1
|
Tan N, Zhao M, Luo Z, Li Z, Zhang X, Xu J, Gu X, Wang Q, Ding S, Ying M, Xu Y. Linalool as a key component in strawberry volatile organic compounds (VOCs) modulates gut microbiota, systemic inflammation, and glucolipid metabolism. Food Chem 2024; 460:140361. [PMID: 39098193 DOI: 10.1016/j.foodchem.2024.140361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 06/14/2024] [Accepted: 07/03/2024] [Indexed: 08/06/2024]
Abstract
Strawberries are rich in volatile organic compounds (VOCs), which are increasingly recognized as potential health-promoting factors. This study explored the health effects of intaking strawberry VOC extract and its dominant terpene, linalool. The results indicated that linalool and strawberry VOC extract significantly increased the abundance of beneficial bacteria like Lactobacillus, Bacillus, and Alistipes in mice. Moreover, mice treated with linalool and strawberry VOC extract exhibited notable reductions in serum pro-inflammatory cytokines; interleukin IL-6 decreased by 14.5% and 21.8%, respectively, while IL-1β levels decreased by 9.6% and 13.4%, respectively. Triglyceride levels in the treated groups were reduced by 38.3% and 58.1%, respectively. Spearman's correlation analysis revealed that Bacillus negatively correlated with glucolipid indices, and Bifidobacterium and Dubosiella negatively correlated with inflammatory factors, indicating that alterations in glucolipid metabolism might be associated with the regulation of gut microbiota and systemic inflammation.
Collapse
Affiliation(s)
- Nanfeng Tan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Minjie Zhao
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Zisheng Luo
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China
| | - Zhenbiao Li
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xuenan Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Jiayi Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Xinya Gu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Qingqing Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China
| | - Shenghua Ding
- Hunan Agricultural Product Processing Institute, Hunan Academy of Agricultural Sciences, Changsha, China
| | - Miaomiao Ying
- College of Landscape and Hydraulic Engineering, Wenzhou Vocational College of Science and Technology, Wenzhou, China
| | - Yanqun Xu
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou, 310058, China; Ningbo Research Institute, Zhejiang University, Ningbo, 315100, China; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, 02138, USA.
| |
Collapse
|
2
|
Goh A, Im SH, Bae JE, Choi Y, Jeon J, Im SH. Assessing residual fragrances on skin after body washing: Optimization of an analytical method using solid-phase microextraction coupled with gas chromatography-mass spectrometry. Int J Cosmet Sci 2024; 46:1004-1016. [PMID: 39054565 DOI: 10.1111/ics.13001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/12/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024]
Abstract
OBJECTIVE The aim of this study is to develop and optimize a method for evaluating the persistence of residual fragrance after body washing, addressing a significant requirement in the development of personal care products. The main objective is to establish a reliable, sensitive and reproducible analytical technique to assess fragrance longevity on skin post-use of body wash products. METHODS Headspace solid-phase microextraction (HS-SPME) coupled with gas chromatography-mass spectrometry (GC-MS) is used to analyse residual fragrances. We investigate the extraction efficiencies of various SPME fibres and compare different methods for sampling skin-emitted fragrances, including tape stripping and sealed glass funnels. A controlled body-washing procedure is implemented to standardize the cleansing process. RESULTS Our findings indicate that the relative standard deviation for measuring five distinct fragrances is within the range of 3%-14%, highlighting the precision of the method. A notable variance exists in the extraction efficiency of fragrances using different types of SPME fibres, with some exhibiting over a threefold difference. Furthermore, the glass funnel method for fragrance collection demonstrates an 11.7 times greater sensitivity to galaxolide than that of the tape-stripping method. Residual fragrances with base notes as the main components can be detected on the skin up to 24 h after body washing. CONCLUSION The optimized method for residual fragrance evaluation developed in this study offers a robust tool for analysing fragrance components persisting on the skin for up to 24 h post-wash. This advancement facilitates a deeper understanding of fragrance longevity in personal care products, enabling comparative analyses between different products.
Collapse
Affiliation(s)
- Areum Goh
- LG Household & Health Care (LG H&H), Seoul, Korea
| | - Song Hee Im
- LG Household & Health Care (LG H&H), Seoul, Korea
| | - Jung-Eun Bae
- LG Household & Health Care (LG H&H), Seoul, Korea
| | - Yunsik Choi
- LG Household & Health Care (LG H&H), Seoul, Korea
| | | | - Sung Hyun Im
- LG Household & Health Care (LG H&H), Seoul, Korea
| |
Collapse
|
3
|
Mattingly A, Vickery Z, Ivankovic D, Farrell CL, Hakonarson H, Nguyen K, Boccuto L. Exploring the Therapeutic Potential for Breast Cancer of Phytochemicals and Secondary Metabolites in Marjoram, Thyme, and Persimmon. Metabolites 2024; 14:652. [PMID: 39728433 DOI: 10.3390/metabo14120652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/28/2024] Open
Abstract
Background/Objectives: Breast cancer is the most common cause of death in women worldwide and the most commonly diagnosed cancer. Although several therapeutic approaches are widely used against breast cancer, their adverse effects often lead to symptoms severely affecting the quality of life. Alternative methods have been explored to reduce these adverse effects, and nutraceuticals have yielded promising results. This review will discuss mechanisms of action and potential applications against breast cancer of some nutraceuticals, specifically marjoram, thyme, and persimmon leaves. Methods: A systematic search was conducted across the public databases of PubMed, PubChem, and Google Scholar, with a specific focus on the plant extracts and phytochemicals of interest, as well as the anticarcinogenic mechanisms. Results: Ethnopharmacological and biochemical evidence support the anticarcinogenic role of marjoram, thyme, and persimmon. Numerous phytochemicals contained in these herbs' extracts, like terpenes and flavonoids, possess remarkable potential to effectively treat breast cancer. Discussion: The phytochemicals contained in the reviewed nutraceuticals target the main cellular pathways involved in cell growth and disrupted in carcinogenesis, such as Nf-κB, MAPK/p38, TNF-α/IL-1β, and PI3K/Akt. The mechanisms of action of these compounds can successfully limit the abnormal growth and proliferation of cancerous breast cells. Conclusions: The potential use of the phytochemicals discussed in this review, either alone or in combination, may offer a valid alternative to chemotherapy against breast cancer with virtually no adverse effects, and further research on these molecules may lead to the identification of additional chemo-preventative and chemotherapeutic candidates.
Collapse
Affiliation(s)
- Aubrey Mattingly
- Healthcare Genetics Laboratory, School of Nursing, Clemson University, Clemson, SC 29634, USA
| | - Zoe Vickery
- Healthcare Genetics Laboratory, School of Nursing, Clemson University, Clemson, SC 29634, USA
| | - Diana Ivankovic
- Center for Cancer Research, Anderson University, Anderson, SC 29621, USA
| | - Christopher L Farrell
- Healthcare Genetics Laboratory, School of Nursing, Clemson University, Clemson, SC 29634, USA
| | - Hakon Hakonarson
- Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
| | - Katie Nguyen
- Healthcare Genetics Laboratory, School of Nursing, Clemson University, Clemson, SC 29634, USA
| | - Luigi Boccuto
- Healthcare Genetics Laboratory, School of Nursing, Clemson University, Clemson, SC 29634, USA
| |
Collapse
|
4
|
Wang K, Ren W, Hong L, Wang Q, Ghimire R, Haapanen M, Kivimäenpää M, Wu P, Ma X, Asiegbu FO. Linalool and 1,8-Cineole as Constitutive Disease-Resistant Factors of Norway Spruce Against Necrotrophic Pathogen Heterobasidion Parviporum. PLANT, CELL & ENVIRONMENT 2024. [PMID: 39535466 DOI: 10.1111/pce.15280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/30/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Norway spruce is an important coniferous species in boreal forests. Root and stem rot diseases caused by the necrotrophic pathogen Heterobasidion parviporum threaten the wood production of Norway spruce which necessitates the search for durable control and management strategies. Breeding for resistant traits is considered a viable long-term strategy. However, identification of potential resistant traits and markers remains a major challenge. In this study, short-term disease resistance screening was conducted using 218 Norway spruce clones from 17 families. Disease resistance was evaluated based on the size of necrosis lesion length following infection with the pathogen. A subset of needles/branches from clones with small (partial resistant) or large (susceptible) lesions were used for terpene analysis and transcriptomic profiling. The results revealed that the content of monoterpene linalool and 1,8-cineole and their respective encoded genes were significantly more abundant and highly expressed in the partial resistant group. Furthermore, linalool and 1,8-cineole were demonstrated to have inhibitory effect on the growth of the pathogen H. parviporum, with morphological distortion of the hyphae. RNAseq analysis revealed that transcript of pathogen genes involved in the regulation of carbohydrate metabolism and stress responses were significantly decreased in presence of the terpenes. The results suggest the relevance of monoterpenes together with jasmonic acid precursor and some genes involved in phenylpropanoid biosynthesis, as constitutive tolerance factors for Norway spruce tolerance against necrotrophic pathogen. The high level of necrosis related cell death gene expression might be factors critical for host susceptibility and disease development.
Collapse
Affiliation(s)
- Kai Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Wenzi Ren
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| | - Liang Hong
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Qingao Wang
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Rajendra Ghimire
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
| | - Matti Haapanen
- Natural Resources Institute Finland (LUKE), Helsinki, Finland
| | - Minna Kivimäenpää
- Department of Environmental and Biological Sciences, Kuopio Campus, University of Eastern Finland, Kuopio, Finland
- Natural Resources Institute Finland (LUKE), Suonenjoki, Finland
| | - Pengfei Wu
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Xiangqing Ma
- College of Forestry, Fujian Agriculture and Forestry University, Fuzhou, China
| | - Fred O Asiegbu
- Department of Forest Sciences, University of Helsinki, Helsinki, Finland
| |
Collapse
|
5
|
Umeh NE, Onuorah RT, Ekweogu CN, Ijioma SN, Egeduzu OG, Nwaru EC, Iweala EJ, Ugbogu EA. Chemical profiling, toxicity assessment, anti-diarrhoeal, anti-inflammatory and antinociceptive activities of Canarium schweinfurthii Engl. (Burseraceae) bark in rats. JOURNAL OF ETHNOPHARMACOLOGY 2024; 333:118460. [PMID: 38878840 DOI: 10.1016/j.jep.2024.118460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/08/2024] [Accepted: 06/12/2024] [Indexed: 06/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The bark of Canarium schweinfurthii is used in ethnomedicine for the treatment of diabetes, pain, malaria, fever and diarrhoea. AIM OF THE STUDY The chemical phytoconstituents, antidiarrheal, anti-inflammatory and antinociceptive effects and safety profile of the aqueous extract of Canarium schweinfurthii bark (AECSB) were investigated. MATERIALS AND METHODS Gas chromatography-mass spectrometry (GC-MS) was used to analyse the phytochemical composition. In the acute toxicity test, AECSB were administered up to 2 g/kg by oral gavage. For the subacute toxicity test (28 days), rats in group 1 (control) received no AECSB, while rats in groups 2-4 were administered different doses of AECSB. Charcoal meal transit and castor oil-induced diarrhoea models were used to study the antidiarrheal effect, while egg albumin/carrageenan and acetic acid/tail immersion models were used for the anti-inflammatory and antinociceptive studies, respectively. With the exception of the acute toxicity experiment, AECSB was administered orally at doses of 200, 400 and 800 mg/kg. RESULTS Bioactive phytoconstituents identified include p-cymene, δ-terpinene, linalool and phytol. No adverse effects or mortality were observed in acute and subacute studies. Treatment with AECSB (28 days) had no significant effect on organ weight, biochemical, hematologic and histopathologic parameters compared to the control groups (p > 0.05). Comparable antidiarrheal and antinociceptive effects were observed in both AECSB- and standard drug-treated groups, while the 400 and 800 mg/kg AECSB-treated groups showed remarkable anti-inflammatory effects compared to the standard drug-treated and control groups (p < 0.05). CONCLUSION AECSB has antidiarrheal, antinociceptive and anti-inflammatory effects and can be safely used for therapeutic purposes.
Collapse
Affiliation(s)
- Nkiruka Edith Umeh
- Department of Biochemistry Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | | | - Celestine Nwabu Ekweogu
- Department of Medical Biochemistry, Imo State University, PMB 2000, Owerri, Imo State, Nigeria
| | - Solomon Nnah Ijioma
- Department of Zoology and Environmental Biology, College of Natural Sciences, Michael Okpara University of Agriculture, Umudike, Nigeria
| | - Ozioma Glory Egeduzu
- Department of Biochemistry Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | - Ezeibe Chidi Nwaru
- Department of Plant Science and Biotechnology, Abia State University, PMB 2000, Uturu, Abia State, Nigeria
| | - Emeka Joshua Iweala
- Department of Biochemistry, Covenant University, PMB 1023, Ota, Ogun State, Nigeria
| | | |
Collapse
|
6
|
Al-Shuhaib MBS, Al-Shuhaib JMB. Assessing Therapeutic Value and Side Effects of Key Botanical Compounds for Optimized Medical Treatments. Chem Biodivers 2024:e202401754. [PMID: 39316731 DOI: 10.1002/cbdv.202401754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 09/26/2024]
Abstract
Due to the significance of variable chemical groups across a wide spectrum of modern medicine, it is imperative to determine what is the most widely used group in medical applications with the fewest side effects. Ten compounds from ten chemical groups that are most commonly known for their medical uses were compared in terms of their therapeutic potential and side effects. The comparison among the selected compounds indicated the superiority of the flavonoids over other groups in the multitude of their utilizations and the lower side effects. Kaempferol and quercetin showed higher medical utilization with lower side effects. Whereas alkaloid compounds showed the lowest levels of medical use and the highest levels of side effects. Based on the comparison conducted, it is concluded to give priority to flavonoid compounds being used in medical applications because they exhibit the highest medical uses with the lowest side effects. Within flavonoids, kaempferol and quercetin are the two compounds that are highly recommended to be used in the widest range of medical applications. Serious caution should be considered before applying alkaloids to any medical service. Understanding the characteristics of these compounds can aid in developing safer and more effective treatments for medicinal plants.
Collapse
Affiliation(s)
- Mohammed Baqur S Al-Shuhaib
- Department of Animal Production, College of Agriculture, Al-Qasim Green University, 8 Babil, Al-Qasim, 51013, Iraq
| | | |
Collapse
|
7
|
Mohd Ateeq MA, Mahajan S, Saren BN, Aalhate M, Singh H, Chatterjee E, Maji I, Gupta U, Sriram A, Guru SK, Singh PK. Solid Self Nano-Emulsifying Drug Delivery System of Dasatinib: Optimization, In-vitro, Ex-vivo and In-vivo assessment. Ther Deliv 2024; 15:749-768. [PMID: 39287183 PMCID: PMC11457667 DOI: 10.1080/20415990.2024.2397330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Aim: Dasatinib (DST) is an oral tyrosine kinase inhibitor with poor aqueous solubility. To outwit this issue, a solid self-nano emulsifying drug delivery system (S-SNEDDS) of DST was formulated.Methods: I-optimal mixture design was used for optimization of DST-loaded SNEDDS using Linalool, Cremophor RH40 and Transcutol P. S-SNEDDS underwent physicochemical characterization, in-vitro release and ex-vivo permeation, cell-based assays and pharmacokinetic study.Results: DST-S-SNEDDS showed globule size and PDI of 141.53 ± 5.371 nm and 0.282 ± 0.020, respectively. DST-S-SNEDDS revealed significantly lower IC50 (1.825 μg/mL) than free DST (7.298 μg/mL) in MDA-MB-231. In-vivo pharmacokinetic study revealed 1.94-fold increment in AUC0-t for the DST-S-SNEDDS group than free DST.Conclusion: S-SNEDDS could be promising approach for improving bioavailability and efficacy of DST.
Collapse
Affiliation(s)
- Mohd Aman Mohd Ateeq
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, 500037, India
| | - Srushti Mahajan
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, 500037, India
| | - Brojendra Nath Saren
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, 500037, India
| | - Mayur Aalhate
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, 500037, India
| | - Hoshiyar Singh
- Department of Biological Sciences, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, 500037, India
| | - Essha Chatterjee
- Department of Biological Sciences, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, 500037, India
| | - Indrani Maji
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, 500037, India
| | - Ujala Gupta
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, 500037, India
| | - Anitha Sriram
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, 500037, India
| | - Santosh Kumar Guru
- Department of Biological Sciences, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, 500037, India
| | - Pankaj Kumar Singh
- Department of Pharmaceutics, National Institute of Pharmaceutical Education & Research (NIPER), Hyderabad, 500037, India
| |
Collapse
|
8
|
Yang Z, Chan KW, Abu Bakar MZ, Deng X. Unveiling Drimenol: A Phytochemical with Multifaceted Bioactivities. PLANTS (BASEL, SWITZERLAND) 2024; 13:2492. [PMID: 39273976 PMCID: PMC11397239 DOI: 10.3390/plants13172492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 09/02/2024] [Accepted: 09/04/2024] [Indexed: 09/15/2024]
Abstract
Drimenol, a phytochemical with a distinct odor is found in edible aromatic plants, such as Polygonum minus (known as kesum in Malaysia) and Drimys winteri. Recently, drimenol has received increasing attention owing to its diverse biological activities. This review offers the first extensive overview of drimenol, covering its sources, bioactivities, and derivatives. Notably, drimenol possesses a wide spectrum of biological activities, including antifungal, antibacterial, anti-insect, antiparasitic, cytotoxic, anticancer, and antioxidant effects. Moreover, some mechanisms of its activities, such as its antifungal effects against human mycoses and anticancer activities, have been investigated. However, there are still several crucial issues in the research on drimenol, such as the lack of experimental understanding of its pharmacokinetics, bioavailability, and toxicity. By synthesizing current research findings, this review aims to present a holistic understanding of drimenol, paving the way for future studies and its potential utilization in diverse fields.
Collapse
Affiliation(s)
- Zhongming Yang
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Kim Wei Chan
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Md Zuki Abu Bakar
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
- Department of Veterinary Preclinical Science, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang 43400, Malaysia
| | - Xi Deng
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, Serdang 43400, Malaysia
| |
Collapse
|
9
|
Cai J, Chen H, Wang R, Zhong Q, Chen W, Zhang M, He R, Chen W. Membrane Damage and Metabolic Disruption as the Mechanisms of Linalool against Pseudomonas fragi: An Amino Acid Metabolomics Study. Foods 2024; 13:2501. [PMID: 39200428 PMCID: PMC11353791 DOI: 10.3390/foods13162501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/08/2024] [Indexed: 09/02/2024] Open
Abstract
Pseudomonas fragi (P. fragi) is usually detected in low-temperature meat products, and seriously threatens food safety and human health. Therefore, the study investigated the antibacterial mechanism of linalool against P. fragi from membrane damage and metabolic disruption. Results from field-emission transmission electron microscopy (FETEM) and atomic force microscopy (AFM) showed that linalool damage membrane integrity increases surface shrinkage and roughness. According to Fourier transform infrared (FTIR) spectra results, the components in the membrane underwent significant changes, including nucleic acid leakage, carbohydrate production, protein denaturation and modification, and fatty acid content reduction. The data obtained from amino acid metabolomics indicated that linalool caused excessive synthesis and metabolism of specific amino acids, particularly tryptophan metabolism and arginine biosynthesis. The reduced activities of glucose 6-phosphate dehydrogenase (G6PDH), malate dehydrogenase (MDH), and phosphofructokinase (PFK) suggested that linalool impair the respiratory chain and energy metabolism. Meanwhile, genes encoding the above enzymes were differentially expressed, with pfkB overexpression and zwf and mqo downregulation. Furthermore, molecular docking revealed that linalool can interact with the amino acid residues of G6DPH, MDH and PFK through hydrogen bonds. Therefore, it is hypothesized that the mechanism of linalool against P. fragi may involve cell membrane damage (structure and morphology), disturbance of energy metabolism (TCA cycle, EMP and HMP pathway) and amino acid metabolism (cysteine, glutamic acid and citrulline). These findings contribute to the development of linalool as a promising antibacterial agent in response to the food security challenge.
Collapse
Affiliation(s)
- Jiaxin Cai
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Haiming Chen
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Runqiu Wang
- Department of Biostatistics, University of Nebraska Medical Center, Omaha, NE 68198, USA;
| | - Qiuping Zhong
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Weijun Chen
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Ming Zhang
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Rongrong He
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| | - Wenxue Chen
- HSF/LWL Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China; (J.C.); (H.C.); (Q.Z.); (W.C.); (M.Z.); (R.H.)
| |
Collapse
|
10
|
Chen S, Chen Z, O'Neill Rothenberg D, Long Y, Li H, Zeng X, Zeng Z, Mo X, Wu D, Liao Y, Huang Y, Xiao S, Zhang X. Short-term steaming during processing impacts the quality of Citri Reticulatae 'Chachi' peel. Food Chem 2024; 447:138964. [PMID: 38461715 DOI: 10.1016/j.foodchem.2024.138964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/19/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024]
Abstract
Citrus peel is a commonly used food-medicine material in the production of fast-moving consumer goods (FMCGs). For instance, Ganpu tea is manufactured by combining the peel of Citri Reticulatae 'Chachi' (PCRC) with Pu-erh tea. The alleviated irritation of PCRC through years of aging makes Citri reticulatae Pericarpium a traditional Chinese medicine. Herein, we introduced short-term steaming into the processing of PCRC to favor the quick removal of its irritation while retaining its food-medicine properties. Sensory evaluation and volatile component analysis showed that 60-s steaming reduced irritation of freshly prepared PCRC. Biological evaluations indicated no effects of steaming on the neuroprotective activity of PCRC. The process increased the contents of several bioactive ingredients, including hesperidin, nobiletin, tangeretin, and synephrine. In addition, physical indications of accelerating PCRC aging were observed. Taken together, our findings suggest that short-term steaming may offer a promising new possibility for enhancing the quality of citrus peel.
Collapse
Affiliation(s)
- Shiheng Chen
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Ziying Chen
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Dylan O'Neill Rothenberg
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yong Long
- Center of Logistics Management, Shenzhen Customs, Shenzhen, China
| | - Huafeng Li
- Guangdong Maoming Agriculture & Forestry Technical College, Maoming, China
| | - Xiaoyang Zeng
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Zhen Zeng
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xiaoli Mo
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Dunying Wu
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Yinghong Liao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China
| | - Yahui Huang
- Department of Tea Science, College of Horticulture, South China Agricultural University, Guangzhou, China.
| | - Sui Xiao
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China.
| | - Xu Zhang
- Guangdong Key Laboratory for Innovative Development and Utilization of Forest Plant Germplasm, College of Forestry and Landscape Architecture, South China Agricultural University, Guangzhou, China.
| |
Collapse
|
11
|
Xie X, Xue H, Ma B, Guo X, Xia Y, Yang Y, Xu K, Li T, Luo X. Comparative Analysis of Hydrosol Volatile Components of Citrus × Aurantium 'Daidai' and Citrus × Aurantium L. Dried Buds with Different Extraction Processes Using Headspace-Solid-Phase Microextraction with Gas Chromatography-Mass Spectrometry. Molecules 2024; 29:3498. [PMID: 39124903 PMCID: PMC11314536 DOI: 10.3390/molecules29153498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/16/2024] [Indexed: 08/12/2024] Open
Abstract
This work used headspace solid-phase microextraction with gas chromatography-mass spectrometry (HS-SPME-GC-MS) to analyze the volatile components of hydrosols of Citrus × aurantium 'Daidai' and Citrus × aurantium L. dried buds (CAVAs and CADBs) by immersion and ultrasound-microwave synergistic-assisted steam distillation. The results show that a total of 106 volatiles were detected in hydrosols, mainly alcohols, alkenes, and esters, and the high content components of hydrosols were linalool, α-terpineol, and trans-geraniol. In terms of variety, the total and unique components of CAVA hydrosols were much higher than those of CADB hydrosols; the relative contents of 13 components of CAVA hydrosols were greater than those of CADB hydrosols, with geranyl acetate up to 15-fold; all hydrosols had a citrus, floral, and woody aroma. From the pretreatment, more volatile components were retained in the immersion; the relative contents of linalool and α-terpineol were increased by the ultrasound-microwave procedure; and the ultrasound-microwave procedure was favorable for the stimulation of the aroma of CAVA hydrosols, but it diminished the aroma of the CADB hydrosols. This study provides theoretical support for in-depth exploration based on the medicine food homology properties of CAVA and for improving the utilization rate of waste resources.
Collapse
Affiliation(s)
- Xinyue Xie
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.X.); (H.X.); (B.M.); (X.G.); (T.L.)
| | - Huiling Xue
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.X.); (H.X.); (B.M.); (X.G.); (T.L.)
| | - Baoshan Ma
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.X.); (H.X.); (B.M.); (X.G.); (T.L.)
| | - Xiaoqian Guo
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.X.); (H.X.); (B.M.); (X.G.); (T.L.)
| | - Yanli Xia
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.X.); (H.X.); (B.M.); (X.G.); (T.L.)
| | - Yuxia Yang
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China;
| | - Ke Xu
- Sichuan Provincial Horticultural Crop Technology Extension Station, Chengdu 610041, China;
| | - Ting Li
- College of Food and Biological Engineering, Chengdu University, Chengdu 610106, China; (X.X.); (H.X.); (B.M.); (X.G.); (T.L.)
| | - Xia Luo
- Sichuan Academy of Chinese Medicine Sciences, Chengdu 610041, China;
| |
Collapse
|
12
|
Kamel MM, Badr A, Alkhalifah DHM, Mahmoud R, GadelHak Y, Hozzein WN. Unveiling the Impact of Eco-Friendly Synthesized Nanoparticles on Vegetative Growth and Gene Expression in Pelargonium graveolens and Sinapis alba L. Molecules 2024; 29:3394. [PMID: 39064972 PMCID: PMC11280068 DOI: 10.3390/molecules29143394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/06/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Nanoscale geranium waste (GW) and magnesium nanoparticle/GW nanocomposites (Mg NP/GW) were prepared using green synthesis. The Mg NP/GW samples were subjected to characterization using X-ray diffraction (XRD) and Fourier-transform infrared spectroscopy (FTIR-FT). The surface morphology of the materials was examined using a scanning electron microscope (SEM), and their thermal stability was assessed through thermal gravimetric analysis (TG). The BET-specific surface area, pore volume, and pore size distribution of the prepared materials were determined using the N2 adsorption-desorption method. Additionally, the particle size and zeta potentials of the materials were also measured. The influence of the prepared nanomaterials on seed germination was intensively investigated. The results revealed an increase in seed germination percent at low concentrations of Mg NP/GWs. Upon treatment with Mg NP/GW nanoparticles, a reduction in the mitotic index (MI) was observed, indicating a decrease in cell division. Additionally, an increase in chromosomal abnormalities was detected. The efficacy of GW and Mg NP/GW nanoparticles as new elicitors was evaluated by studying their impact on the expression levels of the farnesyl diphosphate synthase (FPPS1) and geranylgeranyl pyrophosphate (GPPS1) genes. These genes play a crucial role in the terpenoid biosynthesis pathway in Sinapis alba (S. alba) and Pelargonium graveolens (P. graveolens) plants. The expression levels were analyzed using reverse transcription-quantitative polymerase chain reaction (RT-qPCR) analysis. The qRT-PCR analysis of FPPS and GPPS gene expression was performed. The outputs of FPPS1 gene expression demonstrated high levels of mRNA in both S. alba and P. graveolens with fold changes of 25.24 and 21.68, respectively. In contrast, the minimum expression levels were observed for the GPPS1 gene, with fold changes of 11.28 and 6.48 in S. alba and P. graveolens, respectively. Thus, this study offers the employment of medicinal plants as an alternative to fertilizer usage resulting in promoting environmental preservation, optimal waste utilization, reducing water consumption, and cost reduction.
Collapse
Affiliation(s)
- Maha M. Kamel
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Bani Suef 62521, Egypt; (M.M.K.); (W.N.H.)
| | - Abdelfattah Badr
- Botany and Microbiology Department, Faculty of Science, Helwan University, Helwan, Cairo 11790, Egypt
| | - Dalal Hussien M. Alkhalifah
- Department of Biology, College of Science, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia
| | - Rehab Mahmoud
- Chemistry Department, Faculty of Science, Beni-Suef University, Beni Suef 62511, Egypt
| | - Yasser GadelHak
- Department of Materials Science and Nanotechnology, Faculty of Postgraduate Studies for Advanced Sciences, Beni-Suef University, Beni Suef 62511, Egypt
| | - Wael N. Hozzein
- Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Bani Suef 62521, Egypt; (M.M.K.); (W.N.H.)
| |
Collapse
|
13
|
Singh S, Mishra A. Linalool: Therapeutic Indication And Their Multifaceted Biomedical Applications. Drug Res (Stuttg) 2024; 74:255-268. [PMID: 38968949 DOI: 10.1055/a-2321-9571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/07/2024]
Abstract
This comprehensive review endeavors to illuminate the nuanced facets of linalool, a prominent monoterpene found abundantly in essential oils, constituting a massive portion of their composition. The biomedical relevance of linalool is a key focus, highlighting its therapeutic attributes observed through anti-nociceptive effects, anxiolytic properties, and behavioral modulation in individuals affected by dementia. These findings underscore the compound's potential application in biomedical applications. This review further explores contemporary formulations, delineating the adaptability of linalool in nano-emulsions, microemulsions, bio-capsules, and various topical formulations, including topical gels and lotions. This review covers published and granted patents between 2018-2024 and sheds light on the evolving landscape of linalool applications, revealing advancements in dermatological, anti-inflammatory, and antimicrobial domains.
Collapse
Affiliation(s)
- Shiva Singh
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, (U.P.) India
| | - Anuradha Mishra
- Amity Institute of Pharmacy, Lucknow, Amity University Uttar Pradesh, Noida, (U.P.) India
| |
Collapse
|
14
|
Davoodi F, Azizi S, Aghazadeh S, Dezfoulian O. Effects of linalool on postoperative peritoneal adhesions in rats. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5145-5155. [PMID: 38240782 DOI: 10.1007/s00210-024-02943-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/04/2024] [Indexed: 06/12/2024]
Abstract
The current study examines the effects of linalool in preventing postoperative abdominal adhesions. Twenty male Wistar rats were randomly divided into four groups. (1) Sham: in this group, the abdomen was approached, and without any manipulations, it was sutured. (2) Control: rats in this group underwent a surgical procedure to induce adhesions. This involved making three incisions on the right abdominal side and removing a 1×1-cm piece of the peritoneum on the left abdominal side. (3) Treatment groups: these groups underwent the same surgical procedure as the control group to induce adhesions. Animals in these groups received linalool orally with doses of 50 and 100 mg/kg, respectively, for a period of 14 days. Moreover, rats in the sham and control groups received normal saline via gavage for 14 days. The evaluation of TNF-α, TGF-β, VEGF, and caspase 3 was performed using western blot and IHC methods. Furthermore, oxidative stress biomarkers such as MDA, TAC, GSH, and NO were assessed in the peritoneal adhesion tissue. The findings revealed that linalool significantly reduced peritoneal adhesions by reducing TNF-α, TGF-β, VEGF, and caspase 3 levels. Moreover, MDA concentration was significantly decreased, while NO, TAC, and GSH levels were notably increased. Overall, linalool was effective in preventing adhesion formation and reduced inflammation, angiogenesis, apoptosis, and oxidative stress. Therefore, linalool as a potent antioxidant is suggested for reducing postoperative adhesions in rats.
Collapse
Affiliation(s)
- Farshid Davoodi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Saeed Azizi
- Department of Surgery and Diagnostic Imaging, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.
| | - Safiyeh Aghazadeh
- Department of Basic Sciences, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Omid Dezfoulian
- Department of Pathobiology, Faculty of Veterinary Medicine, Lorestan University, Khorramabad, Iran
| |
Collapse
|
15
|
Vaca Meza ET, Vasquez-Kool J, Costilla Sánchez NI, Vieira A, Rodrigues RAF, Sartoratto A, Flores Granados ADP, Marin Tello CL, Ruiz ALTG. Chemical composition and anti-proliferative activity of essential oils from some medicinal plants from Cachicadán, Región La Libertad, Perú. Nat Prod Res 2024; 38:2145-2150. [PMID: 37470420 DOI: 10.1080/14786419.2023.2238114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Revised: 06/27/2023] [Accepted: 07/10/2023] [Indexed: 07/21/2023]
Abstract
This study evaluated the chemical composition and anti-proliferative activity of essential oils (EOs) obtained by hydrodistillation from seven medicinal plants from Cachicadán, La Libertad Región, Perú. Limonene (0.64 to 44.43%) and linalool (0.36 to 2.12%) were identified in all EOs by gas chromatography coupled to mass spectrometry analysis. The major components (relative intensity ≥ 10%) were cis-dihydro carvone, carvone, and cis-piperitone epoxide for Minthostachys mollis leaves; β-pinene, limonene, and ledol for Lepechinia heteromorpha leaves; limonene, neral, and geranial for Aloysia citriodora, both leaves and flowers; α-pinene, and limonene for Myrcianthes myrsinoides leaves; and α-pinene, β-myrcene, and (E)-β-Ocimene for Dalea carthagenensis leaves. Constituted by (Z)-β-ocimene, dihydrotagetone, (Z)-tagetone, and car-3-en-2-one, EO of Tagetes minuta leaves induced an irreversible cytostatic effect against MCF-7 human breast tumor cells. Further in vivo studies must be carried out to establish the safe and efficient dose of T. minuta EO as adjuvant treatment in oncological therapies.
Collapse
Affiliation(s)
- Eveleny Tirsa Vaca Meza
- Laboratory of Research in Physiology of Food Metabolism, National University of Trujillo, Trujillo, Perú
| | - Jorge Vasquez-Kool
- Department of Health, Human and Life Sciences, Shaw University, Raleigh, North Carolina, USA
| | | | - Amandio Vieira
- Nutrition and metabolism research Laboratory, Biomedical Physiology and Kinesiology, Simon Fraser University, Burnaby, Canada
| | | | - Adilson Sartoratto
- Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas - UNICAMP, Paulínia, SP, Brazil
| | - Angela Del Pilar Flores Granados
- Chemical, Biological and Agricultural Pluridisciplinary Research Center (CPQBA), University of Campinas - UNICAMP, Paulínia, SP, Brazil
| | - Carmen Luisa Marin Tello
- Laboratory of Research in Physiology of Food Metabolism, National University of Trujillo, Trujillo, Perú
| | - Ana Lucia Tasca Gois Ruiz
- Laboratory of Phytochemistry, Pharmacology and Experimental Toxicology, LAFTEx, Faculty of Pharmaceutical Sciences, FCF, University of Campinas - UNICAMP, Campinas, SP, Brazil
| |
Collapse
|
16
|
Chañi-Paucar LO, Chagua-Rodríguez P, Cuadrado-Campó WJ, Lobato Calderón GR, Maceda Santivañez JC, Figueiredo Angolini CF, Meireles MAA. Tumbo, an Andean fruit: Uses, nutrition, processing, and biomolecules. Heliyon 2024; 10:e30327. [PMID: 38707414 PMCID: PMC11066424 DOI: 10.1016/j.heliyon.2024.e30327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/28/2024] [Accepted: 04/23/2024] [Indexed: 05/07/2024] Open
Abstract
Tumbo fruit has potential for industrialization due to its nutritional and functional properties, but scientific knowledge of this species is still limited compared to other species of the same genus, Passiflora. This review compiles the latest scientific advances on Tumbo, which cover the food technological aspects of Tumbo fruit, its uses and its potential as a source of bioactives for different industries, especially food, pharmaceutical, and cosmetics. The products (nectar, jellies, jams, wines, others) and by-products of the processing of the Tumbo fruit have various nutritional, sensory, and composition attributes for developing new food and non-food products. The potential applications of the fruit and its derivatives are broad, such as cosmetics, drugs, functional foods, and additives; these applications are due to its technological properties and its content of bioactive molecules. The Tumbo biorefinery presents an important perspective, especially for its bioactivity of high biological value for different industries.
Collapse
Affiliation(s)
- Larry Oscar Chañi-Paucar
- Grupo de Investigación en Ingeniería de Alimentos y Agroindustria (GIIAA), Universidad Nacional Autónoma Altoandina de Tarma (UNAAT), La Florida-Cochayoc Highway, Huancucro, 2092, Zip code: 12651, Junin, Peru
| | - Perfecto Chagua-Rodríguez
- Grupo de Investigación en Ingeniería de Alimentos y Agroindustria (GIIAA), Universidad Nacional Autónoma Altoandina de Tarma (UNAAT), La Florida-Cochayoc Highway, Huancucro, 2092, Zip code: 12651, Junin, Peru
| | - Walter Javier Cuadrado-Campó
- Grupo de Investigación en Ingeniería de Alimentos y Agroindustria (GIIAA), Universidad Nacional Autónoma Altoandina de Tarma (UNAAT), La Florida-Cochayoc Highway, Huancucro, 2092, Zip code: 12651, Junin, Peru
| | | | - Julio Cesar Maceda Santivañez
- Mass Spectrometry and Chemical Ecology Laboratory (MS-CELL), Center for Natural and Human Sciences, Federal University of ABC, UFABC, Av. dos Estados 5001-Bangú, Santo André, São Paulo State, Brazil
| | - Célio Fernando Figueiredo Angolini
- Mass Spectrometry and Chemical Ecology Laboratory (MS-CELL), Center for Natural and Human Sciences, Federal University of ABC, UFABC, Av. dos Estados 5001-Bangú, Santo André, São Paulo State, Brazil
| | - Maria Angela A Meireles
- Grupo de Investigación en Ingeniería de Alimentos y Agroindustria (GIIAA), Universidad Nacional Autónoma Altoandina de Tarma (UNAAT), La Florida-Cochayoc Highway, Huancucro, 2092, Zip code: 12651, Junin, Peru
- School of Food Engineering, University of Campinas (UNICAMP), R. Monteiro Lobato 80, Campinas, 13083-862, SP, Brazil
| |
Collapse
|
17
|
Nishimura Y, Nomiyama K, Okamoto S, Igarashi M, Sato Y, Okamoto H, Kamezaki A, Itadani M, Kuribayashi F, Yamauchi A. Anti-fatigue activity of methyl dihydrojasmonate and linalool in a rat model evaluated by a novel index for neuro-immune and oxidative stress interactions. Sci Rep 2024; 14:10650. [PMID: 38724532 PMCID: PMC11082212 DOI: 10.1038/s41598-024-60266-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 04/21/2024] [Indexed: 05/12/2024] Open
Abstract
Avoiding fatigue is a long-standing challenge in both healthy and diseased individuals. Establishing objective standard markers of fatigue is essential to evaluate conditions in spatiotemporally different locations and individuals and identify agents to fight against fatigue. Herein, we introduced a novel method for evaluating fatigue using nervous system markers (including dopamine, adrenaline, and noradrenaline), various cytokine levels (such as interleukin [IL]-1β, tumor necrosis factor [TNF]-α, IL-10, IL-2, IL-5 and IL-17A), and oxidative stress markers (such as diacron-reactive oxygen metabolites [d-ROMs] and biological antioxidant potential [BAP]) in a rat fatigue model. Using this method, the anti-fatigue effects of methyl dihydrojasmonate (MDJ) and linalool, the fragrance/flavor compounds used in various products, were assessed. Our method evaluated the anti-fatigue effects of the aforementioned compounds based on the changes in levels of the nerves system markers, cytokines, and oxidative stress markers. MDJ exerted more potent anti-fatigue effects than linalool. In conclusion, the reported method could serve as a useful tool for fatigue studies and these compounds may act as effective therapeutic agents for abrogating fatigue symptoms.
Collapse
Affiliation(s)
| | | | - Shuichiro Okamoto
- Department of Biochemistry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | | | - Yukino Sato
- Shiono Koryo Kaisha, LTD, Osaka, 532-0033, Japan
| | | | - Ayasa Kamezaki
- Department of Hygiene, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Masumi Itadani
- Department of Biochemistry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Futoshi Kuribayashi
- Department of Biochemistry, Kawasaki Medical School, Kurashiki, 701-0192, Japan
| | - Akira Yamauchi
- Department of Biochemistry, Kawasaki Medical School, Kurashiki, 701-0192, Japan.
| |
Collapse
|
18
|
Najar B, Pieracci Y, Fratini F, Pistelli L, Turchi B, Varriale D, Pistelli L, Bozzini MF, Marchioni I. Exploring the Volatile Composition and Antibacterial Activity of Edible Flower Hydrosols with Insights into Their Spontaneous Emissions and Essential Oil Chemistry. PLANTS (BASEL, SWITZERLAND) 2024; 13:1145. [PMID: 38674554 PMCID: PMC11053853 DOI: 10.3390/plants13081145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024]
Abstract
In the circular economy framework, hydrosols, by-products of the essential oil industry, are gaining attention for their potential in waste reduction and resource reuse. This study analyzed hydrosols from six edible flowers, investigating their chemical composition (VOC-Hyd) and antibacterial properties alongside volatile organic compounds of fresh flowers (VOC-Fs) and essential oils (EOs). Antirrhinum majus exhibited ketones as major VOC-Fs (62.6%) and VOC-Hyd (41.4%), while apocarotenoids dominated its EOs (68.0%). Begonia cucullata showed alkanes (33.7%) and aldehydes (25.7%) as primary VOC-Fs, while alkanes were prevalent in both extracts (65.6% and 91.7% in VOC-Hyd and in EOs, respectively). Calandula officinalis had monoterpenoids in VOC-Fs and VOC-Hyd (89.3% and 49.7%, respectively), while its EOs were rich in sesquiterpenoids (59.7%). Dahlia hortensis displayed monoterpenoid richness in both VOC-Fs and extracts. Monocots species' VOC-Fs (Polianthes tuberosa, Tulbaghia cominsii) were esters-rich, replaced by monoterpenoids in VOC-Hyd. P. tuberosa EO maintained ester richness, while T. cominsii EOs contained a significant percentage of sulfur compounds (38.1%). Antibacterial assays indicated comparable minimum inhibitory concentration profiles across VOC-Hyd: B. calcullata and P. tuberosa against Staphylococcus aureus and Salmonella enterica ser. typhimurium, T. cominsii against Escherichia coli and S. enterica, A. majus and C. officinalis against S. aureus, and D. hortensis against S. enterica.
Collapse
Affiliation(s)
- Basma Najar
- RD3—Pharmacognosy, Bioanalysis & Drug Discovery Unit, Analytical Platform of the Faculty of Pharmacy, Faculty of Pharmacy, Free University of Brussels, Blvd Triomphe, Campus Plaine, CP 205/5, B-1050 Brussels, Belgium
| | - Ylenia Pieracci
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (Y.P.); (L.P.); (M.F.B.)
| | - Filippo Fratini
- Department of Veterinary Sciences, University of Pisa, Viale dellle Piagge 2, 56124 Pisa, Italy; (F.F.); (B.T.); (D.V.)
- Centro Interdipartimentale di Ricerca Nutraceutica e Alimentazione per la Salute (NUTRA-FOOD), Università di Pisa, Via del Borgetto 80, 56124 Pisa, Italy;
| | - Laura Pistelli
- Centro Interdipartimentale di Ricerca Nutraceutica e Alimentazione per la Salute (NUTRA-FOOD), Università di Pisa, Via del Borgetto 80, 56124 Pisa, Italy;
- Dipartimento Scienze Agrarie, Alimentari e Agro-ambientali (DISAAA-a), Università di Pisa, Via del Borgetto 80, 56124 Pisa, Italy
| | - Barbara Turchi
- Department of Veterinary Sciences, University of Pisa, Viale dellle Piagge 2, 56124 Pisa, Italy; (F.F.); (B.T.); (D.V.)
| | - Dario Varriale
- Department of Veterinary Sciences, University of Pisa, Viale dellle Piagge 2, 56124 Pisa, Italy; (F.F.); (B.T.); (D.V.)
| | - Luisa Pistelli
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (Y.P.); (L.P.); (M.F.B.)
- Centro Interdipartimentale di Ricerca Nutraceutica e Alimentazione per la Salute (NUTRA-FOOD), Università di Pisa, Via del Borgetto 80, 56124 Pisa, Italy;
| | - Maria Francesca Bozzini
- Department of Pharmacy, University of Pisa, Via Bonanno 6, 56126 Pisa, Italy; (Y.P.); (L.P.); (M.F.B.)
| | - Ilaria Marchioni
- Department of Food and Drug, University of Parma, Parco Area delle Scienze 27/A, 43124 Parma, Italy;
| |
Collapse
|
19
|
Yoon YE, Jung YJ, Lee SJ. The Anticancer Activities of Natural Terpenoids That Inhibit Both Melanoma and Non-Melanoma Skin Cancers. Int J Mol Sci 2024; 25:4423. [PMID: 38674007 PMCID: PMC11050645 DOI: 10.3390/ijms25084423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/28/2024] Open
Abstract
The prevalence of two major types of skin cancer, melanoma and non-melanoma skin cancer, has been increasing worldwide. Skin cancer incidence is estimated to rise continuously over the next 20 years due to ozone depletion and an increased life expectancy. Chemotherapeutic agents could affect healthy cells, and thus may be toxic to them and cause numerous side effects or drug resistance. Phytochemicals that are naturally occurring in fruits, plants, and herbs are known to possess various bioactive properties, including anticancer properties. Although the effects of phytochemicals are relatively milder than chemotherapeutic agents, the long-term intake of phytochemicals may be effective and safe in preventing tumor development in humans. Diverse phytochemicals have shown anti-tumorigenic activities for either melanoma or non-melanoma skin cancer. In this review, we focused on summarizing recent research findings of the natural and dietary terpenoids (eucalyptol, eugenol, geraniol, linalool, and ursolic acid) that have anticancer activities for both melanoma and non-melanoma skin cancers. These terpenoids may be helpful to protect skin collectively to prevent tumorigenesis of both melanoma and nonmelanoma skin cancers.
Collapse
Affiliation(s)
- Ye Eun Yoon
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea;
| | - Young Jae Jung
- Department of Biotechnology, Graduate School of Life Sciences & Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea;
| | - Sung-Joon Lee
- Department of Food Bioscience and Technology, College of Life Sciences and Biotechnology, Korea University, Seoul 02855, Republic of Korea
- Interdisciplinary Program in Precision Public Health, BK21 Four Institute of Precision Public Health, Korea University, Seoul 02846, Republic of Korea
| |
Collapse
|
20
|
Taratynova MO, Tikhonova EE, Fedyaeva IM, Dementev DA, Yuzbashev TV, Solovyev AI, Sineoky SP, Yuzbasheva EY. Boosting Geranyl Diphosphate Synthesis for Linalool Production in Engineered Yarrowia lipolytica. Appl Biochem Biotechnol 2024; 196:1304-1315. [PMID: 37392322 DOI: 10.1007/s12010-023-04581-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/24/2023] [Indexed: 07/03/2023]
Abstract
Linalool is a pleasant-smelling monoterpenoid widely found in the essential oils of most flowers. Due to its biologically active properties, linalool has considerable commercial potential, especially in the food and perfume industries. In this study, the oleaginous yeast Yarrowia lipolytica was successfully engineered to produce linalool de novo. The (S)-linalool synthase (LIS) gene from Actinidia argute was overexpressed to convert geranyl diphosphate (GPP) into linalool. Flux was diverted from farnesyl diphosphate (FPP) synthesis to GPP by introducing a mutated copy of the native ERG20F88W-N119W gene, and CrGPPS gene from Catharanthus roseus on its own and as part of a fusion with LIS. Disruption of native diacylglycerol kinase enzyme, DGK1, by oligo-mediated CRISPR-Cas9 inactivation further increased linalool production. The resulting strain accumulated 109.6 mg/L of linalool during cultivation in shake flasks with sucrose as a carbon source. CrGPPS expression in Yarrowia lipolytica increased linalool accumulation more efficiently than the ERG20F88W-N119W expression, suggesting that the increase in linalool production was predominantly influenced by the level of GPP precursor supply.
Collapse
Affiliation(s)
- Maria O Taratynova
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia.
| | - Ekaterina E Tikhonova
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Iuliia M Fedyaeva
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Dmitry A Dementev
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Tigran V Yuzbashev
- Plant Sciences and the Bioeconomy, Rothamsted Research, Harpenden, AL5 2JQ, West Common, UK
| | - Andrey I Solovyev
- Gamaleya National Research Center of Epidemiology and Microbiology, Russian Ministry of Health, Gamaleya St. 18, Moscow, 123098, Russia
| | - Sergey P Sineoky
- NRC "Kurchatov Institute", Kurchatov Genomic Center, sq. Academician Kurchatova, 1, Moscow, 123182, Russia
| | - Evgeniya Y Yuzbasheva
- BioMediCan Inc, 40471 Encyclopedia Circle, Fremont, CA, 94538, USA
- BioKai Inc, 40471 Encyclopedia Circle, Fremont, CA, 94538, USA
| |
Collapse
|
21
|
maheswari CU. Molecular structure, vibrational spectral, electron density analysis on linaloe oil and molecular docking efficacy against the therapeutic target on human immunodeficiency virus-1 organism (VIRAL protein). Heliyon 2024; 10:e26274. [PMID: 38384556 PMCID: PMC10879012 DOI: 10.1016/j.heliyon.2024.e26274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Accepted: 02/09/2024] [Indexed: 02/23/2024] Open
Abstract
Natural traditional medicine extensively uses certain terpenes and gives plants their flavor, aroma, and color. Treatments for bacterial infections, malaria, and cardiovascular disorders, anti-inflammatory, promote circulation, and heal wounds. 3,7-Dimethyl-1,6-octadien-3-ol (Linalool) is a naturally occurring monoterpene alcohol with no cycle and is a colorless liquid. Spectral analysis such as UV absorption spectra, NMR for structure determination, and IR and Raman for vibrational analysis. The Quantum mechanical approach uses DFT, ELF, and LOL-promolecular electron density, non-relaxed, and atomic density analysis. The biomolecular studies such as molecular dynamics using protein-ligand complex with HIV-1 organism (energy minimization). ADMET for the usage of linalool in different metabolism studies and Molecular docking for binding affinity, its reactive site estimation, and macromolecules that come into contact with protein receptors and conclude ligand binding affinity with protein.
Collapse
Affiliation(s)
- Chandramohan Uma maheswari
- Department of Physics, Vel Tech High Tech Dr. Rangarajan Dr. Sakunthala Engineering College, Avadi, Chennai, 600062, Tamilnadu, India
| |
Collapse
|
22
|
Benmeddour T, Messaoudi K, Flamini G. First investigation of the chemical composition, antioxidant, antimicrobial and larvicidal activities of the essential oil of the subspecies Ononis angustissima Lam. subsp. filifolia Murb. Nat Prod Res 2024:1-16. [PMID: 38247329 DOI: 10.1080/14786419.2024.2305211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 01/05/2024] [Indexed: 01/23/2024]
Abstract
This study is the first to explore the essential oil of Ononis angustissima Lam. subsp. filifolia Murb., a subspecies growing in the Algerian northeastern Sahara. The chemical composition was evaluated by GC/GC-EIMS. Antioxidant activity was evaluated using two methods. Thirty-four (91.6%) individual components were identified. The main constituents were linalool (12.6%), hexahydrofarnesylacetone (8.4%), β-eudesmol (6.6%), α-cadinol (6.4%) and T-cadinol (6.1%). The findings provide a chemical basis for understanding relationships between North African subspecies, supporting botanical and genetic classification. The oil exhibited moderate scavenging activity against DPPH radicals (IC50 = 102.30 µg/ml) and high activity in the β-carotene bleaching assay (91.346%). Antimicrobial tests revealed effectiveness against Gram-positive bacteria (Staphylococcus aureus ATCC 25923 and ATCC 43300), limited impact on Gram-negative bacteria (Pseudomonas aeruginosa ATCC 27853 and Escherichia coli ATCC 25922), and good inhibition against Aspergillus niger and Scedosporium apiospermum. A notable larvicidal activity was observed against Date Moth, particularly on L2 larvae.
Collapse
Affiliation(s)
- Tarek Benmeddour
- Department of Nature and Life Sciences, University of Biskra, Biskra, Algeria
- Laboratory of Genetics, Biotechnology and Valorization of Bioresources, University of Biskra, Algeria
| | - Khadidja Messaoudi
- Department of Nature and Life Sciences, University of Biskra, Biskra, Algeria
- Laboratory of Genetics, Biotechnology and Valorization of Bioresources, University of Biskra, Algeria
| | - Guido Flamini
- Dipartimento di Farmacia, Università di Pisa, Pisa, Italy
| |
Collapse
|
23
|
Xin Z, Wang W, Yang W, Li Y, Niu L, Zhang Y. Investigation of Volatile Components and Assessment of Antioxidant Potential in Seven Lamiaceae Plant Hydrosols. Molecules 2023; 29:145. [PMID: 38202728 PMCID: PMC10780048 DOI: 10.3390/molecules29010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/20/2023] [Accepted: 12/25/2023] [Indexed: 01/12/2024] Open
Abstract
Aromatic plants of the family Lamiaceae, especially of the genus Thymus, have promising antioxidant applications in pharmacology, medicine, food, cosmetology, and aromatherapy. Hydrosols (HDs) were extracted by hydrodistillation from seven species of Lamiaceae, including Thymus vulgaris, Thymus mongolicus, Mentha × piperita, Melissa officinalis, Rosmarinus officinali, Salvia elegans, and Leonurus artemisia. In total, 369 volatile components were determined and analyzed by gas chromatography-mass spectrometry (GC-MS). Among them, alcohols (2.86-28.48%), ethers (2.46-10.69%), and phenols (0.11-21.78%) constituted a large proportion, mainly linalool (0.28-19.27%), eucalyptol (0.16-6.97%), thymol (0-19.54%), and carvacrol (0-26.82%). Multivariate statistical analyses were performed and 27 differential metabolites were screened. Three different methods (ABTS+•, DPPH•, and FRAP) were used to determine the in vitro antioxidant activity of seven HDs. Thymus vulgaris hydrosols (Tv HDs) and Thymus mongolicus hydrosols (Tm HDs) had the strongest antioxidant activity and their stronger antioxidant capacity was related to their high levels of phenolic constituents, mainly thymol. The antioxidant activity of the other five Lamiaceae HDs was associated with their high alcohol (mainly linalool and eucalyptol) content, and the alcohol constituents may synergistically affect their antioxidant capacity. Therefore, the present study suggests that Lamiaceae plants can be utilized as antioxidant products or antioxidants in different industrial sectors including pharmaceuticals, food, cosmetics, and agrochemicals.
Collapse
Affiliation(s)
| | | | | | | | - Lixin Niu
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (Z.X.); (W.W.); (W.Y.); (Y.L.)
| | - Yanlong Zhang
- College of Landscape Architecture and Arts, Northwest A&F University, Yangling 712100, China; (Z.X.); (W.W.); (W.Y.); (Y.L.)
| |
Collapse
|
24
|
Pashirova TN, Nemtarev AV, Buzyurova DN, Shaihutdinova ZM, Dimukhametov MN, Babaev VM, Voloshina AD, Mironov VF. Terpenes-Modified Lipid Nanosystems for Temozolomide, Improving Cytotoxicity against Glioblastoma Human Cancer Cells In Vitro. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 14:55. [PMID: 38202510 PMCID: PMC10780480 DOI: 10.3390/nano14010055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024]
Abstract
Currently, increasing the efficiency of glioblastoma treatment is still an unsolved problem. In this study, a combination of promising approaches was proposed: (i) an application of nanotechnology approach to create a new terpene-modified lipid system (7% w/w), using soybean L-α-phosphatidylcholine, N-carbonyl-methoxypolyethylene glycol-2000)-1,2-distearoyl-sn-glycero-3-phosphoethanolamine for delivery of the chemotherapy drug, temozolomide (TMZ, 1 mg/mL); (ii) use of TMZ associated with natural compounds-terpenes (1% w/w) abietic acid and Abies sibirica Ledeb. resin (A. sibirica). Different concentrations and combinations of terpene-lipid systems were employed to treat human cancer cell lines T 98G (glioblastoma), M-Hela (carcinoma of the cervix) and human liver cell lines (Chang liver). The terpene-lipid systems appeared to be unilamellar and of spherical shape under transmission electron microscopy (TEM). The creation of a TMZ-loaded terpene-lipid nanosystem was about 100 nm in diameter with a negative surface charge found by dynamic light scattering. The 74% encapsulation efficiency allowed the release time of TMZ to be prolonged. The modification by terpenes of TMZ-loaded lipid nanoparticles improved by four times the cytotoxicity against human cancer T 98G cells and decreased the cytotoxicity against human normal liver cells. Terpene-modified delivery lipid systems are of potential interest as a combination therapy.
Collapse
Affiliation(s)
- Tatiana N. Pashirova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| | - Andrey V. Nemtarev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Daina N. Buzyurova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| | - Zukhra M. Shaihutdinova
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
- Alexander Butlerov Institute of Chemistry, Kazan (Volga Region) Federal University, 18 Kremlevskaya St., 420008 Kazan, Russia
| | - Mudaris N. Dimukhametov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| | - Vasily M. Babaev
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| | - Alexandra D. Voloshina
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| | - Vladimir F. Mironov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center of RAS, 8 Arbuzov St., 420088 Kazan, Russia; (A.V.N.); (D.N.B.); (Z.M.S.); (M.N.D.); (V.M.B.); (A.D.V.); (V.F.M.)
| |
Collapse
|
25
|
Koilybayeva M, Shynykul Z, Ustenova G, Waleron K, Jońca J, Mustafina K, Amirkhanova A, Koloskova Y, Bayaliyeva R, Akhayeva T, Alimzhanova M, Turgumbayeva A, Kurmangaliyeva G, Kantureyeva A, Batyrbayeva D, Alibayeva Z. Gas Chromatography-Mass Spectrometry Profiling of Volatile Metabolites Produced by Some Bacillus spp. and Evaluation of Their Antibacterial and Antibiotic Activities. Molecules 2023; 28:7556. [PMID: 38005278 PMCID: PMC10673538 DOI: 10.3390/molecules28227556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/27/2023] [Accepted: 11/03/2023] [Indexed: 11/26/2023] Open
Abstract
Bacillus species produce different classes of antimicrobial and antioxidant substances: peptides or proteins with different structural compositions and molecular masses and a broad range of volatile organic compounds (VOCs), some of which may serve as biomarkers for microorganism identification. The aim of this study is the identification of biologically active compounds synthesized by five Bacillus species using gas chromatography coupled to mass spectrometry (GC-MS). The current study profoundly enhances the knowledge of antibacterial and antioxidant metabolites ensuring the unambiguous identification of VOCs produced by some Bacillus species, which were isolated from vegetable samples of potato, carrot, and tomato. Phylogenetic and biochemical studies were used to identify the bacterial isolates after culturing. Phylogenetic analysis proved that five bacterial isolates BSS12, BSS13, BSS16, BSS21, and BSS25 showed 99% nucleotide sequence similarities with Bacillus safensis AS-08, Bacillus cereus WAB2133, Bacillus acidiproducens NiuFun, Bacillus toyonesis FORT 102, and Bacillus thuringiensis F3, respectively. The crude extract was prepared from bacterial isolates to assess the antibiotic resistance potency and the antimicrobial potential against various targeted multidrug-resistant strains, including yeast strains such as Candida albicans, Candida krusei, and bacterial strains of Enterococcus hirae, Escherichia coli, Klebsiella aerogenes, Klebsiella pneumoniae, Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus group B, Streptococcus mutans, Shigella sonnei, Salmonella enteritidis, Serratia marcescens, Pseudomonas aeruginosa, and Proteus vulgaris. GC-MS analysis of bacterial strains found that VOCs from Bacillus species come in a variety of chemical forms, such as ketones, alcohols, terpenoids, alkenes, etc. Overall, 69 volatile organic compounds were identified from five Bacillus species, and all five were found to share different chemical classes of volatile organic components, which have a variety of pharmacological applications. However, eight antibacterial compounds with different concentrations were commonly found in all five species: acetoin, acetic acid, butanoic acid, 2-methyl-, oxime-, methoxy-phenyl, phenol, 1,2-benzenedicarboxylic acid, bis(2-methylpropyl) ester, nonanoic acid, and hexadecanoic acid, methyl. The present study has demonstrated that bacterial isolates BSS25, BSS21, and BSS16 display potent inhibitory effects against Candida albicans, while BSS25, BSS21, and BSS13 exhibit the ability to restrain the growth and activity of Candida krusei. Notably, BSS25 and BSS21 are the only isolates that demonstrate substantial inhibitory activity against Klebsiella aerogenes. This disparity in inhibitory effects could be attributed to the higher concentrations of acetoin in BSS25 and BSS21, whereas BSS16 and BSS13 have relatively elevated levels of butanoic acid, 2-methyl-. Certainly, the presence of acetoin and butanoic acid, 2-methyl-, contributes to the enhanced antibacterial potential of these bacterial strains, in conjunction with other organic volatile compounds and peptides, among other factors. The biology and physiology of Bacillus can be better understood using these results, which can also be used to create novel biotechnological procedures and applications. Moreover, because of its exceptional ability to synthesize and produce a variety of different antibacterial compounds, Bacillus species can serve as natural and universal carriers for antibiotic compounds in the form of probiotic cultures and strains to fight different pathogens, including mycobacteria.
Collapse
Affiliation(s)
- Moldir Koilybayeva
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (G.U.); (A.A.); (G.K.); (A.K.)
| | - Zhanserik Shynykul
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (T.A.); (A.T.)
| | - Gulbaram Ustenova
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (G.U.); (A.A.); (G.K.); (A.K.)
| | - Krzysztof Waleron
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Gen. Hallera 107, 80-416 Gdańsk, Poland; (K.W.); (J.J.)
| | - Joanna Jońca
- Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Medical University of Gdańsk, Gen. Hallera 107, 80-416 Gdańsk, Poland; (K.W.); (J.J.)
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology University of Gdansk and Medical University of Gdańsk, University of Gdansk, 80-307 Gdańsk, Poland
| | - Kamilya Mustafina
- School of Medicine, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (K.M.); (Y.K.); (R.B.)
| | - Akerke Amirkhanova
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (G.U.); (A.A.); (G.K.); (A.K.)
| | - Yekaterina Koloskova
- School of Medicine, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (K.M.); (Y.K.); (R.B.)
| | - Raushan Bayaliyeva
- School of Medicine, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (K.M.); (Y.K.); (R.B.)
| | - Tamila Akhayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (T.A.); (A.T.)
| | - Mereke Alimzhanova
- Center of Physical Chemical Methods of Research and Analysis, Al-Farabi Kazakh National University, Almaty 050012, Kazakhstan;
| | - Aknur Turgumbayeva
- Higher School of Medicine, Al-Farabi Kazakh National University, Almaty 050040, Kazakhstan; (T.A.); (A.T.)
| | - Gulden Kurmangaliyeva
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (G.U.); (A.A.); (G.K.); (A.K.)
| | - Aigerim Kantureyeva
- School of Pharmacy, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (G.U.); (A.A.); (G.K.); (A.K.)
| | - Dinara Batyrbayeva
- Scientific Clinical Diagnostic Laboratory, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (D.B.); (Z.A.)
| | - Zhazira Alibayeva
- Scientific Clinical Diagnostic Laboratory, S.D. Asfendiyarov Kazakh National Medical University, Tole-bi 94, Almaty 050012, Kazakhstan; (D.B.); (Z.A.)
| |
Collapse
|
26
|
He R, Chen H, Wu H, Liu J, Chen W, Zhang M, Chen W, Zhong Q. Proteomics reveals energy limitation and amino acid consumption as antibacterial mechanism of linalool against Shigella sonnei and its application in fresh beef preservation. Food Chem X 2023; 19:100837. [PMID: 37780265 PMCID: PMC10534181 DOI: 10.1016/j.fochx.2023.100837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/07/2023] [Accepted: 08/11/2023] [Indexed: 10/03/2023] Open
Abstract
Meat is often contaminated by food-borne pathogens, resulting in significant economic losses. Linalool from plant essential oils (EOs) has been reported to have excellent antibacterial properties. Therefore, this study aims to elucidate the mechanism of linalool against Shigella sonnei (S. sonnei) based on proteomic and physiological indicators. The results indicated that linalool severely perturbed the expression levels of intracellular proteins, of which 208 were up-regulated and 49 were down-regulated. Moreover, linalool exerted its inhibitory effect mainly through the induction of amino acid limitation and insufficient energy levels based on the pathways involved in differential expressed proteins (DEPs). After 8 h, alkaline phosphatase (AKP) leakage increased 20.96 and 21.52-fold in the MIC and 2MIC groups while protein leakage increased 2.17 and 2.50-fold, respectively, which revealed the potential of linalool on cell structure damage combined with nucleic acid leakage. In addition, the ATP content decreased to 36.92% and 18.84% in the MIC and 2MIC groups, respectively when processed for 8 h. In particular, linalool could effectively control the quality change of fresh beef by measuring pH, total volatile basic nitrogen (TVB-N), total viable counts (TVC) while not affecting its sensory acceptability based on the result of sensory evaluation. This research provides theoretical insights for the development of linalool as a new natural antibacterial agent.
Collapse
Affiliation(s)
- Rongrong He
- HNU-HSF Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| | - Haiming Chen
- HNU-HSF Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| | - Hao Wu
- HNU-HSF Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| | - Jicai Liu
- HNU-HSF Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| | - Weijun Chen
- HNU-HSF Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
- Chunguang Agro-product Processing Institute, Wenchang 571333, China
| | - Ming Zhang
- HNU-HSF Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| | - Wenxue Chen
- HNU-HSF Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| | - Qiuping Zhong
- HNU-HSF Collaborative Innovation Laboratory, College of Food Sciences & Engineering, Hainan University, 58 People Road, Haikou 570228, China
| |
Collapse
|
27
|
Zhang H, Liu C, Lu X, Xia G. Evaluation of growth adaptation of Cinnamomum camphora seedlings in ionic rare earth tailings environment. Sci Rep 2023; 13:16910. [PMID: 37805611 PMCID: PMC10560214 DOI: 10.1038/s41598-023-44145-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/04/2023] [Indexed: 10/09/2023] Open
Abstract
The root system is an important organ for nutrient uptake and biomass accumulation in plants, while biomass allocation directly affects essential oils content, which plays an essential role in plant growth and development and resistance to adverse environmental conditions. This study was undertaken to investigate the differences and correlation of biomass allocation, root traits and essential oil content (EOC), as well as the adaptations of camphor tree with different chemical types to the ionic rare earth tailing sand habitats. Data from 1-year old cutting seedlings of C. camphora showed that the biomass of C. camphora cuttings was mainly distributed in root system, with the ratio of root biomass 49.9-72.13% and the ratio of root to canopy 1.00-2.64. The total biomass was significantly positively correlated with root length (RL), root surface area (RSA) and dry weight of fine roots (diameter ≤ 2 mm) (P < 0.05). Root biomass and leaf biomass were negatively and positively with specific root length (SRL) and specific root surface area (SRSA), respectively. Leaf biomass presented a positive effect on EOC (P < 0.05), with the correlation coefficient of 0.808. The suitability sort of these camphor trees was as follows: C. camphora β-linalool, C. camphora α-linaloolII, C. camphora α-linaloolI being better adapted to the ionic rare earth tailings substrate, C. camphora citral being the next, and C. porrectum β-linalool and C. camphora borneol being the least adaptive. EOC played a positive role in the adaptation of C. camphora (R2 = 0.6099, P < 0.05). Therefore camphor tree with linalool type is the appropriate choice in the ecological restoration of ionic rare earth tailings. The study could provide scientific recommendations for the ecological restoration of ionic rare earth tailings area combined with industrial development.
Collapse
Affiliation(s)
- H Zhang
- Jiangxi Provincial Engineering Research Center of Seed-Breeding and Utilization of Camphor Trees, Nanchang Institute of Technology, Nanchang, China.
| | - C Liu
- Yao Hu Honor School Nanchang Institute of Technology, Nanchang, China
| | - X Lu
- Jiangxi Provincial Engineering Research Center of Seed-Breeding and Utilization of Camphor Trees, Nanchang Institute of Technology, Nanchang, China
- Jiangxi Provincial Technology Innovation Center for Ecological Water Engineering in Poyang Lake Basin, Nanchang, China
| | - G Xia
- Jiangxi Provincial Engineering Research Center of Seed-Breeding and Utilization of Camphor Trees, Nanchang Institute of Technology, Nanchang, China
| |
Collapse
|
28
|
Cherepanova MO, Subotyalov MA. Component Composition and Biological Activity of Oleo-Gum Resin from Boswellia serrata (Burseraceae). DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2023; 512:336-342. [PMID: 38087024 DOI: 10.1134/s0012496623700643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/17/2023] [Accepted: 06/23/2023] [Indexed: 12/18/2023]
Abstract
The review summarizes the published data on identification of biologically active compounds (BACs) and the pharmacological potential of various components of oleo-gum resin from the Indian frankincense Boswellia serrata Roxb. ex Colebr. Boswellia oleo-gum resin contains a wide range of BACs from the classes of mono-, sesqui-, di-, and triterpenes. Numerous in vivo and in vitro studies demonstrated their anti-inflammatory and antiproliferative effects. Boswellic acids (BAs), which belong to the tetra- and pentacyclic triterpenoid classes, showed the highest anti-inflammatory activity. The frankincense resin is traditionally used in Ayurvedic and Unani medicine and can provide a promising source to design drugs effective in treating musculoskeletal disorders.
Collapse
Affiliation(s)
- M O Cherepanova
- Novosibirsk State Pedagogical University, Novosibirsk, Russia
| | - M A Subotyalov
- Novosibirsk State Pedagogical University, Novosibirsk, Russia.
- Novosibirsk State University, Novosibirsk, Russia.
| |
Collapse
|
29
|
Cherbal A, Bouabdallah M, Benhalla M, Hireche S, Desdous R. Phytochemical Screening, Phenolic Content, and Anti-Inflammatory Effect of Foeniculum vulgare Seed Extract. Prev Nutr Food Sci 2023; 28:141-148. [PMID: 37416792 PMCID: PMC10321444 DOI: 10.3746/pnf.2023.28.2.141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 03/06/2023] [Accepted: 03/14/2023] [Indexed: 07/08/2023] Open
Abstract
Medicinal plants are promising sources of natural substances with biological functions and several drugs have been developed from traditional medicine. This study aimed to determine the chemical components of a hydromethanolic extract from Foeniculum vulgare seeds. Total phenolic, flavonoid, and flavonol contents were assessed, and gas chromatography-mass spectrometry (GC-MS) analysis was performed. To investigate the anti-inflammatory activity of F. vulgare seed hydromethanolic extract, its effects on protein denaturation, protease activity, membrane stabilization, and heat-induced hemolysis in red blood cells were evaluated in vitro. F. vulgare seed extract showed significant inhibition of protein denaturation (35.68±0.4%), protease activity (58.09±0.1%), and heat-induced hemolysis in red blood cells (9.67±0.3%) at concentrations of 200, 250, and 200 μg/mL, respectively, compared to the reference drug indomethacin (P<0.001). This remarkable anti-inflammatory activity may be attributable to the abundance of flavonoids in the F. vulgare seed extract. GC-MS confirmed the presence of linalool and fatty acids (palmitic and oleic acids), which have potential anti-inflammatory activities. Therefore, the hydromethanolic extract of F. vulgare seeds may be a valuable anti-inflammatory candidate in the years ahead.
Collapse
Affiliation(s)
- Asma Cherbal
- Department of Molecular and Cell Biology, Faculty of Nature and Life Sciences, University of Jijel, Jijel 18000, Algeria
- Biomathematics, Biophysics, Biochemistry, Scientometry Laboratory, Faculty of Nature and Life Sciences, University Abderrahmane Mira-Béjaïa, Béjaïa 06000, Algeria
| | - Mouna Bouabdallah
- Department of Molecular and Cell Biology, Faculty of Nature and Life Sciences, University of Jijel, Jijel 18000, Algeria
| | - Mouna Benhalla
- Department of Molecular and Cell Biology, Faculty of Nature and Life Sciences, University of Jijel, Jijel 18000, Algeria
| | - Saliha Hireche
- Department of Molecular and Cell Biology, Faculty of Nature and Life Sciences, University of Jijel, Jijel 18000, Algeria
- Applied Microbiology Laboratory, Faculty of Nature and Life Sciences, Ferhat Abbas University Setif 1, Sétif 19000, Algeria
| | - Rachid Desdous
- Department of Molecular and Cell Biology, Faculty of Nature and Life Sciences, University of Jijel, Jijel 18000, Algeria
| |
Collapse
|
30
|
Zhang Y, Su R, Yuan H, Zhou H, Jiangfang Y, Liu X, Luo J. Widely Targeted Volatilomics and Metabolomics Analysis Reveal the Metabolic Composition and Diversity of Zingiberaceae Plants. Metabolites 2023; 13:700. [PMID: 37367858 PMCID: PMC10301730 DOI: 10.3390/metabo13060700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 05/23/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Zingiberaceae plants are widely used in the food and pharmaceutical industries; however, research on the chemical composition and interspecific differences in the metabolome and volatilome of Zingiberaceae plants is still limited. In this study, seven species of Zingiberaceae plants were selected, including Curcuma longa L., Zingiber officinale Rosc., Alpinia officinarum Hance, Alpinia tonkinensis Gagnep, Amomum tsaoko Crevost et Lemarie, Alpinia hainanensis K. Schum. and Amomum villosum Lour. Myristica fragrans Houtt. was also selected due to its flavor being similar to that of the Zingiberaceae plant. The metabolome and volatilome of selected plants were profiled by widely targeted approaches; 542 volatiles and 738 non-volatile metabolites were detected, and β-myrcene, α-phellandrene and α-cadinene were detected in all the selected plants, while chamigren, thymol, perilla, acetocinnamone and cis-α-bisabolene were exclusively detected in certain Zingiberaceae plants. Differential analysis showed that some terpenoids, such as cadalene, cadalene-1,3,5-triene, cadalene-1,3,8-triene and (E)-β-farnesene, and some lipids, including palmitic acid, linoleic acid and oleic acid were amongst the most varied compounds in Zingiberaceae plants. In conclusion, this study provided comprehensive metabolome and volatilome profiles for Zingiberaceae plants and revealed the metabolic differences between these plants. The results of this study could be used as a guide for the nutrition and flavor improvement of Zingiberaceae plants.
Collapse
Affiliation(s)
- Youjin Zhang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Rongxiu Su
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Honglun Yuan
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Haihong Zhou
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Yiding Jiangfang
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Xianqing Liu
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
| | - Jie Luo
- Hainan Yazhou Bay Seed Laboratory, Sanya Nanfan Research Institute of Hainan University, Sanya 572025, China; (Y.Z.); (R.S.); (H.Y.)
- College of Tropical Crops, Hainan University, Haikou 570288, China
- National Key Laboratory of Crop Genetic Improvement and National Center of Plant Gene Research (Wuhan), Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
31
|
Naseer RD, Muhammad F, Aslam B, Faisal MN. Anti-arthritic effects of geranium essential oil loaded chitosan nanoparticles in Freund's complete adjuvant induced arthritic rats through down-regulation of inflammatory cytokines. Inflammopharmacology 2023:10.1007/s10787-023-01233-w. [PMID: 37231284 DOI: 10.1007/s10787-023-01233-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 03/27/2023] [Indexed: 05/27/2023]
Abstract
Geranium essential oil (GEO) has been widely used in aromatherapy and traditional medicines. Nanoencapsulation, a novel technique has emerged to overcome the environmental degradation and less oral bioavailability of essential oils. This work was undertaken to encapsulate geranium essential oil in chitosan nanoparticles (GEO-CNPs) by ionic gelation technique and to explore anti-arthritic and anti-inflammatory potential in FCA-induced arthritic model in rats. The GEO was characterized by gas chromatography flame ionization detector (GCFID) and the nanosuspension was characterized by Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and X-rays diffraction (XRD). The Wistar albino rats (n = 32) were separated into four groups; Group 1 and 2 were considered as normal and arthritic controls. Group 3 was positive control that received oral celecoxib for 21 days while Group 4 was treated with oral GEO-CNPs after the induction of arthritis. Hind paw ankle joints diameters were weekly measured throughout the study and significant decrease (5.5 ± 0.5 mm) was observed in GEO-CNPs treatment group in comparison to arthritic group (9.17 ± 0.52 mm). Blood samples were drawn at end for evaluation of hematological, biochemical and inflammatory biomarkers. A significant upregulation of red blood cells and hemoglobin while downregulation of white blood cells, interleukin-6 (IL-6), tumor necrosis factor-alpha (TNF-α), C-reactive protein (CRP) and rheumatoid factor (RF) was observed. Ankles were transected for the histopathological and radiographic examination after animals were sacrificed which confirmed the alleviation of necrosis along cellular infiltration. It was concluded that GEO-CNPs were found to possess excellent therapeutic potential and promising candidates to reduce FCA-induced arthritis.
Collapse
Affiliation(s)
| | - Faqir Muhammad
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan.
| | - Bilal Aslam
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Naeem Faisal
- Institute of Physiology and Pharmacology, University of Agriculture, Faisalabad, Pakistan
| |
Collapse
|
32
|
Gouveia RG, Oliveira NR, Andrade-Júnior FP, Ferreira RC, Amorim GMW, Silva DKF, Duarte SS, Medeiros CIS, Oliveira-Filho AA, Lima EO. Antifungal effect of (R) and (S)-citronellal enantiomers and their predictive mechanism of action on Candida albicans from voriconazole-resistant onychomycoses. BRAZ J BIOL 2023; 83:e271530. [PMID: 37222371 DOI: 10.1590/1519-6984.271530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/14/2023] [Indexed: 05/25/2023] Open
Abstract
Onychomycosis is the most common disease affecting the nail unit and accounts for at least 50% of all nail diseases. In addition, Candida albicans is responsible for approximately 70% of onychomycoses caused by yeasts. This study investigated the antifungal effect of (R) and (S)-citronellal enantiomers, as well as its predictive mechanism of action on C. albicans from voriconazole-resistant onychomycoses. For this purpose, in vitro broth microdilution and molecular docking techniques were applied in a predictive and complementary manner to the mechanisms of action. The main results of this study indicate that C. albicans was resistant to voriconazole and sensitive to the enantiomers (R) and (S)-citronellal at a dose of 256 and 32 µg/mL respectively. In addition, there was an increase in the minimum inhibitory concentration (MIC) of the enantiomers in the presence of sorbitol and ergosterol, indicating that these molecules possibly affect the integrity of the cell wall and cell membrane of C. albicans. Molecular docking with key biosynthesis proteins and maintenance of the fungal cell wall and plasma membrane demonstrated the possibility of (R) and (S)-citronellal interacting with two important enzymes: 1,3-β-glucan synthase and lanosterol 14α-demethylase. Therefore, the findings of this study indicate that the (R) and (S)-citronellal enantiomers are fungicidal on C. albicans from onychomycoses and probably these substances cause damage to the cell wall and cell membrane of these micro-organisms possibly by interacting with enzymes in the biosynthesis of these fungal structures.
Collapse
Affiliation(s)
- R G Gouveia
- Universidade Federal da Paraíba - UFPB, Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, João Pessoa, Paraíba, Brasil
| | - N R Oliveira
- Universidade Federal da Paraíba - UFPB, Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, João Pessoa, Paraíba, Brasil
| | - F P Andrade-Júnior
- Universidade Federal da Paraíba - UFPB, Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, João Pessoa, Paraíba, Brasil
| | - R C Ferreira
- Universidade Federal da Paraíba - UFPB, Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, João Pessoa, Paraíba, Brasil
| | - G M W Amorim
- Universidade Federal da Paraíba - UFPB, Departamento de Ciências Farmacêuticas - DCF, João Pessoa, Paraíba, Brasil
| | - D K F Silva
- Universidade Federal da Paraíba - UFPB, Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, João Pessoa, Paraíba, Brasil
| | - S S Duarte
- Universidade Federal da Paraíba - UFPB, Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, João Pessoa, Paraíba, Brasil
| | - C I S Medeiros
- Universidade Federal da Paraíba - UFPB, Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, João Pessoa, Paraíba, Brasil
| | - A A Oliveira-Filho
- Universidade Federal de Campina Grande - UFCG, Centro de Saúde e Tecnologia Rural - CTSR, Patos, Paraíba, Brasil
| | - E O Lima
- Universidade Federal da Paraíba - UFPB, Programa de Pós-Graduação em Produtos Naturais e Sintéticos Bioativos, João Pessoa, Paraíba, Brasil
- Universidade Federal da Paraíba - UFPB, Departamento de Ciências Farmacêuticas - DCF, João Pessoa, Paraíba, Brasil
| |
Collapse
|
33
|
Laanet PR, Saar-Reismaa P, Jõul P, Bragina O, Vaher M. Phytochemical Screening and Antioxidant Activity of Selected Estonian Galium Species. Molecules 2023; 28:molecules28062867. [PMID: 36985838 PMCID: PMC10056973 DOI: 10.3390/molecules28062867] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/13/2023] [Accepted: 03/20/2023] [Indexed: 03/30/2023] Open
Abstract
The aim of the present study was to examine three different Galium species from the native population of Estonia, Galium verum, Galium aparine, and Galium mollugo, to characterise their non-volatile and volatile phytochemical composition and antioxidant activity. The main groups of bioactive compounds in the plants were quantified by colorimetric tests, showing high concentrations of polyphenols (up to 27.2 ± 1.5 mg GAE/g), flavonoids (up to 7.3 ± 0.5 mg QE/g) and iridoids (up to 40.8 ± 2.9 mg AE/g). The species were compared using HPLC-DAD-MS/MS, revealing some key differences in the phytochemical makeup of the extracts. The most abundant compound in the extracts of Galium verum blossoms and herb was found to be asperuloside, in Galium aparine herb, asperulosidic acid, and in Galium mollugo herb, chlorogenic acid. Additionally, the composition of volatile compounds was analysed by SPME-GC-MS. The degree of variability between the samples was high, but three volatiles, hexanal, anethole, and β-caryophyllene, were quantified (≥1%) in all analysed samples. The antioxidative activity of all extracts was evaluated using the ORACFL method, demonstrating that the Galium species from Estonia all exhibit strong antioxidant capacity (up to 9.3 ± 1.2 mg TE/g). Out of the extracts studied, Galium verum blossoms contained the highest amounts of bioactives and had the strongest antioxidant capacity.
Collapse
Affiliation(s)
- Pille-Riin Laanet
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Piret Saar-Reismaa
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
- HAN BioCentre, Laan van Scheut 2, 6525 EM Nijmegen, The Netherlands
| | - Piia Jõul
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| | - Olga Bragina
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
- National Institute for Health Development, Hiiu 42, 11619 Tallinn, Estonia
| | - Merike Vaher
- Department of Chemistry and Biotechnology, Tallinn University of Technology, Akadeemia tee 15, 12618 Tallinn, Estonia
| |
Collapse
|
34
|
Genome-wide identification, expression profile and evolutionary relationships of TPS genes in the neotropical fruit tree species Psidium cattleyanum. Sci Rep 2023; 13:3930. [PMID: 36894661 PMCID: PMC9998390 DOI: 10.1038/s41598-023-31061-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 03/06/2023] [Indexed: 03/11/2023] Open
Abstract
Terpenoids are essential for plant growth, development, defense, and adaptation mechanisms. Psidium cattleyanum (Myrtaceae) is a fleshy fruit tree species endemics from Atlantic Forest, known for its pleasant fragrance and sweet taste, attributed to terpenoids in its leaves and fruits. In this study, we conducted genome-wide identification, evolutionary and expression analyses of the terpene synthase gene (TPS) family in P. cattleyanum red guava (var. cattleyanum), and yellow guava (var. lucidum Hort.) morphotypes. We identified 32 full-length TPS in red guava (RedTPS) and 30 in yellow guava (YlwTPS). We showed different expression patterns of TPS paralogous in the two morphotypes, suggesting the existence of distinct gene regulation mechanisms and their influence on the final essential oil content in both morphotypes. Moreover, the oil profile of red guava was dominated by 1,8-cineole and linalool and yellow guava was enriched in α-pinene, coincident in proportion to TPS-b1 genes, which encode enzymes that produce cyclic monoterpenes, suggesting a lineage-specific subfamily expansion of this family. Finally, we identified amino acid residues near the catalytic center and functional areas under positive selection. Our findings provide valuable insights into the terpene biosynthesis in a Neotropical Myrtaceae species and their potential involvement in adaptation mechanisms.
Collapse
|
35
|
Hsien Li P, Shih YJ, Lu WC, Huang PH, Wang CCR. Antioxidant, antibacterial, anti-inflammatory, and anticancer properties of Cinnamomum kanehirae Hayata leaves extracts. ARAB J CHEM 2023. [DOI: 10.1016/j.arabjc.2023.104873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023] Open
|
36
|
Efficacy of Aromatherapy at Relieving the Work-Related Stress of Nursing Staff from Various Hospital Departments during COVID-19. Healthcare (Basel) 2023; 11:healthcare11020157. [PMID: 36673525 PMCID: PMC9859127 DOI: 10.3390/healthcare11020157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 12/31/2022] [Accepted: 01/03/2023] [Indexed: 01/07/2023] Open
Abstract
This study aimed to evaluate the efficacy of aromatherapy in relieving the stress of nursing staff working in different departments during COVID-19. A total of 26 nursing staff from Taiwan were recruited for this study. Bergamot essential oil was diffused for over a four-week period in four different hospital departments. We assessed heart rate variability indicators, Nurse Stress Checklist, and Copenhagen Burnout Inventory before and after the intervention. The results of the analysis showed that during a high workload period, aromatherapy had no significant effect on regulating physical stress. Subjective measurements showed a significant impact on work concern and personal fatigue. Moreover, there were large differences among the four departments; the aromatherapy treatment had a weak effect on those with a heavy workload, whereas those with a lighter workload showed a stronger effect. Finally, this study provides practical results about aromatherapy stress reduction applied during the pandemic on first-line medical staff.
Collapse
|
37
|
He R, Zhong Q, Chen W, Zhang M, Pei J, Chen H, Chen W. Transcriptomic and proteomic investigation of metabolic disruption in Listeria monocytogenes triggered by linalool and its application in chicken breast preservation. Lebensm Wiss Technol 2023. [DOI: 10.1016/j.lwt.2023.114492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
38
|
Usman AN, Manju B, Ilhamuddin I, Ahmad M, Ab T, Ariyandy A, Budiaman B, Eragradini AR, Hasan II, Hashim S, Sartini S, Sinrang AW. Ginger potency on the prevention and treatment of breast cancer. Breast Dis 2023; 42:207-212. [PMID: 37424457 DOI: 10.3233/bd-239003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2023]
Abstract
BACKGROUND Cancer is a type of disease caused by the uncontrolled growth of abnormal cells that can destroy body tissues. The use of traditional medicine naturally uses plants from ginger with the maceration method. The ginger plant is a herbaceous flowering plant with the Zingiberaceacea group. METHODS This study uses the literature review method by reviewing 50 articles from journals and databases. RESULTS A review of several articles, namely ginger has bioactive components such as gingerol. Ginger is used as a treatment in complementary therapies using plants. Ginger is a strategy with many benefits and functions as a nutritional complement to the body. This benefit has shown the effect of anti-inflammatory, antioxidant, and anticancer against nausea and vomiting due to chemotherapy in breast cancer. CONCLUSION Anticancer in ginger is shown by polyphenols associated with anti-metastatic, anti-proliferative, antiangiogenic, anti-inflammatory, cell cycle arrest, apoptosis, and autophagy. Therefore, consuming ginger regularly affects natural herbal therapy with the prevention and treatment of breast cancer and serves as a prevention against the effects of chemotherapy.
Collapse
Affiliation(s)
- Andi Nilawati Usman
- Department of Midwifery, Graduate School, Hasanuddin University, Makassar, Indonesia
| | - Budu Manju
- Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | | | - Mardiana Ahmad
- Department of Midwifery, Graduate School, Hasanuddin University, Makassar, Indonesia
| | - Takko Ab
- Cultural Science, Hasanuddin University, Makassar, Indonesia
| | - Andi Ariyandy
- Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| | | | | | | | | | - Sartini Sartini
- Faculty of Pharmacy, Hasanuddin University, Makassar, Indonesia
| | - Andi Wardihan Sinrang
- Department of Midwifery, Graduate School, Hasanuddin University, Makassar, Indonesia
- Faculty of Medicine, Hasanuddin University, Makassar, Indonesia
| |
Collapse
|
39
|
Hosseini A, Pourheidar E, Rajabian A, Asadpour E, Hosseinzadeh H, Sadeghnia HR. Linalool attenuated ischemic injury in PC12 cells through inhibition of caspase-3 and caspase-9 during apoptosis. Food Sci Nutr 2023; 11:249-260. [PMID: 36655091 PMCID: PMC9834854 DOI: 10.1002/fsn3.3057] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 08/10/2022] [Accepted: 08/14/2022] [Indexed: 02/01/2023] Open
Abstract
Numerous studies have indicated the pharmacological properties of linalool, a volatile terpene alcohol found in many flowers and spice plants, including anti-nociceptive, anti-inflammatory, and neuroprotective activities. The aim of this study was to explore the mechanisms of neuroprotection provided by (±) linalool and its enantiomer, (R)-(-) linalool against oxygen, and glucose deprivation/reoxygenation (OGD/R) in PC12 cells. PC12 cells were treated with (±) linalool and (R)-(-) linalool before exposure to OGD/R condition. Cell viability, reactive oxygen species (ROS) production, malondialdehyde (MDA) level, DNA damage, and the levels of proteins related to apoptosis were evaluated using MTT, comet assay, and western blot analysis, respectively. IC50 values for the PC12 cells incubated with (±) linalool and (R)-(-) linalool were 2700 and 2600 μM after 14 h, as well as 5440 and 3040 μM after 18 h, respectively. Survival of the ischemic cells pre-incubated with (±) linalool and (R)-(-) linalool (100 μM of both) increased compared to the cells subjected to the OGD/R alone (p < .001). ROS and MDA formation were also decreased following incubation with (±) linalool and (R)-(-) linalool compared to the OGD/R group (p < .01). In the same way, pre-treatment with (±) linalool and (R)-(-) linalool significantly reduced OGD/R-induced DNA injury compared to that seen in OGD/R group (p < .001). (±) Linalool and (R)-(-) linalool also restored Bax/Bcl-2 ratio and cleaved caspase-3 and caspase-9 (p < .001, p < .01) following ischemic injury. The neuroprotective effect of linalool against ischemic insult might be mediated by alleviation of oxidative stress and apoptosis.
Collapse
Affiliation(s)
- Azar Hosseini
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical SciencesMashhadIran
- Department of PharmacologyFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
| | - Elham Pourheidar
- Department of Intensive Care UnitHazrat Rasul akram HospitalIran University of Medical SciencesTehranIran
| | - Arezoo Rajabian
- Department of Internal Medicine, Faculty of MedicineMashhad University of Medical SciencesMashhadIran
| | - Elham Asadpour
- Anesthesiology and Critical Care Research CenterShiraz University of Medical SciencesShirazIran
| | - Hossein Hosseinzadeh
- Pharmaceutical Research CenterPharmaceutical Technology InstituteMashhad University of Medical SciencesMashhadIran
| | - Hamid Reza Sadeghnia
- Pharmacological Research Center of Medicinal PlantsMashhad University of Medical SciencesMashhadIran
- Department of PharmacologyFaculty of Medicine, Mashhad University of Medical SciencesMashhadIran
- Division of Neurocognitive Sciences, Psychiatry and Behavioral Sciences Research CenterMashhad University of Medical SciencesMashhadIran
| |
Collapse
|
40
|
Park S, Mani V, Kim JA, Lee SI, Lee K. Combinatorial transient gene expression strategies to enhance terpenoid production in plants. FRONTIERS IN PLANT SCIENCE 2022; 13:1034893. [PMID: 36582649 PMCID: PMC9793405 DOI: 10.3389/fpls.2022.1034893] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 11/18/2022] [Indexed: 05/13/2023]
Abstract
Introduction The monoterpenoid linalool and sesquiterpenoid costunolide are ubiquitous plant components that have been economically exploited for their respective essential oils and pharmaceutical benefits. In general, monoterpenes and sesquiterpenes are produced by the plastid 2-C-methyl-D-erythritol 4-phosphate (MEP) and cytosolic mevalonate (MVA) pathways, respectively. Herein, we investigated the individual and combinatorial potential of MEP and MVA pathway genes in increasing linalool and costunolide production in Nicotiana benthamiana. Methods First, six genes from the MEP (1-deoxy-D-xylulose-5-phosphate synthase, 1-deoxy-D-xylulose 5-phosphate reductoisomerase, 4-diphosphocytidyl-2-C-methyl-D-erythritol kinase, geranyl pyrophosphate synthase, and linalool synthase) and MVA (acetoacetyl-CoA-thiolase, hydroxy-3-methylglutaryl-CoA reductase, farnesyl pyrophosphate synthase, germacrene A synthase, germacrene A oxidase, and costunolide synthase) pathways were separately cloned into the modular cloning (MoClo) golden gateway cassette. Second, the cassettes were transformed individually or in combination into the leaves of N. benthamiana by agroinfiltration. Results and discussion Five days post infiltration (DPI), all selected genes were transiently 5- to 94-fold overexpressed. Quantification using gas chromatography-Q-orbitrap-mass spectrometry (GC-Q-Orbitrap-MS) determined that the individual and combinatorial expression of MEP genes increased linalool production up to 50-90ng.mg-1 fresh leaf weight. Likewise, MVA genes increased costunolide production up to 70-90ng.mg-1 fresh leaf weight. Our findings highlight that the transient expression of MEP and MVA pathway genes (individually or in combination) enhances linalool and costunolide production in plants.
Collapse
Affiliation(s)
| | | | | | | | - Kijong Lee
- Department of Agricultural Biotechnology, National Institute of Agricultural Sciences, Rural Development Administration, Jeonju, Republic of Korea
| |
Collapse
|
41
|
Lakshmipathy K, Thirunavookarasu N, Kalathil N, Chidanand DV, Rawson A, Sunil CK. Effect of different thermal and
non‐thermal
pre‐treatments on bioactive compounds of aqueous ginger extract obtained using vacuum‐assisted conductive drying system. J FOOD PROCESS ENG 2022. [DOI: 10.1111/jfpe.14223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Affiliation(s)
- Kavitha Lakshmipathy
- Department of Industry‐Academia Cell National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
- Centre of Excellence in Non‐Thermal Processing National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
| | - Nirmal Thirunavookarasu
- Department of Industry‐Academia Cell National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
- Centre of Excellence in Non‐Thermal Processing National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
| | - Najma Kalathil
- Department of Industry‐Academia Cell National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
- Centre of Excellence in Non‐Thermal Processing National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
| | - Duggonahally Veeresh Chidanand
- Department of Industry‐Academia Cell National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
- Centre of Excellence in Non‐Thermal Processing National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
| | - Ashish Rawson
- Centre of Excellence in Non‐Thermal Processing National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
- Department of Food Safety and Quality Testing National Institute of Food Technology, Entrepreneurship, and Management Thanjavur India
| | | |
Collapse
|
42
|
Huang S, Huang H, Xie J, Wang F, Fan S, Yang M, Zheng C, Han L, Zhang D. The latest research progress on the prevention of storage pests by natural products: Species, mechanisms, and sources of inspiration. ARAB J CHEM 2022. [DOI: 10.1016/j.arabjc.2022.104189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
43
|
Mączka W, Duda-Madej A, Grabarczyk M, Wińska K. Natural Compounds in the Battle against Microorganisms-Linalool. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27206928. [PMID: 36296521 PMCID: PMC9609897 DOI: 10.3390/molecules27206928] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 12/23/2022]
Abstract
The purpose of this article is to present recent studies on the antimicrobial properties of linalool, the mechanism of action on cells and detoxification processes. The current trend of employing compounds present in essential oils to support antibiotic therapy is becoming increasingly popular. Naturally occurring monoterpene constituents of essential oils are undergoing detailed studies to understand their detailed effects on the human body, both independently and in doses correlated with currently used pharmaceuticals. One such compound is linalool, which is commonly found in many herbs and is used to flavor black tea. This compound is an excellent fragrance additive for cosmetics, enhancing the preservative effect of the formulations used in them or acting as an anti-inflammatory on mild skin lesions. Previous studies have shown that it is extremely important due to its broad spectrum of biological activities, i.e., antioxidant, anti-inflammatory, anticancer, cardioprotective and antimicrobial. Among opportunistic hospital strains, it is most active against Gram-negative bacteria. The mechanism of action of linalool against microorganisms is still under intensive investigation. One of the key aspects of linalool research is biotransformation, through which its susceptibility to detoxification processes is determined.
Collapse
Affiliation(s)
- Wanda Mączka
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
- Correspondence: (W.M.); (A.D.-M.); (M.G.); (K.W.)
| | - Anna Duda-Madej
- Department of Microbiology, Wroclaw Medical University, Chałubińskiego 4, 50-368 Wrocław, Poland
- Correspondence: (W.M.); (A.D.-M.); (M.G.); (K.W.)
| | - Małgorzata Grabarczyk
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
- Correspondence: (W.M.); (A.D.-M.); (M.G.); (K.W.)
| | - Katarzyna Wińska
- Department of Food Chemistry and Biocatalysis, Wrocław University of Environmental and Life Sciences, Norwida 25, 50-375 Wrocław, Poland
- Correspondence: (W.M.); (A.D.-M.); (M.G.); (K.W.)
| |
Collapse
|
44
|
Romano R, De Luca L, Aiello A, Pagano R, Di Pierro P, Pizzolongo F, Masi P. Basil ( Ocimum basilicum L.) Leaves as a Source of Bioactive Compounds. Foods 2022; 11:3212. [PMCID: PMC9602197 DOI: 10.3390/foods11203212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Basil (Ocimum basilicum L.) is an annual spicy plant generally utilized as a flavouring agent for food. Basil leaves also have pharmaceutical properties due to the presence of polyphenols, phenolic acids, and flavonoids. In this work, carbon dioxide was employed to extract bioactive compounds from basil leaves. Extraction with supercritical CO2 (p = 30 MPa; T = 50 °C) for 2 h using 10% ethanol as a cosolvent was the most efficient method, with a yield similar to that of the control (100% ethanol) and was applied to two basil cultivars: “Italiano Classico” and “Genovese”. Antioxidant activity, phenolic acid content, and volatile organic compounds were determined in the extracts obtained by this method. In both cultivars, the supercritical CO2 extracts showed antiradical activity (ABTS●+ assay), caffeic acid (1.69–1.92 mg/g), linalool (35–27%), and bergamotene (11–14%) contents significantly higher than those of the control. The polyphenol content and antiradical activity measured by the three assays were higher in the “Genovese” cultivar than in the “Italiano Classico” cultivar, while the linalool content was higher (35.08%) in the “Italiano Classico” cultivar. Supercritical CO2 not only allowed us to obtain extracts rich in bioactive compounds in an environmentally friendly way but also reduced ethanol consumption.
Collapse
Affiliation(s)
- Raffaele Romano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055 Portici, NA, Italy
| | - Lucia De Luca
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055 Portici, NA, Italy
| | - Alessandra Aiello
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055 Portici, NA, Italy
| | - Raffaele Pagano
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055 Portici, NA, Italy
| | - Prospero Di Pierro
- CAISIAL, University of Naples Federico II, Via Università, 133, 80055 Portici, NA, Italy
| | - Fabiana Pizzolongo
- Department of Agricultural Sciences, University of Naples Federico II, Via Università, 100, 80055 Portici, NA, Italy
- Correspondence: ; Tel.: +39-081-2539447
| | - Paolo Masi
- CAISIAL, University of Naples Federico II, Via Università, 133, 80055 Portici, NA, Italy
| |
Collapse
|
45
|
Respiratory Depression as Antibacterial Mechanism of Linalool against Pseudomonas fragi Based on Metabolomics. Int J Mol Sci 2022; 23:ijms231911586. [PMID: 36232887 PMCID: PMC9570108 DOI: 10.3390/ijms231911586] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Revised: 09/17/2022] [Accepted: 09/26/2022] [Indexed: 11/29/2022] Open
Abstract
Linalool showed a broad-spectrum antibacterial effect, but few studies have elucidated the antibacterial mechanism of linalool on Pseudomonas fragi (P. fragi) to date. The present study aimed to uncover the antimicrobial activity and potential mechanism of linalool against P. fragi by determining key enzyme activities and metabolites combined with a high-throughput method and metabolomic pathway analysis. As a result, linalool had excellent inhibitory activity against P. fragi with MIC of 1.5 mL/L. In addition, the presence of linalool significantly altered the intracellular metabolic profile and a total of 346 differential metabolites were identified, of which 201 were up-regulated and 145 were down-regulated. The highlight pathways included beta-alanine metabolism, pantothenic acid and CoA metabolism, alanine, aspartate and glutamate metabolism, nicotinate and nicotinamide metabolism. Overall, linalool could cause metabolic disorders in cells, and the main metabolic pathways involved energy metabolism, amino acid metabolism and nucleic acid metabolism. In particular, the results of intracellular ATP content and related enzymatic activities (ATPase, SDH, and GOT) also highlighted that energy limitation and amino acid disturbance occurred intracellularly. Together, these findings provided new insights into the mechanism by which linalool inhibited P. fragi and theoretical guidance for its development as a natural preservative.
Collapse
|
46
|
Yilmaz A. Mixed consortium of microbial inoculants improves yield and essential oil profile of coriander. J Biosci Bioeng 2022; 134:462-470. [PMID: 36100518 DOI: 10.1016/j.jbiosc.2022.07.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/19/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022]
Abstract
Coriander (Coriandrum sativum L.), one of the oldest spice plants globally, has wide usage, mainly owing to its essential oil content. This study investigated the effects of rhizobacteria, mycorrhizae, and their combination on the yield and essential oil profile of coriander. The treatments resulted in statistically higher yield properties and essential oil values than the control. The effects of the microorganism treatments on the yield characteristics were not statistically different. However, the treatments significantly affected the essential oil content and yield. While the arbuscular mycorrhizal fungi and combined application of the microorganisms were statistically equal, arbuscular mycorrhizal fungi had a higher value in essential oil content and yield by 0.75% and 11.8 L ha-1, respectively. The combined application resulted in higher values of linalool (9.47%) and γ-terpinene (6.75%), the components with the highest rate in the essential oil composition. The principal component analysis highlighted the importance of the combined application on the crucial components. In the light of the results, beneficial microorganism treatments were considered significant for yield and essential oil enhancement. Therefore, the wide use of these treatments will highly contribute to coriander cultivation.
Collapse
Affiliation(s)
- Abdurrahim Yilmaz
- Faculty of Agriculture, Department of Field Crops, Bolu Abant Izzet Baysal University, 14030 Bolu, Turkey.
| |
Collapse
|
47
|
Medeiros CIS, Sousa MNAD, Filho GGA, Freitas FOR, Uchoa DPL, Nobre MSC, Bezerra ALD, Rolim LADMM, Morais AMB, Nogueira TBSS, Nogueira RBSS, Filho AAO, Lima EO. Antifungal activity of linalool against fluconazole-resistant clinical strains of vulvovaginal Candida albicans and its predictive mechanism of action. Braz J Med Biol Res 2022; 55:e11831. [PMID: 35976268 PMCID: PMC9377531 DOI: 10.1590/1414-431x2022e11831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 06/29/2022] [Indexed: 12/01/2022] Open
Abstract
Candida albicans is the most frequently isolated opportunistic
pathogen in the female genital tract, with 92.3% of cases in Brazil associated
with vulvovaginal candidiasis (VVC). Linalool is a monoterpene compound from
plants of the genera Cinnamomum, Coriandrum,
Lavandula, and Citrus that has demonstrated a
fungicidal effect on strains of Candida spp., but its mechanism
of action is still unknown. For this purpose, broth microdilution techniques
were applied, as well as molecular docking in a predictive manner for this
mechanism. The main results of this study indicated that the C.
albicans strains analyzed were resistant to fluconazole and
sensitive to linalool at a dose of 256 µg/mL. Furthermore, the increase in the
minimum inhibitory concentration (MIC) of linalool in the presence of sorbitol
and ergosterol indicated that this molecule possibly affects the cell wall and
plasma membrane integrity of C. albicans. Molecular docking of
linalool with proteins that are key in the biosynthesis and maintenance of the
cell wall and the fungal plasma membrane integrity demonstrated the possibility
of linalool interacting with three important enzymes: 1,3-β-glucan synthase,
lanosterol 14α-demethylase, and Δ 14-sterol reductase. In
silico analysis showed that this monoterpene has theoretical but
significant oral bioavailability, low toxic potential, and high similarity to
pharmaceuticals. Therefore, the findings of this study indicated that linalool
probably causes damage to the cell wall and plasma membrane of C.
albicans, possibly by interaction with important enzymes involved
in the biosynthesis of these fungal structures, in addition to presenting low
in silico toxic potential.
Collapse
Affiliation(s)
- C I S Medeiros
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, PB, Brasil.,Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - M N A de Sousa
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - G G A Filho
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - F O R Freitas
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - D P L Uchoa
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - M S C Nobre
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - A L D Bezerra
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - L A D M M Rolim
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - A M B Morais
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - T B S S Nogueira
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - R B S S Nogueira
- Curso de Medicina, Centro Universitário UniFIP, Patos, PB, Brasil
| | - A A O Filho
- Unidade Acadêmica de Ciências Biológicas (UACB), Universidade Federal de Campina Grande, Patos, PB, Brasil
| | - E O Lima
- Departamento de Ciências Farmacêuticas, Universidade Federal da Paraíba, João Pessoa, PB, Brasil
| |
Collapse
|
48
|
Exploring the medicinally important secondary metabolites landscape through the lens of transcriptome data in fenugreek (Trigonella foenum graecum L.). Sci Rep 2022; 12:13534. [PMID: 35941189 PMCID: PMC9359999 DOI: 10.1038/s41598-022-17779-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 07/30/2022] [Indexed: 11/08/2022] Open
Abstract
Fenugreek (Trigonella foenum-graecum L.) is a self-pollinated leguminous crop belonging to the Fabaceae family. It is a multipurpose crop used as herb, spice, vegetable and forage. It is a traditional medicinal plant in India attributed with several nutritional and medicinal properties including antidiabetic and anticancer. We have performed a combined transcriptome assembly from RNA sequencing data derived from leaf, stem and root tissues. Around 209,831 transcripts were deciphered from the assembly of 92% completeness and an N50 of 1382 bases. Whilst secondary metabolites of medicinal value, such as trigonelline, diosgenin, 4-hydroxyisoleucine and quercetin, are distributed in several tissues, we report transcripts that bear sequence signatures of enzymes involved in the biosynthesis of such metabolites and are highly expressed in leaves, stem and roots. One of the antidiabetic alkaloid, trigonelline and its biosynthesising enzyme, is highly abundant in leaves. These findings are of value to nutritional and the pharmaceutical industry.
Collapse
|
49
|
Zhai R, Ma J, An Y, Wen Z, Liu Y, Sun Q, Xie P, Zhao S. Ultra-stable Linalool/water Pickering Emulsions: A Combined Experimental and Simulation Study. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
50
|
Terpenes Combinations Inhibit Biofilm Formation in Staphyloccocus aureus by Interfering with Initial Adhesion. Microorganisms 2022; 10:microorganisms10081527. [PMID: 36013945 PMCID: PMC9415918 DOI: 10.3390/microorganisms10081527] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/02/2022] [Accepted: 07/07/2022] [Indexed: 11/23/2022] Open
Abstract
The biofilm is a conglomerate of cells surrounded by an extracellular matrix, which contributes to the persistence of infections. The difficulty in removing the biofilm drives the research for new therapeutic options. In this work, the effect of terpenes (−)-trans-Caryophyllene, (S)-cis-Verbenol, (S)-(−)-Limonene, (R)-(+)-Limonene, and Linalool was evaluated, individually and in combinations on bacterial growth, by assay with resazurin; the formation of biofilm, by assay with violet crystal; and the expression of associated genes, by real-time PCR, in two clinical isolates of Staphyloccocus aureus, ST30-t019 and ST5-t311, responsible for more than 90% of pediatric infections by this pathogen in Paraguay. All combinations of terpenes can inhibit biofilm formation in more than 50% without affecting bacterial growth. The most effective combination was (−)-trans-Caryophyllene and Linalool at a 500 μg/mL concentration for each, with an inhibition percentage of 88%. This combination decreased the expression levels of the sdrD, spa, agr, and hld genes associated with the initial cell adhesion stage and quorum sensing. At the same time, it increased the expression levels of the cap5B and cap5C genes related to the production of capsular polysaccharides. The combinations of compounds tested are promising alternatives to inhibit biofilm formation in S. aureus.
Collapse
|