1
|
de With J, van der Heijden HS, van Amelsvoort T, Daemen M, Simons C, Alizadeh B, van Aalst D, de Haan L, Vermeulen J, Schirmbeck F. The association between childhood trauma and tobacco smoking in patients with psychosis, unaffected siblings, and healthy controls. Eur Arch Psychiatry Clin Neurosci 2024; 274:1575-1583. [PMID: 38231398 PMCID: PMC11422427 DOI: 10.1007/s00406-023-01754-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 12/18/2023] [Indexed: 01/18/2024]
Abstract
In patients with psychosis, rates of tobacco smoking and childhood trauma are significantly higher compared to the general population. Childhood trauma has been proposed as a risk factor for tobacco smoking. However, little is known about the relationship between childhood trauma and smoking in psychosis. In a subsample of the Genetic Risk and Outcome of Psychosis study (760 patients with psychosis, 991 unaffected siblings, and 491 healthy controls), tobacco smoking was assessed using the Composite International Diagnostic Interview and childhood trauma was measured with the Childhood Trauma Questionnaire. Logistic regression models were used to assess associations between trauma and smoking, while correcting for confounders. Positive associations were found between total trauma, abuse, and neglect, and an increased risk for smoking in patients, while correcting for age and gender (ORtrauma 1.77, 95% CI 1.30-2.42, p < 0.001; ORabuse 1.69, 95% CI 1.23-2.31, p = 0.001; ORneglect 1.48, 95% CI 1.08-2.02, p = 0.014). In controls, total trauma and abuse were positively associated with smoking, while correcting for age and gender (ORtrauma 2.40, 95% CI 1.49-3.88, p < 0.001; ORabuse 2.02, 96% CI 1.23-3.32, p = 0.006). All associations lost their significance after controlling for additional covariates and multiple testing. Findings suggest that the association between childhood trauma and tobacco smoking can be mainly explained by confounders (gender, cannabis use, and education) in patients with psychosis. These identified aspects should be acknowledged in tobacco cessation programs.
Collapse
Affiliation(s)
- Justine de With
- Department of Psychiatry Amsterdam, UMC (Location AMC), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands.
| | - Heleen S van der Heijden
- Department of Psychiatry Amsterdam, UMC (Location AMC), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Therese van Amelsvoort
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Maud Daemen
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
| | - Claudia Simons
- Department of Psychiatry and Neuropsychology, School for Mental Health and Neuroscience, Maastricht University Medical Center, Maastricht, The Netherlands
- GGzE Institute for Mental Health Care, Eindhoven, The Netherlands
| | - Behrooz Alizadeh
- Department of Psychiatry, Rijksuniversiteit Groningen, University Medical Center Groningen, Groningen, The Netherlands
- Department of Epidemiology, University Medical Center Groningen, Groningen, The Netherlands
| | - Daphne van Aalst
- Department of Psychiatry Amsterdam, UMC (Location AMC), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Lieuwe de Haan
- Department of Psychiatry Amsterdam, UMC (Location AMC), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Arkin, Institute for Mental Health, Amsterdam, The Netherlands
| | - Jentien Vermeulen
- Department of Psychiatry Amsterdam, UMC (Location AMC), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Frederike Schirmbeck
- Department of Psychiatry Amsterdam, UMC (Location AMC), Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
- Department of Public Mental Health, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| |
Collapse
|
2
|
Willford JA, Kaufman JM. Through a teratological lens: A narrative review of exposure to stress and drugs of abuse during pregnancy on neurodevelopment. Neurotoxicol Teratol 2024; 105:107384. [PMID: 39187031 DOI: 10.1016/j.ntt.2024.107384] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 08/28/2024]
Abstract
Teratological research shows that both prenatal stress and prenatal substance exposure have a significant impact on neurodevelopmental outcomes in children. Using human research, the purpose of this narrative review is to explore the degree to which these exposures may represent complex prenatal and postnatal risks for the development of cognition and behavior in children. An understanding of the HPA axis and its function during pregnancy as well as the types and operationalization of prenatal stress provide a context for understanding the direct and indirect mechanisms by which prenatal stress affects brain and behavior development. In turn, prenatal substance exposure studies are evaluated for their importance in understanding variables that indicate a potential interaction with prenatal stress including reactivity to novelty, arousal, and stress reactivity during early childhood. The similarities and differences between prenatal stress exposure and prenatal substance exposure on neurodevelopmental outcomes including arousal and emotion regulation, cognition, behavior, stress reactivity, and risk for psychopathology are summarized. Further considerations for teratological studies of prenatal stress and/or substance exposure include identifying and addressing methodological challenges, embracing the complexity of pre-and postnatal environments in the research, and the importance of incorporating parenting and resilience into future studies.
Collapse
Affiliation(s)
- Jennifer A Willford
- Slippery Rock University, Department of Psychology, 1 Morrow Way, Slippery Rock, PA 16057, United States of America.
| | - Jesse M Kaufman
- Slippery Rock University, Department of Psychology, 1 Morrow Way, Slippery Rock, PA 16057, United States of America
| |
Collapse
|
3
|
Chen J, Chen W, Zhang J, Zhao H, Cui J, Wu J, Shi A. Dual effects of endogenous formaldehyde on the organism and drugs for its removal. J Appl Toxicol 2024; 44:798-817. [PMID: 37766419 DOI: 10.1002/jat.4546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/25/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023]
Abstract
Endogenous formaldehyde (FA) is produced in the human body via various mechanisms to preserve healthy energy metabolism and safeguard the organism. However, endogenous FA can have several negative effects on the body through epigenetic alterations, including cancer growth promotion; neuronal, hippocampal and endothelial damages; atherosclerosis acceleration; haemopoietic stem cell destruction and haemopoietic cell production reduction. Certain medications with antioxidant effects, such as glutathione, vitamin E, resveratrol, alpha lipoic acid and polyphenols, lessen the detrimental effects of endogenous FA by reducing oxidative stress, directly scavenging endogenous FA or promoting its degradation. This study offers fresh perspectives for managing illnesses associated with endogenous FA exposure.
Collapse
Affiliation(s)
- Jiaxin Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Wenhui Chen
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Jinjia Zhang
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Huanhuan Zhao
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Ji Cui
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
| | - Junzi Wu
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, China
| | - Anhua Shi
- Yunnan Key Laboratory of Integrated Traditional Chinese and Western Medicine for Chronic Disease in Prevention and Treatment, Yunnan University of Chinese Medicine, Kunming, China
- Key Laboratory of Microcosmic Syndrome Differentiation, Yunnan University of Chinese Medicine, Kunming, China
- Department of Basic Medical, Yunnan University of Chinese Medicine, Kunming, China
| |
Collapse
|
4
|
Mosse IB, Sedlyar NG, Mosse KA, Kilchevsky AV. DNA methylation differences in genes associated with human personal disorders and deviant behavior. AIMS Neurosci 2024; 11:39-48. [PMID: 38617039 PMCID: PMC11007406 DOI: 10.3934/neuroscience.2024003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 03/18/2024] [Accepted: 03/22/2024] [Indexed: 04/16/2024] Open
Abstract
Epigenetic regulation of gene expression is involved in the progression of mental disorders, including deviant behavior, brain developmental, and personality disorders. The large number of genes has been studied for their activity association with stress and depression; however, the obtained results for the majority of these genes are contradictory. The aim of our study was to investigate the possible contribution of methylation level changes to the development of personality disorders and deviant behavior. A systematic study of CpG Islands in 21 target regions, including the promoter and intron regions of the 12 genes was performed in DNA samples extracted from peripheral blood cells, to obtain an overview of their methylation status. High-throughput sequencing of converted DNA samples was performed and calling of the methylation sites on the "original top strand" in CpG islands was carried out in the Bismark pipeline. The initial methylation profile of 77 patients and 48 controls samples revealed a significant difference in 7 CpG sites in 6 genes. The most significant hypermethylation was found for the target sites of the HTR2A (p-value = 1.2 × 10-13) and OXTR (p-value = 2.3 × 10-7) genes. These data support the previous reports that alterations in DNA methylation may play an important role in the dysregulation of gene expression associated with personality disorders and deviant behavior, and confirm their potential use as biomarkers to improve thediagnosis, prognosis, and assessment of response to treatment.
Collapse
Affiliation(s)
- I. B. Mosse
- Laboratory of Human Genetics, the Institute of Genetics and Cytology, National Academy of Sciences of Belarus, Minsk, Republic of Belarus
| | | | | | | |
Collapse
|
5
|
Taylor-Cavelier SJ, Micol VJ, Roberts AG, Geiss EG, Lopez-Duran N. DHEA Moderates the Impact of Childhood Trauma on the HPA Axis in Adolescence. Neuropsychobiology 2022; 80:299-312. [PMID: 33472214 DOI: 10.1159/000511629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 09/10/2020] [Indexed: 11/19/2022]
Abstract
BACKGROUND Trauma can lead to long-term downregulation of the hypothalamic pituitary adrenal (HPA) axis. However, dehydroepiandrosterone (DHEA) has neuroprotective effects that may reduce the need for downregulation of the axis in response to stress. Furthermore, high DHEA/cortisol ratios are often conceptualized as better markers of DHEA's availability than DHEA alone, as ratios account for the coupling of DHEA and cortisol in response to stress. OBJECTIVES In this study, we explored if DHEA and DHEA/cortisol ratios moderated the association between childhood maltreatment and the HPA axis stress response. METHODS The sample consisted of 101 adolescents (ages 12-16) who completed the Child Trauma Questionnaire (CTQ) and the Trier Social Stress Test (TSST). Cortisol was modeled using saliva samples at 8 time points throughout the TSST. Cortisol and DHEA ratios were examined at baseline and 35 min after stress initiation. RESULTS Childhood maltreatment was associated with less steep cortisol activation slope and peak cortisol levels, but DHEA and DHEA/cortisol ratios moderated this effect. At high levels of DHEA, the impact of childhood maltreatment on cortisol peak levels was no longer significant. In contrast, high DHEA/cortisol ratios were associated with an intensification of the impact of childhood maltreatment on peak levels. CONCLUSIONS Results suggest that DHEA can limit the blunting of the HPA axis in response to childhood maltreatment. However, this protective effect was not reflected in high DHEA/cortisol ratios as predicted. Therefore, high DHEA and high DHEA/cortisol ratios may reflect different, and potentially opposite, processes.
Collapse
Affiliation(s)
| | - Valerie J Micol
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Andrea G Roberts
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Elisa G Geiss
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| | - Nestor Lopez-Duran
- Department of Psychology, University of Michigan, Ann Arbor, Michigan, USA
| |
Collapse
|
6
|
Mosse IB, Sedlyar NG, Babenko AS, Mosse KA, Shulinsky RS, Kilchevsky AV. Association between Methylation of Neuromediator Brain System Genes and Psychoemotional Human Characteristics. RUSS J GENET+ 2021. [DOI: 10.1134/s1022795421120115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
7
|
Gupta S, Guleria RS, Szabo YZ. MicroRNAs as biomarker and novel therapeutic target for posttraumatic stress disorder in Veterans. Psychiatry Res 2021; 305:114252. [PMID: 34739954 PMCID: PMC8857765 DOI: 10.1016/j.psychres.2021.114252] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 10/04/2021] [Accepted: 10/23/2021] [Indexed: 12/16/2022]
Abstract
Posttraumatic stress disorder (PTSD) is a common psychiatric disorder for military Veterans, characterized by hyperarousal, intrusive thoughts, flashbacks, hypervigilance, and distress after experiencing traumatic events. Some of the known physiological effects of PTSD include hypothalamic-pituitary-adrenal (HPA)-axis imbalance, a cortical function resulting in neuronal deficit and changes in behavior. Moreover, excessive discharge of inflammatory molecules and a dysregulated immune system are implicated in the pathophysiology of PTSD. Due to complex nature of this disorder, the biological underpinnings of PTSD remain inexplicable. Investigating novel biomarkers to understanding the pathogenesis of PTSD may reflect the underlying molecular network for therapeutic use and treatment. Circulatory microRNAs (miRNAs) and exosomes are evolving biomarkers that have shown a key role in psychiatric and neurological disorders including PTSD. Given the unique nature of combat trauma, as well as evidence that a large portion of Veterans do not benefit from frontline treatments, focus on veterans specifically is warranted. In the present review, we delineate the identification and role of several miRNAs in PTSD among veterans. An association of miRNA with HPA-axis regulation through FKBP5, a key modulator in PTSD is discussed as an emerging molecule in psychiatric diseases. We conclude that miRNAs may be used as circulatory biomarker detection in Veterans with PTSD.
Collapse
Affiliation(s)
- Sudhiranjan Gupta
- VISN 17 Center of Excellence for Research on Returning War Veterans, Biomarkers & Genetics Core, Central Texas Veterans Health Care System, 4800 Memorial Drive (151C), Waco, TX, 76711, USA.
| | - Rakeshwar S. Guleria
- VISN 17 Center of Excellence for Research on Returning War Veterans, Biomarkers & Genetics Core, Central Texas Veterans Health Care System, 4800 Memorial Drive (151C), Waco, Texas, 76711
| | - Yvette Z. Szabo
- VISN 17 Center of Excellence for Research on Returning War Veterans, Biomarkers & Genetics Core, Central Texas Veterans Health Care System, 4800 Memorial Drive (151C), Waco, Texas, 76711
| |
Collapse
|
8
|
Kendall KM, Van Assche E, Andlauer TFM, Choi KW, Luykx JJ, Schulte EC, Lu Y. The genetic basis of major depression. Psychol Med 2021; 51:2217-2230. [PMID: 33682643 DOI: 10.1017/s0033291721000441] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Major depressive disorder (MDD) is a common, debilitating, phenotypically heterogeneous disorder with heritability ranges from 30% to 50%. Compared to other psychiatric disorders, its high prevalence, moderate heritability, and strong polygenicity have posed major challenges for gene-mapping in MDD. Studies of common genetic variation in MDD, driven by large international collaborations such as the Psychiatric Genomics Consortium, have confirmed the highly polygenic nature of the disorder and implicated over 100 genetic risk loci to date. Rare copy number variants associated with MDD risk were also recently identified. The goal of this review is to present a broad picture of our current understanding of the epidemiology, genetic epidemiology, molecular genetics, and gene-environment interplay in MDD. Insights into the impact of genetic factors on the aetiology of this complex disorder hold great promise for improving clinical care.
Collapse
Affiliation(s)
- K M Kendall
- MRC Centre for Neuropsychiatric Genetics and Genomics, Cardiff University, Cardiff, UK
| | - E Van Assche
- Department of Psychiatry, University of Muenster, Muenster, Germany
| | - T F M Andlauer
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - K W Choi
- Department of Psychiatry, Massachusetts General Hospital, Boston, MA02114, USA
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA02114, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA02115, USA
| | - J J Luykx
- Department of Psychiatry, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
- Outpatient Second Opinion Clinic, GGNet Mental Health, Warnsveld, The Netherlands
| | - E C Schulte
- Institute of Psychiatric Phenomics and Genomics (IPPG), University Hospital, LMU Munich, Munich, Germany
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Y Lu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
9
|
Čater M, Majdič G. How early maternal deprivation changes the brain and behavior? Eur J Neurosci 2021; 55:2058-2075. [PMID: 33870558 DOI: 10.1111/ejn.15238] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 04/06/2021] [Accepted: 04/09/2021] [Indexed: 01/30/2023]
Abstract
Early life stress can adversely influence brain development and reprogram brain function and consequently behavior in adult life. Adequate maternal care in early childhood is therefore particularly important for the normal brain development, and adverse early life experiences can lead to altered emotional, behavioral, and neuroendocrine stress responses in the adulthood. As a form of neonatal stress, maternal deprivation/separation is often used in behavioral studies to examine the effects of early life stress and for modeling the development of certain psychiatric disorders and brain pathologies in animal models. The temporary loss of maternal care during the critical postpartum periods remodels the offspring's brain and provokes long-term effects on learning and cognition, the development of mental disorders, aggression, and an increased tendency for the drug abuse. Early life stress through maternal deprivation affects neuroendocrine responses to stress in adolescence and adulthood by dysregulating the hypothalamic-pituitary-adrenal axis and permanently disrupts stress resilience. In this review, we focused on how improper maternal care during early postnatal life affects brain development resulting in modified behavior later in life.
Collapse
Affiliation(s)
- Maša Čater
- Veterinary Faculty, Laboratory for Animal Genomics, Institute for Preclinical Studies, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| | - Gregor Majdič
- Veterinary Faculty, Laboratory for Animal Genomics, Institute for Preclinical Studies, University of Ljubljana, Ljubljana, Slovenia.,Faculty of Medicine, Institute of Physiology, University of Maribor, Maribor, Slovenia
| |
Collapse
|
10
|
Nepomnaschy PA, Rowlands A, Prescivalli Costa AP, Salvante KG. Socio-Ecological Challenges as Modulators of Women's Reproductive Trajectories. ANNUAL REVIEW OF ANTHROPOLOGY 2020. [DOI: 10.1146/annurev-anthro-102317-045930] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Amenorrhea, anovulatory cycles, miscarriages, and other reproductive outcomes are often seen as pathological. Life history theory, in contrast, treats those outcomes as adaptations that helped women optimize the timing of reproductive ventures across our evolutionary history. Women's bodies adjust their reproductive strategies in response to socio-ecological conditions, a process mediated by the hypothalamic-pituitary-adrenal axis (HPAA). Here, we review the links between socio-ecological conditions, HPAA activity, and the pace of women's reproductive transitions such as puberty, age at first birth, interbirth interval, and perimenopause. We also discuss the HPAA's role as a modulator of reproductive function: It not only suppresses it but may also prime women's bodies for future reproductive ventures. We conclude by reviewing challenges and opportunities within our subfield, including the need for transdisciplinary teams to develop longitudinal studies to improve our understanding of women's reproductive trajectories and outcomes from the moment they are conceived.
Collapse
Affiliation(s)
- Pablo A. Nepomnaschy
- Maternal and Child Health Laboratory, Faculty of Health Sciences; and Crawford Laboratory of Evolutionary Studies, Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada;, , ,
| | - Amanda Rowlands
- Maternal and Child Health Laboratory, Faculty of Health Sciences; and Crawford Laboratory of Evolutionary Studies, Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada;, , ,
| | - Ana Paula Prescivalli Costa
- Maternal and Child Health Laboratory, Faculty of Health Sciences; and Crawford Laboratory of Evolutionary Studies, Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada;, , ,
| | - Katrina G. Salvante
- Maternal and Child Health Laboratory, Faculty of Health Sciences; and Crawford Laboratory of Evolutionary Studies, Department of Biological Sciences, Faculty of Science, Simon Fraser University, Burnaby, British Columbia V5A 1S6, Canada;, , ,
| |
Collapse
|
11
|
Zhang H, Wang YF, Zheng LJ, Lin L, Zhang XY, Yang YT, Liu Y, Lu GM, Zhang LJ. Impacts of FKBP5 variants on large-scale brain network connectivity in healthy adults. J Affect Disord 2020; 273:32-40. [PMID: 32421620 DOI: 10.1016/j.jad.2020.04.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/18/2020] [Accepted: 04/10/2020] [Indexed: 12/12/2022]
Abstract
BACKGROUND FK506 binding protein 5 (FKBP5) rs1360780 polymorphism has been identified as a molecular genetic marker associated with the dysfunction of the hypothalamic-pituitary-adrenal (HPA) axis. The impact of FKBP5 rs1360780 on the large-scale brain network connectivity in healthy adults is still unknown. METHODS 479 healthy volunteers (age: 20-80years) completed MRI scans, neuropsychological assessments and blood analysis.All subjects were divided into CC, CT and TT genotypes. Within and between network connectivities (10 sub-networks) were calculated using resting state functional MRI (rs-fMRI) data. The genetic effects and gene-gender/age interaction on large-scale network connectivity were explored. RESULTS Compared with CC and CT groups, TT group showed increased intra-connectivity in default mode network (DMN) and increased inter-connectivity mainly distributed among the network of DMN, salience network (SAN), dorsal attention network (DAN), ventral attention network (VAN), subcortical network (SUB), and visual network (VIS). Gene-by-gender and gene-by-age interaction were found in inter-connectivity of DAN to VIS and DMN to FPN, respectively. The altered connectivities correlated with anxiety status test score. LIMITATIONS Plasma adrenocorticotropic hormone (ACTH) or cortisol were not measured,or else, we could estimate the hypothalamic-pituitary-adrenal (HPA) axis activity which may strengthen our results. CONCLUSIONS FKBP5 rs1360780 modulates the large-scale brain network connectivity in healthy adults. TT carriers showed the increased intra- and inter-connectivities mainly distributed among the network of DMN, SAN, DAN, VAN, SUB and VIS.
Collapse
Affiliation(s)
- Han Zhang
- Department of Medical Imaging, Medical Imaging Center, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210002, China
| | - Yun Fei Wang
- Department of Medical Imaging, Medical Imaging Center, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210002, China
| | - Li Juan Zheng
- Department of Medical Imaging, Medical Imaging Center, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210002, China
| | - Li Lin
- Department of Medical Imaging, Medical Imaging Center, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210002, China
| | - Xin Yuan Zhang
- Department of Medical Imaging, Medical Imaging Center, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210002, China
| | - Yu Ting Yang
- Department of Medical Imaging, Medical Imaging Center, Nanjing Clinical School, Southern Medical University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210002, China
| | - Ya Liu
- Department of Medical Imaging, Medical Imaging Center, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210002, China
| | - Guang Ming Lu
- Department of Medical Imaging, Medical Imaging Center, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210002, China
| | - Long Jiang Zhang
- Department of Medical Imaging, Medical Imaging Center, Jinling Hospital, Medical School of Nanjing University, 305 Zhongshan East Road, Xuanwu District, Nanjing, Jiangsu Province, 210002, China.
| |
Collapse
|
12
|
Rinne-Albers MA, Boateng CP, van der Werff SJ, Lamers-Winkelman F, Rombouts SA, Vermeiren RR, van der Wee NJ. Preserved cortical thickness, surface area and volume in adolescents with PTSD after childhood sexual abuse. Sci Rep 2020; 10:3266. [PMID: 32094427 PMCID: PMC7039962 DOI: 10.1038/s41598-020-60256-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 02/03/2020] [Indexed: 12/21/2022] Open
Abstract
Exposure to childhood adverse events is associated with severe consequences for general health and structural and functional changes in the brain of its survivors. In order to unravel and in the end influence the pathway linking adversity and pathology, neuroimaging research is crucial. Up till now studies in minors are scarce and differ in type of adversity or methodology. Almost all studies report lower cortical thickness, but in a broad variety of regions. In this study we investigated cortical thickness measures and clinical data in a well circumscribed group of adolescents with PTSD related to childhood sexual abuse (CSA) (N = 21) and a healthy non-traumatised control group (N = 21). The ventromedial PFC (vmPFC), ACC, insula, and middle/superior temporal gyrus were chosen as ROI’s due to their respective roles in emotion and information processing. No significant effect of group was found for cortical thickness, surface area or volume in any of the ROIs. This is in line with the results of research in adult women with sexual abuse related PTSD, suggesting that this may be specific to this group, independent of age. Recent research points to differential biological and pathological consequences of different types of childhood adversity.
Collapse
Affiliation(s)
- Mirjam A Rinne-Albers
- Curium-LUMC, Academic Center for Child and Adolescent Psychiatry, Oegstgeest, the Netherlands.
| | - Charlotte P Boateng
- Department of Psychiatry, Leiden University Medical Center (LUMC), Leiden, the Netherlands
| | - Steven J van der Werff
- Department of Psychiatry, Leiden University Medical Center (LUMC), Leiden, the Netherlands.,Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
| | | | - Serge A Rombouts
- Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands.,Department of Radiology, Leiden University Medical Center (LUMC), Leiden, the Netherlands.,Institute of Psychology, Leiden University, Leiden, the Netherlands
| | - Robert R Vermeiren
- Curium-LUMC, Academic Center for Child and Adolescent Psychiatry, Oegstgeest, the Netherlands.,Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
| | - Nic J van der Wee
- Department of Psychiatry, Leiden University Medical Center (LUMC), Leiden, the Netherlands.,Leiden Institute for Brain and Cognition (LIBC), Leiden, the Netherlands
| |
Collapse
|
13
|
Ximenes RDBB, Ximenes JCM, Nascimento SL, Roddy SM, Leite ÁJM. Relationship between maternal adverse childhood experiences and infant development: A systematic review (protocol). Medicine (Baltimore) 2019; 98:e14644. [PMID: 30855451 PMCID: PMC6417544 DOI: 10.1097/md.0000000000014644] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 02/01/2019] [Indexed: 11/26/2022] Open
Abstract
INTRODUCTION Twenty years ago, the first study was conducted to access adverse childhood experiences (ACEs) and their relation to outcomes in adulthood. The effects of exposure to childhood trauma can also be transmitted to other generations. There are some studies that suggest the hypothesis that intergenerational transmission may begin during intrauterine life through the change in placental-fetal physiology due to maternal exposure to adverse events in childhood. Those exposures can lead to a variety of conditions such as altered brain architecture, increase in placental corticotrophin hormone (pCRH) at the end of gestation, or emotional and behavioral changes during childhood and adolescence. The systematic review, therefore, is established to determine if there is a reliable association between maternal ACEs in childhood and altered child development. METHOD We will conduct a systematic review according to the guidelines of the meta-analysis of observational studies in epidemiology (MOOSE) and with the preferred reporting items for systematic review with a focus on health equity (PRISMA-E). A comprehensive search strategy will be conducted in the following databases: MEDLINE, EMBASE, CINAHL, Web of Science, SCOPUS, Lilacs, and SciELO. Following a 2-step screening process, data including the full reference, objectives, target population, description of the exposure (ACEs), outcome measures, study design, length of follow-up period, and the study results will be extracted, synthesized, and reported. Risk of bias and quality of the studies will also be assessed. DISSEMINATION AND ETHICS The results of this review will be disseminated through peer-reviewed publication. Because all of the data used in this systematic review has been published, this review does not require ethical approval. DISCUSSION This systematic review of the last 20 years will summarize and present the evidence for the relationship between maternal ACEs and the development of her child. SYSTEMATIC REVIEW REGISTRATION PROSPERO #CRD42018111456.
Collapse
Affiliation(s)
| | | | | | | | - Álvaro Jorge Madeiro Leite
- Pediatrician and Full Professor of Medical School of Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
14
|
Using Next-Generation Sequencing Transcriptomics To Determine Markers of Post-traumatic Symptoms: Preliminary Findings from a Post-deployment Cohort of Soldiers. G3-GENES GENOMES GENETICS 2019; 9:463-471. [PMID: 30622122 PMCID: PMC6385974 DOI: 10.1534/g3.118.200516] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Post-traumatic stress disorder is a concerning psychobehavioral disorder thought to emerge from the complex interaction between genetic and environmental factors. For soldiers exposed to combat, the risk of developing this disorder is twofold and diagnosis is often late, when much sequela has set in. To be able to identify and diagnose in advance those at “risk” of developing post-traumatic stress disorder, would greatly taper the gap between late sequelae and treatment. Therefore, this study sought to determine whether the transcriptome can be used to track the development of post-traumatic stress disorder in this unique and susceptible cohort of individuals. Gene expression levels in peripheral blood samples from 85 Canadian infantry soldiers (n = 58 participants negative for symptoms of post-traumatic stress disorder and n = 27 participants with symptoms of post-traumatic stress disorder) following return from deployment to Afghanistan were determined using RNA sequencing technology. Count-based gene expression quantification, normalization and differential analysis (with thorough correction for confounders) revealed genes associated to PTSD; LRP8 and GOLM1. These preliminary results provide a proof-of-principle for the diagnostic utility of blood-based gene expression profiles for tracking symptoms of post-traumatic stress disorder in soldiers returning from tour. It is also the first to report transcriptome-wide expression profiles alongside a post-traumatic symptom checklist.
Collapse
|
15
|
Huang K, Hu Y, Sun Y, Yu Z, Liu W, Zhu P, Tao F. Elective caesarean delivery and offspring’s cognitive impairment: Implications of methylation alteration in hippocampus glucocorticoid signaling genes. Brain Res Bull 2019; 144:108-121. [DOI: 10.1016/j.brainresbull.2018.11.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/09/2018] [Accepted: 11/21/2018] [Indexed: 12/16/2022]
|
16
|
Abrams RC, Alexopoulos GS. Vascular depression and the death of Queen Victoria. Int J Geriatr Psychiatry 2018; 33:1556-1561. [PMID: 30276875 DOI: 10.1002/gps.4984] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2018] [Accepted: 08/06/2018] [Indexed: 11/06/2022]
Abstract
OBJECTIVES The aim of this article was to examine relationships between the neurological events that were the immediate cause of the death of Queen Victoria and the late-life depression that preceded it. METHODS/DESIGN The authors closely reviewed the surviving medical notes of Queen Victoria's personal physician, Sir James Reid,Bt. recorded during the Queen's last 10 days of life. These notes were summarized in a chronological narrative and their implications considered in light of current concepts of vascular depression. RESULTS The depression that Queen Victoria experienced over the 5 months prior to her death and during her final 10 days from 13 January 1901 until 22 January likely had a vascular etiology. CONCLUSIONS Although conclusions from this study are necessarily speculative given the lack of neuroimaging and other diagnostic tools available in 1901, it emerged that Queen Victoria had experienced early-onset depression followed in later life by an acute depressive episode associated with vascular risk factors and personal losses, a sequence also encountered by today's geriatricians. In addition, etiological connections between the Queen's early-onset and late-life depressions appeared probable. Underlined for contemporary practitioners are the suffering experienced by patients with vascular depression at the end of their lives, as well as the struggles of physicians like Sir James Reid to provide clinical wisdom and emotional support.
Collapse
Affiliation(s)
- Robert C Abrams
- Division of Geriatrics and Palliative Medicine, Weill Cornell Medicine, New York, NY, USA.,Department of Psychiatry, Weill Cornell Medicine, New York, NY, USA
| | | |
Collapse
|
17
|
Abstract
INTRODUCTION Depression and posttraumatic stress disorder (PTSD) are two complex and debilitating psychiatric disorders that result in poor life and destructive behaviors against self and others. Currently, diagnosis is based on subjective rather than objective determinations leading to misdiagnose and ineffective treatments. Advances in novel neurobiological methods have allowed assessment of promising biomarkers to diagnose depression and PTSD, which offers a new means of appropriately treating patients. Areas covered: Biomarkers discovery in blood represents a fundamental tool to predict, diagnose, and monitor treatment efficacy in depression and PTSD. The potential role of altered HPA axis, epigenetics, NPY, BDNF, neurosteroid biosynthesis, the endocannabinoid system, and their function as biomarkers for mood disorders is discussed. Insofar, we propose the identification of a biomarker axis to univocally identify and discriminate disorders with large comorbidity and symptoms overlap, so as to provide a base of support for development of targeted treatments. We also weigh in on the feasibility of a future blood test for early diagnosis. Expert commentary: Potential biomarkers have already been assessed in patients' blood and need to be further validated through multisite large clinical trial stratification. Another challenge is to assess the relation among several interdependent biomarkers to form an axis that identifies a specific disorder and secures the best-individualized treatment. The future of blood-based tests for PTSD and depression is not only on the horizon but, possibly, already around the corner.
Collapse
Affiliation(s)
- Dario Aspesi
- a The Psychiatric Institute, Department of Psychiatry , University of Illinois at Chicago , Chicago , IL , USA
| | - Graziano Pinna
- a The Psychiatric Institute, Department of Psychiatry , University of Illinois at Chicago , Chicago , IL , USA
| |
Collapse
|
18
|
Redox dysregulation as a link between childhood trauma and psychopathological and neurocognitive profile in patients with early psychosis. Proc Natl Acad Sci U S A 2018; 115:12495-12500. [PMID: 30455310 PMCID: PMC6298080 DOI: 10.1073/pnas.1812821115] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Early traumatic experiences interact with redox regulation and oxidative stress. Blood glutathione peroxidase (GPx) activity, involved in reducing peroxides, may reflect the oxidation status of the organism, thus allowing for the stratification of patients. Traumatized patients with psychosis who have a high blood oxidation status (high-GPx) have smaller hippocampal volumes (but not a smaller amygdala or intracranial volume), and this is associated with more severe clinical symptoms, while those with a lower oxidation status (low-GPx) showed better cognition and a correlated activation of the antioxidant thioredoxin/peroxiredoxin system. Thus, in patients with psychosis, traumatic experiences during childhood may interact with various redox systems, leading to long-term neuroanatomical and clinical defects. This redox profile may represent important biomarkers for patient stratification, defining treatment strategies at early stages of psychosis. Exposure to childhood trauma (CT) increases the risk for psychosis and affects the development of brain structures, possibly through oxidative stress. As oxidative stress is also linked to psychosis, it may interact with CT, leading to a more severe clinical phenotype. In 133 patients with early psychosis (EPP), we explored the relationships between CT and hippocampal, amygdala, and intracranial volume (ICV); blood antioxidant defenses [glutathione peroxidase (GPx) and thioredoxin/peroxiredoxin (Trx/Prx)]; psychopathological results; and neuropsychological results. Nonadjusted hippocampal volume correlated negatively with GPx activity in patients with CT, but not in patients without CT. In patients with CT with high GPx activity (high-GPx+CT), hippocampal volume was decreased compared with that in patients with low-GPx+CT and patients without CT, who had similar hippocampal volumes. Patients with high-GPx+CT had more severe positive and disorganized symptoms than other patients. Interestingly, Trx and oxidized Prx levels correlated negatively with GPx only in patients with low-GPx+CT. Moreover, patients with low-GPx+CT performed better than other patients on cognitive tasks. Discriminant analysis combining redox markers, hippocampal volume, clinical scores, and cognitive scores allowed for stratification of the patients into subgroups. In conclusion, traumatized EPP with high peripheral oxidation status (high-GPx activity) had smaller hippocampal volumes and more severe symptoms, while those with lower oxidation status (low-GPx activity) showed better cognition and regulation of GPx and Trx/Prx systems. These results suggest that maintained regulation of various antioxidant systems allowed for compensatory mechanisms preventing long-term neuroanatomical and clinical impacts. The redox marker profile may thus represent important biomarkers for defining treatment strategies in patients with psychosis.
Collapse
|
19
|
Early post-conception maternal cortisol, children’s HPAA activity and DNA methylation profiles. J Dev Orig Health Dis 2018; 10:73-87. [DOI: 10.1017/s2040174418000880] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
AbstractThe hypothalamic–pituitary–adrenal axis (HPAA) plays a critical role in the functioning of all other biological systems. Thus, studying how the environment may influence its ontogeny is paramount to understanding developmental origins of health and disease. The early post-conceptional (EPC) period could be particularly important for the HPAA as the effects of exposures on organisms’ first cells can be transmitted through all cell lineages. We evaluate putative relationships between EPC maternal cortisol levels, a marker of physiologic stress, and their children’s pre-pubertal HPAA activity (n=22 dyads). Maternal first-morning urinary (FMU) cortisol, collected every-other-day during the first 8 weeks post-conception, was associated with children’s FMU cortisol collected daily around the start of the school year, a non-experimental challenge, as well as salivary cortisol responses to an experimental challenge (all Ps<0.05), with some sex-related differences. We investigated whether epigenetic mechanisms statistically mediated these links and, therefore, could provide cues as to possible biological pathways involved. EPC cortisol was associated with >5% change in children’s buccal epithelial cells’ DNA methylation for 867 sites, while children’s HPAA activity was associated with five CpG sites. Yet, no CpG sites were related to both, EPC cortisol and children’s HPAA activity. Thus, these epigenetic modifications did not statistically mediate the observed physiological links. Larger, prospective peri-conceptional cohort studies including frequent bio-specimen collection from mothers and children will be required to replicate our analyses and, if our results are confirmed, identify biological mechanisms mediating the statistical links observed between maternal EPC cortisol and children’s HPAA activity.
Collapse
|
20
|
Yehuda R, Lehrner A. Intergenerational transmission of trauma effects: putative role of epigenetic mechanisms. World Psychiatry 2018; 17:243-257. [PMID: 30192087 PMCID: PMC6127768 DOI: 10.1002/wps.20568] [Citation(s) in RCA: 194] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 06/13/2018] [Accepted: 06/13/2018] [Indexed: 12/18/2022] Open
Abstract
This paper reviews the research evidence concerning the intergenerational transmission of trauma effects and the possible role of epigenetic mechanisms in this transmission. Two broad categories of epigenetically mediated effects are highlighted. The first involves developmentally programmed effects. These can result from the influence of the offspring's early environmental exposures, including postnatal maternal care as well as in utero exposure reflecting maternal stress during pregnancy. The second includes epigenetic changes associated with a preconception trauma in parents that may affect the germline, and impact fetoplacental interactions. Several factors, such as sex-specific epigenetic effects following trauma exposure and parental developmental stage at the time of exposure, explain different effects of maternal and paternal trauma. The most compelling work to date has been done in animal models, where the opportunity for controlled designs enables clear interpretations of transmissible effects. Given the paucity of human studies and the methodological challenges in conducting such studies, it is not possible to attribute intergenerational effects in humans to a single set of biological or other determinants at this time. Elucidating the role of epigenetic mechanisms in intergenerational effects through prospective, multi-generational studies may ultimately yield a cogent understanding of how individual, cultural and societal experiences permeate our biology.
Collapse
Affiliation(s)
- Rachel Yehuda
- James J. Peters Bronx Veterans Affairs Hospital, Bronx, NY, USA
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Amy Lehrner
- James J. Peters Bronx Veterans Affairs Hospital, Bronx, NY, USA
- Departments of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| |
Collapse
|
21
|
Delpierre C, Castagné R, Lang T, Kelly-Irving M. [Social environment, biological embedding and social inequalities in health]. Med Sci (Paris) 2018; 34:740-744. [PMID: 30230448 DOI: 10.1051/medsci/20183408023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
The social gradient in health refers to the fact that the higher individuals rise in the social hierarchy, the better is their health. Understanding the construction of this gradient is a major challenge in social epidemiology. An original approach consists in looking at how the different exposures (chemical, physical, behavioural, psychosocial…) associated with the social environment are ultimately expressed at the biological level influencing health positively or negatively, referring to the concept of biological embedding. Data from animal models and life course epidemiology have shed new light on the biological mechanisms potentially at play. Recent discoveries from the field of epigenetics provide a better understanding of how the social environment, especially the early environment, can influence biological functioning over the long term or even over several generations. The work on the biological embedding of the social environment in connection with epigenetics still needs to be very largely consolidated, but could constitute a change of perspective in human biology, particularly by reconsidering the influence of the environment on biological functioning, which is not without consequences in terms of public health interventions.
Collapse
Affiliation(s)
- Cyrille Delpierre
- UMR1027, Université de Toulouse, Université Paul Sabatier, Inserm, Toulouse, France
| | - Raphaële Castagné
- UMR1027, Université de Toulouse, Université Paul Sabatier, Inserm, Toulouse, France
| | - Thierry Lang
- UMR1027, Université de Toulouse, Université Paul Sabatier, Inserm, Toulouse, France - Département d'épidémiologie, CHU de Toulouse, Toulouse, France
| | | |
Collapse
|
22
|
The brain's hemodynamic response function rapidly changes under acute psychosocial stress in association with genetic and endocrine stress response markers. Proc Natl Acad Sci U S A 2018; 115:E10206-E10215. [PMID: 30201713 DOI: 10.1073/pnas.1804340115] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Ample evidence links dysregulation of the stress response to the risk for psychiatric disorders. However, we lack an integrated understanding of mechanisms that are adaptive during the acute stress response but potentially pathogenic when dysregulated. One mechanistic link emerging from rodent studies is the interaction between stress effectors and neurovascular coupling, a process that adjusts cerebral blood flow according to local metabolic demands. Here, using task-related fMRI, we show that acute psychosocial stress rapidly impacts the peak latency of the hemodynamic response function (HRF-PL) in temporal, insular, and prefrontal regions in two independent cohorts of healthy humans. These latency effects occurred in the absence of amplitude effects and were moderated by regulatory genetic variants of KCNJ2, a known mediator of the effect of stress on vascular responsivity. Further, hippocampal HRF-PL correlated with both cortisol response and genetic variants that influence the transcriptional response to stress hormones and are associated with risk for major depression. We conclude that acute stress modulates hemodynamic response properties as part of the physiological stress response and suggest that HRF indices could serve as endophenotype of stress-related disorders.
Collapse
|
23
|
Keller SM, Doherty TS, Roth TL. Pharmacological Manipulation of DNA Methylation in Adult Female Rats Normalizes Behavioral Consequences of Early-Life Maltreatment. Front Behav Neurosci 2018; 12:126. [PMID: 30008666 PMCID: PMC6034089 DOI: 10.3389/fnbeh.2018.00126] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2018] [Accepted: 06/06/2018] [Indexed: 01/03/2023] Open
Abstract
Exposure to adversity early in development alters brain and behavioral trajectories. Data continue to accumulate that epigenetic mechanisms are a mediating factor between early-life adversity and adult behavioral phenotypes. Previous work from our laboratory has shown that female Long-Evans rats exposed to maltreatment during infancy display both aberrant forced swim behavior and patterns of brain DNA methylation in adulthood. Therefore, we examined the possibility of rescuing the aberrant forced swim behavior in maltreated-adult females by administering an epigenome-modifying drug (zebularine) at a dose previously shown to normalize DNA methylation. We found that zebularine normalized behavior in the forced swim test in maltreated females such that they performed at the levels of controls (females that had been exposed to only nurturing care during infancy). These data help link DNA methylation to an adult phenotype in our maltreatment model, and more broadly provide additional evidence that non-targeted epigenetic manipulations can change behavior associated with early-life adversity.
Collapse
Affiliation(s)
- Samantha M Keller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Tiffany S Doherty
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| | - Tania L Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE, United States
| |
Collapse
|
24
|
Palumbo S, Mariotti V, Iofrida C, Pellegrini S. Genes and Aggressive Behavior: Epigenetic Mechanisms Underlying Individual Susceptibility to Aversive Environments. Front Behav Neurosci 2018; 12:117. [PMID: 29950977 PMCID: PMC6008527 DOI: 10.3389/fnbeh.2018.00117] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 05/28/2018] [Indexed: 12/14/2022] Open
Abstract
Over the last two decades, the study of the relationship between nature and nurture in shaping human behavior has encountered a renewed interest. Behavioral genetics showed that distinct polymorphisms of genes that code for proteins that control neurotransmitter metabolic and synaptic function are associated with individual vulnerability to aversive experiences, such as stressful and traumatic life events, and may result in an increased risk of developing psychopathologies associated with violence. On the other hand, recent studies indicate that experiencing aversive events modulates gene expression by introducing stable changes to DNA without modifying its sequence, a mechanism known as “epigenetics”. For example, experiencing adversities during periods of maximal sensitivity to the environment, such as prenatal life, infancy and early adolescence, may introduce lasting epigenetic marks in genes that affect maturational processes in brain, thus favoring the emergence of dysfunctional behaviors, including exaggerate aggression in adulthood. The present review discusses data from recent research, both in humans and animals, concerning the epigenetic regulation of four genes belonging to the neuroendocrine, serotonergic and oxytocinergic pathways—Nuclear receptor subfamily 3-group C-member 1 (NR3C1), oxytocin receptor (OXTR), solute carrier-family 6 member 4 (SLC6A4) and monoamine oxidase A (MAOA)—and their role in modulating vulnerability to proactive and reactive aggressive behavior. Behavioral genetics and epigenetics are shedding a new light on the fine interaction between genes and environment, by providing a novel tool to understand the molecular events that underlie aggression. Overall, the findings from these studies carry important implications not only for neuroscience, but also for social sciences, including ethics, philosophy and law.
Collapse
Affiliation(s)
- Sara Palumbo
- Department of Surgical, Medical, Molecular Pathology and Critical Care, University of Pisa, Pisa, Italy
| | - Veronica Mariotti
- Department of Experimental and Clinical Medicine, University of Pisa, Pisa, Italy
| | | | - Silvia Pellegrini
- Department of Experimental and Clinical Medicine, University of Pisa, Pisa, Italy
| |
Collapse
|
25
|
Tozzi L, Farrell C, Booij L, Doolin K, Nemoda Z, Szyf M, Pomares FB, Chiarella J, O'Keane V, Frodl T. Epigenetic Changes of FKBP5 as a Link Connecting Genetic and Environmental Risk Factors with Structural and Functional Brain Changes in Major Depression. Neuropsychopharmacology 2018; 43:1138-1145. [PMID: 29182159 PMCID: PMC5854813 DOI: 10.1038/npp.2017.290] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 10/15/2017] [Accepted: 11/14/2017] [Indexed: 01/10/2023]
Abstract
The gene for the glucocorticoid receptor regulator FK506 binding protein 5 (FKBP5) plays a role for risk, response to treatment, and changes in brain areas in major depressive disorder (MDD). Chronic stress is associated with lower methylation of FKBP5. Our aim was to investigate whether methylation of FKBP5 reflected exposure to childhood adversity in MDD and controls and whether it was associated with structure and function of emotional processing regions. FKBP5 intron 7 GR response element region methylation and rs1360780 allelic status were assessed from whole blood in 56 MDD adults and 50 controls. Using magnetic resonance imaging, we assessed gray matter concentration of selected areas and their function during valence recognition of emotional images. Childhood adversity was investigated using the Childhood Trauma Questionnaire. In MDD patients carrying the high-risk T allele of rs1360780, lower methylation of FKBP5 was predicted by childhood adversity (F=4.95, p=0.04). In all participants, lower FKBP5 intron methylation levels were associated with reduced gray matter concentration in the inferior frontal orbital gyrus bilaterally (Wald chi-square=11.93, pFDR<0.01) and, in MDD, with its bilaterally higher activation during valence recognition (Wald chi-square=5.58, p=0.02). Activation of this region, regardless of side, was found to be lower in MDD compared to controls (Wald chi-square=3.88, p=0.049) and to be inversely correlated with depression severity (Wald chi-square=4.65, p=0.03). Our findings support the hypothesis that, in genetically predisposed individuals carrying a high-risk variant of the gene, childhood maltreatment might induce demethylation of FKBP5. This is in turn associated with structural and functional changes in the inferior frontal orbital gyrus, a relevant area for the clinical symptoms of MDD.
Collapse
Affiliation(s)
- Leonardo Tozzi
- Department of Psychiatry, Trinity College School of Medicine and Trinity College Institute of Neuroscience, Dublin, Ireland,Department of Psychiatry, Otto von Guericke University Magdeburg, Magdeburg, Germany,University Hospital, Department of Psychiatry, Otto von Guericke University Magdeburg, Leipzigerstr. 44, Magdeburg 39120, Germany, Tel: +4915225191188, Fax: +493916714229, E-mail:
| | - Chloe Farrell
- Department of Psychiatry, Trinity College School of Medicine and Trinity College Institute of Neuroscience, Dublin, Ireland
| | - Linda Booij
- Department of Psychology, Concordia University, Montreal, Canada,CHU Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, Canada
| | - Kelly Doolin
- Department of Psychiatry, Trinity College School of Medicine and Trinity College Institute of Neuroscience, Dublin, Ireland
| | - Zsofia Nemoda
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Moshe Szyf
- Department of Pharmacology and Therapeutics, McGill University, Montreal, Canada
| | - Florence B Pomares
- Department of Psychology, Concordia University, Montreal, Canada,CHU Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, Canada
| | - Julian Chiarella
- Department of Psychology, Concordia University, Montreal, Canada,CHU Sainte-Justine Hospital Research Centre, University of Montreal, Montreal, Canada
| | - Veronica O'Keane
- Department of Psychiatry, Trinity College School of Medicine and Trinity College Institute of Neuroscience, Dublin, Ireland
| | - Thomas Frodl
- Department of Psychiatry, Trinity College School of Medicine and Trinity College Institute of Neuroscience, Dublin, Ireland,Department of Psychiatry, Otto von Guericke University Magdeburg, Magdeburg, Germany
| |
Collapse
|
26
|
Evaluating Stress during Pregnancy: Do We Have the Right Conceptions and the Correct Tools to Assess It? J Pregnancy 2018; 2018:4857065. [PMID: 29484210 PMCID: PMC5816839 DOI: 10.1155/2018/4857065] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Accepted: 12/19/2017] [Indexed: 01/08/2023] Open
Abstract
Gestational stress is believed to increase the risk of pregnancy failure and perinatal and adult morbidity and mortality in both the mother and her child or children. However, some contradictions might arise from methodological issues or even from differences in the philosophical grounds that guide the studies on gestational stress. Biased perspectives could lead us to use and/or design inadequate/incomplete panels of biochemical determinations and/or psychological instruments to diagnose it accurately during pregnancy, a psychoneuroimmune-endocrine state in which allostatic loads may be significant. Here, we review these notions and propose a model to evaluate and diagnose stress during pregnancy.
Collapse
|
27
|
Wang C, Shen M, Guillaume B, Chong YS, Chen H, Fortier MV, Meaney MJ, Qiu A. FKBP5 Moderates the Association between Antenatal Maternal Depressive Symptoms and Neonatal Brain Morphology. Neuropsychopharmacology 2018; 43:564-570. [PMID: 28975925 PMCID: PMC5770768 DOI: 10.1038/npp.2017.232] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2017] [Revised: 08/21/2017] [Accepted: 09/19/2017] [Indexed: 01/17/2023]
Abstract
Antenatal maternal depressive symptoms influence fetal brain development and increase the risk for depression in offspring. Such vulnerability is often moderated by the offspring's genetic variants. This study aimed to examine whether FKBP5, a key regulator of the hypothalamic-pituitary-adrenal (HPA) axis, moderates the association between antenatal maternal depressive symptoms and in utero brain development, using an Asian cohort with 161 mother-offspring dyads. Antenatal maternal depressive symptoms were measured using the Edinburgh Postnatal Depression Scale (EPDS) during the second trimester of pregnancy. Neonatal structural brain images were acquired using magnetic resonance imaging (MRI) shortly after birth. Maternal and neonatal FKBP5 gene was genotyped using Illumina OmniExpress arrays. A gene set-based mixed effect model for gene-environment interaction (MixGE) was used to examine interactive effects between neonatal genetic variants of FKBP5 and antenatal maternal depressive symptoms on neonatal amygdala and hippocampal volumes, and cortical thickness. Our study revealed that genetic variants in neonatal FKBP5 moderate the association between antenatal maternal depressive symptoms and right hippocampal volume but only show a trend for such moderation on amygdala volumes and cortical thickness. Our findings are the first to reveal that the association between maternal depressive symptoms and in utero neurodevelopment of specific brain regions is modified through complex genetic variation in neonatal FKBP5. Our results suggest that an increased risk for depression may be transmitted from mother to child during fetal life and that the effect is dependent upon neonatal FKBP5 genotype.
Collapse
Affiliation(s)
- Changqing Wang
- Department of Biomedical Engineering and Clinical Imaging Research Center, National University of Singapore, Singapore
| | - Mojun Shen
- Singapore Institute for Clinical Sciences, Singapore
| | - Bryan Guillaume
- Department of Biomedical Engineering and Clinical Imaging Research Center, National University of Singapore, Singapore
| | - Yap-Seng Chong
- Singapore Institute for Clinical Sciences, Singapore,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, National University Health System, Singapore
| | - Helen Chen
- KK Women’s and Children’s Hospital, Duke-National University of Singapore, Singapore
| | - Marielle V Fortier
- Department of Diagnostic and Interventional Imaging, KK Women’s and Children’s Hospital (KKH), Singapore
| | - Michael J Meaney
- Singapore Institute for Clinical Sciences, Singapore,Ludmer Centre for Neuroinformatics and Mental Health, Douglas Mental Health University Institute, McGill University, Montreal, QC, Canada,Sackler Program for Epigenetics and Psychobiology at McGill University, Montreal, QC, Canada
| | - Anqi Qiu
- Department of Biomedical Engineering and Clinical Imaging Research Center, National University of Singapore, Singapore,Singapore Institute for Clinical Sciences, Singapore,Department of Biomedical Engineering, National University of Singapore, 4 Engineering Drive 3, Engineering Block 4, 04-08, Singapore 117583, Singapore, Tel: +65 65167002, Fax: +65 65161516, E-mail:
| |
Collapse
|
28
|
Swanepoel A, Sieff DF, Music G, Launer J, Reiss M, Wren B. How evolution can help us understand child development and behaviour. BJPSYCH ADVANCES 2018. [DOI: 10.1192/apt.bp.114.014043] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
SummaryThe traditional disease model, still dominant in psychiatry, is less than ideal for making sense of psychological issues such as the effects of early childhood experiences on development. We argue that a model based on evolutionary thinking can deepen understanding and aid clinical practice by showing how behaviours, bodily responses and psychological beliefs tend to develop for ‘adaptive’ reasons, even when these ways of being might on first appearance seem pathological. Such understanding has implications for treatment. It also challenges the genetic determinist model, by showing that developmental pathways have evolved to be responsive to the physical and social environment in which the individual matures. Thought can now be given to how biological or psychological treatments – and changing a child's environment – can foster well-being. Evolutionary thinking has major implications for how we think about psychopathology and for targeting the optimum sites, levels and timings for interventions.
Collapse
|
29
|
Cattaneo A, Cattane N, Malpighi C, Czamara D, Suarez A, Mariani N, Kajantie E, Luoni A, Eriksson JG, Lahti J, Mondelli V, Dazzan P, Räikkönen K, Binder EB, Riva MA, Pariante CM. FoxO1, A2M, and TGF-β1: three novel genes predicting depression in gene X environment interactions are identified using cross-species and cross-tissues transcriptomic and miRNomic analyses. Mol Psychiatry 2018; 23:2192-2208. [PMID: 29302075 PMCID: PMC6283860 DOI: 10.1038/s41380-017-0002-4] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 09/09/2017] [Accepted: 10/16/2017] [Indexed: 01/02/2023]
Abstract
To date, gene-environment (GxE) interaction studies in depression have been limited to hypothesis-based candidate genes, since genome-wide (GWAS)-based GxE interaction studies would require enormous datasets with genetics, environmental, and clinical variables. We used a novel, cross-species and cross-tissues "omics" approach to identify genes predicting depression in response to stress in GxE interactions. We integrated the transcriptome and miRNome profiles from the hippocampus of adult rats exposed to prenatal stress (PNS) with transcriptome data obtained from blood mRNA of adult humans exposed to early life trauma, using a stringent statistical analyses pathway. Network analysis of the integrated gene lists identified the Forkhead box protein O1 (FoxO1), Alpha-2-Macroglobulin (A2M), and Transforming Growth Factor Beta 1 (TGF-β1) as candidates to be tested for GxE interactions, in two GWAS samples of adults either with a range of childhood traumatic experiences (Grady Study Project, Atlanta, USA) or with separation from parents in childhood only (Helsinki Birth Cohort Study, Finland). After correction for multiple testing, a meta-analysis across both samples confirmed six FoxO1 SNPs showing significant GxE interactions with early life emotional stress in predicting depressive symptoms. Moreover, in vitro experiments in a human hippocampal progenitor cell line confirmed a functional role of FoxO1 in stress responsivity. In secondary analyses, A2M and TGF-β1 showed significant GxE interactions with emotional, physical, and sexual abuse in the Grady Study. We therefore provide a successful 'hypothesis-free' approach for the identification and prioritization of candidate genes for GxE interaction studies that can be investigated in GWAS datasets.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King's College, London, UK. .,Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy.
| | - Nadia Cattane
- grid.419422.8Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
| | - Chiara Malpighi
- grid.419422.8Biological Psychiatry Unit, IRCCS Fatebenefratelli S. Giovanni di Dio, Brescia, Italy
| | - Darina Czamara
- 0000 0000 9497 5095grid.419548.5Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany
| | - Anna Suarez
- 0000 0004 0410 2071grid.7737.4Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Nicole Mariani
- 0000 0001 2322 6764grid.13097.3cStress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - Eero Kajantie
- 0000 0001 1013 0499grid.14758.3fNational Institute for Health and Welfare, Helsinki, Finland ,0000 0004 0409 6302grid.428673.cFolkhälsan Research Centre, Helsinki, Finland ,0000 0001 1013 0499grid.14758.3fNational Institute for Health and Welfare, Helsinki, Finland ,0000 0004 0410 2071grid.7737.4Department of General Practice and Primary Health Care, University of Helsinki and Helsinki University Hospital, Helsinki, Finland
| | - Alessia Luoni
- 0000 0004 1757 2822grid.4708.bDepartment of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Johan G. Eriksson
- 0000 0001 1013 0499grid.14758.3fNational Institute for Health and Welfare, Helsinki, Finland ,0000 0000 9950 5666grid.15485.3dHospital for Children and Adolescents, Helsinki University Hospital and University of Helsinki, Helsinki, Finland ,0000 0004 4685 4917grid.412326.0PEDEGO Research Unit, Oulu University Hospital and University of Oulu, Oulu, Finland
| | - Jari Lahti
- 0000 0004 0410 2071grid.7737.4Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland ,0000 0004 0409 6302grid.428673.cFolkhälsan Research Centre, Helsinki, Finland ,0000 0001 1013 0499grid.14758.3fNational Institute for Health and Welfare, Helsinki, Finland ,Helsinki Collegium for Advanced Studies, Helsinki, Finland
| | - Valeria Mondelli
- 0000 0001 2322 6764grid.13097.3cStress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| | - Paola Dazzan
- 0000 0001 2322 6764grid.13097.3cDepartment of Psychosis Studies, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, London, UK
| | - Katri Räikkönen
- 0000 0004 0410 2071grid.7737.4Department of Psychology and Logopedics, University of Helsinki, Helsinki, Finland
| | - Elisabeth B. Binder
- 0000 0000 9497 5095grid.419548.5Department of Translational Research in Psychiatry, Max-Planck Institute of Psychiatry, Munich, Germany ,0000 0001 0941 6502grid.189967.8Department of Psychiatry & Behavioral Sciences, Emory University School of Medicine, Atlanta, GA USA
| | - Marco A. Riva
- 0000 0004 1757 2822grid.4708.bDepartment of Pharmacological and Biomolecular Sciences, University of Milan, Milan, Italy
| | - Carmine M. Pariante
- 0000 0001 2322 6764grid.13097.3cStress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, Psychology and Neuroscience, King’s College, London, UK
| |
Collapse
|
30
|
Vaiserman AM, Koliada AK. Early-life adversity and long-term neurobehavioral outcomes: epigenome as a bridge? Hum Genomics 2017; 11:34. [PMID: 29246185 PMCID: PMC5732459 DOI: 10.1186/s40246-017-0129-z] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 12/04/2017] [Indexed: 12/12/2022] Open
Abstract
Accumulating evidence suggests that adversities at critical periods in early life, both pre- and postnatal, can lead to neuroendocrine perturbations, including hypothalamic-pituitary-adrenal axis dysregulation and inflammation persisting up to adulthood. This process, commonly referred to as biological embedding, may cause abnormal cognitive and behavioral functioning, including impaired learning, memory, and depressive- and anxiety-like behaviors, as well as neuropsychiatric outcomes in later life. Currently, the regulation of gene activity by epigenetic mechanisms is suggested to be a key player in mediating the link between adverse early-life events and adult neurobehavioral outcomes. Role of particular genes, including those encoding glucocorticoid receptor, brain-derived neurotrophic factor, as well as arginine vasopressin and corticotropin-releasing factor, has been demonstrated in triggering early adversity-associated pathological conditions. This review is focused on the results from human studies highlighting the causal role of epigenetic mechanisms in mediating the link between the adversity during early development, from prenatal stages through infancy, and adult neuropsychiatric outcomes. The modulation of epigenetic pathways involved in biological embedding may provide promising direction toward novel therapeutic strategies against neurological and cognitive dysfunctions in adult life.
Collapse
Affiliation(s)
- Alexander M Vaiserman
- Laboratory of Epigenetics, Institute of Gerontology, Vyshgorodskaya st. 67, Kiev, 04114, Ukraine.
| | - Alexander K Koliada
- Laboratory of Epigenetics, Institute of Gerontology, Vyshgorodskaya st. 67, Kiev, 04114, Ukraine
| |
Collapse
|
31
|
Neural Signaling of Cortisol, Childhood Emotional Abuse, and Depression-Related Memory Bias. BIOLOGICAL PSYCHIATRY: COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2017; 3:274-284. [PMID: 29486869 DOI: 10.1016/j.bpsc.2017.11.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 11/13/2017] [Indexed: 01/21/2023]
Abstract
BACKGROUND Cortisol has potent effects on learning and neuroplasticity, but little is known about its effects on negative memory biases in depression. Animal models show that aversive caregiving alters effects of glucocorticoids (primarily corticosterone in rodents and cortisol in primates) on learning and neuroplasticity into adulthood. METHODS We investigated whether history of childhood emotional abuse (EA) moderated effects of cortisol administration (CORT) versus placebo on emotional memory formation in depression. Participants included 75 unmedicated women with varying levels of depression severity and/or EA history. In a double-blind crossover investigation, we used functional magnetic resonance imaging to measure effects of CORT (vs. placebo) on neural function during emotional memory formation. RESULTS CORT eliminated the well-known relationship between depression severity and negative memory bias, a finding explained by EA severity. For women with a history of severe EA, CORT reduced depression-related negative memory bias and normalized recall for pleasant stimuli. EA severity also moderated CORT effects on neural function: in women with history of severe EA, CORT increased activation in the supplementary motor area during viewing of unpleasant relative to pleasant pictures. Additionally, supplementary motor area activation predicted reduced negative bias for pictures encoded during CORT. CONCLUSIONS These results suggest that increasing cortisol signaling may be neurocognitively beneficial in depressed women with a history of maltreatment. The findings corroborate prior research suggesting that presence or absence of adverse caregiving is etiologically important in depression. These findings suggest potential neurocognitive mechanisms of therapeutics targeting cortisol signaling, which show promise in treating affective disorders.
Collapse
|
32
|
Lahmann C, Gebhardt M, Sattel H, Dinkel A, Pieh C, Probst T. A Randomized Controlled Trial on Functional Relaxation as an Adjunct to Psychoeducation for Stress. Front Psychol 2017; 8:1553. [PMID: 29021766 PMCID: PMC5623662 DOI: 10.3389/fpsyg.2017.01553] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2017] [Accepted: 08/25/2017] [Indexed: 12/12/2022] Open
Abstract
This randomized controlled trial investigated whether adding the psychodynamically based body-oriented psychotherapy “Functional Relaxation” (FR) to psychoeducation (PE) is more effective than PE alone to reduce stress and stress-associated complaints. Eighty-one participants with elevated stress-levels, ≥50 points on the global scale of the Perceived Stress Questionnaire (PSQ), received either 10 sessions of manualized FR + PE (n = 42) or two sessions of manualized PE alone (n = 39) in a group setting. Six FR trainers took part in this study. Stress-level (PSQ) was the primary outcome and secondary outcomes were depression (PHQ-9) and somatization (PHQ-15). Multilevel models for discontinuous change revealed that FR + PE was more helpful to reduce stress-levels than PE from pre-treatment to post-treatment (t0 → t1) as well as from pre-treatment to 6-month follow-up (t0 → t2) (both p < 0.05) with effect sizes (d) being medium for PE (dt0 → t1 = 0.57; dt0 → t2 = 0.67) and large for FR + PE (dt0 → t1 = 1.57; dt0 → t2 = 1.39). Moreover, FR + PE affected depression and somatization more positively than did PE from t0 to t1 as well as from t0 to t2 (all p < 0.05). Effect sizes for depression were small to medium for PE (dt0 → t1 = 0.52; dt0 → t2 = 0.37) and large for FR + PE (dt0 → t1 = 1.04; dt0 → t2 = 0.95). Effect sizes for somatization were small for PE (dt0 → t1 = 0.18; dt0 → t2 = 0.19) and medium to large for FR + PE (dt0 → t1 = 0.73; dt0 → t2 = 0.93). In summary, the combination of FR and PE was more effective than PE alone. The results of the present trial provide first evidence of FR as a potent component of stress interventions. Adding FR to such interventions might better help prevent clinically relevant disorders such as depression or somatization.
Collapse
Affiliation(s)
- Claas Lahmann
- Department of Psychosomatic Medicine and Psychotherapy, University Medical Center Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Maria Gebhardt
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Heribert Sattel
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Andreas Dinkel
- Department of Psychosomatic Medicine and Psychotherapy, Klinikum Rechts der Isar, Technical University of Munich, Munich, Germany
| | - Christoph Pieh
- Department for Psychotherapy and Biopsychosocial Health, Danube University Krems, Krems, Austria.,Department of Psychosomatic Medicine, University Hospital Regensburg, Regensburg, Germany
| | - Thomas Probst
- Department for Psychotherapy and Biopsychosocial Health, Danube University Krems, Krems, Austria.,Georg-Elias-Müller Institute for Psychology, Georg-August University of Göttingen, Göttingen, Germany
| |
Collapse
|
33
|
Rey R, D'Amato T, Boyer L, Brunel L, Aouizerate B, Berna F, Capdevielle D, Chereau I, Chesnoy-Servanin G, Denizot H, Dorey JM, Dubertret C, Dubreucq J, Faget C, Gabayet F, Lancon C, Mallet J, Misdrahi D, Passerieux C, Schandrin A, Schürhoff F, Urbach M, Vidailhet P, Llorca PM, Fond G. Nicotine dependence is associated with depression and childhood trauma in smokers with schizophrenia: results from the FACE-SZ dataset. Eur Arch Psychiatry Clin Neurosci 2017; 267:567-577. [PMID: 28389889 DOI: 10.1007/s00406-017-0779-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2016] [Accepted: 03/06/2017] [Indexed: 12/27/2022]
Abstract
In a perspective of personalized care for smoking cessation, a better clinical characterization of smokers with schizophrenia (SZ) is needed. The objective of this study was to determine the clinical characteristics of SZ smokers with severe nicotine (NIC) dependence. 240 stabilized community-dwelling SZ smokers (mean age = 31.9 years, 80.4% male gender) were consecutively included in the network of the FondaMental Expert Centers for Schizophrenia and assessed with validated scales. Severe NIC dependence was defined by a Fagerstrom questionnaire score ≥ 7. Depression was defined by a Calgary score ≥ 6. Childhood trauma was self-reported by the Childhood Trauma Questionnaire score (CTQ). Ongoing psychotropic treatment was recorded. Severe NIC dependence was identified in 83 subjects (34.6%), depression in 60 (26.3%). 44 (22.3%) subjects were treated by antidepressants. In a multivariate model, severe NIC dependence remained associated with depression (OR = 3.2, p = 0.006), male gender (OR = 4.5, p = 0.009) and more slightly with childhood trauma (OR = 1.03, p = 0.044), independently of socio-demographic characteristics, psychotic symptoms severity, psychotropic treatments and alcohol disorder. NIC dependence was independently and strongly associated with, respectively, depression and male gender in schizophrenia, and only slightly with history of childhood trauma. Based on these results, the care of both nicotine dependence and depression should be evaluated for an effective smoking cessation intervention in schizophrenia.
Collapse
Affiliation(s)
- Romain Rey
- Fondation FondaMental, Créteil, France.
- INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Equipe PSYR2, Centre Hospitalier Le Vinatier, Pole Est, 95 bd Pinel, BP 30039, 69678 Bron Cedex, France.
| | - Thierry D'Amato
- Fondation FondaMental, Créteil, France
- INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Equipe PSYR2, Centre Hospitalier Le Vinatier, Pole Est, 95 bd Pinel, BP 30039, 69678 Bron Cedex, France
| | - Laurent Boyer
- Fondation FondaMental, Créteil, France
- Pôle Psychiatrie Universitaire, CHU Sainte-Marguerite, F-13274, Marseille cedex 09, France
| | - Lore Brunel
- Fondation FondaMental, Créteil, France
- INSERM U955, équipe de psychiatrie translationnelle, Créteil, France, Université Paris-Est Créteil, DHU Pe-PSY, Pôle de Psychiatrie des Hôpitaux Universitaires H Mondor, 40 rue de Mesly, F-94010, Créteil, France
| | - Bruno Aouizerate
- Fondation FondaMental, Créteil, France
- Centre Hospitalier Charles Perrens, F-33076 Bordeaux, France, Université de Bordeaux, Inserm, Neurocentre Magendie, Physiopathologie de la Plasticité Neuronale, U862, F-33000, Bordeaux, France
| | - Fabrice Berna
- Fondation FondaMental, Créteil, France
- Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Delphine Capdevielle
- Fondation FondaMental, Créteil, France
- Service Universitaire de Psychiatrie Adulte, Hôpital la Colombière, CHRU Montpellier, Université Montpellier 1, Inserm 1061, Montpellier, France
| | - Isabelle Chereau
- Fondation FondaMental, Créteil, France
- CMP B, CHU, EA 7280 Faculté de Médecine, Université d'Auvergne, BP 69 63003, Clermont-Ferrand Cedex 1, France
| | - Gabrielle Chesnoy-Servanin
- Fondation FondaMental, Créteil, France
- INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Equipe PSYR2, Centre Hospitalier Le Vinatier, Pole Est, 95 bd Pinel, BP 30039, 69678 Bron Cedex, France
| | - Hélène Denizot
- Fondation FondaMental, Créteil, France
- CMP B, CHU, EA 7280 Faculté de Médecine, Université d'Auvergne, BP 69 63003, Clermont-Ferrand Cedex 1, France
| | - Jean-Michel Dorey
- Fondation FondaMental, Créteil, France
- INSERM U1028, CNRS UMR5292, Université Claude Bernard Lyon 1, Centre de Recherche en Neurosciences de Lyon, Equipe PSYR2, Centre Hospitalier Le Vinatier, Pole Est, 95 bd Pinel, BP 30039, 69678 Bron Cedex, France
| | - Caroline Dubertret
- Fondation FondaMental, Créteil, France
- AP-HP, Department of Psychiatry, Louis Mourier Hospital, Colombes, Inserm U894, Université Paris Diderot, Sorbonne Paris Cité, Faculté de médecine, France
| | - Julien Dubreucq
- Fondation FondaMental, Créteil, France
- Centre Référent de Réhabilitation Psychosociale, CH Alpes Isère, Grenoble, France
| | - Catherine Faget
- Fondation FondaMental, Créteil, France
- Assistance Publique des Hôpitaux de Marseille (AP-HM), pôle universitaire de psychiatrie, Marseille, France
| | - Franck Gabayet
- Fondation FondaMental, Créteil, France
- Centre Référent de Réhabilitation Psychosociale, CH Alpes Isère, Grenoble, France
| | - Christophe Lancon
- Fondation FondaMental, Créteil, France
- Assistance Publique des Hôpitaux de Marseille (AP-HM), pôle universitaire de psychiatrie, Marseille, France
| | - Jasmina Mallet
- Fondation FondaMental, Créteil, France
- AP-HP, Department of Psychiatry, Louis Mourier Hospital, Colombes, Inserm U894, Université Paris Diderot, Sorbonne Paris Cité, Faculté de médecine, France
| | - David Misdrahi
- Fondation FondaMental, Créteil, France
- Centre Hospitalier Charles Perrens, F-33076 Bordeaux, France, Université de Bordeaux, CNRS UMR 5287-INCIA, Bordeaux, France
| | - Christine Passerieux
- Fondation FondaMental, Créteil, France
- Service de psychiatrie d'adulte, Centre Hospitalier de Versailles, UFR des Sciences de la Santé Simone Veil, Université Versailles Saint-Quentin en Yvelines, Versailles, France
| | - Aurélie Schandrin
- Fondation FondaMental, Créteil, France
- Service Universitaire de Psychiatrie Adulte, Hôpital la Colombière, CHRU Montpellier, Université Montpellier 1, Inserm 1061, Montpellier, France
| | - Franck Schürhoff
- Fondation FondaMental, Créteil, France
- INSERM U955, équipe de psychiatrie translationnelle, Créteil, France, Université Paris-Est Créteil, DHU Pe-PSY, Pôle de Psychiatrie des Hôpitaux Universitaires H Mondor, 40 rue de Mesly, F-94010, Créteil, France
| | - Mathieu Urbach
- Fondation FondaMental, Créteil, France
- Service de psychiatrie d'adulte, Centre Hospitalier de Versailles, UFR des Sciences de la Santé Simone Veil, Université Versailles Saint-Quentin en Yvelines, Versailles, France
| | - Pierre Vidailhet
- Fondation FondaMental, Créteil, France
- Hôpitaux Universitaires de Strasbourg, Université de Strasbourg, INSERM U1114, Fédération de Médecine Translationnelle de Strasbourg, Strasbourg, France
| | - Pierre-Michel Llorca
- Fondation FondaMental, Créteil, France
- CMP B, CHU, EA 7280 Faculté de Médecine, Université d'Auvergne, BP 69 63003, Clermont-Ferrand Cedex 1, France
| | - Guillaume Fond
- Fondation FondaMental, Créteil, France
- Clinique Jeanne D'Arc-Hôpital Privé Parisien, Saint Mandé, F94000, France, CHU Carémeau, Nîmes, F30000, France
| |
Collapse
|
34
|
Dirven BCJ, Homberg JR, Kozicz T, Henckens MJAG. Epigenetic programming of the neuroendocrine stress response by adult life stress. J Mol Endocrinol 2017; 59:R11-R31. [PMID: 28400482 DOI: 10.1530/jme-17-0019] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2017] [Accepted: 03/17/2017] [Indexed: 12/11/2022]
Abstract
The hypothalamic-pituitary-adrenal (HPA) axis is critically involved in the neuroendocrine regulation of stress adaptation, and the restoration of homeostasis following stress exposure. Dysregulation of this axis is associated with stress-related pathologies like major depressive disorder, post-traumatic stress disorder, panic disorder and chronic anxiety. It has long been understood that stress during early life can have a significant lasting influence on the development of the neuroendocrine system and its neural regulators, partially by modifying epigenetic regulation of gene expression, with implications for health and well-being in later life. Evidence is accumulating that epigenetic plasticity also extends to adulthood, proposing it as a mechanism by which psychological trauma later in life can long-lastingly affect HPA axis function, brain plasticity, neuronal function and behavioural adaptation to neuropsychological stress. Further corroborating this claim is the phenomenon that these epigenetic changes correlate with the behavioural consequences of trauma exposure. Thereby, epigenetic modifications provide a putative molecular mechanism by which the behavioural phenotype and transcriptional/translational potential of genes involved in HPA axis regulation can change drastically in response to environmental challenges, and appear an important target for treatment of stress-related disorders. However, improved insight is required to increase their therapeutic (drug) potential. Here, we provide an overview of the growing body of literature describing the epigenetic modulation of the (primarily neuroendocrine) stress response as a consequence of adult life stress and interpret the implications for, and the challenges involved in applying this knowledge to, the identification and treatment of stress-related psychiatric disorders.
Collapse
MESH Headings
- Animals
- Anxiety/genetics
- Anxiety/metabolism
- Anxiety/physiopathology
- Brain/metabolism
- Brain/physiopathology
- DNA Methylation
- Depressive Disorder, Major/genetics
- Depressive Disorder, Major/metabolism
- Depressive Disorder, Major/physiopathology
- Epigenesis, Genetic
- Histones/genetics
- Histones/metabolism
- Homeostasis
- Humans
- Hypothalamo-Hypophyseal System/metabolism
- Hypothalamo-Hypophyseal System/physiopathology
- MicroRNAs/genetics
- MicroRNAs/metabolism
- Neurons/metabolism
- Neurons/pathology
- Neurotransmitter Agents/metabolism
- Pituitary-Adrenal System/metabolism
- Pituitary-Adrenal System/physiopathology
- Receptors, Glucocorticoid/genetics
- Receptors, Glucocorticoid/metabolism
- Receptors, Mineralocorticoid/genetics
- Receptors, Mineralocorticoid/metabolism
- Stress, Psychological/genetics
- Stress, Psychological/metabolism
- Stress, Psychological/physiopathology
Collapse
Affiliation(s)
- B C J Dirven
- Department of AnatomyDonders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
- Department of Cognitive NeuroscienceDonders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - J R Homberg
- Department of Cognitive NeuroscienceDonders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - T Kozicz
- Department of AnatomyDonders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - M J A G Henckens
- Department of Cognitive NeuroscienceDonders Institute for Brain, Cognition, and Behaviour, Radboud University Medical Centre, Nijmegen, The Netherlands
| |
Collapse
|
35
|
|
36
|
Ludwig B, Roy B, Wang Q, Birur B, Dwivedi Y. The Life Span Model of Suicide and Its Neurobiological Foundation. Front Neurosci 2017; 11:74. [PMID: 28261051 PMCID: PMC5306400 DOI: 10.3389/fnins.2017.00074] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 01/31/2017] [Indexed: 01/19/2023] Open
Abstract
The very incomprehensibility of the suicidal act has been occupying the minds of researchers and health professionals for a long time. Several theories of suicide have been proposed since the beginning of the past century, and a myriad of neurobiological studies have been conducted over the past two decades in order to elucidate its pathophysiology. Both neurobiology and psychological theories tend to work in parallel lines that need behavioral and empirical data respectively, to confirm their hypotheses. In this review, we are proposing a "Life Span Model of Suicide" with an attempt to integrate the "Stress-Diathesis Model" and the "Interpersonal Model of Suicide" into a neurobiological narrative and support it by providing a thorough compilation of related genetic, epigenetic, and gene expression findings. This proposed model comprises three layers, forming the capability of suicide: genetic factors as the predisposing Diathesis on one side and Stress, characterized by epigenetic marks on the other side, and in between gene expression and gene function which are thought to be influenced by Diathesis and Stress components. The empirical evidence of this model is yet to be confirmed and further research, specifically epigenetic studies in particular, are needed to support the presence of a life-long, evolving capability of suicide and identify its neurobiological correlates.
Collapse
Affiliation(s)
| | | | | | | | - Yogesh Dwivedi
- UAB Mood Disorder Program, Department of Psychiatry and Behavioral Neurobiology, University of Alabama at BirminghamBirmingham, AL, USA
| |
Collapse
|
37
|
Ankyrin-3 as a molecular marker of early-life stress and vulnerability to psychiatric disorders. Transl Psychiatry 2016; 6:e943. [PMID: 27824361 PMCID: PMC5314123 DOI: 10.1038/tp.2016.211] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Revised: 07/11/2016] [Accepted: 09/12/2016] [Indexed: 01/17/2023] Open
Abstract
Exposure to early-life stress (ELS) may heighten the risk for psychopathology at adulthood. Here, in order to identify common genes that may keep the memory of ELS through changes in their methylation status, we intersected methylome analyses performed in different tissues and time points in rats, non-human primates and humans, all characterized by ELS. We identified Ankyrin-3 (Ank3), a scaffolding protein with a strong genetic association for psychiatric disorders, as a gene persistently affected by stress exposure. In rats, Ank3 methylation and mRNA changes displayed a specific temporal profile during the postnatal development. Moreover, exposure to prenatal stress altered the interaction of ankyrin-G, the protein encoded by Ank3 enriched in the post-synaptic compartment, with PSD95. Notably, to model in humans a gene by early stress interplay on brain phenotypes during cognitive performance, we demonstrated an interaction between functional variation in Ank3 gene and obstetric complications on working memory in healthy adult subjects. Our data suggest that alterations of Ank3 expression and function may contribute to the effects of ELS on the development of psychiatric disorders.
Collapse
|
38
|
Waltes R, Chiocchetti AG, Freitag CM. The neurobiological basis of human aggression: A review on genetic and epigenetic mechanisms. Am J Med Genet B Neuropsychiatr Genet 2016; 171:650-75. [PMID: 26494515 DOI: 10.1002/ajmg.b.32388] [Citation(s) in RCA: 97] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2015] [Accepted: 09/25/2015] [Indexed: 12/17/2022]
Abstract
Aggression is an evolutionary conserved behavior present in most species including humans. Inadequate aggression can lead to long-term detrimental personal and societal effects. Here, we differentiate between proactive and reactive forms of aggression and review the genetic determinants of it. Heritability estimates of aggression in general vary between studies due to differing assessment instruments for aggressive behavior (AB) as well as age and gender of study participants. In addition, especially non-shared environmental factors shape AB. Current hypotheses suggest that environmental effects such as early life stress or chronic psychosocial risk factors (e.g., maltreatment) and variation in genes related to neuroendocrine, dopaminergic as well as serotonergic systems increase the risk to develop AB. In this review, we summarize the current knowledge of the genetics of human aggression based on twin studies, genetic association studies, animal models, and epigenetic analyses with the aim to differentiate between mechanisms associated with proactive or reactive aggression. We hypothesize that from a genetic perspective, the aminergic systems are likely to regulate both reactive and proactive aggression, whereas the endocrine pathways seem to be more involved in regulation of reactive aggression through modulation of impulsivity. Epigenetic studies on aggression have associated non-genetic risk factors with modifications of the stress response and the immune system. Finally, we point to the urgent need for further genome-wide analyses and the integration of genetic and epigenetic information to understand individual differences in reactive and proactive AB. © 2015 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Regina Waltes
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Hospital, Frankfurt am Main, Germany
| | - Andreas G Chiocchetti
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Hospital, Frankfurt am Main, Germany
| | - Christine M Freitag
- Department of Child and Adolescent Psychiatry, Psychosomatics and Psychotherapy, Goethe University Hospital, Frankfurt am Main, Germany
| |
Collapse
|
39
|
Bailey J. Monkey-based research on human disease: the implications of genetic differences. Altern Lab Anim 2016; 42:287-317. [PMID: 25413291 DOI: 10.1177/026119291404200504] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Assertions that the use of monkeys to investigate human diseases is valid scientifically are frequently based on a reported 90-93% genetic similarity between the species. Critical analyses of the relevance of monkey studies to human biology, however, indicate that this genetic similarity does not result in sufficient physiological similarity for monkeys to constitute good models for research, and that monkey data do not translate well to progress in clinical practice for humans. Salient examples include the failure of new drugs in clinical trials, the highly different infectivity and pathology of SIV/HIV, and poor extrapolation of research on Alzheimer's disease, Parkinson's disease and stroke. The major molecular differences underlying these inter-species phenotypic disparities have been revealed by comparative genomics and molecular biology - there are key differences in all aspects of gene expression and protein function, from chromosome and chromatin structure to post-translational modification. The collective effects of these differences are striking, extensive and widespread, and they show that the superficial similarity between human and monkey genetic sequences is of little benefit for biomedical research. The extrapolation of biomedical data from monkeys to humans is therefore highly unreliable, and the use of monkeys must be considered of questionable value, particularly given the breadth and potential of alternative methods of enquiry that are currently available to scientists.
Collapse
Affiliation(s)
- Jarrod Bailey
- New England Anti-Vivisection Society (NEAVS), Boston, MA, USA
| |
Collapse
|
40
|
Keller SM, Roth TL. Environmental influences on the female epigenome and behavior. ENVIRONMENTAL EPIGENETICS 2016; 2:dvw007. [PMID: 27746953 PMCID: PMC5065103 DOI: 10.1093/eep/dvw007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/06/2016] [Revised: 06/01/2016] [Accepted: 06/02/2016] [Indexed: 06/06/2023]
Abstract
Environmental factors have long-lasting effects on brain development and behavior. One way experiences are propagated is via epigenetic modifications to the genome. Environmentally-driven epigenetic modifications show incredible brain region- and sex-specificity, and many brain regions affected are ones involved in maternal behavior. In rodent models, females are typically the primary caregiver and thus, any environmental factors that modulate the epigenotype of the mother could have consequences for her current and future offspring. Here we review evidence of the susceptibility of the female epigenome to environmental factors, with a focus on brain regions involved in maternal behavior. Accordingly, implications for interventions that target the mother's epigenome and parenting behavior are discussed.
Collapse
Affiliation(s)
- Samantha M. Keller
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| | - Tania L. Roth
- Department of Psychological and Brain Sciences, University of Delaware, Newark, DE 19716, USA
| |
Collapse
|
41
|
Sousa N. The dynamics of the stress neuromatrix. Mol Psychiatry 2016; 21:302-12. [PMID: 26754952 PMCID: PMC4759204 DOI: 10.1038/mp.2015.196] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2015] [Revised: 10/04/2015] [Accepted: 10/21/2015] [Indexed: 01/08/2023]
Abstract
Stressful stimuli in healthy subjects trigger activation of a consistent and reproducible set of brain regions; yet, the notion that there is a single and constant stress neuromatrix is not sustainable. Indeed, after chronic stress exposure there is activation of many brain regions outside that network. This suggests that there is a distinction between the acute and the chronic stress neuromatrix. Herein, a new working model is proposed to understand the shift between these networks. The understanding of the factors that modulate these networks and their interplay will allow for a more comprehensive and holistic perspective of how the brain shifts 'back and forth' from a healthy to a stressed pattern and, ultimately, how the latter can be a trigger for several neurological and psychiatric conditions.
Collapse
Affiliation(s)
- N Sousa
- Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus Gualtar, Braga, Portugal,ICVS/3B's–PT Government Associate Laboratory, Braga/Guimarães, Portugal,Clinical Academic Center–Braga, Braga, Portugal,Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, Campus de Gualtar, Braga 4710-057, Portugal. E-mail:
| |
Collapse
|
42
|
|
43
|
Mitchell C, Schneper LM, Notterman DA. DNA methylation, early life environment, and health outcomes. Pediatr Res 2016; 79:212-9. [PMID: 26466079 PMCID: PMC4798238 DOI: 10.1038/pr.2015.193] [Citation(s) in RCA: 76] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2015] [Accepted: 07/27/2015] [Indexed: 11/09/2022]
Abstract
Epigenetics, and especially DNA methylation, have recently become provocative biological explanations for early-life environmental effects on later health. Despite the large increase in papers on the topic over the last few years, many questions remain with regards to the biological feasibility of this mechanism and the strength of the evidence to date. In this review, we examine the literature on early-life effects on epigenetic patterns, with special emphasis on social environmental influences. First, we review the basic biology of epigenetic modification of DNA and debate the role of early-life stressful, protective, and positive environments on gene-specific, system-specific, and whole-genome epigenetic patterns later in life. Second, we compare the epigenetic literatures of both humans and other animals and review the research linking epigenetic patterns to health in order to complete the mechanistic pathway. Third, we discuss physical environmental and social environmental effects, which have to date, generally not been jointly considered. Finally, we close with a discussion of the current state of the area's research, its future direction, and its potential use in pediatric health.
Collapse
Affiliation(s)
- Colter Mitchell
- Survey Research Center and Population Studies Center, University of Michigan, Ann Arbor, Michigan
| | - Lisa M. Schneper
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| | - Daniel A. Notterman
- Department of Molecular Biology, Princeton University, Princeton, New Jersey
| |
Collapse
|
44
|
Rodgers AB, Bale TL. Germ Cell Origins of Posttraumatic Stress Disorder Risk: The Transgenerational Impact of Parental Stress Experience. Biol Psychiatry 2015; 78:307-14. [PMID: 25895429 PMCID: PMC4526334 DOI: 10.1016/j.biopsych.2015.03.018] [Citation(s) in RCA: 57] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2014] [Revised: 02/26/2015] [Accepted: 03/15/2015] [Indexed: 12/29/2022]
Abstract
Altered stress reactivity is a predominant feature of posttraumatic stress disorder (PTSD) and may reflect disease vulnerability, increasing the probability that an individual will develop PTSD following trauma exposure. Environmental factors, particularly prior stress history, contribute to the developmental programming of the hypothalamic-pituitary-adrenal stress axis. Critically, the consequences of stress experiences are transgenerational, with parental stress exposure impacting stress reactivity and PTSD risk in subsequent generations. Potential molecular mechanisms underlying this transmission have been explored in rodent models that specifically examine the paternal lineage, identifying epigenetic signatures in male germ cells as possible substrates of transgenerational programming. Here, we review the role of these germ cell epigenetic marks, including posttranslational histone modifications, DNA methylation, and populations of small noncoding RNAs, in the development of offspring stress axis sensitivity and disease risk.
Collapse
Affiliation(s)
- Ali B Rodgers
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Tracy L Bale
- Department of Animal Biology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
45
|
|
46
|
Cattaneo A, Macchi F, Plazzotta G, Veronica B, Bocchio-Chiavetto L, Riva MA, Pariante CM. Inflammation and neuronal plasticity: a link between childhood trauma and depression pathogenesis. Front Cell Neurosci 2015; 9:40. [PMID: 25873859 PMCID: PMC4379909 DOI: 10.3389/fncel.2015.00040] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2014] [Accepted: 01/27/2015] [Indexed: 12/13/2022] Open
Abstract
During the past two decades, there has been increasing interest in understanding and characterizing the role of inflammation in major depressive disorder (MDD). Indeed, several are the evidences linking alterations in the inflammatory system to Major Depression, including the presence of elevated levels of pro-inflammatory cytokines, together with other mediators of inflammation. However, it is still not clear whether inflammation represents a cause or whether other factors related to depression result in these immunological effects. Regardless, exposure to early life stressful events, which represent a vulnerability factor for the development of psychiatric disorders, act through the modulation of inflammatory responses, but also of neuroplastic mechanisms over the entire life span. Indeed, early life stressful events can cause, possibly through epigenetic changes that persist over time, up to adulthood. Such alterations may concur to increase the vulnerability to develop psychopathologies. In this review we will discuss the role of inflammation and neuronal plasticity as relevant processes underlying depression development. Moreover, we will discuss the role of epigenetics in inducing alterations in inflammation-immune systems as well as dysfunction in neuronal plasticity, thus contributing to the long-lasting negative effects of stressful life events early in life and the consequent enhanced risk for depression. Finally we will provide an overview on the potential role of inflammatory system to aid diagnosis, predict treatment response, enhance treatment matching, and prevent the onset or relapse of Major Depression.
Collapse
Affiliation(s)
- Annamaria Cattaneo
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College London London, UK ; IRCCS Centro S Giovanni di Dio, Fatebenefratelli Brescia, Italy
| | - Flavia Macchi
- Department of Pharmacological and Biomolecular Sciences, University of Milan Milan, Italy
| | - Giona Plazzotta
- IRCCS Centro S Giovanni di Dio, Fatebenefratelli Brescia, Italy
| | - Begni Veronica
- Department of Pharmacological and Biomolecular Sciences, University of Milan Milan, Italy
| | - Luisella Bocchio-Chiavetto
- IRCCS Centro S Giovanni di Dio, Fatebenefratelli Brescia, Italy ; Faculty of Psychology, eCampus University Novedrate (Como), Italy
| | - Marco Andrea Riva
- Department of Pharmacological and Biomolecular Sciences, University of Milan Milan, Italy
| | - Carmine Maria Pariante
- Stress, Psychiatry and Immunology Laboratory, Department of Psychological Medicine, Institute of Psychiatry, King's College London London, UK
| |
Collapse
|