using hydrotalcite obtained by co-precipitation, with high shear stirring and adding a stabilizer, either Tween®80 (HT-T80-GA: mean particle size = 315 nm, PDI = 0.18, Z potential = -20.93) or Pluronic® F-127 (HT-PF127-GA: mean particle size = 307 nm; PDI = 0.27, Z potential = -21.03). After stability studies, the HT-T80-GA formulation was chosen to study antioxidant activity, cytotoxicity, and intracellular penetration capacity. Although the hepatoprotective effect of GA in solution allowed a high viability and antioxidant activity, the fact of including GA in the HT-T80-GA formulation favored its penetration into hepatocytes, with a decrease in Caspase-3/7 expression of C-9 hepatocyte cells treated with H2O2, suggesting the capacity to inhibit apoptosis.
Collapse
Affiliation(s)
- Magali Hernández
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica (L-322), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Av. 1 de Mayo S/N, Cuautitlán Izcalli, CP 54740, Edo. de Méx, México
| | - Enrique Lima
- Laboratorio de Fisicoquímica y Reactividad de Superficies (LaFReS), Instituto de Investigaciones en Materiales, Universidad Nacional Autónoma de México, Circuito Exterior S/N, Cd. Universitaria, Del. Coyoacán, CP 04510, Ciudad de Mexico, México
| | - Jonathan J Magaña
- Laboratorio de Medicina Genómica, Departamento de Genética, Instituto Nacional de Rehabilitación, Calz. México Xochimilco N° 289, CP 14389, Ciudad de Mexico, Mexico
- Departamento de Bioingeniería, Escuela de Ingeniería y Ciencias, Tecnológico de Monterrey, Campus Ciudad de México, CP 14380, Ciudad de México, México
| | - Adriana Ganem-Rondero
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica (L-322), Facultad de Estudios Superiores Cuautitlán, Universidad Nacional Autónoma de México, Av. 1 de Mayo S/N, Cuautitlán Izcalli, CP 54740, Edo. de Méx, México.
| |
Collapse
|
6
|
Xu J, Li L, Ding Z, Xie J. Prolong the shelf-life of the Pakchoi seedlings through the ammonium glycyrrhizinate. Food Chem X 2024; 23:101620. [PMID: 39071937 PMCID: PMC11282947 DOI: 10.1016/j.fochx.2024.101620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/24/2024] [Accepted: 07/02/2024] [Indexed: 07/30/2024] Open
Abstract
Pakchoi seedlings (Brassica chinensis L.) is susceptible to damage and spoilage during harvest and transport, leading to significant quality deterioration and financial losses. This study explored the use of ammonium glycyrrhizinate (AG) to address these issues. AG self-assembles into macromolecules at room temperature, blocking stomata and regulating respiration rates in Pakchoi seedlings. Additionally, it disrupts bacterial cell biofilm and inhibits its synthesis. While AG has been used in medicine, its application in the food industry remains limited. The study found that incorporating AG in Pakchoi seedlings preserves water content and total soluble solids (TSS), while preventing declines in catalase (CAT), Vitamin C (VC), and chlorophyll during storage. AG also reduced malondialdehyde (MDA) levels and maintained peroxidase (POD) and superoxide dismutase (SOD) activities. At a concentration of 4.25 g L-1, AG enhanced radical scavenging ability and extended the shelf life of Pakchoi seedlings by inhibiting bacteria and postponing senescence.
Collapse
Affiliation(s)
- Jin Xu
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
| | - Li Li
- Shanghai Tramy Green Food (Group) Co.Ltd, Shanghai Tramy Academy of modern Agricultural Industry, Shanghai 201399, China
| | - Zhaoyang Ding
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
- Marine Biomedical Science and Technology Innovation Platform of Lin-gang Special Area, Shanghai 201306, China
| | - Jing Xie
- College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China
- Shanghai Professional Technology Service Platform on Cold Chain Equipment Performance and Energy Saving Evaluation, Shanghai 201306, China
| |
Collapse
|
7
|
Guo X, Luo W, Wu L, Zhang L, Chen Y, Li T, Li H, Zhang W, Liu Y, Zheng J, Wang Y. Natural Products from Herbal Medicine Self-Assemble into Advanced Bioactive Materials. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403388. [PMID: 39033533 PMCID: PMC11425287 DOI: 10.1002/advs.202403388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/09/2024] [Indexed: 07/23/2024]
Abstract
Novel biomaterials are becoming more crucial in treating human diseases. However, many materials require complex artificial modifications and synthesis, leading to potential difficulties in preparation, side effects, and clinical translation. Recently, significant progress has been achieved in terms of direct self-assembly of natural products from herbal medicine (NPHM), an important source for novel medications, resulting in a wide range of bioactive supramolecular materials including gels, and nanoparticles. The NPHM-based supramolecular bioactive materials are produced from renewable resources, are simple to prepare, and have demonstrated multi-functionality including slow-release, smart-responsive release, and especially possess powerful biological effects to treat various diseases. In this review, NPHM-based supramolecular bioactive materials have been revealed as an emerging, revolutionary, and promising strategy. The development, advantages, and limitations of NPHM, as well as the advantageous position of NPHM-based materials, are first reviewed. Subsequently, a systematic and comprehensive analysis of the self-assembly strategies specific to seven major classes of NPHM is highlighted. Insights into the influence of NPHM structural features on the formation of supramolecular materials are also provided. Finally, the drivers and preparations are summarized, emphasizing the biomedical applications, future scientific challenges, and opportunities, with the hope of igniting inspiration for future research and applications.
Collapse
Affiliation(s)
- Xiaohang Guo
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Weikang Luo
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lingyu Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Lianglin Zhang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yuxuan Chen
- Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai, 519087, China
| | - Teng Li
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Haigang Li
- Hunan key laboratory of the research and development of novel pharmaceutical preparations, Changsha Medical University, Changsha, 410219, China
| | - Wei Zhang
- College of Integrated Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yawei Liu
- School of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Jun Zheng
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Yang Wang
- Institute of Integrative Medicine, Department of Integrated Traditional Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- Center for Interdisciplinary Research in Traditional Chinese Medicine, Xiangya Hospital, Central South University, Changsha, 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| |
Collapse
|
8
|
Yu X, Cai J, Xu M, Li Q, Yang Y, Wan Z, Yang X. A natural food-grade supramolecular self-assembly system for creation of hierarchically structured hydrogels. NANOSCALE 2024; 16:14261-14268. [PMID: 38896015 DOI: 10.1039/d4nr01410c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
We develop a novel hierarchically structured hydrogel by the supramolecular self-assembly of all-natural food-grade building blocks, glycyrrhizic acid (GA) and carrageenan (CG). The co-assembled GA-CG hydrogel system displays an unusual structural transition with the appearance from opacity to translucence and then to opacity, as a function of the concentration of metal ions. The unique GA-CG supramolecular hydrogel system can serve as solid, edible, and responsive active cargo delivery platforms for food and biomedical applications.
Collapse
Affiliation(s)
- Xinke Yu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| | - Jiyang Cai
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| | - Mengyue Xu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
- Laboratory of Physics and Physical Chemistry of Foods, Wageningen University, Bornse Weilanden 9, 6708WG Wageningen, The Netherlands
| | - Qing Li
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| | - Yunyi Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
9
|
Yang G, Liu Y, Hu Y, Yuan Y, Qin Y, Li Q, Ma S. Bio-soft matter derived from traditional Chinese medicine: Characterizations of hierarchical structure, assembly mechanism, and beyond. J Pharm Anal 2024; 14:100943. [PMID: 39005842 PMCID: PMC11246065 DOI: 10.1016/j.jpha.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/03/2024] [Accepted: 01/31/2024] [Indexed: 07/16/2024] Open
Abstract
Structural and functional explorations on bio-soft matter such as micelles, vesicles, nanoparticles, aggregates or polymers derived from traditional Chinese medicine (TCM) has emerged as a new topic in the field of TCM. The discovery of such cross-scaled bio-soft matter may provide a unique perspective for unraveling the new effective material basis of TCM as well as developing innovative medicine and biomaterials. Despite the rapid rise of TCM-derived bio-soft matter, their hierarchical structure and assembly mechanism must be unambiguously probed for a further in-depth understanding of their pharmacological activity. In this review, the current emerged TCM-derived bio-soft matter assembled from either small molecules or macromolecules is introduced, and particularly the unambiguous elucidation of their hierarchical structure and assembly mechanism with combined electron microscopic and spectroscopic techniques is depicted. The pros and cons of each technique are also discussed. The future challenges and perspective of TCM-derived bio-soft matter are outlined, particularly the requirement for their precise in situ structural determination is highlighted.
Collapse
Affiliation(s)
- Guiya Yang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yue Liu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yuying Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
| | - Yue Yuan
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Yunan Qin
- Collaborative Innovation Center for Advanced Organic Chemical Materials Co-constructed by the Province and Ministry, Ministry-of-Education Key Laboratory for the Synthesis and Application of Organic Functional Molecules, College of Chemistry and Chemical Engineering, Hubei University, Wuhan, 430062, China
| | - Quan Li
- Tianjin Key Laboratory of Therapeutic Substance of Traditional Chinese Medicine, School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China
| | - Shuangcheng Ma
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, 102488, China
- Institute for Control of Chinese Traditional Medicine and Ethnic Medicine, National Institutes for Food and Drug Control, Beijing, 100050, China
| |
Collapse
|
10
|
Li C, Du M, Meng L, Adu-Frimpong M, Gong C, Zheng S, Shi W, Wang Q, Toreniyazov E, Ji H, Cao X, Yu J, Xu X. Preparation, characterisation, and pharmacodynamic study of myricetin pH-sensitive liposomes. J Microencapsul 2024; 41:269-283. [PMID: 38618699 DOI: 10.1080/02652048.2024.2337461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 03/19/2024] [Indexed: 04/16/2024]
Abstract
AIMS Myricetin (MYR) was incorporated into pH-sensitive liposomes in order to improve its bioavailability and anti-hyperuricemic activity. METHODS The MYR pH-sensitive liposomes (MYR liposomes) were prepared using thin film dispersion method, and assessed by particle size (PS), polydispersed index (PDI), zeta potential (ZP), encapsulation efficiency, drug loading, and in vitro release rate. Pharmacokinetics and anti-hyperuricemic activities were also evaluated. RESULTS The PS, PDI, ZP, encapsulation efficiency, and drug loading of MYR liposomes were 184.34 ± 1.05 nm, 0.215 ± 0.005, -38.46 ± 0.30 mV, 83.42 ± 1.07%w/w, and 6.20 ± 0.31%w/w, respectively. The release rate of MYR liposomes was higher than free MYR, wherein the cumulative value responded to pH. Besides, the Cmax of MYR liposomes was 4.92 ± 0.20 μg/mL. The level of uric acid in the M-L-H group (200 mg/kg) was reduced by 54.74%w/v in comparison with the model group. CONCLUSION MYR liposomes exhibited pH sensitivity and could potentially enhance the oral bioavailability and anti-hyperuricemic efficacy of MYR.
Collapse
Affiliation(s)
- Chenlu Li
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Mengzhe Du
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Lingzhi Meng
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Forensic Sciences, School of Chemical and Biochemical Sciences, C. K. Tedam University of Technology and Applied Sciences (CKT-UTAS), Navrongo, Ghana
| | - Caizhi Gong
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Sile Zheng
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
| | - Wentao Shi
- Central laboratory, Gaochun Hospital Affiliated to Jiangsu University, Jiangsu University, Nanjing, Jiangsu Province211300, P.R. China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, P.R. China
| | - Elmurat Toreniyazov
- Institute of Agriculture and Agrotechnologies of Karakalpakstan, Karakalpakstan, Uzbekistan
| | - Hao Ji
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd, Zhenjiang, People's Republic of China
| | - Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, P.R. China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, P.R. China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Center for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, Jiangsu, P.R. China
- Jiangsu Provincial Research Center for Medicinal Function Development of New Food Resources, Zhenjiang, P.R. China
| |
Collapse
|
11
|
Cai J, Wu J, Yu X, Wan Z, Yang X. Interfacial assembly and rheology of multi-responsive glycyrrhizic acid at liquid interfaces. SOFT MATTER 2024; 20:1173-1185. [PMID: 38164656 DOI: 10.1039/d3sm00973d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Glycyrrhizic acid (GA), a naturally derived food-grade saponin molecule, is a promising alternative to synthetic surfactants for stabilizing multiphase systems including emulsions and foams, due to its biological activity and surface-active properties. Understanding the interfacial behavior of GA, particularly in relation to its complex self-assembly behaviors in water induced by multiple environmental stimuli, is crucial to its application in multiphase systems. In this study, we comprehensively investigate the interfacial structure and rheological properties of GA systems, as a function of pH and temperature, through Langmuir-Blodgett films combined with atomic force microscopy, interfacial particle tracking, adsorption kinetics, stress-relaxation behavior and interfacial dilatational rheology. The variation of solution pH provokes pronounced changes in the interfacial properties of GA. At pH 2 and 4, GA fibril aggregates/fibrils adsorb rapidly, followed by rearrangement into large lamellar and rod-like structures, forming a loose and heterogeneous fibrous network at the interface, which exhibit a stretchable gel-like behavior. In contrast, GA at pH 6 and 8, featuring micelles or monomers in solutions, adsorb slowly to the interface and re-assemble partially into small micelle-like or irregular structures, which lead to a dense and homogeneous interfacial layer with stiffer glassy-like responses. With successively elevated temperature, the GA structures (pH 4) at the interface break into smaller fragments and further adsorption is promoted. Upon cooling, the interfacial tension of GA further decreases and a highly elastic interfacial layer may be formed. The diverse GA assemblies in bulk solution impart them with rich and intriguing interfacial behaviors, which may provide valuable mechanistic insights for the development of novel edible soft matter stabilized by GA.
Collapse
Affiliation(s)
- Jiyang Cai
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| | - Jiahao Wu
- Department of Chemistry, The Chinese University of Hong Kong, Shatin, NT, Hong Kong, China
| | - Xinke Yu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China.
| |
Collapse
|
12
|
Fischer P, Lutz-Bueno V. Glycyrrhizic acid aggregates seen from a synthetic surfactant perspective. Phys Chem Chem Phys 2024; 26:2806-2814. [PMID: 38196347 PMCID: PMC10806618 DOI: 10.1039/d3cp04835g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 12/19/2023] [Indexed: 01/11/2024]
Abstract
Bio- or plant-based surfactants are a sustainable and renewable alternative to replace synthetic chemicals for environmental, drugs and food applications. However, these "green" surfactants have unique molecular structures, and their self-assembly in water might lead to complex morphologies and unexpected properties. The micellization of saponin molecules, such as glycyrrhizic acid (GA), differs significantly from those of conventional synthetic surfactants, yet these differences are often overlooked. Saponins self-assemble in complex hierarchical helical morphologies similar to bile salts, rather than the expected globular, ellipsoidal and wormlike micelles. Here, we review two potential routes for molecular self-assembly of GA, namely kinetics of crystallization and thermodynamic equilibrium, focusing on their structure as a function of concentration. Some uncertainty remains to define which route is followed by GA self-assembly, as well as the first type of aggregate formed at low concentrations, thus we review the state-of-the-art information about GA assembly. We compare the self-assembly of GA with conventional linear surfactants, and identify their key similarities and differences, from molecular and chemical perspectives, based on the critical packing parameter (CPP) theory. We expect that this work will provide perspectives for the unclear process of GA assembly, and highlight its differences from conventional micellization.
Collapse
Affiliation(s)
- Peter Fischer
- Institute of Food, Nutrition and Health, ETH Zurich, 8092 Zurich, Switzerland.
| | - Viviane Lutz-Bueno
- Laboratory of Neutron Scattering and Imaging, Paul Scherrer Institut PSI, 5232 Villigen, Switzerland.
| |
Collapse
|
13
|
Cao X, Liu Q, Shi W, Liu K, Deng T, Weng X, Pan S, Yu Q, Deng W, Yu J, Wang Q, Xiao G, Xu X. Microfluidic fabricated bisdemethoxycurcumin thermosensitive liposome with enhanced antitumor effect. Int J Pharm 2023; 641:123039. [PMID: 37225026 DOI: 10.1016/j.ijpharm.2023.123039] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 04/17/2023] [Accepted: 05/05/2023] [Indexed: 05/26/2023]
Abstract
Bisdemethoxycurcumin (BDMC) is the main active ingredient that is isolated from Zingiberaceae plants, wherein it has excellent anti-tumor effects. However, insolubility in water limits its clinical application. Herein, we reported a microfluidic chip device that can load BDMC into the lipid bilayer to form BDMC thermosensitive liposome (BDMC TSL). The natural active ingredient glycyrrhizin was selected as the surfactant to improve solubility of BDMC. Particles of BDMC TSL had small size, homogenous size distribution, and enhanced cultimulative release in vitro. The anti-tumor effect of BDMC TSL on human hepatocellular carcinomas was investigated via 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide method, live/dead staining, and flowcytometry. These results showed that the formulated liposome had a strong cancer cell inhibitory, and presented a dose-dependent inhibitory effect on migration. Further mechanistic studies showed that BDMC TSL combined with mild local hyperthermia could significantly upregulate B cell lymphoma 2 associated X protein levels and decrease B cell lymphoma 2 protein levels, thereby inducing cell apoptosis. The BDMC TSL that was fabricated via microfluidic device were decomposed under mild local hyperthermia, which could beneficially enhance the anti-tumor effect of raw insoluble materials and promote translation of liposome.
Collapse
Affiliation(s)
- Xia Cao
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Qi Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Wenwan Shi
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Kai Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Tianwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Xuedi Weng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Siting Pan
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China
| | - Qingtong Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Wenwen Deng
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China.
| | - Gao Xiao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou 350108, Fujian, P. R. China.
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, People's Republic of China; Medicinal function development of new food resources, Jiangsu Provincial Research center, Jiangsu, People's Republic of China.
| |
Collapse
|
14
|
Feng M, Dai X, Yang C, Zhang Y, Tian Y, Qu Q, Sheng M, Li Z, Peng X, Cen S, Shi X. Unification of medicines and excipients: The roles of natural excipients for promoting drug delivery. Expert Opin Drug Deliv 2023; 20:597-620. [PMID: 37150753 DOI: 10.1080/17425247.2023.2210835] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 05/02/2023] [Indexed: 05/09/2023]
Abstract
INTRODUCTION Drug delivery systems (DDSs) formed by natural active compounds be instrumental in developing new green excipients and novel DDS from natural active compounds (NACs). 'Unification of medicines and excipients'(UME), the special inherent nature of the natural active compounds, provides the inspiration and conduction to achieve this goal. AREAS COVERED This review summarizes the typical types of NACs from herbal medicine, such as saponins, flavonoids, polysaccharides, etc. that act as excipients and their main application in DDS. The comparison of the drug delivery systems formed by NACs and common materials and the primary formation mechanisms of these NACs are also introduced to provide a deepened understanding of their performance in DDS. EXPERT OPINION Many natural bioactive compounds, such as saponins, polysaccharides, etc. have been used in DDS. Diversity of structure and pharmacological effects of NACs turn out the unique advantages in improving the performance of DDSs like targeting ability, adhesion, encapsulation efficiency(EE), etc. and enhancing the bioavailability of loaded drugs.
Collapse
Affiliation(s)
- Minfang Feng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xingxing Dai
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, China
| | - Cuiting Yang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yingying Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Yuting Tian
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Qingsong Qu
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Mengke Sheng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Zhixun Li
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinhui Peng
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Shuai Cen
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
| | - Xinyuan Shi
- School of Chinese Materia Medica, Beijing University of Chinese Medicine, Beijing, China
- Key Laboratory for Production Process Control and Quality Evaluation of Traditional Chinese Medicine, Beijing Municipal Science & Technology Commission, Beijing, China
| |
Collapse
|
15
|
Bafandeh S, Khodadadi E, Ganbarov K, Asgharzadeh M, Köse Ş, Samadi Kafil H. Natural Products as a Potential Source of Promising Therapeutics for COVID-19 and Viral Diseases. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:5525165. [PMID: 37096202 PMCID: PMC10122587 DOI: 10.1155/2023/5525165] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/19/2023] [Accepted: 03/24/2023] [Indexed: 04/26/2023]
Abstract
Background A global pandemic has recently been observed due to the new coronavirus disease, caused by SARS-CoV-2. Since there are currently no antiviral medicines to combat the highly contagious and lethal COVID-19 infection, identifying natural sources that can either be viricidal or boost the immune system and aid in the fight against the disease can be an essential therapeutic support. Methods This review was conducted based on published papers related to the herbal therapy of COVID-19 by search on databases including PubMed and Scopus with herbal, COVID-19, SARS-CoV-2, and therapy keywords. Results To combat this condition, people may benefit from the therapeutic properties of medicinal plants, such as increasing their immune system or providing an antiviral impact. As a result, SARS-CoV-2 infection death rates can be reduced. Various traditional medicinal plants and their bioactive components, such as COVID-19, are summarized in this article to assist in gathering and debating techniques for combating microbial diseases in general and boosting our immune system in particular. Conclusion The immune system benefits from natural products and many of these play a role in activating antibody creation, maturation of immune cells, and stimulation of innate and adaptive immune responses. The lack of particular antivirals for SARS-CoV-2 means that apitherapy might be a viable option for reducing the hazards associated with COVID-19 in the absence of specific antivirals.
Collapse
Affiliation(s)
- Soheila Bafandeh
- Research Center for Pharmaceutical Nanotechnology, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ehsaneh Khodadadi
- Department of Chemistry and Biochemistry, University of Arkansas, Fayetteville, AR 72701, USA
| | - Khudaverdi Ganbarov
- Research Laboratory of Microbiology and Virology, Baku State University, Baku, Azerbaijan
| | - Mohammad Asgharzadeh
- Biotechnology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Şükran Köse
- Department of Infectious Diseases and Clinical Microbiology, Dokuz Eylül Üniversitesi, Izmir, Turkey
| | - Hossein Samadi Kafil
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
16
|
Tighchi HA, Kayhani MH, Faezian A, Yeganehzad S, Miller R. Dynamic interfacial properties and foam behavior of licorice root extract solutions. Colloids Surf B Biointerfaces 2023; 224:113181. [PMID: 36822115 DOI: 10.1016/j.colsurfb.2023.113181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 01/17/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023]
Abstract
Licorice (Glycyrrhiza glabra) is a useful plant of the family Fabaceae, with sweet-tasting roots. The root extract of this plant is rich in saponins, so it can be considered a source of natural surfactants. This research provides some applicable information about the dynamic surface tension and foam behavior of aqueous solutions of licorice root extract (LRE). The pendant drop shape analysis was utilized to study the surface tension and dilational surface rheology of LRE at the water/air interface. The Bikerman type experiment was used to measure foamability and foam stability of aqueous LRE solutions. The equilibrium surface tensions reveal that the LRE contains surface-active components and is capable of reducing the surface tension by 25 mN/m at the critical aggregation concentration (CAC). The surface dilational visco-elasticity measurements proved that the adsorption layers are predominantly of elastic nature. Also the foamability and foam stability show a meaningful correlation with the dynamic surface properties. This study aims to contribute to the development of appropriate utilization of the benefits provided by a biosurfactant source in foam-related commercial applications.
Collapse
Affiliation(s)
- Hashem Ahmadi Tighchi
- Faculty of Mechanical Engineering, Shahrood University of Technology, Shahrood, Iran
| | | | - Ali Faezian
- Department of Food Machinery Design, Research Institute of Food Science & Technology (RIFST), Mashhad, Iran
| | - Samira Yeganehzad
- Department of Food Processing, Research Institute of Food Science & Technology (RIFST), Mashhad, Iran
| | | |
Collapse
|
17
|
Li Z, Liu W, Sun C, Wei X, Liu S, Jiang Y. Gastrointestinal pH-Sensitive Pickering Emulsions Stabilized by Zein Nanoparticles Coated with Bioactive Glycyrrhizic Acid for Improving Oral Bioaccessibility of Curcumin. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 36884340 DOI: 10.1021/acsami.2c21549] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Pickering emulsions have received considerable attention for their stability and functionality. Environmentally responsive Pickering emulsions could be used as vehicles for oral administration. However, challenges still exist, such as nonbiocompatibility of emulsifier and mismatched response behavior in the gastrointestinal environment. In this study, a strategy was proposed that bioactive saponin glycyrrhizic acid (GA) was used as a pH-responsive substance to functionalize zein nanoparticles, and tannic acid (TA) was used as a primer for cross-linking GA and zein nanoparticles. The Pickering emulsions fabricated by zein/TA/GA nanoparticles (ZTGs) exhibited excellent stability at acid conditions while slowly demulsifying at neutral conditions, which can be further used as an intestine-targeted delivery system. Curcumin was encapsulated into ZTG-stabilized Pickering emulsions, and the encapsulation efficiency results suggested that the presence of GA coating remarkably facilitated the encapsulation of curcumin. An in vitro digestion study suggested that ZTGs provided protection for emulsions from pepsin hydrolysis and exhibited higher free fatty acid release as well as higher bioaccessibility of curcumin during simulated intestine digestion. This study provides an effective strategy to prepare pH-responsive Pickering emulsions for improving the oral bioaccessibility of hydrophobic nutraceuticals.
Collapse
Affiliation(s)
- Zhiqiang Li
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Weiqi Liu
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Chenbo Sun
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Xinyi Wei
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Shiyuan Liu
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
| | - Yanbin Jiang
- Guangdong Provincial Key Lab of Green Chemical Product Technology, School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China
- School of Chemical Engineering, Guangdong University of Petrochemical Technology, Maoming 525000, China
| |
Collapse
|
18
|
Langer D, Mlynarczyk DT, Dlugaszewska J, Tykarska E. Potential of glycyrrhizic and glycyrrhetinic acids against influenza type A and B viruses: A perspective to develop new anti-influenza compounds and drug delivery systems. Eur J Med Chem 2023; 246:114934. [PMID: 36455358 DOI: 10.1016/j.ejmech.2022.114934] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/16/2022]
Abstract
Despite the recent dynamic development of medicine, influenza is still a significant epidemiological problem for people around the world. The growing resistance of influenza viruses to currently available antiviral drugs makes it necessary to search for new compounds or drug forms with potential high efficacy against human influenza A and B viruses. One of the methods of obtaining new active compounds is to chemically modify privileged structures occurring in the natural environment. The second solution, that is gaining more and more interest, is the use of modern drug carriers, which significantly improve physicochemical and pharmacokinetic parameters of the transported substances. Molecules known from the earliest times for their numerous therapeutic properties are glycyrrhizinic acid (GA) and glycyrrhetinic acid (GE). Both compounds constitute the main active agents of the licorice (Glycyrrhiza glabra, Leguminosae) root and, according to a number of scientific reports, show antiviral properties against both DNA and RNA viruses. The above information prompted many scientific teams around the world to obtain and test in vitro and/or in vivo new synthetic GA and GE derivatives against influenza A and B viruses. Similarly, in recent years, a significant amount of GA and GE-based drug delivery systems (DDS) such as nanoparticles, micelles, liposomes, nanocrystals, and carbon dots has been prepared and tested for antiviral activity, including those against influenza A and B viruses. This work systematizes the attempts undertaken to study the antiviral activity of new GA and GE analogs and modern DDS against clinically significant human influenza viruses, at the same time indicating the directions of their further development.
Collapse
Affiliation(s)
- Dominik Langer
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland.
| | - Dariusz T Mlynarczyk
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznań, Poland.
| | - Jolanta Dlugaszewska
- Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, Rokietnicka 3, 60-806, Poznań, Poland
| | - Ewa Tykarska
- Department of Chemical Technology of Drugs, Poznan University of Medical Sciences, Grunwaldzka 6, 60-780, Poznań, Poland
| |
Collapse
|
19
|
The effect of ethanol on fibrillar hydrogels formed by glycyrrhizic acid monoammonium salt. J Colloid Interface Sci 2023; 630:762-775. [DOI: 10.1016/j.jcis.2022.10.138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 11/09/2022]
|
20
|
Glycyrrhizin-Based Hydrogels Accelerate Wound Healing of Normoglycemic and Diabetic Mouse Skin. Pharmaceutics 2022; 15:pharmaceutics15010027. [PMID: 36678656 PMCID: PMC9861362 DOI: 10.3390/pharmaceutics15010027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 12/01/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Efficient wound repair is crucial for mammalian survival. Healing of skin wounds is severely hampered in diabetic patients, resulting in chronic non-healing wounds that are difficult to treat. High-mobility group box 1 (HMGB1) is an important signaling molecule that is released during wounding, thereby delaying regenerative responses in the skin. Here, we show that dissolving glycyrrhizin, a potent HMGB1 inhibitor, in water results in the formation of a hydrogel with remarkable rheological properties. We demonstrate that these glycyrrhizin-based hydrogels accelerate cutaneous wound closure in normoglycemic and diabetic mice by influencing keratinocyte migration. To facilitate topical application of glycyrrhizin hydrogels on cutaneous wounds, several concentrations of glycyrrhizinic acid in water were tested for their rheological, structural, and biological properties. By varying the concentration of glycyrrhizin, these hydrogel properties can be readily tuned, enabling customized wound care.
Collapse
|
21
|
Zheng L, Li X, Lian X, Xu R, Liu X, Xuan T, Zeng R, Ni WX, Luo B. Weakening Ligand-Liquid Affinity to Suppress the Desorption of Surface-Passivated Ligands from Perovskite Nanocrystals. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:15747-15755. [PMID: 36484684 DOI: 10.1021/acs.langmuir.2c02630] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The interfacial migration of surface-bound ligands highly affects the colloidal stability and optical quality of semiconductor nanocrystals, of which the underlying mechanism is not fully understood. Herein, colloidal CsPbBr3 perovskite nanocrystals (PNCs) with fragile dynamic equilibrium of ligands are taken as the examples to reveal the important role of balancing ligand-solid/solvent affinity in suppressing the desorption of ligands. As a micellar surfactant, glycyrrhizic acid (GA) with bulky hydrophobic and hydrophilic groups exhibits a relatively smaller diffusion coefficient (∼440 μm2/s in methanol) and weaker ligand-liquid affinity than that of conventional alkyl amine and carboxy ligands. Consequently, hydrophilic GA-passivated PNCs (PNCs-GA) show excellent colloidal stability in various polar solvents with dielectric constant ranging from 2.2 to 32.6 and efficient photoluminescence with a quantum yield of 85.3%. Due to the suppressed desorption of GA, the morphological and optical properties of PNCs-GA are well maintained after five rounds purification and two months long-term storage. At last, hydrophilic PNCs-GA are successfully patterned through inkjet- and screen-printing technology. These findings offer deep insights into the interfacial chemistry of colloidal NCs and provide a universal strategy for preparing high-quality hydrophilic PNCs.
Collapse
Affiliation(s)
- Lingling Zheng
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong Province 515041, P. R. China
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong Province 515063, P. R. China
| | - Xianli Li
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong Province 515041, P. R. China
| | - Xin Lian
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong Province 515063, P. R. China
| | - Ruijie Xu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong Province 515063, P. R. China
| | - Xiaohui Liu
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong Province 515063, P. R. China
| | - Tongtong Xuan
- College of Materials, Xiamen University, Xiamen, Fujian Province 361005, P. R. China
| | - Ruosheng Zeng
- School of Physical Science and Technology, MOE Key Laboratory of New Processing Technology for Non-ferrous Metals and Materials, Guangxi Key Laboratory of Processing for Non-ferrous Metals and Featured Materials, Guangxi University, Nanning, Guangxi Province 530004, P. R. China
| | - Wen-Xiu Ni
- Department of Medicinal Chemistry, Shantou University Medical College, Shantou, Guangdong Province 515041, P. R. China
| | - Binbin Luo
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong Province 515063, P. R. China
| |
Collapse
|
22
|
Stabilization of solid lipid nanoparticles with glycyrrhizin. Eur Food Res Technol 2022. [DOI: 10.1007/s00217-022-04176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractThis study investigated the influence of saponin glycyrrhizin on the formation and stability of solid lipid nanoparticles. The hypothesis was that glycyrrhizin facilitates the formation of stable crystalline lipid particles due to its molecular characteristics and slows down polymorphic transition. Tristearin solid lipid nanoparticles emulsified with glycyrrhizin at varying concentrations at pH 7 and 3 were generated by hot high-pressure homogenization. The influence of glycyrrhizin on the physical stability and crystallization behavior of solid lipid nanoparticles was evaluated by dynamic and static lights scattering, electrophoretic light scattering, optical microscopy, visual observations, and differential scanning calorimetry. The results showed that glycyrrhizin formed nanosized solid lipid nanoparticles at both pH 7 and 3. The glycyrrhizin concentration and the pH applied governed the crystallization behavior and the polymorphic stability as well as the physical appearance. Overall, glycyrrhizin showed remarkable ability to stabilize solid lipid nanoparticles against polymorphic transition over time. These results are relevant for food, pharmaceutical, and cosmetic industries to form stable carrier systems by using natural plant-based saponins as surfactants.
Collapse
|
23
|
Tan S, Li Q, Guo L, Wang Y, Zhong W. Investigation of foaming behavior in herbal extracts via the characterization of solution environment for reverse osmosis concentration. FOOD AND BIOPRODUCTS PROCESSING 2022. [DOI: 10.1016/j.fbp.2022.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
24
|
Tucker IM, Burley A, Petkova RE, Hosking SL, Webster J, Li P, Ma K, Doutch J, Penfold J, Thomas RK. Self-assembly in escin-nonionic surfactant mixtures: from micelles to vesicles. J Colloid Interface Sci 2022; 626:305-313. [DOI: 10.1016/j.jcis.2022.06.122] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/13/2022] [Accepted: 06/23/2022] [Indexed: 11/17/2022]
|
25
|
Cristiano MC, d’Avanzo N, Mancuso A, Tarsitano M, Barone A, Torella D, Paolino D, Fresta M. Ammonium Glycyrrhizinate and Bergamot Essential Oil Co-Loaded Ultradeformable Nanocarriers: An Effective Natural Nanomedicine for In Vivo Anti-Inflammatory Topical Therapies. Biomedicines 2022; 10:biomedicines10051039. [PMID: 35625775 PMCID: PMC9138283 DOI: 10.3390/biomedicines10051039] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 01/27/2023] Open
Abstract
Bergamot essential oil (BEO) and Ammonium glycyrrhizinate (AG), naturally derived compounds, have remarkable anti-inflammatory properties, thus making them suitable candidates for the treatment of skin disorders. Despite this, their inadequate physicochemical properties strongly compromise their topical application. Ultradeformable nanocarriers containing both BEO and AG were used to allow their passage through the skin, thus maximizing their therapeutic activity. Physicochemical characterization studies were performed using Zetasizer Nano ZS and Turbiscan Lab®. The dialysis method was used to investigate the release profile of the active compounds. In vivo studies were performed on human healthy volunteers through the X-Rite spectrophotometer. The nanosystems showed suitable features for topical cutaneous administration in terms of mean size, surface charge, size distribution, and long-term stability/storability. The co-delivery of BEO and AG in the deformable systems improved both the release profile kinetic of ammonium glycyrrhizinate and deformability properties of the resulting nanosystems. The topical cutaneous administration on human volunteers confirmed the efficacy of the nanosystems. In detail, BEO and AG-co-loaded ultradeformable vesicles showed a superior activity compared to that recorded from the ones containing AG as a single agent. These results are promising and strongly encourage a potential topical application of AG/BEO co-loaded nanocarriers for anti-inflammatory therapies.
Collapse
Affiliation(s)
- Maria Chiara Cristiano
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy; (M.C.C.); (A.M.); (A.B.); (D.T.)
| | - Nicola d’Avanzo
- Department of Pharmacy, University “G. d’Annunzio” of Chieti-Pescara, Via dei Vestini n.31, 66100 Chieti, Italy;
| | - Antonia Mancuso
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy; (M.C.C.); (A.M.); (A.B.); (D.T.)
| | - Martine Tarsitano
- Department of Health Science, University “Magna Græcia” of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy; (M.T.); (M.F.)
| | - Antonella Barone
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy; (M.C.C.); (A.M.); (A.B.); (D.T.)
| | - Daniele Torella
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy; (M.C.C.); (A.M.); (A.B.); (D.T.)
| | - Donatella Paolino
- Department of Experimental and Clinical Medicine, University “Magna Græcia” of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy; (M.C.C.); (A.M.); (A.B.); (D.T.)
- Correspondence: ; Tel.: +39-0961-3694-211
| | - Massimo Fresta
- Department of Health Science, University “Magna Græcia” of Catanzaro Campus Universitario-Germaneto, Viale Europa, 88100 Catanzaro, Italy; (M.T.); (M.F.)
| |
Collapse
|
26
|
Insight into binding behavior, structure, and foam properties of α-lactalbumin/glycyrrhizic acid complex in an acidic environment. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107411] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
27
|
Shi R, Liu Y, Ma Y, Zhao P, Jiang Z, Hou J. pH-Dependent Binding Behavior of the α-Lactalbumin/Glycyrrhizic Acid Complex in Relation to Their Foaming Characteristics in Bulk. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:3252-3262. [PMID: 35174703 DOI: 10.1021/acs.jafc.1c04882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
This work aimed to understand the relationships of the interaction mechanism and foaming characteristics of α-lactalbumin (α-La) and glycyrrhizic acid (GA) after acidic (pH 2.5) and neutral (pH 7.0) treatment. The critical aggregation concentration (CAC) of GA in the presence of α-La was 0.6 mM at pH 7.0, while it was 1.0 mM at pH 2.5. Also, in the presence of a GA concentration of 0-15.00 mM, more GA molecules combined onto the α-La surface at pH 2.5 than at pH 7.0, as evident from the binding isotherms. The turbidity and particle size of α-La/GA were greater in acidic solution than those under neutral conditions. This result could be interpreted by the formation of aggregates under higher GA concentration at pH 2.5. Meanwhile, the viscosity of the complex was higher at pH 2.5 than at pH 7.0 in the presence of 3.00-15.00 mM GA, as analyzed from the rheological properties. The foaming ability (FA) of α-La was significantly enhanced in the presence of 10.00 mM GA. Simultaneously, acidic solution could generate a more stable foaming system with a thicker film layer stabilized by the complex compared with neutral solution. These findings could be beneficial for developing a kind of acidic food-grade foaming agent.
Collapse
Affiliation(s)
- Ruijie Shi
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yue Liu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Yue Ma
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Panpan Zhao
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Zhanmei Jiang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, P. R. China
| | - Juncai Hou
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, P. R. China
| |
Collapse
|
28
|
Shi F, Chen L, Wang Y, Liu J, Adu-Frimpong M, Ji H, Toreniyazov E, Wang Q, Yu J, Xu X. Enhancement of oral bioavailability and anti-hyperuricemic activity of aloe emodin via novel Soluplus®-glycyrrhizic acid mixed micelle system. Drug Deliv Transl Res 2022; 12:603-614. [PMID: 33860450 DOI: 10.1007/s13346-021-00969-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/22/2021] [Indexed: 10/21/2022]
Abstract
The objective of this study was to fabricate a novel drug delivery system using Soluplus® (polyvinyl caprolactam-polyvinyl acetate-polyethylene glycol graft copolymer) and glycyrrhizic acid to improve solubility, bioavailability, and anti-hyperuricemic activity of aloe emodin (AE). The AE-loaded mixed micelles (AE-M) were prepared by thin-film hydration method. The optimal AE-M contained small-sized (30.13 ± 1.34 nm) particles with high encapsulation efficiency (m/m, %) of 90.3 ± 1.08%. The release rate of AE increased in the micellar formulation than that of free AE in the four media (DDW, pH 7.0; phosphate buffer solution, pH 7.4; phosphate buffer solution, pH 6.8; and hydrochloric acid aqueous solution, pH 1.2). In comparison to free AE, the pharmacokinetic study of AE-M showed that its relative oral bioavailability increased by 3.09 times, indicating that mixed micelles may promote gastrointestinal absorption. More importantly, AE-M effectively reduced uric acid level by inhibiting xanthine oxidase (XOD) activity in model rats. The degree of ankle swelling, serum levels of interleukin (IL)-1, and IL-6-related inflammatory factors levels all decreased in the gouty arthritis model established via monosodium urate (MSU) crystals. Taken together, the AE-M demonstrated the potential to improve the bioavailability, anti-hyperuricemic activity, and anti-inflammation of AE.
Collapse
Affiliation(s)
- Feng Shi
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Lin Chen
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Yaping Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jing Liu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Michael Adu-Frimpong
- Department of Biochemistry and Biotechnology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Hao Ji
- Jiangsu Tian Sheng Pharmaceutical Co., Ltd, Zhenjiang, People's Republic of China
| | - Elmurat Toreniyazov
- Ashkent State Agricultural University (Nukus Branch), Avdanberdi str, Nukus, Uzbekistan, 742009
| | - Qilong Wang
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Jiangnan Yu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China
| | - Ximing Xu
- Department of Pharmaceutics, School of Pharmacy, Centre for Nano Drug/Gene Delivery and Tissue Engineering, Jiangsu University, Zhenjiang, 212013, People's Republic of China.
| |
Collapse
|
29
|
Characterization of the binding behavior, structure and foaming properties of bovine α-lactalbumin combined with saponin by the multi-spectroscopic and silico approaches. Food Hydrocoll 2022. [DOI: 10.1016/j.foodhyd.2021.107259] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
30
|
|
31
|
Tucker I, Burley A, Petkova R, Hosking S, Webster JRP, Li P, Ma K, Doutch J, Penfold J, Thomas R. Self-assembly of Quillaja saponin mixtures with different conventional synthetic surfactants. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127854] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
32
|
Pashkina E, Evseenko V, Dumchenko N, Zelikman M, Aktanova A, Bykova M, Khvostov M, Dushkin A, Kozlov V. Preparation and Characterization of a Glycyrrhizic Acid-Based Drug Delivery System for Allergen-Specific Immunotherapy. NANOMATERIALS 2021; 12:nano12010148. [PMID: 35010098 PMCID: PMC8746317 DOI: 10.3390/nano12010148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 12/29/2021] [Accepted: 12/30/2021] [Indexed: 11/23/2022]
Abstract
The most effective method of treating allergic diseases, aimed not at relieving symptoms, but at eliminating the cause of the disease, is allergen-specific immunotherapy (AIT). To reduce the risk of side effects and improve the delivery of allergens to the mucosa, various delivery systems, such as liposomes, dendrimers, nanoparticles, etc., can be used. To date, there are data on the creation of delivery systems based on glycyrrhizic acid (GA) and its derivatives, but such a delivery system has not been used for allergen-specific therapy until now. It is also known that GA has an anti-inflammatory effect, shifts the balance towards Th1, and increases the number of Treg cells, meaning that it could potentially enhance the anti-allergic effect of AIT and reduce the risk of unwanted side effects. Thus, the study of the immunomodulatory effect of the supramolecular complexes (micelles) of GA with extracts of allergens holds promise for the development of new drugs for AIT.
Collapse
Affiliation(s)
- Ekaterina Pashkina
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya, 6300099 Novosibirsk, Russia; (A.A.); (V.K.)
- Correspondence:
| | - Veronika Evseenko
- Institute of Solid State Chemistry and Mechanochemistry, 18, Kutateladze, 630090 Novosibirsk, Russia; (V.E.); (M.Z.); (A.D.)
| | - Natalya Dumchenko
- State Research Center of Virology and Biotechnology VECTOR, Rospotrebnadzor, 630559 Koltsovo, Novosibirsk Oblast, Russia;
| | - Maxim Zelikman
- Institute of Solid State Chemistry and Mechanochemistry, 18, Kutateladze, 630090 Novosibirsk, Russia; (V.E.); (M.Z.); (A.D.)
| | - Alina Aktanova
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya, 6300099 Novosibirsk, Russia; (A.A.); (V.K.)
| | - Maria Bykova
- Department of Medicine, Novosibirsk State University, 2, Pirogova Street, 630090 Novosibirsk, Russia;
| | - Mikhail Khvostov
- Institute of Organic Chemistry SB RAS, 9, Lavrentev Prospect, 630090 Novosibirsk, Russia;
| | - Aleksandr Dushkin
- Institute of Solid State Chemistry and Mechanochemistry, 18, Kutateladze, 630090 Novosibirsk, Russia; (V.E.); (M.Z.); (A.D.)
| | - Vladimir Kozlov
- Research Institute of Fundamental and Clinical Immunology, 14, Yadrintsevskaya, 6300099 Novosibirsk, Russia; (A.A.); (V.K.)
| |
Collapse
|
33
|
Tucker I, Burley A, Petkova R, Hosking S, Webster J, Li P, Ma K, Doutch J, Penfold J, Thomas R. Self-assembly in saponin mixtures: Escin/tea, tea/glycyrrhizic acid, and escin/glycyrrhizic acid mixtures. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127420] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
34
|
Xu M, Wan Z, Yang X. Recent Advances and Applications of Plant-Based Bioactive Saponins in Colloidal Multiphase Food Systems. Molecules 2021; 26:6075. [PMID: 34641618 PMCID: PMC8512339 DOI: 10.3390/molecules26196075] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 09/30/2021] [Accepted: 10/01/2021] [Indexed: 11/16/2022] Open
Abstract
The naturally occurring saponins exhibit remarkable interfacial activity and also possess many biological activities linking to human health benefits, which make them particularly attractive as bifunctional building blocks for formulation of colloidal multiphase food systems. This review focuses on two commonly used food-grade saponins, Quillaja saponins (QS) and glycyrrhizic acid (GA), with the aim of clarifying the relationship between the structural features of saponin molecules and their subsequent self-assembly and interfacial properties. The recent applications of these two saponins in various colloidal multiphase systems, including liquid emulsions, gel emulsions, aqueous foams and complex emulsion foams, are then discussed. A particular emphasis is on the unique use of GA and GA nanofibrils as sole stabilizers for fabricating various multiphase food systems with many advanced qualities including simplicity, ultrastability, stimulability, structural viscoelasticity and processability. These natural saponin and saponin-based colloids are expected to be used as sustainable, plant-based ingredients for designing future foods, cosmetics and pharmaceuticals.
Collapse
Affiliation(s)
- Mengyue Xu
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; (M.X.); (X.Y.)
| | - Zhili Wan
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; (M.X.); (X.Y.)
- Overseas Expertise Introduction Center for Discipline Innovation of Food Nutrition and Human Health (111 Center), Guangzhou 510640, China
| | - Xiaoquan Yang
- Laboratory of Food Proteins and Colloids, School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, South China University of Technology, Guangzhou 510640, China; (M.X.); (X.Y.)
| |
Collapse
|
35
|
Self-assembly in saponin/surfactant mixtures: Escin and sodium dodecylsulfate. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
|
36
|
Zheng L, Jiang K, Li X, Hong P, Chen K, Zhang H, Song Y, Luo B. Water-assisted preparation of ethanol-dispersed CsPbBr 3 perovskite nanocrystals and emissive gel. J Colloid Interface Sci 2021; 598:166-171. [PMID: 33901843 DOI: 10.1016/j.jcis.2021.04.017] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Revised: 04/05/2021] [Accepted: 04/05/2021] [Indexed: 10/21/2022]
Abstract
Cesium lead halide perovskite nanocrystals (PNCs) are highly attractive for optoelectronic applications due to their tunable bandgap, large absorption cross section and efficient photoluminescence. However, the dynamic ligand binding and ionic lattice make PNCs extremely sensitive to polar solvents, which greatly hinders the applications of PNCs. In this work, we first synthesize ethanol-dispersed PNCs with the assistance of water using glycyrrhizic acid (GA) as the sole capping ligand. The prepared PNCs with a mean size of 14.5 nm exhibit a narrow and symmetric emission band (full width at half maximum: 18 nm) and photoluminescence (PL) quantum yield (QY) of ~38.1%. Different with the common sense, the addition of water promotes the formation of GA-passivated PNCs due to the accelerated reaction rate of precursors and the H+ dissociation of GA at presence of Lewis base water. Furthermore, the ethanol-dispersed PNCs can be further transformed into emissive ethanol gels with improved stability. Our findings provide a novel strategy to achieve stable colloidal PNCs in polar solvents.
Collapse
Affiliation(s)
- Lingling Zheng
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China
| | - Kunyang Jiang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China
| | - Xianli Li
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China
| | - Peibin Hong
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China
| | - Keng Chen
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China
| | - Hao Zhang
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China
| | - Yibing Song
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China
| | - Binbin Luo
- Department of Chemistry and Key Laboratory for Preparation and Application of Ordered Structural Materials of Guangdong Province, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
37
|
Dargel C, Gräbitz-Bräuer F, Geisler R, Fandrich P, Hannappel Y, Porcar L, Hellweg T. Stable DOPG/Glycyrrhizin Vesicles with a Wide Range of Mixing Ratios: Structure and Stability as Seen by Scattering Experiments and Cryo-TEM. Molecules 2021; 26:molecules26164959. [PMID: 34443547 PMCID: PMC8399256 DOI: 10.3390/molecules26164959] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/12/2021] [Accepted: 08/13/2021] [Indexed: 11/24/2022] Open
Abstract
Phosphatidylglycerols represent a large share of the lipids in the plasmamembrane of procaryotes. Therefore, this study investigates the role of charged lipids in the plasma membrane with respect to the interaction of the antiviral saponin glycyrrhizin with such membranes. Glycyrrhizin is a natural triterpenic-based surfactant found in licorice. Vesicles made of 1,2-dioleoyl-sn-glycero-3-phospho-rac-(1’-glycerol) (DOPG)/glycyrrhizin are characterized by small-angle scattering with neutrons and X-rays (SANS and SAXS). Small-angle scattering data are first evaluated by the model-independent modified Kratky–Porod method and afterwards fitted by a model describing the shape of small unilamellar vesicles (SUV) with an internal head-tail contrast. Complete miscibility of DOPG and glycyrrhizin was revealed even at a ratio of lipid:saponin of 1:1. Additional information about the chain-chain correlation distance of the lipid/saponin mixtures in the SUV structures is obtained from wide-angle X-ray scattering (WAXS).
Collapse
Affiliation(s)
- Carina Dargel
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (C.D.); (F.G.-B.); (R.G.); (P.F.); (Y.H.)
| | - Friederike Gräbitz-Bräuer
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (C.D.); (F.G.-B.); (R.G.); (P.F.); (Y.H.)
| | - Ramsia Geisler
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (C.D.); (F.G.-B.); (R.G.); (P.F.); (Y.H.)
| | - Pascal Fandrich
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (C.D.); (F.G.-B.); (R.G.); (P.F.); (Y.H.)
| | - Yvonne Hannappel
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (C.D.); (F.G.-B.); (R.G.); (P.F.); (Y.H.)
| | - Lionel Porcar
- Institut Laue-Langevin, 71 Avenue des Martyrs CS 20156, CEDEX 9, 38042 Grenoble, France;
| | - Thomas Hellweg
- Physical and Biophysical Chemistry, Bielefeld University, Universitätsstr. 25, 33615 Bielefeld, Germany; (C.D.); (F.G.-B.); (R.G.); (P.F.); (Y.H.)
- Correspondence: ; Tel.: +49-0521-106-2055
| |
Collapse
|
38
|
Taarji N, Bouhoute M, Melanie H, Hafidi A, Kobayashi I, Neves M, Tominaga K, Isoda H, Nakajima M. Stability characteristics of O/W emulsions prepared using purified glycyrrhizin or a non-purified glycyrrhizin-rich extract from liquorice root (Glycyrrhiza glabra). Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2020.126006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
39
|
Adsorption and self-assembly properties of the plant based biosurfactant, Glycyrrhizic acid. J Colloid Interface Sci 2021; 598:444-454. [PMID: 33930748 DOI: 10.1016/j.jcis.2021.03.101] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/23/2022]
Abstract
There is an increased interest in the use of natural surfactant as replacements for synthetic surfactants due to their biosustainable and biocompatible properties. A category of natural surfactants which are attracting much current interest is the triterpenoid saponins; surface active components found extensively in a wide range of plant species. A wide range of different saponin structures exist, depending upon the plant species they are extracted from; but regardless of the variation in structural details they are all highly surface active glycosides. Greater exploitation and application requires a characterisation and understanding of their basic adsorption and self-assembly properties. HYPOTHESIS Glycyrrhizic acid, extracted from Licorice root, is a monodesmosidic triterpenoid saponin. It is widely used in cosmetic and pharmaceutical applications due to its anti-inflammatory properties, and is an ingredient in foods as a sweetener additive. It has an additional attraction due to its gel forming properties at relatively low concentrations. Although it has attracted much recent attention, many of its basic surface active characteristics, adsorption and self-assembly, remain relatively unexplored. How the structure of the Glycyrrhizic acid saponin affects its surface active properties and the impact of gelation on these properties are important considerations, and to investigate these are the focus of the study. EXPERIMENTS In this paper the adsorption properties at the air-water interface and the self-assembly in solution have been investigated using by neutron reflectivity and small angle neutron scattering; in non-gelling and gelling conditions. FINDINGS The adsorption isotherm is determined in water and in the presence of gelling additives, and compared with the adsorption behaviour of other saponins. Gelation has minimal impact on the adsorption; apart from producing a rougher surface with a surface texture on a macroscopic length scale. Globular micelles are formed in aqueous solution with modest anisotropy, and are compared with the structure of other saponin micelles. The addition of gelling agents results in only minimal micelle growth, and the solutions remain isotropic under applied shear flow.
Collapse
|
40
|
You G, Feng T, Zhang G, Chen M, Liu F, Sun L, Wang M, Ren X. Preparation, optimization, characterization and in vitro release of baicalein-solubilizing glycyrrhizic acid nano-micelles. Int J Pharm 2021; 601:120546. [PMID: 33794322 DOI: 10.1016/j.ijpharm.2021.120546] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 03/22/2021] [Accepted: 03/23/2021] [Indexed: 11/16/2022]
Abstract
Glycyrrhizic acid is an amphiphilic molecule, which can form host-guest complexes by self-assembly, thereby encapsulating the guest molecule and increasing its solubility. The complexes can also achieve a controlled release effect for encapsulated drugs, so they have potential as drug delivery-systems. Baicalein is a flavonoid, with many pharmacological activities, but its oral bioavailability is limited by its poor solubility. In this study, glycyrrhizic acid-baicalein nano-micelles were prepared by an ultrasonic-film hydration method. The baicalein-loaded nano-micelles were evaluated by encapsulation efficiency, baicalein loading, particle size, polydispersity index and ζ-potential. A Box-Behnken statistical design was applied to obtain the optimal formulation (glycyrrhizic acid: 90 mg, baicalein: 8 mg, water bath shaking time: 12 h, ultrasonication time: 10 min). Nano-micelles prepared with the optimal formulation improved the solubility of baicalein in water by more than 4500 times and were characterized by differential scanning calorimetry and Fourier-transform infrared spectroscopy. An in vitro drug release study determined the cumulative drug release of baicalein in pH 6.8 and pH 8.3 buffer medium, after 6 h to be 18.20% and 47.96%, respectively, which indicates that the nano-micelles have a sustained-release effect on baicalein and that the release rate can be modulated by changing the pH.
Collapse
Affiliation(s)
- Guangjiao You
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Tao Feng
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Guoqin Zhang
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Meiling Chen
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Fan Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Lili Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Meng Wang
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Xiaoliang Ren
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| |
Collapse
|
41
|
Selyutina OY, Mastova AV, Shelepova EA, Polyakov NE. pH-Sensitive Glycyrrhizin Based Vesicles for Nifedipine Delivery. Molecules 2021; 26:1270. [PMID: 33652843 PMCID: PMC7956202 DOI: 10.3390/molecules26051270] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 02/19/2021] [Accepted: 02/21/2021] [Indexed: 12/28/2022] Open
Abstract
Glycyrrhizic acid, or glycyrrhizin (GA), a major active component of licorice root, has been widely used in traditional Chinese and Japanese medicine since ancient times. However, only in the last decades has a novel and unusual property of the GA been discovered to form water-soluble, supramolecular complexes with a variety of lipophilic drugs. These complexes show significant advantages over other known delivery systems, in particular, due to strong pH sensitivity, the properties of GA self-associates. In the present study, a supramolecular complex formation of the hypotensive and antiarrhythmic drug nifedipine with GA has been studied at different pH values, corresponding to the different degrees of GA dissociation, including a fully dissociated state of GA. Both NMR experiments and molecular dynamics simulations demonstrate the existence of the nifedipine complex with GA at all dissociation states of GA. However, optical absorption experiments show the decrease of complex stability and solubility at pH > 6 when the GA molecule is fully deprotonated. It means the higher release rate of the drug in a neutral and basic environment compared with acid media. These results could form the basis of follow-up studies of GA self-associates as pH-controlled drug delivery systems.
Collapse
Affiliation(s)
- Olga Yu. Selyutina
- Institute of Chemical Kinetics and Combustion, Institutskaya St. 3, 630090 Novosibirsk, Russia; (A.V.M.); (E.A.S.); (N.E.P.)
- Institute of Solid State Chemistry and Mechanochemistry, Kutateladze St. 18, 630128 Novosibirsk, Russia
| | - Anna V. Mastova
- Institute of Chemical Kinetics and Combustion, Institutskaya St. 3, 630090 Novosibirsk, Russia; (A.V.M.); (E.A.S.); (N.E.P.)
| | - Ekaterina A. Shelepova
- Institute of Chemical Kinetics and Combustion, Institutskaya St. 3, 630090 Novosibirsk, Russia; (A.V.M.); (E.A.S.); (N.E.P.)
| | - Nikolay E. Polyakov
- Institute of Chemical Kinetics and Combustion, Institutskaya St. 3, 630090 Novosibirsk, Russia; (A.V.M.); (E.A.S.); (N.E.P.)
- Institute of Solid State Chemistry and Mechanochemistry, Kutateladze St. 18, 630128 Novosibirsk, Russia
| |
Collapse
|
42
|
Matsuoka K, Arima M, Goto Y, Yada S, Yoshimura T. Micelle Formation of Monoammonium Glycyrrhizinate. J Oleo Sci 2021; 70:911-918. [PMID: 34193668 DOI: 10.5650/jos.ess21046] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Monoammonium glycyrrhizinate is produced by the neutralization of glycyrrhizic acid from plant licorice with ammonia. In this study, the physicochemical properties of aqueous monoammonium glycyrrhizinate were investigated from the viewpoint of surface chemistry. The structure of the amphiphilic molecule is bola type, comprising two glucuronic acid moieties having two carboxylic acids groups and an aglycone part having a carboxylic acid at the opposite end of the molecule from the glucuronic acids. We found that the physicochemical properties of aqueous monoammonium glycyrrhizinate are dependent on the ionization of the carboxylic acid groups. The solubility of monoammonium glycyrrhizinate gradually increased above pH 4 in the buffer solution. The critical micelle concentration (CMC) and surface tension at the CMC (γCMC) of monoammonium glycyrrhizinate were determined by the surface tension method to be 1.5 mmol L-1 and 50 mN m-1 in pH 5 buffer and 3.7 mmol L-1 and 51 mN m-1 in pH 6 buffer, respectively. The surface tension gradually decreased with increasing concentration of monoammonium glycyrrhizinate in the pH 7 buffer, but the CMC was not defined by the curve. Light scattering measurements also did not reveal a clear CMC in the pH 7 buffer. The ionization of the carboxylic acid groups in the bola-type amphiphilic molecule with increasing pH is disadvantageous for micelle formation. Cryo-transmission electron microscopy showed that monoammonium glycyrrhizinate forms rod-like micelles in pH 5 buffer, and small angle X-ray scattering experiments confirmed that the average micellar structure was rod-like in pH 5 buffer. Thus, it was found that monoammonium glycyrrhizinate can form micelles only in weakly acidic aqueous solutions.
Collapse
Affiliation(s)
- Keisuke Matsuoka
- Faculty of Education, Laboratory of Chemistry, Saitama University
| | - Mamoru Arima
- Faculty of Education, Laboratory of Chemistry, Saitama University
| | - Yusuke Goto
- Faculty of Education, Laboratory of Chemistry, Saitama University
| | - Shiho Yada
- Department of Chemistry, Faculty of Science and Graduate School of Science, Nara Women's University
| | - Tomokazu Yoshimura
- Department of Chemistry, Faculty of Science and Graduate School of Science, Nara Women's University
| |
Collapse
|
43
|
Zhang F, Chen H, Lan J, Song K, Wu X. Preparation and in vitro/in vivo evaluations of novel ocular micelle formulations of hesperetin with glycyrrhizin as a nanocarrier. Exp Eye Res 2020; 202:108313. [PMID: 33080302 DOI: 10.1016/j.exer.2020.108313] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 11/16/2022]
Abstract
The purpose of this study was to explore the potential of formulating hesperetin into an ophthalmic solution with dipotassium glycyrrhizinate (DG) as a micelle nanocarrier. A DG-based micelle ophthalmic solution encapsulating hesperetin (DG-Hes) was developed and its in vitro/in vivo characterizations were evaluated. The optimal formulation featured a DG/hesperetin (Hes) weight ratio of 12:1 and an encapsulation efficiency of 90.4 ± 1.7%; The optimized DG-Hes was characterized as small uniform spheres with an average micelle size of 70.93 ± 3.41 nm, a polydispersity index of 0.11 ± 0.02, and an electrically negative surface (-36.12 ± 2.79 mV). The DG-Hes ophthalmic solution had good tolerance in rabbit eyes. DG-Hes significantly improved the in vitro passive permeation, ex vivo corneal permeation, and in vivo ocular bioavailability of Hes. DG-Hes showed markedly increases in in vitro antioxidant activity. In vitro antibacterial activity tests revealed a lower minimum inhibitory concentration and lower minimum bactericidal concentration for DG-Hes ophthalmic solution were lower than for free Hes. DG-Hes ophthalmic solution also significantly reduced symptoms of eye infection in the rabbit bacterial keratitis model when compared to a Hes suspension. These results suggest that DG-Hes eye drops may be useful as a new ophthalmic preparation for the treatment of ocular diseases, especially bacterial ophthalmopathy.
Collapse
Affiliation(s)
- Fan Zhang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Huabo Chen
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Jie Lan
- Qingdao Eye Hospital of Shandong First Medical University, Qingdao, China; State Key Laboratory Cultivation Base, Shandong Provincial Key Laboratory of Ophthalmology, Shandong Eye Institute, Shandong First Medical University & Shandong Academy of Medical Sciences, Qingdao, China
| | - Kaichao Song
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China
| | - Xianggen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao, China; Key Laboratory of Pharmaceutical Research for Metabolic Diseases, Qingdao University of Science and Technology, Qingdao, China.
| |
Collapse
|
44
|
Song K, Yan M, Li M, Geng Y, Wu X. Preparation and in vitro–in vivo evaluation of novel ocular nanomicelle formulation of thymol based on glycyrrhizin. Colloids Surf B Biointerfaces 2020; 194:111157. [DOI: 10.1016/j.colsurfb.2020.111157] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Revised: 05/14/2020] [Accepted: 05/25/2020] [Indexed: 01/19/2023]
|
45
|
Taarji N, Bouhoute M, Fainassi F, Hafidi A, Kobayashi I, Neves MA, Tominaga K, Isoda H, Nakajima M. Interfacial and emulsifying properties of purified glycyrrhizin and non-purified glycyrrhizin-rich extracts from liquorice root (Glycyrrhiza glabra). Food Chem 2020; 337:127949. [PMID: 32919267 DOI: 10.1016/j.foodchem.2020.127949] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2020] [Revised: 08/25/2020] [Accepted: 08/25/2020] [Indexed: 11/28/2022]
Abstract
This study compared the interfacial and emulsifying properties of purified saponins and non-purified saponin-rich extracts of Glycyrrhiza glabra, and highlighted potential mechanisms by which crude surface-active compositions, such as liquorice root extract (LRE), act as emulsifiers. LRE presented different fluid properties, in comparison to purified glycyrrhizin (PG), at equivalent glycyrrhizin concentrations. Particularly, it exhibited limited glycyrrhizin fibrilization at pH < pKa and efficiently reduced the interfacial tension at the soybean oil/water interface, independently of pH. LRE also presented better emulsification properties, in comparison to PG samples. Emulsions prepared using LRE had lower droplet sizes when using higher oil mass fractions or lower homogenization pressures, which was attributed to 2 main factors: (i) efficient adsorption of glycyrrhizin molecules at relatively low interfacial curvatures, thus accelerating oil phase breakup during homogenization and (ii) sufficient coverage of newly generated droplets due to adsorption of residual surface-active components (e.g. proteins), thus minimizing droplet coalescence.
Collapse
Affiliation(s)
- Noamane Taarji
- Food and Medicinal Resource Engineering Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5-2, Tsukuba City, Ibaraki 305-8565, Japan; Food Sciences Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box: 2390, 40001 Marrakech, Morocco; Program in Life Science Innovation, School of Integrative and Global Majors (SIGMA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan.
| | - Meryem Bouhoute
- Program in Life Science Innovation, School of Integrative and Global Majors (SIGMA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan
| | - Firdaous Fainassi
- Food Sciences Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box: 2390, 40001 Marrakech, Morocco
| | - Abdellatif Hafidi
- Food Sciences Laboratory, Faculty of Sciences Semlalia, Cadi Ayyad University, P.O. Box: 2390, 40001 Marrakech, Morocco.
| | - Isao Kobayashi
- Program in Life Science Innovation, School of Integrative and Global Majors (SIGMA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan; Food Research Institute, NARO, 2-1-12 Kannondai, Tsukuba 305-8642, Japan.
| | - Marcos A Neves
- Program in Life Science Innovation, School of Integrative and Global Majors (SIGMA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan.
| | - Kenichi Tominaga
- Food and Medicinal Resource Engineering Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5-2, Tsukuba City, Ibaraki 305-8565, Japan.
| | - Hiroko Isoda
- Food and Medicinal Resource Engineering Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5-2, Tsukuba City, Ibaraki 305-8565, Japan; Program in Life Science Innovation, School of Integrative and Global Majors (SIGMA), University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan.
| | - Mitsutoshi Nakajima
- Food and Medicinal Resource Engineering Open Innovation Laboratory, National Institute of Advanced Industrial Science and Technology (AIST), AIST Tsukuba Central 5-2, Tsukuba City, Ibaraki 305-8565, Japan.
| |
Collapse
|
46
|
Li F, Liu B, Li T, Wu Q, Xu Z, Gu Y, Li W, Wang P, Ma T, Lei H. Review of Constituents and Biological Activities of Triterpene Saponins from Glycyrrhizae Radix et Rhizoma and Its Solubilization Characteristics. Molecules 2020; 25:E3904. [PMID: 32867101 PMCID: PMC7503449 DOI: 10.3390/molecules25173904] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Revised: 08/20/2020] [Accepted: 08/25/2020] [Indexed: 12/13/2022] Open
Abstract
Glycyrrhizae Radix et Rhizoma is regarded as one of the most popular and commonly used herbal medicines and has been used in traditional Chinese medicine (TCM) prescriptions for over 2000 years. Pentacyclic triterpene saponins are common secondary metabolites in these plants, which are synthesized via the isoprenoid pathway to produce a hydrophobic triterpenoid aglycone containing a hydrophilic sugar chain. This paper systematically summarizes the chemical structures of triterpene saponins in Glycyrrhizae Radix et Rhizoma and reviews and updates their main biological activities studies. Furthermore, the solubilization characteristics, influences, and mechanisms of Glycyrrhizae Radix et Rhizoma are elaborated. Solubilization of the triterpene saponins from Glycyrrhizae Radix et Rhizoma occurs because they contain the nonpolar sapogenin and water-soluble sidechain. The possible factors affecting the solubilization of Glycyrrhizae Radix et Rhizoma are mainly other crude drugs and the pH of the decoction. Triterpene saponins represented by glycyrrhizin from Glycyrrhizae Radix et Rhizoma characteristically form micelles due to amphiphilicity, which makes solubilization possible. This overview provides guidance regarding a better understanding of GlycyrrhizaeRadix et Rhizoma and its TCM compatibility, alongside a theoretical basis for the further development and utilization of Glycyrrhizae Radix et Rhizoma.
Collapse
Affiliation(s)
- Feifei Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China; (F.L.); (T.L.); (Q.W.); (Y.G.); (W.L.); (P.W.); (T.M.)
- Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China
| | - Bin Liu
- COFCO Nutrition and Health Research Institute, Beijing 102209, China;
| | - Tong Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China; (F.L.); (T.L.); (Q.W.); (Y.G.); (W.L.); (P.W.); (T.M.)
| | - Qianwen Wu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China; (F.L.); (T.L.); (Q.W.); (Y.G.); (W.L.); (P.W.); (T.M.)
| | - Zhiyong Xu
- Key Laboratory of Computational Chemistry-Based Natural Antitumor Drug Research & Development, School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China;
| | - Yuhao Gu
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China; (F.L.); (T.L.); (Q.W.); (Y.G.); (W.L.); (P.W.); (T.M.)
| | - Wen Li
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China; (F.L.); (T.L.); (Q.W.); (Y.G.); (W.L.); (P.W.); (T.M.)
| | - Penglong Wang
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China; (F.L.); (T.L.); (Q.W.); (Y.G.); (W.L.); (P.W.); (T.M.)
| | - Tao Ma
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China; (F.L.); (T.L.); (Q.W.); (Y.G.); (W.L.); (P.W.); (T.M.)
| | - Haimin Lei
- School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing 100102, China; (F.L.); (T.L.); (Q.W.); (Y.G.); (W.L.); (P.W.); (T.M.)
- Institute of Regulatory Science for Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100102, China
| |
Collapse
|
47
|
Glycyrrhizin: An alternative drug for the treatment of COVID-19 infection and the associated respiratory syndrome? Pharmacol Ther 2020; 214:107618. [PMID: 32592716 PMCID: PMC7311916 DOI: 10.1016/j.pharmthera.2020.107618] [Citation(s) in RCA: 183] [Impact Index Per Article: 36.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Safe and efficient drugs to combat the current COVID-19 pandemic are urgently needed. In this context, we have analyzed the anti-coronavirus potential of the natural product glycyrrhizic acid (GLR), a drug used to treat liver diseases (including viral hepatitis) and specific cutaneous inflammation (such as atopic dermatitis) in some countries. The properties of GLR and its primary active metabolite glycyrrhetinic acid are presented and discussed. GLR has shown activities against different viruses, including SARS-associated Human and animal coronaviruses. GLR is a non-hemolytic saponin and a potent immuno-active anti-inflammatory agent which displays both cytoplasmic and membrane effects. At the membrane level, GLR induces cholesterol-dependent disorganization of lipid rafts which are important for the entry of coronavirus into cells. At the intracellular and circulating levels, GLR can trap the high mobility group box 1 protein and thus blocks the alarmin functions of HMGB1. We used molecular docking to characterize further and discuss both the cholesterol- and HMG box-binding functions of GLR. The membrane and cytoplasmic effects of GLR, coupled with its long-established medical use as a relatively safe drug, make GLR a good candidate to be tested against the SARS-CoV-2 coronavirus, alone and in combination with other drugs. The rational supporting combinations with (hydroxy)chloroquine and tenofovir (two drugs active against SARS-CoV-2) is also discussed. Based on this analysis, we conclude that GLR should be further considered and rapidly evaluated for the treatment of patients with COVID-19.
Collapse
|
48
|
Tucker IM, Burley A, Petkova RE, Hosking SL, Penfold J, Thomas RK, Li PX, Webster JRP, Welbourn R. Mixing Natural and Synthetic Surfactants: Co-Adsorption of Triterpenoid Saponins and Sodium Dodecyl Sulfate at the Air-Water Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:5997-6006. [PMID: 32388992 DOI: 10.1021/acs.langmuir.0c00922] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Saponins are highly surface active glycosides, derived from a wide range of plant species. Their ability to produce stable foams and emulsions has stimulated their applications in beverages, foods, and cosmetics. To explore a wider range of potential applications, their surface mixing properties with conventional surfactants have been investigated. The competitive adsorption of the triterpenoid saponin escin with an anionic surfactant sodium dodecyl sulfate, SDS, at the air-water interface has been studied by neutron reflectivity, NR, and surface tension. The NR measurements, at concentrations above the mixed critical micelle concentration, demonstrate the impact of the relative surface activities of the two components. The surface mixing is highly nonideal and can be described quantitatively by the pseudophase approximation with the inclusion of the quadratic and cubic terms in the excess free energy of mixing. Hence, the surface mixing is highly asymmetrical and reflects both the electrostatic and steric contributions to the intermolecular interactions. The relative importance of the steric contribution is reinforced by the observation that the micelle mixing is even more nonideal than the surface mixing. The mixing properties result in the surface adsorption being largely dominated by the SDS over the composition and concentration range explored. The results and their interpretation provide an important insight into the wider potential for mixing saponins with more conventional surfactants.
Collapse
Affiliation(s)
- I M Tucker
- Unilever Research and Development, Port Sunlight Laboratory, Quarry Road East, Bebington, Wirral CH63 3JW, U.K
| | - A Burley
- Unilever Research and Development, Port Sunlight Laboratory, Quarry Road East, Bebington, Wirral CH63 3JW, U.K
| | - R E Petkova
- Unilever Research and Development, Port Sunlight Laboratory, Quarry Road East, Bebington, Wirral CH63 3JW, U.K
| | - S L Hosking
- Unilever Research and Development, Port Sunlight Laboratory, Quarry Road East, Bebington, Wirral CH63 3JW, U.K
| | - J Penfold
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, OXON, U.K
- Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, U.K
| | - R K Thomas
- Physical and Theoretical Chemistry Laboratory, Oxford University, South Parks Road, Oxford OX1 3QZ, U.K
| | - P X Li
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, OXON, U.K
| | - J R P Webster
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, OXON, U.K
| | - R Welbourn
- ISIS Facility, STFC, Rutherford Appleton Laboratory, Chilton, Didcot OX11 0QX, OXON, U.K
| |
Collapse
|
49
|
Barone A, Cristiano MC, Cilurzo F, Locatelli M, Iannotta D, Di Marzio L, Celia C, Paolino D. Ammonium glycyrrhizate skin delivery from ultradeformable liposomes: A novel use as an anti-inflammatory agent in topical drug delivery. Colloids Surf B Biointerfaces 2020; 193:111152. [PMID: 32535351 DOI: 10.1016/j.colsurfb.2020.111152] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/22/2020] [Accepted: 05/21/2020] [Indexed: 01/06/2023]
Abstract
Glycyrrhiza glabra L. is a native plant of Central and South-Western Asia that is also diffused in the Mediterranean area and contains several bioactive compounds such as: flavonoids, sterols, triterpene and saponins. Glycyrrhizin, containing glycyrrhizic and glycyrrhizinic acids has anti-inflammatory and antiallergic effects that are similar to corticosteroids. Ammonium glycyrrhizinate is a derivative salt of glycyrrhizic acid with similar anti-inflammatory activity that cannot pass through the skin due to its physicochemical properties and molecular weight. Although several nanoformulations, such as ethosomes, are designed to provide a systemic effect through a topical application, there are different limitations to the distribution inside the blood stream. For this reason, ultradeformable liposomes, or transfersomes, are selected to improve the topical delivery of drugs and allow the distribution of payloads in the blood stream because they pass intact through the stratum corneum epidermis barrier, due to the presence of sodium cholate, aqueous cutaneous gradient, and the rapid penetration of transfersomes by cutaneous tight junctions, thus allowing the systemic delivery of different therapeutic cargo in non-occlusive conditions. The aim of this work was the synthesis and physicochemical characterization of the ammonium glycyrrhizinate-loaded ultradeformable liposomes, the evaluation of drug release and permeation through stratum corneum and epidermis barrier. The in vivo anti-inflammatory effect of ammonium glycyrrhizinate-loaded ultradeformable liposomes was tested on human healthy volunteers. The results demonstrated that the ammonium glycyrrhizinate-loaded ultradeformable liposomes decreased the skin inflammation on the human volunteers and the resulting nanoformulations can be used as a potential topical drug delivery system for anti-inflammatory therapy. ☆Parts of these results were presented as a poster communication at the Recent Developments in Pharmaceutical Analysis 2019 (RDPA 2019), Chieti, Italy.
Collapse
Affiliation(s)
- Antonella Barone
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta" s.n.c., I-88100, Catanzaro, Italy
| | - Maria Chiara Cristiano
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta" s.n.c., I-88100, Catanzaro, Italy
| | - Felisa Cilurzo
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, I-66100, Chieti, Italy
| | - Marcello Locatelli
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, I-66100, Chieti, Italy
| | - Dalila Iannotta
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, I-66100, Chieti, Italy
| | - Luisa Di Marzio
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, I-66100, Chieti, Italy
| | - Christian Celia
- Department of Pharmacy, University of Chieti - Pescara "G. d'Annunzio", Via dei Vestini 31, I-66100, Chieti, Italy.
| | - Donatella Paolino
- Department of Clinical and Experimental Medicine, University of Catanzaro "Magna Graecia", Viale "S. Venuta" s.n.c., I-88100, Catanzaro, Italy.
| |
Collapse
|
50
|
Dargel C, Hannappel Y, Hellweg T. Heating-Induced DMPC/Glycyrrhizin Bicelle-to-Vesicle Transition: A X-Ray Contrast Variation Study. Biophys J 2020; 118:2411-2425. [PMID: 32333861 DOI: 10.1016/j.bpj.2020.03.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/06/2020] [Accepted: 03/17/2020] [Indexed: 11/17/2022] Open
Abstract
In this study, we investigated the conversion of lipid bicelles into vesicles in the case of a system composed of the phospholipid 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC) and the saponin glycyrrhizin in the presence of sucrose. Glycyrrhizin is a biosurfactant present in the licorice root and possesses a triterpenic hydrophobic backbone and a hydrophilic headgroup built from two sugar molecules. The aim of this study is to determine the initial bicelle size at temperatures below the lipid's main phase transition temperature Tm and, based on these results, characteristics of the temperature-induced bicelle-to-vesicle transition. Moreover, the influence of the heating rate on this transition is followed. The general picture concluded from photon correlation spectroscopy and small angle X-ray scattering was confirmed by additional imaging with cryogenic transmission electron microscopy. Small angle X-ray scattering was especially used to determine size parameters of the existing structures. To enhance the contrast for X-rays, a buffer containing 25 wt% sucrose was used. It was found that larger vesicles were formed from smaller precursor particles and that monodisperse precursors are required for formation of very monodisperse vesicles upon temperature increase. At high glycyrrhizin contents and above a critical heating rate of ∼5°C min-1, the polydispersity of these vesicles is decoupled from both parameters, glycyrrhizin content and heating rate. However, the vesicle size stays tunable by the glycyrrhizin content and increases upon increasing the glycyrrhizin concentration. Therefore, vesicles of defined size and with a rather low polydispersity of ∼12-14% can be formed.
Collapse
Affiliation(s)
- Carina Dargel
- Physical and Biophysical Chemistry, Bielefeld University, Bielefeld, Germany
| | - Yvonne Hannappel
- Physical and Biophysical Chemistry, Bielefeld University, Bielefeld, Germany
| | - Thomas Hellweg
- Physical and Biophysical Chemistry, Bielefeld University, Bielefeld, Germany.
| |
Collapse
|