1
|
Wang Z, Xiao N, Guo S, Liu X, Liu C, Ai M. Unlocking the Potential of Keratin: A Comprehensive Exploration from Extraction and Structural Properties to Cross-Disciplinary Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2025; 73:1014-1037. [PMID: 39681472 DOI: 10.1021/acs.jafc.4c07102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
The rapid expansion of the livestock and poultry industry has led to a considerable increase in slaughter byproducts; however, exploring their potential applications still needs to be improved. These underutilized byproducts, which include nails, hides, skins, and bones, represent a significant loss of valuable biological resources. Among these materials, keratin has garnered considerable attention due to its unique properties as a natural biopolymer. Keratin exhibits outstanding mechanical properties and biocompatibility and has attracted increasing attention for its recovery and conversion into relevant application materials. However, natural keratin typically has a high sulfur content, complex 3D structure, and abundant hydrogen and disulfide bonds, which cause challenges in application. Current extraction for keratin includes physical, chemical, biological, and hybrid approaches. Combining multiple methods synergistically enhances protein extraction efficiency and purity, and facilitates the exploration of structure and functional properties. This review encompasses the structural characteristics, properties, extraction methods, and research progress related to keratin. The preparation and application of keratin composite materials in different forms, such as fibers, films, hydrogels, and scaffolds, are illustrated. Applications in several fields, including biomedicine, flexible electronic components, environmental materials and food packaging are discussed. Hopefully, this paper will provide a comprehensive understanding and guidance for further development and application of keratin materials.
Collapse
Affiliation(s)
- Ziyuan Wang
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Nan Xiao
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Shanguang Guo
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Xuwei Liu
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Chunhong Liu
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| | - Minmin Ai
- The National Center for Precision Machining and Safety of Livestock and Poultry Products Joint Engineering Research Center, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
- Guangdong Provincial Key Laboratory of Food Quality and Safety, College of Food Science, South China Agricultural University, 510642 Guangzhou, China
| |
Collapse
|
2
|
Rangaraj VM, Mabrook G, Hathi Z, Mettu S, Banat F, Taher H. Lacticaseibacillus rhamnosus encapsulated cross-linked Keratin-Chitosan hydrogel for removal of patulin from apple juice. Food Chem 2024; 454:139619. [PMID: 38811285 DOI: 10.1016/j.foodchem.2024.139619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/31/2024]
Abstract
In this study, we developed a hydrogel from cross-linked keratin and chitosan (KC) to remove patulin (PAT) from apple juice. We explored the potential of incorporating Lactobacillus rhamnoses into the KC hydrogel (KC-LR) and tested its effectiveness in removing PAT from simulated juice solutions and real apple juice. The KC hydrogel was developed through a dynamic disulfide cross-linking reaction. This cross-linked hydrogel network provided excellent stability for the probiotic cells, achieving 99.9 % immobilization efficiency. In simulated juice with 25 mg/L PAT, the KC and KC-LR hydrogels showed removal efficiencies of 85.2 % and 97.68 %, respectively, using 15 mg mL-1 of the prepared hydrogel at a temperature of 25 °C for 6 h. The KC and KC-LR hydrogels achieved 76.3 % and 83.6 % removal efficiencies in real apple juice systems, respectively. Notably, the encapsulated probiotics did not negatively impact the juice quality and demonstrated reusability for up to five cycles of the PAT removal process.
Collapse
Affiliation(s)
- Vengatesan M Rangaraj
- Department of Chemical and Petroleum Engineering, SAN Campus, Khalifa University of Science and Technology (KUST), P.O. Box: 127788, Abu Dhabi, United Arab Emirates
| | - Ghanim Mabrook
- Department of Chemical and Petroleum Engineering, SAN Campus, Khalifa University of Science and Technology (KUST), P.O. Box: 127788, Abu Dhabi, United Arab Emirates
| | - Zubeen Hathi
- Department of Chemical and Petroleum Engineering, SAN Campus, Khalifa University of Science and Technology (KUST), P.O. Box: 127788, Abu Dhabi, United Arab Emirates
| | - Srinivas Mettu
- Department of Chemical and Petroleum Engineering, SAN Campus, Khalifa University of Science and Technology (KUST), P.O. Box: 127788, Abu Dhabi, United Arab Emirates
| | - Fawzi Banat
- Department of Chemical and Petroleum Engineering, SAN Campus, Khalifa University of Science and Technology (KUST), P.O. Box: 127788, Abu Dhabi, United Arab Emirates
| | - Hanifa Taher
- Department of Chemical and Petroleum Engineering, SAN Campus, Khalifa University of Science and Technology (KUST), P.O. Box: 127788, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
3
|
Wu S, Zhou Z, Li Y, Jiang J. Advancements in diabetic foot ulcer research: Focus on mesenchymal stem cells and their exosomes. Heliyon 2024; 10:e37031. [PMID: 39286219 PMCID: PMC11403009 DOI: 10.1016/j.heliyon.2024.e37031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/11/2024] [Accepted: 08/26/2024] [Indexed: 09/19/2024] Open
Abstract
Diabetes represents a widely acknowledged global public health concern. Diabetic foot ulcer (DFU) stands as one of the most severe complications of diabetes, its occurrence imposing a substantial economic burden on patients, profoundly impacting their quality of life. Despite the deepening comprehension regarding the pathophysiology and cellular as well as molecular responses of DFU, the current therapeutic arsenal falls short of efficacy, failing to offer a comprehensive remedy for deep-seated chronic wounds and microvascular occlusions. Conventional treatments merely afford symptomatic alleviation or retard the disease's advancement, devoid of the capacity to effectuate further restitution of compromised vasculature and nerves. An escalating body of research underscores the prominence of mesenchymal stem cells (MSCs) owing to their paracrine attributes and anti-inflammatory prowess, rendering them a focal point in the realm of chronic wound healing. Presently, MSCs have been validated as a highly promising cellular therapeutic approach for DFU, capable of effectuating cellular repair, epithelialization, granulation tissue formation, and neovascularization by means of targeted differentiation, angiogenesis promotion, immunomodulation, and paracrine activities, thereby fostering wound healing. The secretome of MSCs comprises cytokines, growth factors, chemokines, alongside exosomes harboring mRNA, proteins, and microRNAs, possessing immunomodulatory and regenerative properties. The present study provides a systematic exposition on the etiology of DFU and elucidates the intricate molecular mechanisms and diverse functionalities of MSCs in the context of DFU treatment, thereby furnishing pioneering perspectives aimed at harnessing the therapeutic potential of MSCs for DFU management and advancing wound healing processes.
Collapse
Affiliation(s)
- ShuHui Wu
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - ZhongSheng Zhou
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Yang Li
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Jinlan Jiang
- Scientific Research Center, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
4
|
Lin CW, Liu TH, Chen V, Chuang EY, Fan YJ, Yu J. Synergistic potential of gellan gum methacrylate and keratin hydrogel for visceral hemostasis and skin tissue regeneration. Mater Today Bio 2024; 27:101146. [PMID: 39070099 PMCID: PMC11279326 DOI: 10.1016/j.mtbio.2024.101146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 06/14/2024] [Accepted: 07/01/2024] [Indexed: 07/30/2024] Open
Abstract
In recent years, the development of biodegradable hydrogels as an alternative over the traditional wound dressing has become increasingly significant. These specific hydrogels are able to offer suitable microenvironments to further aid the process of tissue or organ regeneration. However, application of biodegradable hydrogels in clinical medicine remains uncommon due to most biodegradable hydrogels struggle with achieving satisfactory adhesiveness property, high mechanical support and cell compatibility simultaneously. In order to overcome these constraints and enhance the applicability of biodegradable hydrogels, methods have been employed in this study. By reacting gellan gum with methacrylic anhydride and incorporating a biodegradable protein, keratin, we endowed the hydrogels with high pliability via photo-polymerization chain extension, thereby obtaining a biodegradable hydrogel with exceptional properties. Through a series of in vitro tests, GGMA/keratin hydrogels exhibited great cell compatibility via providing an appropriate environment for cell proliferation. Furthermore, this hydrogel not only exhibits extraordinary adhesive ability on visceral tissues but also extends to scenarios involving skin or organ damage, offering valuable assistance in wound healing. Our design provides a suitable platform for cell proliferation and tissue regeneration, which shows prospects for future medical research and clinical applications.
Collapse
Affiliation(s)
- Che-Wei Lin
- School of Biomedical Engineering, Taipei Medical University, Taipei, 10675, Taiwan
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Tai-Hung Liu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Vincent Chen
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Er-Yuan Chuang
- School of Biomedical Engineering, Taipei Medical University, Taipei, 10675, Taiwan
| | - Yu-Jui Fan
- School of Biomedical Engineering, Taipei Medical University, Taipei, 10675, Taiwan
| | - Jiashing Yu
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| |
Collapse
|
5
|
Aguilar-Vázquez R, Romero-Montero A, Del Prado-Audelo ML, Cariño-Calvo L, González-Del Carmen M, Vizcaíno-Dorado PA, Caballero-Florán IH, Peña-Corona SI, Chávez-Corona JI, Bernad-Bernad MJ, Magaña JJ, Cortés H, Leyva-Gómez G. Biopolymeric Insulin Membranes for Antimicrobial, Antioxidant, and Wound Healing Applications. Pharmaceutics 2024; 16:1012. [PMID: 39204356 PMCID: PMC11360745 DOI: 10.3390/pharmaceutics16081012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 07/12/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024] Open
Abstract
Delayed wound healing increases the wound's vulnerability to possible infections, which may have lethal outcomes. The treatments available can be effective, but the urgency is not fully encompassed. The drug repositioning strategy proposes effective alternatives for enhancing medical therapies for chronic diseases. Likewise, applying wound dressings as biodegradable membranes is extremely attractive due to their ease of application, therapeutic effectiveness, and feasibility in industrial manufacturing. This article aims to demonstrate the pleiotropic effects during insulin repositioning in wound closure by employing a biopolymeric membrane-type formulation with insulin. We prepared biopolymeric membranes with sodium alginate cross-linked with calcium chloride, supported in a mixture of xanthan gum and guar gum, and plasticized with glycerol and sorbitol. Human insulin was combined with poloxamer 188 as a protein stabilizing agent. Our investigation encompassed physicochemical and mechanical characterization, antioxidant and biological activity through antibacterial tests, cell viability assessments, and scratch assays as an in vitro and in vivo wound model. We demonstrated that our biopolymeric insulin membranes exhibited adequate manipulation and suitable mechanical resistance, transparency, high swelling capability (1100%), and 30% antioxidant activity. Furthermore, they exhibited antibacterial activity (growth inhibition of S. aureus at 85% and P. aeruginosa at 75%, respectively), and insulin promoted wound closure in vitro with a 5.5-fold increase and 72% closure at 24 h. Also, insulin promoted in vivo wound closure with a 3.2-fold increase and 92% closure at 10 days compared with the groups without insulin, and this is the first report that demonstrates this therapeutic effect with two administrations of 0.7 IU. In conclusion, we developed a multifunctional insulin-loaded biopolymeric membrane in this study, with the main activity derived from insulin's role in wound closure and antioxidant activity, augmented by the antimicrobial effect attributed to the polymer poloxamer 188. The synergistic combination of excipients enhances its usefulness and highlights our innovation as a promising material in wound healing materials.
Collapse
Affiliation(s)
- Rocío Aguilar-Vázquez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
| | - Alejandra Romero-Montero
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
| | - María L. Del Prado-Audelo
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Ciudad de Mexico, Ciudad de Mexico 14380, Mexico; (M.L.D.P.-A.); (I.H.C.-F.); (J.J.M.)
| | | | | | - Pablo Adrián Vizcaíno-Dorado
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (P.A.V.-D.); (H.C.)
| | - Isaac Hiram Caballero-Florán
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Ciudad de Mexico, Ciudad de Mexico 14380, Mexico; (M.L.D.P.-A.); (I.H.C.-F.); (J.J.M.)
| | - Sheila Iraís Peña-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
| | - Juan Isaac Chávez-Corona
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
- Laboratorio de Investigación y Posgrado en Tecnología Farmacéutica, Universidad Nacional Autónoma de México-FESC, Campus 1, Cuautitlán Izcalli 54714, Mexico
| | - María Josefa Bernad-Bernad
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
| | - Jonathan J. Magaña
- Tecnologico de Monterrey, Escuela de Ingenieria y Ciencias, Campus Ciudad de Mexico, Ciudad de Mexico 14380, Mexico; (M.L.D.P.-A.); (I.H.C.-F.); (J.J.M.)
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (P.A.V.-D.); (H.C.)
| | - Hernán Cortés
- Laboratorio de Medicina Genómica, Departamento de Genómica, Instituto Nacional de Rehabilitación Luis Guillermo Ibarra Ibarra, Ciudad de México 14389, Mexico; (P.A.V.-D.); (H.C.)
| | - Gerardo Leyva-Gómez
- Departamento de Farmacia, Facultad de Química, Universidad Nacional Autónoma de México, Ciudad de México 04510, Mexico; (R.A.-V.); (A.R.-M.); (S.I.P.-C.); (J.I.C.-C.); (M.J.B.-B.)
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Ciudad de México 04510, Mexico
| |
Collapse
|
6
|
Zhang W, Li X, Chen W, Huang X, Hua T, Hu J, Zhu J, Ye S, Li X. l-Carnosine loaded on carboxymethyl cellulose hydrogels for promoting wound healing. RSC Adv 2024; 14:18317-18329. [PMID: 38860244 PMCID: PMC11163232 DOI: 10.1039/d4ra00135d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Accepted: 03/26/2024] [Indexed: 06/12/2024] Open
Abstract
Wound management remains a challenge in clinical practice. Nowadays, patients have an increasing demand for wound repair with enhanced speed and quality; therefore, there is a great need to seek therapeutic strategies that can promote rapid and effective wound healing. In this study, we developed a carboxymethyl cellulose hydrogel loaded with l-carnosine (CRN@hydrogel) for potential application as a wound dressing. In vitro experiments confirmed that CRN@hydrogel can release over 80% of the drug within 48 h and demonstrated its favorable cytocompatibility and blood compatibility, thus establishing its applicability for safe utilization in clinical practice. Using a rat model, we found that this hydrogel could promote and accelerate wound healing more effectively. These results indicate that the novel hydrogel can serve as an efficient therapeutic strategy for wound treatment.
Collapse
Affiliation(s)
- Wei Zhang
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University Hefei 230022 Anhui China
| | - Xinyi Li
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University Hefei 230022 Anhui China
| | - Wenjian Chen
- Department of Orthopaedics, Anhui Provincial Children's Hospital Hefei Anhui 230022 China
| | - Xiaoyi Huang
- School of Materials and Chemistry, Anhui Agricultural University Hefei Anhui 230036 China
| | - Tianfeng Hua
- Department of Emergency Surgery & the 2nd Department of Intensive Care Unit, The Second Hospital of Anhui Medical University Hefei Anhui 230001 China
| | - Jinpeng Hu
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University Hefei 230022 Anhui China
| | - Jing Zhu
- School of Materials and Chemistry, Anhui Agricultural University Hefei Anhui 230036 China
| | - Sheng Ye
- School of Materials and Chemistry, Anhui Agricultural University Hefei Anhui 230036 China
| | - Xiaojing Li
- Department of Plastic Surgery, The First Affiliated Hospital of Anhui Medical University Hefei 230022 Anhui China
| |
Collapse
|
7
|
Chauhan S, Jhawat V, Singh RP, Yadav A. Topical delivery of insulin using novel organogel formulations: An approach for the management of diabetic wounds. Burns 2024; 50:1068-1082. [PMID: 38350788 DOI: 10.1016/j.burns.2024.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 04/06/2023] [Accepted: 01/10/2024] [Indexed: 02/15/2024]
Abstract
Diabetes mellitus is a growing chronic form of diabetes, with lengthy health implications. It is predicted as poor diabetic wound recovery affects roughly 25% of all diabetes mellitus patients, frequently resulting in lower traumatic injury and severe external factors and emotional expenses. The insulin-resistant condition increases biofilm development, making diabetic wounds harder to treat. Nowadays, medical treatment and management of diabetic wounds, which have a significant amputation rate, a high-frequency rate, and a high death rate, have become a global concern. Topical formulations have played a significant part in diabetic wound management and have been developed to achieve a number of features. Because of its significant biocompatibility, moisture retention, and therapeutic qualities, topical insulin has emerged as an appealing and feasible wound healing process effector. With a greater comprehension of the etiology of diabetic wounds, numerous functionalized topical insulins have been described and shown good outcomes in recent years, which has improved some diabetic injuries. The healing of wounds is a physiological phenomenon that restores skin integrity and heals damaged tissues. Insulin, a powerful wound-healing factor, is also used in several experimental and clinical studies accelerate healing of diverse injuries.
Collapse
Affiliation(s)
- Sunita Chauhan
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Vikas Jhawat
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India.
| | - Rahul Pratap Singh
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| | - Abhishek Yadav
- Department of Pharmaceutical Science, School of Medical and Allied Science, GD Goenka University, Gurugram, Haryana, India
| |
Collapse
|
8
|
He Y, Cen Y, Tian M. Immunomodulatory hydrogels for skin wound healing: cellular targets and design strategy. J Mater Chem B 2024; 12:2435-2458. [PMID: 38284157 DOI: 10.1039/d3tb02626d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
Skin wounds significantly impact the global health care system and represent a significant burden on the economy and society due to their complicated dynamic healing processes, wherein a series of immune events are required to coordinate normal and sequential healing phases, involving multiple immunoregulatory cells such as neutrophils, macrophages, keratinocytes, and fibroblasts, since dysfunction of these cells may impede skin wound healing presenting persisting inflammation, impaired vascularization, and excessive collagen deposition. Therefore, cellular target-based immunomodulation is promising to promote wound healing as cells are the smallest unit of life in immune response. Recently, immunomodulatory hydrogels have become an attractive avenue to promote skin wound healing. However, a detailed and comprehensive review of cellular targets and related hydrogel design strategies remains lacking. In this review, the roles of the main immunoregulatory cells participating in skin wound healing are first discussed, and then we highlight the cellular targets and state-of-the-art design strategies for immunomodulatory hydrogels based on immunoregulatory cells that cover defect, infected, diabetic, burn and tumor wounds and related scar healing. Finally, we discuss the barriers that need to be addressed and future prospects to boost the development and prosperity of immunomodulatory hydrogels.
Collapse
Affiliation(s)
- Yinhai He
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ying Cen
- Department of Plastic and Burn Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Meng Tian
- Department of Neurosurgery and Neurosurgery Research Laboratory, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
9
|
Zanchetta FC, De Wever P, Morari J, Gaspar RC, Prado TPD, De Maeseneer T, Cardinaels R, Araújo EP, Lima MHM, Fardim P. In Vitro and In Vivo Evaluation of Chitosan/HPMC/Insulin Hydrogel for Wound Healing Applications. Bioengineering (Basel) 2024; 11:168. [PMID: 38391653 PMCID: PMC10886365 DOI: 10.3390/bioengineering11020168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 02/06/2024] [Accepted: 02/07/2024] [Indexed: 02/24/2024] Open
Abstract
Treatment of chronic wounds is challenging, and the development of different formulations based on insulin has shown efficacy due to their ability to regulate oxidative stress and inflammatory reactions. The formulation of insulin with polysaccharides in biohybrid hydrogel systems has the advantage of synergistically combining the bioactivity of the protein with the biocompatibility and hydrogel properties of polysaccharides. In this study, a hydrogel formulation containing insulin, chitosan, and hydroxypropyl methyl cellulose (Chi/HPMC/Ins) was prepared and characterized by FTIR, thermogravimetric, and gel point analyses. The in vitro cell viability and cell migration potential of the Chi/HPMC/Ins hydrogel were evaluated in human keratinocyte cells (HaCat) by MTT and wound scratch assay. The hydrogel was applied to excisional full-thickness wounds in diabetic mice for twenty days for in vivo studies. Cell viability studies indicated no cytotoxicity of the Chi/HPMC/Ins hydrogel. Moreover, the Chi/HPMC/Ins hydrogel promoted faster gap closure in the scratch assay. In vivo, the wounds treated with the Chi/HPMC/Ins hydrogel resulted in faster wound closure, formation of a more organized granulation tissue, and hair follicle regeneration. These results suggest that Chi/HPMC/Ins hydrogels might promote wound healing in vitro and in vivo and could be a new potential dressing for wound healing.
Collapse
Affiliation(s)
- Flávia Cristina Zanchetta
- Faculty of Nursing, University of Campinas, Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-887, Brazil
| | - Pieter De Wever
- Department of Chemical Engineering, University of Leuven KU Leuven, 3001 Leuven, Belgium
| | - Joseane Morari
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-887, Brazil
| | - Rita Caiado Gaspar
- Department of Chemical Engineering, University of Leuven KU Leuven, 3001 Leuven, Belgium
| | - Thaís Paulino do Prado
- Faculty of Nursing, University of Campinas, Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-887, Brazil
| | - Tess De Maeseneer
- Department of Chemical Engineering, University of Leuven KU Leuven, 3001 Leuven, Belgium
| | - Ruth Cardinaels
- Department of Chemical Engineering, University of Leuven KU Leuven, 3001 Leuven, Belgium
| | - Eliana Pereira Araújo
- Faculty of Nursing, University of Campinas, Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-887, Brazil
| | - Maria Helena Melo Lima
- Faculty of Nursing, University of Campinas, Campinas 13083-887, Brazil
- Laboratory of Cell Signaling, Obesity and Comorbidities Research Center, University of Campinas, Campinas 13083-887, Brazil
| | - Pedro Fardim
- Department of Chemical Engineering, University of Leuven KU Leuven, 3001 Leuven, Belgium
| |
Collapse
|
10
|
Wang J, Liu Z, Zhou Y, Zhu S, Gao C, Yan X, Wei K, Gao Q, Ding C, Luo T, Yang R. A multifunctional sensor for real-time monitoring and pro-healing of frostbite wounds. Acta Biomater 2023; 172:330-342. [PMID: 37806374 DOI: 10.1016/j.actbio.2023.10.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Revised: 09/28/2023] [Accepted: 10/03/2023] [Indexed: 10/10/2023]
Abstract
Flexible epidermal sensors based on conductive hydrogels hold great promise for various applications, such as wearable electronics and personal healthcare monitoring. However, the integration of conductive hydrogel epidermal sensors into multiple applications remains challenging. In this study, a multifunctional PAAm/PEG/hydrolyzed keratin (Hereinafter referred to as HK)/MXene conductive hydrogel (PPHM hydrogel) was designed as a high-performance therapeutic all-in-one epidermal sensor. This sensor not only accelerates wound healing but also provides wearable human-computer interaction. The developed sensor possesses highly sensitive sensing properties (Gauge Factor = 4.82 at high strain), strong mechanical tensile properties (capable of achieving a maximum elongation at break of 600 %), rapid self-healing capability, stable self-adhesive capability, biocompatibility, freeze resistance at -20 °C, and adjustable photo-thermal conversion capability. This therapeutic all-in-one sensor can sensitively monitor human movements, enabling the detection of small electrophysiological signals for diagnosing relevant activities and diseases. Furthermore, using a rat frostbite model, we demonstrated that the composite hydrogel sensor can serve as an effective wound dressing to accelerate the healing process. This study serves as a valuable reference for the development of multifunctional flexible epidermal sensors for personal smart health monitoring. STATEMENT OF SIGNIFICANCE: Accelerated wound healing reduces the risk of wound infection, and conductive hydrogel-based sensors can monitor physiological signals. The multifunctional application of conductive hydrogel sensors combined with wound diagnostic and therapeutic capabilities can meet personalized medical requirements for wound healing and sensor monitoring. The aim of this study is to develop a multifunctional hydrogel patch. The multifunctional hydrogel can be assembled into a flexible wearable high-performance diagnostic and therapeutic integrated sensor that can effectively accelerate the healing of frostbite wounds and satisfy the real-time monitoring of multi-application scenarios. We expect that this study will inform efforts to integrate wound therapy and sensor monitoring.
Collapse
Affiliation(s)
- Jian Wang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Zhenyu Liu
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China
| | - Yang Zhou
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Shilu Zhu
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Chen Gao
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, Jiangsu 210096, China
| | - Xinze Yan
- School of Life Science, Anhui Medical University, Hefei, 230032, China
| | - Kun Wei
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China
| | - Qian Gao
- School of Life Science, Anhui Medical University, Hefei, 230032, China.
| | - Chengbiao Ding
- Department of Rehabilitation Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei, Anhui, 230601, China.
| | - Tingting Luo
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| | - Runhuai Yang
- School of Biomedical Engineering, Anhui Medical University, Hefei, 230032, China.
| |
Collapse
|
11
|
Sang F, Yang X, Hao J, Wang Y, Si X, Li X, Pan L, Ma Z, Shi C. Wool keratin/zeolitic imidazolate framework-8 composite shape memory sponge with synergistic hemostatic performance for rapid hemorrhage control. J Mater Chem B 2023; 11:10234-10251. [PMID: 37869993 DOI: 10.1039/d3tb01660a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2023]
Abstract
Uncontrollable hemorrhage and subsequent wound infection pose severe threats to life, especially in the case of deep, non-compressible, massive bleeding. Here, a wool keratin/zeolitic imidazolate framework-8 (WK/ZIF-8) composite shape memory sponge is prepared by incorporating ZIF-8 nanoparticles into wool keratin. The combination of keratin and ZIF-8 particles not only reduces the effect of ZIF-8 particles on cell viability but also bolsters the mechanical properties of the keratin sponge and endows it with antibacterial efficacy. Due to the synergistic effect of the excellent hemostatic performance of keratin and Zn2+ release from ZIF-8 nanoparticles, the porous structure suitable for blood cell adhesion and the shape recovery ability of sponges, the WK/ZIF-8 composite sponge exhibits superior hemostatic performance to commercial medical sponges in SD rat and rabbit hemorrhage models. In addition, in vitro and in vivo antibacterial experiments demonstrate the anti-infection activity of the composite sponge. Overall, the WK/ZIF-8 composite sponge provides a promising approach to rapidly control bleeding and promote wound healing.
Collapse
Affiliation(s)
- Feng Sang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiao Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| | - Jiahui Hao
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Yuzhen Wang
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| | - Xiaoqin Si
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| | - Xujian Li
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| | - Luqi Pan
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
| | - Zhaipu Ma
- School of Life Sciences, Hebei University, Baoding, Hebei 071000, China.
| | - Changcan Shi
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325011, China.
- School of Ophthalmology and Optometry, School of Biomedical Engineering, Wenzhou Medical University, Wenzhou, Zhejiang 325027, China
| |
Collapse
|
12
|
Ashna M, Senthilkumar N, Sanpui P. Human Hair Keratin-Based Hydrogels in Regenerative Medicine: Current Status and Future Directions. ACS Biomater Sci Eng 2023; 9:5527-5547. [PMID: 37734053 DOI: 10.1021/acsbiomaterials.3c00883] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Regenerative medicine (RM) is a multidisciplinary field that utilizes the inherent regenerative potential of human cells to generate functionally and physiologically acceptable human cells, tissues, and organs in vivo or ex vivo. An appropriate biomaterial scaffold with desired physicochemical properties constitutes an important component of a successful RM approach. Among various forms of biomaterials explored until the present day, hydrogels have emerged as a versatile candidate for tissue engineering and regenerative medicine (TERM) applications such as scaffolds for spatial patterning and delivering therapeutic agents, or substrates to enhance cell growth, differentiation, and migration. Although hydrogels can be prepared from a variety of synthetic polymers as well as biopolymers, the latter are preferred for their inherent biocompatibility. Specifically, keratins are fibrous proteins that have been recently explored for constructing hydrogels useful for RM purposes. The present review discusses the suitability of keratin-based biomaterials in RM, with a particular focus on human hair keratin hydrogels and their use in various RM applications.
Collapse
Affiliation(s)
- Mymuna Ashna
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, United Arab Emirates
| | - Neeharika Senthilkumar
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, United Arab Emirates
| | - Pallab Sanpui
- Department of Biotechnology, BITS Pilani Dubai Campus, Dubai International Academic City, Dubai, United Arab Emirates
| |
Collapse
|
13
|
Ostróżka-Cieślik A, Wilczyński S, Dolińska B. Hydrogel Formulations for Topical Insulin Application: Preparation, Characterization and In Vitro Permeation across the Strat-M ® Membrane. Polymers (Basel) 2023; 15:3639. [PMID: 37688265 PMCID: PMC10489751 DOI: 10.3390/polym15173639] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 08/25/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Insulin has shown efficacy in the treatment of hard-to-heal wounds, which is mainly due to its role in regulating oxidative stress and inflammatory reactions. The aim of this study was to develop an insulin-hydrogel carrier based on Sepineo™ P 600 and Sepineo™ PHD 100 for application to lesional skin. Preformulation studies of the developed formulations were performed in terms of analysis of the pharmaceutical availability of insulin from the hydrogels through the Strat-M® membrane, and rheological and texture measurements. Insulin is released in a prolonged manner; after a time of 6.5 h, 4.01 IU/cm2 (53.36%) and 3.69 IU/cm2 (47.4%) of the hormone were released from the hydrogel based on Sepineo™ P 600 and Sepineo™ PHD 100, respectively. Rheological analysis showed that the hydrogels tested belong to non-Newtonian, shear-thinning systems with yield stress. The insulin-hydrogel based on Sepineo™ P 600 and Sepineo™ PHD 100 shows optimal application properties. The results obtained provide a basis for further preclinical and clinical studies.
Collapse
Affiliation(s)
- Aneta Ostróżka-Cieślik
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa Street 3, 41-200 Sosnowiec, Poland;
| | - Sławomir Wilczyński
- Department of Basic Biomedical Science, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa Street 3, 41-200 Sosnowiec, Poland;
| | - Barbara Dolińska
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa Street 3, 41-200 Sosnowiec, Poland;
| |
Collapse
|
14
|
Sharda D, Choudhury D. Insulin-cobalt core-shell nanoparticles for receptor-targeted bioimaging and diabetic wound healing. RSC Adv 2023; 13:20321-20335. [PMID: 37425626 PMCID: PMC10323873 DOI: 10.1039/d3ra01473h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023] Open
Abstract
Diabetic wounds represent a major issue in medical care and need advanced therapeutic and tissue imaging systems for better management. The utilization of nano-formulations involving proteins like insulin and metal ions plays significant roles in controlling wound outcomes by decreasing inflammation or reducing microbial load. This work reports the easy one-pot synthesis of extremely stable, biocompatible, and highly fluorescent insulin-cobalt core-shell nanoparticles (ICoNPs) with enhanced quantum yield for their highly specific receptor-targeted bioimaging and normal and diabetic wound healing in vitro (HEKa cell line). The particles were characterized using physicochemical properties, biocompatibility, and wound healing applications. FTIR bands at 670.35 cm-1, 849.79, and 973.73 indicating the Co-O bending, CoO-OH bond, and Co-OH bending, respectively, confirm the protein-metal interactions, which is further supported by the Raman spectra. In silico studies indicate the presence of cobalt binding sites on the insulin chain B at 8 GLY, 9 SER, and 10 HIS positions. The particles exhibit a magnificent loading efficiency of 89.48 ± 0.049% and excellent release properties (86.54 ± 2.15% within 24 h). Further, based on fluorescent properties, the recovery process can be monitored under an appropriate setup, and the binding of ICoNPs to insulin receptors was confirmed by bioimaging. This work helps synthesize effective therapeutics with numerous wound-healing promoting and monitoring applications.
Collapse
Affiliation(s)
- Deepinder Sharda
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala 147004 Punjab India +91-8196949843
| | - Diptiman Choudhury
- School of Chemistry and Biochemistry, Thapar Institute of Engineering and Technology Patiala 147004 Punjab India +91-8196949843
- Thapar Institute of Engineering and Technology-Virginia Tech (USA) Center of Excellence in Emerging Materials, Thapar Institute of Engineering and Technology Patiala Punjab-147004 India
| |
Collapse
|
15
|
Chen WC, Hsieh NC, Huang MC, Yang KC, Yu J, Wei Y. An in vitro analysis of the hemostatic efficacy of fibrinogen precipitation with varied keratin fraction compositions. Int J Biol Macromol 2023:125255. [PMID: 37295701 DOI: 10.1016/j.ijbiomac.2023.125255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/20/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023]
Abstract
In preclinical studies, human hair has demonstrated effective hemostatic properties, potentially attributed to keratin proteins facilitating rapid conversion of fibrinogen to fibrin during coagulation. However, the rational use of human hair keratin for hemostasis remains unclear, given its complex mixture of proteins with diverse molecular weights and structures, leading to variable hemostatic capacity. To optimize the rational utilization of human hair keratin for hemostasis, we investigated the effects of different keratin fractions on keratin-mediated fibrinogen precipitation using a fibrin generation assay. Our study focused on high molecular weight keratin intermediate filaments (KIFs) and lower molecular weight keratin-associated proteins (KAPs) combined in various ratios during the fibrin generation. Scanning electron microscope analysis of the precipitates revealed a filamentous pattern with a broad distribution of fiber diameters, likely due to the diversity of keratin mixtures involved. An equal proportion of KIFs and KAPs in the mixture yielded the most extensive precipitation of soluble fibrinogen in an in vitro study, potentially due to structure-induced exposure of active sites. However, all hair protein samples exhibited diverse catalytic behaviors compared to thrombin, highlighting the potential of utilizing specific hair fractions to develop hair protein-based hemostatic materials with optimized capacity.
Collapse
Affiliation(s)
- Wei-Chieh Chen
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Nien-Chen Hsieh
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Mao-Cong Huang
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan
| | - Kai-Chiang Yang
- School of Dental Technology, College of Oral Medicine, Taipei Medical University, Taipei 110, Taiwan.
| | - Jiashing Yu
- Department of Chemical Engineering, College of Engineering, National Taiwan University, Taipei 106, Taiwan.
| | - Yang Wei
- Department of Chemical Engineering & Biotechnology, National Taipei University of Technology, Taipei 106, Taiwan.
| |
Collapse
|
16
|
Li XF, Lu P, Jia HR, Li G, Zhu B, Wang X, Wu FG. Emerging materials for hemostasis. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2022.214823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
17
|
Li B, Sun Y, Yao J, Shen Y, Wu H, Li J, Yang M. Characterization of the keratin/polyamide 6 composite fiber's structure and performance prepared by the optimized spinning process based on the rheological analysis. Int J Biol Macromol 2022; 222:938-949. [DOI: 10.1016/j.ijbiomac.2022.09.229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/17/2022] [Accepted: 09/25/2022] [Indexed: 11/05/2022]
|
18
|
Chen L, Meng R, Qing R, Li W, Wang Z, Hou Y, Deng J, Pu W, Gao Z, Wang B, Hao S. Bioinspired Robust Keratin Hydrogels for Biomedical Applications. NANO LETTERS 2022; 22:8835-8844. [PMID: 36375092 DOI: 10.1021/acs.nanolett.2c02530] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Although keratins are robust in nature, hydrogels producing their extracts exhibit poor mechanical properties due to the complicated composition and ineffective self-assembly. Here we report a bioinspired strategy to fabricate robust keratin hydrogels based on mechanism study through recombinant proteins. Homotypic and heterotypic self-assembly of selected type I and type II keratins in different combinations was conducted to identify crucial domain structures for the process, their kinetics, and relationship with the mechanical strength of hydrogels. Segments with best performance were isolated and used to construct novel assembling units. The new design outperformed combinations of native proteins in mechanical properties and in biomedical applications such as controlled drug release and skin regeneration. Our approach not only elucidated the critical structural domains and underlying mechanisms for keratin self-assembly but also opens an avenue toward the rational design of robust keratin hydrogels for biomedical applications.
Collapse
Affiliation(s)
- Liling Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Run Meng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Rui Qing
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Wenfeng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Ziwei Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Yao Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Wei Pu
- School of Aeronautics and Astronautics, Sichuan University, Chengdu 610065, China
| | - Zibin Gao
- State Key Laboratory Breeding Base─Hebei Province Key Laboratory of Molecular Chemistry for Drugs, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
19
|
Ye W, Qin M, Qiu R, Li J. Keratin-based wound dressings: From waste to wealth. Int J Biol Macromol 2022; 211:183-197. [PMID: 35513107 DOI: 10.1016/j.ijbiomac.2022.04.216] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/27/2022] [Accepted: 04/28/2022] [Indexed: 02/08/2023]
Abstract
Keratin is a natural protein with a high content of cysteine residues (7-13%) and is widely found in hair, wool, horns, hooves, and nails. Keratin possesses abundant cell-binding motifs such as leucine-aspartate-valine (LDV), glutamate-aspartate-serine (EDS), and arginine-glycine-aspartate (RGD), which benefit cell attachment and proliferation. It has been confirmed that keratin plays important roles in every stage of wound healing, including hemostasis, inflammation, proliferation, and remodeling, making keratin-based materials good candidates for wound dressings. In combination with synthetic and natural polymers, keratin-based wound dressings in the forms of films, hydrogels, and nanofibers can be achieved with improved mechanical properties. This review focuses on the recent development of keratin-based wound dressings. Firstly, the physicochemical and biological properties of keratin, are systematically discussed. Secondly, the role of keratin in wound healing is proposed. Thirdly, the applications of keratin-based wound dressings are summarized, in terms of the forms and functionalization. Finally, the current challenges and future development of keratin-based wound dressings are presented.
Collapse
Affiliation(s)
- Wenjin Ye
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065
| | - Meng Qin
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065
| | - Rongmin Qiu
- College & Hospital of Stomatology, Guangxi Medical University, Guangxi Key Laboratory of Oral and Maxillofacial Rehabilitation and Reconstruction, Guangxi Clinical Research Center for Craniofacial Deformity, Guangxi Key Laboratory of Oral and Maxillofacial Surgery Disease Treatment, Guangxi Health Commission Key Laboratory of Prevention and Treatment for Oral Infectious Diseases, Nanning, Guangxi 530021, PR China.
| | - Jianshu Li
- College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, Chengdu, Sichuan, PR China, 610065; State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China; Med-X Center for Materials, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
20
|
Montazerian H, Davoodi E, Baidya A, Baghdasarian S, Sarikhani E, Meyer CE, Haghniaz R, Badv M, Annabi N, Khademhosseini A, Weiss PS. Engineered Hemostatic Biomaterials for Sealing Wounds. Chem Rev 2022; 122:12864-12903. [PMID: 35731958 DOI: 10.1021/acs.chemrev.1c01015] [Citation(s) in RCA: 98] [Impact Index Per Article: 32.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Hemostatic biomaterials show great promise in wound control for the treatment of uncontrolled bleeding associated with damaged tissues, traumatic wounds, and surgical incisions. A surge of interest has been directed at boosting hemostatic properties of bioactive materials via mechanisms triggering the coagulation cascade. A wide variety of biocompatible and biodegradable materials has been applied to the design of hemostatic platforms for rapid blood coagulation. Recent trends in the design of hemostatic agents emphasize chemical conjugation of charged moieties to biomacromolecules, physical incorporation of blood-coagulating agents in biomaterials systems, and superabsorbing materials in either dry (foams) or wet (hydrogel) states. In addition, tough bioadhesives are emerging for efficient and physical sealing of incisions. In this Review, we highlight the biomacromolecular design approaches adopted to develop hemostatic bioactive materials. We discuss the mechanistic pathways of hemostasis along with the current standard experimental procedures for characterization of the hemostasis efficacy. Finally, we discuss the potential for clinical translation of hemostatic technologies, future trends, and research opportunities for the development of next-generation surgical materials with hemostatic properties for wound management.
Collapse
Affiliation(s)
- Hossein Montazerian
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.,Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Elham Davoodi
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.,Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States.,Multi-Scale Additive Manufacturing Lab, Mechanical and Mechatronics Engineering Department, University of Waterloo, 200 University Avenue West, Waterloo, Ontario N2L 3G1, Canada
| | - Avijit Baidya
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Sevana Baghdasarian
- Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Einollah Sarikhani
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States
| | - Claire Elsa Meyer
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Reihaneh Haghniaz
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Maryam Badv
- California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Biomedical Engineering, Schulich School of Engineering, University of Calgary, Calgary, Alberta T2N 1N4, Canada
| | - Nasim Annabi
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States.,Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Ali Khademhosseini
- Terasaki Institute for Biomedical Innovation, Los Angeles, California 90024, United States
| | - Paul S Weiss
- Department of Bioengineering, University of California, Los Angeles, 410 Westwood Plaza, Los Angeles, California 90095, United States.,California NanoSystems Institute, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States.,Department of Materials Science and Engineering, University of California, Los Angeles, Los Angeles, California 90095, United States
| |
Collapse
|
21
|
Khaliq T, Sohail M, Shah SA, Mahmood A, Kousar M, Jabeen N. Bioactive and multifunctional keratin-pullulan based hydrogel membranes facilitate re-epithelization in diabetic model. Int J Biol Macromol 2022; 209:1826-1836. [PMID: 35483511 DOI: 10.1016/j.ijbiomac.2022.04.156] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 04/19/2022] [Accepted: 04/21/2022] [Indexed: 11/05/2022]
Abstract
Hydrogel membrane dressings with multifunctional tunable properties encompassing biocompatibility, anti-bacterial, oxygen permeability, and adequate mechanical strength are highly preferred for wound healing. The present study aimed to develop biopolymer-based hydrogel membranes for the controlled release of therapeutic agent at the wound site. Toward this end we developed Cefotaxime sodium (CTX) loaded keratin (KR)-pullulan (PL) based hydrogel membrane dressings. All membranes show optimized vapor transmission rate (≥1000 g/ m2/day), oxygen permeability >8.2 mg/mL, MTT confirmed good biocompatibility and sufficient tensile strength (17.53 ± 1.9) for being used as a wound dressing. Nonetheless, KR-PL-PVA membranes show controlled CTX release due to enriched hydrophilic moieties which protect the wound from getting infected. In vivo results depict that CTX-KR-PL-PVA membrane group shows a rapid wound closure rate (p < 0.05) with appreciable angiogenesis, accelerated re-epithelization, and excessive collagen deposition at the wound site. These results endorsed that CTX-KR-PL-PVA hydrogel membranes are potential candidates for being used as dressing material in the diabetic wound.
Collapse
Affiliation(s)
- Touba Khaliq
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Muhammad Sohail
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan.
| | - Syed Ahmed Shah
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan; Faculty of Pharmacy, Superior University, Lahore, Pakistan
| | - Arshad Mahmood
- Collage of Pharmacy, Al Ain University, Abu Dhabi, United Arab Emirates; AAU Health and Biomedical Research Center, Al Ain University, Abu Dhabi, United Arab Emirates
| | - Mubeen Kousar
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| | - Nazish Jabeen
- Department of Pharmacy, COMSATS University, Islamabad, Abbottabad Campus, 22010, Pakistan
| |
Collapse
|
22
|
Wang Y, Xu Y, Zhang Z, He Y, Hou Z, Zhao Z, Deng J, Qing R, Wang B, Hao S. Rational Design of High-Performance Keratin-Based Hemostatic Agents. Adv Healthc Mater 2022; 11:e2200290. [PMID: 35613419 DOI: 10.1002/adhm.202200290] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 05/17/2022] [Indexed: 12/17/2022]
Abstract
Keratins are considered ideal candidates as hemostatic agents, but the development lags far behind their potentials due to the poorly understood hemostatic mechanism and structure-function relations, owing to the composition complexity in protein extracts. Here, it is shown that by using a recombinant synthesis approach, individual types of keratins can be expressed and used for mechanism investigation and further high-performance keratin hemostatic agent design. In the comparative evaluation of full-length, rod-domain, and helical segment keratins, the α-helical contents in the sequences are identified to be directly proportional to keratins' hemostatic activities, and Tyr, Phe, and Gln residues at the N-termini of α-helices in keratins are crucial in fibrinopeptide release and fibrin polymerization. A feasible route to significantly enhance the hemostatic efficiency of helical keratins by mutating Cys to Ser in the sequences for enhanced water wettability through soluble expression is then further presented. These results provide a rational strategy to design high-efficiency keratin hemostatic agents with superior performance over clinically used gelatin sponge in multiple animal models.
Collapse
Affiliation(s)
- Yumei Wang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
- Department of Nuclear Medicine Chongqing University Cancer Hospital Chongqing 400044 China
| | - Yingqian Xu
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| | - Zhi Zhang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| | - Ye He
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| | - Zongkun Hou
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| | - Zhibin Zhao
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| | - Jia Deng
- College of Environment and Resources Chongqing Technology and Business University Chongqing 400067 China
| | - Rui Qing
- School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai 200240 China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology Ministry of Education College of Bioengineering Chongqing University Chongqing 400030 China
| |
Collapse
|
23
|
Yan RR, Gong JS, Su C, Liu YL, Qian JY, Xu ZH, Shi JS. Preparation and applications of keratin biomaterials from natural keratin wastes. Appl Microbiol Biotechnol 2022; 106:2349-2366. [DOI: 10.1007/s00253-022-11882-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2021] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 12/20/2022]
|
24
|
Khoshnood N, Zamanian A. Development of novel alginate‐polyethyleneimine cell‐laden bioink designed for 3D bioprinting of cutaneous wound healing scaffolds. J Appl Polym Sci 2022. [DOI: 10.1002/app.52227] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Negin Khoshnood
- Biomaterials Research Group, Nanotechnology and Advanced Materials Department Materials and Energy Research Center (MERC) Tehran Iran
| | - Ali Zamanian
- Biomaterials Research Group, Nanotechnology and Advanced Materials Department Materials and Energy Research Center (MERC) Tehran Iran
| |
Collapse
|
25
|
Konop M, Rybka M, Drapała A. Keratin Biomaterials in Skin Wound Healing, an Old Player in Modern Medicine: A Mini Review. Pharmaceutics 2021; 13:2029. [PMID: 34959311 PMCID: PMC8705570 DOI: 10.3390/pharmaceutics13122029] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 11/20/2021] [Accepted: 11/26/2021] [Indexed: 12/26/2022] Open
Abstract
Impaired wound healing is a major medical problem. To solve it, researchers around the world have turned their attention to the use of tissue-engineered products to aid in skin regeneration in case of acute and chronic wounds. One of the primary goals of tissue engineering and regenerative medicine is to develop a matrix or scaffold system that mimics the structure and function of native tissue. Keratin biomaterials derived from wool, hair, and bristle have been the subjects of active research in the context of tissue regeneration for over a decade. Keratin derivatives, which can be either soluble or insoluble, are utilized as wound dressings since keratins are dynamically up-regulated and needed in skin wound healing. Tissue biocompatibility, biodegradability, mechanical durability, and natural abundance are only a few of the keratin biomaterials' properties, making them excellent wound dressing materials to treat acute and chronic wounds. Several experimental and pre-clinical studies described the beneficial effects of the keratin-based wound dressing in faster wound healing. This review focuses exclusively on the biomedical application of a different type of keratin biomaterials as a wound dressing in pre-clinical and clinical conditions.
Collapse
Affiliation(s)
- Marek Konop
- Laboratory of Center for Preclinical Research, Department of Experimental Physiology and Pathophysiology, Medical University of Warsaw, 02-106 Warsaw, Poland; (M.R.); (A.D.)
| | | | | |
Collapse
|
26
|
Abstract
Keratin is a structural protein of mammalian tissues and birds, representing the principal constituent of hair, nails, skin, wool, hooves, horns, beaks, and feathers, and playing an essential role in protecting the body from external harassment. Due to its intrinsic features such as biocompatibility, biodegradability, responsiveness to specific biological environment, and physical–chemical properties, keratin has been extensively explored in the production of nanocarriers of active principles for different biomedical applications. In the present review paper, we aimed to give a literature overview of keratin-based nanoparticles produced starting from human hair, wool, and chicken feathers. Along with the chemical and structural description of keratin nanoparticles, selected in vitro and in vivo biological data are also discussed to provide a more comprehensive framework of possible fields of application of this protein. Despite the considerable number of papers describing the production and use of keratin nanoparticles as carries of anticancer and antimicrobial drugs or as hemostatic and wound healing materials, still, efforts are needed to implement keratin nanoparticles towards their clinical application.
Collapse
|
27
|
Gao D, Zhang Y, Bowers DT, Liu W, Ma M. Functional hydrogels for diabetic wound management. APL Bioeng 2021; 5:031503. [PMID: 34286170 PMCID: PMC8272650 DOI: 10.1063/5.0046682] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/05/2021] [Indexed: 02/06/2023] Open
Abstract
Diabetic wounds often have a slow healing process and become easily infected owing to hyperglycemia in wound beds. Once planktonic bacterial cells develop into biofilms, the diabetic wound becomes more resistant to treatment. Although it remains challenging to accelerate healing in a diabetic wound due to complex pathology, including bacterial infection, high reactive oxygen species, chronic inflammation, and impaired angiogenesis, the development of multifunctional hydrogels is a promising strategy. Multiple functions, including antibacterial, pro-angiogenesis, and overall pro-healing, are high priorities. Here, design strategies, mechanisms of action, performance, and application of functional hydrogels are systematically discussed. The unique properties of hydrogels, including bactericidal and wound healing promotive effects, are reviewed. Considering the clinical need, stimuli-responsive and multifunctional hydrogels that can accelerate diabetic wound healing are likely to form an important part of future diabetic wound management.
Collapse
Affiliation(s)
- Daqian Gao
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Yidan Zhang
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Daniel T. Bowers
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Wanjun Liu
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| | - Minglin Ma
- Department of Biological and Environmental Engineering, Cornell University, Ithaca, New York 14853, USA
| |
Collapse
|
28
|
Ostróżka-Cieślik A, Maciążek-Jurczyk M, Pożycka J, Dolińska B. Pre-Formulation Studies: Physicochemical Characteristics and In Vitro Release Kinetics of Insulin from Selected Hydrogels. Pharmaceutics 2021; 13:pharmaceutics13081215. [PMID: 34452176 PMCID: PMC8398322 DOI: 10.3390/pharmaceutics13081215] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/25/2021] [Accepted: 08/03/2021] [Indexed: 11/16/2022] Open
Abstract
Insulin loaded to the polymer network of hydrogels may affect the speed and the quality of wound healing in diabetic patients. The aim of our research was to develop a formulation of insulin that could be applied to the skin. We chose hydrogels commonly used for pharmaceutical compounding, which can provide a form of therapy available to every patient. We prepared different gel formulations using Carbopol® UltrezTM 10, Carbopol® UltrezTM 30, methyl cellulose, and glycerin ointment. The hormone concentration was 1 mg/g of the hydrogel. We assessed the influence of model hydrogels on the pharmaceutical availability of insulin in vitro, and we examined the rheological and the texture parameters of the prepared formulations. Based on spectroscopic methods, we evaluated the influence of model hydrogels on secondary and tertiary structures of insulin. The analysis of rheograms showed that hydrogels are typical of shear-thinning non-Newtonian thixotropic fluids. Insulin release from the formulations occurs in a prolonged manner, providing a longer duration of action of the hormone. The stability of insulin in hydrogels was confirmed. The presence of model hydrogel carriers affects the secondary and the tertiary structures of insulin. The obtained results indicate that hydrogels are promising carriers in the treatment of diabetic foot ulcers. The most effective treatment can be achieved with a methyl cellulose-based insulin preparation.
Collapse
Affiliation(s)
- Aneta Ostróżka-Cieślik
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa 3, 41-200 Sosnowiec, Poland;
- Correspondence:
| | - Małgorzata Maciążek-Jurczyk
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (M.M.-J.); (J.P.)
| | - Jadwiga Pożycka
- Department of Physical Pharmacy, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Jagiellońska 4, 41-200 Sosnowiec, Poland; (M.M.-J.); (J.P.)
| | - Barbara Dolińska
- Department of Pharmaceutical Technology, Faculty of Pharmaceutical Sciences in Sosnowiec, Medical University of Silesia, Kasztanowa 3, 41-200 Sosnowiec, Poland;
- “Biochefa” Pharmaceutical Research and Production Plant, Kasztanowa 3, 41-200 Sosnowiec, Poland
| |
Collapse
|
29
|
Han X, Yang R, Wan X, Dou J, Yuan J, Chi B, Shen J. Antioxidant and multi-sensitive PNIPAAm/keratin double network gels for self-stripping wound dressing application. J Mater Chem B 2021; 9:6212-6225. [PMID: 34319336 DOI: 10.1039/d1tb00702e] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Hydrogel is a potential wound dressing material due to its ability to maintain a humid environment, the strong absorptive capacity of exuded tissue fluid, and gas exchange function. Herein, poly(N-isopropyl acrylamide)/keratin double network (PNIPAAm/keratin DN) gels were fabricated through covalent and ionic double cross-linking strategy. The effects of PNIPAAm/keratin ratios on the morphology and swelling rate of gels were characterized. The DN gels could swell up from 2600% to 4600% in proportion to the keratin content, demonstrating their great ability to absorb tissue fluid. The gels possessed thermo-sensitiveness, imparting self-stripping property. Moreover, the antibacterial chlorhexidine acetate (CHX) was loaded into gels with a post-fabrication drug-loading strategy. The release behavior showed that CHX-loaded DN gels exhibited multiple responsive characteristics (temperature, pH, and ROS). Furthermore, the drug-loaded gels showed greater antibacterial activity than free CHX due to the sustained drug release effect. Meanwhile, the antioxidant efficiency of PNIPAAm/keratin DN gels was ca. 33.1%, while the PNIPAAm gel was just ca. 18.2%, indicating the strong oxidation resistance of DN gels. In the Sprague Dawley (SD) rat skin defect model, the hydrogel had better tissue regeneration ability than the commercial film. Taken together, the multifunctional PNIPAAm/keratin DN gels are potential candidates for clinical wound treatment.
Collapse
Affiliation(s)
- Xiao Han
- Jiangsu Collaborative Innovation Center of Biomedical Functional Materials, Jiangsu Key Laboratory of Bio-functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, P. R. China.
| | | | | | | | | | | | | |
Collapse
|
30
|
Chen M, Ren X, Dong L, Li X, Cheng H. Preparation of dynamic covalently crosslinking keratin hydrogels based on thiol/disulfide bonds exchange strategy. Int J Biol Macromol 2021; 182:1259-1267. [PMID: 33991559 DOI: 10.1016/j.ijbiomac.2021.05.057] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 04/28/2021] [Accepted: 05/07/2021] [Indexed: 01/16/2023]
Abstract
Dynamic covalently crosslinking (DCC) hydrogels can mimic extracellular matrix and have the functions such as self-healing, self-adapting, and shape memory. The DCC keratin hydrogels based on thiol group-disulfide bonds exchange strategy have no reports so far as we know. Herein, inspired by the rich content of the intramolecular disulfide bonds and free thiol groups in the keratins extracted by reducing agents, we report a simple thiol-disulfide bonds exchange strategy for preparing the DCC keratin hydrogels. While the pH value of the keratin solution extracted by reducing agents was adjusted to 9.5-10.0, the keratin hydrogels showed the characteristic with injectability, self-healing, self-adapting, biocompatibility, and redox-responsive capacity. The extracted type II neutral/alkali keratin plays a critical role in imparting the keratin hydrogels with the reversibility behaviors due to that the keratins could build dynamic covalent bonds through thiol oxidation and disulfide exchange reactions in alkali conditions. This strategy provides an inspiration for forming DCC keratin hydrogel by avoiding the extra introduction of chemical crosslinking agents.
Collapse
Affiliation(s)
- Mianhong Chen
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Xingrong Ren
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Liming Dong
- Key Laboratory of Cleaner Production and Integrated Resource Utilization of China National Light Industry, Beijing Technology and Business University, Beijing 100048, China.
| | - Xiaohe Li
- National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China
| | - Haiming Cheng
- Key Laboratory of Leather Chemistry and Engineering of Ministry of Education, Sichuan University, Chengdu 610065, China; National Engineering Research Center of Clean Technology in Leather Industry, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
31
|
Yao Y, Guo Y, Li X, Yu J, Ding B. Asymmetric Wettable, Waterproof, and Breathable Nanofibrous Membranes for Wound Dressings. ACS APPLIED BIO MATERIALS 2021; 4:3287-3293. [PMID: 35014415 DOI: 10.1021/acsabm.0c01624] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite the progression in wound treatment, the development of wound dressings with considerable skin regeneration capability and improved patient comfort still faces huge challenges. In this study, a type of asymmetric wettable gradient nanofibrous membrane, which is composed of a hydrophobic polyvinyl butyral (PVB)-polydimethylsiloxane (PDMS) upper layer, a PVB-PDMS/gelatin middle layer, and a hydrophilic gelatin lower layer, has been fabricated. The PVB-PDMS upper layer gave dramatically elevated water contact angles from 71.27° to 125.45° as compared with the gelatin membrane, indicating an asymmetric wettability. The composite membrane exhibited outstanding waterproof capability with a hydrostatic pressure of 58.21 kPa, excellent breathability with a water vapor transmission rate of 8.80 kg m-2 d-1, improved stretchability and tear resistance, and dramatic improvement in mesenchymal stem cell recruitment with the immobilization of stromal-cell-derived factor-1α for accelerating skin regeneration. The development of asymmetric wettable nanofibrous membranes offers insight into wound-dressing design.
Collapse
Affiliation(s)
- Yueming Yao
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China
| | - Yuxia Guo
- College of Materials Science and Engineering, Donghua University, Shanghai 201620, China
| | - Xiaoran Li
- Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Jianyong Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China.,Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| | - Bin Ding
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Textiles, Donghua University, Shanghai 201620, China.,Innovation Center for Textile Science and Technology, Donghua University, Shanghai 200051, China
| |
Collapse
|
32
|
Chen Y, Li Y, Yang X, Cao Z, Nie H, Bian Y, Yang G. Glucose-triggered in situ forming keratin hydrogel for the treatment of diabetic wounds. Acta Biomater 2021; 125:208-218. [PMID: 33662598 DOI: 10.1016/j.actbio.2021.02.035] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 02/19/2021] [Accepted: 02/23/2021] [Indexed: 12/31/2022]
Abstract
The development of protein-based in situ forming hydrogel remains a big challenge due to the limited chemical groups in proteins. Keratins are a group of cysteine-rich structural protein found abundant in skin and skin appendant. Recently, our lab has established a disulfide shuffling strategy to prepare keratin hydrogels via oxygen (O2) oxidation. However, such hydrogel still needed to be molded in advance. In this work, inspired by the fact that glucose commonly exists in body fluids, a glucose-triggered in situ forming keratin hydrogel was developed based on the disulfide shuffling strategy via a higher oxidation force of hydrogen peroxide (H2O2). The hydrogel precursor solution consisted of keratin, cysteine and glucose oxidase (GOD), which could generate H2O2 in an indirect and mild way via GOD-catalyzed oxidation of glucose in body fluids. Our findings demonstrated that the GOD-catalyzed oxidation method not only shortened the gelation time but improved the mechanical strength of the hydrogel by comparison with O2 oxidation and direct addition of H2O2 solution methods, and realized in situ gelation within 3 min on a full-thickness wound bed in normal mice. Moreover, the in situ forming keratin hydrogel was applied as a drug depot for wound repair, and the deferoxamine-loaded one accelerated healing in the full-thickness wounds of streptozotocin-induced diabetic rats, notably by promoting angiogenesis and neovascularization in wounds. STATEMENT OF SIGNIFICANCE: Studies show that keratin hydrogels possess tissue regeneration capacity, especially in skin wound repair. However, most of the reported keratin hydrogels needed to be molded in advance and cannot fit irregular wound shape. This work describes a glucose-triggered in situ forming keratin hydrogel via a disulfide shuffling strategy under the oxidation of hydrogen peroxide. Of note, the hydrogen peroxide was supplied indirectly by glucose oxidase-catalyzed oxidation of glucose in wound fluids, and this method needed no additional crosslinking agents or chemical modifications on keratins. Our findings showed that this hydrogel realized in situ gelation within 3 min on a full-thickness wound bed and enabled an injectable mode with good filling ability toward irregular wounds. Moreover, this hydrogel could be applied as a drug depot for the treatment of diabetic wounds.
Collapse
|
33
|
A cross-species analysis of systemic mediators of repair and complex tissue regeneration. NPJ Regen Med 2021; 6:21. [PMID: 33795702 PMCID: PMC8016993 DOI: 10.1038/s41536-021-00130-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/04/2021] [Indexed: 02/01/2023] Open
Abstract
Regeneration is an elegant and complex process informed by both local and long-range signals. Many current studies on regeneration are largely limited to investigations of local modulators within a canonical cohort of model organisms. Enhanced genetic tools increasingly enable precise temporal and spatial perturbations within these model regenerators, and these have primarily been applied to cells within the local injury site. Meanwhile, many aspects of broader spatial regulators of regeneration have not yet been examined with the same level of scrutiny. Recent studies have shed important insight into the significant effects of environmental cues and circulating factors on the regenerative process. These observations highlight that consideration of more systemic and possibly more broadly acting cues will also be critical to fully understand complex tissue regeneration. In this review, we explore the ways in which systemic cues and circulating factors affect the initiation of regeneration, the regenerative process, and its outcome. As this is a broad topic, we conceptually divide the factors based on their initial input as either external cues (for example, starvation and light/dark cycle) or internal cues (for example, hormones); however, all of these inputs ultimately lead to internal responses. We consider studies performed in a diverse set of organisms, including vertebrates and invertebrates. Through analysis of systemic mediators of regeneration, we argue that increased investigation of these "systemic factors" could reveal novel insights that may pave the way for a diverse set of therapeutic avenues.
Collapse
|
34
|
Cheng Z, Qing R, Hao S, Ding Y, Yin H, Zha G, Chen X, Ji J, Wang B. Fabrication of ulcer-adhesive oral keratin hydrogel for gastric ulcer healing in a rat. Regen Biomater 2021; 8:rbab008. [PMID: 33738122 PMCID: PMC7955710 DOI: 10.1093/rb/rbab008] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2020] [Revised: 01/09/2021] [Accepted: 01/17/2021] [Indexed: 12/28/2022] Open
Abstract
Hydrogel has been used for in suit gastric ulcer therapy by stopping bleeding, separating from ulcer from gastric fluids and providing extracellular matrix scaffold for tissue regeneration, however, this treatment guided with endoscopic catheter in most cases. Here, we developed an oral keratin hydrogel to accelerate the ulcer healing without endoscopic guidance, which can specially adhere to the ulcer because of the high-viscosity gel formation on the wound surface in vivo. Approximately 50% of the ulcer-adhesive keratin hydrogel can resident in ethanol-treated rat stomach within 12 h, while approximately 18% of them maintained in health rat stomach in the same amount of time. Furthermore, Keratin hydrogels accelerated the ethanol-induced gastric ulcer healing by stopping the bleeding, preventing the epithelium cells from gastric acid damage, suppressing inflammation and promoting re-epithelization. The oral administration of keratin hydrogel in gastric ulcer treatment can enhance the patient compliance and reduce the gastroscopy complications. Our research findings reveal a promising biomaterial-based approach for treating gastrointestinal ulcers.
Collapse
Affiliation(s)
- Zhongjun Cheng
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.,School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China.,Bijie Institute of Traditional Chinese Medicine, Bijie City, Guizhou Province 551700, China
| | - Rui Qing
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Yi Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Haimeng Yin
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - GuoDong Zha
- HEMOS (Chongqing) Bioscience Co., Ltd, Chongqing 402760, China
| | - Xiaoliang Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China.,Department of Nuclear Medicine, Institution of Chongqing Cancer, Chongqing 400030, China
| | - Jingou Ji
- School of Chemistry and Chemical Engineering, Chongqing University, Chongqing 401331, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|
35
|
Ji J, Chen G, Liu Z, Li L, Yuan J, Wang P, Xu B, Fan X. Preparation of PEG-modified wool keratin/sodium alginate porous scaffolds with elasticity recovery and good biocompatibility. J Biomed Mater Res B Appl Biomater 2021; 109:1303-1312. [PMID: 33421269 DOI: 10.1002/jbm.b.34791] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 12/24/2020] [Accepted: 12/27/2020] [Indexed: 01/21/2023]
Abstract
To improve mechanical properties of keratin (KR) porous scaffolds, we prepared a PEGylated keratin through thiol-ene click reaction. Several porous scaffolds were prepared by blending PEGylated keratin with sodium alginate (SA). The surface morphology, mechanical properties, and porosity of scaffolds were detailed studied at different KR/SA proportions. The results showed the content of SA had an effect on pore formation and mechanical properties. When the mass ratio of KR to SA was 2:1, the stress of yield point of the keratin porous scaffold reached 1.24 MPa, and also showed good deformation recovery ability. The PEGylated keratin porous scaffold had a high porosity and great cytocompatibility. Its' porosity is up to 81.7% and the cell viability is about 117.78%. This allows it to absorb the simulated plasma quickly (9.20 ± 0.37 g/g). In addition, the structural stability and acid-base stability of the keratin porous scaffold were also improved after PEGylation. Overall, the PEGylated keratin porous scaffold will be promising in tissue materials due to its great physical, chemical, and biological properties.
Collapse
Affiliation(s)
- Ji Ji
- Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, China
| | - Guang Chen
- Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, China
| | - Zitong Liu
- Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, China
| | - Lili Li
- Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jiugang Yuan
- Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, China
| | - Ping Wang
- Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, China
| | - Bo Xu
- Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xuerong Fan
- Key Laboratory of Eco-Textile, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
36
|
Pourshahrestani S, Zeimaran E, Kadri NA, Mutlu N, Boccaccini AR. Polymeric Hydrogel Systems as Emerging Biomaterial Platforms to Enable Hemostasis and Wound Healing. Adv Healthc Mater 2020; 9:e2000905. [PMID: 32940025 DOI: 10.1002/adhm.202000905] [Citation(s) in RCA: 197] [Impact Index Per Article: 39.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Revised: 08/09/2020] [Indexed: 12/11/2022]
Abstract
Broad interest in developing new hemostatic technologies arises from unmet needs in mitigating uncontrolled hemorrhage in emergency, surgical, and battlefield settings. Although a variety of hemostats, sealants, and adhesives are available, development of ideal hemostatic compositions that offer a range of remarkable properties including capability to effectively and immediately manage bleeding, excellent mechanical properties, biocompatibility, biodegradability, antibacterial effect, and strong tissue adhesion properties, under wet and dynamic conditions, still remains a challenge. Benefiting from tunable mechanical properties, high porosity, biocompatibility, injectability and ease of handling, polymeric hydrogels with outstanding hemostatic properties have been receiving increasing attention over the past several years. In this review, after shedding light on hemostasis and wound healing processes, the most recent progresses in hydrogel systems engineered from natural and synthetic polymers for hemostatic applications are discussed based on a comprehensive literature review. Most studies described used in vivo models with accessible and compressible wounds to assess the hemostatic performance of hydrogels. The challenges that need to be tackled to accelerate the translation of these novel hemostatic hydrogel systems to clinical practice are emphasized and future directions for research in the field are presented.
Collapse
Affiliation(s)
- Sara Pourshahrestani
- Department of Biomedical Engineering Faculty of Engineering University of Malaya Kuala Lumpur 50603 Malaysia
| | - Ehsan Zeimaran
- Department of Biomedical Engineering Faculty of Engineering University of Malaya Kuala Lumpur 50603 Malaysia
| | - Nahrizul Adib Kadri
- Department of Biomedical Engineering Faculty of Engineering University of Malaya Kuala Lumpur 50603 Malaysia
| | - Nurshen Mutlu
- FunGlass – Centre for Functional and Surface Functionalized Glass Alexander Dubcek University of Trencin Trencin 911 50 Slovakia
| | - Aldo R. Boccaccini
- Institute of Biomaterials Department of Materials Science and Engineering University of Erlangen‐Nuremberg Erlangen 91058 Germany
| |
Collapse
|
37
|
Nešović K, Mišković‐Stanković V. A comprehensive review of the polymer‐based hydrogels with electrochemically synthesized silver nanoparticles for wound dressing applications. POLYM ENG SCI 2020. [DOI: 10.1002/pen.25410] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Affiliation(s)
- Katarina Nešović
- Faculty of Technology and MetallurgyUniversity of Belgrade Belgrade Serbia
| | | |
Collapse
|
38
|
Ye JP, Gong JS, Su C, Liu YG, Jiang M, Pan H, Li RY, Geng Y, Xu ZH, Shi JS. Fabrication and characterization of high molecular keratin based nanofibrous membranes for wound healing. Colloids Surf B Biointerfaces 2020; 194:111158. [PMID: 32540765 DOI: 10.1016/j.colsurfb.2020.111158] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 05/16/2020] [Accepted: 05/26/2020] [Indexed: 12/24/2022]
Abstract
Keratin is widely used in the biomaterial application, but the keratin prepared by the physical or chemical approach has relatively low molecular weight and mechanical properties. Here we report the preparation of high molecular keratin (HMK) with molecular weight of 120 kDa via multi-enzyme cascade pathway and its application in wound healing. Briefly, we prepared the soluble keratin from wool by keratinase and improved the molecular weight of keratin by transglutaminase (TGase). The HMK was coelectrospun with poly(3-hydroxybutyric acid-co-3-hydroxyvaleric acid) (PHBV) and the prepared nanofibrous mats demonstrated improved mechanical properties. Ag nanoparticles (AgNPs) were synthesized on the nanofibers via in situ bioreduction, using the above-mentioned keratinase as the reducing agent. It is demonstrated that the PHBV/HMK/AgNPs nanofibrous mats possess favorable antibacterial properties and good biocompatibility. Moreover, in vivo wound healing assessment, the PHBV/HMK/AgNPs membrane displayed better wound healing ability than the control group. These results indicate that PHBV/HMK/AgNPs mats exhibit significant potential in tissue engineering.
Collapse
Affiliation(s)
- Jin-Peng Ye
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi214122, PR China
| | - Jin-Song Gong
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi214122, PR China.
| | - Chang Su
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi214122, PR China
| | - Yan-Ge Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi214122, PR China
| | - Min Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi214122, PR China
| | - Huaping Pan
- Integrated Chinese and Western Medicine Oncology Research Center, Jiangxi University of Traditional Chinese Medicine, Nanchang330004, PR China
| | - Rui-Yi Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi214122, PR China
| | - Yan Geng
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi214122, PR China
| | - Zheng-Hong Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi214122, PR China; National Engineering Laboratory for Cereal Fermentation Technology, School of Biotechnology, Jiangnan University, Wuxi214122, PR China; Jiangsu Provincial Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi214122, PR China
| | - Jin-Song Shi
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Pharmaceutical Sciences, Jiangnan University, Wuxi214122, PR China.
| |
Collapse
|
39
|
Gao F, Li W, Kan J, Ding Y, Wang Y, Deng J, Qing R, Wang B, Hao S. Insight into the Regulatory Function of Human Hair Keratins in Wound Healing Using Proteomics. ACTA ACUST UNITED AC 2020; 4:e1900235. [PMID: 32297487 DOI: 10.1002/adbi.201900235] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 03/18/2020] [Accepted: 03/27/2020] [Indexed: 01/14/2023]
Abstract
Keratins derived from human hair possess excellent wound healing qualities. However, their functional contribution to this process is poorly understood. In this study, the regulatory function of human hair keratins in wound healing is investigated using proteomic analysis by dividing keratins into different groups based on their molecular weight distributions: low molecular weight keratins (LMWK, 10-30 kDa), medium molecular weight keratins (MMWK, 30-50 kDa), and high molecular weight keratins (HMWK, >50 kDa). Keratin hydrogels with different molecular weights exhibit various morphologies, rheological properties, degradation rates, and wound healing activities. Using proteomic analysis, LMWK and HMWK hydrogels exhibit a stronger regulatory ability for wound healing at days 1 and 7, respectively. The major functions of LMWK during wound healing are regulation of cells communication and function. In contrast, proteins associated with energy metabolism are significantly expressed after HMWK hydrogel treatment at day 1, and these play an important role in cellular growth and reactive oxygen species scavenging at day 7. These results demonstrate that the wound healing qualities of human hair keratins are influenced by their molecular weight distribution, and the proteomic analysis sheds new light on the regulatory function of human hair keratins during wound healing.
Collapse
Affiliation(s)
- Feiyan Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Wenfeng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Jinlan Kan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Yi Ding
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Yumei Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing, 400067, China
| | - Rui Qing
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400030, China.,Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02142, USA
| |
Collapse
|
40
|
Gong Y, Wang Y, Qu Q, Hou Z, Guo T, Xu Y, Qing R, Deng J, Wang B, Hao S. Nanoparticle encapsulated core-shell hydrogel for on-site BMSCs delivery protects from iron overload and enhances functional recovery. J Control Release 2020; 320:381-391. [DOI: 10.1016/j.jconrel.2020.01.029] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 01/06/2020] [Accepted: 01/17/2020] [Indexed: 01/10/2023]
|
41
|
Chen X, Zhai D, Wang B, Hao S, Song J, Peng Z. Hair keratin promotes wound healing in rats with combined radiation-wound injury. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2020; 31:28. [PMID: 32125534 DOI: 10.1007/s10856-020-06365-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Accepted: 02/14/2020] [Indexed: 06/10/2023]
Abstract
Keratins derived from human hair have been suggested to be particularly effective in general surgical wound healing. However, the healing of a combined radiation-wound injury is a multifaceted regenerative process. Here, hydrogels fabricated with human hair keratins were used to test the wound healing effects on rats suffering from combined radiation-wound injuries. Briefly, the keratin extracts were verified by dodecyl sulfate polyacrylamide gel electrophoresis analysis and amino acid analysis, and the keratin hydrogels were then characterized by morphological observation, Fourier transform infrared spectroscopy analysis and rheology analyses. The results of the cell viability assay indicated that the keratin hydrogels could enhance cell growth after radiation exposure. Furthermore, keratin hydrogels could accelerate wound repair and improve the survival rate in vivo. The results demonstrate that keratin hydrogels possess a strong ability to accelerate the repair of a combined radiation-wound injury, which opens up new tissue regeneration applications for keratins.
Collapse
Affiliation(s)
- Xiaoliang Chen
- Department of Radiological Medicine, College of Basic Medicine, Chongqing Medical Universtiy, 400016, Chongqing, China
| | - Dongliang Zhai
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, 400030, Chongqing, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400030, Chongqing, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, 400030, Chongqing, China.
| | - Jia Song
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, 400030, Chongqing, China.
| | - Zhiping Peng
- Department of Radiological Medicine, College of Basic Medicine, Chongqing Medical Universtiy, 400016, Chongqing, China.
| |
Collapse
|
42
|
Efficient synthesis, characterization, and application of biobased scab-bionic hemostatic polymers. Polym J 2020. [DOI: 10.1038/s41428-020-0315-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
43
|
Chitosan-reinforced cellulosic bionogels: Viscoelastic and antibacterial properties. Carbohydr Polym 2020; 229:115569. [DOI: 10.1016/j.carbpol.2019.115569] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/16/2019] [Accepted: 11/02/2019] [Indexed: 11/22/2022]
|
44
|
Wang J, Xu J. Effects of Topical Insulin on Wound Healing: A Review of Animal and Human Evidences. Diabetes Metab Syndr Obes 2020; 13:719-727. [PMID: 32214835 PMCID: PMC7078652 DOI: 10.2147/dmso.s237294] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/25/2020] [Indexed: 12/12/2022] Open
Abstract
Wound healing is a complex biological process that repairs damaged tissues and restores skin integrity. Insulin, a potent factor of wound healing, has been reported for nearly a century to induce rapid recovery of various wounds, as shown by numerous human and animal studies. Although many studies have addressed the healing effect of systemic insulin on burn wound, only few have investigated the efficacy of topical insulin. Thus, this study aimed to review evidence of the effects of topical insulin on wound healing, including on diabetic and non-diabetic wounds. The presented animal and clinical studies support that topical insulin improves wound healing through several mechanisms without causing side effects. Additionally, various wound dressings accelerate the wound healing with controlled and sustained delivery of bioactive insulin. Therefore, topical insulin has been appreciated in field of wound healing, and further studies are needed to improve our understanding of the role of insulin in the healing of various wounds.
Collapse
Affiliation(s)
- Jiao Wang
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
| | - Jixiong Xu
- Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, Nanchang, People’s Republic of China
- Correspondence: Jixiong Xu Department of Endocrinology and Metabolism, First Affiliated Hospital of Nanchang University, No. 17 Yongwaizheng St., Nanchang, Jiangxi Province330006, People’s Republic of ChinaTel +86 13307086069 Email
| |
Collapse
|
45
|
Kong X, Fu J, Shao K, Wang L, Lan X, Shi J. Biomimetic hydrogel for rapid and scar-free healing of skin wounds inspired by the healing process of oral mucosa. Acta Biomater 2019; 100:255-269. [PMID: 31606531 DOI: 10.1016/j.actbio.2019.10.011] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Revised: 09/26/2019] [Accepted: 10/04/2019] [Indexed: 12/18/2022]
Abstract
Inspired by the wound healing characteristics of the oral mucosa, a biomimetic hydrogel was prepared to realize the rapid and scar-free healing of skin wounds. Through monitoring the healing process of injured oral mucosa, we find out that the combination of high, rapid and sequential expression of some growth factors and the sterile-moist microenvironment are crucial for re-epithelialization and precise control of the inflammation process. On the base of our findings, a hydrogel loaded with several functional compounds was prepared to achieve a comprehensive simulation of the oral mucosal trauma microenvironment for skin wound healing. After 7 days treatment, the skin wound area of the treated group was only about 20% of that of the untreated group, and the proportion of collagen type III and type I in the treated group was much higher than that of the untreated group, suggesting lighter scar hyperplasia. The comprehensive treatment strategy of sequential expression of growth factors in combination with maintaining of a sterile and humid environment is expected to have great application prospect in the field of chronic trauma repair and cosmetic surgery. STATEMENT OF SIGNIFICANCE: Long healing time and scar hyperplasia during wound healing have been a serious problem in the past decades of wound healing research. Oral cavity wound healing occurs in an environment that sustains ongoing physical trauma and is rich in bacteria. Despite this, injuries to the mucosal surface often heal faster than cutaneous wounds and leave less noticeable scars. Therefore, in recent years, many scholars have begun to study the healing mechanism of oral mucosa, which supports a new inspiration for the study of skin wound repair: whether the injured skin can achieve a rapid scar-free healing effect similar to oral mucosa? Imitating the biological process of oral mucosa wound healing would be a promising therapeutic strategy in wound healing. Therefore, inspired by the wound healing characteristics of the oral mucosa, a biomimetic gel was prepared to realize the rapid and scar-free healing of skin wounds. Through monitoring the healing process of injured oral mucosa, the combination of high, rapid and sequential expression of some growth factors and sterile-moist microenvironment was crucial for re-epithelialization and precise control of the inflammation process. The comprehensive treatment strategy of sequential expression of growth factors in combination with maintance of a sterile and humid environment implies its potential use in the field of chronic trauma repair and cosmetic surgery.
Collapse
Affiliation(s)
- Xiaoying Kong
- College of Chemistry and Pharmacy, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| | - Jun Fu
- Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, 1219 Zhongguan West Road, Ningbo 315200, China
| | - Kai Shao
- Medical Experimental Center, Qilu Hospital of Shandong University (Qingdao), 758 Hefei Road, Qingdao 266035, China
| | - Lili Wang
- College of Chemistry and Pharmacy, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| | - Xuefang Lan
- College of Chemistry and Pharmacy, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China
| | - Jinsheng Shi
- College of Chemistry and Pharmacy, Qingdao Agricultural University, 700 Changcheng Road, Qingdao 266109, China.
| |
Collapse
|
46
|
Wang D, Li W, Wang Y, Yin H, Ding Y, Ji J, Wang B, Hao S. Fabrication of an expandable keratin sponge for improved hemostasis in a penetrating trauma. Colloids Surf B Biointerfaces 2019; 182:110367. [DOI: 10.1016/j.colsurfb.2019.110367] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2019] [Revised: 06/22/2019] [Accepted: 07/14/2019] [Indexed: 01/14/2023]
|
47
|
Dhingra GA, Kaur M, Singh M, Aggarwal G, Nagpal M. Lock Stock and Barrel of Wound Healing. Curr Pharm Des 2019; 25:4090-4107. [PMID: 31556852 DOI: 10.2174/1381612825666190926163431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Accepted: 09/19/2019] [Indexed: 01/13/2023]
Abstract
Any kind of injury may lead to wound formation. As per World Health Organization Report, "more than 5 million people die each year due to injuries. This accounts for 9% of the world's population death, nearly 1.7 times the number of fatalities that result from HIV/AIDS, tuberculosis and malaria combined. In addition, ten million people suffer from non-fatal injuries which require treatment". This scenario leads to increased health and economic burden worldwide. Rapid wound healing is exigent subject-field in the health care system. It is imperative to be updated on wound care strategies as impaired wound healing may lead to chronic, non-healing wounds and thus further contributes to the national burden. This article is a comprehensive review of wound care strategies. The first and second part of this review article focuses on the understanding of wound, its types and human body's healing mechanism. Wound healing is natural, highly coordinated process that starts on its own, immediately after the injury. However, individual health condition influences the healing process. Discussion of factors affecting wound healing has also been included. Next part includes the detailed review of diverse wound healing strategies that have already been developed for different types of wound. A detailed description of various polymers that may be used has been discussed. Amongst drug delivery systems, oligomers, dendrimers, films, gels, different nano-formulations, like nanocomposites, nanofibers, nanoemulsions and nanoparticles are discussed. Emphasis on bandages has been made in this article.
Collapse
Affiliation(s)
- Gitika A Dhingra
- NCRD's Sterling Institute of Pharmacy, Nerul, Navi Mumbai-400706, India
| | - Malkiet Kaur
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Manjinder Singh
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| | - Geeta Aggarwal
- Delhi Pharmaceutical Sciences and Research University, New Delhi-110017, India
| | - Manju Nagpal
- Chitkara College of Pharmacy, Chitkara University, Punjab, India
| |
Collapse
|
48
|
Thermo-sensitive keratin hydrogel against iron-induced brain injury after experimental intracerebral hemorrhage. Int J Pharm 2019; 566:342-351. [DOI: 10.1016/j.ijpharm.2019.05.076] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2019] [Revised: 04/25/2019] [Accepted: 05/30/2019] [Indexed: 12/15/2022]
|
49
|
Gao F, Li W, Deng J, Kan J, Guo T, Wang B, Hao S. Recombinant Human Hair Keratin Nanoparticles Accelerate Dermal Wound Healing. ACS APPLIED MATERIALS & INTERFACES 2019; 11:18681-18690. [PMID: 31038908 DOI: 10.1021/acsami.9b01725] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
In recent years, favorable enhanced wound-healing properties and excellent biocompatibility of keratin derived from human hair have attracted considerable attention. Recombinant keratin proteins can be produced by recombinant DNA technology and have higher purity than extracted keratin. However, the wound-healing properties of recombinant keratin proteins remain unclear. Herein, two recombinant trichocyte keratins including human type I hair keratin 37 and human type II hair keratin 81 were expressed using a bacterial expression system, and recombinant keratin nanoparticles (RKNPs) were prepared via an ultrasonic dispersion method. The molecular weight, purity, and physicochemical properties of the recombinant keratin proteins and nanoparticles were assessed using gel electrophoresis, circular dichroism, mass spectrometry, and scanning electron microscope analyses. The RKNPs significantly enhanced cell proliferation and migration in vitro, and the treatment of dermal wounds in vivo with RKNPs resulted in improved wound healing associated with improved epithelialization, vascularization, and collagen deposition and remodeling. In addition, the in vivo biocompatibility test revealed no systemic toxicity. Overall, this work demonstrates that RKNPs are a promising candidate for enhanced wound healing, and this study opens up new prospects for the development of keratin biomaterials.
Collapse
Affiliation(s)
- Feiyan Gao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing 400030 , China
| | - Wenfeng Li
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing 400030 , China
| | - Jia Deng
- College of Environment and Resources , Chongqing Technology and Business University , Chongqing 400067 , China
| | - Jinlan Kan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing 400030 , China
| | - Tingwang Guo
- College of Environment and Resources , Chongqing Technology and Business University , Chongqing 400067 , China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing 400030 , China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering , Chongqing University , Chongqing 400030 , China
| |
Collapse
|
50
|
He Y, Qu Q, Luo T, Gong Y, Hou Z, Deng J, Xu Y, Wang B, Hao S. Human Hair Keratin Hydrogels Alleviate Rebleeding after Intracerebral Hemorrhage in a Rat Model. ACS Biomater Sci Eng 2019; 5:1113-1122. [DOI: 10.1021/acsbiomaterials.8b01609] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Affiliation(s)
- Ye He
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Qing Qu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Tiantian Luo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Yuhua Gong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Zongkun Hou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Jia Deng
- College of Environment and Resources, Chongqing Technology and Business University, Chongqing 400067, China
| | - Yingqian Xu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
- Chongqing Engineering Research Center of Pharmaceutical Sciences, Chongqing Medical and Pharmaceutical College, Chongqing 401331, China
| | - Bochu Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| | - Shilei Hao
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400030, China
| |
Collapse
|