1
|
Qiao H, Liu Z, Peng X, Xian H, Cheng K, Yang F. Significance of humic matters-soil mineral interactions for environmental remediation: A review. CHEMOSPHERE 2024; 365:143356. [PMID: 39303791 DOI: 10.1016/j.chemosphere.2024.143356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 09/15/2024] [Accepted: 09/15/2024] [Indexed: 09/22/2024]
Abstract
Industrial and human activities have led to serious soil and water pollution. Traditional remediation techniques have problems such as high treatment costs and the tendency to cause secondary pollution. Soil minerals and humic matters are common active components in soils. Both play vital roles and are frequently bound together to form humic matters-mineral complexes, which are considered sustainable and eco-friendly materials for environmental remediation and improvement. However, due to the complexity of humic matters-mineral interactions and the wide variation in the removal of different pollutants, there is a lack of research in this area. This paper provides a comprehensive introduction and summary of the interaction mechanisms between humic matters and typical soil minerals such as layered phosphate minerals and iron oxides, and their applications in environmental remediation, especially for the treatment of heavy metals (lead, mercury, chromium and cadmium) and organic pollutants (antibiotics, pesticides and polycyclic aromatic hydrocarbons) in water and soil. The humic matters-mineral complex can reduce the toxicity and migration rate of pollutants through adsorption, electrostatic attraction, together with H-bonding and hydrophobic interactions, reducing the harm of these pollutants to soil and water environments and realizing the efficient remediation of soil and water environments. And compared with the traditional treatment technology, this method is more green and environmental protection, and the treatment cost is greatly reduced. Finally, the deficiencies of using humic matters-mineral complex to achieve soil and water remediation were summarized and also proposed directions for future endeavors as well as concrete measures.
Collapse
Affiliation(s)
- Hui Qiao
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin, 150030, China
| | - Zhuqing Liu
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin, 150030, China
| | - Xiongxin Peng
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin, 150030, China
| | - Husheng Xian
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin, 150030, China
| | - Kui Cheng
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin, 150030, China; College of Engineering, Northeast Agricultural University, Harbin, 150030, China.
| | - Fan Yang
- School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, 150030, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, Harbin, 150030, China.
| |
Collapse
|
2
|
Li P, Hou S, Zhang Y, Zhang K, Deng X, Song H, Qin G, Zheng Y, Liu W, Ji S. Three-birds-with-one-stone: An eco-friendly and renewable humic acid-derived material application strategy for macrolide antibiotic detection and multifunctional composite film preparation. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135100. [PMID: 38972200 DOI: 10.1016/j.jhazmat.2024.135100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 06/28/2024] [Accepted: 07/02/2024] [Indexed: 07/09/2024]
Abstract
This research proposes a simple and novel strategy for the green detection of antibiotics along with the reduction of microplastic and humic acid (HA) hazards. The entire process is based on a single-step solvent-sieving method to separate HA into insoluble (IHA) and soluble (SHA) components, subsequently recombining and designing the application according to the original characteristics of selected fractions in accordance with the zero-waste principle. IHA was applied as a dispersive solid phase extraction (DSPE) sorbent without chemical modification for the enrichment of trace MACs in complex biological matrices. The recovery of MACs was 74.06-100.84 % in the range of 2.5-1000 μg∙kg-1. Furthermore, SHA could be combined with biodegradable polyvinyl alcohol (PVA) to prepare multifunctional composite films. SHA endows the PVA film with favorable mechanical properties, excellent UV shielding as well as oxidation resistance performance. Compared with pure PVA, the tensile strength, toughness, antioxidant and UV-protection properties were increased to 157.3 Mpa, 258.6 MJ·m-3, 78.6 % and 60 % respectively. This study achieved a green and economically valuable utilization of all components of waste HA, introduced a novel approach for monitoring and controlling harmful substances and reducing white pollution. This has significant implications for promoting sustainable development and recovering valuable resources.
Collapse
Affiliation(s)
- Peiqi Li
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Siyu Hou
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Yuqi Zhang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Kaidi Zhang
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Xiqian Deng
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Huilin Song
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Guowen Qin
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China
| | - Yang Zheng
- Nanjing Caremo Biomedical Co., Ltd. Building C6, No. 9, Weidi Road, Qixia District, Nanjing, China.
| | - Wenyuan Liu
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China.
| | - Shunli Ji
- Department of Pharmaceutical Analysis, China Pharmaceutical University, No.24, Tongjiaxiang, Nanjing 210009, China.
| |
Collapse
|
3
|
Zainab N, Glick BR, Bose A, Amna, Ali J, Rehman FU, Paker NP, Rengasamy K, Kamran MA, Hayat K, Munis MFH, Sultan T, Imran M, Chaudhary HJ. Deciphering the mechanistic role of Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52) in bio-sorption and phyto-assimilation of Cadmium via Linum usitatissimum L. Seedlings. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108652. [PMID: 38723488 DOI: 10.1016/j.plaphy.2024.108652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/09/2024] [Accepted: 04/19/2024] [Indexed: 05/26/2024]
Abstract
Three Cd2+ resistant bacterium's minimal inhibition concentrations were assessed and their percentages of Cd2+ accumulation were determined by measurements using an atomic absorption spectrophotometer (AAS). The results revealed that two isolates Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52), identified by 16S rDNA gene sequencing, showed a higher percentage of Cd2+ accumulation i.e., 83.78% and 81.79%, respectively. Moreover, both novel strains can tolerate Cd2+ levels up to 2000 mg/L isolated from district Chakwal. Amplification of the czcD, nifH, and acdS genes was also performed. Batch bio-sorption studies revealed that at pH 7.0, 1 g/L of biomass, and an initial 150 mg/L Cd2+ concentration were the ideal bio-sorption conditions for Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52). The experimental data were fit to Langmuir isotherm measurements and Freundlich isotherm model R2 values of 0.999 for each of these strains. Bio sorption processes showed pseudo-second-order kinetics. The intra-diffusion model showed Xi values for Bacillus paramycoides (PM51) and Bacillus tequilensis (PM52) of 2.26 and 2.23, respectively. Different surface ligands, was investigated through Fourier-transformation infrared spectroscopy (FTIR). The scanning electron microscope SEM images revealed that after Cd2+ adsorption, the cells of both strains became thick, adherent, and deformed. Additionally, both enhanced Linum usitatissimum plant seed germination under varied concentrations of Cd2+ (0 mg/L, 250 mg/L,350 mg/L, and 500 mg/L). Current findings suggest that the selected strains can be used as a sustainable part of bioremediation techniques.
Collapse
Affiliation(s)
- Nida Zainab
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Bernard R Glick
- Department of Biology, University of Water Loo, Ontario, Canada
| | - Arpita Bose
- Department of Biology Washington University in St. Louis (WUSTL), United States
| | - Amna
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Botany, Rawalpindi Women University, 6th Road Sattellite Town, Rawalpindi, Pakistan
| | - Javed Ali
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | - Fazal Ur Rehman
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Tasmanian Institute of Agriculture, New Town Research Laboratories, University of Tasmania, Tasmania, Australia
| | - Najeeba Parre Paker
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan
| | | | - Muhammad Aqeel Kamran
- College of Environmental and Resource Sciences, Zhejiang University Hangzhou China, China
| | - Kashif Hayat
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, China
| | | | - Tariq Sultan
- Land Resource Research Institute, NARC, Islamabad, Pakistan
| | - Muhammad Imran
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, 45320, Pakistan; Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | | |
Collapse
|
4
|
Chen H, Zhang M, Chen S, Fang Y. Study adsorbents based on bent-Al 13-CS-CTA and its application to the removal of CR from wastewater. RSC Adv 2024; 14:13817-13826. [PMID: 38681831 PMCID: PMC11046449 DOI: 10.1039/d4ra00197d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/09/2024] [Indexed: 05/01/2024] Open
Abstract
For rapid and efficient removal of Congo red (CR) from aqueous solutions, a composite of bent-Al13-CS-CTA was prepared from bentonite (bent), chitosan (CS), citric acid (CTA) and Al13 compounds. To comprehend the adsorption process, adsorption variables were changed, including initial pH of the solution, contact time, temperature, initial CR concentration, and adsorption dose. Bent intercalated with X-ray diffraction (XRD), specific surface area (BET), scanning electron microscopy (SEM) and Fourier transform infrared spectrophotometry (FTIR) were used to analyze the material. Physicochemical and structural analysis proven the incorporation of Al13, CS, and CTA into the bent matrix. The pseudo-second-order model aligns with the adsorption kinetics. The adsorption isotherm conformed to the Langmuir adsorption isotherm, with a maximum adsorption capacity of 476.8 mg g-1 at pH 9, a dosage of 2 g L-1, and a temperature of 25 °C. Upon examining the thermodynamic properties of ΔS, ΔH, and ΔG, it was found that the reaction is a spontaneous endothermic process that could potentially be utilized to eliminate CR.
Collapse
Affiliation(s)
- Hanjie Chen
- Materials Science and Engineering Department, Nanjing Tech University Nanjing 210000 China
| | - Mei Zhang
- Materials Science and Engineering Department, Nanjing Tech University Nanjing 210000 China
| | - Shuyang Chen
- Materials Science and Engineering Department, Nanjing Tech University Nanjing 210000 China
| | - Ying Fang
- Materials Science and Engineering Department, Nanjing Tech University Nanjing 210000 China
| |
Collapse
|
5
|
Wang A, Wu M, Li Z, Zhou Y, Zhu F, Huang Z. Utilizing different types of biomass materials to modify steel slag for the preparation of composite materials used in the adsorption and solidification of Pb in solutions and soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:170023. [PMID: 38218480 DOI: 10.1016/j.scitotenv.2024.170023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 01/05/2024] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
This study utilized discarded steel slag (SS) as raw material and prepared modified steel slag materials (SS-SBC, SS-NBC, SS-BHA) through modification with biomass materials such as straw biochar (SBC), nutshell biochar (NBC), and biochemical humic acid (BHA). These materials were then applied for the removal of Pb from both solution and soil. The physical and chemical properties of the materials were analyzed using characterization techniques such as SEM, EDS, XRD, and BET. The specific surface area of the modified materials increased from the original 3.8584 m2/g to 34.7133 m2/g, 181.7329 m2/g, and 7.7384 m2/g, respectively. The study then explored the influence of different adsorption conditions on the adsorption capacity of Pb in solution, determining the optimal conditions as follows: initial concentration of 200 mg/L, adsorbent mass of 0.04 g, temperature of 15 °C, and pH = 2. To further investigate the adsorption process, kinetic and isotherm models were established. The results indicated that the adsorption process for all three materials followed a pseudo-second-order kinetic model and Freundlich isotherm model, suggesting a multi-layer chemical adsorption. Thermodynamic analysis revealed that the adsorption process was an exothermic spontaneous reaction. Soil cultivation experiments were conducted to explore the effects of different material addition amounts and cultivation times on the passivation of Pb-polluted soil. Analysis of heavy metal forms in the soil revealed that the addition of modified materials reduced the acid-extractable form of Pb in the soil and increased the residual form, which is beneficial for reducing the migration of Pb in the soil. FT-IR and XPS analyses were employed to study the functional groups, element composition, and valence states before and after adsorption passivation of Pb by the three materials. The results confirmed that the adsorption mechanisms of SS-SBC, SS-NBC, and SS-BHA mainly involved electrostatic adsorption, ion and ligand exchange, and surface precipitation. This study not only provides a new material for adsorbing and immobilizing heavy metals in soil and water but also offers a new approach for the resource utilization of steel slag waste.
Collapse
Affiliation(s)
- An Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-, Beijing, Beijing 100083, China
| | - Meiling Wu
- School of Chemical and Environmental Engineering, China University of Mining and Technology-, Beijing, Beijing 100083, China
| | - Zhongyuan Li
- CSCEC 8TH Division Environmental Technology Co., Ltd, Shanghai 200444, China
| | - Yuqiang Zhou
- CSCEC 8TH Division Environmental Technology Co., Ltd, Shanghai 200444, China
| | - Fanmin Zhu
- School of Chemical and Environmental Engineering, China University of Mining and Technology-, Beijing, Beijing 100083, China
| | - Zhanbin Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-, Beijing, Beijing 100083, China.
| |
Collapse
|
6
|
Wang G, Bo W, Wan K, Fan J, Miao Z, Xue S. Remediation of the soil contaminated by heavy metals with nano-hydroxy iron phosphate coated with fulvic acid. ENVIRONMENTAL TECHNOLOGY 2023; 44:4123-4135. [PMID: 35587734 DOI: 10.1080/09593330.2022.2080001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 05/12/2022] [Indexed: 06/15/2023]
Abstract
Heavy metals pose a serious threat and damage to ecological health when released into the environment. n-HFP is usually used to remediate soils contaminated with heavy metals, but its ability to solidify heavy metals is limited. FA has good ability to trap heavy metals due to its abundant oxygen-containing functional groups. However, the solubility of FA in water limits its application in the field of heavy metal removal. In this paper, n-HFP@FA was prepared by co-precipitation method. Through FT-IR and BET analysis, the oxygen-containing functional groups and specific surface area of n-HFP@FA increased due to the addition of FA. The adsorption behaviour of n-HFP@FA on Pb, Cd, and Cu followed the pseudo-second-order and Langmuir isotherm models. In addition, the maximum adsorption capacities of n-HFP@FA for Pb, Cd, and Cu were 371.1, 190.5, and 129.75 mg/g, respectively. As shown by FT-IR and XPS analysis, the main mechanisms of Pb, Cd and Cu removal by n-HFP@FA are: complexation, electrostatic and precipitation. The n-HFP@FA showed high removal rates of Pb, Cd, and Cu in soil leachates of different pH. In the soil remediation experiments, the BCR method and Pearson correlation analysis showed that the acid-soluble, reducible and oxidizable fractions of Pb, Cd, and Cu in the soil were effectively converted into a more stable residual fraction. This study opens up a prospect for the application of n-HFP@FA composites in the remediation of contaminated soil.
Collapse
Affiliation(s)
- Guoqiang Wang
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, People's Republic of China
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, People's Republic of China
| | - Wenting Bo
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, People's Republic of China
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, People's Republic of China
| | - Keji Wan
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, People's Republic of China
| | - Jinjin Fan
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, People's Republic of China
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, People's Republic of China
| | - Zhenyong Miao
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, People's Republic of China
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, People's Republic of China
| | - Shuwen Xue
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, People's Republic of China
- National Engineering Research Center of Coal Preparation and Purification, China University of Mining and Technology, Xuzhou, People's Republic of China
| |
Collapse
|
7
|
Zhao P, Wang A, Wang P, Huang Z, Fu Z, Huang Z. Two recyclable and complementary adsorbents of coal-based and bio-based humic acids: High efficient adsorption and immobilization remediation for Pb(II) contaminated water and soil. CHEMOSPHERE 2023; 318:137963. [PMID: 36708780 DOI: 10.1016/j.chemosphere.2023.137963] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/20/2023] [Accepted: 01/23/2023] [Indexed: 06/18/2023]
Abstract
Humic acid can effectively bind heavy metals and is a promising remediation agent for heavy metals-contaminated water and soil. Many successful applications of humic acid have been reported, but rarely studied the specific process and mechanism of heavy metal removal by humic acids from water and soil, especially the simultaneous application of coal-based and bio-based humic acids. In this work, two kinds of coal-based and bio-based humic acid materials (CHA and BHA) from weathered coal and rice husk were industrially produced and studied their Pb(II) adsorption and immobilization characteristics and mechanisms in water and soil. The batch adsorption experiments obtained the Pb(II) adsorption by CHA and BHA both were spontaneous and endothermic monolayer chemisorption and controlled by three rate-limiting steps (bulk, film, and pore) in the adsorption process. CHA and BHA had highly efficient Pb(II) adsorption capacities, obtained their maximum adsorption capacity was 201 and 188 mg g-1, respectively. In addition to the two main adsorption mechanisms of ion exchange and surface complexation, electrostatic interaction, precipitation reaction, and π-π interaction were also involved. Soil culture experiments showed that CHA and BHA both exhibited a highly efficient immobilization effect on Pb(II)-contaminated soil, and CHA and BHA had a better synergistic promotion effect. Compared with the CK soil, the content of DTPA-Pb(II) decreased by 10.2-13.2% and the content of RES-Pb(II) increased by 14-22% in soils treated with different humic acids. Ion exchange, complexation, precipitation, and electrostatic attraction promote the transformation of unstable Pb(II) to stable Pb(II), which was of great significance for the immobilization of Pb(II) in soil. Overall, CHA and BHA have the potential to be used as green, efficient, and promising adsorbents to remove and immobilize Pb(II) from wastewater and soil.
Collapse
Affiliation(s)
- Peng Zhao
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - An Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China
| | - Ping Wang
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256603, China
| | - Zhen Huang
- China Quality Certification Center, Beijing , 100070, China
| | - Zhanyong Fu
- Shandong Key Laboratory of Eco-Environmental Science for Yellow River Delta, Binzhou University, Binzhou, 256603, China
| | - Zhanbin Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology-Beijing, Beijing, 100083, China.
| |
Collapse
|
8
|
The potential of ferrihydrite-synthetic humic-like acid composite to remove metal ions from contaminated water: Performance and mechanism. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2022.130771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
9
|
Gao Z, Shan D, He J, Huang T, Mao Y, Tan H, Shi H, Li T, Xie T. Effects and mechanism on cadmium adsorption removal by CaCl 2-modified biochar from selenium-rich straw. BIORESOURCE TECHNOLOGY 2023; 370:128563. [PMID: 36592869 DOI: 10.1016/j.biortech.2022.128563] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Revised: 12/28/2022] [Accepted: 12/29/2022] [Indexed: 06/17/2023]
Abstract
As every-one knows, cadmium contamination poses a significant and permanent threat to people and aquatic life. Therefore, research on how to remove cadmium from wastewater is essential to protect the natural environment. In this study, agricultural and forestry waste straw sprayed with selenium-enriched foliar fertilizer was prepared as biochar, which was altered by calcium chloride (CaCl2) to remove Cd2+ from water. The outcomes demonstrated that biochar generated by pyrolysis at 700 °C (BC700) had the best adsorption effect. Secondly, pseudo-second-order kinetics and Langmuir adsorption models were used to predict the Cd2+ adsorption. Finally, electrostatic adsorption, ion exchange, and complexation of oxygen functional groups (OFGs) were demonstratedto be the main adsorption mechanisms. These conclusions indicate that selenium-rich straw biochar is a novel adsorbent for agroforestry waste recovery. Meanwhile, this work will offer a promising strategy for the overall utilization of rice straw.
Collapse
Affiliation(s)
- Zongyu Gao
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir (Chongqing Three Gorges University), Wan Zhou 404100, China; Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Dexin Shan
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China.
| | - Jiahong He
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Tao Huang
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Yuan Mao
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Haiping Tan
- Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Huiting Shi
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir (Chongqing Three Gorges University), Wan Zhou 404100, China; Chongqing Key Laboratory of Environmental Materials & Remediation Technologies, College of Chemistry and Environmental Engineering, Chongqing University of Arts and Sciences, Yongchuan 402160, China
| | - Tingzhen Li
- Key Laboratory of Water Environment Evolution and Pollution Control in Three Gorges Reservoir (Chongqing Three Gorges University), Wan Zhou 404100, China
| | - Taiping Xie
- School of Materials Science and Engineering, Yangtze Normal University, Chongqing 408100, China; School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 400044, China
| |
Collapse
|
10
|
Wang F, Hu X, Tang C, Liu C, Zhu Z. Phosphate-functionalized ramie stalk adsorbent for efficient removal of Zn 2+ from water: adsorption performance, mechanism, and fixed-bed column treatment of real wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:6245-6261. [PMID: 35989403 DOI: 10.1007/s11356-022-22590-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 08/13/2022] [Indexed: 06/15/2023]
Abstract
A highly efficient adsorbent functionalized with phosphate groups made from a local agricultural waste, ramie stalk, was designed for Zn2+ removal from water. SEM, EDS, FTIR, zeta potential, and XPS tests were used to study the morphology and properties of modified ramie stalk (RS-P). The results showed that the phosphate groups were successfully grafted to the surface of the ramie stalk, which has a multilayered and porous structure and can provide large adsorption sites. Adsorption performance and mechanism were investigated in the static and dynamic adsorption experiments. The adsorption kinetics of Zn2+ by RS-P were better fitted by the pseudo-second-order model, indicating chemical adsorption. Adsorption isotherm was better described by Redlich-Peterson isotherm, which suggested heterogeneous and multi-site adsorption, with a maximum adsorption capacity of 0.558 mmol g-1. The characterization of adsorbents before and after adsorption indicated that a combined action of electrostatic interaction and ion exchange was the primary mechanism of adsorption. Dynamic adsorption experiments with fixed-bed column displayed excellent water treatment capabilities. RS-P exhibited good reusability in 5 cycles without much deterioration in its adsorption performances. Complex co-existing ions impaired Zn2+ adsorption during real wastewater treatment. This research benefits agricultural waste recycling and provides safe water to ensure economic, social, and environmental sustainability.
Collapse
Affiliation(s)
- Fen Wang
- School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou, 635000, People's Republic of China.
| | - XiaoLi Hu
- School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou, 635000, People's Republic of China
| | - Cheng Tang
- School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou, 635000, People's Republic of China
| | - Changlu Liu
- School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou, 635000, People's Republic of China
| | - Zhaoju Zhu
- School of Chemistry and Chemical Engineering, Sichuan University of Arts and Science, Dazhou, 635000, People's Republic of China
| |
Collapse
|
11
|
Zhao P, Huang Z, Wang P, Wang A. Comparative study on high-efficiency Pb(II) removal from aqueous solutions using coal and rice husk based Humic acids. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Alizadeh M, Peighambardoust SJ, Foroutan R, Azimi H, Ramavandi B. Surface magnetization of hydrolyzed Luffa Cylindrica biowaste with cobalt ferrite nanoparticles for facile Ni 2+ removal from wastewater. ENVIRONMENTAL RESEARCH 2022; 212:113242. [PMID: 35413302 DOI: 10.1016/j.envres.2022.113242] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/22/2022] [Accepted: 04/01/2022] [Indexed: 06/14/2023]
Abstract
A novel magnetic adsorbent based on hydrolyzed Luffa Cylindrica (HLC) was synthesized through the chemical co-precipitation technique, and its potential was evaluated in the adsorptive elimination of divalent nickel ions from water medium. Morphological assessment and properties of the adsorbent were performed using FTIR, SEM, EDX, XRD, BET, and TEM techniques. The effect of pH, temperature, time and nickel concentration on the removal efficiency was studied, and pH = 6, room temperature (25 °C), contact time of 60 min, and Ni2+ ion concentration of 10 mg.L-1 were introduced as the optimal values. At optimal conditions, the removal efficiency of Ni2+ ions using HLC and HLC/CoFe2O4 magnetic composite was calculated as 96.38 and 99.13%, respectively. The adsorption process kinetic followed a pseudo-first-order model. Langmuir isotherm was suitable for modelling the experimental data of the Ni2+ adsorption. The maximum elimination capacity of HLC and HLC/CoFe2O4 samples was calculated as 42.75 and 44.42 mg g-1, respectively. Furthermore, thermodynamic investigations proved the spontaneous and exothermic nature of the process. The adsorption efficiency was decreased with increasing the content of Ca2+ and Na + cations in aqueous media. During reusability of the synthesized adsorbents, it was found that after 8 cycles, no significant decrease has occurred in the adsorption efficiency. In addition, real wastewater treatment results proved that HLC/CoFe2O4 magnetic composite has an excellent performance in removal of heavy metals pollutant from shipbuilding effluent.
Collapse
Affiliation(s)
- Mehran Alizadeh
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | | | - Rauf Foroutan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | - Hamidreza Azimi
- Department of Chemical Engineering, Faculty of Engineering, Azarbaijan Shahid Madani University, Tabriz, 5375171379, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran
| |
Collapse
|
13
|
Wang Y, Jiang Q, Yang Y, Cheng J, Bao C, Pan Y, Liu Y, Yang G, Leng Y, Tuo X. Adsorption Properties of Cs(I) and Co(II) on GMZ Bentonite Colloids. NUCL TECHNOL 2022. [DOI: 10.1080/00295450.2022.2083749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Yanhui Wang
- Chengdu University of Technology, Nuclear Technology Automation Process Academy, Chengdu 610059, Sichuan, China
| | - Qiao Jiang
- Chengdu University of Technology, Nuclear Technology Automation Process Academy, Chengdu 610059, Sichuan, China
| | - Yexin Yang
- Chengdu University of Technology, Nuclear Technology Automation Process Academy, Chengdu 610059, Sichuan, China
| | - Jianfeng Cheng
- Chengdu University of Technology, Nuclear Technology Automation Process Academy, Chengdu 610059, Sichuan, China
| | - Chenyang Bao
- Southwest University of Science and Technology, School of National Defense Science and Technology, Mianyang 621000, Sichuan, China
| | - Yuelong Pan
- China Nuclear Power Engineering Co Ltd, Shenzhen 518124, Guandong, China
| | - Yu Liu
- China Nuclear Power Engineering Co Ltd, Shenzhen 518124, Guandong, China
| | - Gang Yang
- Chengdu University of Technology, Nuclear Technology Automation Process Academy, Chengdu 610059, Sichuan, China
| | - Yangchun Leng
- Southwest University of Science and Technology, School of National Defense Science and Technology, Mianyang 621000, Sichuan, China
| | - Xianguo Tuo
- Chengdu University of Technology, Nuclear Technology Automation Process Academy, Chengdu 610059, Sichuan, China
| |
Collapse
|
14
|
Zhang X, Chen C, Cheng T, Wen M, Wang L, Pan F. Making Pb Adsorption-Saturated Attapulgite with Excellent Photocatalysis Properties through a Vulcanization Reaction and Its Application for MB Wastewater Degradation. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:10457. [PMID: 36012092 PMCID: PMC9407977 DOI: 10.3390/ijerph191610457] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 08/18/2022] [Accepted: 08/18/2022] [Indexed: 06/15/2023]
Abstract
Attapulgite (AT) is a clay mineral with rich reserves in China, and it has good adsorption activity for Pb-containing wastewater. However, as a hazardous waste, the treatment of Pb adsorption-saturated attapulgite was quite difficult. In this work, through a simple vulcanization reaction, the waste Pb adsorption-saturated attapulgite (AT@Pb) was transformed into composite materials (AT@PbS) with good photocatalytic performance. After comprehensive material characterization (including XRD, TEM, XPS, and UV-Vis), the photocatalytic degradation performance and mechanism of AT@PbS for methylene blue (MB) were investigated. The results revealed that AT@PbS was a composite material of attapulgite nanorods (500-600 nm) and nanosquare PbS particles (80-100 nm). Additionally, AT@PbS displayed good visible light absorption, improved photo-electric properties, excellent photodegradation performance for MB, and recycling stability. Moreover, the energy band range of AT@PbS was about -0.043 V to 1.367 V. The photo-generated holes and their derived hydroxyl radicals were the main active species for MB degradation. This work not only provides a new approach to construct the composite photocatalyst, but also demonstrates the possibility of the comprehensive utilization of heavy metal adsorbents for wastewater degradation.
Collapse
Affiliation(s)
- Xiao Zhang
- School of Environmental Ecology, Jiangsu City Vocational College, Nanjing 210017, China
| | - Chen Chen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Ting Cheng
- School of Environmental Ecology, Jiangsu City Vocational College, Nanjing 210017, China
| | - Mingyue Wen
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Lei Wang
- School of Environmental and Chemical Engineering, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Fenxu Pan
- School of Environmental Ecology, Jiangsu City Vocational College, Nanjing 210017, China
| |
Collapse
|
15
|
Foroutan R, Peighambardoust SJ, Mohammadi R, Peighambardoust SH, Ramavandi B. Cadmium ion removal from aqueous media using banana peel biochar/Fe 3O 4/ZIF-67. ENVIRONMENTAL RESEARCH 2022; 211:113020. [PMID: 35248568 DOI: 10.1016/j.envres.2022.113020] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 02/14/2022] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
In the present study, banana peel waste was used as a suitable source for biochar production. The banana peel biochar (BPB) was modified using Fe3O4 magnetic and ZIF-67 nanoparticles. The modification of the BPB surface (4.70 m2/g) with Fe3O4 and Fe3O4/ZIF-67 significantly increased the specific surface of the nanocomposites (BPB/Fe3O4: 78.83 m2/g, and BPB/Fe3O4/ZIF-67: 1212.40 m2/g). The effect of pH, temperature, contact time, adsorbent dose, and concentration of Cd2+ on the efficiency of the Cd2+ adsorption was explored. Maximum adsorption efficiencies for BPB (97.76%), BPB/Fe3O4 (97.52%), and BPB/Fe3O4/ZIF-67 (99.14%) were obtained at pH 6, Cd2+ concentration of 10 mg/L, times of 80 min, 50 min, and 40 min, and adsorbent doses of 2 g/L, 1.5 g/L, and 1 g/L, respectively. Thermodynamic measurements indicated that the process is spontaneous and exothermic. The maximum capacity of Cd2+ adsorption using BPB, BPB/Fe3O4, and BPB/Fe3O4/ZIF-67 were obtained 20.63 mg/g, 30.33 mg/g, and 50.78 mg/g, respectively. The Cd2+ adsorption using magnetic nanocomposites followed the pseudo-first-order kinetic model. The results showed that studied adsorbents especially BPB/Fe3O4/ZIF-67 have a good ability to adsorb-desorb Cd2+ and clean an effluent containing pollutants.
Collapse
Affiliation(s)
- Rauf Foroutan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran
| | | | - Reza Mohammadi
- Polymer Research Laboratory, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
| | | | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
16
|
Liu Y, Jia J, Zhang H, Sun S. Enhanced Cr(VI) stabilization in soil by chitosan/bentonite composites. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 238:113573. [PMID: 35500403 DOI: 10.1016/j.ecoenv.2022.113573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 06/14/2023]
Abstract
In this study, chitosan/bentonite composites (CSBT) was synthesized and applied to the immobilization of chromium in the soil. The influence of passivating agents on various forms of chromium was investigated by batch experiment. The results showed that CSBT could reduce the content of exchangeable form and oxidizable form, while increase the content of residual form of chromium. The addition of 0.2 g·kg-1 CSBT had the best effect, with the concentration of exchangeable, reducible and oxidizable form decreased by 46.74%, 8.15%, and 14.46%, respectively. During the experiment time, the passivation effect increased rapidly within 14 days, and the content of residual form in the total Cr increased from 0.76% to 14.23%, the equilibrium was reached at the 28th day and was basically maintained in the subsequent period. CSBT had little impact on soil pH, and soil pH maintained constant during the experiment period. The amino, carboxyl and hydroxyl groups of CSBT promoted the conversion of available chromium to residual state in soil, and reduced the bioavailability of chromium in soil.
Collapse
Affiliation(s)
- Yanjun Liu
- College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Junjie Jia
- College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Huifeng Zhang
- College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China
| | - Shujuan Sun
- College of Resources and Environment, Shandong Agricultural University, Taian, Shandong 271018, China.
| |
Collapse
|
17
|
Preparation of Magnetic Activated Carbon by Activation and Modification of Char Derived from Co-Pyrolysis of Lignite and Biomass and Its Adsorption of Heavy-Metal-Containing Wastewater. MINERALS 2022. [DOI: 10.3390/min12060665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Adsorption with activated carbon (AC) is an important method for the treatment of heavy metal wastewater, but there are still certain challenges in the separation and reuse of activated carbon. The preparation of magnetic activated carbon (MAC) by modifying AC is one of the effective means to realize the separation of AC from solution after the adsorption process. In this work, lignite and poplar leaves were used as raw materials for co-pyrolysis, and the co-pyrolysis char was activated and modified to prepare MAC. The structure and properties were characterized by VSM, N2 adsorption, SEM, XRD, and FT-IR. At the same time, the adsorption performance of MAC on wastewater containing Pb and Cd ions was studied. The results show that the prepared MAC contains Fe3O4, and the saturation magnetization (Ms) of the MAC is 13.83 emu/g; the specific surface area of the MAC is 805.86 m2/g, and the micropore volume is 0.23 cm3/g; the MAC exhibited a good porous structure. When the pH value of the solution was 5, the adsorption time was 120 min, the dosage of MAC was 4 g/L, the initial concentration of Pb ion solution was 50 mg/L, and that of Cd ion solution was 25 mg/L, and the adsorption temperature was 30 °C, the adsorption efficiency of Pb, Cd ions were 84.40 and 78.80%, respectively, and the adsorption capacities were 10.55 and 4.93 mg/g, respectively. The adsorption of Pb and Cd ions by MAC conforms to the Langmuir adsorption model, which is a monolayer adsorption. The adsorption process is mainly chemical adsorption, which can be better described by the pseudo-second-order model. The adsorption thermodynamic analysis showed that the adsorption of Pb and Cd ions by MAC was a spontaneous reaction, and the higher the temperature, the stronger the spontaneity.
Collapse
|
18
|
Wang F, Wu P, Shu L, Huang D, Liu H. High-efficiency adsorption of Cd(II) and Co(II) by ethylenediaminetetraacetic dianhydride-modified orange peel as a novel synthesized adsorbent. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25748-25758. [PMID: 34846656 DOI: 10.1007/s11356-021-17501-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 11/08/2021] [Indexed: 06/13/2023]
Abstract
The treatment of heavy metal (HM) wastewater is a critical and considerable challenge. Fruit peel-based HM adsorption is a promising way for the water pollution control and the reuse of agricultural waste. In this study, a novel adsorbent based on orange peel was synthesized for the first time by introducing abundant -COO groups with ethylenediaminetetraacetic dianhydride (EDTAD) to eliminate Cd(II) and Co(II) of sewage solution. The synthesized adsorbent displayed excellent adsorption capacity of 51.020 and 40.486 mg/g for Cd(II) and Co(II), respectively, and the adsorption equilibrium was achieved within 5 min, following the Langmuir isotherm model and the pseudo-second-order model. Surface characterization of adsorbents by scanning electron microscopy-energy dispersive X-ray spectroscopy, Fourier transform infrared spectroscopy, and X-ray photoelectron spectroscopy confirmed that ion exchange, complexation, and physical adsorption could occur during the adsorption process. The rapid and highly efficient adsorption performance suggests EDTAD-modified synthesized orange peel possesses great potential for HM removal from sewage systems.
Collapse
Affiliation(s)
- Fanghui Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Peng Wu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Lin Shu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Di Huang
- TEDA School of Biological Sciences and Biotechnology, Nankai University, TEDA, Tianjin, 300457, China.
| | - Huanhuan Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, Tianjin, 300457, China.
- Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
19
|
Ahmed Z, Wu P, Wu J, Lu B, Abbasi SA, Rehman S, Li Y, Shang Z. Single and binary adsorption of lead and cadmium ions in aqueous solutions and river water by butylamine functionalized vermiculite: performance and mechanism. ENVIRONMENTAL TECHNOLOGY 2022:1-22. [PMID: 35225746 DOI: 10.1080/09593330.2022.2048085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Accepted: 02/20/2022] [Indexed: 06/14/2023]
Abstract
Lead and cadmium are toxic to human, animal, and plant health; they enhance oxidative stress indirectly while simultaneously acting through other toxicodynamic mechanisms. In this study, pristine vermiculite (VER) was functionalized with butylamine (BUT) and a novel organoclay (BUT-VER) adsorbent material was produced for simultaneous removal of Pb(II) and Cd(II) in aquatic medium. The adsorbents were characterized by spectroscopic, microscopic, spectrometric, and potentiometric techniques. The adsorption affecting parameters, including pH, time, initial concentration, temperature, and co-existing cations were investigated and optimized. The kinetic data results were in better agreement with pseudo-second-order (PSO) model (R2 > 0.992). Multiple isotherm models were used to study the adsorption system and results showed that adsorption was monolayer. The BUT-VER showed an improvement in adsorption capacity in a single system (Pb(II): from 134.2 to 160.6 mg g-1) and (Cd(II): from 51.1 to 58.9 mg g-1) while in binary system (Pb(II): from 107.3 to 114.5 mg g-1) and (Cd(II): from 33.7 to 39.7 mg g-1), respectively. Furthermore, BUT-VER was tested in real river water and removed efficiency of >99% was achieved in just 1 h. The dominant mechanisms were electrostatic attraction and complexation. BUT-VER was regenerated for five consecutive cycles and showed >90% removal efficiency. These findings suggest that the proposed inexpensive adsorbent has the potential for practical applications of toxic metals removal from water.
Collapse
Affiliation(s)
- Zubair Ahmed
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
- Department of Energy and Environment Engineering, Dawood University of Engineering and Technology, Karachi, Pakistan
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou, People's Republic of China
- Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou, People's Republic of China
- Guangdong Engineering and Technology Research Center for Environmental Nanomaterials, Guangzhou, People's Republic of China
- Guangdong Provincial Engineering and Technology Research Center for Environmental Risk Prevention and Emergency Disposal, Guangzhou, People's Republic of China
| | - Jiayan Wu
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
| | - Bingxin Lu
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
| | - Sikandar Ali Abbasi
- Department of Energy and Environment Engineering, Dawood University of Engineering and Technology, Karachi, Pakistan
| | - Saeed Rehman
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
| | - Yihao Li
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
| | - Zhongbo Shang
- School of Environment and Energy, South China University of Technology, Guangzhou, People's Republic of China
| |
Collapse
|
20
|
Han J, Pei L, Du Y, Zhu Y. Tripolycyanamide-2,4,6-triformyl pyrogallol covalent organic frameworks with many coordination sites for detection and removal of heavy metal ions. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2021.11.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
21
|
Li QG, Liu GH, Qi L, Wang HC, Ye ZF, Zhao QL. Heavy metal-contained wastewater in China: Discharge, management and treatment. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 808:152091. [PMID: 34863767 DOI: 10.1016/j.scitotenv.2021.152091] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/16/2021] [Accepted: 11/26/2021] [Indexed: 05/22/2023]
Abstract
A large amount of heavy metal-contained wastewater (HMW) was discharged during Chinese industry development, which has caused many environmental problems. This study reviewed discharge, management and treatment of HMW in China through collecting and analyzing data from China's official statistical yearbook, standards, technical specifications, government reports, case reports, and research paper. Results showed that industry wastewater discharged by an amount of about 221.6 × 108 t (in 2012), where emission of heavy metals including Pb, Hg, Cd, Cr(VI), T-Cr was around 388.4 t (in 2012). Heavy metal emission with wastewater in east China and central south China was observed to be graver than that in other areas. However, control of heavy metals in Pb and Cd in northwest China was more difficult compared with other areas. In terms of management, China's government has issued many wastewater discharge standards, strict management policies for controlling HMW discharge in recent years, resulting in reduced HMW discharge. In addition, main HMW treatment technology in China was chemical precipitation, and other technologies such as membrane separation, adsorption, ion exchange, electrochemical and biological methods were also occasionally applied. In the future, chemical industries will be concentrated in northwest China, therefore control of HMW discharge should be paid much more attention in those areas. In addition, more effective and environment-friendly heavy metal removal and regeneration technologies should be developed, such as biomaterials adsorbent.
Collapse
Affiliation(s)
- Qian-Gang Li
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China
| | - Guo-Hua Liu
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China.
| | - Lu Qi
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China
| | - Hong-Chen Wang
- School of Environment and nature resources, Renmin University of China, Beijing 100872, China
| | - Zheng-Fang Ye
- Department of Environmental Engineering, Peking University, Beijing 100871, China
| | - Quan-Lin Zhao
- Department of Environmental Engineering, Peking University, Beijing 100871, China
| |
Collapse
|
22
|
One-Step Fabrication of Amino-Functionalized Fe3O4@SiO2 Core-Shell Magnetic Nanoparticles as a Potential Novel Platform for Removal of Cadmium (II) from Aqueous Solution. SUSTAINABILITY 2022. [DOI: 10.3390/su14042290] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Fe3O4@SiO2-NH2 core-shell magnetic nanoparticles were developed by a rapid one-step precipitation route followed by reverse microemulsion and amine functionalization. In this study, an Fe3O4@SiO2-NH2 nanoparticle was used to evaluate its adsorption efficiency for the treatment of a synthetic solution of Cd(II) ion. The structural and physicochemical properties of Fe3O4@SiO2-NH2 nanoparticles were characterized by XRD, SEM-EDAX, TEM, FTIR and TGA. From the TEM analysis, the morphology of Fe3O4@SiO2-NH2 was found as 100–300 nm. In TGA, the first weight loss was noticed between 373 and 573 K, the second was between 673 and 773 K and the final weight loss took place above 773 K. Batch experimental tests, such as pH, dosage of Fe3O4@SiO2-NH2, Cd(II) ion concentration, temperature as well as interaction time, were conducted and evaluated. Experimental study data were used for the non-linear forms exhibited by isotherms and kinetics of the sorption procedure. The equilibrium adsorption observations were adequately combined with pseudo-first-order kinetics as well as Freundlich isotherm. Monolayer maximum adsorption capacity was found to be 40.02 mg/g, recorded at pH 6 with an interaction time of 30 min, temperature of 303 K and sorbent dose of 2.0 g/L. The thermodynamic study indicated that the adsorption process was an exothermic, spontaneous reaction (−∆oo = −15.46–7.81 (kJ/mol)). The as-synthesized sorbent had excellent recyclability, and its adsorption efficiency was maintained after five cycles of reuse. The findings of the study exhibited the magnetic Fe3O4@SiO2-NH2-nanoparticle as an alternative effective adsorbent in eradicating Cd(II) ions from aqueous solution.
Collapse
|
23
|
Mogale R, Akpomie KG, Conradie J, Langner EHG. Dye adsorption of aluminium- and zirconium-based metal organic frameworks with azobenzene dicarboxylate linkers. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 304:114166. [PMID: 34864408 DOI: 10.1016/j.jenvman.2021.114166] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 09/18/2021] [Accepted: 11/23/2021] [Indexed: 06/13/2023]
Abstract
The high efficiency of metal-organic-frameworks (MOFs) such as the ZIF, MIL and UiO type species in dye adsorption is well established. Recently, an emerging class of photoresponsive azobenzene-based MOFs has found suitable application in gas adsorption. However, there is a dearth of research on their use in the adsorption of dyes and other water pollutants. In this research, two microporous photoresponsive azobenzene dicarboxylate MOFs of Al3+ (Al-AZB) and Zr4+ (Zr-AZB) were synthesized for the adsorption of congo red (CR) dye. The surface and textural properties of the synthesized MOFs were characterized by FTIR, PXRD, SEM, TGA, BET and pore analysis. Both MOFs were crystalline, thermally stable up to 300 °C and stable in aqueous medium at room temperature. The Al-AZB displayed a higher surface area (2718 m2/g) than the Zr-AZB (1098 m2/g), which significantly impacted the higher adsorption of CR. Besides, pore volumes of 0.86 cm3/g and 0.35 cm3/g were obtained for Al-AZB and Zr-AZB, respectively. The maximum adsorption capacity of Al-AZB and Zr-AZB was 456.6 mg/g and 128.9 mg/g, respectively, with the former superior to other potent adsorbents. The pseudo-second-order and Langmuir models were well correlated with the dye uptake on the MOFs. Thermodynamics revealed random and endothermic sorption of CR dominated by chemisorption, while efficient regeneration and reuse of both MOFs were achieved using dimethylformamide as eluent. The results proved the potency of the synthesized photoresponsive MOFs, as highly efficient and reusable materials for dye adsorption.
Collapse
Affiliation(s)
- Refilwe Mogale
- Chemistry Department, University of the Free State, Bloemfontein, 9300, South Africa.
| | - Kovo G Akpomie
- Chemistry Department, University of the Free State, Bloemfontein, 9300, South Africa; Department of Pure & Industrial Chemistry, University of Nigeria, Nsukka, Nigeria
| | - Jeanet Conradie
- Chemistry Department, University of the Free State, Bloemfontein, 9300, South Africa
| | - Ernst H G Langner
- Chemistry Department, University of the Free State, Bloemfontein, 9300, South Africa.
| |
Collapse
|
24
|
Wang L, Wang M, Muhammad H, Sun Y, Guo J, Laipan M. Polypyrrole-Bentonite composite as a highly efficient and low cost anionic adsorbent for removing hexavalent molybdenum from wastewater. J Colloid Interface Sci 2022; 615:797-806. [PMID: 35180628 DOI: 10.1016/j.jcis.2022.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/24/2022] [Accepted: 02/01/2022] [Indexed: 01/19/2023]
Abstract
The aim of current study was to develop a new material for the fast and efficient removal of hexavalent molybdenum (Mo(VI)) from contaminated water. In this work, a novel adsorbent was synthesized through the polypyrrole intercalation modification of bentonite (PPy-BT) via in-situ chemical polymerization method for effectively removal of Mo(VI) from aqueous solution. The surface morphology and chemical composition of PPy-BT composites were investigated by X-ray diffraction, energy-dispersive X-ray spectroscopy, Fourier transform infrared spectrometer, scanning electron microscopy techniques and X-ray photoelectron spectroscopy. PPy and BT could well resist the aggregation of each other, and therefore resulted in a loose-packed structure and good exposure of active sites. Using materials for the adsorption of Mo(VI) revealed has a maximum adsorption capacity of 100.17 mg/g at 25 °C and pH 4.0 by the Langmuir model. The adsorption kinetics and isotherm data are found to be well elucidated through pseudo-second-order and Langmuir models. Moreover, high regeneration ability (>89.3%) of PPy-BT was noted for five consecutive adsorption-desorption cycles. These findings highlight the potential of PPy-BT for practical water treatment applications. The intercalation material of PPy-BT could provide a new strategy to develop cost-effective clay-based nanomaterials for wastewater treatment.
Collapse
Affiliation(s)
- Lei Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Min Wang
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Haris Muhammad
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China
| | - Yan Sun
- Institute of Eeo-environmental and Soil Sciences, Guangdong Academy of Science, Guangzhou 510650, PR China
| | - Junkang Guo
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| | - Minwang Laipan
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi'an 710021, PR China.
| |
Collapse
|
25
|
Li Y, Shao M, Huang M, Sang W, Zheng S, Jiang N, Gao Y. Enhanced remediation of heavy metals contaminated soils with EK-PRB using β-CD/hydrothermal biochar by waste cotton as reactive barrier. CHEMOSPHERE 2022; 286:131470. [PMID: 34311401 DOI: 10.1016/j.chemosphere.2021.131470] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/02/2021] [Accepted: 07/06/2021] [Indexed: 05/22/2023]
Abstract
Heavy metals in the soil are major global environmental problems. Waste cotton was used to synthesize a novel β-CD/hydrothermal biochar (KCB), which is a low-cost and environment-friendly adsorbent for heavy metal soil remediation. KCB were used as reactive materials of electrokinetic-permeable reactive barrier (EK-PRB) to explore the removal characteristics of heavy metals. FTIR and XPS analysis revealed that KCB contained large numbers of surface functional groups. Adsorption of KCB for Pb2+ and Cd2+ reached 50.44 mg g-1 and 33.77 mg g-1, respectively. Metal ions in contaminated soil were removed by reactive barrier through electromigration, electrodialysis and electrophoresis, the removal efficiency of Pb2+ and Cd2+ in soil reached 92.87% and 86.19%. This finding proves that KCB/EK-PRB can be used as a cheap and green process to effectively remediate soils contaminated with heavy metals.
Collapse
Affiliation(s)
- Yulin Li
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Mengyu Shao
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Manhong Huang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China; State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, Donghua University, China; Key Laboratory of Science & Technology of Eco-Textile, Ministry of Education, Shanghai, 201620, China.
| | - Wenjing Sang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Shengyang Zheng
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Nan Jiang
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| | - Yanan Gao
- College of Environmental Science and Engineering, State Environmental Protection Engineering Center for Pollution Treatment and Control in Textile Industry, Donghua University, Shanghai, 201620, China
| |
Collapse
|
26
|
Wang G, Wang J, Yu T, Guo X, Chen Y. Efficient removal of humic acid in water using a novel TiO 2 composite with biochar doping. RSC Adv 2022; 12:31966-31975. [PMCID: PMC9641702 DOI: 10.1039/d2ra05358f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2022] [Accepted: 10/10/2022] [Indexed: 11/11/2022] Open
Abstract
Titanium dioxide modified with biochar (Ti–C) was prepared by a sol–gel method for the degradation of humic acid (HA) in aqueous solutions.
Collapse
Affiliation(s)
- Guoqiao Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
- Shenyang Municipal Bureau of Public Utilities, Shengyang, 110011, China
| | - Jiawei Wang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Tian Yu
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Xin Guo
- Chengdu Academy of Environmental Protection Sciences, Chengdu, 610072, China
| | - Yao Chen
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| |
Collapse
|
27
|
Jiang K, Liu K, Peng Q, Zhou M. Adsorption of Pb(II) and Zn(II) ions on humus-like substances modified montmorillonite. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.127706] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
28
|
Zheng X, Ma X, Hua Y, Li D, Xiang J, Song W, Dong J. Nitric acid-modified hydrochar enhance Cd 2+ sorption capacity and reduce the Cd 2+ accumulation in rice. CHEMOSPHERE 2021; 284:131261. [PMID: 34182287 DOI: 10.1016/j.chemosphere.2021.131261] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2020] [Revised: 04/13/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
Remediating the agricultural soil polluted by cadmium (Cd) is a serious issue in China. Hydrochar showed its potential to purify Cd-contaminated water and improve Cd-contaminated soil due to its vast amounts of macro- and microporous structures. In this study, three concentration gradients of nitric acid (HNO3, mass fraction: 5%, 10%, 15%) were implemented to age pristine wheat straw hydrochar (N0-HC) aiming to improve surface physiochemical properties. Four HNO3-aging hydrochars named N0-HC, N5-HC, N10-HC, N15-HC were used to both remove Cd2+ from aqueous solution and improve soil properties. Results showed that HNO3-aging significantly improved the Cd2+ adsorption capacity by 1.9-9.9 folds compared to crude hydrochar due to the increased specific surface area (by 1.5-6.5 folds) and oxygen-containing functional group abundance (by 4.5-22.1%). Besides, initial solution pH of 8 or environmental temperature of 318.15 K performed the best Cd2+ adsorption capacity. Furthermore, the process of Cd2+ adsorption was fitted best to pseudo-second-order (R2 = 0.95) and Langmuir models (R2 = 0.98), respectively. Nanjing 46 (Oryza sativa L) and HNO3-aging hydrochars were furtherly applied into Cd-contaminated paddy soil to investigate the mitigation of Cd translation from soil to rice. N15-HC-1% (w/w) performed the best effect on reducing cadmium accumulation in various parts of rice plants. Overall, this research provided an approach to improve hydrochar capacity to remove Cd2+ from aqueous solution and mitigate Cd translation from soil to rice.
Collapse
Affiliation(s)
- Xuebo Zheng
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China
| | - Xiaogang Ma
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China; Graduate School of Chinese Academy of Agricultural Sciences, Beijing, 100081, China
| | - Yun Hua
- College of Resources and Environment Science, Nanjing Agricultural University, Nanjing, 210095, China
| | - Detian Li
- Key Laboratory of Agro-Environment in Downstream of Yangtze Plain, Ministry of Agriculture and Rural Affairs, Institute of Agricultural Resources and Environment, Jiangsu Academy of Agriculture Sciences, Nanjing, 210014, China
| | - Jian Xiang
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Forest, Nanjing Forestry University, Nanjing, 210037, China
| | - Wenjing Song
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| | - Jianxin Dong
- Key Laboratory of Tobacco Biology and Processing, Ministry of Agriculture and Rural Affairs, Tobacco Research Institute of Chinese Academy of Agricultural Sciences, Qingdao, 266101, China.
| |
Collapse
|
29
|
Peighambardoust SJ, Foroutan R, Peighambardoust SH, Khatooni H, Ramavandi B. Decoration of Citrus limon wood carbon with Fe 3O 4 to enhanced Cd 2+ removal: A reclaimable and magnetic nanocomposite. CHEMOSPHERE 2021; 282:131088. [PMID: 34118621 DOI: 10.1016/j.chemosphere.2021.131088] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 05/25/2021] [Accepted: 05/30/2021] [Indexed: 05/19/2023]
Abstract
In the present study, the activated carbon of lemon (ACL) was generated from Citrus limon wood waste and composited with Fe3O4 nanoparticles. The ACL/Fe3O4 magnetic composite was effectively used to eliminate Cd2+ from an aqueous solution. The active surface area values for ACL and ACL/Fe3O4 magnetic composite were 25.99 m2/g and 38.70 m2/g, respectively indicating the effectiveness of Fe3O4 nanoparticles in improving ACL active surface area. The response surface methodology with central composite design (RSM-CCD) was used to determine optimal values of pH, ACL/Fe3O4 dose, contact time, and Cd2+ concentration on the decontamination efficiency. The Langmuir and Freundlich isotherm models had more potential to describe the adsorption process using ACL and ACL/Fe3O4, respectively. The Langmuir-based adsorption capacity was obtained as 28.2 mg/g (ACL) and 39.6 mg/g (ACL/Fe3O4). A pseudo-second order (PSO) model was successfully applied to evaluate the adsorption process kinetic behavior. A higher value of α parameter for ACL/Fe3O4 (5.7 mg/g.min) than that of ACL (3.5 mg/g.min) indicated that the magnetic composite had a greater tendency to absorb Cd2+. In addition, the Weber-Morris model showed that various mechanisms such as intraparticle diffusion and boundary layer effects may have a role in the adsorption process. The study of ad(de)sorption behavior showed that the adsorbents have a good ability to adsorb Cd2+ and no significant change in their performance has been made up to 4 times of reuse. Our results showed that ACL modification using Fe3O4 nanoparticles improved the adsorption efficiency of ACL to remove Cd2+ from the aqueous solutions.
Collapse
Affiliation(s)
| | - Rauf Foroutan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz, Tabriz, 5166616471, Iran.
| | | | - Hamzeh Khatooni
- Department of Food Science, College of Agriculture, University of Tabriz, Tabriz, 5166616471, Iran
| | - Bahman Ramavandi
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| |
Collapse
|
30
|
Kosmulski M. The pH dependent surface charging and points of zero charge. IX. Update. Adv Colloid Interface Sci 2021; 296:102519. [PMID: 34496320 DOI: 10.1016/j.cis.2021.102519] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 01/23/2023]
Abstract
of the points of zero charge (PZC) and isoelectric points (IEP) of various materials published in the recent literature and of older results overlooked in the previous compilations. The roles of experimental conditions, especially of the temperature, of the nature and concentration of supporting electrolyte, and of the type of apparatus are emphasized. The newest results are compared with the zero points reported in previous reviews. Most recent studies were carried out with materials whose pH dependent surface charging is already well-documented, and the newest results are consistent with the older literature. Isoelectric points of Gd(OH)3, Sm(OH)3, and TeO2 have been reported for the first time in the recent literature.
Collapse
Affiliation(s)
- Marek Kosmulski
- Lublin University of Technology, Nadbystrzycka 38, PL-20618 Lublin, Poland.
| |
Collapse
|
31
|
Liu L, Yue T, Liu R, Lin H, Wang D, Li B. Efficient absorptive removal of Cd(Ⅱ) in aqueous solution by biochar derived from sewage sludge and calcium sulfate. BIORESOURCE TECHNOLOGY 2021; 336:125333. [PMID: 34082334 DOI: 10.1016/j.biortech.2021.125333] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Revised: 05/20/2021] [Accepted: 05/22/2021] [Indexed: 06/12/2023]
Abstract
Biochar derived from co-pyrolysis of sewage sludge and calcium sulfate was used to remove Cd(II) from aqueous solution. The results showed that the Cd(Ⅱ) adsorption better followed Freundlich model, and the maximum adsorption capacities were 109.0 mg/g (288 K), 127.9 mg/g (298 K) and 145.4 mg/g (308 K). The Cd(Ⅱ) removal was a multi-layer adsorption process dominated by chemisorption, which was also a spontaneous and endothermic process. The contribution of physisorption gradually increased as the Cd(Ⅱ) initial concentration. The Cd(Ⅱ) removal process which better followed pseudo-second-order kinetic model, was divided into three stages. The first (0-0.3 h) and second stages (0.3-2 h) were separately controlled by liquid film diffusion/intraparticle diffusion/chemical reaction and liquid film diffusion/chemical reaction, while the third stage (0.3-24 h) was the dynamic equilibrium process. The speciation distribution of Cd on biochar surface was mainly CdCO3/CdOOC and CdO/CdSiO3, indicating coprecipitation, ion exchange and complexation contributed more to the Cd(Ⅱ) removal.
Collapse
Affiliation(s)
- Liheng Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Tiantian Yue
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Rui Liu
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China
| | - Hua Lin
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China
| | - Dunqiu Wang
- College of Environmental Science and Engineering, Guilin University of Technology, Guilin 541004, China; Guangxi Key Laboratory of Environmental Pollution Control Theory and Technology, Guilin University of Technology, Guilin 541004, China.
| | - Baoxiang Li
- Office of Teaching Affairs, Guilin University of Technology, Guilin 541004, China
| |
Collapse
|
32
|
Foroutan R, Peighambardoust SJ, Hemmati S, Ahmadi A, Falletta E, Ramavandi B, Bianchi CL. Zn 2+ removal from the aqueous environment using a polydopamine/hydroxyapatite/Fe 3O 4 magnetic composite under ultrasonic waves. RSC Adv 2021; 11:27309-27321. [PMID: 35480667 PMCID: PMC9037841 DOI: 10.1039/d1ra04583k] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2021] [Accepted: 08/03/2021] [Indexed: 12/16/2022] Open
Abstract
In this study, an easily magnetically recoverable polydopamine (PDA)-modified hydroxyapatite (HAp)/Fe3O4 magnetic composite (HAp/Fe3O4/PDA) was suitably synthesized to exploit its adsorption capacity to remove Zn2+ from aqueous solution, and its structural properties were thoroughly examined using different analytical techniques. The effect of multiple parameters like pH, ultrasonic power, ultrasonic time, adsorbent dose, and initial Zn2+ concentration on the adsorption efficiency was assessed using RSM-CCD. According to the acquired results, by increasing the adsorbent quantity, ultrasonic power, ultrasonic time, and pH, the Zn2+ adsorption efficiency increased and the interaction between the variables of ultrasonic power/Zn2+ concentration, pH/Zn2+ concentration, pH/absorbent dose, and ultrasonic time/adsorbent dose has a vital role in the Zn2+ adsorption. The uptake process of Zn2+ onto PDA/HAp/Fe3O4 followed Freundlich and pseudo-second order kinetic models. The maximum capacity of Zn2+ adsorption (q m) obtained by PDA/HAp/Fe3O4, HAp/Fe3O4, and HAp was determined as 46.37 mg g-1, 40.07 mg g-1, and 37.57 mg g-1, respectively. Due to its good performance and recoverability (ten times), the HAp/Fe3O4/PDA magnetic composite can be proposed as a good candidate to eliminate Zn2+ ions from a water solution.
Collapse
Affiliation(s)
- Rauf Foroutan
- Faculty of Chemical and Petroleum Engineering, University of Tabriz Tabriz 5166616471 Iran
| | | | - Saeed Hemmati
- Department of Chemical Engineering, Bushehr Branch, Islamic Azad University Bushehr Iran
| | - Amir Ahmadi
- Department of Chemical Engineering, Bushehr Branch, Islamic Azad University Bushehr Iran
| | - Ermelinda Falletta
- Università degli Studi di Milano - Department of Chemistry via Golgi 19 20133 Milan Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) via Giusti 9 50121 Florence Italy
| | - Bahman Ramavandi
- Departments of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences Bushehr Iran
| | - Claudia L Bianchi
- Università degli Studi di Milano - Department of Chemistry via Golgi 19 20133 Milan Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM) via Giusti 9 50121 Florence Italy
| |
Collapse
|
33
|
Khan S, Idrees M, Bilal M. Revealing and elucidating chemical speciation mechanisms for lead and nickel adsorption on zeolite in aqueous solutions. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126711] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
34
|
Kong A, Sun Y, Peng M, Gu H, Fu Y, Zhang J, Li W. Amino-functionalized MXenes for efficient removal of Cr(VI). Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126388] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|