1
|
Caya-Bissonnette L, Béïque JC. Half a century legacy of long-term potentiation. Curr Biol 2024; 34:R640-R662. [PMID: 38981433 DOI: 10.1016/j.cub.2024.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/11/2024]
Abstract
In 1973, two papers from Bliss and Lømo and from Bliss and Gardner-Medwin reported that high-frequency synaptic stimulation in the dentate gyrus of rabbits resulted in a long-lasting increase in synaptic strength. This form of synaptic plasticity, commonly referred to as long-term potentiation (LTP), was immediately considered as an attractive mechanism accounting for the ability of the brain to store information. In this historical piece looking back over the past 50 years, we discuss how these two landmark contributions directly motivated a colossal research effort and detail some of the resulting milestones that have shaped our evolving understanding of the molecular and cellular underpinnings of LTP. We highlight the main features of LTP, cover key experiments that defined its induction and expression mechanisms, and outline the evidence supporting a potential role of LTP in learning and memory. We also briefly explore some ramifications of LTP on network stability, consider current limitations of LTP as a model of associative memory, and entertain future research orientations.
Collapse
Affiliation(s)
- Léa Caya-Bissonnette
- Graduate Program in Neuroscience, University of Ottawa, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada; Brain and Mind Research Institute's Centre for Neural Dynamics and Artificial Intelligence, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada
| | - Jean-Claude Béïque
- Brain and Mind Research Institute's Centre for Neural Dynamics and Artificial Intelligence, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada; Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, 451 ch. Smyth Road (3501N), Ottawa, ON K1H 8M5, Canada.
| |
Collapse
|
2
|
Ma W, Si T, Wang Z, Wen P, Zhu Z, Liu Q, Wang J, Xu F, Li Q. Astrocytic α4-containing nAChR signaling in the hippocampus governs the formation of temporal association memory. Cell Rep 2023; 42:112674. [PMID: 37352098 DOI: 10.1016/j.celrep.2023.112674] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 03/24/2023] [Accepted: 06/06/2023] [Indexed: 06/25/2023] Open
Abstract
Everyday episodic memories involve linking together related events that are temporally separated. However, the mechanisms of forming this temporal association have remained unclear. Here, using astrocyte-specific manipulations, we show that potentiating astrocyte Ca2+ signaling in the hippocampal cornu ammonis 1 (CA1) enhances the strength of such temporal association, in parallel with long-term potentiation (LTP) enhancement of temporoammonic pathway to CA1, whereas attenuation of astrocyte Ca2+ signaling has the opposite effect. Moreover, we identify that these effects are mediated by astrocytic α4 subunit-containing nicotinic acetylcholine receptors (α4-nAChRs) via mechanisms involving NMDAR co-agonist supply. Finally, astrocytic α4-nAChRs underlie the cognitive enhancer nicotine's physiological effects. Together, these findings highlight the importance of astrocyte Ca2+ signaling in cognitive behavior and reveal a mechanism in governing the temporal association of episodic memory formation that operates through α4-nAChRs on hippocampal astrocytes.
Collapse
Affiliation(s)
- Wenyu Ma
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tengxiao Si
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zan Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Pengjie Wen
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Zhenxiang Zhu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; Shenzhen Key Laboratory of Viral Vectors for Biomedicine, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qing Liu
- Shenzhen Key Laboratory of Viral Vectors for Biomedicine, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jie Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fuqiang Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; Shenzhen Key Laboratory of Viral Vectors for Biomedicine, NMPA Key Laboratory for Research and Evaluation of Viral Vector Technology in Cell and Gene Therapy Medicinal Products, Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Brain Cognition and Brain Disease Institute (BCBDI), Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Qin Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Key Laboratory of Magnetic Resonance in Biological Systems, Wuhan Center for Magnetic Resonance, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
3
|
Pavon MV, Navakkode S, Wong LW, Sajikumar S. Inhibition of Nogo-A rescues synaptic plasticity and associativity in APP/PS1 animal model of Alzheimer's disease. Semin Cell Dev Biol 2023; 139:111-120. [PMID: 35431138 DOI: 10.1016/j.semcdb.2022.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a progressive neurodegenerative disease characterized by memory loss and cognitive decline. Synaptic impairment is one of the first events to occur in the progression of this disease. Synaptic plasticity and cellular association of various plastic events have been shown to be affected in AD models. Nogo-A, a well-known axonal growth inhibitor with a recently discovered role as a plasticity suppressor, and its main receptor Nogo-66 receptor 1 (NGR1) have been found to be overexpressed in the hippocampus of Alzheimer's patients. However, the role of Nogo-A and its receptor in the pathology of AD is still widely unknown. In this work we set out to investigate whether Nogo-A is working as a plasticity suppressor in AD. Our results show that inhibition of the Nogo-A pathway via the Nogo-R antibody in an Alzheimer's mouse model, APP/PS1, leads to the restoration of both synaptic plasticity and associativity in a protein synthesis and NMDR-dependent manner. We also show that inhibition of the p75NTR pathway, which is strongly associated with NGR1, restores synaptic plasticity as well. Mechanistically, we propose that the restoration of synaptic plasticity in APP/PS1 via inhibition of the Nogo-A pathway is due to the modulation of the RhoA-ROCK2 pathway and increase in plasticity related proteins. Our study identifies Nogo-A as a plasticity suppressor in AD models hence targeting Nogo-A could be a promising strategy to understanding AD pathology.
Collapse
Affiliation(s)
- Maria Vazquez Pavon
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Life Sciences Institute, Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore
| | - Sheeja Navakkode
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Lik-Wei Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Life Sciences Institute, Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117597, Singapore; Life Sciences Institute, Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore; Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore.
| |
Collapse
|
4
|
Hydroxychloroquine lowers Alzheimer's disease and related dementias risk and rescues molecular phenotypes related to Alzheimer's disease. Mol Psychiatry 2023; 28:1312-1326. [PMID: 36577843 PMCID: PMC10005941 DOI: 10.1038/s41380-022-01912-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/29/2022]
Abstract
We recently nominated cytokine signaling through the Janus-kinase-signal transducer and activator of transcription (JAK/STAT) pathway as a potential AD drug target. As hydroxychloroquine (HCQ) has recently been shown to inactivate STAT3, we hypothesized that it may impact AD pathogenesis and risk. Among 109,124 rheumatoid arthritis patients from routine clinical care, HCQ initiation was associated with a lower risk of incident AD compared to methotrexate initiation across 4 alternative analyses schemes addressing specific types of biases including informative censoring, reverse causality, and outcome misclassification (hazard ratio [95% confidence interval] of 0.92 [0.83-1.00], 0.87 [0.81-0.93], 0.84 [0.76-0.93], and 0.87 [0.75-1.01]). We additionally show that HCQ exerts dose-dependent effects on late long-term potentiation (LTP) and rescues impaired hippocampal synaptic plasticity prior to significant accumulation of amyloid plaques and neurodegeneration in APP/PS1 mice. Additionally, HCQ treatment enhances microglial clearance of Aβ1-42, lowers neuroinflammation, and reduces tau phosphorylation in cell culture-based phenotypic assays. Finally, we show that HCQ inactivates STAT3 in microglia, neurons, and astrocytes suggesting a plausible mechanism associated with its observed effects on AD pathogenesis. HCQ, a relatively safe and inexpensive drug in current use may be a promising disease-modifying AD treatment. This hypothesis merits testing through adequately powered clinical trials in at-risk individuals during preclinical stages of disease progression.
Collapse
|
5
|
Chong YS, Wong LW, Gaunt J, Lee YJ, Goh CS, Morris RGM, Ch'ng TH, Sajikumar S. Distinct contributions of ventral CA1/amygdala co-activation to the induction and maintenance of synaptic plasticity. Cereb Cortex 2023; 33:676-690. [PMID: 35253866 DOI: 10.1093/cercor/bhac093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 02/11/2022] [Accepted: 02/12/2022] [Indexed: 02/03/2023] Open
Abstract
The amygdala is known to modulate hippocampal synaptic plasticity. One role could be an immediate effect of basolateral amygdala (BLA) in priming synaptic plasticity in the hippocampus. Another role could be through associative synaptic co-operation and competition that triggers events involved in the maintenance of synaptic potentiation. We present evidence that the timing and activity level of BLA stimulation are important factors for the induction and maintenance of long-term potentiation (LTP) in ventral hippocampal area CA1. A 100 Hz BLA co-stimulation facilitated the induction of LTP, whereas 200 Hz co-stimulation attenuated induction. A 100 Hz BLA co-stimulation also caused enhanced persistence, sufficient to prevent synaptic competition. This maintenance effect is likely through translational mechanisms, as mRNA expression of primary response genes was unaffected, whereas protein level of plasticity-related products was increased. Further understanding of the neural mechanisms of amygdala modulation on hippocampus could provide insights into the mechanisms of emotional disorders.
Collapse
Affiliation(s)
- Yee Song Chong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SIngapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore
| | - Lik-Wei Wong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SIngapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore.,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| | - Jessica Gaunt
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore
| | - Yan Jun Lee
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.,Interdisciplinary Graduate School, Nanyang Technological University, Singapore 637335, Singapore
| | - Cai Shan Goh
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SIngapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore
| | - Richard G M Morris
- Laboratory for Cognitive Neuroscience, Centre for Cognitive and Neural Systems, University of Edinburgh, Edinburgh EH8 9JZ, Scotland
| | - Toh Hean Ch'ng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 308232, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore 637551, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, SIngapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117456, Singapore.,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117456, Singapore
| |
Collapse
|
6
|
Raghuraman R, Manakkadan A, Richter-Levin G, Sajikumar S. Inhibitory Metaplasticity in Juvenile Stressed Rats Restores Associative Memory in Adulthood by Regulating Epigenetic Complex G9a/GLP. Int J Neuropsychopharmacol 2022; 25:576-589. [PMID: 35089327 PMCID: PMC9352179 DOI: 10.1093/ijnp/pyac008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 12/23/2021] [Accepted: 01/25/2022] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Exposure to juvenile stress was found to have long-term effects on the plasticity and quality of associative memory in adulthood, but the underlying mechanisms are still poorly understood. METHODS Three- to four week-old male Wistar rats were subjected to a 3-day juvenile stress paradigm. Their electrophysiological correlates of memory using the adult hippocampal slice were inspected to detect alterations in long-term potentiation and synaptic tagging and capture model of associativity. These cellular alterations were tied in with the behavioral outcome by subjecting the rats to a step-down inhibitory avoidance paradigm to measure strength in their memory. Given the role of epigenetic response in altering plasticity as a repercussion of juvenile stress, we aimed to chart out the possible epigenetic marker and its regulation in the long-term memory mechanisms using quantitative reverse transcription polymerase chain reaction. RESULTS We demonstrate that even long after the elimination of actual stressors, an inhibitory metaplastic state is evident, which promotes synaptic competition over synaptic cooperation and decline in latency of associative memory in the behavioral paradigm despite the exposure to novelty. Mechanistically, juvenile stress led to a heightened expression of the epigenetic marker G9a/GLP complex, which is thus far ascribed to transcriptional silencing and goal-directed behavior. CONCLUSIONS The blockade of the G9a/GLP complex was found to alleviate deficits in long-term plasticity and associative memory during the adulthood of animals exposed to juvenile stress. Our data provide insights on the long-term effects of juvenile stress that involve epigenetic mechanisms, which directly impact long-term plasticity, synaptic tagging and capture, and associative memory.
Collapse
Affiliation(s)
- Radha Raghuraman
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Anoop Manakkadan
- Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Gal Richter-Levin
- Sagol department of Neurobiology, Department of Psychology, University of Haifa, Haifa, Israel
- The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Sreedharan Sajikumar
- Department of Physiology, National University of Singapore, Singapore, Singapore
- Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
- Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore
| |
Collapse
|
7
|
Navakkode S, Zhai J, Wong YP, Li G, Soong TW. Enhanced long-term potentiation and impaired learning in mice lacking alternative exon 33 of Ca V1.2 calcium channel. Transl Psychiatry 2022; 12:1. [PMID: 35013113 PMCID: PMC8748671 DOI: 10.1038/s41398-021-01683-2] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 08/25/2021] [Accepted: 09/13/2021] [Indexed: 12/14/2022] Open
Abstract
The CACNA1C (calcium voltage-gated channel subunit alpha 1 C) gene that encodes the CaV1.2 channel is a prominent risk gene for neuropsychiatric and neurodegenerative disorders with cognitive and social impairments like schizophrenia, bipolar disorders, depression and autistic spectrum disorders (ASD). We have shown previously that mice with exon 33 deleted from CaV1.2 channel (CaV1.2-exon 33-/-) displayed increased CaV1.2 current density and single channel open probability in cardiomyocytes, and were prone to develop arrhythmia. As Ca2+ entry through CaV1.2 channels activates gene transcription in response to synaptic activity, we were intrigued to explore the possible role of Cav1.2Δ33 channels in synaptic plasticity and behaviour. Homozygous deletion of alternative exon 33 resulted in enhanced long-term potentiation (LTP), and lack of long- term depression (LTD), which did not correlate with enhanced learning. Exon 33 deletion also led to a decrease in social dominance, sociability and social novelty. Our findings shed light on the effect of gain-of-function of CaV1.2Δ33 signalling on synaptic plasticity and behaviour and provides evidence for a link between CaV1.2 and distinct cognitive and social behaviours associated with phenotypic features of psychiatric disorders like schizophrenia, bipolar disorder and ASD.
Collapse
Affiliation(s)
- Sheeja Navakkode
- grid.4280.e0000 0001 2180 6431Department of Physiology, National University of Singapore, Singapore, Singapore ,grid.59025.3b0000 0001 2224 0361Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, Singapore
| | - Jing Zhai
- grid.4280.e0000 0001 2180 6431Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Yuk Peng Wong
- grid.4280.e0000 0001 2180 6431Department of Physiology, National University of Singapore, Singapore, Singapore
| | - Guang Li
- grid.4280.e0000 0001 2180 6431Department of Physiology, National University of Singapore, Singapore, Singapore ,grid.410578.f0000 0001 1114 4286Present Address: Key Laboratory of Medical Electrophysiology, Ministry of Education, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan China
| | - Tuck Wah Soong
- Department of Physiology, National University of Singapore, Singapore, Singapore. .,Healthy Longevity Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
8
|
Navakkode S, Gaunt JR, Pavon MV, Bansal VA, Abraham RP, Chong YS, Ch'ng TH, Sajikumar S. Sex-specific accelerated decay in time/activity-dependent plasticity and associative memory in an animal model of Alzheimer's disease. Aging Cell 2021; 20:e13502. [PMID: 34796608 PMCID: PMC8672784 DOI: 10.1111/acel.13502] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 09/02/2021] [Accepted: 10/17/2021] [Indexed: 12/11/2022] Open
Abstract
Clinical studies have shown that female brains are more predisposed to neurodegenerative diseases such as Alzheimer's disease (AD), but the cellular and molecular mechanisms behind this disparity remain unknown. In several mouse models of AD, synaptic plasticity dysfunction is an early event and appears before significant accumulation of amyloid plaques and neuronal degeneration. However, it is unclear whether sexual dimorphism at the synaptic level contributes to the higher risk and prevalence of AD in females. Our studies on APP/PS1 (APPSwe/PS1dE9) mouse model show that AD impacts hippocampal long‐term plasticity in a sex‐specific manner. Long‐term potentiation (LTP) induced by strong tetanic stimulation (STET), theta burst stimulation (TBS) and population spike timing‐dependent plasticity (pSTDP) show a faster decay in AD females compared with age‐matched AD males. In addition, behavioural tagging (BT), a model of associative memory, is specifically impaired in AD females with a faster decay in memory compared with males. Together with the plasticity and behavioural data, we also observed an upregulation of neuroinflammatory markers, along with downregulation of transcripts that regulate cellular processes associated with synaptic plasticity and memory in females. Immunohistochemistry of AD brains confirms that female APP/PS1 mice carry a higher amyloid plaque burden and have enhanced microglial activation compared with male APP/PS1 mice. Their presence in the diseased mice also suggests a link between the impairment of LTP and the upregulation of the inflammatory response. Overall, our data show that synaptic plasticity and associative memory impairments are more prominent in females and this might account for the faster progression of AD in females.
Collapse
Affiliation(s)
- Sheeja Navakkode
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
- Department of Physiology National University of Singapore Singapore Singapore
| | - Jessica Ruth Gaunt
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
| | - Maria Vazquez Pavon
- Department of Physiology National University of Singapore Singapore Singapore
| | | | - Riya Prasad Abraham
- Department of Physiology National University of Singapore Singapore Singapore
| | - Yee Song Chong
- Department of Physiology National University of Singapore Singapore Singapore
| | - Toh Hean Ch'ng
- Lee Kong Chian School of Medicine Nanyang Technological University Singapore Singapore
- School of Biological Science Nanyang Technological University Singapore Singapore
| | - Sreedharan Sajikumar
- Department of Physiology National University of Singapore Singapore Singapore
- Healthy Longevity Translational Research Programme Yong Loo Lin School of Medicine National University of Singapore Singapore Singapore
- Life Sciences Institute Neurobiology Programme National University of Singapore Singapore Singapore
| |
Collapse
|
9
|
Bin Ibrahim MZ, Benoy A, Sajikumar S. Long-term plasticity in the hippocampus: maintaining within and 'tagging' between synapses. FEBS J 2021; 289:2176-2201. [PMID: 34109726 DOI: 10.1111/febs.16065] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 05/15/2021] [Accepted: 06/01/2021] [Indexed: 12/11/2022]
Abstract
Synapses between neurons are malleable biochemical structures, strengthening and diminishing over time dependent on the type of information they receive. This phenomenon known as synaptic plasticity underlies learning and memory, and its different forms, long-term potentiation (LTP) and long-term depression (LTD), perform varied cognitive roles in reinforcement, relearning and associating memories. Moreover, both LTP and LTD can exist in an early transient form (early-LTP/LTD) or a late persistent form (late-LTP/LTD), which are triggered by different induction protocols, and also differ in their dependence on protein synthesis and the involvement of key molecular players. Beyond homosynaptic modifications, synapses can also interact with one another. This is encapsulated in the synaptic tagging and capture hypothesis (STC), where synapses expressing early-LTP/LTD present a 'tag' that can capture the protein synthesis products generated during a temporally proximal late-LTP/LTD induction. This 'tagging' phenomenon forms the framework of synaptic interactions in various conditions and accounts for the cellular basis of the time-dependent associativity of short-lasting and long-lasting memories. All these synaptic modifications take place under controlled neuronal conditions, regulated by subcellular elements such as epigenetic regulation, proteasomal degradation and neuromodulatory signals. Here, we review current understanding of the different forms of synaptic plasticity and its regulatory mechanisms in the hippocampus, a brain region critical for memory formation. We also discuss expression of plasticity in hippocampal CA2 area, a long-overlooked narrow hippocampal subfield and the behavioural correlate of STC. Lastly, we put forth perspectives for an integrated view of memory representation in synapses.
Collapse
Affiliation(s)
- Mohammad Zaki Bin Ibrahim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore
| | - Amrita Benoy
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore.,Healthy Longevity Translational Research Programme, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| |
Collapse
|
10
|
Ho WY, Navakkode S, Liu F, Soong TW, Ling SC. Deregulated expression of a longevity gene, Klotho, in the C9orf72 deletion mice with impaired synaptic plasticity and adult hippocampal neurogenesis. Acta Neuropathol Commun 2020; 8:155. [PMID: 32887666 PMCID: PMC7473815 DOI: 10.1186/s40478-020-01030-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Accepted: 08/29/2020] [Indexed: 01/17/2023] Open
Abstract
Hexanucleotide repeat expansion of C9ORF72 is the most common genetic cause of amyotrophic lateral sclerosis and frontotemporal dementia. Synergies between loss of C9ORF72 functions and gain of toxicities from the repeat expansions contribute to C9ORF72-mediated pathogenesis. However, how loss of C9orf72 impacts neuronal and synaptic functions remains undetermined. Here, we showed that long-term potentiation at the dentate granule cells and long-term depression at the Schaffer collateral/commissural synapses at the area CA1 were reduced in the hippocampus of C9orf72 knockout mice. Using unbiased transcriptomic analysis, we identified that Klotho, a longevity gene, was selectively dysregulated in an age-dependent manner. Specifically, Klotho protein expression in the hippocampus of C9orf72 knockout mice was incorrectly enriched in the dendritic regions of CA1 with concomitant reduction in granule cell layer of dentate gyrus at 3-month of age followed by an accelerating decline during aging. Furthermore, adult hippocampal neurogenesis was reduced in C9orf72 knockout mice. Taken together, our data suggest that C9ORF72 is required for synaptic plasticity and adult neurogenesis in the hippocampus and Klotho deregulations may be part of C9ORF72-mediated toxicity.
Collapse
|
11
|
Aging Alters Olfactory Bulb Network Oscillations and Connectivity: Relevance for Aging-Related Neurodegeneration Studies. Neural Plast 2020; 2020:1703969. [PMID: 32774353 PMCID: PMC7396091 DOI: 10.1155/2020/1703969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/27/2020] [Accepted: 02/12/2020] [Indexed: 11/18/2022] Open
Abstract
The aging process eventually cause a breakdown in critical synaptic plasticity and connectivity leading to deficits in memory function. The olfactory bulb (OB) and the hippocampus, both regions of the brain considered critical for the processing of odors and spatial memory, are commonly affected by aging. Using an aged wild-type C57B/6 mouse model, we sought to define the effects of aging on hippocampal plasticity and the integrity of cortical circuits. Specifically, we measured the long-term potentiation of high-frequency stimulation (HFS-LTP) at the Shaffer-Collateral CA1 pyramidal synapses. Next, local field potential (LFP) spectra, phase-amplitude theta-gamma coupling (PAC), and connectivity through coherence were assessed in the olfactory bulb, frontal and entorhinal cortices, CA1, and amygdala circuits. The OB of aged mice showed a significant increase in the number of histone H2AX-positive neurons, a marker of DNA damage. While the input-output relationship measure of basal synaptic activity was found not to differ between young and aged mice, a pronounced decline in the slope of field excitatory postsynaptic potential (fEPSP) and the population spike amplitude (PSA) were found in aged mice. Furthermore, aging was accompanied by deficits in gamma network oscillations, a shift to slow oscillations, reduced coherence and theta-gamma PAC in the OB circuit. Thus, while the basal synaptic activity was unaltered in older mice, impairment in hippocampal synaptic transmission was observed only in response to HFS. However, age-dependent alterations in neural network appeared spontaneously in the OB circuit, suggesting the neurophysiological basis of synaptic deficits underlying olfactory processing. Taken together, the results highlight the sensitivity and therefore potential use of LFP quantitative network oscillations and connectivity at the OB level as objective electrophysiological markers that will help reveal specific dysfunctional circuits in aging-related neurodegeneration studies.
Collapse
|
12
|
Induction of long-term potentiation-like plasticity in the primary motor cortex with repeated anodal transcranial direct current stimulation – Better effects with intensified protocols? Brain Stimul 2020; 13:987-997. [DOI: 10.1016/j.brs.2020.04.009] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/06/2020] [Accepted: 04/16/2020] [Indexed: 01/10/2023] Open
|
13
|
Wong LW, Chong YS, Wong WLE, Sajikumar S. Inhibition of Histone Deacetylase Reinstates Hippocampus-Dependent Long-Term Synaptic Plasticity and Associative Memory in Sleep-Deprived Mice. Cereb Cortex 2020; 30:4169-4182. [PMID: 32188968 DOI: 10.1093/cercor/bhaa041] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Sleep plays an important role in the establishment of long-term memory; as such, lack of sleep severely impacts domains of our health including cognitive function. Epigenetic mechanisms regulate gene transcription and protein synthesis, playing a critical role in the modulation of long-term synaptic plasticity and memory. Recent evidences indicate that transcriptional dysregulation as a result of sleep deprivation (SD) may contribute to deficits in plasticity and memory function. The histone deacetylase inhibitor suberoylanilide hydroxamic acid (SAHA), also known as Vorinostat, a clinically approved drug for human use, has been shown to ameliorate cognitive deficits in several neurological disease models. To further explore the therapeutic effect of SAHA, we have examined its potential role in improving the SD-mediated impairments in long-term plasticity, associative plasticity, and associative memory. Here we show that SAHA preserves long-term plasticity, associative plasticity, and associative memory in SD hippocampus. Furthermore, we find that SAHA prevents SD-mediated epigenetic changes by upregulating histone acetylation, hence preserving the ERK-cAMP-responsive element-binding protein (CREB)/CREB-binding protein-brain-derived neurotrophic factor pathway in the hippocampus. These data demonstrate that modifying epigenetic mechanisms via SAHA can prevent or reverse impairments in long-term plasticity and memory that result from sleep loss. Thus, SAHA could be a potential therapeutic agent in improving SD-related memory deficits.
Collapse
Affiliation(s)
- Lik-Wei Wong
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117 456, Singapore
| | - Yee Song Chong
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117 456, Singapore
| | - Win Lee Edwin Wong
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117 456, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, National University of Singapore, Singapore 117597, Singapore.,Life Sciences Institute Neurobiology Programme, National University of Singapore, Singapore 117 456, Singapore
| |
Collapse
|
14
|
Pinho J, Marcut C, Fonseca R. Actin remodeling, the synaptic tag and the maintenance of synaptic plasticity. IUBMB Life 2020; 72:577-589. [DOI: 10.1002/iub.2261] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Accepted: 02/06/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Júlia Pinho
- Cellular and Systems Neurobiology, Chronic Disease Research CenterNOVA Medical School Lisbon Portugal
| | - Cristina Marcut
- Cellular and Systems Neurobiology, Chronic Disease Research CenterNOVA Medical School Lisbon Portugal
| | - Rosalina Fonseca
- Cellular and Systems Neurobiology, Chronic Disease Research CenterNOVA Medical School Lisbon Portugal
| |
Collapse
|
15
|
Dumenieu M, Senkov O, Mironov A, Bourinet E, Kreutz MR, Dityatev A, Heine M, Bikbaev A, Lopez-Rojas J. The Low-Threshold Calcium Channel Cav3.2 Mediates Burst Firing of Mature Dentate Granule Cells. Cereb Cortex 2019; 28:2594-2609. [PMID: 29790938 PMCID: PMC5998957 DOI: 10.1093/cercor/bhy084] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2018] [Indexed: 12/11/2022] Open
Abstract
Mature granule cells are poorly excitable neurons that were recently shown to fire action potentials, preferentially in bursts. It is believed that the particularly pronounced short-term facilitation of mossy fiber synapses makes granule cell bursting a very effective means of properly transferring information to CA3. However, the mechanism underlying the unique bursting behavior of mature granule cells is currently unknown. Here, we show that Cav3.2 T-type channels at the axon initial segment are responsible for burst firing of mature granule cells in rats and mice. Accordingly, Cav3.2 knockout mice fire tonic spikes and exhibit impaired bursting, synaptic plasticity and dentate-to-CA3 communication. The data show that Cav3.2 channels are strong modulators of bursting and can be considered a critical molecular switch that enables effective information transfer from mature granule cells to the CA3 pyramids.
Collapse
Affiliation(s)
- Mael Dumenieu
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Brenneckestr. 6, Magdeburg, Germany
| | - Oleg Senkov
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany
| | - Andrey Mironov
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Lobachevsky State University of Nizhny Novgorod, Nizhny Novgorod, Russia.,Privolzhsky Research Medical University, Nizhny Novgorod, Russia
| | - Emmanuel Bourinet
- Calcium Channel Dynamics & Nociception Group, Institute of Functional Genomics, Montpellier, France
| | - Michael R Kreutz
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Brenneckestr. 6, Magdeburg, Germany.,Leibniz Group "Dendritic Organelles and Synaptic Function," University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology (ZMNH), Hamburg, Germany
| | - Alexander Dityatev
- Molecular Neuroplasticity Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg, Germany.,Center for Behavioral Brain Sciences (CBBS), Magdeburg, Germany.,Medical Faculty, Otto-von-Guericke University, Magdeburg, Germany
| | - Martin Heine
- Research Group Molecular Physiology, Leibniz Institute for Neurobiology, Brenneckestr. 6, Magdeburg, Germany
| | - Arthur Bikbaev
- Research Group Molecular Physiology, Leibniz Institute for Neurobiology, Brenneckestr. 6, Magdeburg, Germany
| | - Jeffrey Lopez-Rojas
- Research Group Neuroplasticity, Leibniz Institute for Neurobiology, Brenneckestr. 6, Magdeburg, Germany
| |
Collapse
|
16
|
Pang KKL, Sharma M, Sajikumar S. Epigenetics and memory: Emerging role of histone lysine methyltransferase G9a/GLP complex as bidirectional regulator of synaptic plasticity. Neurobiol Learn Mem 2019; 159:1-5. [PMID: 30703547 DOI: 10.1016/j.nlm.2019.01.013] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 12/13/2018] [Accepted: 01/24/2019] [Indexed: 12/20/2022]
Abstract
Various epigenetic modifications, including histone lysine methylation, play an integral role in learning and memory. The importance of the histone lysine methyltransferase complex G9a/GLP and its associated histone H3 lysine K9 dimethylation in memory formation and cognition, has garnered the attention of researchers in the past decade. Recent studies feature G9a/GLP as the 'bidirectional regulator of synaptic plasticity', the neural correlate of memory. As the 'title' suggests, G9a/GLP participates in the maintenance of both long-term potentiation (LTP) and long-term depression (LTD). This complex is demonstrated to mostly suppress LTP-related plasticity-related products (PRPs). Notably, our recent paper also shows that G9a/GLP facilitates LTD maintenance in intact hippocampal slices - shedding light on the overlooked influence of epigenetics on LTD. Although the exact mechanisms of G9a/GLP activity regulation in cognition remain elusive, pharmacological inhibition of G9a/GLP presents a new avenue of therapeutic intervention in epigenetic dysfunction-related cognitive deficits.
Collapse
Affiliation(s)
- Karen Ka Lam Pang
- Department of Physiology, 2 Medical Drive, MD9, National University of Singapore, Singapore 117593, Singapore; Neurobiology/Aging Programme, Life Sciences Institute, Centre for Life Sciences, 28 Medical Drive, Singapore 117456, Singapore
| | - Mahima Sharma
- Department of Physiology, 2 Medical Drive, MD9, National University of Singapore, Singapore 117593, Singapore; Neurobiology/Aging Programme, Life Sciences Institute, Centre for Life Sciences, 28 Medical Drive, Singapore 117456, Singapore; Department of Biomedical Engineering, City College of New York, 160 Convent Ave, New York, NY 10031, United States
| | - Sreedharan Sajikumar
- Department of Physiology, 2 Medical Drive, MD9, National University of Singapore, Singapore 117593, Singapore; Neurobiology/Aging Programme, Life Sciences Institute, Centre for Life Sciences, 28 Medical Drive, Singapore 117456, Singapore.
| |
Collapse
|
17
|
Maltsev AV, Bal NV, Balaban PM. LTP suppression by protein synthesis inhibitors is NO-dependent. Neuropharmacology 2018; 146:276-288. [PMID: 30540927 DOI: 10.1016/j.neuropharm.2018.12.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Revised: 11/19/2018] [Accepted: 12/08/2018] [Indexed: 01/25/2023]
Abstract
For several decades, the ability of protein synthesis inhibitors (PSI) to suppress the long-term potentiation (LTP) of hippocampal responses is known. It is considered that mechanisms of such impairment are related to a cessation of translation and a delayed depletion of the protein pool required for maintenance of synaptic plasticity. The present study demonstrates that cycloheximide or anisomycin applications reduce amplitudes of the field excitatory postsynaptic potentials as well as the presynaptically mediated form of plasticity, the paired-pulse facilitation after LTP induction in neurons of the CA1 area of hippocampus. We showed that nitric oxide signaling could be one of the pathways that cause the LTP decrease induced by cycloheximide or anisomycin. Inhibitor of the NO synthase, L-NNA or the NO scavenger, PTIO, rescued the late-phase LTP and restored the paired-pulse facilitation up to the control levels. For the first time we have directly measured the nitric oxide production induced by application of the translation blockers in hippocampal neurons using the NO-sensitive dye DAF-FM. Inhibitory analysis demonstrated that changes during protein synthesis blockade downstream the NO signaling cascade are cGMP-independent and apparently are implemented through degradation of target proteins. Prolonged application of the NO donor SNAP impaired the LTP maintenance in the same manner as PSI.
Collapse
Affiliation(s)
- Alexander V Maltsev
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerovа 5A, 117485, Moscow, Russia
| | - Natalia V Bal
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerovа 5A, 117485, Moscow, Russia.
| | - Pavel M Balaban
- Institute of Higher Nervous Activity and Neurophysiology, Russian Academy of Sciences, Butlerovа 5A, 117485, Moscow, Russia
| |
Collapse
|
18
|
An S, Zhao YF, Lü XY, Wang ZG. Quantitative evaluation of extrinsic factors influencing electrical excitability in neuronal networks: Voltage Threshold Measurement Method (VTMM). Neural Regen Res 2018; 13:1026-1035. [PMID: 29926830 PMCID: PMC6022462 DOI: 10.4103/1673-5374.233446] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
The electrical excitability of neural networks is influenced by different environmental factors. Effective and simple methods are required to objectively and quantitatively evaluate the influence of such factors, including variations in temperature and pharmaceutical dosage. The aim of this paper was to introduce ‘the voltage threshold measurement method’, which is a new method using microelectrode arrays that can quantitatively evaluate the influence of different factors on the electrical excitability of neural networks. We sought to verify the feasibility and efficacy of the method by studying the effects of acetylcholine, ethanol, and temperature on hippocampal neuronal networks and hippocampal brain slices. First, we determined the voltage of the stimulation pulse signal that elicited action potentials in the two types of neural networks under normal conditions. Second, we obtained the voltage thresholds for the two types of neural networks under different concentrations of acetylcholine, ethanol, and different temperatures. Finally, we obtained the relationship between voltage threshold and the three influential factors. Our results indicated that the normal voltage thresholds of the hippocampal neuronal network and hippocampal slice preparation were 56 and 31 mV, respectively. The voltage thresholds of the two types of neural networks were inversely proportional to acetylcholine concentration, and had an exponential dependency on ethanol concentration. The curves of the voltage threshold and the temperature of the medium for the two types of neural networks were U-shaped. The hippocampal neuronal network and hippocampal slice preparations lost their excitability when the temperature of the medium decreased below 34 and 33°C or increased above 42 and 43°C, respectively. These results demonstrate that the voltage threshold measurement method is effective and simple for examining the performance/excitability of neuronal networks.
Collapse
Affiliation(s)
- Shuai An
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, China
| | - Yong-Fang Zhao
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing, Jiangsu Province, China
| | - Xiao-Ying Lü
- State Key Laboratory of Bioelectronics, Southeast University, Nanjing; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Zhi-Gong Wang
- Institute of RF- & OE-ICs, Southeast University, Nanjing; Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
19
|
Dasgupta A, Kim J, Manakkadan A, Arumugam TV, Sajikumar S. Intermittent fasting promotes prolonged associative interactions during synaptic tagging/capture by altering the metaplastic properties of the CA1 hippocampal neurons. Neurobiol Learn Mem 2017; 154:70-77. [PMID: 29277679 DOI: 10.1016/j.nlm.2017.12.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 12/12/2017] [Accepted: 12/19/2017] [Indexed: 01/18/2023]
Abstract
Metaplasticity is the inherent property of a neuron or neuronal population to undergo activity-dependent changes in neural function that modulate subsequent synaptic plasticity. Here we studied the effect of intermittent fasting (IF) in governing the interactions of associative plasticity mechanisms in the pyramidal neurons of rat hippocampal area CA1. Late long-term potentiation and its associative mechanisms such as synaptic tagging and capture at an interval of 120 min were evaluated in four groups of animals, AL (Ad libitum), IF12 (daily IF for 12 h), IF16 (daily IF for 16 h) and EOD (every other day IF for 24 h). IF had no visible effect on the early or late plasticity but it manifested a critical role in prolonging the associative interactions between weak and strong synapses at an interval of 120 min in IF16 and EOD animals. However, both IF12 and AL did not show associativity at 120 min. Plasticity genes such as Bdnf and Prkcz, which are well known for their expressions in late plasticity and synaptic tagging and capture, were significantly upregulated in IF16 and EOD in comparison to AL. Specific inhibition of brain derived neurotropic factor (BDNF) prevented the prolonged associativity expressed in EOD. Thus, daily IF for 16 h or more can be considered to enhance the metaplastic properties of synapses by improving their associative interactions that might translate into animprovedmemoryformation.
Collapse
Affiliation(s)
- Ananya Dasgupta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology/Aging Program, Life Sciences Institute (LSI), National University of Singapore, #04-44, 28 Medical Drive, Singapore 117 456, Singapore
| | - Joonki Kim
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Natural Products Research Center, Korea Institute of Science and Technology, Gangneung, Gangwon-do, Republic of Korea
| | - Anoop Manakkadan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology/Aging Program, Life Sciences Institute (LSI), National University of Singapore, #04-44, 28 Medical Drive, Singapore 117 456, Singapore
| | - Thiruma V Arumugam
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea.
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore; Neurobiology/Aging Program, Life Sciences Institute (LSI), National University of Singapore, #04-44, 28 Medical Drive, Singapore 117 456, Singapore.
| |
Collapse
|
20
|
Navakkode S, Chew KCM, Tay SJN, Lin Q, Behnisch T, Soong TW. Bidirectional modulation of hippocampal synaptic plasticity by Dopaminergic D4-receptors in the CA1 area of hippocampus. Sci Rep 2017; 7:15571. [PMID: 29138490 PMCID: PMC5686203 DOI: 10.1038/s41598-017-15917-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Accepted: 11/03/2017] [Indexed: 11/09/2022] Open
Abstract
Long-term potentiation (LTP) is the persistent increase in the strength of the synapses. However, the neural networks would become saturated if there is only synaptic strenghthening. Synaptic weakening could be facilitated by active processes like long-term depression (LTD). Molecular mechanisms that facilitate the weakening of synapses and thereby stabilize the synapses are also important in learning and memory. Here we show that blockade of dopaminergic D4 receptors (D4R) promoted the formation of late-LTP and transformed early-LTP into late-LTP. This effect was dependent on protein synthesis, activation of NMDA-receptors and CaMKII. We also show that GABAA-receptor mediated mechanisms are involved in the enhancement of late-LTP. We could show that short-term plasticity and baseline synaptic transmission were unaffected by D4R inhibition. On the other hand, antagonizing D4R prevented both early and late forms of LTD, showing that activation of D4Rs triggered a dual function. Synaptic tagging experiments on LTD showed that D4Rs act as plasticity related proteins rather than the setting of synaptic tags. D4R activation by PD 168077 induced a slow-onset depression that was protein synthesis, NMDAR and CaMKII dependent. The D4 receptors, thus exert a bidirectional modulation of CA1 pyramidal neurons by restricting synaptic strengthening and facilitating synaptic weakening.
Collapse
Affiliation(s)
- Sheeja Navakkode
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Neurobiology/Aging Program, Centre for Life Sciences, National University of Singapore, Singapore, 117456, Singapore
| | - Katherine C M Chew
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Neurobiology/Aging Program, Centre for Life Sciences, National University of Singapore, Singapore, 117456, Singapore
| | - Sabrina Jia Ning Tay
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Neurobiology/Aging Program, Centre for Life Sciences, National University of Singapore, Singapore, 117456, Singapore
| | - Qingshu Lin
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore.,Neurobiology/Aging Program, Centre for Life Sciences, National University of Singapore, Singapore, 117456, Singapore
| | - Thomas Behnisch
- The Institutes of Brain Science, The State Key Laboratory of Medical Neurobiology, and the Collaborative Innovation Center for Brain Science, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Tuck Wah Soong
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117597, Singapore. .,Neurobiology/Aging Program, Centre for Life Sciences, National University of Singapore, Singapore, 117456, Singapore. .,National Neuroscience Institute, Singapore, 308433, Singapore.
| |
Collapse
|
21
|
Okuno H, Minatohara K, Bito H. Inverse synaptic tagging: An inactive synapse-specific mechanism to capture activity-induced Arc/arg3.1 and to locally regulate spatial distribution of synaptic weights. Semin Cell Dev Biol 2017; 77:43-50. [PMID: 28939038 DOI: 10.1016/j.semcdb.2017.09.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 12/22/2022]
Abstract
Long-lasting forms of synaptic plasticity such as long-term potentiation (LTP) and long-term depression (LTD) are fundamental cellular mechanisms underlying learning and memory. The synaptic tagging and capture (STC) hypothesis has provided a theoretical framework on how products of activity-dependent genes may interact with potentiated synapses to facilitate and maintain such long-lasting synaptic plasticity. Although Arc/arg3.1 was initially assumed to participate in STC processes during LTP, accumulating evidence indicated that Arc/arg3.1 might rather contribute in weakening of synaptic weights than in their strengthening. In particular, analyses of Arc/Arg3.1 protein dynamics and function in the dendrites after plasticity-inducing stimuli have revealed a new type of inactivity-dependent redistribution of synaptic weights, termed "inverse synaptic tagging". The original synaptic tagging and inverse synaptic tagging likely co-exist and are mutually non-exclusive mechanisms, which together may help orchestrate the redistribution of synaptic weights and promote the enhancement and maintenance of their contrast between potentiated and non-potentiated synapses during the late phase of long-term synaptic plasticity. In this review, we describe the inverse synaptic tagging mechanism that controls synaptic dynamics of Arc/Arg3.1, an immediate early gene product which is captured and preferentially targeted to non-potentiated synapses, and discuss its impact on neuronal circuit refinement and cognitive function.
Collapse
Affiliation(s)
- Hiroyuki Okuno
- SK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan.
| | - Keiichiro Minatohara
- SK Project, Medical Innovation Center, Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Haruhiko Bito
- Department of Neurochemistry, The University of Tokyo Graduate School of Medicine, Tokyo, Japan.
| |
Collapse
|
22
|
Stein LR, Zorumski CF, Izumi Y. Hippocampal slice preparation in rats acutely suppresses immunoreactivity of microtubule-associated protein (Map2) and glycogen levels without affecting numbers of glia or levels of the glutamate transporter VGlut1. Brain Behav 2017; 7:e00736. [PMID: 28729941 PMCID: PMC5516609 DOI: 10.1002/brb3.736] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/14/2017] [Accepted: 04/19/2017] [Indexed: 11/16/2022] Open
Abstract
INTRODUCTION With its preservation of cytoarchitecture and synaptic circuitry, the hippocampal slice preparation has been a critical tool for studying the electrophysiological effects of pharmacological and genetic manipulations. To analyze the maximum number of slices or readouts per dissection, long incubation times postslice preparation are commonly used. We were interested in how slice integrity is affected by incubation postslice preparation. METHODS Hippocampal slices were prepared by three different methods: a chopper, a vibratome, and a rotary slicer. To test slice integrity, we compared glycogen levels and immunohistochemistry of selected proteins in rat hippocampal slices immediately after dissection and following 2 and 4 hr of incubation. RESULTS We found that immunoreactivity of the dendritic marker microtubule-associated protein 2 (Map2) drastically decreased during this incubation period, whereas immunoreactivity of the glutamate transporter VGlut1 did not significantly change with incubation time. Astrocytic and microglial cell numbers also did not significantly change with incubation time whereas glycogen levels markedly increased during incubation. CONCLUSION Immunoreactivity of the dendritic marker Map2 quickly decreased after dissection with all the slicing methods. This work highlights a need for caution when using long incubation periods following slice preparation.
Collapse
Affiliation(s)
- Liana R Stein
- Department of Psychiatry Washington University School of Medicine St. Louis MO USA
| | - Charles F Zorumski
- Department of Psychiatry Washington University School of Medicine St. Louis MO USA.,The Taylor Family Institute for Innovative Psychiatric Research Washington University School of Medicine St. Louis MO USA.,Center for Brain Research in Mood Disorders Washington University School of Medicine St. Louis MO USA
| | - Yukitoshi Izumi
- Department of Psychiatry Washington University School of Medicine St. Louis MO USA.,The Taylor Family Institute for Innovative Psychiatric Research Washington University School of Medicine St. Louis MO USA.,Center for Brain Research in Mood Disorders Washington University School of Medicine St. Louis MO USA
| |
Collapse
|
23
|
Galland F, Negri E, Da Ré C, Fróes F, Strapazzon L, Guerra MC, Tortorelli LS, Gonçalves CA, Leite MC. Hyperammonemia compromises glutamate metabolism and reduces BDNF in the rat hippocampus. Neurotoxicology 2017; 62:46-55. [PMID: 28506823 DOI: 10.1016/j.neuro.2017.05.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2017] [Revised: 03/31/2017] [Accepted: 05/11/2017] [Indexed: 12/31/2022]
Abstract
Ammonia is putatively the major toxin associated with hepatic encephalopathy (HE), a neuropsychiatric manifestation that results in cognitive impairment, poor concentration and psychomotor alterations. The hippocampus, a brain region involved in cognitive impairment and depressive behavior, has been studied less than neocortical regions. Herein, we investigated hippocampal astrocyte parameters in a hyperammonemic model without hepatic lesion and in acute hippocampal slices exposed to ammonia. We also measured hippocampal BDNF, a neurotrophin commonly related to synaptic plasticity and cognitive deficit, and peripheral S100B protein, used as a marker for brain damage. Hyperammonemia directly impaired astrocyte function, inducing a decrease in glutamate uptake and in the activity of glutamine synthetase, in turn altering the glutamine-glutamate cycle, glutamatergic neurotransmission and ammonia detoxification itself. Hippocampal BDNF was reduced in hyperammonemic rats via a mechanism that may involve astrocyte production, since the same effect was observed in astrocyte cultures exposed to ammonia. Ammonia induced a significant increase in S100B secretion in cultured astrocytes; however, no significant changes were observed in the serum or in cerebrospinal fluid. Data demonstrating hippocampal vulnerability to ammonia toxicity, particularly due to reduced glutamate uptake activity and BDNF content, contribute to our understanding of the neuropsychiatric alterations in HE.
Collapse
Affiliation(s)
- Fabiana Galland
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Elisa Negri
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Carollina Da Ré
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Fernanda Fróes
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Liliane Strapazzon
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Maria Cristina Guerra
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Lucas Silva Tortorelli
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| | - Marina Concli Leite
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil.
| |
Collapse
|
24
|
Busch R, Baldus M, Vogt MA, Berger SM, Bartsch D, Gass P, von Bohlen Und Halbach O. Effects of p75NTR deficiency on cholinergic innervation of the amygdala and anxiety-like behavior. J Neurochem 2017; 141:461-471. [PMID: 28266720 DOI: 10.1111/jnc.14006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Revised: 01/31/2017] [Accepted: 02/13/2017] [Indexed: 12/13/2022]
Abstract
The p75 neurotrophin receptor (p75NTR) is a low-affinity receptor that is capable of binding neurotrophins. Two different p75NTR knockout mouse lines are available either with a deletion in Exon III (p75NTRExIII-/- ) or in Exon IV (p75NTRExIV-/- ). In p75NTRExIII knockout mice, only the full-length p75NTR is deleted, whereas in p75NTRExIV knockout mice, the full-length as well as the truncated isoform of the receptor is deleted. Deletion of p75NTR has been shown to affect, among others, the septohippocampal cholinergic innervation pattern and neuronal plasticity within the hippocampus. We hypothesize that deletion of p75NTR also alters the morphology and physiology of a further key structure of the limbic system, the amygdala. Our results indicate that deletion of p75NTR also increases cholinergic innervation in the basolateral amygdala in adult as well as aged p75NTRExIII-/- and p75NTRExIV-/- mice. The p75NTRExIV-/- mice did not display altered long-term potentiation (LTP) in the basolateral amygdala as compared to age-matched control littermates. However, p75NTRExIII-/- mice display stronger LTP in the basolateral amygdala compared to age-matched controls. Bath-application of K252a (a trk antagonist) did not inhibit the induction of LTP in the basolateral amygdala, but reduced the level of LTP in p75NTRExIII-/- mice to levels seen in respective controls. Moreover, p75NTRExIII-/- mice display altered behavior in the dark/light box. Thus, deletion of p75NTR in mice leads to physiological and morphological changes in the amygdala and altered behavior that is linked to the limbic system.
Collapse
Affiliation(s)
- Ruben Busch
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Friedrich-Löffler Straße-23c, Greifswald, Germany
| | - Marian Baldus
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Friedrich-Löffler Straße-23c, Greifswald, Germany
| | - Miriam A Vogt
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Stefan M Berger
- Department of Molecular Biology, Central Institute of Mental Health and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Dusan Bartsch
- Department of Molecular Biology, Central Institute of Mental Health and Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Peter Gass
- Department of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Oliver von Bohlen Und Halbach
- Institute of Anatomy and Cell Biology, University Medicine Greifswald, Friedrich-Löffler Straße-23c, Greifswald, Germany
| |
Collapse
|
25
|
Levin SG, Godukhin OV. Modulating Effect of Cytokines on Mechanisms of Synaptic Plasticity in the Brain. BIOCHEMISTRY (MOSCOW) 2017; 82:264-274. [PMID: 28320267 DOI: 10.1134/s000629791703004x] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
After accumulation of data showing that resident brain cells (neurons, astrocytes, and microglia) produce mediators of the immune system, such as cytokines and their receptors under normal physiological conditions, a critical need emerged for investigating the role of these mediators in cognitive processes. The major problem for understanding the functional role of cytokines in the mechanisms of synaptic plasticity, de novo neurogenesis, and learning and memory is the small number of investigated cytokines. Existing concepts are based on data from just three proinflammatory cytokines: interleukin-1 beta, interleukin-6, and tumor necrosis factor-alpha. The amount of information in the literature on the functional role of antiinflammatory cytokines in the mechanisms of synaptic plasticity and cognitive functions of mature mammalian brain is dismally low. However, they are of principle importance for understanding the mechanisms of local information processing in the brain, since they modulate the activity of individual cells and local neural networks, being able to reconstruct the processes of synaptic plasticity and intercellular communication, in general, depending on the local ratio of the levels of different cytokines in certain areas of the brain. Understanding the functional role of cytokines in cellular mechanisms of information processing and storage in the brain would allow developing preventive and therapeutic means for the treatment of neuropathologies related to impairment of these mechanisms.
Collapse
Affiliation(s)
- S G Levin
- Institute of Theoretical and Experimental Biophysics, Russian Academy of Sciences, Pushchino, Moscow Region, 142290, Russia.
| | | |
Collapse
|
26
|
Alterations in the properties of neonatal thalamocortical synapses with time in in vitro slices. PLoS One 2017; 12:e0171897. [PMID: 28178342 PMCID: PMC5298242 DOI: 10.1371/journal.pone.0171897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/27/2017] [Indexed: 11/19/2022] Open
Abstract
New synapses are constantly being generated and lost in the living brain with only a subset of these being stabilized to form an enduring component of neuronal circuitry. The properties of synaptic transmission have primarily been established in a variety of in vitro neuronal preparations. It is not clear, however, if newly-formed and persistent synapses contribute to the results of these studies consistently throughout the lifespan of these preparations. In neonatal somatosensory, barrel, cortex we have previously hypothesized that a population of thalamocortical synapses displaying unusually slow kinetics represent newly-formed, default-transient synapses. This clear phenotype would provide an ideal tool to investigate if such newly formed synapses consistently contribute to synaptic transmission throughout a normal experimental protocol. We show that the proportion of synapses recorded in vitro displaying slow kinetics decreases with time after brain slice preparation. However, slow synapses persist in vitro in the presence of either minocycline, an inhibitor of microglia-mediated synapse elimination, or the TrkB agonist 7,8-dihydroxyflavone a promoter of synapse formation. These findings show that the observed properties of synaptic transmission may systematically change with time in vitro in a standard brain slice preparation.
Collapse
|
27
|
Endocannabinoid signaling and memory dynamics: A synaptic perspective. Neurobiol Learn Mem 2017; 138:62-77. [DOI: 10.1016/j.nlm.2016.07.031] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2016] [Revised: 07/21/2016] [Accepted: 07/29/2016] [Indexed: 01/26/2023]
|
28
|
1,25-Dihydroxyvitamin D 3 prevents deleterious effects of homocysteine on mitochondrial function and redox status in heart slices. Nutr Res 2017; 38:52-63. [PMID: 28381354 DOI: 10.1016/j.nutres.2017.01.007] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2016] [Revised: 12/15/2016] [Accepted: 01/26/2017] [Indexed: 01/22/2023]
Abstract
Because homocysteine (Hcy) is a risk factor for cardiovascular disease, and vitamin D deficiency can contribute to cardiovascular pathologies. In the present study, we tested the hypothesis that Hcy could impair energy metabolism, mitochondrial function, and redox status in heart slices of Wistar rats and that 1,25-dihydroxivitamin D3 (calcitriol) treatment could prevent such effects. Heart slices were first pretreated with 3 different concentrations of calcitriol (50, 100, and 250nmol/L) for 30minutes at 37°C, after which Hcy was added to promote deleterious effects on metabolism. After 1 hour of incubation, the samples were washed, homogenized, and stored at -80°C before analysis. The results showed that Hcy caused changes in energy metabolism (respiratory chain enzymes), mitochondrial function, and cell viability. Homocysteine also induced oxidative stress, increasing lipid peroxidation, reactive oxygen species generation, and protein damage. An imbalance in antioxidant enzymes was also observed. Calcitriol (50nmol/L) reverted the effect of Hcy on the parameters tested, except for the immunocontent of catalase. Both treatments (calcitriol and Hcy) did not alter the vitamin D receptor immunocontent, which combined with the fact that our ex vivo model is acute, suggesting that the beneficial effect of calcitriol occurs directly through antioxidative mechanisms and not via gene expression. In this study, we show that Hcy impairs mitochondrial function and induces changes in the redox status in heart slices, which were reverted by calcitriol. These findings suggest that calcitriol may be a preventive/therapeutic strategy for complications caused by Hcy.
Collapse
|
29
|
Bosch M, Castro J, Sur M, Hayashi Y. Photomarking Relocalization Technique for Correlated Two-Photon and Electron Microcopy Imaging of Single Stimulated Synapses. Methods Mol Biol 2017; 1538:185-214. [PMID: 27943192 DOI: 10.1007/978-1-4939-6688-2_14] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Synapses learn and remember by persistent modifications of their internal structures and composition but, due to their small size, it is difficult to observe these changes at the ultrastructural level in real time. Two-photon fluorescence microscopy (2PM) allows time-course live imaging of individual synapses but lacks ultrastructural resolution. Electron microscopy (EM) allows the ultrastructural imaging of subcellular components but cannot detect fluorescence and lacks temporal resolution. Here, we describe a combination of procedures designed to achieve the correlated imaging of the same individual synapse under both 2PM and EM. This technique permits the selective stimulation and live imaging of a single dendritic spine and the subsequent localization of the same spine in EM ultrathin serial sections. Landmarks created through a photomarking method based on the 2-photon-induced precipitation of an electrodense compound are used to unequivocally localize the stimulated synapse. This technique was developed to image, for the first time, the ultrastructure of the postsynaptic density in which long-term potentiation was selectively induced just seconds or minutes before, but it can be applied for the study of any biological process that requires the precise relocalization of micron-wide structures for their correlated imaging with 2PM and EM.
Collapse
Affiliation(s)
- Miquel Bosch
- RIKEN-MIT Neuroscience Research Center, Massachusetts Institute of Technology, Cambridge, MA, USA.
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA.
- Institute for Bioengineering of Catalonia, Barcelona, Spain.
| | - Jorge Castro
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mriganka Sur
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Yasunori Hayashi
- RIKEN-MIT Neuroscience Research Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- The Picower Institute for Learning and Memory, Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA, USA
- Brain Science Institute, RIKEN, Wako, Saitama, Japan
- Saitama University Brain Science Institute, Saitama University, Saitama, Japan
- School of Life Science, South China Normal University, Guangzhou, China
- Department of Pharmacology, Faculty of Medicine, Kyoto University, Kyoto 606-8501, Japan
| |
Collapse
|
30
|
Szabó EC, Manguinhas R, Fonseca R. The interplay between neuronal activity and actin dynamics mimic the setting of an LTD synaptic tag. Sci Rep 2016; 6:33685. [PMID: 27650071 PMCID: PMC5030642 DOI: 10.1038/srep33685] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 08/31/2016] [Indexed: 02/07/2023] Open
Abstract
Persistent forms of plasticity, such as long-term depression (LTD), are dependent on the interplay between activity-dependent synaptic tags and the capture of plasticity-related proteins. We propose that the synaptic tag represents a structural alteration that turns synapses permissive to change. We found that modulation of actin dynamics has different roles in the induction and maintenance of LTD. Inhibition of either actin depolymerisation or polymerization blocks LTD induction whereas only the inhibition of actin depolymerisation blocks LTD maintenance. Interestingly, we found that actin depolymerisation and CaMKII activation are involved in LTD synaptic-tagging and capture. Moreover, inhibition of actin polymerisation mimics the setting of a synaptic tag, in an activity-dependent manner, allowing the expression of LTD in non-stimulated synapses. Suspending synaptic activation also restricts the time window of synaptic capture, which can be restored by inhibiting actin polymerization. Our results support our hypothesis that modulation of the actin cytoskeleton provides an input-specific signal for synaptic protein capture.
Collapse
Affiliation(s)
- Eszter C Szabó
- Cellular and Systems Neurobiology, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras Portugal
| | - Rita Manguinhas
- Cellular and Systems Neurobiology, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras Portugal
| | - Rosalina Fonseca
- Cellular and Systems Neurobiology, Instituto Gulbenkian de Ciência, Rua da Quinta Grande, 6, 2780-156 Oeiras Portugal
| |
Collapse
|
31
|
Abbas AK, Villers A, Ris L. Temporal phases of long-term potentiation (LTP): myth or fact? Rev Neurosci 2016; 26:507-46. [PMID: 25992512 DOI: 10.1515/revneuro-2014-0072] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 03/12/2015] [Indexed: 12/11/2022]
Abstract
Long-term potentiation (LTP) remains the most widely accepted model for learning and memory. In accordance with this belief, the temporal differentiation of LTP into early and late phases is accepted as reflecting the differentiation of short-term and long-term memory. Moreover, during the past 30 years, protein synthesis inhibitors have been used to separate the early, protein synthesis-independent (E-LTP) phase and the late, protein synthesis-dependent (L-LTP) phase. However, the role of these proteins has not been formally identified. Additionally, several reports failed to show an effect of protein synthesis inhibitors on LTP. In this review, a detailed analysis of extensive behavioral and electrophysiological data reveals that the presumed correspondence of LTP temporal phases to memory phases is neither experimentally nor theoretically consistent. Moreover, an overview of the time courses of E-LTP in hippocampal slices reveals a wide variability ranging from <1 h to more than 5 h. The existence of all these conflictual findings should lead to a new vision of LTP. We believe that the E-LTP vs. L-LTP distinction, established with protein synthesis inhibitor studies, reflects a false dichotomy. We suggest that the duration of LTP and its dependency on protein synthesis are related to the availability of a set of proteins at synapses and not to the de novo synthesis of plasticity-related proteins. This availability is determined by protein turnover kinetics, which is regulated by previous and ongoing electrical activities and by energy store availability.
Collapse
|
32
|
Papatheodoropoulos C, Kouvaros S. High-frequency stimulation-induced synaptic potentiation in dorsal and ventral CA1 hippocampal synapses: the involvement of NMDA receptors, mGluR5, and (L-type) voltage-gated calcium channels. ACTA ACUST UNITED AC 2016; 23:460-4. [PMID: 27531836 PMCID: PMC4986856 DOI: 10.1101/lm.042531.116] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2016] [Accepted: 06/24/2016] [Indexed: 11/24/2022]
Abstract
The ability of the ventral hippocampus (VH) for long-lasting long-term potentiation (LTP) and the mechanisms underlying its lower ability for short-lasting LTP compared with the dorsal hippocampus (DH) are unknown. Using recordings of field excitatory postsynaptic potentials (EPSPs) from the CA1 field of adult rat hippocampal slices, we found that 200-Hz stimulation induced nondecremental LTP that was maintained for at least 7 h and was greater in the DH than in the VH. The interaction of NMDA receptors with L-type voltage-dependent calcium channels appeared to be more effective in the DH than in the VH. Furthermore, the LTP was significantly enhanced in the DH only, between 2 and 5 h post-tetanus. Furthermore, the mGluR5 contributed to the post-tetanic potentiation more in the VH than in the DH.
Collapse
Affiliation(s)
| | - Stylianos Kouvaros
- Laboratory of Physiology, Department of Medicine, University of Patras, 26504, Rion, Greece
| |
Collapse
|
33
|
Lopez-Rojas J, Heine M, Kreutz MR. Plasticity of intrinsic excitability in mature granule cells of the dentate gyrus. Sci Rep 2016; 6:21615. [PMID: 26857841 PMCID: PMC4746665 DOI: 10.1038/srep21615] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Accepted: 01/27/2016] [Indexed: 01/08/2023] Open
Abstract
The dentate gyrus is the main entry gate for cortical input to the hippocampus and one of the few brain areas where adult neurogenesis occurs. Several studies have shown that it is relatively difficult to induce synaptic plasticity in mature but not in newborn dentate granule cells. In the present work we have systematically addressed how classical protocols to induce synaptic plasticity affect action potential firing and intrinsic excitability in mature granule cells. We found that stimulation paradigms considered to be relevant for learning processes consistently modified the probability to generate action potentials in response to a given synaptic input in mature cells, in some paradigms even without any modification of synaptic strength. Collectively the results suggest that plasticity of intrinsic dendritic excitability has a lower induction-threshold than synaptic plasticity in mature granule cells and that this form of plasticity might be an important mechanism by which mature granule cells contribute to hippocampal function.
Collapse
Affiliation(s)
- Jeffrey Lopez-Rojas
- Research Group 'Neuroplasticity', Leibniz Institute for Neurobiology, Brenneckestrasse 6, D-39118 Magdeburg, Germany
| | - Martin Heine
- Research Group 'Molecular Physiology', Leibniz Institute for Neurobiology, Brenneckestrasse 6, D-39118 Magdeburg, Germany
| | - Michael R Kreutz
- Research Group 'Neuroplasticity', Leibniz Institute for Neurobiology, Brenneckestrasse 6, D-39118 Magdeburg, Germany.,Leibniz Group 'Dendritic Organelles and Synaptic Function', University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, 20251 Hamburg, Germany
| |
Collapse
|
34
|
Hansen F, Battú CE, Dutra MF, Galland F, Lirio F, Broetto N, Nardin P, Gonçalves CA. Methylglyoxal and carboxyethyllysine reduce glutamate uptake and S100B secretion in the hippocampus independently of RAGE activation. Amino Acids 2015; 48:375-85. [PMID: 26347375 DOI: 10.1007/s00726-015-2091-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Accepted: 08/28/2015] [Indexed: 01/29/2023]
Abstract
Diabetes is a metabolic disease characterized by high fasting-glucose levels. Diabetic complications have been associated with hyperglycemia and high levels of reactive compounds, such as methylglyoxal (MG) and advanced glycation endproducts (AGEs) formation derived from glucose. Diabetic patients have a higher risk of developing neurodegenerative diseases, such as Alzheimer's disease or Parkinson's disease. Herein, we examined the effect of high glucose, MG and carboxyethyllysine (CEL), a MG-derived AGE of lysine, on oxidative, metabolic and astrocyte-specific parameters in acute hippocampal slices, and investigated some of the mechanisms that could mediate these effects. Glucose, MG and CEL did not alter reactive oxygen species (ROS) formation, glucose uptake or glutamine synthetase activity. However, glutamate uptake and S100B secretion were decreased after MG and CEL exposure. RAGE activation and glycation reactions, examined by aminoguanidine and L-lysine co-incubation, did not mediate these changes. Acute MG and CEL exposure, but not glucose, were able to induce similar effects on hippocampal slices, suggesting that conditions of high glucose concentrations are primarily toxic by elevating the rates of these glycation compounds, such as MG, and by generation of protein cross-links. Alterations in the secretion of S100B and the glutamatergic activity mediated by MG and AGEs can contribute to the brain dysfunction observed in diabetic patients.
Collapse
Affiliation(s)
- Fernanda Hansen
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Cíntia Eickhoff Battú
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Márcio Ferreira Dutra
- Departamento de Biologia Celular, Embriologia e Genética, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Campus Trindade, Florianópolis, SC, 88040-970, Brazil
| | - Fabiana Galland
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Franciane Lirio
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Núbia Broetto
- Programa de Pós-Graduação em Neurociências, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Porto Alegre, RS, 90046-900, Brazil
| | - Patrícia Nardin
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil
| | - Carlos-Alberto Gonçalves
- Departamento de Bioquímica, Instituto de Ciências Básicas da Saúde, Universidade Federal do Rio Grande do Sul, Ramiro Barcelos, 2600-Anexo, Porto Alegre, RS, 90035-003, Brazil.
| |
Collapse
|
35
|
Shetty MS, Sharma M, Hui NS, Dasgupta A, Gopinadhan S, Sajikumar S. Investigation of Synaptic Tagging/Capture and Cross-capture using Acute Hippocampal Slices from Rodents. J Vis Exp 2015. [PMID: 26381286 PMCID: PMC4692586 DOI: 10.3791/53008] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Synaptic tagging and capture (STC) and cross-tagging are two important mechanisms at cellular level that explain how synapse-specificity and associativity is achieved in neurons within a specific time frame. These long-term plasticity-related processes are the leading candidate models to study the basis of memory formation and persistence at the cellular level. Both STC and cross-tagging involve two serial processes: (1) setting of the synaptic tag as triggered by a specific pattern of stimulation, and (2) synaptic capture, whereby the synaptic tag interacts with newly synthesized plasticity-related proteins (PRPs). Much of the understanding about the concepts of STC and cross-tagging arises from the studies done in CA1 region of the hippocampus and because of the technical complexity many of the laboratories are still unable to study these processes. Experimental conditions for the preparation of hippocampal slices and the recording of stable late-LTP/LTD are extremely important to study synaptic tagging/cross-tagging. This video article describes the experimental procedures to study long-term plasticity processes such as STC and cross-tagging in the CA1 pyramidal neurons using stable, long-term field-potential recordings from acute hippocampal slices of rats.
Collapse
Affiliation(s)
- Mahesh Shivarama Shetty
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore; Neurobiology/Aging Programme, Life Sciences Institute, National University of Singapore
| | - Mahima Sharma
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore; Neurobiology/Aging Programme, Life Sciences Institute, National University of Singapore
| | - Neo Sin Hui
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore; Neurobiology/Aging Programme, Life Sciences Institute, National University of Singapore
| | - Ananya Dasgupta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore; Neurobiology/Aging Programme, Life Sciences Institute, National University of Singapore
| | - Suma Gopinadhan
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore; Neurobiology/Aging Programme, Life Sciences Institute, National University of Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore; Neurobiology/Aging Programme, Life Sciences Institute, National University of Singapore;
| |
Collapse
|
36
|
Garcia-Alvarez G, Shetty MS, Lu B, Yap KAF, Oh-Hora M, Sajikumar S, Bichler Z, Fivaz M. Impaired spatial memory and enhanced long-term potentiation in mice with forebrain-specific ablation of the Stim genes. Front Behav Neurosci 2015; 9:180. [PMID: 26236206 PMCID: PMC4500926 DOI: 10.3389/fnbeh.2015.00180] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 06/29/2015] [Indexed: 12/15/2022] Open
Abstract
Recent findings point to a central role of the endoplasmic reticulum-resident STIM (Stromal Interaction Molecule) proteins in shaping the structure and function of excitatory synapses in the mammalian brain. The impact of the Stim genes on cognitive functions remains, however, poorly understood. To explore the function of the Stim genes in learning and memory, we generated three mouse strains with conditional deletion (cKO) of Stim1 and/or Stim2 in the forebrain. Stim1, Stim2, and double Stim1/Stim2 cKO mice show no obvious brain structural defects or locomotor impairment. Analysis of spatial reference memory in the Morris water maze revealed a mild learning delay in Stim1 cKO mice, while learning and memory in Stim2 cKO mice was indistinguishable from their control littermates. Deletion of both Stim genes in the forebrain resulted, however, in a pronounced impairment in spatial learning and memory reflecting a synergistic effect of the Stim genes on the underlying neural circuits. Notably, long-term potentiation (LTP) at CA3-CA1 hippocampal synapses was markedly enhanced in Stim1/Stim2 cKO mice and was associated with increased phosphorylation of the AMPA receptor subunit GluA1, the transcriptional regulator CREB and the L-type Voltage-dependent Ca(2+) channel Cav1.2 on protein kinase A (PKA) sites. We conclude that STIM1 and STIM2 are key regulators of PKA signaling and synaptic plasticity in neural circuits encoding spatial memory. Our findings also reveal an inverse correlation between LTP and spatial learning/memory and suggest that abnormal enhancement of cAMP/PKA signaling and synaptic efficacy disrupts the formation of new memories.
Collapse
Affiliation(s)
- Gisela Garcia-Alvarez
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Mahesh S Shetty
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Bo Lu
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Kenrick An Fu Yap
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Masatsugu Oh-Hora
- Division of Molecular Immunology, Medical Institute of Bioregulation, Kyushu University Higashi-ku, Japan
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Zoë Bichler
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore ; Behavioral Neuroscience Laboratory, National Neuroscience Institute Singapore, Singapore
| | - Marc Fivaz
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore ; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| |
Collapse
|
37
|
Chew B, Ryu JR, Ng T, Ma D, Dasgupta A, Neo SH, Zhao J, Zhong Z, Bichler Z, Sajikumar S, Goh ELK. Lentiviral silencing of GSK-3β in adult dentate gyrus impairs contextual fear memory and synaptic plasticity. Front Behav Neurosci 2015; 9:158. [PMID: 26157370 PMCID: PMC4477161 DOI: 10.3389/fnbeh.2015.00158] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Accepted: 06/01/2015] [Indexed: 11/13/2022] Open
Abstract
Attempts have been made to use glycogen synthase kinase-3 beta (GSK3β) inhibitors for prophylactic treatment of neurocognitive conditions. However the use of lithium, a non-specific inhibitor of GSK3β results in mild cognitive impairment in humans. The effects of global GSK3β inhibition or knockout on learning and memory in healthy adult mice are also inconclusive. Our study aims to better understand the role of GSK3β in learning and memory through a more regionally, targeted approach, specifically performing lentiviral-mediated knockdown of GSK3β within the dentate gyrus (DG). DG-GSK3β-silenced mice showed impaired contextual fear memory retrieval. However, cue fear memory, spatial memory, locomotor activity and anxiety levels were similar to control. These GSK3β-silenced mice also showed increased induction and maintenance of DG long-term potentiation (DG-LTP) compared to control animals. Thus, this region-specific, targeted knockdown of GSK3β in the DG provides better understanding on the role of GSK3β in learning and memory.
Collapse
Affiliation(s)
- Benjamin Chew
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Jae Ryun Ryu
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Teclise Ng
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Dongliang Ma
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore
| | - Ananya Dasgupta
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Sin Hui Neo
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Jing Zhao
- Regenerative Medicine DPU, GlaxoSmithKline (China) R&D Co., Ltd. Shanghai, China
| | - Zhong Zhong
- Regenerative Medicine DPU, GlaxoSmithKline (China) R&D Co., Ltd. Shanghai, China
| | - Zoë Bichler
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore ; Behavioural Neuroscience Laboratory, National Neuroscience Institute Singapore, Singapore
| | - Sreedharan Sajikumar
- Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore
| | - Eyleen L K Goh
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School Singapore, Singapore ; Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore Singapore, Singapore ; KK Research Center, KK Women's and Children's Hospital Singapore, Singapore
| |
Collapse
|
38
|
Subramaniyan S, Hajali V, Scherf T, Sase SJ, Sialana FJ, Gröger M, Bennett KL, Pollak A, Li L, Korz V, Lubec G. Hippocampal receptor complexes paralleling LTP reinforcement in the spatial memory holeboard test in the rat. Behav Brain Res 2015; 283:162-74. [PMID: 25639541 DOI: 10.1016/j.bbr.2015.01.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Revised: 01/18/2015] [Accepted: 01/21/2015] [Indexed: 12/28/2022]
Abstract
The current study was designed to examine learning-induced transformation of early-LTP into late-LTP. Recording electrodes were implanted into the dentate gyrus of the hippocampus in male rats and early-LTP was induced by weak tetanic stimulation of the medial perforant path. Dorsal right hippocampi were removed, membrane proteins were extracted, separated by blue-native gel electrophoresis with subsequent immunoblotting using brain receptor antibodies. Spatial training resulted into reinforcement of LTP and the reinforced LTP was persistent for 6h. Receptor complex levels containing GluN1 and GluN2A of NMDARs, GluA1 and GluA2 of AMPARs, nAchα7R and the D(1A) dopamine receptor were significantly-elevated in rat hippocampi of animals underwent spatial learning, whilst levels of GluA3 and 5-HT1A receptor containing complexes were significantly reduced. Evidence for complex formation between GluN1 and D(1A) dopamine receptor was provided by antibody shift assay, co-immunoprecipitation and mass spectrometric analysis. Thus our results propose that behavioural stimuli like spatial learning reinforce early LTP into late LTP and this reinforced LTP is accompanied by changes in certain receptor levels in the membrane fraction of the rat hippocampus.
Collapse
Affiliation(s)
| | - Vahid Hajali
- Institute of Biology, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Thomas Scherf
- Institute of Biology, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany
| | - Sunetra Jitkar Sase
- Department of Paediatrics, Medizinische Universität Wien, Währinger Gürtel 18A, 1090 Wien
| | - Fernando J Sialana
- Department of Paediatrics, Medizinische Universität Wien, Währinger Gürtel 18A, 1090 Wien
| | - Marion Gröger
- Core facilities, Core Facility Imaging, Medizinische Universität Wien, Anna Spiegel Forschungsgebäude, 1090 Vienna, Austria
| | - Keiryn L Bennett
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT25.3 and 1090 Vienna, Austria
| | - Arnold Pollak
- Department of Paediatrics, Medizinische Universität Wien, Währinger Gürtel 18A, 1090 Wien
| | - Lin Li
- Department of Paediatrics, Medizinische Universität Wien, Währinger Gürtel 18A, 1090 Wien
| | - Volker Korz
- Institute of Biology, Otto von Guericke University Magdeburg, 39120 Magdeburg, Germany.
| | - Gert Lubec
- Department of Paediatrics, Medizinische Universität Wien, Währinger Gürtel 18A, 1090 Wien.
| |
Collapse
|
39
|
Lynch G, Kramár EA, Gall CM. Protein synthesis and consolidation of memory-related synaptic changes. Brain Res 2014; 1621:62-72. [PMID: 25485773 DOI: 10.1016/j.brainres.2014.11.060] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Accepted: 11/27/2014] [Indexed: 10/24/2022]
Abstract
Although sometimes disputed, it has been assumed for several decades that new proteins synthesized following a learning event are required for consolidation of subsequent memory. Published findings and new results described here challenge this idea. Protein synthesis inhibitors did not prevent Theta Bust Stimulation (TBS) from producing extremely stable long-term potentiation (LTP) in experiments using standard hippocampal slice protocols. However, the inhibitors were effective under conditions that likely depleted protein levels prior to attempts to induce the potentiation effect. Experiments showed that induction of LTP at one input, and thus a prior episode of protein synthesis, eliminated the effects of inhibitors on potentiation of a second input even in depleted slices. These observations suggest that a primary role of translation and transcription processes initiated by learning events is to prepare neurons to support future learning. Other work has provided support for an alternative theory of consolidation. Specifically, if the synaptic changes that support memory are to endure, learning events/TBS must engage a complex set of signaling processes that reorganize and re-stabilize the spine actin cytoskeleton. This is accomplished in fast (10 min) and slow (50 min) stages with the first requiring integrin activation and the second a recovery of integrin functioning. These results align with, and provide mechanisms for, the long-held view that memories are established and consolidated over a set of temporally distinct phases. This article is part of a Special Issue entitled SI: Brain and Memory.
Collapse
Affiliation(s)
- Gary Lynch
- Department of Psychiatry and Human Behavior, University of California, Irvine, CA 92697, USA; Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA.
| | - Enikö A Kramár
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA
| | - Christine M Gall
- Department of Anatomy and Neurobiology, University of California, Irvine, CA 92697, USA; Department of Neurobiology and Behavior, University of California, Irvine, CA 92697, USA
| |
Collapse
|
40
|
FXR1P limits long-term memory, long-lasting synaptic potentiation, and de novo GluA2 translation. Cell Rep 2014; 9:1402-1416. [PMID: 25456134 DOI: 10.1016/j.celrep.2014.10.028] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2014] [Revised: 08/28/2014] [Accepted: 10/11/2014] [Indexed: 12/31/2022] Open
Abstract
Translational control of mRNAs allows for rapid and selective changes in synaptic protein expression that are required for long-lasting plasticity and memory formation in the brain. Fragile X Related Protein 1 (FXR1P) is an RNA-binding protein that controls mRNA translation in nonneuronal cells and colocalizes with translational machinery in neurons. However, its neuronal mRNA targets and role in the brain are unknown. Here, we demonstrate that removal of FXR1P from the forebrain of postnatal mice selectively enhances long-term storage of spatial memories, hippocampal late-phase long-term potentiation (L-LTP), and de novo GluA2 synthesis. Furthermore, FXR1P binds specifically to the 5' UTR of GluA2 mRNA to repress translation and limit the amount of GluA2 that is incorporated at potentiated synapses. This study uncovers a mechanism for regulating long-lasting synaptic plasticity and spatial memory formation and reveals an unexpected divergent role of FXR1P among Fragile X proteins in brain plasticity.
Collapse
|
41
|
Navakkode S, Korte M. Pharmacological activation of CB1 receptor modulates long term potentiation by interfering with protein synthesis. Neuropharmacology 2014; 79:525-33. [PMID: 24412673 DOI: 10.1016/j.neuropharm.2013.11.018] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 11/04/2013] [Accepted: 11/21/2013] [Indexed: 12/30/2022]
Abstract
Cognitive impairment is one of the most important side effects associated with cannabis drug abuse, as well as the serious issue concerning the therapeutic use of cannabinoids. Cognitive impairments and neuropsychiatric symptoms are caused by early synaptic dysfunctions, such as loss of synaptic connections in different brain structures including the hippocampus, a region that is believed to play an important role in certain forms of learning and memory. We report here that metaplastic priming of synapses with a cannabinoid type 1 receptor (CB1 receptor) agonist, WIN55,212-2 (WIN55), significantly impaired long-term potentiation in the apical dendrites of CA1 pyramidal neurons. Interestingly, the CB1 receptor exerts its effect by altering the balance of protein synthesis machinery towards higher protein production. Therefore the activation of CB1 receptor, prior to strong tetanization, increased the propensity to produce new proteins. In addition, WIN55 priming resulted in the expression of late-LTP in a synaptic input that would have normally expressed early-LTP, thus confirming that WIN55 priming of LTP induces new synthesis of plasticity-related proteins. Furthermore, in addition to the effects on protein translation, WIN55 also induced synaptic deficits due to the ability of CB1 receptors to inhibit the release of acetylcholine, mediated by both muscarinic and nicotinic acetylcholine receptors. Taken together this supports the notion that the modulation of cholinergic activity by CB1 receptor activation is one mechanism that regulates the synthesis of plasticity-related proteins.
Collapse
Affiliation(s)
- Sheeja Navakkode
- Zoology Institute, Division of Cellular Neurobiology, TU, Braunschweig D-38106 Germany
| | - Martin Korte
- Zoology Institute, Division of Cellular Neurobiology, TU, Braunschweig D-38106 Germany.
| |
Collapse
|
42
|
Kudryashova IV. Analysis of conditions that are important for the beginning of consolidation in a model of long-term synaptic potentiation. NEUROCHEM J+ 2013. [DOI: 10.1134/s1819712413030070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
43
|
Group I metabotropic glutamate receptors modulate late phase long-term potentiation in hippocampal CA1 pyramidal neurons: comparison of apical and basal dendrites. Neurosci Lett 2013; 553:132-7. [PMID: 23978512 DOI: 10.1016/j.neulet.2013.08.030] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 08/11/2013] [Accepted: 08/14/2013] [Indexed: 11/21/2022]
Abstract
The hippocampal long-term potentiation (LTP) at Schaffer collateral synapses onto CA1 pyramidal neurons has been widely studied as a cellular model of activity-dependent enhancement of synaptic transmission. The apical (stratum radiatum) and basal dendrites (stratum oriens) of hippocampal CA1 pyramidal neurons differ in LTP induction and maintenance. Here, the role of mGlu receptors in the induction and maintenance of late-LTP was investigated, in comparison of these two compartments. My results show that mGlu1 receptor modulates late-LTP in apical dendrites and basal dendrites, whereas mGlu5 receptor modulates late-LTP only in apical dendrites.
Collapse
|
44
|
Villers A, Ris L. Improved preparation and preservation of hippocampal mouse slices for a very stable and reproducible recording of long-term potentiation. J Vis Exp 2013. [PMID: 23851639 DOI: 10.3791/50483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Long-term potentiation (LTP) is a type of synaptic plasticity characterized by an increase in synaptic strength and believed to be involved in memory encoding. LTP elicited in the CA1 region of acute hippocampal slices has been extensively studied. However the molecular mechanisms underlying the maintenance phase of this phenomenon are still poorly understood. This could be partly due to the various experimental conditions used by different laboratories. Indeed, the maintenance phase of LTP is strongly dependent on external parameters like oxygenation, temperature and humidity. It is also dependent on internal parameters like orientation of the slicing plane and slice viability after dissection. The optimization of all these parameters enables the induction of a very reproducible and very stable long-term potentiation. This methodology offers the possibility to further explore the molecular mechanisms involved in the stable increase in synaptic strength in hippocampal slices. It also highlights the importance of experimental conditions in in vitro investigation of neurophysiological phenomena.
Collapse
Affiliation(s)
- Agnès Villers
- Department of Neurosciences, Research Institute for Biosciences, University of Mons
| | | |
Collapse
|
45
|
Abstract
In isolated hippocampal slices, decaying long-term potentiation (LTP) can be stabilized, and converted to late-LTP lasting many hours, by prior or subsequent strong high-frequency tetanization of an independent input to a common population of neurons—a phenomenon known as ‘synaptic tagging and capture’. Here we show that the same phenomenon occurs in the intact rat. Late-LTP can be induced in CA1 during the inhibition of protein synthesis if an independent input is strongly tetanized beforehand. Conversely, declining early-LTP induced by weak tetanization can be converted into lasting late-LTP by subsequent strong tetanization of a separate input. These findings indicate that synaptic tagging and capture is not limited to in vitro preparations; the past and future activity of neurons plays a critical role in determining the persistence of synaptic changes in the living animal, thus providing a bridge between cellular studies of protein-synthesis-dependent synaptic potentiation and behavioural studies of memory persistence.
Collapse
|
46
|
Metabotropic glutamate receptor I (mGluR1) antagonism impairs cocaine-induced conditioned place preference via inhibition of protein synthesis. Neuropsychopharmacology 2013; 38:1308-21. [PMID: 23348064 PMCID: PMC3656374 DOI: 10.1038/npp.2013.29] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Antagonism of group I metabotropic glutamate receptors (mGluR1 and mGluR5) reduces behavioral effects of drugs of abuse, including cocaine. However, the underlying mechanisms remain poorly understood. Activation of mGluR5 increases protein synthesis at synapses. Although mGluR5-induced excessive protein synthesis has been implicated in the pathology of fragile X syndrome, it remains unknown whether group I mGluR-mediated protein synthesis is involved in any behavioral effects of drugs of abuse. We report that group I mGluR agonist DHPG induced more pronounced initial depression of inhibitory postsynaptic currents (IPSCs) followed by modest long-term depression (I-LTD) in dopamine neurons of rat ventral tegmental area (VTA) through the activation of mGluR1. The early component of DHPG-induced depression of IPSCs was mediated by the cannabinoid CB1 receptors, while DHPG-induced I-LTD was dependent on protein synthesis. Western blotting analysis indicates that mGluR1 was coupled to extracellular signal-regulated kinase (ERK) and mammalian target of rapamycin (mTOR) signaling pathways to increase translation. We also show that cocaine conditioning activated translation machinery in the VTA via an mGluR1-dependent mechanism. Furthermore, intra-VTA microinjections of mGluR1 antagonist JNJ16259685 and protein synthesis inhibitor cycloheximide significantly attenuated or blocked the acquisition of cocaine-induced conditioned place preference (CPP) and activation of translation elongation factors. Taken together, these results suggest that mGluR1 antagonism inhibits de novo protein synthesis; this effect may block the formation of cocaine-cue associations and thus provide a mechanism for the reduction in CPP to cocaine.
Collapse
|
47
|
Crawford DC, Jiang X, Taylor A, Moulder KL, Mennerick S. Differential requirement for protein synthesis in presynaptic unmuting and muting in hippocampal glutamate terminals. PLoS One 2012; 7:e51930. [PMID: 23272190 PMCID: PMC3521764 DOI: 10.1371/journal.pone.0051930] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 11/14/2012] [Indexed: 12/17/2022] Open
Abstract
Synaptic function and plasticity are crucial for information processing within the nervous system. In glutamatergic hippocampal neurons, presynaptic function is silenced, or muted, after strong or prolonged depolarization. This muting is neuroprotective, but the underlying mechanisms responsible for muting and its reversal, unmuting, remain to be clarified. Using cultured rat hippocampal neurons, we found that muting induction did not require protein synthesis; however, slow forms of unmuting that depend on protein kinase A (PKA), including reversal of depolarization-induced muting and forskolin-induced unmuting of basally mute synapses, required protein synthesis. In contrast, fast unmuting of basally mute synapses by phorbol esters was protein synthesis-independent. Further studies of recovery from depolarization-induced muting revealed that protein levels of Rim1 and Munc13-1, which mediate vesicle priming, correlated with the functional status of presynaptic terminals. Additionally, this form of unmuting was prevented by both transcription and translation inhibitors, so proteins are likely synthesized de novo after removal of depolarization. Phosphorylated cyclic adenosine monophosphate response element-binding protein (pCREB), a nuclear transcription factor, was elevated after recovery from depolarization-induced muting, consistent with a model in which PKA-dependent mechanisms, possibly including pCREB-activated transcription, mediate slow unmuting. In summary, we found that protein synthesis was required for slower, PKA-dependent unmuting of presynaptic terminals, but it was not required for muting or a fast form of unmuting. These results clarify some of the molecular mechanisms responsible for synaptic plasticity in hippocampal neurons and emphasize the multiple mechanisms by which presynaptic function is modulated.
Collapse
Affiliation(s)
- Devon C. Crawford
- Graduate Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Xiaoping Jiang
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Amanda Taylor
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Krista L. Moulder
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
| | - Steven Mennerick
- Department of Psychiatry, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Department of Anatomy and Neurobiology, Washington University School of Medicine, St. Louis, Missouri, United States of America
- Taylor Family Institute for Innovative Psychiatric Research, Washington University School of Medicine, St. Louis, Missouri, United States of America
- * E-mail:
| |
Collapse
|
48
|
Li Q, Rothkegel M, Xiao ZC, Abraham WC, Korte M, Sajikumar S. Making synapses strong: metaplasticity prolongs associativity of long-term memory by switching synaptic tag mechanisms. ACTA ACUST UNITED AC 2012; 24:353-63. [PMID: 23048020 DOI: 10.1093/cercor/bhs315] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
One conceptual mechanism for the induction of associative long-term memory is that a synaptic tag, set by a weak event, can capture plasticity-related proteins from a nearby strong input, thus enabling associativity between the 2 (synaptic tagging and capture, STC). So far, STC has been observed for only a limited time of 60 min. Nevertheless, association of weak memory forms can occur beyond this period and its mechanism is not well understood. Here we report that metaplasticity induced by ryanodine receptor activation or synaptic activation of metabotropic glutamate receptors prolongs the durability of the synaptic tag, thus extending the time window for associative interactions mediating storage of long-term memory. We provide evidence that such metaplasticity alters the mechanisms of STC from a CaMKII-mediated (in non-primed STC) to a protein kinase Mzeta (PKMζ)-mediated process (in primed STC). Thus the association of weak synapses with strong synapses in the "late" stage of associative memory formation occurs only through metaplasticity. The results also reveal that the short-lived, CaMKII-mediated tag may contribute to a mechanism for a fragile form of memory while metaplasticity enables a PKMζ-mediated synaptic tag capable of prolonged interactions that induce a more stable form of memory that is resistant to reversal.
Collapse
Affiliation(s)
- Qin Li
- Division of Cellular Neurobiology, Zoological Institute, TU Braunschweig, Germany
| | | | | | | | | | | |
Collapse
|
49
|
Long-lasting LTP requires neither repeated trains for its induction nor protein synthesis for its development. PLoS One 2012; 7:e40823. [PMID: 22792408 PMCID: PMC3394721 DOI: 10.1371/journal.pone.0040823] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2012] [Accepted: 06/13/2012] [Indexed: 12/29/2022] Open
Abstract
Current thinking about LTP triggered in the area CA1 of hippocampal slices is ruled by two “dogmas”: (1) A single train of high-frequency stimulation is sufficient to trigger short-lasting LTP (1 – 3 h), whereas multiple trains are required to induce long-lasting LTP (L-LTP, more than 4 h). (2) The development of the late phase of L-LTP requires the synthesis of new proteins. In this study, we found that a single high-frequency train could trigger an LTP lasting more than 8 h that was not affected by either anisomycin or cycloheximide (two inhibitors of protein synthesis). We ascertained that the induction of this L-LTP made use of the same mechanisms as those usually reported to be involved in LTP induction: it was dependent on NMDA receptors and on the activation of two “core” kinases, CaMKII and PI3K. These findings call into question the two “dogmas” about LTP.
Collapse
|
50
|
Navakkode S, Sajikumar S, Korte M, Soong TW. Dopamine induces LTP differentially in apical and basal dendrites through BDNF and voltage-dependent calcium channels. Learn Mem 2012; 19:294-9. [DOI: 10.1101/lm.026203.112] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|