1
|
Ibrahim PEGF, Zuccotto F, Zachariae U, Gilbert I, Bodkin M. Accurate prediction of dynamic protein-ligand binding using P-score ranking. J Comput Chem 2024; 45:1762-1778. [PMID: 38647338 DOI: 10.1002/jcc.27370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Revised: 03/20/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024]
Abstract
Protein-ligand binding prediction typically relies on docking methodologies and associated scoring functions to propose the binding mode of a ligand in a biological target. Significant challenges are associated with this approach, including the flexibility of the protein-ligand system, solvent-mediated interactions, and associated entropy changes. In addition, scoring functions are only weakly accurate due to the short time required for calculating enthalpic and entropic binding interactions. The workflow described here attempts to address these limitations by combining supervised molecular dynamics with dynamical averaging quantum mechanics fragment molecular orbital. This combination significantly increased the ability to predict the experimental binding structure of protein-ligand complexes independent from the starting position of the ligands or the binding site conformation. We found that the predictive power could be enhanced by combining the residence time and interaction energies as descriptors in a novel scoring function named the P-score. This is illustrated using six different protein-ligand targets as case studies.
Collapse
Affiliation(s)
- Peter E G F Ibrahim
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK
| | - Fabio Zuccotto
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK
| | - Ulrich Zachariae
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK
| | - Ian Gilbert
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK
| | - Mike Bodkin
- Drug Discovery Unit, Division of Biological Chemistry and Drug Discovery, University of Dundee, Dundee, UK
| |
Collapse
|
2
|
Premkumar T, Sajitha Lulu S. Targeting key players in Alzheimer's disease: bioactive compounds from Moringa oleifera, Desmodium gangeticum, and Centella asiatica as potential therapeutics. J Biomol Struct Dyn 2024:1-23. [PMID: 38887054 DOI: 10.1080/07391102.2024.2335300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/20/2024] [Indexed: 06/20/2024]
Abstract
Alzheimer's Disease (AD) is one of the critical reasons for dementia around the world, with a huge number of cases being reported every year. The breakdown of Amyloid Precursor Protein (APP) plays a crucial role in AD development. The Beta-site APP Cleaving Enzyme 1 (BACE1) is a highly significant proteolytic enzyme found to be critically involved in the APP breakdown process and generates beta-amyloid plaques in the extracellular neuronal membrane. In this study, we have used natural compounds with cognitive and neuroprotective activities from three plants, Centella asiatica, Moringa oleifera, and Desmodium gangeticum to inhibit the activity of BACE1. We have identified nine compounds out of 73 compounds filtered out from the three plants showing high affinity with the catalytic dyad region of BACE1 through molecular docking studies. Interestingly, the 200 ns molecular dynamics simulation study further confirmed the stability of the complexes formed between 9 compounds and the BACE1 protein. Furthermore, the free energy calculations also revealed these complexes possess favorable energies. Astilbin, Delphinidin 3-glucoside, and kaempferol 7-O-glucoside showed good binding affinity and structural stability when compared to other compounds and the control CNP520. Following a preliminary screening, the Astilbin compound was chosen based on the grounds of binding affinity, ADMET Properties, Hbond formation, Molecular Dynamic simulation, and MM-PBSA studies. A subsequent 1microsecond molecular dynamics simulation was conducted for the Astilbin complex. Through microsecond simulation, it was found that Astilbin alters BACE1's behavior and induces conformational rearrangements. Thus, this study opens a gateway to inhibit the activity of BACE1 protein through Astilbin thereby disclosing the possibility of managing Alzheimer's Disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- T Premkumar
- Integrative Multiomics Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| | - S Sajitha Lulu
- Integrative Multiomics Laboratory, School of Bio Sciences and Technology, Vellore Institute of Technology, Vellore, Tamil Nadu, India
| |
Collapse
|
3
|
Nkungli NK, Fouegue ADT, Tasheh SN, Bine FK, Hassan AU, Ghogomu JN. In silico investigation of falcipain-2 inhibition by hybrid benzimidazole-thiosemicarbazone antiplasmodial agents: A molecular docking, molecular dynamics simulation, and kinetics study. Mol Divers 2024; 28:475-496. [PMID: 36622482 PMCID: PMC9838286 DOI: 10.1007/s11030-022-10594-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Accepted: 12/20/2022] [Indexed: 01/10/2023]
Abstract
The emergence of artemisinin-resistant variants of Plasmodium falciparum necessitates the urgent search for novel antimalarial drugs. In this regard, an in silico study to screen antimalarial drug candidates from a series of benzimidazole-thiosemicarbazone hybrid molecules with interesting antiplasmodial properties and explore their falcipain-2 (FP2) inhibitory potentials has been undertaken herein. FP2 is a key cysteine protease that degrades hemoglobin in Plasmodium falciparum and is an important biomolecular target in the development of antimalarial drugs. Pharmacokinetic properties, ADMET profiles, MM/GBSA-based binding free energies, reaction mechanisms, and associated barrier heights have been investigated. DFT, molecular dynamics simulation, molecular docking, and ONIOM methods were used. From the results obtained, four 4N-substituted derivatives of the hybrid molecule (E)-2-(1-(5-chloro-1H-benzo[d]imidazol-2-yl)ethylidene)hydrazine-1-carbothioamide (1A) denoted 1B, 1C, 1D, and 1E are drug-like and promising inhibitors of FP2, exhibiting remarkably small inhibitory constants (5.94 × 10-14 - 2.59 × 10-04 n M) and favorable binding free energies (-30.32 to -17.17 kcal/mol). Moreover, the ONIOM results have revealed that 1B and possibly 1C and 1D may act as covalent inhibitors of FP2. The rate-determining step of the thermodynamically favorable covalent binding mechanism occurs across a surmountable barrier height of 24.18 kcal/mol in water and 28.42 kcal/mol in diethyl ether. Our findings are useful for further experimental investigations on the antimalarial activities of the hybrid molecules studied.
Collapse
Affiliation(s)
- Nyiang Kennet Nkungli
- Department of Chemistry, Faculty of Science, The University of Bamenda, Bambili, P. O. Box 39, Bamenda, Cameroon.
| | - Aymard Didier Tamafo Fouegue
- Department of Chemistry, Higher Teacher Training College Bertoua, University of Bertoua, P.O. Box 652, Bertoua, Cameroon
| | - Stanley Numbonui Tasheh
- Department of Chemistry, Faculty of Science, The University of Bamenda, Bambili, P. O. Box 39, Bamenda, Cameroon
- Department of Chemistry, Faculty of Science, University of Dschang, P. O. Box 67, Dschang, Cameroon
| | - Fritzgerald Kogge Bine
- Department of Chemistry, Faculty of Science, University of Dschang, P. O. Box 67, Dschang, Cameroon
| | - Abrar Ul Hassan
- Department of Chemistry, University of Gujrat, Gujrat, 54400, PK, Pakistan
| | - Julius Numbonui Ghogomu
- Department of Chemistry, Faculty of Science, The University of Bamenda, Bambili, P. O. Box 39, Bamenda, Cameroon
- Department of Chemistry, Faculty of Science, University of Dschang, P. O. Box 67, Dschang, Cameroon
| |
Collapse
|
4
|
Mani M, Vellusamy M, Rathinavel T, Vadivel P, Dauchez M, Khan R, Aroulmoji V. In silico validation of hyaluronic acid - drug conjugates based targeted drug delivery for the treatment of COVID-19. J Biomol Struct Dyn 2024:1-15. [PMID: 38533826 DOI: 10.1080/07391102.2024.2328745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 03/05/2024] [Indexed: 03/28/2024]
Abstract
The impact of COVID-19 urges scientists to develop targeted drug delivery to manage Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) viral infections with a fast recovery rate. The aim of the study is to develop Hyaluronic Acid (HA) drug conjugates of viral drugs to target two important enzymes (Mpro and PLpro) of SARS-CoV-2. Three antiviral drugs, namely Dexamethasone (DEX), Favipiravir (FAV), and Remdesivir (REM), were chosen for HA conjugation due to their reactive functional groups. Free forms of drugs (DEX, FAV, REM) and HA drug conjugates (HA-DEX, HA-FAV, HA-REM, HA-RHA, HA-RHE) were validated against Mpro (PDB ID 6LU7) and PLpro (PDB 7LLZ), which play an essential role in the replication and reproduction of the SARS-CoV-2 virus. The results of the present study revealed that HA-drug conjugates possess higher binding affinity and the best docking score towards the Mpro and PLpro target proteins of SARS-CoV-2 than their free forms of drugs. ADMET screening resulted that HA-drug conjugates exhibited better pharmacokinetic profiles than their pure forms of drugs. Further, molecular dynamic simulation studies, essential dynamics and free energy landscape analyses show that HA antiviral drug conjugates possess good trajectories and energy status, with the PLpro target protein (PDB 7LLZ) of SARS-CoV-2 through long-distance (500 ns) simulation screening. The research work recorded the best drug candidate for Cell-Targeted Drug Delivery (CTDD) for SARS-CoV-2-infected cells through hyaluronic acid conjugates of antiviral drugs.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Mohan Mani
- Centre for Research & Development, Mahendra Engineering College (Autonomous), Mallasamudram, Namakkal (Dt.), Tamil Nadu, India
| | - Mahesh Vellusamy
- Universite ́ de Reims Champagne Ardenne, CNRS, MEDyC UMR 7369, Reims, France
| | | | - Pullar Vadivel
- Department of Chemistry, Salem Sowdeswari College for Women, Salem (Dt.), Tamil Nadu, India
| | - Manuel Dauchez
- Universite ́ de Reims Champagne Ardenne, CNRS, MEDyC UMR 7369, Reims, France
| | - Riaz Khan
- Department of Chemistry, Rumsey, Sonning, Berkshire, UK
| | - Vincent Aroulmoji
- Centre for Research & Development, Mahendra Engineering College (Autonomous), Mallasamudram, Namakkal (Dt.), Tamil Nadu, India
| |
Collapse
|
5
|
Mohamed MAA, Kadry AM, Bekhit SA, Abourehab MAS, Amagase K, Ibrahim TM, El-Saghier AMM, Bekhit AA. Spiro heterocycles bearing piperidine moiety as potential scaffold for antileishmanial activity: synthesis, biological evaluation, and in silico studies. J Enzyme Inhib Med Chem 2023; 38:330-342. [PMID: 36444862 PMCID: PMC11003478 DOI: 10.1080/14756366.2022.2150763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/18/2022] [Indexed: 11/30/2022] Open
Abstract
New spiro-piperidine derivatives were synthesised via the eco-friendly ionic liquids in a one-pot fashion. The in vitro antileishmanial activity against Leishmania major promastigote and amastigote forms highlighted promising antileishmanial activity for most of the derivatives, with superior activity compared to miltefosine. The most active compounds 8a and 9a exhibited sub-micromolar range of activity, with IC50 values of 0.89 µM and 0.50 µM, respectively, compared to 8.08 µM of miltefosine. Furthermore, the antileishmanial activity reversal of these compounds via folic and folinic acids displayed comparable results to the positive control trimethoprim. This emphasises that their antileishmanial activity is through the antifolate mechanism via targeting DHFR and PTR1. The most active compounds showed superior selectivity and safety profile compared to miltefosine against VERO cells. Moreover, the docking experiments of 8a and 9a against Lm-PTR1 rationalised the observed in vitro activities. Molecular dynamics simulations confirmed a stable and high potential binding to Lm-PTR1.
Collapse
Affiliation(s)
| | - Asmaa M. Kadry
- Chemistry Department, Faculty of Science, Sohag University, Sohag, Egypt
| | - Salma A. Bekhit
- High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | | | - Kikuko Amagase
- Laboratory of Pharmacology & Pharmacotherapeutics, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Tamer M. Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | | | - Adnan A. Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
- Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Sakhir, Kingdom of Bahrain
| |
Collapse
|
6
|
Duan L, Tang B, Luo S, Xiong D, Wang Q, Xu X, Zhang JZH. Entropy driven cooperativity effect in multi-site drug optimization targeting SARS-CoV-2 papain-like protease. Cell Mol Life Sci 2023; 80:313. [PMID: 37796323 PMCID: PMC11072831 DOI: 10.1007/s00018-023-04985-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/07/2023] [Accepted: 09/26/2023] [Indexed: 10/06/2023]
Abstract
Papain-like protease (PLpro), a non-structural protein encoded by SARS-CoV-2, is an important therapeutic target. Regions 1 and 5 of an existing drug, GRL0617, can be optimized to produce cooperativity with PLpro binding, resulting in stronger binding affinity. This work investigated the origin of the cooperativity using molecular dynamics simulations combined with the interaction entropy (IE) method. The regions' improvement exhibits cooperativity by calculating the binding free energies between the complex of PLpro-inhibitor. The thermodynamic integration method further verified the cooperativity generated in the drug improvement. To further determine the specific source of cooperativity, enthalpy and entropy in the complexes were calculated using molecular mechanics/generalized Born surface area and IE. The results show that the entropic change is an important contributor to the cooperativity. Our study also identified residues P248, Q269, and T301 that play a significant role in cooperativity. The optimization of the inhibitor stabilizes these residues and minimizes the entropic loss, and the cooperativity observed in the binding free energy can be attributed to the change in the entropic contribution of these residues. Based on our research, the application of cooperativity can facilitate drug optimization, and provide theoretical ideas for drug development that leverage cooperativity by reducing the contribution of entropy through multi-locus binding.
Collapse
Affiliation(s)
- Lili Duan
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China.
| | - Bolin Tang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Song Luo
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Danyang Xiong
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Qihang Wang
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - Xiaole Xu
- School of Physics and Electronics, Shandong Normal University, Jinan, 250014, China
| | - John Z H Zhang
- Faculty of Synthetic Biology and Shenzhen Institute of Synthetic Biology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai, 200062, China.
- NYU-ECNU Center for Computational Chemistry at NYU Shanghai, Shanghai, 200062, China.
- Department of Chemistry, New York University, New York, NY, 10003, USA.
| |
Collapse
|
7
|
Ibrahim TM, Abada G, Dammann M, Maklad RM, Eldehna WM, Salem R, Abdelaziz MM, El-Domany RA, Bekhit AA, Beockler FM. Tetrahydrobenzo[h]quinoline derivatives as a novel chemotype for dual antileishmanial-antimalarial activity graced with antitubercular activity: Design, synthesis and biological evaluation. Eur J Med Chem 2023; 257:115534. [PMID: 37269671 DOI: 10.1016/j.ejmech.2023.115534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/25/2023] [Accepted: 05/28/2023] [Indexed: 06/05/2023]
Abstract
Derivatives with tetrahydrobenzo[h]quinoline chemotype were synthesized via one-pot reactions and evaluated for their antileishmanial, antimalarial and antitubercular activities. Based on a structure-guided approach, they were designed to possess antileishmanial activity through antifolate mechanism, via targeting Leishmania major pteridine reductase 1 (Lm-PTR1). The in vitro antipromastigote and antiamastigote activity are promising for all candidates and superior to the reference miltefosine, in a low or sub micromolar range of activity. Their antifolate mechanism was confirmed via the ability of folic and folinic acids to reverse the antileishmanial activity of these compounds, comparably to Lm-PTR1 inhibitor trimethoprim. Molecular dynamics simulations confirmed a stable and high potential binding of the most active candidates against leishmanial PTR1. For the antimalarial activity, most of the compounds exhibited promising antiplasmodial effect against P. berghei with suppression percentage of up to 97.78%. The most active compounds were further screened in vitro against the chloroquine resistant strain P. falciparum, (RKL9) and showed IC50 value range of 0.0198-0.096 μM, compared to IC50 value of 0.19420 μM for chloroquine sulphate. Molecular docking of the most active compounds against the wild-type and quadruple mutant pf DHFR-TS structures rationalized the in vitro antimalarial activity. Some candidates showed good antitubercular activity against sensitive Mycobacterium tuberculosis in a low micromolar range of MIC, compared to 0.875 μM of isoniazid. The top active ones were further tested against a multidrug-resistant strain (MDR) and extensively drug-resistant strain (XDR) of Mycobacterium tuberculosis. Interestingly, the in vitro cytotoxicity test of the best candidates displayed high selectivity indices emphasizing their safety on mammalian cells. Generally, this work introduces a fruitful matrix for new dual acting antileishmanial-antimalarial chemotype graced with antitubercular activity. This would help in tackling drug-resistance issues in treating some Neglected Tropical Diseases.
Collapse
Affiliation(s)
- Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt; Laboratory for Molecular Design and Pharmaceutical Biophysics, Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany; Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt.
| | - Ghada Abada
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Marcel Dammann
- Laboratory for Molecular Design and Pharmaceutical Biophysics, Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| | - Raed M Maklad
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Wagdy M Eldehna
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt; Scientific Research and Innovation Support Unit, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Rofaida Salem
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Marwa M Abdelaziz
- The Regional Center for Mycology & Biotechnology, Al-Azhar University, Cairo, Egypt
| | - Ramadan A El-Domany
- Department of Microbiology and Immunology, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, P.O. Box 33516, Egypt
| | - Adnan A Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt; Pharmacy Program, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, P.O. Box 32038, Bahrain
| | - Frank M Beockler
- Laboratory for Molecular Design and Pharmaceutical Biophysics, Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Eberhard Karls University Tuebingen, Auf der Morgenstelle 8, 72076, Tuebingen, Germany
| |
Collapse
|
8
|
Hersi F, Sebastian A, Tarazi H, Srinivasulu V, Mostafa A, Allayeh AK, Zeng C, Hachim IY, Liu SL, Abu-Yousef IA, Majdalawieh AF, Zaher DM, Omar HA, Al-Tel TH. Discovery of novel papain-like protease inhibitors for potential treatment of COVID-19. Eur J Med Chem 2023; 254:115380. [PMID: 37075625 PMCID: PMC10106510 DOI: 10.1016/j.ejmech.2023.115380] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/09/2023] [Accepted: 04/12/2023] [Indexed: 04/21/2023]
Abstract
The recent emergence of different SARS-CoV-2 variants creates an urgent need to develop more effective therapeutic agents to prevent COVID-19 outbreaks. Among SARS-CoV-2 essential proteases is papain-like protease (SARS-CoV-2 PLpro), which plays multiple roles in regulating SARS-CoV-2 viral spread and innate immunity such as deubiquitinating and deISG15ylating (interferon-induced gene 15) activities. Many studies are currently focused on targeting this protease to tackle SARS-CoV-2 infection. In this context, we performed a phenotypic screening using an in-house pilot compounds collection possessing a diverse skeleta against SARS-CoV-2 PLpro. This screen identified SIMR3030 as a potent inhibitor of SARS-CoV-2. SIMR3030 has been shown to exhibit deubiquitinating activity and inhibition of SARS-CoV-2 specific gene expression (ORF1b and Spike) in infected host cells and possessing virucidal activity. Moreover, SIMR3030 was demonstrated to inhibit the expression of inflammatory markers, including IFN-α, IL-6, and OAS1, which are reported to mediate the development of cytokine storms and aggressive immune responses. In vitro absorption, distribution, metabolism, and excretion (ADME) assessment of the drug-likeness properties of SIMR3030 demonstrated good microsomal stability in liver microsomes. Furthermore, SIMR3030 demonstrated very low potency as an inhibitor of CYP450, CYP3A4, CYP2D6 and CYP2C9 which rules out any potential drug-drug interactions. In addition, SIMR3030 showed moderate permeability in Caco2-cells. Critically, SIMR3030 has maintained a high in vivo safety profile at different concentrations. Molecular modeling studies of SIMR3030 in the active sites of SARS-CoV-2 and MERS-CoV PLpro were performed to shed light on the binding modes of this inhibitor. This study demonstrates that SIMR3030 is a potent inhibitor of SARS-CoV-2 PLpro that forms the foundation for developing new drugs to tackle the COVID-19 pandemic and may pave the way for the development of novel therapeutics for a possible future outbreak of new SARS-CoV-2 variants or other Coronavirus species.
Collapse
Affiliation(s)
- Fatema Hersi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Anusha Sebastian
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hamadeh Tarazi
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Vunnam Srinivasulu
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ahmed Mostafa
- Center of Scientific Excellence for Influenza Viruses, Environment and Climate Change Institute, National Research Centre, Giza, 12622, Egypt
| | - Abdou Kamal Allayeh
- Virology Lab 176, Water Pollution Research Department, Environment and Climate Change Institute, National Research Centre, Dokki, Giza, 12622, Egypt
| | - Cong Zeng
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Ibrahim Y Hachim
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Shan-Lu Liu
- Center for Retrovirus Research, The Ohio State University, Columbus, OH, 43210, USA; Department of Veterinary Biosciences, The Ohio State University, Columbus, OH, 43210, USA
| | - Imad A Abu-Yousef
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Amin F Majdalawieh
- Department of Biology, Chemistry and Environmental Sciences, College of Arts and Sciences, American University of Sharjah, P.O. Box 26666, Sharjah, United Arab Emirates
| | - Dana M Zaher
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Medicine, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Hany A Omar
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates; Faculty of Pharmacy, Beni-Suef University, Beni-Suef, 62514, Egypt.
| | - Taleb H Al-Tel
- Sharjah Institute for Medical Research, University of Sharjah, Sharjah, 27272, United Arab Emirates; College of Pharmacy, University of Sharjah, Sharjah, 27272, United Arab Emirates.
| |
Collapse
|
9
|
Lu G, Ou K, Zhang Y, Zhang H, Feng S, Yang Z, Sun G, Liu J, Wei S, Pan S, Chen Z. Structural Analysis, Multi-Conformation Virtual Screening and Molecular Simulation to Identify Potential Inhibitors Targeting pS273R Proteases of African Swine Fever Virus. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28020570. [PMID: 36677630 PMCID: PMC9866604 DOI: 10.3390/molecules28020570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 12/26/2022] [Accepted: 01/03/2023] [Indexed: 01/09/2023]
Abstract
The African Swine Fever virus (ASFV) causes an infectious viral disease in pigs of all ages. The development of antiviral drugs primarily aimed at inhibition of proteases required for the proteolysis of viral polyproteins. In this study, the conformation of the pS273R protease in physiological states were investigated, virtually screened the multi-protein conformation of pS273R target proteins, combined various molecular docking scoring functions, and identified five potential drugs from the Food and Drug Administration drug library that may inhibit pS273R. Subsequent validation of the dynamic interactions of pS273R with the five putative inhibitors was achieved using molecular dynamics simulations and binding free energy calculations using the molecular mechanics/Poison-Boltzmann (Generalized Born) (MM/PB(GB)SA) surface area. These findings demonstrate that the arm domain and Thr159-Lys167 loop region of pS273R are significantly more flexible compared to the core structural domain, and the Thr159-Lys167 loop region can serve as a "gatekeeper" in the substrate channel. Leucovorin, Carboprost, Protirelin, Flavin Mononucleotide, and Lovastatin Acid all have Gibbs binding free energies with pS273R that were less than -20 Kcal/mol according to the MM/PBSA analyses. In contrast to pS273R in the free energy landscape, the inhibitor and drug complexes of pS273R showed distinct structural group distributions. These five drugs may be used as potential inhibitors of pS273R and may serve as future drug candidates for treating ASFV.
Collapse
Affiliation(s)
- Gen Lu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Kang Ou
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Yihan Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Huan Zhang
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Shouhua Feng
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
| | - Zuofeng Yang
- The Preventive and Control Center of Animal Disease of Liaoning Province, Liaoning Agricultural Development Service Center, No. 95, Renhe Road, Shenbei District, Shenyang 110164, China
| | - Guo Sun
- Qianyuanhao Biological Co., Ltd., Building 20, District 11, No. 188 South Fourth Ring West Road, Fengtai District, Beijing 100070, China
| | - Jinling Liu
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
- Correspondence: (J.L.); (S.W.); (S.P.); (Z.C.); Tel.: +86-13022453165 (J.L.); Fax: +86-24-88487156 (J.L.)
| | - Shu Wei
- The Preventive and Control Center of Animal Disease of Liaoning Province, Liaoning Agricultural Development Service Center, No. 95, Renhe Road, Shenbei District, Shenyang 110164, China
- Correspondence: (J.L.); (S.W.); (S.P.); (Z.C.); Tel.: +86-13022453165 (J.L.); Fax: +86-24-88487156 (J.L.)
| | - Shude Pan
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
- Correspondence: (J.L.); (S.W.); (S.P.); (Z.C.); Tel.: +86-13022453165 (J.L.); Fax: +86-24-88487156 (J.L.)
| | - Zeliang Chen
- Key Laboratory of Livestock Infectious Diseases, Ministry of Education, Shenyang Agricultural University, No. 120, Dongling Road, Shenhe District, Shenyang 110866, China
- Correspondence: (J.L.); (S.W.); (S.P.); (Z.C.); Tel.: +86-13022453165 (J.L.); Fax: +86-24-88487156 (J.L.)
| |
Collapse
|
10
|
Bekhit AA, Lodebo ET, Hymete A, Ragab HM, Bekhit SA, Amagase K, Batubara A, Abourehab MAS, Bekhit AEDA, Ibrahim TM. New pyrazolylpyrazoline derivatives as dual acting antimalarial-antileishamanial agents: synthesis, biological evaluation and molecular modelling simulations. J Enzyme Inhib Med Chem 2022; 37:2320-2333. [PMID: 36036155 PMCID: PMC9427035 DOI: 10.1080/14756366.2022.2117316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Promising inhibitory activities of the parasite multiplication were obtained upon evaluation of in vivo antimalarial activities of new pyrazolylpyrazoline derivatives against Plasmodium berghei infected mice. Further evaluation of 5b and 6a against chloroquine-resistant strain (RKL9) of P. falciparum showed higher potency than chloroquine. In vitro antileishmanial activity testing against Leishmania aethiopica promastigote and amastigote forms indicated that 5b, 6a and 7b possessed promising activity compared to miltefosine and amphotericin B deoxycholate. Moreover, antileishmanial activity reversal of the active compounds via folic and folinic acids showed comparable results to the positive control trimethoprim, indicating an antifolate mechanism via targeting leishmanial DHFR and PTR1. The compounds were non-toxic at 125, 250 and 500 mg/kg. In addition, docking of the most active compound against putative malarial target Pf-DHFR-TS and leishmanial PTR1 rationalised the observed activities. Molecular dynamics simulations confirmed a stable and high potential binding of 7a against leishmanial PTR1.
Collapse
Affiliation(s)
- Adnan A Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt.,Pharmacy Program, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Zallaq, Kingdom of Bahrain.,Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia
| | - Eskedar T Lodebo
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia.,Department of Chemistry, Kotebe Metropolitan University, Addis Ababa, Ethiopia
| | - Ariaya Hymete
- Department of Pharmaceutical Chemistry and Pharmacognosy, School of Pharmacy, Addis Ababa University, Addis Ababa, Ethiopia
| | - Hanan M Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Salma A Bekhit
- High Institute of Public Health, Alexandria University, Alexandria, Egypt
| | - Kikuko Amagase
- Laboratory of Pharmacology & Pharmacotherapeutics, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Japan
| | - Afnan Batubara
- Department of Pharmaceutical Chemistry, College of Pharmacy, Umm Al-Qurra University, Makkah, Saudi Arabia
| | - Mohammed A S Abourehab
- Department of Pharmaceutics, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | | | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| |
Collapse
|
11
|
Domiati SA, Abd El Galil KH, Abourehab MAS, Ibrahim TM, Ragab HM. Structure-guided approach on the role of substitution on amide-linked bipyrazoles and its effect on their anti-inflammatory activity. J Enzyme Inhib Med Chem 2022; 37:2179-2190. [PMID: 35950562 PMCID: PMC9377232 DOI: 10.1080/14756366.2022.2109025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
Abstract
A structure-guided modelling approach using COX-2 as a template was used to investigate the effect of replacing the chloro atom located at the chlorophenyl ring of amide-linked bipyrazole moieties, aiming at attaining better anti-inflammatory effect with a good safety profile. Bromo, fluoro, nitro, and methyl groups were revealed to be ideal candidates. Consequently, new bipyrazole derivatives were synthesised. The in vitro inhibitory COX-1/COX-2 activity of the synthesised compounds exhibited promising selectivity. The fluoro and methyl derivatives were the most active candidates. The in vivo formalin-induced paw edoema model confirmed the anti-inflammatory activity of the synthesised compounds. All the tested derivatives had a good ulcerogenic safety profile except for the methyl substituted compound. In silico molecular dynamics simulations of the fluoro and methyl poses complexed with COX-2 for 50 ns indicated stable binding to COX-2. Generally, our approach delivers a fruitful matrix for the development of further amide-linked bipyrazole anti-inflammatory candidates.
Collapse
Affiliation(s)
- Souraya A Domiati
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon
| | - Khaled H Abd El Galil
- Department of Pharmaceutical Sciences, Faculty of Pharmacy, Beirut Arab University, Beirut, Lebanon.,Department of Microbiology and Immunology, Faculty of Pharmacy, Mansoura University
| | - Mohammed A S Abourehab
- Department of Pharmaceutics College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia.,Department of Pharmaceutics and Industrial Pharmacy, Faculty of Pharmacy, Minia University, Minia, Egypt
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Hanan M Ragab
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| |
Collapse
|
12
|
Nogara PA, Omage FB, Bolzan GR, Delgado CP, Orian L, Rocha JBT. Reactivity and binding mode of disulfiram, its metabolites, and derivatives in SARS-CoV-2 PL pro: insights from computational chemistry studies. J Mol Model 2022; 28:354. [PMID: 36222962 PMCID: PMC9554863 DOI: 10.1007/s00894-022-05341-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 09/28/2022] [Indexed: 10/25/2022]
Abstract
The papain-like protease (PLpro) from SARS-CoV-2 is an important target for the development of antivirals against COVID-19. The safe drug disulfiram (DSF) presents antiviral activity inhibiting PLpro in vitro, and it is under clinical trial studies, indicating to be a promising anti-COVID-19 drug. In this work, we aimed to understand the mechanism of PLpro inhibition by DSF and verify if DSF metabolites and derivatives could be potential inhibitors too. Molecular docking, DFT, and ADMET techniques were applied. The carbamoylation of the active site cysteine residue by DSF metabolite (DETC-MeSO) is kinetically and thermodynamically favorable (ΔG‡ = 3.15 and ΔG = - 12.10 kcal mol-1, respectively). Our results strongly suggest that the sulfoxide metabolites from DSF are promising covalent inhibitors of PLpro and should be tested in in vitro and in vivo assays to confirm their antiviral action.
Collapse
Affiliation(s)
- Pablo Andrei Nogara
- Departamento de Bioquímica E Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, Santa Maria, RS, 97105-900, Brazil.
- Instituto Federal de Educação Ciência E Tecnologia Farroupilha (IFFar), Rua Fabio João Andolhe 1100, Santo Augusto, RS, 98590-000, Brazil.
| | - Folorunsho Bright Omage
- Departamento de Bioquímica E Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Gustavo Roni Bolzan
- Departamento de Bioquímica E Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Cássia Pereira Delgado
- Departamento de Bioquímica E Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, Santa Maria, RS, 97105-900, Brazil
| | - Laura Orian
- Dipartimento Di Scienze Chimiche, Università Degli Studi Di Padova, Via Marzolo 1, 35131, Padua, Italy
| | - João Batista Teixeira Rocha
- Departamento de Bioquímica E Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Av. Roraima 1000, Santa Maria, RS, 97105-900, Brazil.
| |
Collapse
|
13
|
Delgado CP, Rocha JBT, Orian L, Bortoli M, Nogara PA. In silico studies of M pro and PL pro from SARS-CoV-2 and a new class of cephalosporin drugs containing 1,2,4-thiadiazole. Struct Chem 2022; 33:2205-2220. [PMID: 36106095 PMCID: PMC9463509 DOI: 10.1007/s11224-022-02036-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 08/09/2022] [Indexed: 11/29/2022]
Abstract
The SARS-CoV-2 proteases Mpro and PLpro are important targets for the development of antivirals against COVID-19. The functional group 1,2,4-thiadiazole has been indicated to inhibit cysteinyl proteases, such as papain and cathepsins. Of note, the 1,2,4-thiadiazole moiety is found in a new class of cephalosporin FDA-approved antibiotics: ceftaroline fosamil, ceftobiprole, and ceftobiprole medocaril. Here we investigated the interaction of these new antibiotics and their main metabolites with the SARS-CoV-2 proteases by molecular docking, molecular dynamics (MD), and density functional theory (DFT) calculations. Our results indicated the PLpro enzyme as a better in silico target for the new antibacterial cephalosporins. The results with ceftaroline fosamil and the dephosphorylate metabolite compounds should be tested as potential inhibitor of PLpro, Mpro, and SARS-CoV-2 replication in vitro. In addition, the data here reported can help in the design of new potential drugs against COVID-19 by exploiting the S atom reactivity in the 1,2,4-thiadiazole moiety. Supplementary Information The online version contains supplementary material available at 10.1007/s11224-022-02036-5.
Collapse
Affiliation(s)
- Cássia Pereira Delgado
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS 97105-900 Brazil
| | - João Batista Teixeira Rocha
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS 97105-900 Brazil
| | - Laura Orian
- Dipartimento di Scuenze Chimiche, Università degli Studi di Padova, Via Marzolo 1, 35131 Padua, Italy
| | - Marco Bortoli
- Institut de Química Computacionali Catàlisi (IQCC), Departament de Química, Facultat de Ciències, Universitat de Girona, C/M. A. Capmany 69, 17003 Girona, Spain
| | - Pablo Andrei Nogara
- Departamento de Bioquímica e Biologia Molecular, Universidade Federal de Santa Maria (UFSM), Santa Maria, RS 97105-900 Brazil
| |
Collapse
|
14
|
Gao K, Wang R, Chen J, Cheng L, Frishcosy J, Huzumi Y, Qiu Y, Schluckbier T, Wei X, Wei GW. Methodology-Centered Review of Molecular Modeling, Simulation, and Prediction of SARS-CoV-2. Chem Rev 2022; 122:11287-11368. [PMID: 35594413 PMCID: PMC9159519 DOI: 10.1021/acs.chemrev.1c00965] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Despite tremendous efforts in the past two years, our understanding of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), virus-host interactions, immune response, virulence, transmission, and evolution is still very limited. This limitation calls for further in-depth investigation. Computational studies have become an indispensable component in combating coronavirus disease 2019 (COVID-19) due to their low cost, their efficiency, and the fact that they are free from safety and ethical constraints. Additionally, the mechanism that governs the global evolution and transmission of SARS-CoV-2 cannot be revealed from individual experiments and was discovered by integrating genotyping of massive viral sequences, biophysical modeling of protein-protein interactions, deep mutational data, deep learning, and advanced mathematics. There exists a tsunami of literature on the molecular modeling, simulations, and predictions of SARS-CoV-2 and related developments of drugs, vaccines, antibodies, and diagnostics. To provide readers with a quick update about this literature, we present a comprehensive and systematic methodology-centered review. Aspects such as molecular biophysics, bioinformatics, cheminformatics, machine learning, and mathematics are discussed. This review will be beneficial to researchers who are looking for ways to contribute to SARS-CoV-2 studies and those who are interested in the status of the field.
Collapse
Affiliation(s)
- Kaifu Gao
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Rui Wang
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Jiahui Chen
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Limei Cheng
- Clinical
Pharmacology and Pharmacometrics, Bristol
Myers Squibb, Princeton, New Jersey 08536, United States
| | - Jaclyn Frishcosy
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuta Huzumi
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Yuchi Qiu
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Tom Schluckbier
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Xiaoqi Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
| | - Guo-Wei Wei
- Department
of Mathematics, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Electrical and Computer Engineering, Michigan State University, East Lansing, Michigan 48824, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan 48824, United States
| |
Collapse
|
15
|
Rudrapal M, Celik I, Chinnam S, Azam Ansari M, Khan J, Alghamdi S, Almehmadi M, Zothantluanga JH, Khairnar SJ. Phytocompounds as potential inhibitors of SARS-CoV-2 Mpro and PLpro through computational studies. Saudi J Biol Sci 2022; 29:3456-3465. [PMID: 35233172 PMCID: PMC8873046 DOI: 10.1016/j.sjbs.2022.02.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/04/2022] [Accepted: 02/20/2022] [Indexed: 12/13/2022] Open
Abstract
The inhibition of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) main protease (Mpro) and papain-like protease (PLpro) prevents viral multiplications; these viral enzymes have been recognized as one of the most favorable targets for drug discovery against SARS-CoV-2. In the present study, we screened 225 phytocompounds present in 28 different Indian spices to identify compounds as potential inhibitors of SARS-CoV-2 Mpro and PLpro. Molecular docking, molecular dynamics simulation, molecular mechanics Poisson-Boltzmann surface area (MM-PBSA) binding free energy calculations, and absorption, distribution, metabolism, excretion and toxicity (ADMET) studies were done. Based on binding affinity, dynamics behavior, and binding free energies, the present study identifies pentaoxahexacyclo-dotriacontanonaen-trihydroxybenzoate derivative (PDT), rutin, and dihyroxy-oxan-phenyl-chromen-4-one derivative (DOC), luteolin-7-glucoside-4'-neohesperidoside as promising inhibitors of SARS-CoV-2 Mpro and PLpro, respectively.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education & Research, Pune 411019, Maharashtra, India
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38280, Turkey
| | - Sampath Chinnam
- Department of Chemistry, M. S. Ramaiah Institute of Technology (Affiliated to Visvesvaraya Technological University, Belgaum), Bengaluru 560054, Karnataka, India
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Saad Alghamdi
- Laboratory Medicine Department, Faculty of Applied Medical Sciences, Um Al-Qura University, Makkah 24382, Saudi Arabia
| | - Mazen Almehmadi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Taif University, Taif 21944, Saudi Arabia
| | - James H. Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Shubham J. Khairnar
- MET Institute of Pharmacy, Bhujbal Knowledge City, Nasik 422003, Maharashtra, India
| |
Collapse
|
16
|
Rudrapal M, Celik I, Khan J, Ansari MA, Alomary MN, Yadav R, Sharma T, Tallei TE, Pasala PK, Sahoo RK, Khairnar SJ, Bendale AR, Zothantluanga JH, Chetia D, Walode SG. Identification of bioactive molecules from Triphala (Ayurvedic herbal formulation) as potential inhibitors of SARS-CoV-2 main protease (Mpro) through computational investigations. JOURNAL OF KING SAUD UNIVERSITY. SCIENCE 2022; 34:101826. [PMID: 35035181 PMCID: PMC8744360 DOI: 10.1016/j.jksus.2022.101826] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 12/20/2021] [Accepted: 01/05/2022] [Indexed: 05/28/2023]
Abstract
Severe acute respiratory syndrome coronavirus disease (SARS-CoV-2) induced coronavirus disease 2019 (COVID-19) pandemic is the present worldwide health emergency. The global scientific community faces a significant challenge in developing targeted therapies to combat the SARS-CoV-2 infection. Computational approaches have been critical for identifying potential SARS-CoV-2 inhibitors in the face of limited resources and in this time of crisis. Main protease (Mpro) is an intriguing drug target because it processes the polyproteins required for SARS-CoV-2 replication. The application of Ayurvedic knowledge from traditional Indian systems of medicine may be a promising strategy to develop potential inhibitor for different target proteins of SARS-CoV-2. With this endeavor, we docked bioactive molecules from Triphala, an Ayurvedic formulation, against Mpro followed by molecular dynamics (MD) simulation (100 ns) to investigate their inhibitory potential against SARS-CoV-2. The top four best docked molecules (terflavin A, chebulagic acid, chebulinic acid, and corilagin) were selected for MD simulation study and the results obtained were compared to native ligand X77. From docking and MD simulation studies, the selected molecules showed promising binding affinity with the formation of stable complexes at the active binding pocket of Mpro and exhibited negative binding energy during MM-PBSA calculations, indication their strong binding affinity with the target protein. The identified bioactive molecules were further analyzed for drug-likeness by Lipinski's filter, ADMET and toxicity studies. Computational (in silico) investigations identified terflavin A, chebulagic acid, chebulinic acid, and corilagin from Triphala formulation as promising inhibitors of SARS-CoV-2 Mpro, suggesting experimental (in vitro/in vivo) studies to further explore their inhibitory mechanisms.
Collapse
Affiliation(s)
- Mithun Rudrapal
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education & Research, Pune 411019, Maharashtra, India
| | - Ismail Celik
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Erciyes University, Kayseri 38039, Turkey
| | - Johra Khan
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
| | - Mohammad Azam Ansari
- Department of Epidemic Disease Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabaia
| | - Mohammad N Alomary
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Al Majmaah 11952, Saudi Arabia
- Health and Basic Sciences Research Center, Majmaah University, Al Majmaah 11952, Saudi Arabia
- National Centre for Biotechnology, King Abdulaziz City for Science and Technology (KACST), Riyadh 11442, Saudi Arabia
| | - Rohitash Yadav
- Department of Pharmacology, All India Institute of Medical Sciences, Rishikesh 249203, India
| | - Tripti Sharma
- Department of Pharmaceutical Chemistry, School of Pharmaceutical Sciences, Siksha O Anusandhan Deemed to be University, Bhubaneswar 751003, Odisha, India
| | - Trina Ekawati Tallei
- Department of Biology, Faculty of Mathematics and Natural Sciences, Sam Ratulangi University, Manado 95115, North Sulawesi, Indonesia
- The University Center of Excellence for Biotechnology and Conservation of Wallacea, Sam Ratulangi University, Manado, North Sulawesi 95115, Indonesia
| | | | - Ranjan Kumar Sahoo
- School of Pharmacy and Life Sciences, Centurion University of Technology and Management, Bhubaneswar 752050, Odisha, India
| | | | - Atul R Bendale
- Sandip Institute of Pharmaceutical Sciences, Nashik 422213, India
| | - James H Zothantluanga
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Dipak Chetia
- Department of Pharmaceutical Sciences, Faculty of Science and Engineering, Dibrugarh University, Dibrugarh 786004, Assam, India
| | - Sanjay G Walode
- Department of Pharmaceutical Chemistry, Rasiklal M. Dhariwal Institute of Pharmaceutical Education & Research, Pune 411019, Maharashtra, India
| |
Collapse
|
17
|
Matos ADR, Caetano BC, de Almeida Filho JL, Martins JSCDC, de Oliveira MGP, Sousa TDC, Horta MAP, Siqueira MM, Fernandez JH. Identification of Hypericin as a Candidate Repurposed Therapeutic Agent for COVID-19 and Its Potential Anti-SARS-CoV-2 Activity. Front Microbiol 2022; 13:828984. [PMID: 35222340 PMCID: PMC8866965 DOI: 10.3389/fmicb.2022.828984] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2021] [Accepted: 01/13/2022] [Indexed: 12/12/2022] Open
Abstract
The COVID-19 pandemic has had an unprecedented impact on the global economy and public health. Its etiologic agent, the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly transmissible, pathogenic and has a rapid global spread. Currently, the increase in the number of new confirmed cases has been slowed down due to the increase of vaccination in some regions of the world. Still, the rise of new variants has influenced the detection of additional waves of rising cases that some countries have experienced. Since the virus replication cycle is composed of many distinct stages, some viral proteins related to them, as the main-protease (Mpro) and RNA dependent RNA polymerase (RdRp), constitute individual potential antiviral targets. In this study, we challenged the mentioned enzymes against compounds pre-approved by health regulatory agencies in a virtual screening and later in Molecular Mechanics/Poisson–Bolzmann Surface Area (MM/PBSA) analysis. Our results showed that, among the identified potential drugs with anti-SARS-CoV-2 properties, Hypericin, an important component of the Hypericum perforatum that presents antiviral and antitumoral properties, binds with high affinity to viral Mpro and RdRp. Furthermore, we evaluated the activity of Hypericin anti-SARS-CoV-2 replication in an in vitro model of Vero-E6 infected cells. Therefore, we show that Hypericin inhibited viral replication in a dose dependent manner. Moreover, the cytotoxicity of the compound, in cultured cells, was evaluated, but no significant activity was found. Thus, the results observed in this study indicate that Hypericin is an excellent candidate for repurposing for the treatment of COVID-19, with possible inhibition of two important phases of virus maturation.
Collapse
Affiliation(s)
- Aline da Rocha Matos
- Laboratório de Virus Respiratórios e do Sarampo, Insituto Oswaldo Cruz, Fundação Oswaldo Cruz (LVRS-IOC-Fiocruz), Rio de Janeiro, Brazil
| | - Braulia Costa Caetano
- Laboratório de Virus Respiratórios e do Sarampo, Insituto Oswaldo Cruz, Fundação Oswaldo Cruz (LVRS-IOC-Fiocruz), Rio de Janeiro, Brazil
| | - João Luiz de Almeida Filho
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (LQFPP-CBB-UENF), Campos dos Goytacazes, Brazil
| | | | | | - Thiago das Chagas Sousa
- Laboratório de Virus Respiratórios e do Sarampo, Insituto Oswaldo Cruz, Fundação Oswaldo Cruz (LVRS-IOC-Fiocruz), Rio de Janeiro, Brazil
| | - Marco Aurélio Pereira Horta
- Plataforma de Laboratórios de Biossegurança Nível 3, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz (NB3-IOC-Fiocruz), Rio de Janeiro, Brazil
| | - Marilda Mendonça Siqueira
- Laboratório de Virus Respiratórios e do Sarampo, Insituto Oswaldo Cruz, Fundação Oswaldo Cruz (LVRS-IOC-Fiocruz), Rio de Janeiro, Brazil
| | - Jorge Hernandez Fernandez
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense (LQFPP-CBB-UENF), Campos dos Goytacazes, Brazil
| |
Collapse
|
18
|
Bekhit AA, Nasralla SN, El-Agroudy EJ, Hamouda N, El-Fattah AA, Bekhit SA, Amagase K, Ibrahim TM. Investigation of the anti-inflammatory and analgesic activities of promising pyrazole derivative. Eur J Pharm Sci 2022; 168:106080. [PMID: 34818572 DOI: 10.1016/j.ejps.2021.106080] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 11/08/2021] [Accepted: 11/18/2021] [Indexed: 02/02/2023]
Abstract
The development of new COX-2 inhibitors with analgesic and anti-inflammatory efficacy as well as minimal gastrointestinal, renal and cardiovascular toxicity, is of vital importance to patients suffering from chronic course pain and inflammatory conditions. This study aims at evaluating the therapeutic activity and adverse drug reactions associated with the use of the newly synthesized pyrazole derivative, compound AD732, E-4-[3-(4-methylphenyl)-5-hydroxyliminomethyl-1H-pyrazol-1-yl]benzenesulfonamide, as compared to indomethacin and celecoxib as standard agents. Anti-inflammatory activity was assessed using carrageenan-induced rat paw edema and cotton pellet granuloma tests; formalin-induced hyperalgesia and hot plate tests were done to study analgesic activity. In vitro tests to determine COX-1/COX-2 selectivity and assessment of renal and gastric toxicity upon acute exposure to AD732 were also conducted. Compound AD732 exhibited promising results; higher anti-inflammatory and analgesic effects compared to standard agents, coupled with the absence of ulcerogenic effects and minimal detrimental effects on renal function. Additionally, compound AD732 was a less potent inhibitor of COX-2 in vitro than celecoxib, which may indicate lower potential cardiovascular toxicity. It may be concluded that compound AD732 appears to be a safer and more effective molecule with promising potential for the management of pain and inflammation.
Collapse
Affiliation(s)
- Adnan A Bekhit
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt; Pharmacy Program, Pharmacology stream, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Kingdom of Bahrain.
| | - Sherry N Nasralla
- Pharmacy Program, Pharmacology stream, Allied Health Department, College of Health and Sport Sciences, University of Bahrain, Kingdom of Bahrain
| | - Eman J El-Agroudy
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, Alexandria 21521, Egypt
| | - Nahla Hamouda
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Ahmed Abd El-Fattah
- Department of Materials Science, Institute of Graduate Studies and Research, Alexandria University, Alexandria, 21526, Egypt; Department of Chemistry, College of Science, University of Bahrain, Sakhir P.O. Box. 32038, Kingdom of Bahrain
| | - Salma A Bekhit
- High Institute of Public Health, Alexandria University, Alexandria 21568, Egypt
| | - Kikuko Amagase
- Laboratory of Pharmacology & Pharmacotherapeutics, College of Pharmaceutical Sciences, Ritsumeikan University, Kusatsu, Shiga, Japan
| | - Tamer M Ibrahim
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
19
|
Hall-Swan S, Devaurs D, Rigo MM, Antunes DA, Kavraki LE, Zanatta G. DINC-COVID: A webserver for ensemble docking with flexible SARS-CoV-2 proteins. Comput Biol Med 2021; 139:104943. [PMID: 34717233 PMCID: PMC8518241 DOI: 10.1016/j.compbiomed.2021.104943] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/27/2021] [Accepted: 10/11/2021] [Indexed: 12/16/2022]
Abstract
An unprecedented research effort has been undertaken in response to the ongoing COVID-19 pandemic. This has included the determination of hundreds of crystallographic structures of SARS-CoV-2 proteins, and numerous virtual screening projects searching large compound libraries for potential drug inhibitors. Unfortunately, these initiatives have had very limited success in producing effective inhibitors against SARS-CoV-2 proteins. A reason might be an often overlooked factor in these computational efforts: receptor flexibility. To address this issue we have implemented a computational tool for ensemble docking with SARS-CoV-2 proteins. We have extracted representative ensembles of protein conformations from the Protein Data Bank and from in silico molecular dynamics simulations. Twelve pre-computed ensembles of SARS-CoV-2 protein conformations have now been made available for ensemble docking via a user-friendly webserver called DINC-COVID (dinc-covid.kavrakilab.org). We have validated DINC-COVID using data on tested inhibitors of two SARS-CoV-2 proteins, obtaining good correlations between docking-derived binding energies and experimentally-determined binding affinities. Some of the best results have been obtained on a dataset of large ligands resolved via room temperature crystallography, and therefore capturing alternative receptor conformations. In addition, we have shown that the ensembles available in DINC-COVID capture different ranges of receptor flexibility, and that this diversity is useful in finding alternative binding modes of ligands. Overall, our work highlights the importance of accounting for receptor flexibility in docking studies, and provides a platform for the identification of new inhibitors against SARS-CoV-2 proteins.
Collapse
Affiliation(s)
- Sarah Hall-Swan
- Department of Computer Science, Rice University, Houston, 77005, Texas, United States
| | - Didier Devaurs
- MRC Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, United Kingdom
| | - Mauricio M. Rigo
- Department of Computer Science, Rice University, Houston, 77005, Texas, United States
| | - Dinler A. Antunes
- Department of Computer Science, Rice University, Houston, 77005, Texas, United States,Department of Biology and Biochemistry, University of Houston, Houston, 77005, Texas, United States,Corresponding author. Department of Computer Science, Rice University, Houston, 77005, Texas, United States
| | - Lydia E. Kavraki
- Department of Computer Science, Rice University, Houston, 77005, Texas, United States,Corresponding author
| | - Geancarlo Zanatta
- Department of Physics, Federal University of Ceará, Fortaleza, CE, Brazil,Corresponding author
| |
Collapse
|
20
|
In silico studies of selected xanthophylls as potential candidates against SARS-CoV-2 targeting main protease (Mpro) and papain-like protease (PLpro). HERBA POLONICA 2021. [DOI: 10.2478/hepo-2021-0009] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Summary
Introduction: The main protease (Mpro) and the papain-like protease (PLpro) are essential for the replication of SARS-CoV-2. Both proteases can be targets for drugs acting against SARS-CoV-2.
Objective: This paper aims to investigate the in silico activity of nine xanthophylls as inhibitors of Mpro and PLpro.
Methods: The structures of Mpro (PDB-ID: 6LU7) and PLpro (PDB-ID: 6W9C) were obtained from RCSB Protein Data Bank and developed with BIOVIA Discovery Studio. Active sites of proteins were performed using CASTp. For docking the PyRx was used. Pharmacokinetic parameters of ADMET were evaluated using SwissADME and pkCSM.
Results:
β-cryptoxanthin exhibited the highest binding energy: –7.4 kcal/mol in the active site of Mpro. In PLpro active site, the highest binding energy had canthaxanthin of –9.4 kcal/mol, astaxanthin –9.3 kcal/mol, flavoxanthin –9.2 kcal/mol and violaxanthin –9.2 kcal/mol. ADMET studies presented lower toxicity of xanthophylls in comparison to ritonavir and ivermectin.
Conclusion: Our findings suggest that xanthophylls can be used as potential inhibitors against SARS-CoV-2 main protease and papain-like protease.
Collapse
|
21
|
El Hassab MA, Ibrahim TM, Shoun AA, Al-Rashood ST, Alkahtani HM, Alharbi A, Eskandrani RO, Eldehna WM. In silico identification of potential SARS COV-2 2′-O-methyltransferase inhibitor: fragment-based screening approach and MM-PBSA calculations. RSC Adv 2021; 11:16026-16033. [PMID: 35481212 PMCID: PMC9029993 DOI: 10.1039/d1ra01809d] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 04/12/2021] [Indexed: 12/22/2022] Open
Abstract
In the present era, there are many efforts trying to face the emerging and successive waves of the COVID-19 pandemic. This has led to considering new and unusual targets for SARS CoV-2. 2′-O-Methyltransferase (nsp16) is a key and attractive target in the SARS CoV-2 life cycle since it is responsible for the viral RNA protection via a cap formation process. In this study, we propose a new potential inhibitor for SARS COV-2 2′-O-methyltransferase (nsp16). A fragment library was screened against the co-crystal structure of the SARS COV-2 2′-O-methyltransferase complexed with Sinefungin (nsp16 – PDB ID: 6WKQ), and consequently the best proposed fragments were linked via a de novo approach to build molecule AP-20. Molecule AP-20 displayed a superior docking score to Sinefungin and reproduced the key interactions in the binding site of 2′-O-methyltransferase. Three molecular dynamic simulations of the 2′-O-methyltransferase apo structure and its complexed forms with AP-20 and Sinefungin were performed for 150 nano-seconds to provide insights on the dynamic nature of such setups and to assess the stability of the proposed AP-20/enzyme complex. AP-20/enzyme complex demonstrated better stability for the ligand–enzyme complex compared to Sinefungin in a respective setup. Furthermore, MM-PBSA binding free energy calculations showed a better profile for AP-20/enzyme complex compared to Sinefungin/enzyme complex emphasizing the potential inhibitory effect of AP-20 on SARS COV-2 2′-O-methyltransferase. We endorse our designed molecule AP-20 to be further explored via experimental evaluations to confront the spread of the emerging COVID-19. Also, in silico ADME profiling has ascribed to AP-20 an excellent safety and metabolic stability profile. The identification of AP-20 as a potential SARS COV-2 2′-O-methyltransferase inhibitor: fragment-based screening approach and MM-PBSA calculations.![]()
Collapse
Affiliation(s)
- Mahmoud A. El Hassab
- Department of Pharmaceutical Chemistry
- School of Pharmacy
- Badr University in Cairo (BUC)
- Cairo
- Egypt
| | - Tamer M. Ibrahim
- Department of Pharmaceutical Chemistry
- Faculty of Pharmacy
- Kafrelsheikh University
- Kafrelsheikh
- Egypt
| | - Aly A. Shoun
- Department of Microbiology & Immunology
- Faculty of Pharmacy
- Sinai University
- North Sinai
- Egypt
| | - Sara T. Al-Rashood
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Saudi Arabia
| | - Hamad M. Alkahtani
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Saudi Arabia
| | - Amal Alharbi
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Saudi Arabia
| | - Razan O. Eskandrani
- Department of Pharmaceutical Chemistry
- College of Pharmacy
- King Saud University
- Riyadh
- Saudi Arabia
| | - Wagdy M. Eldehna
- Department of Pharmaceutical Chemistry
- Faculty of Pharmacy
- Kafrelsheikh University
- Kafrelsheikh
- Egypt
| |
Collapse
|
22
|
Zanni R, Galvez-Llompart M, Galvez J. Computational analysis of macrolides as SARS-CoV-2 main protease inhibitors: a pattern recognition study based on molecular topology and validated by molecular docking. NEW J CHEM 2021. [DOI: 10.1039/d0nj05983h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Macrolides share the same chemo-mathematical pattern as SARS-CoV-2 protease inhibitors.
Collapse
Affiliation(s)
- Riccardo Zanni
- Molecular Topology and Drug Design Unit
- Department of Physical Chemistry
- University of Valencia
- Valencia
- Spain
| | - Maria Galvez-Llompart
- Instituto de Tecnología Química
- UPV-CSIC
- Universidad Politécnica de Valencia
- Valencia
- Spain
| | - Jorge Galvez
- Molecular Topology and Drug Design Unit
- Department of Physical Chemistry
- University of Valencia
- Valencia
- Spain
| |
Collapse
|