1
|
Yu S, Webber MJ. Engineering disease analyte response in peptide self-assembly. J Mater Chem B 2024; 12:10757-10769. [PMID: 39382032 DOI: 10.1039/d4tb01860e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
A need to enhance the precision and specificity of therapeutic nanocarriers inspires the development of advanced nanomaterials capable of sensing and responding to disease-related cues. Self-assembled peptides offer a promising nanocarrier platform with versatile use to create precisely defined nanoscale materials. Disease-relevant cues can range from large biomolecules, such as enzymes, to ubiquitous small molecules with varying concentrations in healthy versus diseased states. Notably, pH changes (i.e., H+ concentration), redox species (e.g., H2O2), and glucose levels are significant spatial and/or temporal indicators of therapeutic need. Self-assembled peptides respond to these cues by altering their solubility, modulating electrostatic interactions, or facilitating chemical transformations through dynamic or labile bonds. This review explores the design and construction of therapeutic nanocarriers using self-assembled peptides, focusing on how peptide sequence engineering along with the inclusion of non-peptidic components can link the assembly state of these nanocarriers to the presence of disease-relevant small molecules.
Collapse
Affiliation(s)
- Sihan Yu
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| | - Matthew J Webber
- Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, IN 46556, USA.
| |
Collapse
|
2
|
Wang Y, Liao Y, Zhang YJ, Wu XH, Qiao ZY, Wang H. Self-Assembled Peptide with Morphological Structure for Bioapplication. Biomacromolecules 2024; 25:6367-6394. [PMID: 39297513 DOI: 10.1021/acs.biomac.4c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2024]
Abstract
Peptide materials, such as self-assembled peptide materials, are very important biomaterials. Driven by multiple interaction forces, peptide molecules can self-assemble into a variety of different macroscopic forms with different properties and functions. In recent years, the research on self-assembled peptides has made great progress from laboratory design to clinical application. This review focuses on the different morphologies, including nanoparticles, nanovesicles, nanotubes, nanofibers, and others, formed by self-assembled peptide. The mechanisms and applications of the morphology transformation are also discussed in this paper, and the future direction of self-assembled nanomaterials is envisioned.
Collapse
Affiliation(s)
- Yu Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Yusi Liao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, P. R. China
| | - Ying-Jin Zhang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Xiu-Hai Wu
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
- Harbin Medical University Cancer Hospital, No. 150 Haping Road, Nangang District, Harbin150081, P. R. China
| | - Zeng-Ying Qiao
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
| | - Hao Wang
- Henan Institute of Advanced Technology, Zhengzhou University, Zhengzhou, 450052, P. R. China
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, National Center for Nanoscience and Technology (NCNST), No.11 Beiyitiao, Zhongguancun, Beijing 100190, P. R. China
- Collaborative Innovation Centre of Regenerative Medicine and Medical BioResource Development and Application Co-constructed by the Province and Ministry, Guangxi Medical University, Nanning 530021, P. R. China
| |
Collapse
|
3
|
Am A, Faccio ME, Pinvidic M, Reygue E, Doan BT, Lescot C, Trapiella Alfonso L, d'Orlyé F, Varenne A. A methodological approach by capillary electrophoresis coupled to mass spectrometry via electrospray interface for the characterization of short synthetic peptides towards the conception of self-assembled nanotheranostic agents. J Chromatogr A 2024; 1713:464496. [PMID: 37976903 DOI: 10.1016/j.chroma.2023.464496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/27/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Nanostructures formed by the self-assembling peptide building blocks are attractive materials for the design of theranostic objects due to their intrinsic biocompatibility, accessible surface chemistry as well as cavitary morphology. Short peptide synthesis and modification are straightforward and give access to a great diversity of sequences, making them very versatile building blocks allowing for the design of thoroughly controlled self-assembled nanostructures. In this work, we developed a new CE-DAD-ESI-MS method to characterize short synthetic amphiphilic peptides in terms of exact sequence and purity level in the low 0.1 mg.mL-1 range, without sample treatment. This study was conducted using a model sequence, described to have pH sensitive self-assembling property. Peptide samples obtained from different synthesis processes (batch or flow, purified or not) were thus separated by capillary zone electrophoresis (CZE). The associated dual UV and MS detection mode allowed to evidence the exact sequence together with the presence of impurities, identified as truncated or non-deprotected sequences, and to quantify their relative proportion in the peptide mixture. Our results demonstrate that the developed CE-DAD-ESI-MS method could be directly applied to the characterization of crude synthetic peptide products, in parallel with the optimization of peptide synthetic pathway to obtain controlled sequences with high synthetic yield and purity, which is crucial for further design of robust peptide based self-assembled nanoarchitectures.
Collapse
Affiliation(s)
- Alice Am
- Institute of Chemistry for Life & Health Sciences (iCLeHS), Chimie ParisTech, PSL University, CNRS 8060, Paris 75005, France
| | - Marta Elisa Faccio
- Institute of Chemistry for Life & Health Sciences (iCLeHS), Chimie ParisTech, PSL University, CNRS 8060, Paris 75005, France
| | - Marie Pinvidic
- Institute of Chemistry for Life & Health Sciences (iCLeHS), Chimie ParisTech, PSL University, CNRS 8060, Paris 75005, France
| | - Eva Reygue
- Institute of Chemistry for Life & Health Sciences (iCLeHS), Chimie ParisTech, PSL University, CNRS 8060, Paris 75005, France
| | - Bich-Thuy Doan
- Institute of Chemistry for Life & Health Sciences (iCLeHS), Chimie ParisTech, PSL University, CNRS 8060, Paris 75005, France
| | - Camille Lescot
- Institute of Chemistry for Life & Health Sciences (iCLeHS), Chimie ParisTech, PSL University, CNRS 8060, Paris 75005, France
| | - Laura Trapiella Alfonso
- Institute of Chemistry for Life & Health Sciences (iCLeHS), Chimie ParisTech, PSL University, CNRS 8060, Paris 75005, France
| | - Fanny d'Orlyé
- Institute of Chemistry for Life & Health Sciences (iCLeHS), Chimie ParisTech, PSL University, CNRS 8060, Paris 75005, France.
| | - Anne Varenne
- Institute of Chemistry for Life & Health Sciences (iCLeHS), Chimie ParisTech, PSL University, CNRS 8060, Paris 75005, France.
| |
Collapse
|
4
|
Wang Z, Zhang X, Han M, Jiao X, Zhou J, Wang X, Su R, Wang Y, Qi W. An ultra pH-responsive peptide nanocarrier for cancer gene therapy. J Mater Chem B 2023; 11:8974-8984. [PMID: 37700728 DOI: 10.1039/d3tb01311a] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2023]
Abstract
The tumor microenvironment is a very complex and dynamic ecosystem. Although a variety of pH-responsive peptides have been reported to deliver nucleic acid drugs for cancer treatment, these responses typically only target the acidic microenvironment of the tumor or the lysosome, and the carrier suffers from issues such as low transfection efficiency and poor lysosomal escape within the cell. To address this problem, we have developed an ultra pH-responsive peptide nanocarrier that can efficiently deliver siRNA, pDNA, and mRNA into cancer cells by performing progressive dynamic assembly in response to pH changes in the acidic tumor microenvironment (pH 6.5-6.8) and the acidic intracellular lysosomal environment (pH 5.0-6.0). The maximum transfection efficiency was 87.1% for pDNA and 74.9% for mRNA, which is higher than that of peptide-based nanocarrier reported to date. In addition, the targeting sequence on the surface allows the peptide@siRNA complex to efficiently enter cancer cells, causing 96% of cancer cell mortality. The carrier has high biocompatibility and low cytotoxicity, making it highly promising for application in immunotherapy and gene therapy of tumors.
Collapse
Affiliation(s)
- Zixuan Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China.
| | - Xuelin Zhang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China.
| | - Mingshan Han
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China.
| | - Xinhao Jiao
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China.
| | - Jialin Zhou
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China.
| | - Xinyao Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China.
| | - Rongxin Su
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| | - Yuefei Wang
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China.
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
- Beyonpep Biotechnology Limited, Tianjin 300110, P. R. China
| | - Wei Qi
- School of Chemical Engineering and Technology, State Key Laboratory of Chemical Engineering, Tianjin University, Tianjin 300072, P. R. China.
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P. R. China
- Tianjin Key Laboratory of Membrane Science and Desalination Technology, Tianjin University, Tianjin 300072, P. R. China
| |
Collapse
|
5
|
Zhu Q, Tree DR. Simulations of morphology control of self‐assembled amphiphilic surfactants. JOURNAL OF POLYMER SCIENCE 2023. [DOI: 10.1002/pol.20220771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023]
Affiliation(s)
- Qinyu Zhu
- Department of Chemical Engineering Brigham Young University Provo Utah USA
| | - Douglas R. Tree
- Department of Chemical Engineering Brigham Young University Provo Utah USA
| |
Collapse
|
6
|
Xu Q, Li X, Yang J, Zhang Y, Deng X, Li G, Yuan Q. Naphthyl-Poly(S-((2-carboxyethyl)thio)-l-cysteine) Peptide Amphiphiles with Different Degrees of Polymerization: Synthesis, Self-Assembly, pH/Reduction-Triggered Drug Release, and Cytotoxicity. Mol Pharm 2023; 20:1256-1268. [PMID: 36648435 DOI: 10.1021/acs.molpharmaceut.2c00925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Four peptide amphiphiles (PA1-4) with different degrees of polymerization (DP = 40, 15, 10, and 6) were synthesized by Fuchs-Farthing and ring-opening polymerization followed by post-polymerization modification, as fully characterized by 1H NMR, FT-IR, gel permeation chromatography, and circular dichroism (CD) spectroscopy. It was found that PAs could self-assemble to form regular spherical micelles in low-concentration (about 1 mg/mL) aqueous solution, which had different contents of secondary structures and mainly adopted random coil conformations. The water solubility of PAs increases with the increase of DP, the polypeptide chain stretches randomly in water, the β-sheets decrease, and the random coil conformations dominate. When the pH of PA solution decreases or increases, intramolecular hydrogen bonds break, and molecular chains stretch, leading to a decrease of α-helix, turn conformations, and an increase of β-sheets. Meanwhile, the particle size of micelles increases. At around 0.4 mg/mL, the hemolysis ability of PA2 is negligible at pH 7.4 and 6.5 and about 33% at pH 5.5. Cisplatin (CDDP) was linked to micelles by coordination bonds to explore their potential as drug carriers, exhibiting controlled pH and reduction in dual drug release effects. MTT assay showed that the HeLa cell viability was 78% when cultured in the 13.5 μg/mL PA2 blank micelles for 2 days, while the cell viability was 60% in the CDDP-loaded micelles. Furthermore, a high concentration of PA2 (about 100 mg/mL) could self-assemble into a fibrous hydrogel at pH 5.5, which self-healed 2 h after incision and self-degraded 71% within 14 days. The CDDP-loaded fiber hydrogel exhibited a sustained release effect similar to the CDDP-loaded micelles. The cytotoxicity of CDDP-loaded fibers at 48 h was detected to be the same as that of the same amount of CDDP, and the cell viability was 7%. Therefore, we provide a new strategy for the synthesis of amphiphilic peptides with potential applications in nano-drug carriers and cancer therapy.
Collapse
Affiliation(s)
- Qinming Xu
- School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming650091, PR China
| | - Xing Li
- School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming650091, PR China
| | - Jingang Yang
- School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming650091, PR China
| | - Yan Zhang
- School of Chemical Science and Engineering, Yunnan University, Kunming650091, PR China
| | - Xiaocui Deng
- School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming650091, PR China
| | - Gang Li
- School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming650091, PR China
| | - Qingmei Yuan
- School of Materials and Energy, National Center for International Research on Photoelectric and Energy Materials, Yunnan University, Kunming650091, PR China
| |
Collapse
|
7
|
Gong G, Qian W, Zhang L, Jia J, Xie J, Zhu Q, Liu W, Tu P, Gao M, Zhang L, Tang H, Su H, Wei K, Zhou C, Wang KK, Zhang Z, Pan Q. A curcumin-induced assembly of a transferrin nanocarrier system and its antitumor effect. Colloids Surf B Biointerfaces 2022; 217:112613. [DOI: 10.1016/j.colsurfb.2022.112613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 05/31/2022] [Accepted: 06/02/2022] [Indexed: 10/17/2022]
|
8
|
Li Z, Zhu Y, Matson JB. pH-Responsive Self-Assembling Peptide-Based Biomaterials: Designs and Applications. ACS APPLIED BIO MATERIALS 2022; 5:10.1021/acsabm.2c00188. [PMID: 35505454 PMCID: PMC9630172 DOI: 10.1021/acsabm.2c00188] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stimuli-responsive peptide-based biomaterials are increasingly gaining interest for various specific and targeted treatments, including drug delivery and tissue engineering. Among all stimuli, pH can be especially useful because endogenous pH changes are often associated with abnormal microenvironments. pH-Responsive amino acids and organic linkers can be easily incorporated into peptides that self-assemble into various nanostructures. Thus, these largely biocompatible and easily tunable platforms are ideal candidates for drug release and as fibrous materials capable of mimicking the native extracellular matrix. In this review, we highlight common design motifs and mechanisms of pH-responsiveness in self-assembling peptide-based biomaterials, focusing on recent advances of these biomaterials applied in drug delivery and tissue engineering. Finally, we suggest future challenges and areas for potential development in pH-responsive self-assembling peptide-based biomaterials.
Collapse
Affiliation(s)
- Zhao Li
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - Yumeng Zhu
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| | - John B Matson
- Department of Chemistry, Virginia Tech Center for Drug Discovery, and Macromolecules Innovation Institute, Virginia Tech, Blacksburg, Virginia 24061, United States
| |
Collapse
|
9
|
Self-assembly and disassembly mechanisms of biomimetic peptides: Molecular dynamics simulation and experimental measurement. Int J Biol Macromol 2022; 209:785-793. [PMID: 35429517 DOI: 10.1016/j.ijbiomac.2022.04.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/13/2022] [Accepted: 04/09/2022] [Indexed: 01/22/2023]
Abstract
Drug-loaded pH-responsive nanoparticles are potential drug carriers in nanotherapeutics delivery because they can remain stable in normal tissues but can disassemble and release drug molecules in tumors. In this study, the mechanisms of self-assembly and disassembly were investigated by analyzing the characteristics of three kinds of biomimetic peptides with different components and sequences. The structural parameters and energy changes during self-assembly and disassembly were calculated by molecular dynamics simulation. Transmission electron microscopy, Fourier transform infrared spectroscopy, and atomic force microscopy were used to observe morphological changes and measure the strength of hydrophobic and hydrophilic interactions between peptides. Results show that the hydrophobic and hydrophilic interactions play crucial roles in the self-assembly and disassembly processes of peptides. The structure of the peptide clusters after self-assembly became tighter as the difference between hydrophobic and hydrophilic interactions increased, whereas a decrease in this difference led to the increased disassembly of the peptides. In general, polyethylene glycol chain modification was necessary in disassembly, and peptides with straight structures had stronger disassembly ability than that with branched structures with the same components. The morphology of peptide clusters can be controlled under different pH values by changing the composition and structure of the peptides for enhanced drug retention and sustained release.
Collapse
|
10
|
Wang X, Zhang R, Lindaman BD, Leeper CN, Schrum AG, Ulery BD. Vasoactive Intestinal Peptide Amphiphile Micelle Chemical Structure and Hydrophobic Domain Influence Immunomodulatory Potentiation. ACS APPLIED BIO MATERIALS 2022; 5:1464-1475. [PMID: 35302343 DOI: 10.1021/acsabm.1c00981] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Vasoactive intestinal peptide (VIP) is a neuropeptide capable of downregulating innate immune responses in antigen presenting cells (APCs) by suppressing their pro-inflammatory cytokine secretion and cell surface marker expression. Though VIP's bioactivity could possibly be leveraged as a treatment for transplant tolerance, drug delivery innovation is required to overcome its intrinsically limited cellular delivery capacity. One option is to employ peptide amphiphiles (PAs) which are lipidated peptides capable of self-assembling into micelles in water that can enhance cellular association. With this approach in mind, a series of triblock VIP amphiphiles (VIPAs) has been synthesized to explore the influence of block arrangement and hydrophobicity on micelle biocompatibility and bioactivity. VIPA formulation has been found to influence the shape, size, and surface charge of VIPA micelles (VIPAMs) as well as their cytotoxicity and immunomodulatory effects. Specifically, the enclosed work provides strong evidence that cylindrical VIPAMs with aspect ratios of 1.5-150 and moderate positive surface charge are able to potentiate the bioactivity of VIP limiting TNF-α secretion and MHC II and CD86 surface expression on APCs. With these criteria, we have identified PalmK-(EK)4-VIP as our lead formulation, which showed comparable or enhanced anti-inflammatory effects relative to the unmodified VIP at all dosages evaluated. Additionally, the relationships between peptide block location and lipid block size provide further information on the chemical structure-function relationships of PA micelles for the delivery of VIP as well as potentially for other peptides more broadly.
Collapse
Affiliation(s)
- Xiaofei Wang
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Rui Zhang
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Bryce D Lindaman
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Caitlin N Leeper
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Adam G Schrum
- Departments of Molecular Microbiology & Immunology, Surgery, and Biomedical, Biological & Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| | - Bret D Ulery
- Department of Biomedical, Biological, and Chemical Engineering, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
11
|
The application progress of peptides in drug delivery systems in the past decade. J Drug Deliv Sci Technol 2021. [DOI: 10.1016/j.jddst.2021.102880] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
12
|
Wang Y, Zhang X, Wan K, Zhou N, Wei G, Su Z. Supramolecular peptide nano-assemblies for cancer diagnosis and therapy: from molecular design to material synthesis and function-specific applications. J Nanobiotechnology 2021; 19:253. [PMID: 34425823 PMCID: PMC8381530 DOI: 10.1186/s12951-021-00999-x] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 08/15/2021] [Indexed: 01/10/2023] Open
Abstract
Peptide molecule has high bioactivity, good biocompatibility, and excellent biodegradability. In addition, it has adjustable amino acid structure and sequence, which can be flexible designed and tailored to form supramolecular nano-assemblies with specific biomimicking, recognition, and targeting properties via molecular self-assembly. These unique properties of peptide nano-assemblies made it possible for utilizing them for biomedical and tissue engineering applications. In this review, we summarize recent progress on the motif design, self-assembly synthesis, and functional tailoring of peptide nano-assemblies for both cancer diagnosis and therapy. For this aim, firstly we demonstrate the methodologies on the synthesis of various functional pure and hybrid peptide nano-assemblies, by which the structural and functional tailoring of peptide nano-assemblies are introduced and discussed in detail. Secondly, we present the applications of peptide nano-assemblies for cancer diagnosis applications, including optical and magnetic imaging as well as biosensing of cancer cells. Thirdly, the design of peptide nano-assemblies for enzyme-mediated killing, chemo-therapy, photothermal therapy, and multi-therapy of cancer cells are introduced. Finally, the challenges and perspectives in this promising topic are discussed. This work will be useful for readers to understand the methodologies on peptide design and functional tailoring for highly effective, specific, and targeted diagnosis and therapy of cancers, and at the same time it will promote the development of cancer diagnosis and therapy by linking those knowledges in biological science, nanotechnology, biomedicine, tissue engineering, and analytical science.
Collapse
Affiliation(s)
- Yan Wang
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, People's Republic of China
| | - Xiaoyuan Zhang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Keming Wan
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, People's Republic of China
| | - Nan Zhou
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China
| | - Gang Wei
- College of Chemistry and Chemical Engineering, Qingdao University, 266071, Qingdao, People's Republic of China.
| | - Zhiqiang Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Advanced Functional Polymer Composites, Beijing University of Chemical Technology, Beijing, People's Republic of China.
| |
Collapse
|
13
|
Tarvirdipour S, Skowicki M, Schoenenberger CA, Palivan CG. Peptide-Assisted Nucleic Acid Delivery Systems on the Rise. Int J Mol Sci 2021; 22:9092. [PMID: 34445799 PMCID: PMC8396486 DOI: 10.3390/ijms22169092] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/13/2021] [Accepted: 08/19/2021] [Indexed: 12/12/2022] Open
Abstract
Concerns associated with nanocarriers' therapeutic efficacy and side effects have led to the development of strategies to advance them into targeted and responsive delivery systems. Owing to their bioactivity and biocompatibility, peptides play a key role in these strategies and, thus, have been extensively studied in nanomedicine. Peptide-based nanocarriers, in particular, have burgeoned with advances in purely peptidic structures and in combinations of peptides, both native and modified, with polymers, lipids, and inorganic nanoparticles. In this review, we summarize advances on peptides promoting gene delivery systems. The efficacy of nucleic acid therapies largely depends on cell internalization and the delivery to subcellular organelles. Hence, the review focuses on nanocarriers where peptides are pivotal in ferrying nucleic acids to their site of action, with a special emphasis on peptides that assist anionic, water-soluble nucleic acids in crossing the membrane barriers they encounter on their way to efficient function. In a second part, we address how peptides advance nanoassembly delivery tools, such that they navigate delivery barriers and release their nucleic acid cargo at specific sites in a controlled fashion.
Collapse
Affiliation(s)
- Shabnam Tarvirdipour
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- Department of Biosystem Science and Engineering, ETH Zurich, Mattenstrasse 26, 4058 Basel, Switzerland
| | - Michal Skowicki
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cora-Ann Schoenenberger
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Cornelia G. Palivan
- Department of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland; (S.T.); (M.S.)
- NCCR-Molecular Systems Engineering, BPR1095, Mattenstrasse 24a, 4058 Basel, Switzerland
| |
Collapse
|
14
|
Moulahoum H, Ghorbani Zamani F, Timur S, Zihnioglu F. Metal Binding Antimicrobial Peptides in Nanoparticle Bio-functionalization: New Heights in Drug Delivery and Therapy. Probiotics Antimicrob Proteins 2021; 12:48-63. [PMID: 31001788 DOI: 10.1007/s12602-019-09546-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Peptides are considered very important due to the diversity expressed through their amino acid sequence, structure variation, large spectrum, and their essential role in biological systems. Antimicrobial peptides (AMPs) emerged as a potent tool in therapy owing to their antimicrobial properties but also their ability to trespass the membranes, specificity, and low toxicity. They comprise a variety of peptides from which specific amino acid-rich peptides are of interest to the current review due to their features in metal interaction and cell penetration. Histidine-rich peptides such as Histatins belong to the metal binding salivary residing peptides with efficient antibacterial, antifungal, and wound-healing activities. Furthermore, their ability to activate in acidic environment attracted the attention to their potential in therapy. The current review covers the current knowledge about AMPs and critically assess the potential of associating with metal ions both structurally and functionally. This review provides interesting hints for the advantages provided by AMPs and metal ions in biomedicine, making use of their direct properties in brain diseases therapy or in the creation of new bio-functionalized nanoparticles for cancer diagnosis and treatment.
Collapse
Affiliation(s)
- Hichem Moulahoum
- Biochemistry Department, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey.
| | - Faezeh Ghorbani Zamani
- Biochemistry Department, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Suna Timur
- Biochemistry Department, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey
| | - Figen Zihnioglu
- Biochemistry Department, Faculty of Science, Ege University, 35100, Bornova, Izmir, Turkey.
| |
Collapse
|
15
|
Zanganeh S, Firoozpour L, Sardari S, Afgar A, Cohan RA, Mohajel N. Novel Descriptors Derived from the Aggregation Propensity of Di- and Tripeptides Can Predict the Critical Aggregation Concentration of Longer Peptides. ACS OMEGA 2021; 6:13331-13340. [PMID: 34056481 PMCID: PMC8158804 DOI: 10.1021/acsomega.1c01293] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 04/28/2021] [Indexed: 05/14/2023]
Abstract
Self-assembling amphiphilic peptides have recently received special attention in medicine. Nonetheless, testing the myriad of combinations generated from at least 20 coded and several hundreds of noncoded amino acids to obtain candidate sequences for each application, if possible, is time-consuming and expensive. Therefore, rapid and accurate approaches are needed to select candidates from countless combinations. In the current study, we examined three conventional descriptor sets along with a novel descriptor set derived from the simulated aggregation propensity of di- and tripeptides to model the critical aggregation concentration (CAC) of amphiphilic peptides. In contrast to the conventional descriptors, the radial kernel model derived from the novel descriptor set accurately predicted the critical aggregation concentration of the test set with a residual standard error of 0.10. The importance of aromatic side chains, as well as neighboring amino acids in the self-assembly, was emphasized by analysis of the influential descriptors. The addition of very long peptides (70-100 residues) to the data set decreased the model accuracy and changed the influential descriptors. The developed model can be used to predict the CAC of self-assembling amphiphilic peptides and also to derive rules to apply in designing novel amphiphilic peptides with desired properties.
Collapse
Affiliation(s)
- Saeed Zanganeh
- Department
of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran 1316943551, Iran
- Department
of Hematology and Medical Laboratory Sciences, Faculty of Allied Medicine, Kerman University of Medical Sciences, Kerman 7616911333, Iran
| | - Loghman Firoozpour
- Department
of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran 1416753955, Iran
| | - Soroush Sardari
- Drug
Design and Bioinformatics Unit, Medical Biotechnology Department,
Biotechnology Research Center, Pasteur Institute
of Iran, Tehran 1316943551, Iran
| | - Ali Afgar
- Research
Center for Hydatid Disease in Iran, School of Medicine, Kerman University of Medical Sciences, Kerman 7616914115, Iran
| | - Reza Ahangari Cohan
- Department
of Nanobiotechnology, New Technologies Research Group, Pasteur Institute of Iran, Tehran 1316943551, Iran
| | - Nasir Mohajel
- Department
of Molecular Virology, Pasteur Institute
of Iran, Tehran 1316943551, Iran
| |
Collapse
|
16
|
Xuan M, Liang J, Li J, Wu W. Multi-functional lipopeptide micelles as a vehicle for curcumin delivery. Colloids Surf A Physicochem Eng Asp 2021. [DOI: 10.1016/j.colsurfa.2021.126208] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
17
|
Zhu LB, Xu WL, Zhang WW, Wu MC, Li WZ, Ge F, Tao YG, Song P. De novosynthesis of pH-responsive, self-assembled, and targeted polypeptide nano-micelles for enhanced delivery of doxorubicin. NANOTECHNOLOGY 2021; 32:295707. [PMID: 33711826 DOI: 10.1088/1361-6528/abee49] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Doxorubicin (DOX) is a commonly used anticancer drug, but it is inefficient as a therapeutic due to a lack of targeting. Peptide-tuned self-assembly of DOX offers a strategy to improve targeting for greater efficacy. In this work, we designed and prepared an amphiphilic tumor cell-targeting peptide, P14 (AAAAFFFHHHGRGD), able to encapsulate DOX by self-assembly to form tumor cell-targeting and pH-sensitive nano-micelles. The results showed a critical P14-micelle concentration of 1.758 mg l-1and an average particle size of micelles of 121.64 nm, with entrapment and drug-loading efficiencies of 28.02% ± 1.35% and 12.06% ± 0.59%, respectively. The prepared micelles can release 73.52 ± 1.27% DOX within 24 h in pH 4.5 medium, and the drug cumulative release profile of micelles can be described by the first-order model. Compared with free DOX, the micelles exhibited an increased ability to inhibit tumor cell growth and cause tumor apoptosisin vitro, with IC50values of DOX and P14-DOX micelles against human breast cancer cells (MCF-7) of 0.91 ± 0.07 and 0.75 ± 0.06μg ml-1, respectively, and cellular apoptotic rates of DOX and P14-DOX micelles of 70.3% and 42.4%, respectively. Cellular uptake experiments revealed high concentrations of micelles around and inside MCF-7 cells, demonstrating that micelles can target tumor cells. These results indicate the excellent potential for the application of this amphiphilic peptide as a carrier for small-molecule drugs and suggest a strategy for the design of effective anti-tumor drugs.
Collapse
Affiliation(s)
- Long-Bao Zhu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, People's Republic of China
| | - Wen-Liang Xu
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, People's Republic of China
| | - Wei-Wei Zhang
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, People's Republic of China
| | - Ming-Cai Wu
- Department of Biochemistry and Molecular Biology, Wannan Medical College, Wuhu, 241002, Anhui, People's Republic of China
| | - Wan-Zhen Li
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, People's Republic of China
| | - Fei Ge
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, People's Republic of China
| | - Yu-Gui Tao
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, People's Republic of China
| | - Ping Song
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 241000, Anhui, People's Republic of China
| |
Collapse
|
18
|
Gong Z, Liu X, Wu J, Li X, Tang Z, Deng Y, Sun X, Chen K, Gao Z, Bai J. pH-triggered morphological change in a self-assembling amphiphilic peptide used as an antitumor drug carrier. NANOTECHNOLOGY 2020; 31:165601. [PMID: 31891937 DOI: 10.1088/1361-6528/ab667c] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The geometry of nanoparticles plays an important role in the process of drug encapsulation and release. In this study, an acid-responsive amphiphilic polypeptide consisting of lysine and leucine was prepared. In neutral media, the amphiphilic peptide L6K4 self-assembled to form spherical nanoparticles and encapsulated fat-soluble antitumor drugs. The intratumoral accumulation of the drug-loaded nanoparticles was improved in HeLa cells compared with normal cells. Compared to a neutral environment, increasingly acidic solutions changed the secondary structure of the peptide. In addition, the drug-loaded nanoparticles expanded and decomposed, rapidly releasing the poorly soluble antitumor drug doxorubicin (DOX). In addition, the amphiphilic peptide L6K4 had antitumor properties, and the antitumor performance of the combination of L6K4 and DOX was better than that of free DOX. Our results indicate that the use of acid responsiveness to induce geometric changes in drug-loaded peptide nanoparticles could be a promising strategy for antitumor drug delivery.
Collapse
Affiliation(s)
- Zhongying Gong
- School of Bioscience and Technology, Weifang Medical University, Weifang, Shandong, 261042, People's Republic of China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gong Z, Shi Y, Tan H, Wang L, Gao Z, Lian B, Wang G, Sun H, Sun P, Zhou B, Bai J. Plasma Amine Oxidase-Induced Nanoparticle-to-Nanofiber Geometric Transformation of an Amphiphilic Peptide for Drug Encapsulation and Enhanced Bactericidal Activity. ACS APPLIED MATERIALS & INTERFACES 2020; 12:4323-4332. [PMID: 31899611 DOI: 10.1021/acsami.9b21296] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Patients with cancer have reduced immune function and are susceptible to bacterial infection after surgery, chemotherapy, or radiotherapy. Spherical nanoparticles formed by the self-assembled peptide V6K3 can be used as carriers for poorly soluble antitumor drugs to effectively deliver drugs into tumor cells. V6K3 was designed to achieve nanoparticle-to-nanofiber geometric transformation under induction by plasma amine oxidase (PAO). PAO is commercially available and functionally similar to lysyl oxidase (LO), which is widely present in serum. After the addition of fetal bovine serum (FBS) or PAO, the secondary structure of the peptide changed, while the spherical nanoparticles stretched and transformed into nanofibers. The conversion of the self-assembled morphology reveals the susceptibility of this amphiphilic peptide to subtle chemical modifications and may lead to promising strategies to control self-assembled architecture via enzyme induction. Enzymatically self-assembled V6K3 had bactericidal properties after PAO addition that were surprisingly superior to those before PAO addition, enabling this peptide to be used to prevent infection. The amphiphilic peptide V6K3 displayed antitumor properties and low toxicity in mammalian cells, demonstrating good biocompatibility, as well as bactericidal properties, to prevent bacterial contamination. These advantages indicate that enzymatically self-assembled V6K3 has great biomedical application potential in cancer therapy.
Collapse
Affiliation(s)
- Zhongying Gong
- School of Bioscience and Technology , Weifang Medical University , Weifang 261042 , P. R. China
| | - Yuanyuan Shi
- Medical College , Qingdao University , Qingdao 266021 , P. R. China
| | - Haining Tan
- National Glycoengineering Research Center , Shandong University , Jinan 250012 , P. R. China
| | - Lei Wang
- Key Laboratory of Environmental Nanotechnology and Health Effects , Research Center for Eco-environmental Sciences, Chinese Academy of Sciences , Beijing 100085 , P. R. China
| | - Zhiqin Gao
- School of Bioscience and Technology , Weifang Medical University , Weifang 261042 , P. R. China
| | - Bo Lian
- School of Bioscience and Technology , Weifang Medical University , Weifang 261042 , P. R. China
| | - Gang Wang
- School of Bioscience and Technology , Weifang Medical University , Weifang 261042 , P. R. China
| | - Hengyi Sun
- School of Bioscience and Technology , Weifang Medical University , Weifang 261042 , P. R. China
| | - Panpan Sun
- School of Bioscience and Technology , Weifang Medical University , Weifang 261042 , P. R. China
| | - Baolong Zhou
- School of Pharmacy , Weifang Medical University , Weifang 261042 , P. R. China
| | - Jingkun Bai
- School of Bioscience and Technology , Weifang Medical University , Weifang 261042 , P. R. China
| |
Collapse
|
20
|
Fan JH, Fan GL, Yuan P, Deng FA, Liu LS, Zhou X, Yu XY, Cheng H, Li SY. A Theranostic Nanoprobe for Hypoxia Imaging and Photodynamic Tumor Therapy. Front Chem 2019; 7:868. [PMID: 31921785 PMCID: PMC6933523 DOI: 10.3389/fchem.2019.00868] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 12/03/2019] [Indexed: 01/25/2023] Open
Abstract
Hypoxia is a common feature for most malignant tumors, which was also closely related to the oxygen-dependent photodynamic therapy. Based on Förster resonance energy transfer (FRET), a smart nanoprobe (designated as H-Probe) was designed in this paper for hypoxia imaging and photodynamic tumor therapy. Due to the FRET process, H-Probe could respond to hypoxia with a significant fluorescence recovery. Moreover, abundant in vitro investigations demonstrated that the photosensitizer of PpIX in H-Probe could generate large amounts of singlet oxygen to kill cancer cells in the presence of oxygen and light with appropriate wavelength. Also, intravenously injected H-Probe with light irradiation achieved an effective tumor inhibition in vivo with a reduced side effect. This original strategy of integrating hypoxia imaging and tumor therapy in one nanoplatform would promote the development of theranostic nanoplatform for tumor precision therapy.
Collapse
Affiliation(s)
- Jing Hao Fan
- Key Laboratory of Molecular Target & Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Gui Ling Fan
- Key Laboratory of Molecular Target & Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ping Yuan
- Key Laboratory of Molecular Target & Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Fu An Deng
- Key Laboratory of Molecular Target & Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Ling Shan Liu
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Xiang Zhou
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Xi Yong Yu
- Key Laboratory of Molecular Target & Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hong Cheng
- Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, Biomaterials Research Center, School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Shi Ying Li
- Key Laboratory of Molecular Target & Clinical Pharmacology and The State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences & The Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
21
|
Omolo CA, Megrab NA, Kalhapure RS, Agrawal N, Jadhav M, Mocktar C, Rambharose S, Maduray K, Nkambule B, Govender T. Liposomes with pH responsive 'on and off' switches for targeted and intracellular delivery of antibiotics. J Liposome Res 2019; 31:45-63. [PMID: 31663407 DOI: 10.1080/08982104.2019.1686517] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
pH responsive drug delivery systems are one of the new strategies to address the spread of bacterial resistance to currently used antibiotics. The aim of this study was to formulate liposomes with 'On' and 'Off'' pH responsive switches for infection site targeting. The vancomycin (VCM) loaded liposomes had sizes below 100 nm, at pH 7.4. The QL-liposomes had a negative zeta potential at pH 7.4 that switched to a positive charge at acidic pH. VCM release from the liposome was quicker at pH 6 than pH 7.4. The OA-QL-liposome showed 4-fold lower MIC at pH 7.4 and 8- and 16-fold lower at pH 6.0 against both MSSA and MRSA compared to the bare drug. OA-QL liposome had a 1266.67- and 704.33-fold reduction in the intracellular infection for TPH-1 macrophage and HEK293 cells respectively. In vivo studies showed that the amount of MRSA recovered from mice treated with formulations was 189.67 and 6.33-fold lower than the untreated and bare VCM treated mice respectively. MD simulation of the QL lipid with the phosphatidylcholine membrane (POPC) showed spontaneous binding of the lipid to the bilayer membrane both electrostatic and Van der Waals interactions contributed to the binding. These studies demonstrated that the 'On' and 'Off' pH responsive liposomes enhanced the activity targeted and intracellular delivery VCM.
Collapse
Affiliation(s)
- Calvin A Omolo
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,School of Pharmacy and Health Sciences, United States International University of Africa, Nairobi, Kenya
| | - Nagia A Megrab
- Department of Pharmaceutics and Industrial Pharmacy, Zagazig University, Zagazig, Egypt
| | - Rahul S Kalhapure
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Nikhil Agrawal
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Mahantesh Jadhav
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Chunderika Mocktar
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Sanjeev Rambharose
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa.,Division of Emergency Medicine, Department of Surgery, University of Cape Town, Cape Town, South Africa
| | - Kaminee Maduray
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Bongani Nkambule
- Department of Physiology, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| | - Thirumala Govender
- Discipline of Pharmaceutical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban, South Africa
| |
Collapse
|
22
|
Gong Z, Liu X, Dong J, Zhang W, Jiang Y, Zhang J, Feng W, Chen K, Bai J. Transition from vesicles to nanofibres in the enzymatic self-assemblies of an amphiphilic peptide as an antitumour drug carrier. NANOSCALE 2019; 11:15479-15486. [PMID: 31237302 DOI: 10.1039/c9nr02874a] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Amphiphilic peptides modified by molecular design can self-assemble into specific nanostructures with interesting applications in the fields of biomedicine and biotechnology. Lysyl oxidase (LO) is ubiquitous in human serum. However, enzymatic self-assembly of amphiphilic peptides remains a challenge for lipid-soluble drug delivery under the induction of LO. Here, we designed a positively charged amphiphilic peptide, A6K2, that could stably self-assemble to form nanovesicles. The lysine in the peptide molecule could be covalently cross-linked under enzyme catalysis, and the major transition was from random coil to β-sheet secondary structures, eventually leading to the destruction of the peptide nanovesicles. The lipid-soluble antitumour drug doxorubicin (DOX) as a model drug could be loaded into the hydrophobic core of the nanovesicles formed by the amphiphilic peptide A6K2, even though DOX was not covalently linked to the peptide monomer. The amount of DOX-encapsulated A6K2 nanovesicles in human hepatocellular carcinoma BEL-7402 cells was significantly higher than that in human liver L02 cells, indicating excellent selectivity. The amphiphilic peptide A6K2 inhibited tumour cell growth and had low cytotoxicity to mammalian cells, and it showed antibacterial activity against G+ and G- bacteria. These advantages make enzymatic self-assembling A6K2 nanovesicles of great interest in drug delivery for biomedical applications.
Collapse
Affiliation(s)
- Zhongying Gong
- School of Bioscience and Technology, Weifang Medical University, Weifang 261042, P. R. China.
| | - Xiaoying Liu
- School of Bioscience and Technology, Weifang Medical University, Weifang 261042, P. R. China.
| | - Jinhua Dong
- School of Bioscience and Technology, Weifang Medical University, Weifang 261042, P. R. China.
| | - Weifen Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261042, P. R. China
| | - Yuanfei Jiang
- School of Bioscience and Technology, Weifang Medical University, Weifang 261042, P. R. China.
| | - Jinhui Zhang
- School of Bioscience and Technology, Weifang Medical University, Weifang 261042, P. R. China.
| | - Weiguo Feng
- School of Bioscience and Technology, Weifang Medical University, Weifang 261042, P. R. China.
| | - Kun Chen
- School of Pharmacy, Liaocheng University, Liaocheng 252000, P. R. China
| | - Jingkun Bai
- School of Bioscience and Technology, Weifang Medical University, Weifang 261042, P. R. China.
| |
Collapse
|
23
|
Dannenhoffer A, Sai H, Huang D, Nagasing B, Harutyunyan B, Fairfield DJ, Aytun T, Chin SM, Bedzyk MJ, Olvera de la Cruz M, Stupp SI. Impact of charge switching stimuli on supramolecular perylene monoimide assemblies. Chem Sci 2019; 10:5779-5786. [PMID: 31293765 PMCID: PMC6568310 DOI: 10.1039/c8sc05595e] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 04/30/2019] [Indexed: 11/21/2022] Open
Abstract
The development of stimuli-responsive amphiphilic supramolecular nanostructures is an attractive target for systems based on light-absorbing chromophores that can function as photosensitizers in water. We report here on a water soluble supramolecular carboxylated perylene monoimide system in which charge can be switched significantly by a change in pH. This was accomplished by substituting the perylene core with an ionizable hydroxyl group. In acidic environments, crystalline supramolecular nanoribbons with dimensions on the order of 500 × 50 × 2 nm form readily, while in basic solution the additional electrostatic repulsion of the ionized hydroxyl reduces assemblies to very small dimensions on the order of only several nanometers. The HOMO/LUMO levels were also found to be sensitive to pH; in acidic media the HOMO/LUMO levels are -5.65 and -3.70 eV respectively versus vacuum, whereas is in basic conditions they are -4.90 and -3.33 eV, respectively. Utilizing the assemblies as photosensitizers in photocatalytic production of hydrogen with [Mo3S13]2- as a catalyst at a pH of 4, H2 was generated with a turnover number of 125 after 18 hours. Charge switching the assemblies at a pH of 9-10 and using an iron porphyrin catalyst, protons could again be reduced to hydrogen and CO2 was reduced to CO with a turnover number of 30. The system investigated offers an example of dynamic photosensitizing assemblies that can drive reactions in both acidic and basic media.
Collapse
Affiliation(s)
- Adam Dannenhoffer
- Department of Materials Science and Engineering , 2220 Campus Drive , Evanston , IL 60208 , USA
| | - Hiroaki Sai
- Department of Materials Science and Engineering , 2220 Campus Drive , Evanston , IL 60208 , USA
- Simpson Querrey Institute , Northwestern University , 303 E. Superior , Chicago , Illinois 60611 , USA
| | - Dongxu Huang
- Department of Materials Science and Engineering , 2220 Campus Drive , Evanston , IL 60208 , USA
| | - Benjamin Nagasing
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208 , USA .
| | - Boris Harutyunyan
- Department of Physics and Astronomy , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208 , USA
| | - Daniel J Fairfield
- Department of Materials Science and Engineering , 2220 Campus Drive , Evanston , IL 60208 , USA
| | - Taner Aytun
- Department of Materials Science and Engineering , 2220 Campus Drive , Evanston , IL 60208 , USA
| | - Stacey M Chin
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208 , USA .
| | - Michael J Bedzyk
- Department of Materials Science and Engineering , 2220 Campus Drive , Evanston , IL 60208 , USA
- Department of Physics and Astronomy , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208 , USA
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering , 2220 Campus Drive , Evanston , IL 60208 , USA
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208 , USA .
| | - Samuel I Stupp
- Department of Materials Science and Engineering , 2220 Campus Drive , Evanston , IL 60208 , USA
- Department of Chemistry , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208 , USA .
- Department of Medicine , Northwestern University , 676 N St. Clair , Chicago , Illinois 60611 , USA
- Simpson Querrey Institute , Northwestern University , 303 E. Superior , Chicago , Illinois 60611 , USA
- Department of Biomedical Engineering , Northwestern University , 2145 Sheridan Road , Evanston , IL 60208 , USA
| |
Collapse
|
24
|
Biocompatibility and effectiveness of paclitaxel-encapsulated micelle using phosphoester compounds as a carrier for cancer treatment. Colloids Surf B Biointerfaces 2019; 177:356-361. [DOI: 10.1016/j.colsurfb.2019.02.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Revised: 01/22/2019] [Accepted: 02/07/2019] [Indexed: 11/17/2022]
|
25
|
Michalski M, Świerzko AS, Sawicki S, Kałużyński A, Łukasiewicz J, Maciejewska A, Wydra D, Cedzyński M. Interactions of ficolin-3 with ovarian cancer cells. Immunobiology 2019; 224:316-324. [PMID: 30846332 DOI: 10.1016/j.imbio.2019.01.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 01/25/2019] [Accepted: 01/25/2019] [Indexed: 11/18/2022]
Abstract
BACKGROUND Ficolin-3 is a pattern-recognition molecule with the ability to activate the lectin pathway of complement. It is found in lung, liver and blood, but its physiological role is unclear. We have investigated interaction of recombinant ficolin-3 with malignant cells and tissues. MATERIAL AND METHODS Cells of various lines of human origin as well as ovarian tissue sections have been studied with the use of flow cytometry and immunohistochemistry. RESULTS Recombinant (but not serum-derived) ficolin-3 was found to bind strongly to the ovarian cancer cell lines, SKOV-3, OVCAR-3 and ES-2, at concentrations of 2.5 μg/ml and above. Moreover, His-tagged recombinant ficolin-3 (10 μg/ml) preferentially stained ovarian tissue sections from patients with malignant tumours compared with those from patients without. Binding to cell lines was inhibited by EDTA and specific carbohydrate ligands, indicating involvement of the fibrinogen-like domain. Binding was enhanced under mildly acidic conditions and at physiological pH after pre-incubation of cells with mildly acidic buffer. CONCLUSION Basing on data concerning recombinant protein, it may be suggested that ficolin-3 is involved in immune response in ovarian cancer. However, unidentified serum factor(s) seem(s) to protect cancer cells from recognition by natural or rficolin-3.
Collapse
Affiliation(s)
- Mateusz Michalski
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| | - Anna S Świerzko
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland.
| | - Sambor Sawicki
- Department of Gynaecology, Oncologic Gynaecology and Gynaecologic Endocrinology, Medical University of Gdansk, Gdansk, Poland
| | - Andrzej Kałużyński
- Department of Clinical Pathomorphology, Polish Mother's Memorial Hospital Research Institute, Lodz, Poland
| | - Jolanta Łukasiewicz
- Department of Immunochemistry, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Anna Maciejewska
- Department of Immunochemistry, Ludwik Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland
| | - Dariusz Wydra
- Department of Gynaecology, Oncologic Gynaecology and Gynaecologic Endocrinology, Medical University of Gdansk, Gdansk, Poland
| | - Maciej Cedzyński
- Laboratory of Immunobiology of Infections, Institute of Medical Biology, Polish Academy of Sciences, Lodz, Poland
| |
Collapse
|
26
|
Mei L, He S, Zhang L, Xu K, Zhong W. Supramolecular self-assembly of fluorescent peptide amphiphiles for accurate and reversible pH measurement. Org Biomol Chem 2019; 17:939-944. [DOI: 10.1039/c8ob02983k] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
We report the synthesis and self-assembly of fluorescent peptide amphiphiles (NBD-PA) composed of a fluorescent NBD probe and a peptide derivative VVAADD with a C12-alkyl-chain as the linker (NBD-C12-VVAADD).
Collapse
Affiliation(s)
- Leixia Mei
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Suyun He
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Li Zhang
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Keming Xu
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
| | - Wenying Zhong
- Department of Analytical Chemistry
- China Pharmaceutical University
- Nanjing
- P. R. China
- Key Laboratory of Biomedical Functional Materials
| |
Collapse
|
27
|
Zhu Z, Tian D, Gao P, Wang K, Li Y, Shu X, Zhu J, Zhao Q. Cell-Penetrating Peptides Transport Noncovalently Linked Thermally Activated Delayed Fluorescence Nanoparticles for Time-Resolved Luminescence Imaging. J Am Chem Soc 2018; 140:17484-17491. [DOI: 10.1021/jacs.8b08438] [Citation(s) in RCA: 100] [Impact Index Per Article: 16.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Affiliation(s)
| | | | - Pengli Gao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| | | | | | | | | | - Qiang Zhao
- Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Nanjing University of Posts and Telecommunications, Nanjing, 210023, China
| |
Collapse
|
28
|
Liu JF, Neel N, Dang P, Lamb M, McKenna J, Rodgers L, Litt B, Cheng Z, Tsourkas A, Issadore D. Radiofrequency-Triggered Drug Release from Nanoliposomes with Millimeter-Scale Resolution Using a Superimposed Static Gating Field. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802563. [PMID: 30286280 PMCID: PMC6397654 DOI: 10.1002/smll.201802563] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2018] [Revised: 08/27/2018] [Indexed: 05/17/2023]
Abstract
Drug delivery to a specific site in the body typically relies on the use of targeting agents that recognize a unique biomarker. Unfortunately, it is often difficult to identify unique molecular signatures that exist only at the site of interest. An alternative strategy is to deliver energy (e.g., light) to locally trigger release from a drug carrier; however, the use of this approach is limited because energy delivery to deep tissues is often impractical or invasive. In this work, radiofrequency-responsive superparamagnetic iron oxide nanoparticles (SPIONs) are used to trigger drug release from nanoscale vesicles. Because the body is inherently nonmagnetic, this approach allows for deep tissue targeting. To overcome the unfavorable meter-scale diffraction limit of SPION-compatible radiofrequency (RF) fields, a strong static gating field containing a sharp zero point is superimposed on the RF field. Only drug carriers that are at or near the zero point are susceptible to RF-triggered drug release, thereby localizing drug delivery with millimeter-scale resolution. This approach induces >40% drug release from thermally responsive doxorubicin-loaded liposomes within a 3.2 mm radius of the zero point with <10% release in the surrounding area, leading to a >2.5 therapeutic index in Huh 7 hepatocellular carcinoma cells.
Collapse
Affiliation(s)
- Jessica F Liu
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd St., Philadelphia, PA, 19104, USA
| | - Nishant Neel
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd St., Philadelphia, PA, 19104, USA
| | - Phillip Dang
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd St., Philadelphia, PA, 19104, USA
| | - Max Lamb
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd St., Philadelphia, PA, 19104, USA
| | - Jaime McKenna
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd St., Philadelphia, PA, 19104, USA
| | - Lauren Rodgers
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd St., Philadelphia, PA, 19104, USA
| | - Brian Litt
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd St., Philadelphia, PA, 19104, USA
| | - Zhiliang Cheng
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd St., Philadelphia, PA, 19104, USA
| | - Andrew Tsourkas
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd St., Philadelphia, PA, 19104, USA
| | - David Issadore
- Department of Bioengineering, University of Pennsylvania, 210 S. 33rd St., Philadelphia, PA, 19104, USA
| |
Collapse
|
29
|
Qin SY, Zhang AQ, Zhang XZ. Recent Advances in Targeted Tumor Chemotherapy Based on Smart Nanomedicines. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2018; 14:e1802417. [PMID: 30247806 DOI: 10.1002/smll.201802417] [Citation(s) in RCA: 82] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2018] [Revised: 08/03/2018] [Indexed: 05/22/2023]
Abstract
Efficacy and safety of chemotherapeutic drugs constitute two major criteria in tumor chemotherapy. Nanomedicines with tumor-targeted properties hold great promise for improving the efficacy and safety. To design targeted nanomedicines, the pathological characteristics of tumors are extensively and deeply excavated. Here, the rationale, principles, and advantages of exploiting these pathological characteristics to develop targeted nanoplatforms for tumor chemotherapy are discussed. Homotypic targeting with the ability of self-recognition to source tumors is reviewed individually. In the meanwhile, the limitations and perspective of these targeted nanomedicines are also discussed.
Collapse
Affiliation(s)
- Si-Yong Qin
- School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, China
| | - Ai-Qing Zhang
- School of Chemistry and Materials Science, South-Central University for Nationalities, Wuhan, 430074, China
| | - Xian-Zheng Zhang
- Key Laboratory of Biomedical Polymers of Ministry of Education and Department of Chemistry, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
30
|
Novel surfactant peptide for removal of biofilms. Colloids Surf B Biointerfaces 2018; 172:180-186. [PMID: 30149322 DOI: 10.1016/j.colsurfb.2018.08.029] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 07/19/2018] [Accepted: 08/14/2018] [Indexed: 11/21/2022]
Abstract
Conventional chemical surfactants attach on blots randomly, accompanied with health and environmental issues. To address this, a surfactant peptide was designed to mimic chemical surfactants with an affinity binding peptide as a hydrophobic tail for the cleanup of biofilm contaminations. The micelle forming and structural changes of the peptide in aqueous solution were systematically investigated. More importantly, the biofilm removal efficiency toward Escherichia coli O157:H7 biofilm reached 75% in neutral aqueous solutions at the concentration of 125 mg/L (critical micelle concentration 91 mg/L), a significant improvement in comparison to conventional surfactants and random surfactant peptide. The dynamic removal process reported by confocal laser scanning microscope (CLSM) also displayed the different constituents of biofilm blots, which associated with surfactant peptide binding efficiency. Hopefully, this surfactant strategy will eventually provide new scopes in the design of surface active biological agents.
Collapse
|
31
|
Li Y, Cui T, Kong X, Yi X, Kong D, Zhang J, Liu C, Gong M. Nanoparticles induced by embedding self-assembling cassette into glucagon-like peptide 1 for improving in vivo stability. FASEB J 2018; 32:2992-3004. [PMID: 29401602 DOI: 10.1096/fj.201701033rrr] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The multiple physiologic characteristics of glucagon-like peptide 1 (GLP-1) make it a promising drug candidate for treating type 2 diabetes mellitus. However, the half-life of GLP-1 is short as a result of degradation by dipeptidyl peptidase IV and renal clearance. Stabilizing GLP-1 is therefore critical for its use in drug development. Self-assembling peptides are a class of peptides that undergo spontaneous assembly into ordered nanostructures. Recently, studies of self-assembling peptides as drug carriers have increased because of their enhanced stability. In the present study, GLP-1 was modified to incorporate the structural characteristics of self-assembling peptides aiming to generate a self-assembling GLP-1 derivative. Receptor binding capacity and insulinotropic effects were measured to investigate the physiologic functions of GLP-1, along with morphologic approaches to observe supramolecular formation on self-assembly at the nano scale. Finally, blood glucose regulation and body weight were monitored after administration of selected derivatives. Our findings revealed that cadyglp1e and cadyglp1m both exhibited improved stability even though different nanoshapes were observed for these two self-assembling peptides. Both cadyglp1e and cadyglp1m retained glucoregulatory activity after insulin stimulation and were potent drug candidates for long-acting GLP-1 derivatives to treat type 2 diabetes mellitus. Our findings support the feasibility of introducing self-assembly functions into peptides with poor stabilities, such as GLP-1.-Li, Y., Cui, T., Kong, X., Yi, X., Kong, D., Zhang, J., Liu, C., Gong, M. Nanoparticles induced by embedding self-assembling cassette into glucagon-like peptide 1 for improving in vivo stability.
Collapse
Affiliation(s)
- Ying Li
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Tao Cui
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Xiaodong Kong
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Xiulin Yi
- State Key Laboratory of Drug Delivery Technology and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Dexin Kong
- Department of Pharmacy, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, China
| | - Jianning Zhang
- Tianjin Neurological Institute, Tianjin Medical University General Hospital, Tianjin, China
| | - Changxiao Liu
- Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Min Gong
- Department of Pharmacy, Tianjin Medical University, Tianjin, China.,Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), Tianjin Medical University, Tianjin, China
| |
Collapse
|
32
|
Enhanced and Selective Antiproliferative Activity of Methotrexate-Functionalized-Nanocapsules to Human Breast Cancer Cells (MCF-7). NANOMATERIALS 2018; 8:nano8010024. [PMID: 29300349 PMCID: PMC5791111 DOI: 10.3390/nano8010024] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/21/2017] [Accepted: 12/28/2017] [Indexed: 02/06/2023]
Abstract
Methotrexate is a folic acid antagonist and its incorporation into nanoformulations is a promising strategy to increase the drug antiproliferative effect on human breast cancer cells by overexpressing folate receptors. To evaluate the efficiency and selectivity of nanoformulations containing methotrexate and its diethyl ester derivative, using two mechanisms of drug incorporation (encapsulation and surface functionalization) in the in vitro cellular uptake and antiproliferative activity in non-tumoral immortalized human keratinocytes (HaCaT) and in human breast carcinoma cells (MCF-7). Methotrexate and its diethyl ester derivative were incorporated into multiwall lipid-core nanocapsules with hydrodynamic diameters lower than 160 nm and higher drug incorporation efficiency. The nanoformulations were applied to semiconfluent HaCaT or MCF-7 cells. After 24 h, the nanocapsules were internalized into HaCaT and MCF-7 cells; however, no significant difference was observed between the nanoformulations in HaCaT (low expression of folate receptors), while they showed significantly higher cellular uptakes than the blank-nanoformulation in MCF-7, which was the highest uptakes observed for the drug functionalized-nanocapsules. No antiproliferative activity was observed in HaCaT culture, whereas drug-containing nanoformulations showed antiproliferative activity against MCF-7 cells. The effect was higher for drug-surface functionalized nanocapsules. In conclusion, methotrexate-functionalized-nanocapsules showed enhanced and selective antiproliferative activity to human breast cancer cells (MCF-7) being promising products for further in vivo pre-clinical evaluations.
Collapse
|
33
|
Optimization of Weight Ratio for DSPE-PEG/TPGS Hybrid Micelles to Improve Drug Retention and Tumor Penetration. Pharm Res 2018; 35:13. [PMID: 29302821 DOI: 10.1007/s11095-017-2340-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 12/24/2017] [Indexed: 01/09/2023]
Abstract
PURPOSE To enhance therapeutic efficacy and prevent phlebitis caused by Asulacrine (ASL) precipitation post intravenous injection, ASL-loaded hybrid micelles with size below 40 nm were developed to improve drug retention and tumor penetration. METHODS ASL-micelles were prepared using different weight ratios of 1,2-distearoyl-sn-glycero-3-phosphoethanolamine-polyethyleneglycol-2000 (DSPE-PEG2000) and D-α-tocopheryl polyethylene glycol 1000 succinate (TPGS) polymers. Stability of micelles was optimized in terms of critical micelle concentration (CMC) and drug release properties. The encapsulation efficiency (EE) and drug loading were determined using an established dialysis-mathematic fitting method. Multicellular spheroids (MCTS) penetration and cytotoxicity were investigated on MCF-7 cell line. Pharmacokinetics of ASL-micelles was evaluated in rats with ASL-solution as control. RESULTS The ASL-micelles prepared with DSPE-PEG2000 and TPGS (1:1, w/w) exhibited small size (~18.5 nm), higher EE (~94.12%), better sustained in vitro drug release with lower CMC which may be ascribed to the interaction between drug and carriers. Compared to free ASL, ASL-micelles showed better MCTS penetration capacity and more potent cytotoxicity. Pharmacokinetic studies demonstrated that the half-life and AUC values of ASL-micelles were approximately 1.37-fold and 3.49-fold greater than that of free ASL. CONCLUSIONS The optimized DSPE-PEG2000/TPGS micelles could serve as a promising vehicle to improve drug retention and penetration in tumor.
Collapse
|
34
|
Li Y, Baiyang L, Leran B, Zhen W, Yandong X, Baixiang D, Dandan Z, Yufu Z, Jun L, Rutong Y, Hongmei L. Reduction-responsive PEtOz-SS-PCL micelle with tailored size to overcome blood-brain barrier and enhance doxorubicin antiglioma effect. Drug Deliv 2017; 24:1782-1790. [PMID: 29172749 PMCID: PMC8241033 DOI: 10.1080/10717544.2017.1402218] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 11/04/2017] [Accepted: 11/04/2017] [Indexed: 10/29/2022] Open
Abstract
A series of novel reduction-responsive micelles with tailored size were designed and prepared to release doxorubicin (DOX) for treating glioma, which were developed based on amphiphilic block copolymer poly (2-ethyl-2-oxazoline)-b-poly (ε-caprolactone) (PEtOz-SS-PCL) and the micelle size could be regulated by designing the polymer structure. The DOX-loaded PEtOz-SS-PCL micelles had small size and rapid drug release in reductive intracellular environments. Biodistribution and in vivo imaging studies in C6 glioma mice tumor model showed that DOX loaded PEtOz-SS-PCL43 micelles with the smallest size had superior accumulation and fast drug release in tumor sites. In vivo antitumor activity demonstrated that DOX-loaded PEtOz-SS-PCL43 micelles improved antitumor efficacy in contrast to PEtOz-SS-PCL micelles with larger size toward the orthotopic C6-Luci cells-bearing mice. This study shows great potential in tailoring the micelle size and introducing the responsive bonds or compartment for intracellular drug delivery and release in glioma treatment by designing the architecture of the polymer.
Collapse
Affiliation(s)
- Yuling Li
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, PR China
- Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, PR China
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, PR China
| | - Li Baiyang
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, PR China
- Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, PR China
| | - Bu Leran
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, PR China
| | - Wang Zhen
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, PR China
- Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, PR China
| | - Xie Yandong
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, PR China
- Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, PR China
| | - Du Baixiang
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, PR China
| | - Zhu Dandan
- Jiangsu Key Laboratory of Green Synthetic Chemistry for Functional Materials, School of Chemistry and Chemical Engineering, Jiangsu Normal University, Xuzhou, PR China
| | - Zhu Yufu
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, PR China
- Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, PR China
| | - Liang Jun
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, PR China
- Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, PR China
| | - Yu Rutong
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, PR China
- Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, PR China
| | - Liu Hongmei
- Insititute of Nervous System Diseases, Xuzhou Medical University, Xuzhou, PR China
- Brain Hospital, Affiliated Hospital of Xuzhou Medical University, Xuzhou, PR China
| |
Collapse
|
35
|
Qiang L, Li H, Dong X, Lv M, Lu K. Effect of Alanine and Glycine on the Assembly of Surfactant-like Peptides with Tyrosine as Hydrophilic Head in Basic Solution. J CHIN CHEM SOC-TAIP 2017. [DOI: 10.1002/jccs.201700166] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Liming Qiang
- Department of Material and Chemical Engineering; Henan Institute of Engineering; Zhengzhou 450007 China
| | - Hong Li
- Department of Food and Biological Engineering; Zhengzhou Institute of Light Industry; Zhengzhou 450002 China
| | - Xueru Dong
- Department of Material and Chemical Engineering; Henan Institute of Engineering; Zhengzhou 450007 China
| | - Mingxiu Lv
- Department of Material and Chemical Engineering; Henan Institute of Engineering; Zhengzhou 450007 China
| | - Kui Lu
- Department of Material and Chemical Engineering; Henan Institute of Engineering; Zhengzhou 450007 China
| |
Collapse
|
36
|
He RY, Chao SH, Tsai YJ, Lee CC, Yu CY, Gao HD, Huang YA, Hwang E, Lee HM, Huang JJT. Photocontrollable Probe Spatiotemporally Induces Neurotoxic Fibrillar Aggregates and Impairs Nucleocytoplasmic Trafficking. ACS NANO 2017; 11:6795-6807. [PMID: 28653830 DOI: 10.1021/acsnano.7b01645] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The abnormal assembly of misfolded proteins into neurotoxic aggregates is the hallmark associated with neurodegenerative diseases. Herein, we establish a photocontrollable platform to trigger amyloidogenesis to recapitulate the pathogenesis of amyotrophic lateral sclerosis (ALS) by applying a chemically engineered probe as a "switch" in live cells. This probe is composed of an amyloidogenic peptide from TDP-43, a photolabile linker, a polycationic sequence both to mask amyloidogenicity and for cell penetration, and a fluorophore for visualization. The photocontrollable probe can self-assemble into a spherical vesicle but rapidly develops massive nanofibrils with amyloid properties upon photoactivation. The photoinduced in vitro fibrillization process is characterized by biophysical techniques. In cellular experiments, this cell-penetrable vesicle was retained in the cytoplasm, seeded the mislocalized endogenous TDP-43 into aggregates upon irradiation, and consequently initiated apoptosis. In addition, this photocontrollable vesicle interfered with nucleocytoplasmic protein transport and triggered cortical neuron degeneration. Our developed strategy provides in vitro and in vivo spatiotemporal control of neurotoxic fibrillar aggregate formation, which can be readily applied in the studies of protein misfolding, aggregation-induced protein mislocalization, and amyloid-induced pathogenesis in different diseases.
Collapse
Affiliation(s)
- Ruei-Yu He
- Institute of Chemistry, Academia Sinica , No. 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Shu-Han Chao
- Institute of Chemistry, Academia Sinica , No. 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Yu-Ju Tsai
- Institute of Chemistry, Academia Sinica , No. 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Chi-Chang Lee
- Institute of Chemistry, Academia Sinica , No. 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Chu-Yi Yu
- Institute of Chemistry, Academia Sinica , No. 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Hua-De Gao
- Institute of Chemistry, Academia Sinica , No. 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
- Department of Chemistry, National Taiwan University , Taipei 106, Taiwan
| | - Yung-An Huang
- Department of Biological Science and Technology, Institute of Bioinformatics and Systems Biology, and Institute of Molecular Medicine and Bioengineering, National Chiao Tung University , Hsinchu 30068, Taiwan
| | - Eric Hwang
- Department of Biological Science and Technology, Institute of Bioinformatics and Systems Biology, and Institute of Molecular Medicine and Bioengineering, National Chiao Tung University , Hsinchu 30068, Taiwan
| | - Hsien-Ming Lee
- Institute of Chemistry, Academia Sinica , No. 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
| | - Joseph Jen-Tse Huang
- Institute of Chemistry, Academia Sinica , No. 128, Sec. 2, Academia Road, Nankang, Taipei 11529, Taiwan
- Department of Applied Chemistry, National Chiayi University , Chiayi 60004, Taiwan
| |
Collapse
|
37
|
Yan S, Wan LY, Ju XJ, Wu JF, Zhang L, Li M, Liu Z, Wang W, Xie R, Chu LY. K + -Responsive Block Copolymer Micelles for Targeted Intracellular Drug Delivery. Macromol Biosci 2017; 17. [PMID: 28597995 DOI: 10.1002/mabi.201700143] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Revised: 05/07/2017] [Indexed: 12/23/2022]
Abstract
In this work, a novel type of block copolymer micelles with K+ -responsive characteristics for targeted intracellular drug delivery is developed. The proposed smart micelles are prepared by self-assembly of poly(ethylene glycol)-b-poly(N-isopropylacry-lamide-co-benzo-18-crown-6-acrylamide) (PEG-b-P(NIPAM-co-B18C6Am)) block copolymers. Prednisolone acetate (PA) is successfully loaded into the micelles as the model drug, with loading content of 4.7 wt%. The PA-loaded micelles display a significantly boosted drug release in simulated intracellular fluid with a high K+ concentration of 150 × 10-3 m, as compared with that in simulated extracellular fluid. Moreover, the in vitro cell experiments indicate that the fluorescent molecules encapsulated in the micelles can be delivered and specifically released inside the HSC-T6 and HepG2 cells responding to the increase of K+ concentration in intracellular compartments, which confirms the successful endocytosis and efficient K+ -induced intracellular release. Such K+ -responsive block copolymer micelles are highly potential as new-generation of smart nanocarriers for targeted intracellular delivery of drugs.
Collapse
Affiliation(s)
- Shan Yan
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Lin-Yan Wan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei, 443002, P. R. China
| | - Xiao-Jie Ju
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Jiang-Feng Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, Hubei, 443002, P. R. China
| | - Lei Zhang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Ming Li
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Zhuang Liu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Wei Wang
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Rui Xie
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| | - Liang-Yin Chu
- School of Chemical Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China.,State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, 610065, P. R. China
| |
Collapse
|
38
|
Yao J, Ma Y, Zhang W, Li L, Zhang Y, Zhang L, Liu H, Ni J, Wang R. Design of new acid-activated cell-penetrating peptides for tumor drug delivery. PeerJ 2017; 5:e3429. [PMID: 28603674 PMCID: PMC5465999 DOI: 10.7717/peerj.3429] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Accepted: 05/17/2017] [Indexed: 11/20/2022] Open
Abstract
TH(AGYLLGHINLHHLAHL(Aib)HHIL-NH2), a histidine-rich, cell-penetrating peptide with acid-activated pH response, designed and synthesized by our group, can effectively target tumor tissues with an acidic extracellular environment. Since the protonating effect of histidine plays a critical role in the acid-activated, cell-penetrating ability of TH, we designed a series of new histidine substituents by introducing electron donating groups (Ethyl, Isopropyl, Butyl) to the C-2 position of histidine. This resulted in an enhanced pH-response and improved the application of TH in tumor-targeted delivery systems. The substituents were further utilized to form the corresponding TH analogs (Ethyl-TH, Isopropyl-TH and Butyl-TH), making them easier to protonate for positive charge in acidic tumor microenvironments. The pH-dependent cellular uptake efficiencies of new TH analogs were further evaluated using flow cytometry and confocal laser scanning microscopy, demonstrating that ethyl-TH and butyl-TH had an optimal pH-response in an acidic environment. Importantly, the new TH analogs exhibited relatively lower toxicity than TH. In addition, these new TH analogs were linked to the antitumor drug camptothecin (CPT), while butyl-TH modified conjugate presented a remarkably stronger pH-dependent cytotoxicity to cancer cells than TH and the other conjugates. In short, our work opens a new avenue for the development of improved acid-activated, cell-penetrating peptides as efficient anticancer drug delivery vectors.
Collapse
Affiliation(s)
- Jia Yao
- The First Hospital, Lanzhou University, Lan Zhou, Gansu Province, China
| | - Yinyun Ma
- School of Pharmacy, Lanzhou University, Lan Zhou, Gansu Province, China
| | - Wei Zhang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lan Zhou, Gansu Province, China
| | - Li Li
- School of Pharmacy, Lanzhou University, Lan Zhou, Gansu Province, China
| | - Yun Zhang
- School of Pharmacy, Lanzhou University, Lan Zhou, Gansu Province, China
| | - Li Zhang
- School of Pharmacy, Lanzhou University, Lan Zhou, Gansu Province, China
| | - Hui Liu
- School of Pharmacy, Lanzhou University, Lan Zhou, Gansu Province, China
| | - Jingman Ni
- School of Pharmacy, Lanzhou University, Lan Zhou, Gansu Province, China
| | - Rui Wang
- Key Laboratory of Preclinical Study for New Drugs of Gansu Province, Lanzhou University, Lan Zhou, Gansu Province, China
| |
Collapse
|
39
|
Chang C, Liang P, Chen L, Liu J, Chen S, Zheng G, Quan C. pH-responsive nanoparticle assembly from peptide amphiphiles for tumor targeting drug delivery. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2017; 28:1338-1350. [PMID: 28467173 DOI: 10.1080/09205063.2017.1325095] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
In this paper, the peptide amphiphiles (PA) which consists of RGDSEEEEEEEEEEK as pH-sensitive segment and stearic acid as hydrophobic segment named RGDS-E10-Lys(C18) was successfully synthesized. TEM images showed that uniformly dispersed nanoparticles could be formed by PA molecules in pH 7.4 medium, however, disintegrated in pH 5.0 medium. Circular dichroism (CD) spectrum indicated that polypeptide adopted a random-coil conformation in neutral medium (pH 7.4). The CD signal was significantly attenuate for decreased solubility of PA in medium with pH 5.0. As expected, the prepared RGDS-E10-Lys(C18) assembly showed high pH-sensitive property which demonstrated a much more rapid drug release from micelles in tumor tissue (acidic environment) than in physiological environment (neutral environment). After DOX-loaded micelles incubated with tumor cells, the cytotoxicity of the micelles against Hela cells was increased obviously, indicating the great potential of micelles developed here as promising vehicle for targeted pH-responsive drug delivery.
Collapse
Affiliation(s)
- Cong Chang
- a Key Laboratory of Chinese Medicine Resource and Compound Prescription of Ministry of Education , Hubei University of Chinese Medicine , Wuhan , P. R. China
| | - Peiqing Liang
- b Department of Biomedical Engineering , School of Engineering, Sun Yat-sen University , Guangzhou , P. R. China
| | - Linlin Chen
- a Key Laboratory of Chinese Medicine Resource and Compound Prescription of Ministry of Education , Hubei University of Chinese Medicine , Wuhan , P. R. China
| | - Junfeng Liu
- a Key Laboratory of Chinese Medicine Resource and Compound Prescription of Ministry of Education , Hubei University of Chinese Medicine , Wuhan , P. R. China
| | - Shihong Chen
- a Key Laboratory of Chinese Medicine Resource and Compound Prescription of Ministry of Education , Hubei University of Chinese Medicine , Wuhan , P. R. China
| | - Guohua Zheng
- a Key Laboratory of Chinese Medicine Resource and Compound Prescription of Ministry of Education , Hubei University of Chinese Medicine , Wuhan , P. R. China
| | - Changyun Quan
- b Department of Biomedical Engineering , School of Engineering, Sun Yat-sen University , Guangzhou , P. R. China
| |
Collapse
|
40
|
Hamsici S, Sardan Ekiz M, Cinar Ciftci G, Tekinay AB, Guler MO. Gemcitabine Integrated Nano-Prodrug Carrier System. Bioconjug Chem 2017; 28:1491-1498. [PMID: 28441471 DOI: 10.1021/acs.bioconjchem.7b00155] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Peptide nanomaterials have received a great deal of interest in drug-delivery applications due to their biodegradability, biocompatibility, suitability for large-scale synthesis, high drug-loading capacities, targeting ability, and ordered structural organization. The covalent conjugation of drugs to peptide backbones results in prolonged circulation time and improved stability of drugs. Therapeutic efficacy of gemcitabine, which is used for breast cancer treatment, is severely compromised due to its rapid plasma degradation. Its hydrophilic nature poses a challenge for both its efficient encapsulation into nanocarrier systems and its sustained release property. Here, we designed a new peptide prodrug molecule for the anticancer drug gemcitabine, which was covalently conjugated to the C-terminal of 9-fluorenylmethoxy carbonyl (Fmoc)-protected glycine. The prodrug was further integrated into peptide nanocarrier system through noncovalent interactions. A pair of oppositely charged amyloid-inspired peptides (Fmoc-AIPs) were exploited as components of the drug-carrier system and self-assembled into one-dimensional nanofibers at physiological conditions. The gemcitabine integrated nanoprodrug carrier system exhibited slow release and reduced the cellular viability of 4T1 breast cancer cell line in a time- and concentration-dependent manner.
Collapse
Affiliation(s)
- Seren Hamsici
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara, Turkey 06800
| | - Melis Sardan Ekiz
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara, Turkey 06800
| | - Goksu Cinar Ciftci
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara, Turkey 06800
| | - Ayse B Tekinay
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara, Turkey 06800
| | - Mustafa O Guler
- Institute of Materials Science and Nanotechnology, National Nanotechnology Research Center (UNAM), Bilkent University , Ankara, Turkey 06800.,Institute for Molecular Engineering, University of Chicago , Chicago, Illinois 60637, United States
| |
Collapse
|
41
|
Ji Y, Qiao H, He J, Li W, Chen R, Wang J, Wu L, Hu R, Duan J, Chen Z. Functional oligopeptide as a novel strategy for drug delivery. J Drug Target 2017; 25:597-607. [DOI: 10.1080/1061186x.2017.1309044] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Affiliation(s)
- Yujie Ji
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Hongzhi Qiao
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Jiayu He
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Weidong Li
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Rui Chen
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Jingjing Wang
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Li Wu
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Rongfeng Hu
- Department of Pharmacy, Anhui University of Chinese Medicine, Anhui, PR China
| | - Jinao Duan
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| | - Zhipeng Chen
- Department of Pharmacy, Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing University of Chinese Medicine, Nanjing, PR China
| |
Collapse
|
42
|
Gao C, Li H, Li Y, Kewalramani S, Palmer LC, Dravid VP, Stupp SI, Olvera de la Cruz M, Bedzyk MJ. Electrostatic Control of Polymorphism in Charged Amphiphile Assemblies. J Phys Chem B 2017; 121:1623-1628. [PMID: 28145713 DOI: 10.1021/acs.jpcb.6b11602] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Stimuli-induced structural transformations of molecular assemblies in aqueous solutions are integral to nanotechnological applications and biological processes. In particular, pH responsive amphiphiles as well as proteins with various degrees of ionization can reconfigure in response to pH variations. Here, we use in situ small and wide-angle X-ray scattering (SAXS/WAXS), transmission electron microscopy (TEM), and Monte Carlo simulations to show how charge regulation via pH induces morphological changes in the assembly of a positively charged peptide amphiphile (PA). Monte Carlo simulations and pH titration measurements reveal that ionic correlations in the PA assemblies shift the ionizable amine pK ∼ 8 from pK ∼ 10 in the lysine headgroup. SAXS and TEM show that with increasing pH, the assembly undergoes spherical micelle to cylindrical nanofiber to planar bilayer transitions. SAXS/WAXS reveal that the bilayer leaflets are interdigitated with the tilted PA lipid tails crystallized on a rectangular lattice. The details of the molecular packing in the membrane result from interplay between steric and van der Waals interactions. We speculate that this packing motif is a general feature of bilayers comprised of amphiphilic lipids with large ionic headgroups. Overall, our studies correlate the molecular charge and the morphology for a pH-responsive PA system and provide insights into the Å-scale molecular packing in such assemblies.
Collapse
Affiliation(s)
- Changrui Gao
- Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Honghao Li
- Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Yue Li
- Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Sumit Kewalramani
- Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Liam C Palmer
- Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States
| | - Vinayak P Dravid
- Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States
| | - Samuel I Stupp
- Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States.,Department of Biomedical Engineering, Northwestern University , Evanston, Illinois 60208, United States.,Department of Medicine and Simpson Querrey Institute for BioNanotechnology, Northwestern University , Chicago, Illinois 60611, United States
| | - Monica Olvera de la Cruz
- Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States.,Department of Chemistry, Northwestern University , Evanston, Illinois 60208, United States.,Chemical and Biological Engineering Department, Northwestern University , Evanston, Illinois 60208, United States.,Department of Physics and Astronomy, Northwestern University , Evanston, Illinois 60208, United States
| | - Michael J Bedzyk
- Department of Materials Science and Engineering, Northwestern University , Evanston, Illinois 60208, United States.,Department of Physics and Astronomy, Northwestern University , Evanston, Illinois 60208, United States
| |
Collapse
|
43
|
Liu M, Du H, Zhang W, Zhai G. Internal stimuli-responsive nanocarriers for drug delivery: Design strategies and applications. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2017; 71:1267-1280. [DOI: 10.1016/j.msec.2016.11.030] [Citation(s) in RCA: 130] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 10/26/2016] [Accepted: 11/08/2016] [Indexed: 11/29/2022]
|
44
|
Wang H, Feng Z, Xu B. D-amino acid-containing supramolecular nanofibers for potential cancer therapeutics. Adv Drug Deliv Rev 2017; 110-111:102-111. [PMID: 27102943 PMCID: PMC5071117 DOI: 10.1016/j.addr.2016.04.008] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2016] [Revised: 03/19/2016] [Accepted: 04/06/2016] [Indexed: 12/30/2022]
Abstract
Nanostructures formed by peptides that self-assemble in water through non-covalent interactions have attracted considerable attention because peptides possess several unique advantages, such as modular design and easiness of synthesis, convenient modification with known functional motifs, good biocompatibility, low immunogenicity and toxicity, inherent biodegradability, and fast responses to a wide range of external stimuli. After about two decades of development, peptide-based supramolecular nanostructures have already shown great potentials in the fields of biomedicine. Among a range of biomedical applications, using such nanostructures for cancer therapy has attracted increased interests since cancer remains the major threat for human health. Comparing with L-peptides, nanostructures containing peptides made of D-amino acid (i.e., D-peptides) bear a unique advantage, biostability (i.e., resistance towards most of endogenous enzymes). The exploration of nanostructures containing D-amino acids, especially their biomedical applications, is still in its infancy. Herein we review the recent progress of D-amino acid-containing supramolecular nanofibers as an emerging class of biomaterials that exhibit unique features for the development of cancer therapeutics. In addition, we give a brief perspective about the challenges and promises in this research direction.
Collapse
Affiliation(s)
- Huaimin Wang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Zhaoqianqi Feng
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA 02453, USA.
| |
Collapse
|
45
|
Feng T, Xiao Z, Geng L, Gao P, Fu K, Li Z. Stereocomplex micelle efficiently transports Doxorubicin for enhanced lymphoma suppression in vivo. JOURNAL OF BIOMATERIALS SCIENCE-POLYMER EDITION 2016; 27:1748-1762. [PMID: 27634373 DOI: 10.1080/09205063.2016.1237453] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
The application of Doxorubicin (DOX) in the chemotherapy for lymphoma is seriously hampered by the side effects of DOX, especially the cardiotoxicity and nephrotoxicity. Nanoscale micelle as a promising drug delivery system has gained more and more interest in malignancy chemotherapy. In this study, we successfully fabricated DOX-loaded stereocomplex micelle (SCM/DOX) from the equimolar mixture of the enantiomeric four-armed poly(ethylene glycol)-polylactide (PDM and PLM) copolymers. The SCM/DOX showed proper hydrodynamic size of ~90 nm and slow DOX release in phosphate-buffered saline at pH 7.4. The antitumor activities of DOX, PDM/DOX, PLM/DOX, and SCM/DOX toward lymphoma cells were tested in vitro and in vivo. Our data demonstrated that the SCM/DOX more effectively inhibited the cell proliferation than PDM/DOX, PLM/DOX, and free DOX in vitro. In the in vivo antitumor test, the SCM/DOX more effectively inhibited the growth of EL4 lymphoma, too. In addition, the body weight loss caused by SCM/DOX was alleviated than DOX. More importantly, the cardiotoxicity, nephrotoxicity, and hepatotoxicity caused by DOX in mice were obviously attenuated compared to the free DOX treatment group. Taken together, all the results indicated that the SCM/DOX could inhibit the growth of EL4 lymphoma cells and attenuate the toxicity of DOX more efficiently, which suggested SCM/DOX was promising for the prevention and treatment of lymphoma.
Collapse
Affiliation(s)
- Tao Feng
- a Department of Hematology , The People's Hospital of Jilin Province , Changchun , P.R. China
| | - Zhongping Xiao
- a Department of Hematology , The People's Hospital of Jilin Province , Changchun , P.R. China
| | - Li Geng
- b Department of Cardiology , The Second Hospital of Jilin University , Changchun , P.R. China
| | - Peng Gao
- a Department of Hematology , The People's Hospital of Jilin Province , Changchun , P.R. China
| | - Kun Fu
- a Department of Hematology , The People's Hospital of Jilin Province , Changchun , P.R. China
| | - Zhibo Li
- b Department of Cardiology , The Second Hospital of Jilin University , Changchun , P.R. China
| |
Collapse
|
46
|
Sigg SJ, Postupalenko V, Duskey JT, Palivan CG, Meier W. Stimuli-Responsive Codelivery of Oligonucleotides and Drugs by Self-Assembled Peptide Nanoparticles. Biomacromolecules 2016; 17:935-45. [PMID: 26871486 DOI: 10.1021/acs.biomac.5b01614] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Ever more emerging combined treatments exploiting synergistic effects of drug combinations demand smart, responsive codelivery carriers to reveal their full potential. In this study, a multifunctional stimuli-responsive amphiphilic peptide was designed and synthesized to self-assemble into nanoparticles capable of co-bearing and -releasing hydrophobic drugs and antisense oligonucleotides for combined therapies. The rational design was based on a hydrophobic l-tryptophan-d-leucine repeating unit derived from a truncated sequence of gramicidin A (gT), to entrap hydrophobic cargo, which is combined with a hydrophilic moiety of histidines to provide electrostatic affinity to nucleotides. Stimuli-responsiveness was implemented by linking the hydrophobic and hydrophilic sequence through an artificial amino acid bearing a disulfide functional group (H3SSgT). Stimuli-responsive peptides self-assembled in spherical nanoparticles in sizes (100-200 nm) generally considered as preferable for drug delivery applications. Responsive peptide nanoparticles revealed notable nucleotide condensing abilities while maintaining the ability to load hydrophobic cargo. The disulfide cleavage site introduced in the peptide sequence induced responsiveness to physiological concentrations of reducing agent, serving to release the incorporated molecules. Furthermore, the peptide nanoparticles, singly loaded or coloaded with boron-dipyrromethene (BODIPY) and/or antisense oligonucleotides, were efficiently taken up by cells. Such amphiphilic peptides that led to noncytotoxic, reduction-responsive nanoparticles capable of codelivering hydrophobic and nucleic acid payloads simultaneously provide potential toward combined treatment strategies to exploit synergistic effects.
Collapse
Affiliation(s)
- Severin J Sigg
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Viktoriia Postupalenko
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Jason T Duskey
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Cornelia G Palivan
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| | - Wolfgang Meier
- Department of Chemistry, University of Basel , Klingelbergstrasse 80, CH-4056 Basel, Switzerland
| |
Collapse
|
47
|
Arosio D, Casagrande C. Advancement in integrin facilitated drug delivery. Adv Drug Deliv Rev 2016; 97:111-43. [PMID: 26686830 DOI: 10.1016/j.addr.2015.12.001] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2015] [Revised: 11/27/2015] [Accepted: 12/03/2015] [Indexed: 02/06/2023]
Abstract
The research of integrin-targeted anticancer agents has recorded important advancements in ingenious design of delivery systems, based either on the prodrug approach, or on nanoparticle carriers, but for now, none of these has reached a clinical stage of development. Past work in this area has been extensively reviewed by us and others. Thus, the purpose and scope of the present review is to survey the advancement reported in the last 3years, with focus on innovative delivery systems that appear to afford openings for future developments. These systems exploit the labelling with conventional and novel integrin ligands for targeting the interface of cancer cells and of endothelial cells involved in cancer angiogenesis, with the proteins of the extracellular matrix, in the circulation, in tissues, and in tumour stroma, as the site of progression and metastatic evolution of the disease. Furthermore, these systems implement the expertise in the development of nanomedicines to the purpose of achieving preferential biodistribution and uptake in cancer tissues, internalisation in cancer cells, and release of the transported drugs at intracellular sites. The assessment of the value of controlling these factors, and their combination, for future developments requires support of biological testing in appropriate mechanistic models, but also imperatively demand confirmation in therapeutically relevant in vivo models for biodistribution, efficacy, and lack of off-target effects. Thus, among many studies, we have tried to point out the results supported by relevant in vivo studies, and we have emphasised in specific sections those addressing the medical needs of drug delivery to brain tumours, as well as the delivery of oligonucleotides modulating gene-dependent pathological mechanism. The latter could constitute the basis of a promising third branch in the therapeutic armamentarium against cancer, in addition to antibody-based agents and to cytotoxic agents.
Collapse
Affiliation(s)
- Daniela Arosio
- Istituto di Scienze e Tecnologie Molecolari (ISTM), CNR, Via C. Golgi 19, I-20133 Milan, Italy.
| | - Cesare Casagrande
- Università degli Studi di Milano, Dipartimento di Chimica, Via C. Golgi 19, I-20133 Milan, Italy.
| |
Collapse
|
48
|
Wang J, Shen K, Xu W, Ding J, Wang X, Liu T, Wang C, Chen X. Stereocomplex micelle from nonlinear enantiomeric copolymers efficiently transports antineoplastic drug. NANOSCALE RESEARCH LETTERS 2015; 10:907. [PMID: 26058504 PMCID: PMC4463963 DOI: 10.1186/s11671-015-0907-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/14/2015] [Accepted: 04/20/2015] [Indexed: 06/04/2023]
Abstract
Nanoscale polymeric micelles have attracted more and more attention as a promising nanocarrier for controlled delivery of antineoplastic drugs. Herein, the doxorubicin (DOX)-loaded poly(D-lactide)-based micelle (PDM/DOX), poly(L-lactide)-based micelle (PLM/DOX), and stereocomplex micelle (SCM/DOX) from the equimolar mixture of the enantiomeric four-armed poly(ethylene glycol)-polylactide (PEG-PLA) copolymers were successfully fabricated. In phosphate-buffered saline (PBS) at pH 7.4, SCM/DOX exhibited the smallest hydrodynamic diameter (D h) of 90 ± 4.2 nm and the slowest DOX release compared with PDM/DOX and PLM/DOX. Moreover, PDM/DOX, PLM/DOX, and SCM/DOX exhibited almost stable D hs of around 115, 105, and 90 nm at above normal physiological condition, respectively, which endowed them with great potential in controlled drug delivery. The intracellular DOX fluorescence intensity after the incubation with the laden micelles was different degrees weaker than that incubated with free DOX · HCl within 12 h, probably due to the slow DOX release from micelles. As the incubation time reached to 24 h, all the cells incubated with the laden micelles, especially SCM/DOX, demonstrated a stronger intracellular DOX fluorescence intensity than free DOX · HCl-cultured ones. More importantly, all the DOX-loaded micelles, especially SCM/DOX, exhibited potent antineoplastic efficacy in vitro, excellent serum albumin-tolerance stability, and satisfactory hemocompatibility. These encouraging data indicated that the loading micelles from nonlinear enantiomeric copolymers, especially SCM/DOX, might be promising in clinical systemic chemotherapy through intravenous injection.
Collapse
Affiliation(s)
- Jixue Wang
- />Department of Urology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021 People’s Republic of China
- />Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022 Peolple’s Republic of China
| | - Kexin Shen
- />Department of Urology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021 People’s Republic of China
| | - Weiguo Xu
- />Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022 Peolple’s Republic of China
| | - Jianxun Ding
- />Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022 Peolple’s Republic of China
| | - Xiaoqing Wang
- />Department of Urology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021 People’s Republic of China
| | - Tongjun Liu
- />Department of Urology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021 People’s Republic of China
| | - Chunxi Wang
- />Department of Urology, the First Hospital of Jilin University, 71 Xinmin Street, Changchun, 130021 People’s Republic of China
| | - Xuesi Chen
- />Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, 130022 Peolple’s Republic of China
| |
Collapse
|
49
|
Thota N, Hu Z, Jiang J. Ibuprofen loading and release in amphiphilic peptide FA32 and its derivatives: a coarse-grained molecular dynamics simulation study. MOLECULAR SIMULATION 2015. [DOI: 10.1080/08927022.2015.1079907] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
50
|
Wang J, Xu W, Guo H, Ding J, Chen J, Guan J, Wang C. Selective intracellular drug delivery from pH-responsive polyion complex micelle for enhanced malignancy suppression in vivo. Colloids Surf B Biointerfaces 2015; 135:283-290. [PMID: 26277711 DOI: 10.1016/j.colsurfb.2015.07.065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2015] [Revised: 07/22/2015] [Accepted: 07/23/2015] [Indexed: 01/31/2023]
Abstract
The pH-triggered intracellular drug delivery platforms have attracted great interest in malignancy therapy. Herein, a pH-responsive polyion complex (PIC) micelle from anionic acid-sensitive methoxy poly(ethylene glycol)-block-poly(N(ϵ)-((1-carboxy-cis-cyclohexene)-2-carbonyl)-L-lysine) (mPEG-b-PCLL) and cationic doxorubicin (DOX), a model anthracycline antitumor drug, was constructed by electrostatic interaction for directional intracellular drug delivery in malignancy chemotherapy. The PIC micelle kept constant diameter at physiological condition (i.e., pH 7.4), while gradually swelled and finally disassembled at mimicking intratumoral pH (i.e., 6.8) and especially intracellular endo/lysosomal pH (i.e., 5.5). The DOX release from the PIC micelle at pH 7.4 was slow, whereas obviously accelerated at the intracellular acidic condition of pH 5.5. These results should be related to the rapid cleavage of the side amide bond of mPEG-b-PCLL in an acidic environment. The PIC micelle exhibited satisfactory tumor suppression toward the H22 hepatoma-bearing BALB/c mouse model compared with free DOX, which was demonstrated by the upregulated tumor inhibition rate, and the increased necrotic and apoptosis areas in tumor tissue. Furthermore, the enhanced security was also observed in the PIC micelle group in relation to that of free DOX. The above results strongly supported that the acid-sensitive PIC micelle was promising for selective intracellular drug delivery along with upregulated malignancy inhibition.
Collapse
Affiliation(s)
- Jixue Wang
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, PR China; Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Weiguo Xu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Hui Guo
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, PR China
| | - Jianxun Ding
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China.
| | - Jinjin Chen
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, PR China
| | - Jingjing Guan
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, PR China.
| | - Chunxi Wang
- Department of Urology, the First Hospital of Jilin University, Changchun 130021, PR China
| |
Collapse
|