1
|
Luo Z, Li W, Hu Z, Lu H, Wang C, Lan X, Mai S, Liu G, Zhang F, Chen X, You Z, Zeng Y, Chen Y, Liang Y, Chen Y, Zhou Y, Ning Y. Structural covariance network activity in the medial prefrontal cortex is modulated by childhood abuse in adolescents with depression. J Affect Disord 2024; 367:903-912. [PMID: 39251093 DOI: 10.1016/j.jad.2024.09.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/03/2024] [Accepted: 09/06/2024] [Indexed: 09/11/2024]
Abstract
Aberrant structural covariance (SC) in the medial prefrontal cortex (mPFC) is believed to play a crucial role in adolescent-onset major depressive disorder (AO-MDD). However, the effect of childhood abuse (CA) on SC in AO-MDD patients is still unknown. Here, we measured anomalous SC in the mPFC of AO-MDD patients and assessed the potential modulation of this feature by CA. We acquired T1-weighted structural images of AO-MDD patients (n = 93) and healthy controls (HCs, n = 81). Using voxel-based morphometry analysis, we calculated gray matter volumes for each subject. Subsequently, we classified abnormal SC in the mPFC into three subtypes according to overall CA. Compared with HCs, AO-MDD patients showed alterations in the structural covariance network of the mPFC, which is a central region in the default mode network (DMN). We also found an anterior-posterior dissociation in the structural covariance connectivity of the DMN. A history of CA modulated bilateral mPFC SC. These changes were primarily focused on the SC between the mPFC and the limbic system, indicating a gap in the rate of neural maturation between these regions. In summary, the DMN and frontal-limbic system, which are involved in emotional processing, appear to play a significant role in the development of AO-MDD. These findings highlight the crucial effects of CA on neurophysiological alterations in individuals with AO-MDD.
Collapse
Affiliation(s)
- Zhanjie Luo
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Weicheng Li
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Zhibo Hu
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Hanna Lu
- Department of Psychiatry, The Chinese University of Hong Kong, Hong Kong
| | - Chengyu Wang
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaofeng Lan
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Siming Mai
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Guanxi Liu
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Fan Zhang
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Xiaoyu Chen
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Zerui You
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yexian Zeng
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yiying Chen
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yanmei Liang
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yifang Chen
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China
| | - Yanling Zhou
- Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| | - Yuping Ning
- The First School of Clinical Medicine, Southern Medical University, Guangzhou, China; Department of Child and Adolescent Psychiatry, The Affiliated Brain Hospital, Guangzhou Medical University, Guangzhou, China; Key Laboratory of Neurogenetics and Channelopathies of Guangdong Province and the Ministry of Education of China, Guangzhou Medical University, Guangzhou, China; Guangdong Engineering Technology Research Center for Translational Medicine of Mental Disorders, Guangzhou, China.
| |
Collapse
|
2
|
Santos-Silva T, Souza BK, Colodete DAE, Campos LR, Lima TSA, Guimarães FS, Gomes FV. Differential Impact of Adolescent or Adult Stress on Behavior and Cortical Parvalbumin Interneurons and Perineuronal Nets in Male and Female Mice. Int J Neuropsychopharmacol 2024; 27:pyae042. [PMID: 39276147 DOI: 10.1093/ijnp/pyae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/12/2024] [Indexed: 09/16/2024] Open
Abstract
BACKGROUND Stress has become a common public health concern, contributing to the rising prevalence of psychiatric disorders. Understanding the impact of stress considering critical variables, such as age, sex, and individual differences, is of the utmost importance for developing effective intervention strategies. METHODS Stress effects (daily footshocks for 10 days) during adolescence (postnatal day [PND] 31-40) and adulthood (PND 65-74) were investigated on behavioral outcomes and parvalbumin (PV)-expressing GABAergic interneurons and their associated perineuronal nets (PNNs) in the prefrontal cortex of male and female mice 5 weeks post stress. RESULTS In adulthood, adolescent stress induced behavioral alterations in male mice, including anxiety-like behaviors, social deficits, cognitive impairments, and altered dopamine system responsivity. Applying integrated behavioral z-score analysis, we identified sex-specific differences in response to adolescent stress, with males displaying greater vulnerability than females. Furthermore, adolescent-stressed male mice showed decreased PV+ and PNN+ cell numbers and PV+/PNN+ colocalization, while in females, adolescent stress reduced prefrontal PV+/PNN+ colocalization in the prefrontal cortex. Further analysis identified distinct behavioral clusters, with certain females demonstrating resilience to adolescent stress-induced deficits in sociability and PV+ cell number. Adult stress in male and female mice did not cause long-lasting changes in behavior and PV+ and PNN+ cell number. CONCLUSION Our findings indicate that the timing of stress, sex, and individual variabilities seem to be determinants for the development of behavioral changes associated with psychiatric disorders, particularly in male mice during adolescence.
Collapse
Affiliation(s)
- Thamyris Santos-Silva
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Beatriz Kinchin Souza
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Débora Akemi Endo Colodete
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Lara Ramos Campos
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Thaís Santos Almeida Lima
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Francisco S Guimarães
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| | - Felipe V Gomes
- Department of Pharmacology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
3
|
Borst B, Jovanovic T, House SL, Bruce SE, Harnett NG, Roeckner AR, Ely TD, Lebois LAM, Young D, Beaudoin FL, An X, Neylan TC, Clifford GD, Linnstaedt SD, Germine LT, Bollen KA, Rauch SL, Haran JP, Storrow AB, Lewandowski C, Musey PI, Hendry PL, Sheikh S, Jones CW, Punches BE, Hudak LA, Pascual JL, Seamon MJ, Datner EM, Pearson C, Peak DA, Domeier RM, Rathlev NK, O'Neil BJ, Sergot P, Sanchez LD, Harte SE, Koenen KC, Kessler RC, McLean SA, Ressler KJ, Stevens JS, van Rooij SJH. Sex Differences in Response Inhibition-Related Neural Predictors of Posttraumatic Stress Disorder in Civilians With Recent Trauma. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:668-680. [PMID: 38522649 PMCID: PMC11227397 DOI: 10.1016/j.bpsc.2024.03.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/05/2024] [Accepted: 03/07/2024] [Indexed: 03/26/2024]
Abstract
BACKGROUND Females are more likely to develop posttraumatic stress disorder (PTSD) than males. Impaired inhibition has been identified as a mechanism for PTSD development, but studies on potential sex differences in this neurobiological mechanism and how it relates to PTSD severity and progression are relatively rare. Here, we examined sex differences in neural activation during response inhibition and PTSD following recent trauma. METHODS Participants (n = 205, 138 female sex assigned at birth) were recruited from emergency departments within 72 hours of a traumatic event. PTSD symptoms were assessed 2 weeks and 6 months posttrauma. A Go/NoGo task was performed 2 weeks posttrauma in a 3T magnetic resonance imaging scanner to measure neural activity during response inhibition in the ventromedial prefrontal cortex, right inferior frontal gyrus, and bilateral hippocampus. General linear models were used to examine the interaction effect of sex on the relationship between our regions of interest and the whole brain, PTSD symptoms at 6 months, and symptom progression between 2 weeks and 6 months. RESULTS Lower response inhibition-related ventromedial prefrontal cortex activation 2 weeks posttrauma predicted more PTSD symptoms at 6 months in females but not in males, while greater response inhibition-related right inferior frontal gyrus activation predicted lower PTSD symptom progression in males but not females. Whole-brain interaction effects were observed in the medial temporal gyrus and left precentral gyrus. CONCLUSIONS There are sex differences in the relationship between inhibition-related brain activation and PTSD symptom severity and progression. These findings suggest that sex differences should be assessed in future PTSD studies and reveal potential targets for sex-specific interventions.
Collapse
Affiliation(s)
- Bibian Borst
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia; Faculty of Behavioural and Movement Sciences, Vrije Universiteit Amsterdam, Amsterdam, the Netherlands
| | - Tanja Jovanovic
- Department of Psychiatry and Behavioral Neurosciences, Wayne State University, Detroit, Michigan
| | - Stacey L House
- Department of Emergency Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Steven E Bruce
- Department of Psychological Sciences, University of Missouri St. Louis, St. Louis, Missouri
| | - Nathaniel G Harnett
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Alyssa R Roeckner
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Timothy D Ely
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Lauren A M Lebois
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Dmitri Young
- Department of Psychiatry and Behavioral Sciences, University of California San Francisco, San Francisco, California
| | - Francesca L Beaudoin
- Department of Epidemiology, Brown University, Rehabilitation International, Providence, Rhode Island; Department of Emergency Medicine, Brown University, Providence, Rhode Island
| | - Xinming An
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Thomas C Neylan
- Departments of Psychiatry and Neurology, University of California San Francisco, San Francisco, California
| | - Gari D Clifford
- Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, Georgia; Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia
| | - Sarah D Linnstaedt
- Institute for Trauma Recovery, Department of Anesthesiology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Laura T Germine
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Institute for Technology in Psychiatry, McLean Hospital, Belmont, Massachusetts; Many Brains Project, Belmont, Massachusetts
| | - Kenneth A Bollen
- Department of Psychology and Neuroscience & Department of Sociology, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Scott L Rauch
- Department of Psychiatry, Harvard Medical School, Boston, Massachusetts; Institute for Technology in Psychiatry, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, McLean Hospital, Belmont, Massachusetts
| | - John P Haran
- Department of Emergency Medicine, University of Massachusetts Chan Medical School, Worcester, Massachusetts
| | - Alan B Storrow
- Department of Emergency Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | | | - Paul I Musey
- Department of Emergency Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Phyllis L Hendry
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, Jacksonville, Florida
| | - Sophia Sheikh
- Department of Emergency Medicine, University of Florida College of Medicine, Jacksonville, Jacksonville, Florida
| | - Christopher W Jones
- Department of Emergency Medicine, Cooper Medical School of Rowan University, Camden, New Jersey
| | - Brittany E Punches
- Department of Emergency Medicine, Ohio State University College of Medicine, Columbus, Ohio; Ohio State University College of Nursing, Columbus, Ohio
| | - Lauren A Hudak
- Department of Emergency Medicine, Emory University School of Medicine, Atlanta, Georgia
| | - Jose L Pascual
- Department of Surgery, Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania; Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mark J Seamon
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Surgery, Division of Traumatology, Surgical Critical Care and Emergency Surgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Elizabeth M Datner
- Department of Emergency Medicine, Jefferson Einstein Hospital, Jefferson Health, Philadelphia, Pennsylvania; Department of Emergency Medicine, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Claire Pearson
- Department of Emergency Medicine, Wayne State University, Ascension St. John Hospital, Detroit, Michigan
| | - David A Peak
- Department of Emergency Medicine, Massachusetts General Hospital, Boston, Massachusetts
| | - Robert M Domeier
- Department of Emergency Medicine, Trinity Health, Ann Arbor, Ypsilanti, Michigan
| | - Niels K Rathlev
- Department of Emergency Medicine, University of Massachusetts Medical School-Baystate, Springfield, Massachusetts
| | - Brian J O'Neil
- Department of Emergency Medicine, Wayne State University, Detroit Receiving Hospital, Detroit, Michigan
| | - Paulina Sergot
- Department of Emergency Medicine, McGovern Medical School at UTHealth, Houston, Texas
| | - Leon D Sanchez
- Department of Emergency Medicine, Brigham and Women's Hospital, Boston, Massachusetts; Department of Emergency Medicine, Harvard Medical School, Boston, Massachusetts
| | - Steven E Harte
- Department of Anesthesiology, University of Michigan Medical School, Ann Arbor, Michigan; Department of Internal Medicine-Rheumatology, University of Michigan Medical School, Ann Arbor, Michigan
| | - Karestan C Koenen
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Harvard University, Boston, Massachusetts
| | - Ronald C Kessler
- Department of Health Care Policy, Harvard Medical School, Boston, Massachusetts
| | - Samuel A McLean
- Department of Emergency Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina; Institute for Trauma Recovery, Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Kerry J Ressler
- Division of Depression and Anxiety, McLean Hospital, Belmont, Massachusetts; Department of Psychiatry, Harvard Medical School, Boston, Massachusetts
| | - Jennifer S Stevens
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia
| | - Sanne J H van Rooij
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, Georgia.
| |
Collapse
|
4
|
Volitaki E, Forro T, Li K, Nevian T, Ciocchi S. Activity of ventral hippocampal parvalbumin interneurons during anxiety. Cell Rep 2024; 43:114295. [PMID: 38796850 DOI: 10.1016/j.celrep.2024.114295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 01/29/2024] [Accepted: 05/14/2024] [Indexed: 05/29/2024] Open
Abstract
Anxiety plays a key role in guiding behavior in response to potential threats. Anxiety is mediated by the activation of pyramidal neurons in the ventral hippocampus (vH), whose activity is controlled by GABAergic inhibitory interneurons. However, how different vH interneurons might contribute to anxiety-related processes is unclear. Here, we investigate the role of vH parvalbumin (PV)-expressing interneurons while mice transition from safe to more anxiogenic compartments of the elevated plus maze (EPM). We find that vH PV interneurons increase their activity in anxiogenic EPM compartments concomitant with dynamic changes in inhibitory interactions between PV interneurons and pyramidal neurons. By optogenetically inhibiting PV interneurons, we induce an increase in the activity of vH pyramidal neurons and persistent anxiety. Collectively, our results suggest that vH inhibitory microcircuits may act as a trigger for enduring anxiety states.
Collapse
Affiliation(s)
- Emmanouela Volitaki
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Thomas Forro
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Kaizhen Li
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Thomas Nevian
- Neuronal Plasticity Group, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland
| | - Stéphane Ciocchi
- Laboratory of Systems Neuroscience, Department of Physiology, University of Bern, Bühlplatz 5, 3012 Bern, Switzerland.
| |
Collapse
|
5
|
Campos-Cardoso R, Desa ZR, Fitzgerald BL, Moore AG, Duhon JL, Landar VA, Clem RL, Cummings KA. The mouse dorsal peduncular cortex encodes fear memory. Cell Rep 2024; 43:114097. [PMID: 38613783 PMCID: PMC11135038 DOI: 10.1016/j.celrep.2024.114097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 01/26/2024] [Accepted: 03/27/2024] [Indexed: 04/15/2024] Open
Abstract
The rodent medial prefrontal cortex (mPFC) is functionally organized across the dorsoventral axis, where dorsal and ventral subregions promote and suppress fear, respectively. As the ventral-most subregion, the dorsal peduncular cortex (DP) is hypothesized to function in fear suppression. However, this role has not been explicitly tested. Here, we demonstrate that the DP paradoxically functions as a fear-encoding brain region and plays a minimal role in fear suppression. By using multimodal analyses, we demonstrate that DP neurons exhibit fear-learning-related plasticity and acquire cue-associated activity across learning and memory retrieval and that DP neurons activated by fear memory acquisition are preferentially reactivated upon fear memory retrieval. Further, optogenetic activation and silencing of DP fear-related neural ensembles drive the promotion and suppression of freezing, respectively. Overall, our results suggest that the DP plays a role in fear memory encoding. Moreover, our findings redefine our understanding of the functional organization of the rodent mPFC.
Collapse
Affiliation(s)
- Rodrigo Campos-Cardoso
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Zephyr R Desa
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Brianna L Fitzgerald
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA; Graduate Biomedical Sciences Program, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Alana G Moore
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Jace L Duhon
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Victoria A Landar
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Roger L Clem
- Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kirstie A Cummings
- Department of Neurobiology, Heersink School of Medicine, University of Alabama at Birmingham, Birmingham, AL 35233, USA.
| |
Collapse
|
6
|
Kitt ER, Zacharek SJ, Odriozola P, Nardini C, Hommel G, Martino A, Anderson T, Spencer H, Broussard A, Dean J, Marin CE, Silverman WK, Lebowitz ER, Gee DG. Responding to threat: Associations between neural reactivity to and behavioral avoidance of threat in pediatric anxiety. J Affect Disord 2024; 351:818-826. [PMID: 38290579 PMCID: PMC10981528 DOI: 10.1016/j.jad.2024.01.204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 01/18/2024] [Accepted: 01/22/2024] [Indexed: 02/01/2024]
Abstract
BACKGROUND Despite broad recognition of the central role of avoidance in anxiety, a lack of specificity in its operationalization has hindered progress in understanding this clinically significant construct. The current study uses a multimodal approach to investigate how specific measures of avoidance relate to neural reactivity to threat in youth with anxiety disorders. METHODS Children with anxiety disorders (ages 6-12 years; n = 65 for primary analyses) completed laboratory task- and clinician-based measures of avoidance, as well as a functional magnetic resonance imaging task probing neural reactivity to threat. Primary analyses examined the ventral anterior insula (vAI), amygdala, and ventromedial prefrontal cortex (vmPFC). RESULTS Significant but distinct patterns of association with task- versus clinician-based measures of avoidance emerged. Clinician-rated avoidance was negatively associated with right and left vAI reactivity to threat, whereas laboratory-based avoidance was positively associated with right vAI reactivity to threat. Moreover, left vAI-right amygdala and bilateral vmPFC-right amygdala functional connectivity were negatively associated with clinician-rated avoidance but not laboratory-based avoidance. LIMITATIONS These results should be considered in the context of the restricted range of our treatment-seeking sample, which limits the ability to draw conclusions about these associations across children with a broader range of symptomatology. In addition, the limited racial and ethnic diversity of our sample may limit the generalizability of findings. CONCLUSION These findings mark an important step towards bridging neural findings and behavioral patterns using a multimodal approach. Advancing understanding of behavioral avoidance in pediatric anxiety may guide future treatment optimization by identifying individual-specific targets for treatment.
Collapse
Affiliation(s)
| | | | | | | | - Grace Hommel
- Yale University, New Haven, CT, United States of America
| | - Alyssa Martino
- Yale University, New Haven, CT, United States of America
| | - Tess Anderson
- Yale University, New Haven, CT, United States of America
| | - Hannah Spencer
- Yale University, New Haven, CT, United States of America
| | | | - Janice Dean
- Yale University, New Haven, CT, United States of America
| | - Carla E Marin
- Yale University, New Haven, CT, United States of America
| | | | - Eli R Lebowitz
- Yale University, New Haven, CT, United States of America
| | - Dylan G Gee
- Yale University, New Haven, CT, United States of America.
| |
Collapse
|
7
|
Lopez MR, Wasberg SMH, Gagliardi CM, Normandin ME, Muzzio IA. Mystery of the memory engram: History, current knowledge, and unanswered questions. Neurosci Biobehav Rev 2024; 159:105574. [PMID: 38331127 DOI: 10.1016/j.neubiorev.2024.105574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 12/22/2023] [Accepted: 02/03/2024] [Indexed: 02/10/2024]
Abstract
The quest to understand the memory engram has intrigued humans for centuries. Recent technological advances, including genetic labelling, imaging, optogenetic and chemogenetic techniques, have propelled the field of memory research forward. These tools have enabled researchers to create and erase memory components. While these innovative techniques have yielded invaluable insights, they often focus on specific elements of the memory trace. Genetic labelling may rely on a particular immediate early gene as a marker of activity, optogenetics may activate or inhibit one specific type of neuron, and imaging may capture activity snapshots in a given brain region at specific times. Yet, memories are multifaceted, involving diverse arrays of neuronal subpopulations, circuits, and regions that work in concert to create, store, and retrieve information. Consideration of contributions of both excitatory and inhibitory neurons, micro and macro circuits across brain regions, the dynamic nature of active ensembles, and representational drift is crucial for a comprehensive understanding of the complex nature of memory.
Collapse
Affiliation(s)
- M R Lopez
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic College of Medicine and Science, Rochester, MN, United States
| | - S M H Wasberg
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - C M Gagliardi
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - M E Normandin
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA
| | - I A Muzzio
- Department of Psychological and Brain Sciences, University of Iowa, Iowa City, IA 52242, USA.
| |
Collapse
|
8
|
Fan D, Zhao H, Liu H, Niu H, Liu T, Wang Y. Abnormal brain activities of cognitive processes in cerebral small vessel disease: A systematic review of task fMRI studies. J Neuroradiol 2024; 51:155-167. [PMID: 37844660 DOI: 10.1016/j.neurad.2023.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 10/13/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Cerebral small vessel disease (CSVD) is characterized by widespread functional changes in the brain, as evident from abnormal brain activations during cognitive tasks. However, the existing findings in this area are not yet conclusive. We systematically reviewed 25 studies reporting task-related fMRI in five cognitive domains in CSVD, namely executive function, working memory, processing speed, motor, and affective processing. The findings highlighted: (1) CSVD affects cognitive processes in a domain-specific manner; (2) Compensatory and regulatory effects were observed simultaneously in CSVD, which may reflect the interplay between the negative impact of brain lesion and the positive impact of cognitive reserve. Combined with behavioral and functional findings in CSVD, we proposed an integrated model to illustrate the relationship between altered activations and behavioral performance in different stages of CSVD: functional brain changes may precede and be more sensitive than behavioral impairments in the early pre-symptomatic stage; Meanwhile, compensatory and regulatory mechanisms often occur in the early stages of the disease, while dysfunction/decompensation and dysregulation often occur in the late stages. Overall, abnormal hyper-/hypo-activations are crucial for understanding the mechanisms of small vessel lesion-induced behavioral dysfunction, identifying potential neuromarker and developing interventions to mitigate the impact of CSVD on cognitive function.
Collapse
Affiliation(s)
- Dongqiong Fan
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Haichao Zhao
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China; Faculty of Psychology, MOE Key Laboratory of Cognition and Personality, Southwest University, Chongqing, China
| | - Hao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Haijun Niu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Tao Liu
- Beijing Advanced Innovation Center for Biomedical Engineering, School of Biological Science and Medical Engineering, Beihang University, Beijing, China.
| | - Yilong Wang
- Department of Neurology, Beijing TianTan Hospital, Capital Medical University, Beijing, China; Chinese Institute for Brain Research, Beijing, China; National Center for Neurological Disorders, Beijing, China.
| |
Collapse
|
9
|
Plas SL, Tuna T, Bayer H, Juliano VAL, Sweck SO, Arellano Perez AD, Hassell JE, Maren S. Neural circuits for the adaptive regulation of fear and extinction memory. Front Behav Neurosci 2024; 18:1352797. [PMID: 38370858 PMCID: PMC10869525 DOI: 10.3389/fnbeh.2024.1352797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/15/2024] [Indexed: 02/20/2024] Open
Abstract
The regulation of fear memories is critical for adaptive behaviors and dysregulation of these processes is implicated in trauma- and stress-related disorders. Treatments for these disorders include pharmacological interventions as well as exposure-based therapies, which rely upon extinction learning. Considerable attention has been directed toward elucidating the neural mechanisms underlying fear and extinction learning. In this review, we will discuss historic discoveries and emerging evidence on the neural mechanisms of the adaptive regulation of fear and extinction memories. We will focus on neural circuits regulating the acquisition and extinction of Pavlovian fear conditioning in rodent models, particularly the role of the medial prefrontal cortex and hippocampus in the contextual control of extinguished fear memories. We will also consider new work revealing an important role for the thalamic nucleus reuniens in the modulation of prefrontal-hippocampal interactions in extinction learning and memory. Finally, we will explore the effects of stress on this circuit and the clinical implications of these findings.
Collapse
Affiliation(s)
- Samantha L. Plas
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Tuğçe Tuna
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Hugo Bayer
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Vitor A. L. Juliano
- Department of Pharmacology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Samantha O. Sweck
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| | - Angel D. Arellano Perez
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - James E. Hassell
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
| | - Stephen Maren
- Department of Psychological and Brain Sciences, Texas A&M University, College Station, TX, United States
- Institute for Neuroscience, Texas A&M University, College Station, TX, United States
| |
Collapse
|
10
|
Wyczesany M, Adamczyk AK, Leśniewska A, Hobot J, Barbalinardo G, Górski T, Adamczyk P, Ligeza TS. Inhibition of the dorsolateral cortex reveals specific mechanisms behind emotional control. Biol Psychol 2024; 186:108743. [PMID: 38195048 DOI: 10.1016/j.biopsycho.2024.108743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 11/21/2023] [Accepted: 01/04/2024] [Indexed: 01/11/2024]
Abstract
Reappraisal is a complex emotional control strategy based on cognitive change. To complete the reappraisal task, one is required to deeply elaborate on the affective stimulus to create its new interpretation. The involvement of the prefrontal cortex in this process was examined in the study, where inhibition of the left or right dorsolateral area was carried out using transcranial magnetic stimulation. In a between-subject design, we used an alternative control condition for the reappraisal task. It was intended to better account for overall task activity compared to typical passive conditions. Late positive potential was affected after inhibition of the prefrontal area, suggesting hindered emotional control. This effect was specific to the reappraisal task, which possibly reflects the disturbance of attention allocation to emotional stimuli. We could also observe an increased transfer of information from the visual area during the control task that was based on the elaboration of emotional stimuli but did not involve cognitive change. Our results support the additive impact of several factors on the overall efficiency of emotional control.
Collapse
Affiliation(s)
| | - Agnieszka K Adamczyk
- Institute of Psychology, Jagiellonian University, Kraków, Poland; Behavioural Science Institute, Radboud University, Nijmegen, the Netherlands
| | - Anna Leśniewska
- Institute of Psychology, Jagiellonian University, Kraków, Poland
| | - Justyna Hobot
- Institute of Psychology, Jagiellonian University, Kraków, Poland; Center of Functionally Integrative Neuroscience, Aarhus University, Aarhus, Denmark
| | | | - Tomasz Górski
- Institute of Psychology, Jagiellonian University, Kraków, Poland
| | | | - Tomasz S Ligeza
- Institute of Psychology, Jagiellonian University, Kraków, Poland
| |
Collapse
|
11
|
Cardoso RC, Desa ZR, Fitzgerald BL, Moore A, Duhon J, Landar VA, Clem RL, Cummings KA. The mouse dorsal peduncular cortex encodes fear memory. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.07.24.550408. [PMID: 37546717 PMCID: PMC10402043 DOI: 10.1101/2023.07.24.550408] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
The rodent medial prefrontal cortex (mPFC) is a locus for both the promotion and suppression (e.g. extinction) of fear and is composed of four anatomically distinct subregions, including anterior cingulate 1 (Cg1), prelimbic (PL), infralimbic (IL), and the dorsal peduncular (DP) cortex. A vast majority of studies have focused on Cg1, PL, and IL. The Cg1 and PL have been implicated in the promotion of fear, while the IL has been linked to a role in the suppression, or extinction, of fear. Due to its anatomical location ventral to IL, the DP has been hypothesized to function as a fear-suppressing brain region however, no studies have explicitly tested its role in this function or in the regulation of memory generally. Moreover, some studies have pointed towards a dichotomous role for ventral mPFC in the dual suppression and promotion of fear, but the mechanisms underlying these opposing observations remains unclear. Here, we provide evidence that the DP paradoxically functions as a cued fear-encoding brain region and plays little to no role in fear memory extinction. By using a combination of cFos immunohistochemistry, whole-cell brain slice electrophysiology, fiber photometry, and activity-dependent neural tagging, we demonstrate that DP neurons exhibit learning-related plasticity, acquire cue-associated activity across learning and memory retrieval, and that DP neurons activated by learning are preferentially reactivated upon fear memory retrieval. Further, optogenetic activation and silencing of fear learning-related DP neural ensembles drives the promotion and suppression of freezing, respectively. Overall, these data suggest that the DP plays an unexpected role in fear memory encoding. More broadly, our results reveal new principles of organization across the dorsoventral axis of the mPFC.
Collapse
|
12
|
Battaglia S, Di Fazio C, Mazzà M, Tamietto M, Avenanti A. Targeting Human Glucocorticoid Receptors in Fear Learning: A Multiscale Integrated Approach to Study Functional Connectivity. Int J Mol Sci 2024; 25:864. [PMID: 38255937 PMCID: PMC10815285 DOI: 10.3390/ijms25020864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Fear extinction is a phenomenon that involves a gradual reduction in conditioned fear responses through repeated exposure to fear-inducing cues. Functional brain connectivity assessments, such as functional magnetic resonance imaging (fMRI), provide valuable insights into how brain regions communicate during these processes. Stress, a ubiquitous aspect of life, influences fear learning and extinction by changing the activity of the amygdala, prefrontal cortex, and hippocampus, leading to enhanced fear responses and/or impaired extinction. Glucocorticoid receptors (GRs) are key to the stress response and show a dual function in fear regulation: while they enhance the consolidation of fear memories, they also facilitate extinction. Accordingly, GR dysregulation is associated with anxiety and mood disorders. Recent advancements in cognitive neuroscience underscore the need for a comprehensive understanding that integrates perspectives from the molecular, cellular, and systems levels. In particular, neuropharmacology provides valuable insights into neurotransmitter and receptor systems, aiding the investigation of mechanisms underlying fear regulation and potential therapeutic targets. A notable player in this context is cortisol, a key stress hormone, which significantly influences both fear memory reconsolidation and extinction processes. Gaining a thorough understanding of these intricate interactions has implications in terms of addressing psychiatric disorders related to stress. This review sheds light on the complex interactions between cognitive processes, emotions, and their neural bases. In this endeavor, our aim is to reshape the comprehension of fear, stress, and their implications for emotional well-being, ultimately aiding in the development of therapeutic interventions.
Collapse
Affiliation(s)
- Simone Battaglia
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology “Renzo Canestrari”, Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Chiara Di Fazio
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology “Renzo Canestrari”, Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Matteo Mazzà
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology “Renzo Canestrari”, Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
| | - Marco Tamietto
- Department of Psychology, University of Turin, 10124 Turin, Italy
| | - Alessio Avenanti
- Center for Studies and Research in Cognitive Neuroscience, Department of Psychology “Renzo Canestrari”, Cesena Campus, Alma Mater Studiorum Università di Bologna, 47521 Cesena, Italy
- Neuropsicology and Cognitive Neuroscience Research Center (CINPSI Neurocog), Universidad Católica del Maule, Talca 3460000, Chile
| |
Collapse
|
13
|
Kurth F, Strohmaier S, Luders E. Reduced Age-Related Gray Matter Loss in the Orbitofrontal Cortex in Long-Term Meditators. Brain Sci 2023; 13:1677. [PMID: 38137125 PMCID: PMC10741700 DOI: 10.3390/brainsci13121677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/26/2023] [Accepted: 11/28/2023] [Indexed: 12/24/2023] Open
Abstract
The orbitofrontal cortex (OFC) is a functionally heterogeneous brain region contributing to mental processes relating to meditation practices. The OFC has been reported to decline in volume with increasing age and differs in volume between meditation practitioners and non-practitioners. We hypothesized that the age-related decline of the OFC is diminished in meditation practitioners. We tested this hypothesis in a sample of 50 long-term meditators and 50 matched controls by correlating chronological age with regional gray matter volumes of the left and right OFC, as well as in seven left and right cytoarchitectonically defined subregions of the OFC (Fo1-Fo7). In both meditators and controls, we observed a negative relationship between age and OFC (sub)volumes, indicating that older participants have smaller OFC volumes. However, in meditators, the age-related decline was less steep compared to controls. These age-related differences reached significance for left and right Fo2, Fo3, Fo4, and Fo7, as well as left Fo5 and right Fo6. Since different subregions of the OFC are associated with distinct brain functions, further investigations are required to explore the functional implications of these findings in the context of meditation and the aging brain.
Collapse
Affiliation(s)
- Florian Kurth
- School of Psychology, University of Auckland, Auckland 1010, New Zealand
| | - Sarah Strohmaier
- Psychology Discipline, Institute for Health and Sport, Victoria University, Melbourne, VIC 3011, Australia
| | - Eileen Luders
- School of Psychology, University of Auckland, Auckland 1010, New Zealand
- Department of Women’s and Children’s Health, Uppsala University, 751 85 Uppsala, Sweden
- Laboratory of Neuro Imaging, School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| |
Collapse
|
14
|
Firth A, Sütterlin S, Lugo R. The Role of Trait and State Mindfulness in Cognitive Performance of Male Adolescents. Psychol Res Behav Manag 2023; 16:3939-3948. [PMID: 37771396 PMCID: PMC10522453 DOI: 10.2147/prbm.s409737] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 08/17/2023] [Indexed: 09/30/2023] Open
Abstract
Purpose The number of mindfulness intervention projects is continually increasing. Within the educational environment, mindfulness has purported links to well-being, positive behaviour, educational and cognitive performance. Trait mindfulness is related to rational thinking and better performance in cognitive tests, suggesting that innate mindfulness ability contributes to self-regulation ability and thus the efficacy of mindfulness interventions. The current study investigates whether mindfulness is a moderating factor. It examines correlations between cognitive performance and trait mindfulness. The study investigates the influence of trait mindfulness on the ability of students to enter state mindfulness in an attempt to understand the role both types of mindfulness may have on cognitive performance. Participants and Method Two-hundred and five male students aged fifteen and sixteen completed the adolescent version of the Mindfulness Awareness Scale, the Cognitive Reflection Test, and the Toronto Mindfulness Scale. Results Hierarchical regression analysis found that state mindfulness was a predictor of cognitive reflection ability. ANOVA also found that having either trait or state mindfulness predicted higher cognitive reflection scores, but only state mindfulness had a significant effect on cognitive reflection. Trait mindfulness was not a moderating factor. Conclusion Both state and trait aspects of mindfulness ability influence cognitive performance. Those with higher trait mindfulness ability are better able to enter state mindfulness and thus had better cognitive reflection scores. However, where it is possible to induce state mindfulness into those with low trait mindfulness, CRT scores were also higher although not significantly so.
Collapse
Affiliation(s)
- Andrea Firth
- University Campus Football Business, London, UK
- Headgame Performance Psychology, London, UK
| | - Stefan Sütterlin
- Faculty of Computer Science, Albstadt-Sigmaringen University, Albstadt, Germany
- Faculty of Health, Welfare and Organisation, Østfold University College, Halden, Norway
| | - Ricardo Lugo
- Faculty of Health, Welfare and Organisation, Østfold University College, Halden, Norway
- Estonian Maritime Academy, Tallinn University of Technology, Tallinn, Estonia
| |
Collapse
|
15
|
Feng X, Wang J, Wu J, Ren X, Zhou H, Li S, Zhang J, Wang S, Wang Y, Hu Z, Hu X, Jiang T. Abnormality of anxious behaviors and functional connectivity between the amygdala and the frontal lobe in maternally deprived monkeys. Brain Behav 2023; 13:e3027. [PMID: 37464725 PMCID: PMC10498070 DOI: 10.1002/brb3.3027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 03/30/2023] [Accepted: 04/07/2023] [Indexed: 07/20/2023] Open
Abstract
OBJECTIVE Anxious behaviors often occur in individuals who have experienced early adversity. Anxious behaviors can bring many hazards, such as social withdrawal, eating disorders, negative self-efficacy, self-injurious thoughts and behaviors, anxiety disorders, and even depression. Abnormal behavior are is closely related to changes in corresponding circuit functions in the brain. This study investigated the relationship between brain circuits and anxious behaviors in maternal-deprived rhesus monkey animal model, which mimic early adversity in human. METHODS Twenty-five rhesus monkeys (Macaca mulatta) were grouped by two different rearing conditions: 11 normal control and mother-reared (MR) monkeys and 14 maternally deprived and peer-reared (MD) monkeys. After obtaining images of the brain areas with significant differences in maternal separation and normal control macaque function, the relationship between functional junction intensity and stereotypical behaviors was determined by correlation analysis. RESULTS The correlation analysis revealed that stereotypical behaviors were negatively correlated with the coupling between the left lateral amygdala subregion and the left inferior frontal gyrus in both MD and MR macaques. CONCLUSION This study suggests that early adversity-induced anxious behaviors are associated with changes in the strength of the amygdala-prefrontal connection. The normalization of the regions involved in the functional connection might reverse the behavioral abnormality. It provides a solid foundation for effective intervention in human early adversity. SIGNIFICANCE STATEMENT This study suggests that early adversity-induced anxious behaviors are associated with changes in the strength of the amygdala-prefrontal connection. The higher the amygdala-prefrontal connection strength, the less stereotyped behaviors exhibited by monkeys experiencing early adversity. Thus, in the future, changing the strength of the amygdala-prefrontal connection may reverse the behavioral abnormalities of individuals who experience early adversity. This study provides a solid foundation for effective intervention in humans' early adversity.
Collapse
Affiliation(s)
- Xiao‐Li Feng
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Department of PhysiologyFaculty of Basic Medical ScienceKunming Medical UniversityKunmingYunnanChina
- Institute of NeuroscienceKunming Medical UniversityKunmingYunnanChina
| | - Jiao‐Jian Wang
- State Key Laboratory of Primate Biomedical ResearchInstitute of Primate Translational MedicineKunming University of Science and TechnologyKunmingChina
- Yunnan Key Laboratory of Primate Biomedical ResearchKunmingChina
| | - Jing Wu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Xiao‐Feng Ren
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Kunming College of Life ScienceUniversity of Chinese Academy of SciencesKunmingYunnanChina
| | - Hui Zhou
- Department of PhysiologyFaculty of Basic Medical ScienceKunming Medical UniversityKunmingYunnanChina
| | - Si‐Yu Li
- Department of PhysiologyFaculty of Basic Medical ScienceKunming Medical UniversityKunmingYunnanChina
| | - Jie Zhang
- School of Basic Medical SciencesKunming Medical UniversityKunmingYunnanChina
| | - Sheng‐Hai Wang
- School of Basic Medical SciencesKunming Medical UniversityKunmingYunnanChina
| | - Yun Wang
- National Resource Center for Non‐Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Zheng‐Fei Hu
- National Resource Center for Non‐Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
| | - Xin‐Tian Hu
- Key Laboratory of Animal Models and Human Disease Mechanisms of the Chinese Academy of Sciences & Yunnan Province, Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- National Resource Center for Non‐Human Primates, Kunming Primate Research Center, and National Research Facility for Phenotypic & Genetic Analysis of Model Animals (Primate Facility), Kunming Institute of ZoologyChinese Academy of SciencesKunmingYunnanChina
- Center for Excellence in Brain ScienceChinese Academy of SciencesShanghaiChina
| | - Tian‐Zi Jiang
- Brainnetome Center and National Laboratory of Pattern RecognitionInstitute of AutomationChinese Academy of SciencesBeijingChina
- Research Center for Augmented IntelligenceZhejiang LaboratoryHangzhouChina
- Center for Excellence in Brain ScienceInstitute of AutomationChinese Academy of SciencesBeijingChina
| |
Collapse
|
16
|
Abstract
The transition from childhood to adulthood represents the developmental time frame in which the majority of psychiatric disorders emerge. Recent efforts to identify risk factors mediating the susceptibility to psychopathology have led to a heightened focus on both typical and atypical trajectories of neural circuit maturation. Mounting evidence has highlighted the immense neural plasticity apparent in the developing brain. Although in many cases adaptive, the capacity for neural circuit alteration also induces a state of vulnerability to environmental perturbations, such that early-life experiences have long-lasting implications for cognitive and emotional functioning in adulthood. The authors outline preclinical and neuroimaging studies of normative human brain circuit development, as well as parallel efforts covered in this issue of the Journal, to identify brain circuit alterations in psychiatric disorders that frequently emerge in developing populations. Continued translational research into the interactive effects of neurobiological development and external factors will be crucial for identifying early-life risk factors that may contribute to the emergence of psychiatric illness and provide the key to optimizing treatments.
Collapse
Affiliation(s)
- Heidi C Meyer
- The Department of Psychiatry and the Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College of Cornell University, New York
| | - Francis S Lee
- The Department of Psychiatry and the Sackler Institute for Developmental Psychobiology, Weill Cornell Medical College of Cornell University, New York
| |
Collapse
|
17
|
Baratta MV, Seligman MEP, Maier SF. From helplessness to controllability: toward a neuroscience of resilience. Front Psychiatry 2023; 14:1170417. [PMID: 37229393 PMCID: PMC10205144 DOI: 10.3389/fpsyt.2023.1170417] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 04/13/2023] [Indexed: 05/27/2023] Open
Abstract
"Learned helplessness" refers to debilitating outcomes, such as passivity and increased fear, that follow an uncontrollable adverse event, but do not when that event is controllable. The original explanation argued that when events are uncontrollable the animal learns that outcomes are independent of its behavior, and that this is the active ingredient in producing the effects. Controllable adverse events, in contrast, fail to produce these outcomes because they lack the active uncontrollability element. Recent work on the neural basis of helplessness, however, takes the opposite view. Prolonged exposure to aversive stimulation per se produces the debilitation by potent activation of serotonergic neurons in the brainstem dorsal raphe nucleus. Debilitation is prevented with an instrumental controlling response, which activates prefrontal circuitry detecting control and subsequently blunting the dorsal raphe nucleus response. Furthermore, learning control alters the prefrontal response to future adverse events, thereby preventing debilitation and producing long-term resiliency. The general implications of these neuroscience findings may apply to psychological therapy and prevention, in particular by suggesting the importance of cognitions and control, rather than habits of control.
Collapse
Affiliation(s)
- Michael V. Baratta
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| | - Martin E. P. Seligman
- Positive Psychology Center, University of Pennsylvania, Philadelphia, PA, United States
| | - Steven F. Maier
- Department of Psychology and Neuroscience, University of Colorado Boulder, Boulder, CO, United States
| |
Collapse
|
18
|
Helpman L. On the Stress of Being a Woman: The synergistic contribution of sex as a biological variable and gender as a psychosocial one to risk of stress-related disorders. Neurosci Biobehav Rev 2023; 150:105211. [PMID: 37141960 DOI: 10.1016/j.neubiorev.2023.105211] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/28/2023] [Accepted: 05/01/2023] [Indexed: 05/06/2023]
Abstract
Stress-related disorders (SRD) disproportionately affect women. Cortisol blunting, a failure to demonstrate a typical rise and fall of cortisol in response to stress, is associated with SRDs and has been found to be more pronounced among women. Cortisol blunting relates to both sex as a biological variable (SABV; e.g., estrogens and their fluctuations, impact on neural circuits) and gender as a psychosocial variable (GAPSV; e.g., discrimination, harassment, gender roles). I suggest a theoretical model linking experience, sex- and gender-related factors, and neuroendocrine substrates of SRD to the heightened risk among women. The model thus bridges multiple gaps in the literature to create a synergistic conceptual framework with which to understand the stress of being a woman. Utilizing such a framework in research may allow identifying targeted, sex-and gender-dependent risk factors, informing psychological treatment, medical advice, educational and community programming, and policy. DATA AVAILABILITY: All references are cited as required, no other data is reported.
Collapse
Affiliation(s)
- Liat Helpman
- Department of Counseling and Human Development, University of Haifa.
| |
Collapse
|
19
|
Abarkan M, Fois GR, Vouillac-Mendoza C, Ahmed SH, Guillem K. Altered neuronal activity in the ventromedial prefrontal cortex drives nicotine intake escalation. Neuropsychopharmacology 2023; 48:887-896. [PMID: 36042320 PMCID: PMC10156690 DOI: 10.1038/s41386-022-01428-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 08/04/2022] [Accepted: 08/06/2022] [Indexed: 11/08/2022]
Abstract
Nicotine addiction develops after prolonged drug use and escalation of drug intake. However, because of difficulties in demonstrating escalation of nicotine use in rats, its underlying neuroadaptations still remain poorly understood. Here we report that access to unusually high doses of nicotine (i.e., from 30 µg to 240 µg/kg/injection) for self-administration precipitated a rapid and robust escalation of nicotine intake and increased the motivation for the drug in rats. This nicotine intake escalation also induced long-lasting changes in vmPFC neuronal activity both before and during nicotine self-administration. Specifically, after escalation of nicotine intake, basal vmPFC neuronal activity increased above pre-escalation and control activity levels, while ongoing nicotine self-administration restored these neuronal changes. Finally, simulation of the restoring effects of nicotine with in vivo optogenetic inhibition of vmPFC neurons caused a selective de-escalation of nicotine self-administration.
Collapse
Affiliation(s)
- Myriam Abarkan
- Université de Bordeaux, CNRS, Chimie et Biologie des Membranes et Nano-objets, UMR, 5248, Pessac, France
| | - Giulia R Fois
- Université de Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | | | - Serge H Ahmed
- Université de Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France
| | - Karine Guillem
- Université de Bordeaux, CNRS, INCIA, UMR 5287, F-33000, Bordeaux, France.
| |
Collapse
|
20
|
Ladouceur CD, Henry T, Ojha A, Shirtcliff EA, Silk JS. Fronto-amygdala resting state functional connectivity is associated with anxiety symptoms among adolescent girls more advanced in pubertal maturation. Dev Cogn Neurosci 2023; 60:101236. [PMID: 36996571 PMCID: PMC10063408 DOI: 10.1016/j.dcn.2023.101236] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 02/21/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
Early adolescence, with the onset of puberty, is an important period when sex differences in anxiety emerge, with girls reporting significantly higher anxiety symptoms than boys. This study examined the role of puberty on fronto-amygdala functional connectivity and risk of anxiety symptoms in 70 girls (age 11-13) who completed a resting state fMRI scan, self-report measures of anxiety symptoms and pubertal status, and provided basal testosterone levels (64 girls). Resting state fMRI data were preprocessed using fMRIPrep and connectivity indices were extracted from ventromedial prefrontal cortex (vmPFC) and amygdala regions-of-interest. We tested moderated mediation models and hypothesized that vmPFC-amygdala would mediate the relation between three indices of puberty (testosterone and adrenarcheal/gonadarcheal development) and anxiety, with puberty moderating the relation between connectivity and anxiety. Results showed a significant moderation effect of testosterone and adrenarcheal development in the right amygdala and a rostral/dorsal area of the vmPFC and of gonadarcheal development in the left amygdala and a medial area of the vmPFC on anxiety symptoms. Simple slope analyses showed that vmPFC-amygdala connectivity was negatively associated with anxiety only in girls more advanced in puberty suggesting that sensitivity to the effects of puberty on fronto-amygdala function could contribute to risk for anxiety disorders among adolescent girls.
Collapse
|
21
|
Differential Modulation of Dorsal Raphe Serotonergic Activity in Rat Brain by the Infralimbic and Prelimbic Cortices. Int J Mol Sci 2023; 24:ijms24054891. [PMID: 36902322 PMCID: PMC10003771 DOI: 10.3390/ijms24054891] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
The reciprocal connectivity between the medial prefrontal cortex (mPFC) and the dorsal raphe nucleus (DR) is involved in mood control and resilience to stress. The infralimbic subdivision (IL) of the mPFC is the rodent equivalent of the ventral anterior cingulate cortex, which is intimately related to the pathophysiology/treatment of major depressive disorder (MDD). Boosting excitatory neurotransmission in the IL-but not in the prelimbic cortex, PrL-evokes depressive-like or antidepressant-like behaviors in rodents, which are associated with changes in serotonergic (5-HT) neurotransmission. We therefore examined the control of 5-HT activity by both of the mPFC subdivisions in anesthetized rats. The electrical stimulation of IL and PrL at 0.9 Hz comparably inhibited 5-HT neurons (53% vs. 48%, respectively). However, stimulation at higher frequencies (10-20 Hz) revealed a greater proportion of 5-HT neurons sensitive to IL than to PrL stimulation (86% vs. 59%, at 20 Hz, respectively), together with a differential involvement of GABAA (but not 5-HT1A) receptors. Likewise, electrical and optogenetic stimulation of IL and PrL enhanced 5-HT release in DR in a frequency-dependent manner, with greater elevations after IL stimulation at 20 Hz. Hence, IL and PrL differentially control serotonergic activity, with an apparent superior role of IL, an observation that may help to clarify the brain circuits involved in MDD.
Collapse
|
22
|
Mortaji N, Krzeczkowski J, Atkinson S, Amani B, Schmidt LA, Van Lieshout R. Preliminary findings of emotion regulation in 12-month-old infants of mothers enrolled in a randomized controlled trial assessing a nutrition + exercise intervention. Dev Psychobiol 2023; 65:e22376. [PMID: 36811372 DOI: 10.1002/dev.22376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 02/10/2023]
Abstract
Improved offspring emotion regulation (ER) has been associated with maternal intake of single nutrients or exercise during pregnancy but has not been examined in randomized trials. We investigated the impact of a maternal nutrition + exercise intervention during pregnancy on offspring ER at 12 months of age. Mothers in the Be Healthy In Pregnancy randomized controlled trial were randomly assigned to an individualized nutrition + exercise intervention plus usual care (UC) or UC alone (control group). A multimethod assessment of infant ER using parasympathetic nervous system function (high frequency heart rate variability [HF-HRV] and root mean square of successive differences [RMSSD]) as well as maternal reports of infant temperament (Infant Behavior Questionnaire- Revised short form) was completed with a subsample of infants of enrolled mothers (intervention = 9, control = 8). The trial was registered at www.clinicaltrials.gov (NCT01689961). We observed greater HF-HRV (M = 4.63, SD = 0.50, p = .04, ƞ2 p = .25) and RMSSD (M = 24.25, SD = 6.15, p = .04, ƞ2 p = .25) in infants of mothers in the intervention versus control group. Intervention group infants also had higher maternally rated surgency/extraversion (M = 5.54, SD = 0.38, p = .00, ƞ2 p = .65) and regulation/orienting (M = 5.46, SD = 0.52, p = .02, ƞ2 p = .81), and lower negative affectivity (M = 2.70, SD = 0.91, p = .03, ƞ2 p = .52). These preliminary results suggest that pregnancy nutrition + exercise interventions could improve infant ER but these findings require replication in larger, more diverse samples.
Collapse
Affiliation(s)
- Neda Mortaji
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada
| | | | - Stephanie Atkinson
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
| | - Bahar Amani
- Neuroscience Graduate Program, McMaster University, Hamilton, Ontario, Canada
| | - Louis A Schmidt
- Department of Psychology, Neuroscience & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | - Ryan Van Lieshout
- Psychiatry and Behavioral Neurosciences, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
23
|
13-cis-Retinoic Acid Affects Brain Perfusion and Function: In Vivo Study. Mol Imaging 2023. [DOI: 10.1155/2023/7855924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023] Open
Abstract
Purpose. Study the effects of 13-cis-retinoic acid (13-RA), a synthetic analogue of a vitamin A used for the treatment of severe acne, on the blood flow in the rat brain using technetium-99m hexamethyl propylene amine oxime (99mTc-HMPAO) imaging. Methods. A total of 30 adult male Wistar rats were divided into the control (C), low-dose (L), and high-dose (H) groups. The L and H rats were exposed subcutaneously to 0.3 and 0.5 mg, respectively, of 13-RA per kg of body weight for seven days. Brain blood flow imaging was performed using a gamma camera. Then, a region of interest (ROI) around the brain (target, T), a whole-body region (WB), and a background region (BG) was selected and delimited. The net 99mTc-HMPAO brain counts were calculated as the net target counts,
in all groups. At the end of the 99mTc-HMPAO brain blood flow imaging, the brain, heart, kidney, lung, and liver were rapidly removed, and their uptake was determined. Brain histopathological analysis was performed using hematoxylin and eosin stains. In addition, the plasma fatty acids were studied using gas chromatography/mass spectrometry. Results. There were highly significant differences between L and H in comparison to C and across the groups. The 99mTc-HMPAO radioactivity in the brain showed increased uptake in a dose-dependent manner. There were also significant changes in the brain tissues and decreased free fatty acids among the groups compared to C. Conclusion. 13-RA increases 99mTcHMPAO brain perfusion, uptake, and function and reduces fatty acids.
Collapse
|
24
|
Brain Volumes and Metacognitive Deficits in Knowledge of Self, Task and Strategies in Mathematics: A Preliminary Pilot One-Year Longitudinal Study in aMCI Patients Compared to Healthy Controls. Diagnostics (Basel) 2023; 13:diagnostics13040680. [PMID: 36832169 PMCID: PMC9955851 DOI: 10.3390/diagnostics13040680] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/03/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Metacognitive knowledge has been little investigated in aMCI patients. The aim of this study is to examine whether there are specific deficits in knowledge of self, task and strategies in mathematical cognition, due its importance for everyday functioning, mainly due to its importance for financial capacity in old age. A total of 24 patients with a diagnosis of aMCI and one-to-one 24 matched individuals (similar age, education and gender) were examined at three time points in a year with a number of neuropsychological tests and a slightly modified version of the Metacognitive Knowledge in Mathematics Questionnaire (MKMQ). We analyzed longitudinal MRI data regarding various brain areas for the aMCI patients. Results indicated that the aMCI group differed in all MKMQ subscale scores at the three time points compared to healthy controls. Correlations were found only for metacognitive avoidance strategies and left and right amygdala volumes at baseline, while after twelve months correlations were found for avoidance and right and left parahippocampal volumes. These preliminary results highlight the role of specific brain regions that could be used as indices in clinical practice for the detection of metacognitive knowledge deficits that are found in aMCI.
Collapse
|
25
|
Offline rTMS inhibition of the right dorsolateral prefrontal cortex impairs reappraisal efficacy. Sci Rep 2022; 12:21394. [PMID: 36496506 PMCID: PMC9741580 DOI: 10.1038/s41598-022-24629-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
In this study we verified the causal role of the bilateral dorsolateral prefrontal cortex (DLPFC) in emotional regulation using a strategy of reappraisal, which involves intentionally changing the meaning of an affective event to reduce its emotional impact. Healthy participants (n = 26; mean age = 25.4) underwent three sessions of inhibitory continuous theta burst stimulation (cTBS) applied on three different days over the left or right DLPFC, or the vertex. After applying the stimulation protocol participants were presented with neutral and negative pictorial stimuli that had to be either passively watched or reappraised. The efficacy of emotional control was quantified using the Late Positive Potential (LPP), the neural marker of motivated attention and elaborated stimulus processing. The results showed that reappraisal was compromised after inhibitory stimulation of the right DLPFC compared to the vertex. This impairment of affective modulation was reflected in both early (350-750 ms) and late (750-1500 ms) time windows. As no session differences during the passive watching conditions were found, the decrease in reappraisal efficacy due to non-specific changes in basic perceptual processing was considered unlikely. Instead, we suggest that inhibition of the right DLPFC primarily affects the top-down mechanism of attentional deployment. This results in disturbances of attentional processes that are necessary to thoroughly elaborate the content of affective stimuli to enable their new, less negative interpretation.
Collapse
|
26
|
Dark HE, Harnett NG, Hurst DR, Wheelock MD, Wood KH, Goodman AM, Mrug S, Elliott MN, Emery ST, Schuster MA, Knight DC. Sex-related differences in violence exposure, neural reactivity to threat, and mental health. Neuropsychopharmacology 2022; 47:2221-2229. [PMID: 36030316 PMCID: PMC9630543 DOI: 10.1038/s41386-022-01430-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 08/09/2022] [Accepted: 08/10/2022] [Indexed: 02/06/2023]
Abstract
The prefrontal cortex (PFC), hippocampus, and amygdala play an important role in emotional health. However, adverse life events (e.g., violence exposure) affect the function of these brain regions, which may lead to disorders such as depression and anxiety. Depression and anxiety disproportionately affect women compared to men, and this disparity may reflect sex differences in the neural processes that underlie emotion expression and regulation. The present study investigated sex differences in the relationship between violence exposure and the neural processes that underlie emotion regulation. In the present study, 200 participants completed a Pavlovian fear conditioning procedure in which cued and non-cued threats (i.e., unconditioned stimuli) were presented during functional magnetic resonance imaging. Violence exposure was previously assessed at four separate time points when participants were 11-19 years of age. Significant threat type (cued versus non-cued) × sex and sex × violence exposure interactions were observed. Specifically, women and men differed in amygdala and parahippocampal gyrus reactivity to cued versus non-cued threat. Further, dorsolateral PFC (dlPFC) and inferior parietal lobule (IPL) reactivity to threat varied positively with violence exposure among women, but not men. Similarly, threat-elicited skin conductance responses varied positively with violence exposure among women. Finally, women reported greater depression and anxiety symptoms than men. These findings suggest that sex differences in threat-related brain and psychophysiological activity may have implications for mental health.
Collapse
Affiliation(s)
- Heather E Dark
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
- Laboratory of Behavioral Neuroscience, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Nathaniel G Harnett
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
- Division of Depression and Anxiety, McLean Hospital, Belmont, MA, USA
- Department of Psychiatry, Harvard Medical School, Boston, MA, USA
| | - Danielle R Hurst
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Muriah D Wheelock
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Radiology, Washington University in St. Louis, St Louis, MO, USA
| | - Kimberly H Wood
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Psychology, Samford University, Homewood, AL, USA
| | - Adam M Goodman
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
- Department of Neurology, University of Alabama at Birmingham School of Medicine, Birmingham, AL, USA
| | - Sylvie Mrug
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA
| | | | - Susan Tortolero Emery
- Texas Prevention Research Center, School of Public Health, University of Texas Health Science Center, Houston, TX, USA
| | - Mark A Schuster
- Kaiser Permanente Bernard J. Tyson School of Medicine, Pasadena, CA, USA
| | - David C Knight
- Department of Psychology, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
27
|
Morphological similarity of amygdala-ventral prefrontal pathways represents trait anxiety in younger and older adults. Proc Natl Acad Sci U S A 2022; 119:e2205162119. [PMID: 36215497 PMCID: PMC9586323 DOI: 10.1073/pnas.2205162119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stronger amygdala-ventral prefrontal white matter connectivity has been associated with lower trait anxiety, possibly reflecting an increased capacity for efficient communication between the two regions. However, there are also reports arguing against this brain-anxiety association. To address these inconsistencies in the literature, we tested the possibility that idiosyncratic tract morphology may account for meaningful individual differences in trait anxiety, even among those with comparable microstructural integrity. Here, we adopted intersubject representational similarity analysis, an analytic framework that captures multivariate patterns of similarity, to analyze the morphological similarity of amygdala-ventral prefrontal pathways. Data drawn from the Leipzig Study for Mind-Body-Emotion Interactions dataset showed that younger adults (20 to 35 y of age) with low trait anxiety, in contrast to trait-anxious individuals, had consistently similar morphological configurations in their left amygdala-ventral prefrontal pathways. Additional tests on an independent sample of older adults (60 to 75 y of age) validated this finding. Our study reveals a generalizable pattern of brain-anxiety association that is embedded within the shared geometries between fiber tract morphology and trait anxiety data.
Collapse
|
28
|
Approaching or Decentering? Differential Neural Networks Underlying Experiential Emotion Regulation and Cognitive Defusion. Brain Sci 2022; 12:brainsci12091215. [PMID: 36138951 PMCID: PMC9496919 DOI: 10.3390/brainsci12091215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 06/18/2022] [Accepted: 06/21/2022] [Indexed: 11/16/2022] Open
Abstract
The current study investigated the bottom-up experiential emotion regulation in comparison to the cognitiveve top down-approach of cognitive defusion. Rooted in an experiential- and client-centered psychotherapeutic approach, experiential emotion regulation involves an active, non-intervening, accepting, open and welcoming approach towards the bodily felt affective experience in a welcoming, compassionate way, expressed in ‘experiential awareness’ in a first phase, and its verbalization or ‘experiential expression’ in a second phase. Defusion refers to the ability to observe one’s thoughts and feelings in a detached manner. Nineteen healthy participants completed an emotion regulation task during fMRI scanning by processing highly arousing negative events by images. Both experiential emotion regulation and cognitive defusion resulted in higher negative emotion compared to a ‘watch’ control condition. On the neurophysiological level, experiential emotion regulation recruited brain areas that regulate attention towards affective- and somatosensorial experience such as the anterior cingulate cortex, the paracingulate gyrus, the inferior frontal gyrus, and the prefrontal pole, areas underlying multisensory information integration (e.g., angular gyrus), and linking body states to emotion recognition and awareness (e.g., postcentral gyrus). Experiential emotion regulation, relative to the control condition, also resulted in a higher interaction between the anterior insular cortex and left amygdala while participants experienced less negative emotion. Cognitive defusion decreased activation in the subcortical areas such as the brainstem, the thalamus, the amygdala, and the hippocampus. In contrast to cognitive defusion, experiential emotion regulation relative to demonstrated greater activation in the left angular gyrus, indicating more multisensory information integration. These findings provide insight into different and specific neural networks underlying psychotherapy-based experiential emotion regulation and cognitive defusion.
Collapse
|
29
|
Sotoudeh N, Namavar MR, Bagheri F, Zarifkar A. The medial prefrontal cortex to the medial amygdala connections may affect the anxiety level in aged rats. Brain Behav 2022; 12:e2616. [PMID: 35605044 PMCID: PMC9304845 DOI: 10.1002/brb3.2616] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 03/12/2022] [Accepted: 04/24/2022] [Indexed: 12/03/2022] Open
Abstract
BACKGROUND Aging changes brain function and behavior differently in male and female individuals. Changes in the medial prefrontal cortex (mPFC)-medial amygdala (MeA) connectivity affect anxiety-like behavior. OBJECTIVES Therefore, this study aimed to investigate the effect of aging and sex on the mPFC-MeA connection and its association with the level of anxiety-like behavior. METHODS We divided the Wistar rats into the male and female young rats (2-3-month-old) and male and female old rats (18-20 months old). First, the open field test (OFT) was performed, and then 80 nl of Fluoro-Gold (FG) was injected by stereotaxic surgery in the right or left MeA. After 10 days, the animals were perfused, their brain removed, coronal sections cut, and the number of FG-labeled cells in the right and left mPFC of each sample was estimated. RESULTS Based on our results, old animals revealed less anxiety-like behavior than young ones, and young females were less anxious than young males, too. Interestingly, MeA of old male rats received more fibers from the bilateral mPFC than young ones. Also, this connection was stronger in the young females than young males. Altogether, the present study indicated that old individuals had less anxiety-like behavior and stronger mPFC-MeA connection, and young female rats were less anxious and had a stronger connection of mPFC-amygdala than males of the same age. CONCLUSION Thus, it seems that there is a negative relationship between anxiety levels based on the rat's performance in the OFT apparatus and the mPFC-MeA connection.
Collapse
Affiliation(s)
- Narges Sotoudeh
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Farshid Bagheri
- Department of Anatomical Sciences, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Histomorphometry and Stereology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Asadollah Zarifkar
- Department of Physiology, School of Medicine, Shiraz University of Medical Sciences, Shiraz, Iran.,Shiraz Neuroscience Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| |
Collapse
|
30
|
Younger S, Boutros S, Cargnin F, Jeon S, Lee JW, Lee SK, Raber J. Behavioral Phenotypes of Foxg1 Heterozygous Mice. Front Pharmacol 2022; 13:927296. [PMID: 35754477 PMCID: PMC9214218 DOI: 10.3389/fphar.2022.927296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/10/2022] [Indexed: 11/15/2022] Open
Abstract
FOXG1 syndrome (FS, aka a congenital variant of Rett syndrome) is a recently defined rare and devastating neurodevelopmental disorder characterized by various symptoms, including severe intellectual disability, autistic features, involuntary, and continuous jerky movements, feeding problems, sleep disturbances, seizures, irritability, and excessive crying. FS results from mutations in a single allele of the FOXG1 gene, leading to impaired FOXG1 function. Therefore, in establishing mouse models for FS, it is important to test if heterozygous (HET) mutation in the Foxg1 gene, mimicking genotypes of the human FS individuals, also manifests phenotypes similar to their symptoms. We analyzed HET mice with a null mutation allele in a single copy of Foxg1, and found that they show various phenotypes resembling the symptoms of the human FS individuals. These include increased anxiety in the open field as well as impairment in object recognition, motor coordination, and fear learning and contextual and cued fear memory. Our results suggest that Foxg1 HET mice recapitulate at least some symptoms of the human FS individuals.
Collapse
Affiliation(s)
- Skyler Younger
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | - Sydney Boutros
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States
| | | | - Shin Jeon
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States.,Department of Systems Pharmacology & Translational Therapeutics, Institute for Immunology, University of Pennsylvania, Philadelphia, PA, United States
| | - Jae W Lee
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Soo-Kyung Lee
- Department of Biological Sciences, University at Buffalo, Buffalo, NY, United States
| | - Jacob Raber
- Department of Behavioral Neuroscience, Oregon Health & Science University, Portland, OR, United States.,Departments of Neurology and Radiation Medicine, Division of Neuroscience, Oregon National Primate Research Center, Oregon Health & Science University, Portland, OR, United States
| |
Collapse
|
31
|
Maulitz L, Stickeler E, Stickel S, Habel U, Tchaikovski SN, Chechko N. Endometriosis, psychiatric comorbidities and neuroimaging: Estimating the odds of an endometriosis brain. Front Neuroendocrinol 2022; 65:100988. [PMID: 35202605 DOI: 10.1016/j.yfrne.2022.100988] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 02/07/2022] [Accepted: 02/17/2022] [Indexed: 12/12/2022]
Abstract
Endometriosis is a chronic pain disorder that affects young women, impairing their physical, mental and social well-being. Apart from personal suffering, it imposes a significant economic burden on the healthcare system. We analyzed studies reporting comorbid mental disorders in endometriosis based on the ICD/DSM criteria, discussing them in the context of available neuroimaging studies. We postulate that at least one-third of endometriosis patients suffer from mental disorders (mostly depression or anxiety) and require psychiatric or psychotherapeutic support. According to three neuroimaging studies involving patients with endometriosis, brain regions related not only to pain processing but also to emotion, cognition, self-regulation and reward likely constitute the so-called "endometriosis brain". It is not clear, however, whether the neurobiological changes seen in these patients are caused by chronic pain, mental comorbidities or endometriosis itself. Given the paucity of high-quality data on mental comorbidities and neurobiological correlates in endometriosis, further research is needed.
Collapse
Affiliation(s)
- L Maulitz
- Department of Gynaecology and Obstetrics, RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - E Stickeler
- Department of Gynaecology and Obstetrics, RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - S Stickel
- Department of Psychiatry, Psychotherapy and Psychosomatics RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Wilhelm-Johnen-Strasse, 52428 Jülich, Germany
| | - U Habel
- Department of Psychiatry, Psychotherapy and Psychosomatics RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Wilhelm-Johnen-Strasse, 52428 Jülich, Germany
| | - S N Tchaikovski
- Department of Gynaecology and Obstetrics, RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Department of Gynaecology and Obstetrics, Otto von Guericke University Magdeburg, Gerhart-Hauptmann-Straße 35, 39108 Magdeburg, Germany
| | - N Chechko
- Department of Psychiatry, Psychotherapy and Psychosomatics RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany; Institute of Neuroscience and Medicine: JARA-Institute Brain Structure Function Relationship (INM 10), Research Center Jülich, Wilhelm-Johnen-Strasse, 52428 Jülich, Germany; Institute of Neuroscience and Medicine, Brain & Behavior (INM-7), Research Center Jülich, Wilhelm-Johnen-Strasse, 52428 Jülich, Germany.
| |
Collapse
|
32
|
Joseph JJ, Mela M, Pei J. Aggressive behaviour and violence in children and adolescents with FASD: A synthesizing review. Clin Psychol Rev 2022; 94:102155. [DOI: 10.1016/j.cpr.2022.102155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 02/09/2022] [Accepted: 03/23/2022] [Indexed: 11/03/2022]
|
33
|
Mello e Souza T. Unraveling molecular and system processes for fear memory. Neuroscience 2022; 497:14-29. [DOI: 10.1016/j.neuroscience.2022.03.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 03/02/2022] [Accepted: 03/14/2022] [Indexed: 11/26/2022]
|
34
|
Abstract
Mania, the diagnostic hallmark of bipolar disorder, is an episodic disturbance of mood, sleep, behavior, and perception. Improved understanding of the neurobiology of mania is expected to allow for novel avenues to address current challenges in its diagnosis and treatment. Previous research focusing on the impairment of functional neuronal circuits and brain networks has resulted in heterogenous findings, possibly due to a focus on bipolar disorder and its several phases, rather than on the unique context of mania. Here we present a comprehensive overview of the evidence regarding the functional neuroanatomy of mania. Our interpretation of the best available evidence is consistent with a convergent model of lateralized circuit dysfunction in mania, with hypoactivity of the ventral prefrontal cortex in the right hemisphere, and hyperactivity of the amygdala, basal ganglia, and anterior cingulate cortex in the left hemisphere of the brain. Clarification of dysfunctional neuroanatomic substrates of mania may contribute not only to improve understanding of the neurobiology of bipolar disorder overall, but also highlights potential avenues for new circuit-based therapeutic approaches in the treatment of mania.
Collapse
Affiliation(s)
- Gonçalo Cotovio
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal
- NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal
- Departamento de Psiquiatria e Saúde Mental, Centro Hospitalar de Lisboa Ocidental, Lisbon, Portugal
| | - Albino J Oliveira-Maia
- Champalimaud Research and Clinical Centre, Champalimaud Foundation, Lisbon, Portugal.
- NOVA Medical School, NMS, Universidade Nova de Lisboa, Lisbon, Portugal.
| |
Collapse
|
35
|
Kenwood MM, Kalin NH, Barbas H. The prefrontal cortex, pathological anxiety, and anxiety disorders. Neuropsychopharmacology 2022; 47:260-275. [PMID: 34400783 PMCID: PMC8617307 DOI: 10.1038/s41386-021-01109-z] [Citation(s) in RCA: 86] [Impact Index Per Article: 43.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 07/06/2021] [Accepted: 07/08/2021] [Indexed: 02/07/2023]
Abstract
Anxiety is experienced in response to threats that are distal or uncertain, involving changes in one's subjective state, autonomic responses, and behavior. Defensive and physiologic responses to threats that involve the amygdala and brainstem are conserved across species. While anxiety responses typically serve an adaptive purpose, when excessive, unregulated, and generalized, they can become maladaptive, leading to distress and avoidance of potentially threatening situations. In primates, anxiety can be regulated by the prefrontal cortex (PFC), which has expanded in evolution. This prefrontal expansion is thought to underlie primates' increased capacity to engage high-level regulatory strategies aimed at coping with and modifying the experience of anxiety. The specialized primate lateral, medial, and orbital PFC sectors are connected with association and limbic cortices, the latter of which are connected with the amygdala and brainstem autonomic structures that underlie emotional and physiological arousal. PFC pathways that interface with distinct inhibitory systems within the cortex, the amygdala, or the thalamus can regulate responses by modulating neuronal output. Within the PFC, pathways connecting cortical regions are poised to reduce noise and enhance signals for cognitive operations that regulate anxiety processing and autonomic drive. Specialized PFC pathways to the inhibitory thalamic reticular nucleus suggest a mechanism to allow passage of relevant signals from thalamus to cortex, and in the amygdala to modulate the output to autonomic structures. Disruption of specific nodes within the PFC that interface with inhibitory systems can affect the negative bias, failure to regulate autonomic arousal, and avoidance that characterize anxiety disorders.
Collapse
Affiliation(s)
- Margaux M Kenwood
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Neuroscience Training Program at University of Wisconsin-Madison, Madison, USA
| | - Ned H Kalin
- Department of Psychiatry, University of Wisconsin School of Medicine and Public Health, Madison, WI, USA
- Neuroscience Training Program at University of Wisconsin-Madison, Madison, USA
- Wisconsin National Primate Center, Madison, WI, USA
| | - Helen Barbas
- Neural Systems Laboratory, Department of Health Sciences, Boston University, Boston, MA, USA.
- Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, USA.
| |
Collapse
|
36
|
Zahid Z, McMahon L, Lynch M. Neural Activity Across the Dorsolateral Prefrontal Cortex and Risk for Suicidal Ideation and Self-Injury. Arch Suicide Res 2022; 26:187-207. [PMID: 32589862 DOI: 10.1080/13811118.2020.1779154] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
The current study investigated the neural correlates of non-suicidal self-injury (NSSI) and suicidal ideation across the dorsolateral prefrontal cortex. Two-hundred ninety-six undergraduates solved anagram tasks while being monitored by a functional near-infrared spectroscopy device, and completed a questionnaire assessing behaviors and symptoms. Repeated measures analysis of variance revealed location-specific changes in neural activity based on NSSI, suicidal ideation, task type, and cognitive demand. The presence of suicidal ideation was associated with specific patterns of neural activity, modified by sex and task type. Interestingly, participants who engaged in NSSI exhibited some deactivation of the dlPFC when faced with more difficult cognitive challenges. Future research on these processes may allow for noninvasive imaging techniques to help screen risk for suicidality and NSSI.
Collapse
|
37
|
Walther S, Lefebvre S, Conring F, Gangl N, Nadesalingam N, Alexaki D, Wüthrich F, Rüter M, Viher PV, Federspiel A, Wiest R, Stegmayer K. Limbic links to paranoia: increased resting-state functional connectivity between amygdala, hippocampus and orbitofrontal cortex in schizophrenia patients with paranoia. Eur Arch Psychiatry Clin Neurosci 2022; 272:1021-1032. [PMID: 34636951 PMCID: PMC9388427 DOI: 10.1007/s00406-021-01337-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Accepted: 09/22/2021] [Indexed: 11/24/2022]
Abstract
Paranoia is a frequent and highly distressing experience in psychosis. Models of paranoia suggest limbic circuit pathology. Here, we tested whether resting-state functional connectivity (rs-fc) in the limbic circuit was altered in schizophrenia patients with current paranoia. We collected MRI scans in 165 subjects including 89 patients with schizophrenia spectrum disorders (schizophrenia, schizoaffective disorder, brief psychotic disorder, schizophreniform disorder) and 76 healthy controls. Paranoia was assessed using a Positive And Negative Syndrome Scale composite score. We tested rs-fc between bilateral nucleus accumbens, hippocampus, amygdala and orbitofrontal cortex between groups and as a function of paranoia severity. Patients with paranoia had increased connectivity between hippocampus and amygdala compared to patients without paranoia. Likewise, paranoia severity was linked to increased connectivity between hippocampus and amygdala. Furthermore, paranoia was associated with increased connectivity between orbitofrontal and medial prefrontal cortex. In addition, patients with paranoia had increased functional connectivity within the frontal hubs of the default mode network compared to healthy controls. These results demonstrate that current paranoia is linked to aberrant connectivity within the core limbic circuit and prefrontal cortex reflecting amplified threat processing and impaired emotion regulation. Future studies will need to explore the association between limbic hyperactivity, paranoid ideation and perceived stress.
Collapse
Affiliation(s)
- Sebastian Walther
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Stephanie Lefebvre
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland.
| | - Frauke Conring
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Nicole Gangl
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Niluja Nadesalingam
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Danai Alexaki
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Florian Wüthrich
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Maximilian Rüter
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Petra V. Viher
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Andrea Federspiel
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| | - Roland Wiest
- Institute of Diagnostic and Interventional Neuroradiology, Inselspital, University of Bern, Bern, Switzerland
| | - Katharina Stegmayer
- Translational Research Center, University Hospital of Psychiatry and Psychotherapy, University of Bern, Bern, Switzerland
| |
Collapse
|
38
|
Rudebeck PH, Izquierdo A. Foraging with the frontal cortex: A cross-species evaluation of reward-guided behavior. Neuropsychopharmacology 2022; 47:134-146. [PMID: 34408279 PMCID: PMC8617092 DOI: 10.1038/s41386-021-01140-0] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 02/07/2023]
Abstract
Efficient foraging is essential to survival and depends on frontal cortex in mammals. Because of its role in psychiatric disorders, frontal cortex and its contributions to reward procurement have been studied extensively in both rodents and non-human primates. How frontal cortex of these animal models compares is a source of intense debate. Here we argue that translating findings from rodents to non-human primates requires an appreciation of both the niche in which each animal forages as well as the similarities in frontal cortex anatomy and function. Consequently, we highlight similarities and differences in behavior and anatomy, before focusing on points of convergence in how parts of frontal cortex contribute to distinct aspects of foraging in rats and macaques, more specifically. In doing so, our aim is to emphasize where translation of frontal cortex function between species is clearer, where there is divergence, and where future work should focus. We finish by highlighting aspects of foraging for which have received less attention but we believe are critical to uncovering how frontal cortex promotes survival in each species.
Collapse
Affiliation(s)
| | - Alicia Izquierdo
- Department of Psychology, UCLA, Los Angeles, CA, USA.
- The Brain Research Institute, UCLA, Los Angeles, CA, USA.
- Integrative Center for Learning and Memory, UCLA, Los Angeles, CA, USA.
- Integrative Center for Addictions, UCLA, Los Angeles, CA, USA.
| |
Collapse
|
39
|
GSK3β Activity in Reward Circuit Functioning and Addiction. NEUROSCI 2021. [DOI: 10.3390/neurosci2040033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Glycogen synthase kinase-3β (GSK3β), primarily described as a regulator of glycogen metabolism, is a molecular hub linking numerous signaling pathways and regulates many cellular processes like cytoskeletal rearrangement, cell migration, apoptosis, and proliferation. In neurons, the kinase is engaged in molecular events related to the strengthening and weakening of synapses, which is a subcellular manifestation of neuroplasticity. Dysregulation of GSK3β activity has been reported in many neuropsychiatric conditions, like schizophrenia, major depressive disorder, bipolar disorder, and Alzheimer’s disease. In this review, we describe the kinase action in reward circuit-related structures in health and disease. The effect of pharmaceuticals used in the treatment of addiction in the context of GSK3β activity is also discussed.
Collapse
|
40
|
Lo SL, Riley HO, Sturza J, Vazquez DM, Rosenblum K, Kaciroti N, Lumeng JC, Miller AL. Cortisol in early childhood moderates the association between family routines and observed affective balance in children from low-income backgrounds. Dev Psychobiol 2021; 63:e22204. [PMID: 34813102 DOI: 10.1002/dev.22204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 09/01/2021] [Accepted: 09/13/2021] [Indexed: 11/10/2022]
Abstract
The study of emotion regulation often addresses control of negative emotion. Researchers have proposed that affective balance is an indicator of emotion regulation that incorporates the role of positive emotion in the context of negative emotional experiences. Environmental and individual factors, such as family processes and biological stress regulation, are known to shape emotion regulation. The present study investigated whether child diurnal cortisol, an indicator of biological stress regulation, moderated the association between family routines and observed affective balance. Children (N = 222; M age = 4.70 years, SD = 0.60) from low-income households provided saliva samples to measure diurnal cortisol and completed a behavioral task designed to elicit negative emotions. Affective balance was defined as the difference score between the proportion of positive and negative emotional expressions displayed during the task. A higher affective balance score indicated greater positive compared with negative emotional displays. Simple slope analyses indicated that for children with a low morning cortisol intercept, more frequent family routines were associated with more affective balance. This pattern was not observed in children with average or high morning cortisol. Positive family routines may play an important role in shaping affective balance among children with disrupted cortisol levels from low-income backgrounds.
Collapse
Affiliation(s)
- Sharon L Lo
- Department of Health Behavior and Health Education, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Hurley O Riley
- Department of Health Behavior and Health Education, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Julie Sturza
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Delia M Vazquez
- Department of Health Behavior and Health Education, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Katherine Rosenblum
- Department of Psychiatry, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Niko Kaciroti
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Biostatistics, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Julie C Lumeng
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Nutritional Sciences, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| | - Alison L Miller
- Department of Health Behavior and Health Education, University of Michigan School of Public Health, Ann Arbor, Michigan, USA
| |
Collapse
|
41
|
Perigenual and Subgenual Anterior Cingulate Afferents Converge on Common Pyramidal Cells in Amygdala Subregions of the Macaque. J Neurosci 2021; 41:9742-9755. [PMID: 34649954 DOI: 10.1523/jneurosci.1056-21.2021] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 09/15/2021] [Accepted: 09/29/2021] [Indexed: 11/21/2022] Open
Abstract
The subgenual (sgACC) and perigenual (pgACC) anterior cingulate are important afferents of the amygdala, with different cytoarchitecture, connectivity, and function. The sgACC is associated with arousal mechanisms linked to salient cues, whereas the pgACC is engaged in conflict decision-making, including in social contexts. After placing same-size, small volume tracer injections into sgACC and pgACC of the same hemisphere in male macaques, we examined anterogradely labeled fiber distribution to understand how these different functional systems communicate in the main amygdala nuclei at both mesocopic and cellular levels. The sgACC has broad-based termination patterns. In contrast, the pgACC has a more restricted pattern, which was always nested in sgACC terminals. Terminal overlap occurred in subregions of the accessory basal and basal nuclei, which we termed "hotspots." In triple-labeling confocal studies, the majority of randomly selected CaMKIIα-positive cells (putative amygdala glutamatergic neurons) in hotspots received dual contacts from the sgACC and pgACC. The ratio of dual contacts occurred over a surprisingly narrow range, suggesting a consistent, tight balance of afferent contacts on postsynaptic neurons. Large boutons, which are associated with greater synaptic strength, were ∼3 times more frequent on sgACC versus pgACC axon terminals in hotspots, consistent with a fast "driver" function. Together, the results reveal a nested interaction in which pgACC ("conflict/social monitoring") terminals converge with the broader sgACC ("salience") terminals at both the mesoscopic and cellular level. The presynaptic organization in hotspots suggests that shifts in arousal states can rapidly and flexibly influence decision-making functions in the amygdala.SIGNIFICANCE STATEMENT The subgenual (sgACC) and perigenual cingulate (pgACC) have distinct structural and functional characteristics and are important afferent modulators of the amygdala. The sgACC is critical for arousal, whereas the pgACC mediates conflict-monitoring, including in social contexts. Using dual tracer injections in the same monkey, we found that sgACC inputs broadly project in the main amygdala nuclei, whereas pgACC inputs were more restricted and nested in zones containing sgACC terminals (hotspots). The majority of CaMKIIα + (excitatory) amygdala neurons in hotspots received converging contacts, which were tightly balanced. pgACC and sgACC afferent streams are therefore highly interdependent in these specific amygdala subregions, permitting "internal arousal" states to rapidly shape responses of amygdala neurons involved in conflict and social monitoring networks.
Collapse
|
42
|
Xiao M, Chen X, Yi H, Luo Y, Yan Q, Feng T, He Q, Lei X, Qiu J, Chen H. Stronger functional network connectivity and social support buffer against negative affect during the COVID-19 outbreak and after the pandemic peak. Neurobiol Stress 2021; 15:100418. [PMID: 34805450 PMCID: PMC8592855 DOI: 10.1016/j.ynstr.2021.100418] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Revised: 09/27/2021] [Accepted: 11/15/2021] [Indexed: 01/17/2023] Open
Abstract
Health and financial uncertainties, as well as enforced social distancing, during the COVID-19 pandemic have adversely affected the mental health of people. These impacts are expected to continue even after the pandemic, particularly for those who lack support from family and friends. The salience network (SN), default mode network (DMN), and frontoparietal network (FPN) function in an interconnected manner to support information processing and emotional regulation processes in stressful contexts. In this study, we examined whether functional connectivity of the SN, DMN, and FPN, measured using resting-state functional magnetic resonance imaging before the pandemic, is a neurobiological marker of negative affect (NA) during the COVID-19 pandemic and after its peak in a large sample (N = 496, 360 females); the moderating role of social support in the brain-NA association was also investigated. We found that participants reported an increase in NA during the pandemic compared to before the pandemic, and the NA did not decrease, even after the peak period. People with higher connectivity within the SN and between the SN and the other two networks reported less NA during and after the COVID-19 outbreak peak, and the buffer effect was stronger if their social support was greater. These findings suggest that the functional networks that are responsible for affective processing and executive functioning, as well as the social support from family and friends, play an important role in protecting against NA under stressful and uncontrollable situations.
Collapse
Affiliation(s)
- Mingyue Xiao
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Department of Psychology, Southwest University, Chongqing, China
| | - Ximei Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Department of Psychology, Southwest University, Chongqing, China
| | - Haijing Yi
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Department of Psychology, Southwest University, Chongqing, China
| | - Yijun Luo
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Department of Psychology, Southwest University, Chongqing, China
| | - Qiaoling Yan
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Department of Psychology, Southwest University, Chongqing, China
| | - Tingyong Feng
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Department of Psychology, Southwest University, Chongqing, China
| | - Qinghua He
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Department of Psychology, Southwest University, Chongqing, China
| | - Xu Lei
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Department of Psychology, Southwest University, Chongqing, China
| | - Jiang Qiu
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Department of Psychology, Southwest University, Chongqing, China
| | - Hong Chen
- Key Laboratory of Cognition and Personality (SWU), Ministry of Education, Chongqing, China.,Department of Psychology, Southwest University, Chongqing, China
| |
Collapse
|
43
|
Suarez-Jimenez B, Balderston NL, Bisby JA, Leshin J, Hsiung A, King JA, Pine DS, Burgess N, Grillon C, Ernst M. Location-dependent threat and associated neural abnormalities in clinical anxiety. Commun Biol 2021; 4:1263. [PMID: 34737386 PMCID: PMC8568971 DOI: 10.1038/s42003-021-02775-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 10/11/2021] [Indexed: 11/05/2022] Open
Abstract
Anxiety disorders are characterized by maladaptive defensive responses to distal or uncertain threats. Elucidating neural mechanisms of anxiety is essential to understand the development and maintenance of anxiety disorders. In fMRI, patients with pathological anxiety (ANX, n = 23) and healthy controls (HC, n = 28) completed a contextual threat learning paradigm in which they picked flowers in a virtual environment comprising a danger zone in which flowers were paired with shock and a safe zone (no shock). ANX compared with HC showed 1) decreased ventromedial prefrontal cortex and anterior hippocampus activation during the task, particularly in the safe zone, 2) increased insula and dorsomedial prefrontal cortex activation during the task, particularly in the danger zone, and 3) increased amygdala and midbrain/periaqueductal gray activation in the danger zone prior to potential shock delivery. Findings suggest that ANX engage brain areas differently to modulate context-appropriate emotional responses when learning to discriminate cues within an environment. Suarez-Jimenez and colleagues use a shock and safe zone experiment with fMRI imaging to examine how pathological anxiety disorders are manifested in the brain. Their findings suggest that safe and dangerous zones within the experiment alter activation in different brain regions.
Collapse
Affiliation(s)
- Benjamin Suarez-Jimenez
- Neuroscience Department, University of Rochester, Rochester, NY, USA. .,Department of Psychiatry, Columbia University Medical Center, New York, NY, USA. .,National Institute of Mental Health, Bethesda, MD, USA.
| | - Nicholas L Balderston
- National Institute of Mental Health, Bethesda, MD, USA.,University of Pennsylvania School of Medicine, Philadelphia, PA, USA
| | - James A Bisby
- Institute of Cognitive Neuroscience, University College London, London, UK.,Queen Square Institute of Neurology, University College London, London, UK.,Division of Psychiatry, University College London, London, UK
| | - Joseph Leshin
- National Institute of Mental Health, Bethesda, MD, USA.,Department of Psychology and Neuroscience, The University of North Carolina, Chapel Hill, NC, USA
| | - Abigail Hsiung
- National Institute of Mental Health, Bethesda, MD, USA.,Department of Psychology and Neuroscience, Duke University, Durham, NC, USA
| | - John A King
- Department of Clinical Psychology, University College London, London, UK
| | - Daniel S Pine
- National Institute of Mental Health, Bethesda, MD, USA
| | - Neil Burgess
- Institute of Cognitive Neuroscience, University College London, London, UK.,Queen Square Institute of Neurology, University College London, London, UK.,Wellcome Centre for Human Neuroimaging, University College London, London, UK
| | | | - Monique Ernst
- National Institute of Mental Health, Bethesda, MD, USA
| |
Collapse
|
44
|
Henneghan AM, Becker H, Phillips C, Kesler S. Sustained effects of mantra meditation compared to music listening on neurocognitive outcomes of breast cancer survivors: A brief report of a randomized control trial. J Psychosom Res 2021; 150:110628. [PMID: 34600308 PMCID: PMC8783371 DOI: 10.1016/j.jpsychores.2021.110628] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/16/2021] [Accepted: 09/20/2021] [Indexed: 10/20/2022]
Abstract
OBJECTIVE Cancer-related cognitive impairment is common following the end of adjuvant treatment and there are limited treatment options for it. We compared the sustained cognitive (primary) and psychological (secondary) effects of mantra meditation to classical music listening 8 weeks after interventions ended (Time 3) compared to baseline (Time 1). METHODS A two-group parallel random assignment experimental design was used in a community setting. Thirty one breast cancer survivors (ages 21 to 75, received chemotherapy, and reported cognitive complaints) were randomly assigned to practice mantra meditation (n = 16) or listen to classical music (n = 15) 12 min a day for 8 weeks. No blinding was used. Repeated measures analysis of variance models were used to compare Time 1 and Time 3 data for the 26 survivors (13 per group) who completed the interventions and Time 3 data collection. RESULTS Verbal fluency (p < .001, ηp2 = 0.58), attention (p = .002, ηp2 = 0.33), immediate memory recall (p < .001, ηp2 = 0.38), perceived cognitive impairment (p < .001, ηp2 = 0.39), and quality of life (p = .001, ηp2 = 0.35) improved significantly across time for both groups. The two conditions did not differ significantly in changes across time. There were no adverse effects. CONCLUSION Daily mantra meditation or classical music listening may be beneficial for cognitive outcomes and quality of life of breast cancer survivors with cancer-related cognitive impairment. The cognitive benefits appear to be sustained beyond the initial intervention period. Clinical Trials Registration number: NCT03696056, recruitment status completed. The study details can be accessed at: https://clinicaltrials.gov/ct2/show/NCT03696056 KEY MESSAGE: There are limited treatment options for managing cancer-related cognitive impairments. Daily mantra meditation or classical music listening for 12 min a day may improve cognitive outcomes and quality of life for cancer survivors, with no negative side effects.
Collapse
Affiliation(s)
- Ashley M Henneghan
- The University of Texas at Austin, School of Nursing, 1710 Red River, St. Austin, TX 78712, United States of America; The University of Texas at Austin, Dell Medical School, Department of Oncology, 1601 Trinity, St. Austin, TX 78712, United States of America.
| | - Heather Becker
- The University of Texas at Austin, School of Nursing, 1710 Red River, St. Austin, TX 78712, United States of America
| | - Carolyn Phillips
- The University of Texas at Austin, School of Nursing, 1710 Red River, St. Austin, TX 78712, United States of America
| | - Shelli Kesler
- The University of Texas at Austin, School of Nursing, 1710 Red River, St. Austin, TX 78712, United States of America; The University of Texas at Austin, Dell Medical School, Department of Oncology, 1601 Trinity, St. Austin, TX 78712, United States of America; The University of Texas at Austin, Dell Medical School, Department of Diagnostic Medicine, 1601 Trinity, St. Austin, TX, 78712, United States of America
| |
Collapse
|
45
|
Glenn DE, Feldman JS, Ivie EJ, Shechner T, Leibenluft E, Pine DS, Peters MAK, Michalska KJ. Social relevance modulates multivariate neural representations of threat generalization in children and adults. Dev Psychobiol 2021; 63:e22185. [PMID: 34674239 DOI: 10.1002/dev.22185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 07/24/2021] [Accepted: 08/03/2021] [Indexed: 11/09/2022]
Abstract
Few studies have examined threat generalization across development and no developmental studies have compared the generalization of social versus nonsocial threat, making it difficult to identify contextual factors that contribute to threat learning across development. The present study assessed youth and adults' multivoxel neural representations of social versus nonsocial threat stimuli. Twenty adults (Mage = 25.7 ± 4.9) and 16 youth (Mage = 14.1 ± 1.7) completed two conditioning and extinction recall paradigms: one social and one nonsocial paradigm. Three weeks after conditioning, participants underwent a functional magnetic resonance imaging extinction recall task that presented the extinguished threat cue (CS+), a safety cue (CS-), and generalization stimuli (GS) consisting of CS-/CS+ blends. Across age groups, neural activity patterns and self-reported fear and memory ratings followed a linear generalization gradient for social threat stimuli and a quadratic generalization gradient for nonsocial threat stimuli, indicating enhanced threat/safety discrimination for social relative to nonsocial threat stimuli. The amygdala and ventromedial prefrontal cortex displayed the greatest neural pattern differentiation between the CS+ and GS/CS-, reinforcing their role in threat learning and extinction recall. Contrary to predictions, age did not influence threat representations. These findings highlight the importance of the social relevance of threat on generalization across development.
Collapse
Affiliation(s)
- Dana E Glenn
- Department of Psychology, University of California, Riverside, California, USA
| | - Julia S Feldman
- Department of Psychology, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Elizabeth J Ivie
- Department of Psychology, University of Oregon, Eugene, Oregon, USA
| | - Tomer Shechner
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Ellen Leibenluft
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Daniel S Pine
- Emotion and Development Branch, National Institute of Mental Health, Bethesda, Maryland, USA
| | - Megan A K Peters
- Department of Cognitive Sciences, University of California, Irvine, California, USA
| | - Kalina J Michalska
- Department of Psychology, University of California, Riverside, California, USA
| |
Collapse
|
46
|
Hu J, Liu J, Liu Y, Wu X, Zhuang K, Chen Q, Yang W, Xie P, Qiu J, Wei D. Dysfunction of the anterior and intermediate hippocampal functional network in major depressive disorders across the adult lifespan. Biol Psychol 2021; 165:108192. [PMID: 34555480 DOI: 10.1016/j.biopsycho.2021.108192] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 11/27/2022]
Abstract
Accumulating evidence indicates that structural and functional abnormalities in hippocampal formation are linked to major depressive disorder (MDD). However, the resting-state functional connectivity (RSFC) of hippocampal subfields in MDD remains unclear. This cross-sectional study aimed to investigate the RSFC of hippocampal subfields in a large sample of MDD patients. The results revealed that patients with MDD showed lower RSFC between the right anterior hippocampus and the insula, and the RSFC was inversely correlated with anxiety symptoms of depression. Depressed patients also showed decreased RSFC between the bilateral intermediate hippocampus and left nucleus accumbens (NAcc), and the hippocampus-NAcc circuit was negatively correlated with core symptoms of depression. The functional connectivity between the right anterior hippocampus and left postcentral gyrus increased with ageing in MDD patients compared with healthy controls. These findings suggest that the functional network of hippocampal subfields may underlie anxiety and core depression symptoms.
Collapse
Affiliation(s)
- Jun Hu
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Jiahui Liu
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Yu Liu
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Xianran Wu
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Kaixiang Zhuang
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Qunlin Chen
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Wenjing Yang
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China
| | - Peng Xie
- Institute of Neuroscience, Chongqing Medical University, Chongqing, China; Chongqing Key Laboratory of Neurobiology, Chongqing, China; Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Jiang Qiu
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China.
| | - Dongtao Wei
- Faculty of Psychology, Southwest University, Chongqing 400715, China; Key Laboratory of Cognition and Personality (Ministry of Education), Southwest University, Chongqing 400715, China.
| |
Collapse
|
47
|
Decety J, Holvoet C. Le développement de l’empathie chez le jeune enfant. ANNEE PSYCHOLOGIQUE 2021. [DOI: 10.3917/anpsy1.213.0239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
|
48
|
Barchiesi R, Chanthongdee K, Domi E, Gobbo F, Coppola A, Asratian A, Toivainen S, Holm L, Augier G, Xu L, Augier E, Heilig M, Barbier E. Stress-induced escalation of alcohol self-administration, anxiety-like behavior, and elevated amygdala Avp expression in a susceptible subpopulation of rats. Addict Biol 2021; 26:e13009. [PMID: 33565224 DOI: 10.1111/adb.13009] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/12/2021] [Accepted: 01/14/2021] [Indexed: 12/11/2022]
Abstract
Comorbidity between alcohol use and anxiety disorders is associated with more severe symptoms and poorer treatment outcomes than either of the conditions alone. There is a well-known link between stress and the development of these disorders, with post-traumatic stress disorder as a prototypic example. Post-traumatic stress disorder can arise as a consequence of experiencing traumatic events firsthand and also after witnessing them. Here, we used a model of social defeat and witness stress in rats, to study shared mechanisms of stress-induced anxiety-like behavior and escalated alcohol self-administration. Similar to what is observed clinically, we found considerable individual differences in susceptibility and resilience to the stress. Both among defeated and witness rats, we found a subpopulation in which exposure was followed by emergence of increased anxiety-like behavior and escalation of alcohol self-administration. We then profiled gene expression in tissue from the amygdala, a key brain region in the regulation of stress, alcohol use, and anxiety disorders. When comparing "comorbid" and resilient socially defeated rats, we identified a strong upregulation of vasopressin and oxytocin, and this correlated positively with the magnitude of the alcohol self-administration and anxiety-like behavior. A similar trend was observed in comorbid witness rats. Together, our findings provide novel insights into molecular mechanisms underpinning the comorbidity of escalated alcohol self-administration and anxiety-like behavior.
Collapse
Affiliation(s)
- Riccardo Barchiesi
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences Linköping University Sweden
| | - Kanat Chanthongdee
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences Linköping University Sweden
- Department of Physiology, Faculty of Medicine Siriraj Hospital Mahidol University Thailand
| | - Esi Domi
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences Linköping University Sweden
| | - Francesco Gobbo
- Centre for Discovery Brain Sciences University of Edinburgh UK
| | - Andrea Coppola
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences Linköping University Sweden
| | - Anna Asratian
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences Linköping University Sweden
| | - Sanne Toivainen
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences Linköping University Sweden
| | - Lovisa Holm
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences Linköping University Sweden
| | - Gaelle Augier
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences Linköping University Sweden
| | - Li Xu
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences Linköping University Sweden
- Psychosomatic Medicine Center Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China Chengdu China
| | - Eric Augier
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences Linköping University Sweden
| | - Markus Heilig
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences Linköping University Sweden
| | - Estelle Barbier
- Center for Social and Affective Neuroscience, Department of Biomedical and Clinical Sciences Linköping University Sweden
| |
Collapse
|
49
|
Dong H, Wang M, Zheng H, Zhang J, Dong GH. The functional connectivity between the prefrontal cortex and supplementary motor area moderates the relationship between internet gaming disorder and loneliness. Prog Neuropsychopharmacol Biol Psychiatry 2021; 108:110154. [PMID: 33137406 DOI: 10.1016/j.pnpbp.2020.110154] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Revised: 10/06/2020] [Accepted: 10/23/2020] [Indexed: 10/23/2022]
Abstract
BACKGROUND Individuals with internet gaming disorder (IGD) usually report a higher sense of loneliness. Although studies have suggested a key role of the prefrontal cortex-based resting-state functional connectivity (rsFC) in both IGD and loneliness, the potential mechanism between IGD and loneliness remains unclear. METHODS Fifty-seven IGD and 81 matched recreational internet gamer users (RGU) underwent resting-state fMRI scans. The UCLA loneliness scale was used to measure loneliness. We first explored the brain areas that are both associated with loneliness and IGD severity. Then, the neuroimaging findings were extracted to test whether the rsFC of these brain regions moderates the relationship between IGD and loneliness. RESULTS We observed reduced rsFC between the left dorsolateral prefrontal cortex (DLPFC) and the left precentral and the postcentral gyri and the supplementary motor area (SMA), which also correlated with increased IAT (Young''s internet addiction test) scores. More importantly, the rsFC of the DLPFC-precentral gyrus and the DLPFC-postcentral gyrus moderated the relationship between IGD severity and loneliness scores. Additionally, we also found that the rsFC of the left DLPFC-precentral gyrus, the DLPFC-postcentral gyrus and the right DLPFC-SMA moderated the relationship between self-reported gaming craving and the UCLA scores. CONCLUSIONS The current study confirmed the role of the DLPFC in reward control (game craving) and emotion regulation (loneliness). Additionally, the rsFC of the prefrontal cortex-supplementary motor area moderates IGD and loneliness. These findings provide valuable understanding of the two-way relationship between IGD and loneliness.
Collapse
Affiliation(s)
- Haohao Dong
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China
| | - Ming Wang
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China
| | - Hui Zheng
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai Mental Health Center, Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | - Jialin Zhang
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China
| | - Guang-Heng Dong
- Center for Cognition and Brain Disorders, the Affiliated Hospital of Hangzhou Normal University, Hangzhou, PR China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairments, Hangzhou, Zhejiang Province, PR China.
| |
Collapse
|
50
|
Zhang WH, Zhang JY, Holmes A, Pan BX. Amygdala Circuit Substrates for Stress Adaptation and Adversity. Biol Psychiatry 2021; 89:847-856. [PMID: 33691931 DOI: 10.1016/j.biopsych.2020.12.026] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Revised: 11/24/2020] [Accepted: 12/18/2020] [Indexed: 12/19/2022]
Abstract
Brain systems that promote maintenance of homeostasis in the face of stress have significant adaptive value. A growing body of work across species demonstrates a critical role for the amygdala in promoting homeostasis by regulating physiological and behavioral responses to stress. This review focuses on an emerging body of evidence that has begun to delineate the contribution of specific long-range amygdala circuits in mediating the effects of stress. After summarizing the major anatomical features of the amygdala and its connectivity to other limbic structures, we discuss recent findings from rodents showing how stress causes structural and functional remodeling of amygdala neuronal outputs to defined cortical and subcortical target regions. We also consider some of the environmental and genetic factors that have been found to moderate how the amygdala responds to stress and relate the emerging preclinical literature to the current understanding of the pathophysiology and treatment of stress-related neuropsychiatric disorders. Future effort to translate these findings to clinics may help to develop valuable tools for prevention, diagnosis, and treatment of these diseases.
Collapse
Affiliation(s)
- Wen-Hua Zhang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Jun-Yu Zhang
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China
| | - Andrew Holmes
- Laboratory of Behavioral and Genomic Neuroscience, National Institute on Alcohol Abuse and Alcoholism, National Institues of Health, Bethesda, Maryland
| | - Bing-Xing Pan
- Laboratory of Fear and Anxiety Disorders, Institutes of Life Science, Nanchang University, Nanchang, China.
| |
Collapse
|