1
|
Singh G, Nguyen C, Kuschner W. Pharmacologic Sleep Aids in the Intensive Care Unit: A Systematic Review. J Intensive Care Med 2025; 40:10-31. [PMID: 38881385 DOI: 10.1177/08850666241255345] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/18/2024]
Abstract
Background: Patients in the intensive care unit (ICU) often experience poor sleep quality. Pharmacologic sleep aids are frequently used as primary or adjunctive therapy to improve sleep, although their benefits in the ICU remain uncertain. This review aims to provide a comprehensive assessment of the objective and subjective effects of medications used for sleep in the ICU, as well as their adverse effects. Methods: PubMed, Web of Science, Scopus, Embase, and Cochrane Central Register of Controlled Trials were systematically searched from their inception until June 2023 for comparative studies assessing the effects of pharmacologic sleep aids on objective and subjective metrics of sleep. Results: Thirty-four studies with 3498 participants were included. Medications evaluated were melatonin, ramelteon, suvorexant, propofol, and dexmedetomidine. The majority of studies were randomized controlled trials. Melatonin and dexmedetomidine were the best studied agents. Objective sleep metrics included polysomnography (PSG), electroencephalography (EEG), bispectral index, and actigraphy. Subjective outcome measures included patient questionnaires and nursing observations. Evidence for melatonin as a sleep aid in the ICU was mixed but largely not supportive for improving sleep. Evidence for ramelteon, suvorexant, and propofol was too limited to offer definitive recommendations. Both objective and subjective data supported dexmedetomidine as an effective sleep aid in the ICU, with PSG/EEG in 303 ICU patients demonstrating increased sleep duration and efficiency, decreased arousal index, decreased percentage of stage N1 sleep, and increased absolute and percentage of stage N2 sleep. Mild bradycardia and hypotension were reported as side effects of dexmedetomidine, whereas the other medications were reported to be safe. Several ongoing studies have not yet been published, mostly on melatonin and dexmedetomidine. Conclusions: While definitive conclusions cannot be made for most medications, dexmedetomidine improved sleep quantity and quality in the ICU. These benefits need to be balanced with possible hemodynamic side effects.
Collapse
Affiliation(s)
- Gaurav Singh
- Pulmonary, Critical Care, and Sleep Medicine Section, Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Christopher Nguyen
- Pulmonary, Critical Care, and Sleep Medicine Section, Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Stanford University, Palo Alto, CA, USA
| | - Ware Kuschner
- Pulmonary, Critical Care, and Sleep Medicine Section, Department of Medicine, Veterans Affairs Palo Alto Health Care System, Palo Alto, CA, USA
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, Stanford University, Palo Alto, CA, USA
| |
Collapse
|
2
|
Hung KC, Kao CL, Lai YC, Chen JY, Lin CH, Ko CC, Lin CM, Chen IW. Perioperative administration of sub-anesthetic ketamine/esketamine for preventing postpartum depression symptoms: A trial sequential meta-analysis. PLoS One 2024; 19:e0310751. [PMID: 39556562 PMCID: PMC11573214 DOI: 10.1371/journal.pone.0310751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Accepted: 09/04/2024] [Indexed: 11/20/2024] Open
Abstract
OBJECTIVE Postpartum depression (PPD) is a major mental health issue affecting 10%-15% of women globally. This meta-analysis synthesized updated evidence on sub-anesthetic ketamine/esketamine's efficacy in preventing PPD. METHODS Randomized controlled trials (RCTs) comparing ketamine/esketamine to a placebo for PPD prevention were searched without language restriction. Primary outcomes were PPD risk at 1- and 4-6-week postpartum. Secondary outcomes included the difference in depression scores and risk of adverse events. Trial sequential analysis (TSA) was conducted to validate the reliability. RESULTS A meta-analysis of 22 RCTs (n = 3,463) showed that ketamine/esketamine significantly decreased PPD risk at 1- (risk ratio [RR], 0.41; 95% confidence interval [CI], 0.3-0.57) and 4-6-week (RR, 0.47; 95%CI, 0.35-0.63) follow-ups. Consistently, participants receiving ketamine/esketamine had lower depression-related scores at 1- (standardized mean difference [SMD], -0.94; 95%CI, -1.26 to -0.62) and 4-6-week (SMD, -0.89; 95%CI, -1.25 to -0.53) follow-ups. Despite potential publication bias, TSA confirmed the evidence's reliability. Subgroup analysis showed that ketamine/esketamine's preventive effect on 1-week PPD was consistent, regardless of administration timing, type of agents, or total dosage (<0.5 vs. ≥0.5 mg/kg). For the 4-6-week period, PPD risk was favorably reduced only with postoperative administration or the use of esketamine, with the total dosage having no observed influence. Participants on ketamine/esketamine experienced more frequency of hallucinations (RR, 4.77; 95%CI, 1.39-16.44) and dizziness (RR, 1.36; 95%CI, 1.02-1.81). CONCLUSION Our findings advocate for the postoperative administration of low-dose ketamine/esketamine to avert PPD, which needed additional research for confirmation.
Collapse
Affiliation(s)
- Kuo-Chuan Hung
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| | - Chia-Li Kao
- Department of Anesthesiology, E-Da Hospital, I-Shou University, Kaohsiung, Taiwan
| | - Yi-Chen Lai
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| | - Jen-Yin Chen
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung, Taiwan
| | - Chien-Hung Lin
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| | - Ching-Chung Ko
- Department of Medical Imaging, Chi Mei Medical Center, Tainan City, Taiwan
- Department of Health and Nutrition, Chia Nan University of Pharmacy and Science, Tainan City, Taiwan
| | - Chien-Ming Lin
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| | - I-Wen Chen
- Department of Anesthesiology, Chi Mei Medical Center, Tainan City, Taiwan
| |
Collapse
|
3
|
Feng CH, Du XN, Wang Z, Wu T, Zhang LN. The activity of cholinergic neurons in the basal forebrain interferes with anesthesia-arousal process of propofol. Neuropeptides 2024; 107:102449. [PMID: 38908356 DOI: 10.1016/j.npep.2024.102449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 06/06/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
Previous research has demonstrated that basal forebrain (BF) regulates arousal during propofol anesthesia. However, as the BF comprises cholinergic neurons alongside two other types of neurons, the specific role of cholinergic neurons has not been definitively elucidated. In our study, calcium signal imaging was utilized to monitor the real-time activities of cholinergic neurons in the BF during propofol anesthesia. Additionally, we selectively stimulated these neurons to investigate EEG and behavioral responses during propofol anesthesia. Furthermore, we specifically lesioned cholinergic neurons in the BF to investigate the sensitivity to propofol and the induction time. The results revealed that propofol suppressed calcium signals of cholinergic neurons within the BF following intraperitoneal injection. Notably, upon recovery of the righting reflex, the calcium signals partially recovered. Spectral analysis of the EEG elucidated that optical stimulation of cholinergic neurons led to a decrease in δ power underlie propofol anesthesia. Conversely, depletion of cholinergic neurons in the BF enhanced sensitivity to propofol and shortened the induction time. These findings clarify the role of cholinergic neurons in the anesthesia-arousal process, as well as the depth and the sensitivity of propofol anesthesia.
Collapse
Affiliation(s)
- Cai-Hua Feng
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, National Clinical Research Center for Oral Diseases, Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Anesthesiology, School of Stomatology, The Fourth Military Medical University, Xi'an 710032, China
| | - Xiao-Nan Du
- Department of Anesthesiology, Central Hospital of Wuhan Affiliated to Tongji Medical College of Huazhong University of Science and Technology, Wuhan 430014, China
| | - Zhi Wang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Ting Wu
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China
| | - Li-Na Zhang
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, Shaanxi 710004, China.
| |
Collapse
|
4
|
Corlette SJ, Walker SM, Cornelissen L, Brasher C, Bower J, Davidson AJ. Changes in the Term Neonatal Electroencephalogram with General Anesthesia: A Systematic Review with Narrative Synthesis. Anesthesiology 2024; 141:670-680. [PMID: 38775960 PMCID: PMC11389889 DOI: 10.1097/aln.0000000000005088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/11/2024]
Abstract
BACKGROUND Although effects of general anesthesia on neuronal activity in the human neonatal brain are incompletely understood, electroencephalography provides some insight and may identify age-dependent differences. METHODS A systematic search (MEDLINE, Embase, PubMed, and Cochrane Library to November 2023) retrieved English language publications reporting electroencephalography during general anesthesia for cardiac or noncardiac surgery in term neonates (37 to 44 weeks postmenstrual age). Data were extracted, and risk of bias (ROBINS-I Cochrane tool) and quality of evidence (Grading of Recommendations Assessment, Development, and Evaluation [GRADE] checklist) were assessed. RESULTS From 1,155 abstracts, 9 publications (140 neonates; 55% male) fulfilled eligibility criteria. Data were limited, and study quality was very low. The occurrence of discontinuity, a characteristic pattern of alternating higher and lower amplitude electroencephalography segments, was reported with general anesthesia (94 of 119 neonates, 6 publications) and with hypothermia (23 of 23 neonates, 2 publications). Decreased power in the delta (0.5 to 4 Hz) frequency range was also reported with increasing anesthetic dose (22 neonates; 3 publications). CONCLUSION Although evidence gaps were identified, both increasing sevoflurane concentration and decreasing temperature are associated with increasing discontinuity. EDITOR’S PERSPECTIVE
Collapse
Affiliation(s)
- Sebastian J Corlette
- Department of Anaesthesia and Pain Management, Royal Children's Hospital, Melbourne, Victoria, Australia; Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia; and Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| | - Suellen M Walker
- Paediatric Pain Research Group, Developmental Neurosciences, University College London Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Laura Cornelissen
- Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children's Hospital, Boston, Massachusetts; and Harvard Medical School, Boston, Massachusetts
| | - Christopher Brasher
- Department of Anaesthesia and Pain Management, Royal Children's Hospital, Melbourne, Victoria, Australia; and Department of Critical Care, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia
| | - Janeen Bower
- Royal Children's Hospital, Melbourne, Victoria, Australia; and Faculty of Fine Arts and Music, University of Melbourne, Melbourne, Victoria, Australia
| | - Andrew J Davidson
- Department of Anaesthesia and Pain Management, Royal Children's Hospital, Melbourne, Victoria, Australia; Department of Paediatrics, Melbourne Medical School, University of Melbourne, Melbourne, Victoria, Australia; and Melbourne Children's Trial Centre, Murdoch Children's Research Institute, Melbourne, Victoria, Australia
| |
Collapse
|
5
|
Egawa S, Ader J, Claassen J. Recovery of consciousness after acute brain injury: a narrative review. J Intensive Care 2024; 12:37. [PMID: 39327599 PMCID: PMC11425956 DOI: 10.1186/s40560-024-00749-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 09/01/2024] [Indexed: 09/28/2024] Open
Abstract
BACKGROUND Disorders of consciousness (DoC) are frequently encountered in both, acute and chronic brain injuries. In many countries, early withdrawal of life-sustaining treatments is common practice for these patients even though the accuracy of predicting recovery is debated and delayed recovery can be seen. In this review, we will discuss theoretical concepts of consciousness and pathophysiology, explore effective strategies for management, and discuss the accurate prediction of long-term clinical outcomes. We will also address research challenges. MAIN TEXT DoC are characterized by alterations in arousal and/or content, being classified as coma, unresponsive wakefulness syndrome/vegetative state, minimally conscious state, and confusional state. Patients with willful modulation of brain activity detectable by functional MRI or EEG but not by behavioral examination is a state also known as covert consciousness or cognitive motor dissociation. This state may be as common as every 4th or 5th patient without behavioral evidence of verbal command following and has been identified as an independent predictor of long-term functional recovery. Underlying mechanisms are uncertain but intact arousal and thalamocortical projections maybe be essential. Insights into the mechanisms underlying DoC will be of major importance as these will provide a framework to conceptualize treatment approaches, including medical, mechanical, or electoral brain stimulation. CONCLUSIONS We are beginning to gain insights into the underlying mechanisms of DoC, identifying novel advanced prognostication tools to improve the accuracy of recovery predictions, and are starting to conceptualize targeted treatments to support the recovery of DoC patients. It is essential to determine how these advancements can be implemented and benefit DoC patients across a range of clinical settings and global societal systems. The Curing Coma Campaign has highlighted major gaps knowledge and provides a roadmap to advance the field of coma science with the goal to support the recovery of patients with DoC.
Collapse
Affiliation(s)
- Satoshi Egawa
- Department of Neurology, Neurological Institute, Columbia University Medical Center, NewYork-Presbyterian Hospital, 177 Fort Washington Avenue, MHB 8 Center, Room 300, New York, NY, 10032, USA
- NewYork-Presbyterian Hospital, New York, NY, USA
| | - Jeremy Ader
- Department of Neurology, Neurological Institute, Columbia University Medical Center, NewYork-Presbyterian Hospital, 177 Fort Washington Avenue, MHB 8 Center, Room 300, New York, NY, 10032, USA
- NewYork-Presbyterian Hospital, New York, NY, USA
| | - Jan Claassen
- Department of Neurology, Neurological Institute, Columbia University Medical Center, NewYork-Presbyterian Hospital, 177 Fort Washington Avenue, MHB 8 Center, Room 300, New York, NY, 10032, USA.
- NewYork-Presbyterian Hospital, New York, NY, USA.
| |
Collapse
|
6
|
Wang R, Zhang L, Wang X, Li W, Jian T, Yin P, Wang X, Chen Q, Chen X, Qin H. Electrophysiological activity pattern of mouse hippocampal CA1 and dentate gyrus under isoflurane anesthesia. Front Cell Neurosci 2024; 18:1392498. [PMID: 39104439 PMCID: PMC11299216 DOI: 10.3389/fncel.2024.1392498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Accepted: 07/03/2024] [Indexed: 08/07/2024] Open
Abstract
General anesthesia can impact a patient's memory and cognition by influencing hippocampal function. The CA1 and dentate gyrus (DG), serving as the primary efferent and gateway of the hippocampal trisynaptic circuit facilitating cognitive learning and memory functions, exhibit significant differences in cellular composition, molecular makeup, and responses to various stimuli. However, the effects of isoflurane-induced general anesthesia on CA1 and DG neuronal activity in mice are not well understood. In this study, utilizing electrophysiological recordings, we examined neuronal population dynamics and single-unit activity (SUA) of CA1 and DG in freely behaving mice during natural sleep and general anesthesia. Our findings reveal that isoflurane anesthesia shifts local field potential (LFP) to delta frequency and reduces the firing rate of SUA in both CA1 and DG, compared to wakefulness. Additionally, the firing rates of DG neurons are significantly lower than CA1 neurons during isoflurane anesthesia, and the recovery of theta power is slower in DG than in CA1 during the transition from anesthesia to wakefulness, indicating a stronger and more prolonged impact of isoflurane anesthesia on DG. This work presents a suitable approach for studying brain activities during general anesthesia and provides evidence for distinct effects of isoflurane anesthesia on hippocampal subregions.
Collapse
Affiliation(s)
- Rui Wang
- Department of Anesthesiology, Shanxi Medical University and Second Hospital of Shanxi Medical University, Taiyuan, China
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing, China
| | - Linzhong Zhang
- Department of Anesthesiology, Shanxi Medical University and Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xia Wang
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, China
| | - Wen Li
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Tingliang Jian
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Pengcheng Yin
- Department of Anesthesiology, Shanxi Medical University and Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Xinzhi Wang
- Department of Anesthesiology, Shanxi Medical University and Second Hospital of Shanxi Medical University, Taiyuan, China
| | - Qianwei Chen
- Department of Rehabilitation Medicine, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Xiaowei Chen
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing, China
- Brain Research Center and State Key Laboratory of Trauma and Chemical Poisoning, Third Military Medical University, Chongqing, China
| | - Han Qin
- Guangyang Bay Laboratory, Chongqing Institute for Brain and Intelligence, Chongqing, China
| |
Collapse
|
7
|
Ramaswamy SM, Kuizenga MH, Weerink MAS, Vereecke HEM, Nagaraj SB, Struys MMRF. Do all sedatives promote biological sleep electroencephalogram patterns? A machine learning framework to identify biological sleep promoting sedatives using electroencephalogram. PLoS One 2024; 19:e0304413. [PMID: 38954679 PMCID: PMC11218986 DOI: 10.1371/journal.pone.0304413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Accepted: 05/10/2024] [Indexed: 07/04/2024] Open
Abstract
BACKGROUND Sedatives are commonly used to promote sleep in intensive care unit patients. However, it is not clear whether sedation-induced states are similar to the biological sleep. We explored if sedative-induced states resemble biological sleep using multichannel electroencephalogram (EEG) recordings. METHODS Multichannel EEG datasets from two different sources were used in this study: (1) sedation dataset consisting of 102 healthy volunteers receiving propofol (N = 36), sevoflurane (N = 36), or dexmedetomidine (N = 30), and (2) publicly available sleep EEG dataset (N = 994). Forty-four quantitative time, frequency and entropy features were extracted from EEG recordings and were used to train the machine learning algorithms on sleep dataset to predict sleep stages in the sedation dataset. The predicted sleep states were then compared with the Modified Observer's Assessment of Alertness/ Sedation (MOAA/S) scores. RESULTS The performance of the model was poor (AUC = 0.55-0.58) in differentiating sleep stages during propofol and sevoflurane sedation. In the case of dexmedetomidine, the AUC of the model increased in a sedation-dependent manner with NREM stages 2 and 3 highly correlating with deep sedation state reaching an AUC of 0.80. CONCLUSIONS We addressed an important clinical question to identify biological sleep promoting sedatives using EEG signals. We demonstrate that propofol and sevoflurane do not promote EEG patterns resembling natural sleep while dexmedetomidine promotes states resembling NREM stages 2 and 3 sleep, based on current sleep staging standards.
Collapse
Affiliation(s)
- Sowmya M. Ramaswamy
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Merel H. Kuizenga
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Maud A. S. Weerink
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hugo E. M. Vereecke
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Anesthesiology and Reanimation, AZ St.-Jan Brugge Oostende AV, Brugge, Belgium
| | - Sunil B. Nagaraj
- School of Physics, Maths and Computing, Computer Science and Software Engineering, The University of Western Australia, Perth, Australia
| | - Michel M. R. F. Struys
- Department of Anesthesiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Department of Basic and Applied Medical Sciences, Ghent University, Gent, Belgium
| |
Collapse
|
8
|
Liu J, Zhang W, Hu S, Wu C, Dong K, Wei Q, Wang G, Fang J, Zhang D, Lan M, Zhang F, Sun H. Analysis of Amplitude Modulation of EEG Based on Holo-Hilbert Spectrum Analysis During General Anesthesia. IEEE Trans Biomed Eng 2024; 71:1607-1616. [PMID: 38285584 DOI: 10.1109/tbme.2023.3345942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2024]
Abstract
OBJECTIVE The study aims to investigate the relationship between amplitude modulation (AM) of EEG and anesthesia depth during general anesthesia. METHODS In this study, Holo-Hilbert spectrum analysis (HHSA) was used to decompose the multichannel EEG signals of 15 patients to obtain the spatial distribution of AM in the brain. Subsequently, HHSA was applied to the prefrontal EEG (Fp1) obtained during general anesthesia surgery in 15 and 34 patients, and the α-θ and α-δ regions of feature (ROFs) were defined in Holo-Hilbert spectrum (HHS) and three features were derived to quantify AM in ROFs. RESULTS During anesthetized phase, an anteriorization of the spatial distribution of AMs of α-carrier in brain was observed, as well as AMs of α-θ and α-δ in the EEG of Fp1. The total power ([Formula: see text]), mean carrier frequency ([Formula: see text]) and mean amplitude frequency ([Formula: see text]) of AMs changed during different anesthesia states. CONCLUSION HHSA can effectively analyze the cross-frequency coupling of EEG during anesthesia and the AM features may be applied to anesthesia monitoring. SIGNIFICANCE The study provides a new perspective for the characterization of brain states during general anesthesia, which is of great significance for exploring new features of anesthesia monitoring.
Collapse
|
9
|
Quinn J, Krakowski JC. Dexmedetomidine for Preventing Sleep Disturbance after Ambulatory Anesthesia: A Case Report. A A Pract 2024; 18:e01776. [PMID: 38569153 DOI: 10.1213/xaa.0000000000001776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
Propofol anesthesia may impact a patient's sleep quality in the immediate postprocedure timeframe. We describe a 24-year-old man presenting for gastrostomy-jejunostomy tube replacement who reported debilitating sleep-onset disturbances after 3 previous anesthetic exposures for the same procedure. Review of the patient's records revealed the recurring use of propofol infusion. We proposed using dexmedetomidine infusion to potentially avoid another extended sleep disturbance. Following a dexmedetomidine-centered plan, the patient reported experiencing his usual sleep pattern without side-effects for 5 consecutive days postprocedure. This case highlights the potential for propofol-induced sleep disturbance in the ambulatory setting, which may be avoided with dexmedetomidine administration.
Collapse
Affiliation(s)
- Jacqueline Quinn
- From the Department of Anesthesiology, University of North Carolina, Chapel Hill, North Carolina
| | | |
Collapse
|
10
|
Cui Y, Li Y, Li Q, Huang J, Tan X, Zhan CA. Alpha anteriorization and theta posteriorization during deep sleep. J Neurosci Res 2024; 102:e25325. [PMID: 38562056 DOI: 10.1002/jnr.25325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 03/06/2024] [Accepted: 03/17/2024] [Indexed: 04/04/2024]
Abstract
Brain states (wake, sleep, general anesthesia, etc.) are profoundly associated with the spatiotemporal dynamics of brain oscillations. Previous studies showed that the EEG alpha power shifted from the occipital cortex to the frontal cortex (alpha anteriorization) after being induced into a state of general anesthesia via propofol. The sleep research literature suggests that slow waves and sleep spindles are generated locally and propagated gradually to different brain regions. Since sleep and general anesthesia are conceptualized under the same framework of consciousness, the present study examines whether alpha anteriorization similarly occurs during sleep and how the EEG power in other frequency bands changes during different sleep stages. The results from the analysis of three polysomnography datasets of 234 participants show consistent alpha anteriorization during the sleep stages N2 and N3, beta anteriorization during stage REM, and theta posteriorization during stages N2 and N3. Although it is known that the neural circuits responsible for sleep are not exactly the same for general anesthesia, the findings of alpha anteriorization in this study suggest that, at macro level, the circuits for alpha oscillations are organized in the similar cortical areas. The spatial shifts of EEG power in different frequency bands during sleep may offer meaningful neurophysiological markers for the level of consciousness.
Collapse
Affiliation(s)
- Yue Cui
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Yu Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Qiqi Li
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
| | - Jing Huang
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Xiaodan Tan
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
| | - Chang'an A Zhan
- School of Biomedical Engineering, Southern Medical University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Medical Image Processing, Southern Medical University, Guangzhou, China
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
11
|
Li M, Li W, Liang S, Liao X, Gu M, Li H, Chen X, Liu H, Qin H, Xiao J. BNST GABAergic neurons modulate wakefulness over sleep and anesthesia. Commun Biol 2024; 7:339. [PMID: 38503808 PMCID: PMC10950862 DOI: 10.1038/s42003-024-06028-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 03/08/2024] [Indexed: 03/21/2024] Open
Abstract
The neural circuits underlying sleep-wakefulness and general anesthesia have not been fully investigated. The GABAergic neurons in the bed nucleus of the stria terminalis (BNST) play a critical role in stress and fear that relied on heightened arousal. Nevertheless, it remains unclear whether BNST GABAergic neurons are involved in the regulation of sleep-wakefulness and anesthesia. Here, using in vivo fiber photometry combined with electroencephalography, electromyography, and video recordings, we found that BNST GABAergic neurons exhibited arousal-state-dependent alterations, with high activities in both wakefulness and rapid-eye movement sleep, but suppressed during anesthesia. Optogenetic activation of these neurons could initiate and maintain wakefulness, and even induce arousal from anesthesia. However, chronic lesion of BNST GABAergic neurons altered spontaneous sleep-wakefulness architecture during the dark phase, but not induction and emergence from anesthesia. Furthermore, we also discovered that the BNST-ventral tegmental area pathway might participate in promoting wakefulness and reanimation from steady-state anesthesia. Collectively, our study explores new elements in neural circuit mechanisms underlying sleep-wakefulness and anesthesia, which may contribute to a more comprehensive understanding of consciousness and the development of innovative anesthetics.
Collapse
Affiliation(s)
- Mengyao Li
- Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Wen Li
- Department of Neurology, Daping Hospital, Third Military Medical University, Chongqing, 400042, China
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Shanshan Liang
- Brain Research Center and State Key Laboratory of Trauma, Burns, and Combined Injury, Third Military Medical University, Chongqing, 400038, China
| | - Xiang Liao
- Center for Neurointelligence, School of Medicine, Chongqing University, Chongqing, 400044, China
| | - Miaoqing Gu
- Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, 530004, China
| | - Huiming Li
- Department of Anesthesiology and Perioperative Medicine, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, Shaanxi, China
| | - Xiaowei Chen
- Advanced Institute for Brain and Intelligence, School of Medicine, Guangxi University, Nanning, 530004, China
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China
| | - Hongliang Liu
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Han Qin
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| | - Jingyu Xiao
- Department of Anesthesiology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
12
|
Jiang-Xie LF, Drieu A, Bhasiin K, Quintero D, Smirnov I, Kipnis J. Neuronal dynamics direct cerebrospinal fluid perfusion and brain clearance. Nature 2024; 627:157-164. [PMID: 38418877 DOI: 10.1038/s41586-024-07108-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 01/23/2024] [Indexed: 03/02/2024]
Abstract
The accumulation of metabolic waste is a leading cause of numerous neurological disorders, yet we still have only limited knowledge of how the brain performs self-cleansing. Here we demonstrate that neural networks synchronize individual action potentials to create large-amplitude, rhythmic and self-perpetuating ionic waves in the interstitial fluid of the brain. These waves are a plausible mechanism to explain the correlated potentiation of the glymphatic flow1,2 through the brain parenchyma. Chemogenetic flattening of these high-energy ionic waves largely impeded cerebrospinal fluid infiltration into and clearance of molecules from the brain parenchyma. Notably, synthesized waves generated through transcranial optogenetic stimulation substantially potentiated cerebrospinal fluid-to-interstitial fluid perfusion. Our study demonstrates that neurons serve as master organizers for brain clearance. This fundamental principle introduces a new theoretical framework for the functioning of macroscopic brain waves.
Collapse
Affiliation(s)
- Li-Feng Jiang-Xie
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA.
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA.
| | - Antoine Drieu
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Kesshni Bhasiin
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Daniel Quintero
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Igor Smirnov
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA
| | - Jonathan Kipnis
- Brain Immunology and Glia (BIG) Center, Washington University in St Louis, St Louis, MO, USA.
- Department of Pathology and Immunology, School of Medicine, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
13
|
Mondino A, González J, Li D, Mateos D, Osorio L, Cavelli M, Castro-Nin JP, Serantes D, Costa A, Vanini G, Mashour GA, Torterolo P. Urethane anaesthesia exhibits neurophysiological correlates of unconsciousness and is distinct from sleep. Eur J Neurosci 2024; 59:483-501. [PMID: 35545450 DOI: 10.1111/ejn.15690] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 04/13/2022] [Accepted: 05/06/2022] [Indexed: 11/27/2022]
Abstract
Urethane is a general anaesthetic widely used in animal research. The state of urethane anaesthesia is unique because it alternates between macroscopically distinct electrographic states: a slow-wave state that resembles non-rapid eye movement (NREM) sleep and an activated state with features of both REM sleep and wakefulness. Although it is assumed that urethane produces unconsciousness, this has been questioned because of states of cortical activation during drug exposure. Furthermore, the similarities and differences between urethane anaesthesia and physiological sleep are still unclear. In this study, we recorded the electroencephalogram (EEG) and electromyogram in chronically prepared rats during natural sleep-wake states and during urethane anaesthesia. We subsequently analysed the power, coherence, directed connectivity and complexity of brain oscillations and found that EEG under urethane anaesthesia has clear signatures of unconsciousness, with similarities to other general anaesthetics. In addition, the EEG profile under urethane is different in comparison with natural sleep states. These results suggest that consciousness is disrupted during urethane. Furthermore, despite similarities that have led others to conclude that urethane is a model of sleep, the electrocortical traits of depressed and activated states during urethane anaesthesia differ from physiological sleep states.
Collapse
Affiliation(s)
- Alejandra Mondino
- Department of Physiology, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Joaquín González
- Department of Physiology, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Duan Li
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
- Center for Consciousness Science, University of Michigan, Ann Arbor, Michigan, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Diego Mateos
- Institute of Applied Mathematics of the Coast-CONICET-UNL, CCT CONICET, Santa Fe, Argentina
- Faculty of Science and Technology, Autonomous University of Entre Ríos, Parana, Argentina
| | - Lucía Osorio
- Department of Physiology, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Matías Cavelli
- Department of Physiology, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
- Department of Psychiatry, University of Wisconsin, Madison, Wisconsin, USA
| | - Juan Pedro Castro-Nin
- Department of Physiology, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Diego Serantes
- Department of Physiology, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Alicia Costa
- Department of Physiology, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| | - Giancarlo Vanini
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
- Center for Consciousness Science, University of Michigan, Ann Arbor, Michigan, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - George A Mashour
- Department of Anesthesiology, University of Michigan, Ann Arbor, Michigan, USA
- Center for Consciousness Science, University of Michigan, Ann Arbor, Michigan, USA
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, Michigan, USA
| | - Pablo Torterolo
- Department of Physiology, Faculty of Medicine, University of the Republic, Montevideo, Uruguay
| |
Collapse
|
14
|
Tauber JM, Brincat SL, Stephen EP, Donoghue JA, Kozachkov L, Brown EN, Miller EK. Propofol-mediated Unconsciousness Disrupts Progression of Sensory Signals through the Cortical Hierarchy. J Cogn Neurosci 2024; 36:394-413. [PMID: 37902596 PMCID: PMC11161138 DOI: 10.1162/jocn_a_02081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
A critical component of anesthesia is the loss of sensory perception. Propofol is the most widely used drug for general anesthesia, but the neural mechanisms of how and when it disrupts sensory processing are not fully understood. We analyzed local field potential and spiking recorded from Utah arrays in auditory cortex, associative cortex, and cognitive cortex of nonhuman primates before and during propofol-mediated unconsciousness. Sensory stimuli elicited robust and decodable stimulus responses and triggered periods of stimulus-related synchronization between brain areas in the local field potential of Awake animals. By contrast, propofol-mediated unconsciousness eliminated stimulus-related synchrony and drastically weakened stimulus responses and information in all brain areas except for auditory cortex, where responses and information persisted. However, we found stimuli occurring during spiking Up states triggered weaker spiking responses than in Awake animals in auditory cortex, and little or no spiking responses in higher order areas. These results suggest that propofol's effect on sensory processing is not just because of asynchronous Down states. Rather, both Down states and Up states reflect disrupted dynamics.
Collapse
Affiliation(s)
- John M Tauber
- Massachusetts Institute of Technology, Cambridge, MA
| | | | | | | | - Leo Kozachkov
- Massachusetts Institute of Technology, Cambridge, MA
| | - Emery N Brown
- Massachusetts Institute of Technology, Cambridge, MA
- Massachusetts General Hospital, Boston
- Harvard University, Cambridge, MA
| | - Earl K Miller
- Massachusetts Institute of Technology, Cambridge, MA
| |
Collapse
|
15
|
Peng T, Xie Y, Liu F, Lian Y, Xie Y, Ma Y, Wang C, Xie N. The cerebral lymphatic drainage system and its implications in epilepsy. J Neurosci Res 2024; 102:e25267. [PMID: 38284855 DOI: 10.1002/jnr.25267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/18/2023] [Accepted: 10/08/2023] [Indexed: 01/30/2024]
Abstract
The central nervous system has long been thought to lack a clearance system similar to the peripheral lymphatic system. Therefore, the clearance of metabolic waste in the central nervous system has been a subject of great interest in neuroscience. Recently, the cerebral lymphatic drainage system, including the parenchymal clearance system and the meningeal lymphatic network, has attracted considerable attention. It has been extensively studied in various neurological disorders. Solute accumulation and neuroinflammation after epilepsy impair the blood-brain barrier, affecting the exchange and clearance between cerebrospinal fluid and interstitial fluid. Restoring their normal function may improve the prognosis of epilepsy. However, few studies have focused on providing a comprehensive overview of the brain clearance system and its significance in epilepsy. Therefore, this review addressed the structural composition, functions, and methods used to assess the cerebral lymphatic system, as well as the neglected association with epilepsy, and provided a theoretical basis for therapeutic approaches in epilepsy.
Collapse
Affiliation(s)
- Tingting Peng
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, P.R. China
| | - Yinyin Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
- Academy of Medical Sciences of Zhengzhou University, Zhengzhou, P.R. China
| | - Fengxia Liu
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yajun Lian
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yi Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Yunqing Ma
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Cui Wang
- Key Clinical Laboratory of Henan Province, Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| | - Nanchang Xie
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, P.R. China
| |
Collapse
|
16
|
Wu X, Deng J, Li X, Yang L, Zhao G, Yin Q, Shi Y, Tong Z. Effects of Propofol on Perioperative Sleep Quality in Patients Undergoing Gastrointestinal Endoscopy: A Prospective Cohort Study. J Perianesth Nurs 2023; 38:787-791. [PMID: 37269278 DOI: 10.1016/j.jopan.2023.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 01/30/2023] [Accepted: 02/03/2023] [Indexed: 06/05/2023]
Abstract
PURPOSE Some patients experience sleep disturbances after endoscopy performed under sedation. This study aimed to evaluate the effects of propofol on sleep quality after gastrointestinal endoscopy (GE). DESIGN This study was a prospective cohort study. METHODS This study enrolled 880 patients who underwent GE. Patients who chose to undergo GE under sedation received intravenous propofol, whereas the control group did not. The Pittsburgh Sleep Quality Index (PSQI) was measured before GE (PSQI-1) and 3 weeks (PSQI-2) after GE. The Groningen Sleep Score Scale (GSQS) was used before GE (GSQS-1) and 1 (GSQS-2) and 7 days (GSQS-3) after GE. FINDINGS There was a significant increase in GSQS scores from baseline to days 1 and 7 after GE (GSQS-2 vs GSQS-1, P < .001, GSQS-3 vs GSQS-1, P = .008). However, no significant changes were observed in the control group (GSQS-2 vs GSQS-1, P = .38, GSQS-3 vs GSQS-1, P = .66). On day 21, there were no significant changes in the baseline PSQI scores over time in either group (sedation group, P = .96; control group, P = .95). CONCLUSIONS GE with propofol sedation negatively affected sleep quality for 7 days after GE but not 3 weeks after GE.
Collapse
Affiliation(s)
- Xiaofei Wu
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Jinhe Deng
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaona Li
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Li Yang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Gaofeng Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Qing Yin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Yongyong Shi
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhilan Tong
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Traditional Chinese Medicine, Guangzhou, Guangdong, China.
| |
Collapse
|
17
|
Xie Z, Fong R, Fox AP. Towards a potent and rapidly reversible Dexmedetomidine-based general anesthetic. PLoS One 2023; 18:e0291827. [PMID: 37751454 PMCID: PMC10522005 DOI: 10.1371/journal.pone.0291827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 09/06/2023] [Indexed: 09/28/2023] Open
Abstract
IN CONCLUSION Our results suggest that Dex supplemented with a low dose of a second agent creates a potent anesthetic that is rapidly reversed by atipamezole and caffeine.
Collapse
Affiliation(s)
- Zheng Xie
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, United States of America
| | - Robert Fong
- Department of Anesthesia and Critical Care, The University of Chicago, Chicago, IL, United States of America
| | - Aaron P. Fox
- Department of Neurobiology, Pharmacology and Physiology, The University of Chicago, Chicago, IL, United States of America
| |
Collapse
|
18
|
Krause BM, Campbell DI, Kovach CK, Mueller RN, Kawasaki H, Nourski KV, Banks MI. Analogous cortical reorganization accompanies entry into states of reduced consciousness during anesthesia and sleep. Cereb Cortex 2023; 33:9850-9866. [PMID: 37434363 PMCID: PMC10472497 DOI: 10.1093/cercor/bhad249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 06/16/2023] [Accepted: 06/17/2023] [Indexed: 07/13/2023] Open
Abstract
Theories of consciousness suggest that brain mechanisms underlying transitions into and out of unconsciousness are conserved no matter the context or precipitating conditions. We compared signatures of these mechanisms using intracranial electroencephalography in neurosurgical patients during propofol anesthesia and overnight sleep and found strikingly similar reorganization of human cortical networks. We computed the "effective dimensionality" of the normalized resting state functional connectivity matrix to quantify network complexity. Effective dimensionality decreased during stages of reduced consciousness (anesthesia unresponsiveness, N2 and N3 sleep). These changes were not region-specific, suggesting global network reorganization. When connectivity data were embedded into a low-dimensional space in which proximity represents functional similarity, we observed greater distances between brain regions during stages of reduced consciousness, and individual recording sites became closer to their nearest neighbors. These changes corresponded to decreased differentiation and functional integration and correlated with decreases in effective dimensionality. This network reorganization constitutes a neural signature of states of reduced consciousness that is common to anesthesia and sleep. These results establish a framework for understanding the neural correlates of consciousness and for practical evaluation of loss and recovery of consciousness.
Collapse
Affiliation(s)
- Bryan M Krause
- Department of Anesthesiology, University of Wisconsin, Madison, WI, United States
| | - Declan I Campbell
- Department of Anesthesiology, University of Wisconsin, Madison, WI, United States
| | - Christopher K Kovach
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States
| | - Rashmi N Mueller
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States
- Department of Anesthesia, The University of Iowa, Iowa City, IA 52242, United States
| | - Hiroto Kawasaki
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States
| | - Kirill V Nourski
- Department of Neurosurgery, The University of Iowa, Iowa City, IA 52242, United States
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA 52242, United States
| | - Matthew I Banks
- Department of Anesthesiology, University of Wisconsin, Madison, WI, United States
- Department of Neuroscience, University of Wisconsin, Madison, WI 53706, United States
| |
Collapse
|
19
|
Valli K, Radek L, Kallionpää RE, Scheinin A, Långsjö J, Kaisti K, Kantonen O, Korhonen J, Vahlberg T, Revonsuo A, Scheinin H. Subjective experiences during dexmedetomidine- or propofol-induced unresponsiveness and non-rapid eye movement sleep in healthy male subjects. Br J Anaesth 2023; 131:348-359. [PMID: 37268445 PMCID: PMC10375502 DOI: 10.1016/j.bja.2023.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 04/06/2023] [Accepted: 04/12/2023] [Indexed: 06/04/2023] Open
Abstract
BACKGROUND Anaesthetic-induced unresponsiveness and non-rapid eye movement (NREM) sleep share common neural pathways and neurophysiological features. We hypothesised that these states bear resemblance also at the experiential level. METHODS We compared, in a within-subject design, the prevalence and content of experiences in reports obtained after anaesthetic-induced unresponsiveness and NREM sleep. Healthy males (N=39) received dexmedetomidine (n=20) or propofol (n=19) in stepwise doses to induce unresponsiveness. Those rousable were interviewed and left unstimulated, and the procedure was repeated. Finally, the anaesthetic dose was increased 50%, and the participants were interviewed after recovery. The same participants (N=37) were also later interviewed after NREM sleep awakenings. RESULTS Most subjects were rousable, with no difference between anaesthetic agents (P=0.480). Lower drug plasma concentrations were associated with being rousable for both dexmedetomidine (P=0.007) and propofol (P=0.002) but not with recall of experiences in either drug group (dexmedetomidine: P=0.543; propofol: P=0.460). Of the 76 and 73 interviews performed after anaesthetic-induced unresponsiveness and NREM sleep, 69.7% and 64.4% included experiences, respectively. Recall did not differ between anaesthetic-induced unresponsiveness and NREM sleep (P=0.581), or between dexmedetomidine and propofol in any of the three awakening rounds (P>0.05). Disconnected dream-like experiences (62.3% vs 51.1%; P=0.418) and memory incorporation of the research setting (88.7% vs 78.7%; P=0.204) were equally often present in anaesthesia and sleep interviews, respectively, whereas awareness, signifying connected consciousness, was rarely reported in either state. CONCLUSIONS Anaesthetic-induced unresponsiveness and NREM sleep are characterised by disconnected conscious experiences with corresponding recall frequencies and content. CLINICAL TRIAL REGISTRATION Clinical trial registration. This study was part of a larger study registered at ClinicalTrials.gov (NCT01889004).
Collapse
Affiliation(s)
- Katja Valli
- Department of Psychology and Speech-Language Pathology, Turku Brain and Mind Center, University of Turku, Turku, Finland; Department of Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, Turku, Finland; Department of Cognitive Neuroscience and Philosophy, School of Bioscience, University of Skövde, Skövde, Sweden.
| | - Linda Radek
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Roosa E Kallionpää
- Department of Psychology and Speech-Language Pathology, Turku Brain and Mind Center, University of Turku, Turku, Finland; Department of Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, Turku, Finland
| | - Annalotta Scheinin
- Department of Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Jaakko Långsjö
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland; Department of Intensive Care, Tampere University Hospital, Tampere, Finland
| | - Kaike Kaisti
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland; Department of Anesthesiology and Intensive Care, Oulu University Hospital, Oulu, Finland
| | - Oskari Kantonen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Jarno Korhonen
- Department of Psychology and Speech-Language Pathology, Turku Brain and Mind Center, University of Turku, Turku, Finland
| | - Tero Vahlberg
- Institute of Clinical Medicine, Biostatistics, University of Turku and Turku University Hospital, Turku, Finland
| | - Antti Revonsuo
- Department of Psychology and Speech-Language Pathology, Turku Brain and Mind Center, University of Turku, Turku, Finland; Department of Cognitive Neuroscience and Philosophy, School of Bioscience, University of Skövde, Skövde, Sweden
| | - Harry Scheinin
- Department of Perioperative Services, Intensive Care and Pain Medicine, Turku University Hospital, Turku, Finland; Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland; Institute of Biomedicine and Unit of Clinical Pharmacology, University of Turku and Turku University Hospital, Turku, Finland
| |
Collapse
|
20
|
Li J, Zhang H, Deng B, Wang X, Liang P, Xu S, Jing Z, Xiao Z, Sun L, Gao C, Wang J, Sun X. Dexmedetomidine Improves Anxiety-like Behaviors in Sleep-Deprived Mice by Inhibiting the p38/MSK1/NFκB Pathway and Reducing Inflammation and Oxidative Stress. Brain Sci 2023; 13:1058. [PMID: 37508990 PMCID: PMC10377202 DOI: 10.3390/brainsci13071058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/26/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
(1) Background: Sleep deprivation (SD) triggers a range of neuroinflammatory responses. Dexmedetomidine can improve sleep deprivation-induced anxiety by reducing neuroinflammatory response but the mechanism is unclear; (2) Methods: The sleep deprivation model was established by using an interference rod device. An open field test and an elevated plus maze test were used to detect the emotional behavior of mice. Mouse cortical tissues were subjected to RNA sequence (RNA-seq) analysis. Western blotting and immunofluorescence were used to detect the expression of p38/p-p38, MSK1/p-MSK1, and NFκBp65/p- NFκBp65. Inflammatory cytokines were detected using enzyme-linked immunosorbent assay (ELISA); (3) Results: SD triggered anxiety-like behaviors in mice and was closely associated with inflammatory responses and the MAPK pathway (as demonstrated by transcriptome analysis). SD led to increased expression levels of p-p38, p-MSK1, and p-NFκB. P38 inhibitor SB203580 was used to confirm the important role of the p38/MSK1/NFκB pathway in SD-induced neuroinflammation. Dexmedetomidine (Dex) effectively improves emotional behavior in sleep-deprived mice by attenuating SD-induced inflammatory responses and oxidative stress in the cerebral cortex, mainly by inhibiting the activation of the p38/MSK1/NFκB pathway; (4) Conclusions: Dex inhibits the activation of the p38/MSK1/NFκB pathway, thus attenuating SD-induced inflammatory responses and oxidative stress in the cerebral cortex of mice.
Collapse
Affiliation(s)
- Jiangjing Li
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
| | - Heming Zhang
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
| | - Bin Deng
- Department of Anesthesiology & Center for Brain Science, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710065, China
| | - Xin Wang
- Department of Otolaryngology Head and Neck Surgery, Shaanxi Provincial People's Hospital, Xi'an 710068, China
| | - Peng Liang
- Department of Rehabilitative Physioltherapy, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
| | - Shenglong Xu
- Department of Radiation Medical Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, The Fourth Military Medical University, Xi'an 710068, China
| | - Ziwei Jing
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
| | - Zhibin Xiao
- Department of Anesthesiology, The 986th Air Force Hospital, Xijing Hospital, The Fourth Military Medical University, Xi'an 710032, China
| | - Li Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
| | - Changjun Gao
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
| | - Jin Wang
- Department of Radiation Medical Protection, Ministry of Education Key Lab of Hazard Assessment and Control in Special Operational Environment, School of Military Preventive Medicine, The Fourth Military Medical University, Xi'an 710068, China
| | - Xude Sun
- Department of Anesthesiology, The Second Affiliated Hospital of Air Force Medical University, Xi'an 710038, China
| |
Collapse
|
21
|
Shine JM, Lewis LD, Garrett DD, Hwang K. The impact of the human thalamus on brain-wide information processing. Nat Rev Neurosci 2023; 24:416-430. [PMID: 37237103 DOI: 10.1038/s41583-023-00701-0] [Citation(s) in RCA: 65] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2023] [Indexed: 05/28/2023]
Abstract
The thalamus is a small, bilateral structure in the diencephalon that integrates signals from many areas of the CNS. This critical anatomical position allows the thalamus to influence whole-brain activity and adaptive behaviour. However, traditional research paradigms have struggled to attribute specific functions to the thalamus, and it has remained understudied in the human neuroimaging literature. Recent advances in analytical techniques and increased accessibility to large, high-quality data sets have brought forth a series of studies and findings that (re-)establish the thalamus as a core region of interest in human cognitive neuroscience, a field that otherwise remains cortico-centric. In this Perspective, we argue that using whole-brain neuroimaging approaches to investigate the thalamus and its interaction with the rest of the brain is key for understanding systems-level control of information processing. To this end, we highlight the role of the thalamus in shaping a range of functional signatures, including evoked activity, interregional connectivity, network topology and neuronal variability, both at rest and during the performance of cognitive tasks.
Collapse
Affiliation(s)
- James M Shine
- Brain and Mind Centre, The University of Sydney, Sydney, New South Wales, Australia
| | - Laura D Lewis
- Department of Biomedical Engineering, Boston University, Boston, MA, USA
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Boston, MA, USA
| | - Douglas D Garrett
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, Berlin, Germany
- Center for Lifespan Psychology, Max Planck Institute for Human Development, Berlin, Germany
| | - Kai Hwang
- Cognitive Control Collaborative, Department of Psychological and Brain Sciences, The University of Iowa, Iowa City, IA, USA.
- Department of Psychiatry, The University of Iowa, Iowa City, IA, USA.
- Iowa Neuroscience Institute, The University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
22
|
Lin J, Cheng X, Wang H, Du L, Li X, Zhao G, Xie C. Activation of astrocytes in the basal forebrain in mice facilitates isoflurane-induced loss of consciousness and prolongs recovery. BMC Anesthesiol 2023; 23:213. [PMID: 37340348 DOI: 10.1186/s12871-023-02166-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Accepted: 06/06/2023] [Indexed: 06/22/2023] Open
Abstract
OBJECTIVES General anesthesia results in a state of unconsciousness that is similar to sleep. In recent years, increasing evidence has reported that astrocytes play a crucial role in regulating sleep. However, whether astrocytes are involved in general anesthesia is unknown. METHODS In the present study, the designer receptors exclusively activated by designer drugs (DREADDs) approach was utilized to specifically activate astrocytes in the basal forebrain (BF) and observed its effect on isoflurane anesthesia. One the other side, L-α-aminoadipic acid was used to selectively inhibit astrocytes in the BF and investigated its influence on isoflurane-induced hypnotic effect. During the anesthesia experiment, cortical electroencephalography (EEG) signals were recorded as well. RESULTS The chemogenetic activation group had a significantly shorter isoflurane induction time, longer recovery time, and higher delta power of EEG during anesthesia maintenance and recovery periods than the control group. Inhibition of astrocytes in the BF delayed isoflurane-induced loss of consciousness, promoted recovery, decreased delta power and increased beta and gamma power during maintenance and recovery periods. CONCLUSIONS The present study suggests that astrocytes in the BF region are involved in isoflurane anesthesia and may be a potential target for regulating the consciousness state of anesthesia.
Collapse
Affiliation(s)
- Jialing Lin
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China
| | - Xuefeng Cheng
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China
| | - Haoyuan Wang
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China
| | - Lin Du
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China
| | - Xiangyu Li
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China
| | - Gaofeng Zhao
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China.
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China.
| | - Chuangbo Xie
- Department of Anesthesiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou City, 510120, People's Republic of China.
- South China Research Center for Acupuncture and Moxibustion, Medical College of Acu-Moxi and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou City, Guangdong Province, 510120, People's Republic of China.
| |
Collapse
|
23
|
Shine JM. Neuromodulatory control of complex adaptive dynamics in the brain. Interface Focus 2023; 13:20220079. [PMID: 37065268 PMCID: PMC10102735 DOI: 10.1098/rsfs.2022.0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/23/2023] [Indexed: 04/18/2023] Open
Abstract
How is the massive dimensionality and complexity of the microscopic constituents of the nervous system brought under sufficiently tight control so as to coordinate adaptive behaviour? A powerful means for striking this balance is to poise neurons close to the critical point of a phase transition, at which a small change in neuronal excitability can manifest a nonlinear augmentation in neuronal activity. How the brain could mediate this critical transition is a key open question in neuroscience. Here, I propose that the different arms of the ascending arousal system provide the brain with a diverse set of heterogeneous control parameters that can be used to modulate the excitability and receptivity of target neurons-in other words, to act as control parameters for mediating critical neuronal order. Through a series of worked examples, I demonstrate how the neuromodulatory arousal system can interact with the inherent topological complexity of neuronal subsystems in the brain to mediate complex adaptive behaviour.
Collapse
Affiliation(s)
- James M. Shine
- Brain and Mind Center, The University of Sydney, Sydney, Australia
| |
Collapse
|
24
|
Guo Z, Ni H, Cui Z, Zhu Z, Kang J, Wang D, Ke Z. Pain sensitivity related to gamma oscillation of parvalbumin interneuron in primary somatosensory cortex in Dync1i1 -/- mice. Neurobiol Dis 2023:106170. [PMID: 37257662 DOI: 10.1016/j.nbd.2023.106170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 05/09/2023] [Accepted: 05/24/2023] [Indexed: 06/02/2023] Open
Abstract
Cytoplasmic dynein is an important intracellular motor protein that plays an important role in neuronal growth, axonal polarity formation, dendritic differentiation, and dendritic spine development among others. The intermediate chain of dynein, encoded by Dync1i1, plays a vital role in the dynein complex. Therefore, we assessed the behavioral and related neuronal activities in mice with dync1i1 gene knockout. Neuronal activities in primary somatosensory cortex were recorded by in vivo electrophysiology and manipulated by optogenetic and chemogenetics. Nociception of mechanical, thermal, and cold pain in Dync1i1-/- mice were impaired. The activities of parvalbumin (PV) interneurons and gamma oscillation in primary somatosensory were also impaired when exposed to mechanical nociceptive stimulation. This neuronal dysfunction was rescued by optogenetic activation of PV neurons in Dync1i1-/- mice, and mimicked by suppressing PV neurons using chemogenetics in WT mice. Impaired pain sensations in Dync1i1-/- mice were correlated with impaired gamma oscillations due to a loss of interneurons, especially the PV type. This genotype-driven approach revealed an association between impaired pain sensation and cytoplasmic dynein complex.
Collapse
Affiliation(s)
- Zhongzhao Guo
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Hong Ni
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Zhengyu Cui
- Department of Traditional Chinese Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai 201203, China
| | - Zilu Zhu
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jiansheng Kang
- Clinical Systems Biology Laboratories East District of The first affiliated hospital of ZhengZhou University, Zhengzhou 450018, China
| | - Deheng Wang
- School of Basic Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| | - Zunji Ke
- Academy of Integrative Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China.
| |
Collapse
|
25
|
Li Z, Chen R, Liu D, Wang X, Yuan W. Effect of low-intensity transcranial ultrasound stimulation on theta and gamma oscillations in the mouse hippocampal CA1. Front Psychiatry 2023; 14:1151351. [PMID: 37151980 PMCID: PMC10157252 DOI: 10.3389/fpsyt.2023.1151351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/29/2023] [Indexed: 05/09/2023] Open
Abstract
Previous studies have demonstrated that low-intensity transcranial ultrasound stimulation (TUS) can eliminate hippocampal neural activity. However, until now, it has remained unclear how ultrasound modulates theta and gamma oscillations in the hippocampus under different behavioral states. In this study, we used ultrasound to stimulate the CA1 in mice in anesthesia, awake and running states, and we simultaneously recorded the local field potential of the stimulation location. We analyzed the power spectrum, phase-amplitude coupling (PAC) of theta and gamma oscillations, and their relationship with ultrasound intensity. The results showed that (i) TUS significantly enhanced the absolute power of theta and gamma oscillations under anesthesia and in the awake state. (ii) The PAC strength between theta and gamma oscillations is significantly enhanced under the anesthesia and awake states but is weakened under the running state with TUS. (iii) Under anesthesia, the relative power of theta decreases and that of gamma increases as ultrasound intensity increases, and the result under the awake state is opposite that under the anesthesia state. (iv) The PAC index between theta and gamma increases as ultrasound intensity increases under the anesthesia and awake states. The above results demonstrate that TUS can modulate theta and gamma oscillations in the CA1 and that the modulation effect depends on behavioral states. Our study provides guidance for the application of ultrasound in modulating hippocampal function.
Collapse
Affiliation(s)
- Zhen Li
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Rong Chen
- Hebei Key Laboratory of Vascular Homeostasis and Hebei Collaborative Innovation Center for Cardio-Cerebrovascular Disease, The Second Hospital of Hebei Medical University, Shijiazhuang, China
| | - Dachuan Liu
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Xizhe Wang
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Wei Yuan
- Department of Ophthalmology, Xuanwu Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Xu Z, Hu SW, Zhou Y, Guo Q, Wang D, Gao YH, Zhao WN, Tang HM, Yang JX, Yu X, Ding HL, Cao JL. Corticotropin-releasing factor neurones in the paraventricular nucleus of the hypothalamus modulate isoflurane anaesthesia and its responses to acute stress in mice. Br J Anaesth 2023; 130:446-458. [PMID: 36737387 DOI: 10.1016/j.bja.2022.12.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 11/23/2022] [Accepted: 12/23/2022] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Corticotropin-releasing factor (CRF) neurones in the paraventricular nucleus (PVN) of the hypothalamus (PVNCRF neurones) can promote wakefulness and are activated under anaesthesia. However, whether these neurones contribute to anaesthetic effects is unknown. METHODS With a combination of chemogenetic and molecular approaches, we examined the roles of PVNCRF neurones in isoflurane anaesthesia in mice and further explored the underlying cellular and molecular mechanisms. RESULTS PVN neurones exhibited increased Fos expression during isoflurane anaesthesia (mean [standard deviation], 218 [69.3] vs 21.3 [7.3]; P<0.001), and ∼75% were PVNCRF neurones. Chemogenetic inhibition of PVNCRF neurones facilitated emergence from isoflurane anaesthesia (11.7 [1.1] vs 13.9 [1.2] min; P=0.001), whereas chemogenetic activation of these neurones delayed emergence from isoflurane anaesthesia (16.9 [1.2] vs 13.9 [1.3] min; P=0.002). Isoflurane exposure increased CRF protein expression in PVN (4.0 [0.1] vs 2.2 [0.3], respectively; P<0.001). Knockdown of CRF in PVNCRF neurones mimicked the effects of chemogenetic inhibition of PVNCRF neurones in facilitating emergence (9.6 [1.1] vs 13.0 [1.4] min; P=0.003) and also abolished the effects of chemogenetic activation of PVNCRF neurones on delaying emergence from isoflurane anaesthesia (10.3 [1.3] vs 16.0 [2.6] min; P<0.001). Acute, but not chronic, stress delayed emergence from isoflurane anaesthesia (15.5 [1.5] vs 13.0 [1.4] min; P=0.004). This effect was reversed by chemogenetic inhibition of PVNCRF neurones (11.7 [1.6] vs 14.7 [1.4] min; P=0.001) or knockdown of CRF in PVNCRF neurones (12.3 [1.5] vs 15.3 [1.6] min; P=0.002). CONCLUSIONS CRF neurones in the PVN of the hypothalamus neurones modulate isoflurane anaesthesia and acute stress effects on anaesthesia through CRF signalling.
Collapse
Affiliation(s)
- Zheng Xu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Su-Wan Hu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yu Zhou
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Qingchen Guo
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Di Wang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Yi-Hong Gao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Wei-Nan Zhao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Hui-Mei Tang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Jun-Xia Yang
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Xiaolu Yu
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China
| | - Hai-Lei Ding
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China.
| | - Jun-Li Cao
- Jiangsu Province Key Laboratory of Anesthesiology, Xuzhou, China; Jiangsu Province Key Laboratory of Anesthesia and Analgesia Application Technology, Xuzhou, China; NMPA Key Laboratory for Research and Evaluation of Narcotic and Psychotropic Drugs, Xuzhou Medical University, Xuzhou, China; Department of Anesthesiology, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China.
| |
Collapse
|
27
|
Anders M, Anders B, Dreismickenbecker E, Hight D, Kreuzer M, Walter C, Zinn S. EEG responses to standardised noxious stimulation during clinical anaesthesia: a pilot study. BJA OPEN 2023; 5:100118. [PMID: 37587999 PMCID: PMC10430841 DOI: 10.1016/j.bjao.2022.100118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 12/05/2022] [Indexed: 08/18/2023]
Abstract
Background During clinical anaesthesia, the administration of analgesics mostly relies on empirical knowledge and observation of the patient's reactions to noxious stimuli. Previous studies in healthy volunteers under controlled conditions revealed EEG activity in response to standardised nociceptive stimuli even at high doses of remifentanil and propofol. This pilot study aims to investigate the feasibility of using these standardised nociceptive stimuli in routine clinical practice. Methods We studied 17 patients undergoing orthopaedic trauma surgery under general anaesthesia. We evaluated if the EEG could track standardised noxious phase-locked electrical stimulation and tetanic stimulation, a time-locked surrogate for incisional pain, before, during, and after the induction of general anaesthesia. Subsequently, we analysed the effect of tetanic stimulation on the surgical pleth index as a peripheral, vegetative, nociceptive marker. Results We found that the phase-locked evoked potentials after noxious electrical stimulation vanished after the administration of propofol, but not at low concentrations of remifentanil. After noxious tetanic stimulation under general anaesthesia, there were no consistent spectral changes in the EEG, but the vegetative response in the surgical pleth index was statistically significant (Hedges' g effect size 0.32 [95% confidence interval 0.12-0.77], P=0.035). Conclusion Our standardised nociceptive stimuli are not optimised for obtaining consistent EEG responses in patients during clinical anaesthesia. To validate and sufficiently reproduce EEG-based standardised stimulation as a marker for nociception in clinical anaesthesia, other pain models or stimulation settings might be required to transfer preclinical studies into clinical practice. Clinical trial registration DRKS00017829.
Collapse
Affiliation(s)
- Malte Anders
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Björn Anders
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Elias Dreismickenbecker
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- Center for Pediatric and Adolescent Medicine, Childhood Cancer Center, University Medical Center Mainz, Mainz, Germany
| | - Darren Hight
- Department of Anaesthesiology and Pain Medicine, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Matthias Kreuzer
- Department of Anesthesiology and Intensive Care, School of Medicine, Technical University of Munich, Munich, Germany
| | - Carmen Walter
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
| | - Sebastian Zinn
- Clinical Development and Human Pain Models, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, Frankfurt, Germany
- Goethe University Frankfurt, University Hospital, Clinic for Anesthesiology, Intensive Care Medicine and Pain Therapy, Frankfurt am Main, Germany
| |
Collapse
|
28
|
Gómez LJ, Dooley JC, Blumberg MS. Activity in developing prefrontal cortex is shaped by sleep and sensory experience. eLife 2023; 12:e82103. [PMID: 36745108 PMCID: PMC9901933 DOI: 10.7554/elife.82103] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 01/12/2023] [Indexed: 02/07/2023] Open
Abstract
In developing rats, behavioral state exerts a profound modulatory influence on neural activity throughout the sensorimotor system, including primary motor cortex (M1). We hypothesized that similar state-dependent modulation occurs in prefrontal cortical areas with which M1 forms functional connections. Here, using 8- and 12-day-old rats cycling freely between sleep and wake, we record neural activity in M1, secondary motor cortex (M2), and medial prefrontal cortex (mPFC). At both ages in all three areas, neural activity increased during active sleep (AS) compared with wake. Also, regardless of behavioral state, neural activity in all three areas increased during periods when limbs were moving. The movement-related activity in M2 and mPFC, like that in M1, is driven by sensory feedback. Our results, which diverge from those of previous studies using anesthetized pups, demonstrate that AS-dependent modulation and sensory responsivity extend to prefrontal cortex. These findings expand the range of possible factors shaping the activity-dependent development of higher-order cortical areas.
Collapse
Affiliation(s)
- Lex J Gómez
- Interdisciplinary Graduate Program in Neuroscience, University of IowaIowa CityUnited States
| | - James C Dooley
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- DeLTA Center, University of IowaIowa CityUnited States
| | - Mark S Blumberg
- Interdisciplinary Graduate Program in Neuroscience, University of IowaIowa CityUnited States
- Department of Psychological and Brain Sciences, University of IowaIowa CityUnited States
- DeLTA Center, University of IowaIowa CityUnited States
- Iowa Neuroscience Institute, University of IowaIowa CityUnited States
| |
Collapse
|
29
|
Viana A, Estevão D, Zhao C. The clinical application progress and potential of drug-induced sleep endoscopy in obstructive sleep apnea. Ann Med 2022; 54:2909-2920. [PMID: 36269026 PMCID: PMC9590429 DOI: 10.1080/07853890.2022.2134586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Background and Objective: Obstructive sleep apnoea (OSA) is characterized by nocturnal repetitive upper airway (UA) collapse. For sleep physicians, the recognition of UA collapse characteristics is critical for understanding OSA mechanisms and developing individualized treatment plans. Drug-induced sleep endoscopy (DISE) is an exam during simulated sleep that allows the dynamic assessment of the UA of individuals with OSA. The initial recognition of DISE was to locate the sites of UA obstruction and direct the surgical selection of OSA since it was introduced in the 1990s. After approximately 30 years of studies, based on advances in endoscopic operative techniques and innovative treatments of OSA, DISE had been performed to explore mechanisms and comprehensive treatments related to UA collapse. Methods: This article reviewed contemporary DISE advances, including indications and contraindications, technique of induced sleep, endoscopic operation, UA characteristics classification.Results and Conclusions: Precise selection based on the association between collapse patterns and treatment modalities, such as continuous positive airway pressure, oral appliance, positional therapy, robotic surgery and neurostimulator implanting, is the future research prospect based on DISE.Key messagesDISE provides sleep physicians with valuable information about the upper airway collapse characteristics and dynamic changes during sleep.The studies based on DISE findings improve the selectivity and efficiency of treatment modalities, including classical therapies such as continuous positive airway pressure, oral appliance, positional therapy, and innovative therapies such as neurostimulator implanting and robotic surgery, promote the advancement of OSA precision medicine.
Collapse
Affiliation(s)
- Alonço Viana
- Graduate Program of Neurology, Rio de Janeiro State Federal University (UNIRIO), Rio de Janeiro, Brazil.,Department of Otorhinolaryngology, Marcilio Dias Naval Hospital, Rio de Janeiro, Brazil
| | - Débora Estevão
- Graduate Program of Neurology, Rio de Janeiro State Federal University (UNIRIO), Rio de Janeiro, Brazil.,Department of Otorhinolaryngology, Glória D'Or Hospital - Rede D'Or São Luiz, Rio de Janeiro, Brazil
| | - Chen Zhao
- Department of Otorhinolaryngology, the First Hospital of China Medical University, Shenyang, China
| |
Collapse
|
30
|
Gurel NZ, Sudarshan KB, Hadaya J, Karavos A, Temma T, Hori Y, Armour JA, Kember G, Ajijola OA. Metrics of high cofluctuation and entropy to describe control of cardiac function in the stellate ganglion. eLife 2022; 11:e78520. [PMID: 36426848 PMCID: PMC9815826 DOI: 10.7554/elife.78520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/25/2022] [Indexed: 11/27/2022] Open
Abstract
Stellate ganglia within the intrathoracic cardiac control system receive and integrate central, peripheral, and cardiopulmonary information to produce postganglionic cardiac sympathetic inputs. Pathological anatomical and structural remodeling occurs within the neurons of the stellate ganglion (SG) in the setting of heart failure (HF). A large proportion of SG neurons function as interneurons whose networking capabilities are largely unknown. Current therapies are limited to targeting sympathetic activity at the cardiac level or surgical interventions such as stellectomy, to treat HF. Future therapies that target the SG will require understanding of their networking capabilities to modify any pathological remodeling. We observe SG networking by examining cofluctuation and specificity of SG networked activity to cardiac cycle phases. We investigate network processing of cardiopulmonary transduction by SG neuronal populations in porcine with chronic pacing-induced HF and control subjects during extended in-vivo extracellular microelectrode recordings. We find that information processing and cardiac control in chronic HF by the SG, relative to controls, exhibits: (i) more frequent, short-lived, high magnitude cofluctuations, (ii) greater variation in neural specificity to cardiac cycles, and (iii) neural network activity and cardiac control linkage that depends on disease state and cofluctuation magnitude.
Collapse
Affiliation(s)
- Nil Z Gurel
- UCLA Cardiac Arrhythmia Center and UCLA Neurocardiology Research Program of ExcellenceLos AngelesUnited States
| | - Koustubh B Sudarshan
- Department of Engineering Mathematics and Internetworking, Dalhousie UniversityNova ScotiaCanada
| | - Joseph Hadaya
- UCLA Cardiac Arrhythmia Center and UCLA Neurocardiology Research Program of ExcellenceLos AngelesUnited States
- UCLA Molecular, Cellular, and Integrative Physiology ProgramLos AngelesUnited States
| | - Alex Karavos
- Department of Engineering Mathematics and Internetworking, Dalhousie UniversityNova ScotiaCanada
| | - Taro Temma
- UCLA Cardiac Arrhythmia Center and UCLA Neurocardiology Research Program of ExcellenceLos AngelesUnited States
| | - Yuichi Hori
- UCLA Cardiac Arrhythmia Center and UCLA Neurocardiology Research Program of ExcellenceLos AngelesUnited States
| | - J Andrew Armour
- UCLA Cardiac Arrhythmia Center and UCLA Neurocardiology Research Program of ExcellenceLos AngelesUnited States
| | - Guy Kember
- Department of Engineering Mathematics and Internetworking, Dalhousie UniversityNova ScotiaCanada
| | - Olujimi A Ajijola
- UCLA Cardiac Arrhythmia Center and UCLA Neurocardiology Research Program of ExcellenceLos AngelesUnited States
- UCLA Molecular, Cellular, and Integrative Physiology ProgramLos AngelesUnited States
| |
Collapse
|
31
|
Ilhan-Bayrakcı M, Cabral-Calderin Y, Bergmann TO, Tüscher O, Stroh A. Individual slow wave events give rise to macroscopic fMRI signatures and drive the strength of the BOLD signal in human resting-state EEG-fMRI recordings. Cereb Cortex 2022; 32:4782-4796. [PMID: 35094045 PMCID: PMC9627041 DOI: 10.1093/cercor/bhab516] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 12/08/2021] [Accepted: 12/09/2021] [Indexed: 08/19/2024] Open
Abstract
The slow wave state is a general state of quiescence interrupted by sudden bursts of activity or so-called slow wave events (SWEs). Recently, the relationship between SWEs and blood oxygen level-dependent (BOLD) functional magnetic resonance imaging (fMRI) signals was assessed in rodent models which revealed cortex-wide BOLD activation. However, it remains unclear which macroscopic signature corresponds to these specific neurophysiological events in the human brain. Therefore, we analyzed simultaneous electroencephalographic (EEG)-fMRI data during human non-REM sleep. SWEs individually detected in the EEG data were used as predictors in event-related fMRI analyses to examine the relationship between SWEs and fMRI signals. For all 10 subjects we identified significant changes in BOLD activity associated with SWEs covering substantial parts of the gray matter. As demonstrated in rodents, we observed a direct relation of a neurophysiological event to specific BOLD activation patterns. We found a correlation between the number of SWEs and the spatial extent of these BOLD activation patterns and discovered that the amplitude of the BOLD response strongly depends on the SWE amplitude. As altered SWE propagation has recently been found in neuropsychiatric diseases, it is critical to reveal the brain's physiological slow wave state networks to potentially establish early imaging biomarkers for various diseases long before disease onset.
Collapse
Affiliation(s)
- Merve Ilhan-Bayrakcı
- Systemic Mechanisms of Resilience, Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Yuranny Cabral-Calderin
- Neural and Environmental Rhythms, Max Planck Institute for Empirical Aesthetics, 60322 Frankfurt, Germany
| | - Til Ole Bergmann
- Systemic Mechanisms of Resilience, Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
- Neuroimaging Center (NIC), Focus Program Translational Neuroscience (FTN), University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Oliver Tüscher
- Systemic Mechanisms of Resilience, Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Albrecht Stroh
- Systemic Mechanisms of Resilience, Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
- Institute of Pathophysiology, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| |
Collapse
|
32
|
Bu X, Chen Y, Lv P, Fu X, Fu B. Glutamatergic neurons in paraventricular nucleus of the thalamus regulate the recovery from isoflurane anesthesia. BMC Anesthesiol 2022; 22:256. [PMID: 35953781 PMCID: PMC9367068 DOI: 10.1186/s12871-022-01799-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Accepted: 08/05/2022] [Indexed: 11/30/2022] Open
Abstract
Objectives Previous studies have demonstrated that the paraventricular nucleus of the thalamus (PVT) is a key wakefulness-controlling nucleus in the thalamus. Therefore, PVT may also be involved in the process of general anesthesia. This study intends to explore the role of PVT in isoflurane anesthesia. Methods In the present study, we used the expression of c-Fos to observe the neuronal activity of PVT neurons under isoflurane anesthesia. We further recorded the effect of isoflurane anesthesia on the calcium signal of PVT glutamatergic neurons in real time with the help of calcium fiber photometry. We finally used chemogenetic technology to specifically regulate PVT glutamatergic neurons, and observed its effect on isoflurane anesthesia and cortical electroencephalography (EEG) in mice. Results We found that glutamatergic neurons of PVT exhibited high activity during wakefulness and low activity during isoflurane anesthesia. Activation of PVT glutamatergic neuronal caused an acceleration in emergence from isoflurane anesthesia accompanied with a decrease in EEG delta power (1–4 Hz). Whereas suppression of PVT glutamatergic neurons induced a delay recovery of isoflurane anesthesia, without affecting anesthesia induction. Conclusions Assuming a pharmacokinetic explanation for results can be excluded, these results demonstrate that the PVT is involved in regulating anesthesia emergence.
Collapse
Affiliation(s)
- Xiaoli Bu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou Province, 563003, Zunyi city, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi city, 563003, Guizhou Province, China
| | - Yiqiu Chen
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou Province, 563003, Zunyi city, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi city, 563003, Guizhou Province, China
| | - Ping Lv
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou Province, 563003, Zunyi city, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi city, 563003, Guizhou Province, China
| | - Xiaoyun Fu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou Province, 563003, Zunyi city, China.,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi city, 563003, Guizhou Province, China
| | - Bao Fu
- Department of Critical Care Medicine, Affiliated Hospital of Zunyi Medical University, Guizhou Province, 563003, Zunyi city, China. .,Guizhou Key Laboratory of Anesthesia and Organ Protection, Zunyi Medical University, Zunyi city, 563003, Guizhou Province, China.
| |
Collapse
|
33
|
Khalilzad Sharghi V, Maltbie EA, Pan WJ, Keilholz SD, Gopinath KS. Selective blockade of rat brain T-type calcium channels provides insights on neurophysiological basis of arousal dependent resting state functional magnetic resonance imaging signals. Front Neurosci 2022; 16:909999. [PMID: 36003960 PMCID: PMC9393715 DOI: 10.3389/fnins.2022.909999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/19/2022] [Indexed: 12/04/2022] Open
Abstract
A number of studies point to slow (0.1–2 Hz) brain rhythms as the basis for the resting-state functional magnetic resonance imaging (rsfMRI) signal. Slow waves exist in the absence of stimulation, propagate across the cortex, and are strongly modulated by vigilance similar to large portions of the rsfMRI signal. However, it is not clear if slow rhythms serve as the basis of all neural activity reflected in rsfMRI signals, or just the vigilance-dependent components. The rsfMRI data exhibit quasi-periodic patterns (QPPs) that appear to increase in strength with decreasing vigilance and propagate across the brain similar to slow rhythms. These QPPs can complicate the estimation of functional connectivity (FC) via rsfMRI, either by existing as unmodeled signal or by inducing additional wide-spread correlation between voxel-time courses of functionally connected brain regions. In this study, we examined the relationship between cortical slow rhythms and the rsfMRI signal, using a well-established pharmacological model of slow wave suppression. Suppression of cortical slow rhythms led to significant reduction in the amplitude of QPPs but increased rsfMRI measures of intrinsic FC in rats. The results suggest that cortical slow rhythms serve as the basis of only the vigilance-dependent components (e.g., QPPs) of rsfMRI signals. Further attenuation of these non-specific signals enhances delineation of brain functional networks.
Collapse
Affiliation(s)
- Vahid Khalilzad Sharghi
- Department of Biomedical Engineering, Emory University-Georgia Tech, Atlanta, GA, United States
| | - Eric A. Maltbie
- Department of Biomedical Engineering, Emory University-Georgia Tech, Atlanta, GA, United States
| | - Wen-Ju Pan
- Department of Biomedical Engineering, Emory University-Georgia Tech, Atlanta, GA, United States
| | - Shella D. Keilholz
- Department of Biomedical Engineering, Emory University-Georgia Tech, Atlanta, GA, United States
| | - Kaundinya S. Gopinath
- Department of Radiology & Imaging Sciences, Emory University, Atlanta, GA, United States
- *Correspondence: Kaundinya S. Gopinath,
| |
Collapse
|
34
|
Grigg-Damberger MM, Damberger SJ. Night Moves and Modes: Sleep Biomarkers for Neurocognitive Disorders. J Clin Neurophysiol 2022; 39:325-326. [PMID: 35239555 DOI: 10.1097/wnp.0000000000000912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Affiliation(s)
| | - Stanley J Damberger
- Department of English, DePaul University of Chicago, Chicago, Illinois, U.S.A
| |
Collapse
|
35
|
Grigg-Damberger MM, Hussein O, Kulik T. Sleep Spindles and K-Complexes Are Favorable Prognostic Biomarkers in Critically Ill Patients. J Clin Neurophysiol 2022; 39:372-382. [PMID: 35239561 DOI: 10.1097/wnp.0000000000000830] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
SUMMARY In this narrative review, we summarize recent research on the prognostic significance of biomarkers of sleep in continuous EEG and polysomnographic recordings in intensive care unit patients. Recent studies show the EEG biosignatures of non-rapid eye movement 2 sleep (sleep spindles and K-complexes) on continuous EEG in critically ill patients better predict functional outcomes and mortality than the ictal-interictal continuum patterns. Emergence of more complex and better organized sleep architecture has been shown to parallel neurocognitive recovery and correlate with functional outcomes in traumatic brain injury and strokes. Particularly interesting are studies which suggest intravenous dexmedetomidine may induce a more biomimetic non-rapid eye movement sleep state than intravenous propofol, potentially providing more restorative sleep and lessening delirium. Protocols to improve intensive care unit sleep and neurophysiological studies evaluating the effect of these on sleep and sleep architecture are here reviewed.
Collapse
|
36
|
Long MHY, Lim EHL, Balanza GA, Allen JC, Purdon PL, Bong CL. Sevoflurane requirements during electroencephalogram (EEG)-guided vs standard anesthesia Care in Children: A randomized controlled trial. J Clin Anesth 2022; 81:110913. [PMID: 35772250 DOI: 10.1016/j.jclinane.2022.110913] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Revised: 05/18/2022] [Accepted: 06/14/2022] [Indexed: 10/17/2022]
Abstract
STUDY OBJECTIVES Intra-operative electroencephalographic (EEG) monitoring utilizing the spectrogram allows visualization of children's brain response during anesthesia and may complement routine cardiorespiratory monitoring to facilitate titration of anesthetic doses. We aimed to determine if EEG-guided anesthesia will result in lower sevoflurane requirements, lower incidence of burst suppression and improved emergence characteristics in children undergoing routine general anesthesia, compared to standard care. DESIGN Randomized controlled trial. SETTING Tertiary pediatric hospital. PATIENTS 200 children aged 1 to 6 years, ASA 1 or 2, undergoing routine sevoflurane anesthesia for minor surgery lasting 30 to 240 min. INTERVENTIONS Children were randomized to either EEG-guided anesthesia (EEG-G) or standard care (SC). EEG-G group had sevoflurane titrated to maintain continuous slow/delta oscillations on the raw EEG and spectrogram, aiming to avoid burst suppression and, as far as possible, maintain a patient state index (PSI) between 25 and50. SC group received standard anesthesia care and the anesthesia teams were blinded to EEG waveforms. MEASUREMENTS The primary outcomes were the average end-tidal sevoflurane concentration during induction and maintenance of anesthesia. Secondary outcomes include incidence and duration of intra-operative burst suppression and Pediatric Anesthesia Emergence Delirium (PAED) scores. RESULTS The EEG-G group received lower end-tidal sevoflurane concentrations during induction [4.80% vs 5.67%, -0.88% (-1.45, -0.31) p = 0.003] and maintenance of anesthesia [2.23% vs 2.38%, -0.15% (-0.25, -0.05) p = 0.005], and had a lower incidence of burst suppression [3.1% vs 10.9%, p = 0.044] compared to the SC group. PAED scores were similar between groups. Children <2 years old required higher average end-tidal sevoflurane concentrations, regardless of group. CONCLUSIONS EEG-guided anesthesia care reduces sevoflurane requirements in children undergoing general anesthesia, possibly lowering the incidence of burst suppression, without altering emergence characteristics. EEG monitoring allows direct visualization of brain responses in real time and allows clearer appreciation of varying sevoflurane requirements in children of different ages.
Collapse
Affiliation(s)
- Melody H Y Long
- Department of Pediatric Anesthesia, KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore..
| | - Evangeline H L Lim
- Department of Pediatric Anesthesia, KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore..
| | - Gustavo A Balanza
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, USA.
| | - John C Allen
- Duke-NUS Medical School, Centre for Quantitative Medicine, 169857, Singapore.
| | - Patrick L Purdon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, USA.
| | - Choon Looi Bong
- Department of Pediatric Anesthesia, KK Women's and Children's Hospital, 100 Bukit Timah Road, 229899, Singapore..
| |
Collapse
|
37
|
Vacas S, Canales C, Deiner SG, Cole DJ. Perioperative Brain Health in the Older Adult: A Patient Safety Imperative. Anesth Analg 2022; 135:316-328. [PMID: 35584550 PMCID: PMC9288500 DOI: 10.1213/ane.0000000000006090] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
While people 65 years of age and older represent 16% of the population in the United States, they account for >40% of surgical procedures performed each year. Maintaining brain health after anesthesia and surgery is not only important to our patients, but it is also an increasingly important patient safety imperative for the specialty of anesthesiology. Aging is a complex process that diminishes the reserve of every organ system and often results in a patient who is vulnerable to the stress of surgery. The brain is no exception, and many older patients present with preoperative cognitive impairment that is undiagnosed. As we age, a number of changes occur in the human brain, resulting in a patient who is less resilient to perioperative stress, making older adults more susceptible to the phenotypic expression of perioperative neurocognitive disorders. This review summarizes the current scientific and clinical understanding of perioperative neurocognitive disorders and recommends patient-centered, age-focused interventions that can better mitigate risk, prevent harm, and improve outcomes for our patients. Finally, it discusses the emerging topic of sleep and cognitive health and other future frontiers of scientific inquiry that might inform clinical best practices.
Collapse
Affiliation(s)
- Susana Vacas
- From the Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Cecilia Canales
- From the Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| | - Stacie G Deiner
- Department of Anesthesiology, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire
| | - Daniel J Cole
- From the Department of Anesthesiology and Perioperative Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California
| |
Collapse
|
38
|
Gargadennec T, Oilleau JF, Rozec B, Nesseler N, Lasocki S, Futier E, Amour J, Durand M, Bougle A, Kerforne T, Consigny M, Eddi D, Huet O. Dexmedetomidine after Cardiac Surgery for Prevention of Delirium (EXACTUM) trial protocol: a multicentre randomised, double-blind, placebo-controlled trial. BMJ Open 2022; 12:e058968. [PMID: 35396310 PMCID: PMC8996049 DOI: 10.1136/bmjopen-2021-058968] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
INTRODUCTION Incidence of delirium after cardiac surgery remains high and delirium has a significant burden on short-term and long-term outcomes. Multiple causes can trigger delirium occurence, and it has been hypothesised that sleep disturbances can be one of them. Preserving the circadian rhythm with overnight infusion of low-dose dexmedetomidine has been shown to lower the occurrence of delirium in older patients after non-cardiac surgery. However, these results remain controversial. The aim of this study was to demonstrate the usefulness of sleep induction by overnight infusion of dexmedetomidine to prevent delirium after cardiac surgery. METHODS AND ANALYSIS Dexmedetomidine after Cardiac Surgery for Prevention of Delirium is an investigator-initiated, randomised, placebo-controlled, parallel, multicentre, double-blinded trial. Nine centres in France will participate in the study. Patients aged 65 years or older and undergoing cardiac surgery will be enrolled in the study. The intervention starts on day 0 (the day of surgery) until intensive care unit (ICU) discharge; the treatment is administered from 20:00 to 08:00 on the next day. Infusion rate is modified by the treating nurse or the clinician with an objective of Richmond Agitation and Sedation Scale score from -1 to +1. The primary outcome is delirium occurrence evaluated with confusion assessment method for the ICU two times per day during 7 days following surgery. Secondary outcomes include incidence of agitation related events, self-evaluated quality of sleep, cognitive evaluation 3 months after surgery and quality of life 3 months after surgery. The sample size is 348. ETHICS AND DISSEMINATION The study was approved for all participating centers by the French Central Ethics Committee (Comité de Protection des Personnes Ile de France VI, registration number 2018-000850-22). The results will be submitted for publication in peer-reviewed journals. TRIAL REGISTRATION NUMBER NCT03477344.
Collapse
Affiliation(s)
- Thomas Gargadennec
- Département d'Anesthésie et Réanimation Chirurgicale, CHU Brest, Brest, France
- Université de Bretagne Occidentale, Brest, France
| | - Jean-Ferréol Oilleau
- Département d'Anesthésie et Réanimation Chirurgicale, CHU Brest, Brest, France
- Université de Bretagne Occidentale, Brest, France
| | - Bertrand Rozec
- Intensive Care Unit, Anesthesia and Critical Care Department, Hôpital Laennec, University Hospital Centre Nantes, Nantes, France
- CNRS, INSERM, l'institut du thorax, Université de Nantes, Nantes, France
| | - Nicolas Nesseler
- Anaesthesia and Intensive Care Unit, Centre Hospitalier Universitaire de Rennes, Rennes, France
| | - Sigismond Lasocki
- Département Anesthésie Réanimation, CHU Angers, Angers, France
- Université Angers Faculté des Sciences, Angers, France
| | - Emmanuel Futier
- Département de Médecine Périopératoire, Anesthésie Réanimation, Hôpital Estaing, CHU Clermont-Ferrand, Clermont-Ferrand, France
- CNRS, Inserm U-1103, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Julien Amour
- Institute of Perfusion, Critical Care Medicine and Anesthesiology in Cardiothoracic Surgery (IPRA), Jacques Cartier Private Hospital, Massy, France
| | - Michel Durand
- Pôle Anesthésie-Réanimation, CHU Grenoble Alpes, Grenoble, France
| | - Adrien Bougle
- Sorbonne Universite, Paris, France
- Department of Anesthesiology and Critical Care Medicine, Institute of Cardiology, GRC 29, Pitié-Salpêtrière Hospital, APHP, Paris, France
| | - Thomas Kerforne
- Faculté de Médecine, INSERM U1082, Ischémie Reperfusion en Transplantation Modélisation et Innovations Thérapeutiques, Université de Poitiers, Poitiers, France
- Service d'Anesthésie, Réanimation et Médecine Péri-Opératoire, CHU Poitiers, Poitiers, France
| | - Maëlys Consigny
- Direction de la Recherche Clinique et de l'Innovation (DRCI), CHU Brest, Brest, France
| | - Dauphou Eddi
- Direction de la Recherche Clinique et de l'Innovation (DRCI), CHU Brest, Brest, France
| | - Olivier Huet
- Département d'Anesthésie et Réanimation Chirurgicale, CHU Brest, Brest, France
- Université de Bretagne Occidentale, Brest, France
| |
Collapse
|
39
|
Karunakaran KD, Kussman BD, Peng K, Becerra L, Labadie R, Bernier R, Berry D, Green S, Zurakowski D, Alexander ME, Borsook D. Brain-based measures of nociception during general anesthesia with remifentanil: A randomized controlled trial. PLoS Med 2022; 19:e1003965. [PMID: 35452458 PMCID: PMC9075662 DOI: 10.1371/journal.pmed.1003965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 05/06/2022] [Accepted: 03/14/2022] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Catheter radiofrequency (RF) ablation for cardiac arrhythmias is a painful procedure. Prior work using functional near-infrared spectroscopy (fNIRS) in patients under general anesthesia has indicated that ablation results in activity in pain-related cortical regions, presumably due to inadequate blockade of afferent nociceptors originating within the cardiac system. Having an objective brain-based measure for nociception and analgesia may in the future allow for enhanced analgesic control during surgical procedures. Hence, the primary aim of this study is to demonstrate that the administration of remifentanil, an opioid widely used during surgery, can attenuate the fNIRS cortical responses to cardiac ablation. METHODS AND FINDINGS We investigated the effects of continuous remifentanil on cortical hemodynamics during cardiac ablation under anesthesia. In a randomized, double-blinded, placebo (PL)-controlled trial, we examined 32 pediatric patients (mean age of 15.8 years,16 females) undergoing catheter ablation for cardiac arrhythmias at the Cardiology Department of Boston Children's Hospital from October 2016 to March 2020; 9 received 0.9% NaCl, 12 received low-dose (LD) remifentanil (0.25 mcg/kg/min), and 11 received high-dose (HD) remifentanil (0.5 mcg/kg/min). The hemodynamic changes of primary somatosensory and prefrontal cortices were recorded during surgery using a continuous wave fNIRS system. The primary outcome measures were the changes in oxyhemoglobin concentration (NadirHbO, i.e., lowest oxyhemoglobin concentration and PeakHbO, i.e., peak change and area under the curve) of medial frontopolar cortex (mFPC), lateral prefrontal cortex (lPFC) and primary somatosensory cortex (S1) to ablation in PL versus remifentanil groups. Secondary measures included the fNIRS response to an auditory control condition. The data analysis was performed on an intention-to-treat (ITT) basis. Remifentanil group (dosage subgroups combined) was compared with PL, and a post hoc analysis was performed to identify dose effects. There were no adverse events. The groups were comparable in age, sex, and number of ablations. Results comparing remifentanil versus PL show that PL group exhibit greater NadirHbO in inferior mFPC (mean difference (MD) = 1.229, 95% confidence interval [CI] = 0.334, 2.124, p < 0.001) and superior mFPC (MD = 1.206, 95% CI = 0.303, 2.109, p = 0.001) and greater PeakHbO in inferior mFPC (MD = -1.138, 95% CI = -2.062, -0.214, p = 0.002) and superior mFPC (MD = -0.999, 95% CI = -1.961, -0.036, p = 0.008) in response to ablation. S1 activation from ablation was greatest in PL, then LD, and HD groups, but failed to reach significance, whereas lPFC activation to ablation was similar in all groups. Ablation versus auditory stimuli resulted in higher PeakHbO in inferior mFPC (MD = 0.053, 95% CI = 0.004, 0.101, p = 0.004) and superior mFPC (MD = 0.052, 95% CI = 0.013, 0.091, p < 0.001) and higher NadirHbO in posterior superior S1 (Pos. SS1; MD = -0.342, 95% CI = -0.680, -0.004, p = 0.007) during ablation of all patients. Remifentanil group had smaller NadirHbO in inferior mFPC (MD = 0.098, 95% CI = 0.009, 0.130, p = 0.003) and superior mFPC (MD = 0.096, 95% CI = 0.008, 0.116, p = 0.003) and smaller PeakHbO in superior mFPC (MD = -0.092, 95% CI = -0.680, -0.004, p = 0.007) during both the stimuli. Study limitations were small sample size, motion from surgery, indirect measure of nociception, and shallow penetration depth of fNIRS only allowing access to superficial cortical layers. CONCLUSIONS We observed cortical activity related to nociception during cardiac ablation under general anesthesia with remifentanil. It highlights the potential of fNIRS to provide an objective pain measure in unconscious patients, where cortical-based measures may be more accurate than current evaluation methods. Future research may expand on this application to produce a real-time indication of pain that will aid clinicians in providing immediate and adequate pain treatment. TRIAL REGISTRATION ClinicalTrials.gov NCT02703090.
Collapse
Affiliation(s)
- Keerthana Deepti Karunakaran
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Barry D. Kussman
- Division of Cardiac Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Ke Peng
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Département en Neuroscience, Centre de Recherche du CHUM, l’Université de Montréal Montreal, Québec, Canada
| | - Lino Becerra
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Robert Labadie
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Rachel Bernier
- Division of Cardiac Anesthesia, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Delany Berry
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Stephen Green
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Zurakowski
- Division of Biostatistics, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Mark E. Alexander
- Department of Cardiology, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
| | - David Borsook
- The Center for Pain and the Brain, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, Massachusetts, United States of America
- Department of Psychiatry and Radiology, Massachusetts General Hospital, Boston, Massachusetts, United States of America
| |
Collapse
|
40
|
Ward-Flanagan R, Lo AS, Clement EA, Dickson CT. A Comparison of Brain-State Dynamics across Common Anesthetic Agents in Male Sprague-Dawley Rats. Int J Mol Sci 2022; 23:ijms23073608. [PMID: 35408973 PMCID: PMC8998244 DOI: 10.3390/ijms23073608] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/11/2022] [Accepted: 03/21/2022] [Indexed: 02/04/2023] Open
Abstract
Anesthesia is a powerful tool in neuroscientific research, especially in sleep research where it has the experimental advantage of allowing surgical interventions that are ethically problematic in natural sleep. Yet, while it is well documented that different anesthetic agents produce a variety of brain states, and consequently have differential effects on a multitude of neurophysiological factors, these outcomes vary based on dosages, the animal species used, and the pharmacological mechanisms specific to each anesthetic agent. Thus, our aim was to conduct a controlled comparison of spontaneous electrophysiological dynamics at a surgical plane of anesthesia under six common research anesthetics using a ubiquitous animal model, the Sprague-Dawley rat. From this direct comparison, we also evaluated which anesthetic agents may serve as pharmacological proxies for the electrophysiological features and dynamics of unconscious states such as sleep and coma. We found that at a surgical plane, pentobarbital, isoflurane and propofol all produced a continuous pattern of burst-suppression activity, which is a neurophysiological state characteristically observed during coma. In contrast, ketamine-xylazine produced synchronized, slow-oscillatory activity, similar to that observed during slow-wave sleep. Notably, both urethane and chloral hydrate produced the spontaneous, cyclical alternations between forebrain activation (REM-like) and deactivation (non-REM-like) that are similar to those observed during natural sleep. Thus, choice of anesthesia, in conjunction with continuous brain state monitoring, are critical considerations in order to avoid brain-state confounds when conducting neurophysiological experiments.
Collapse
Affiliation(s)
- Rachel Ward-Flanagan
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (R.W.-F.); (E.A.C.)
| | - Alto S. Lo
- Department of Psychology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
| | - Elizabeth A. Clement
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (R.W.-F.); (E.A.C.)
| | - Clayton T. Dickson
- Neuroscience and Mental Health Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada; (R.W.-F.); (E.A.C.)
- Department of Psychology, University of Alberta, Edmonton, AB T6G 2R3, Canada;
- Department of Physiology, University of Alberta, Edmonton, AB T6G 2H7, Canada
- Department of Anesthesiology and Pain Medicine, University of Alberta, Edmonton, AB T6G 2G3, Canada
- Correspondence: ; Tel.: +1-(780)-492-7860
| |
Collapse
|
41
|
Thalamic T-Type Calcium Channels as Targets for Hypnotics and General Anesthetics. Int J Mol Sci 2022; 23:ijms23042349. [PMID: 35216466 PMCID: PMC8876360 DOI: 10.3390/ijms23042349] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/17/2022] [Accepted: 02/18/2022] [Indexed: 12/19/2022] Open
Abstract
General anesthetics mainly act by modulating synaptic inhibition on the one hand (the potentiation of GABA transmission) or synaptic excitation on the other (the inhibition of NMDA receptors), but they can also have effects on numerous other proteins, receptors, and channels. The effects of general anesthetics on ion channels have been the subject of research since the publication of reports of direct actions of these drugs on ion channel proteins. In particular, there is considerable interest in T-type voltage-gated calcium channels that are abundantly expressed in the thalamus, where they control patterns of cellular excitability and thalamocortical oscillations during awake and sleep states. Here, we summarized and discussed our recent studies focused on the CaV3.1 isoform of T-channels in the nonspecific thalamus (intralaminar and midline nuclei), which acts as a key hub through which natural sleep and general anesthesia are initiated. We used mouse genetics and in vivo and ex vivo electrophysiology to study the role of thalamic T-channels in hypnosis induced by a standard general anesthetic, isoflurane, as well as novel neuroactive steroids. From the results of this study, we conclude that CaV3.1 channels contribute to thalamocortical oscillations during anesthetic-induced hypnosis, particularly the slow-frequency range of δ oscillations (0.5–4 Hz), by generating “window current” that contributes to the resting membrane potential. We posit that the role of the thalamic CaV3.1 isoform of T-channels in the effects of various classes of general anesthetics warrants consideration.
Collapse
|
42
|
Kim TH, Bormate KJ, Custodio RJP, Cheong JH, Lee BK, Kim HJ, Jung YS. Involvement of the adenosine A 1 receptor in the hypnotic effect of rosmarinic acid. Biomed Pharmacother 2022; 146:112483. [PMID: 34891112 DOI: 10.1016/j.biopha.2021.112483] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/23/2021] [Accepted: 11/30/2021] [Indexed: 11/18/2022] Open
Abstract
Insomnia, the most common sleep disorder, is characterized by a longer sleep latency, greater sleep fragmentation, and consequent excessive daytime fatigue. Due to the various side effects of prescribed hypnotics, demand for new drugs is still high. Recent studies have suggested the adenosine receptor (AR) as a potential therapeutic target for insomnia, however, clinically useful hypnotics targeting AR are not yet available. In the present study, we evaluated the hypnotic effect of rosmarinic acid, a phenolic compound widely found in medicinal plants, through pentobarbital-induced sleep test, electroencephalography/electromyography (EEG/EMG), and immunohistochemistry in mice. The underlying mechanisms were assessed by pharmacological approach using 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) and SCH5826, antagonists for A1R and A2AR, respectively. Receptor-binding assay and functional agonism were also performed. Our study provides a new evidence that rosmarinic acid has a direct binding activity (Ki = 14.21 ± 0.3 μM) and agonistic activity for A1R. We also found that rosmarinic acid significantly decreased sleep fragmentation and onset latency to NREM sleep, and these effects were abolished by DPCPX. The results from c-Fos immunostaining showed that rosmarinic acid decreased the neuronal activity in wake-promoting brain regions, such as the basal forebrain and the lateral hypothalamus, while increasing the neuronal activity in the ventrolateral preoptic nucleus, a sleep-promoting region; all these effects were significantly inhibited by DPCPX. Taken together, this study suggests that rosmarinic acid possesses novel activity as an A1R agonist and thereby exerts a hypnotic effect, and thus it may serve as a potential therapeutic agent for insomnia through targeting A1R.
Collapse
Affiliation(s)
- Tae-Ho Kim
- College of Pharmacy, Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Katrina Joy Bormate
- College of Pharmacy, Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea
| | | | - Jae Hoon Cheong
- School of Pharmacy, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Bo Kyung Lee
- College of Pharmacy, Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Hee Jin Kim
- Uimyung Research Institute in Neuroscience, Sahmyook University, Seoul 01795, Republic of Korea.
| | - Yi-Sook Jung
- College of Pharmacy, Research Institute of Pharmaceutical Sciences and Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
43
|
Zarhin D, Atsmon R, Ruggiero A, Baeloha H, Shoob S, Scharf O, Heim LR, Buchbinder N, Shinikamin O, Shapira I, Styr B, Braun G, Harel M, Sheinin A, Geva N, Sela Y, Saito T, Saido T, Geiger T, Nir Y, Ziv Y, Slutsky I. Disrupted neural correlates of anesthesia and sleep reveal early circuit dysfunctions in Alzheimer models. Cell Rep 2022; 38:110268. [PMID: 35045289 PMCID: PMC8789564 DOI: 10.1016/j.celrep.2021.110268] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2020] [Revised: 12/06/2021] [Accepted: 12/22/2021] [Indexed: 11/30/2022] Open
Abstract
Dysregulated homeostasis of neural activity has been hypothesized to drive Alzheimer's disease (AD) pathogenesis. AD begins with a decades-long presymptomatic phase, but whether homeostatic mechanisms already begin failing during this silent phase is unknown. We show that before the onset of memory decline and sleep disturbances, familial AD (fAD) model mice display no deficits in CA1 mean firing rate (MFR) during active wakefulness. However, homeostatic down-regulation of CA1 MFR is disrupted during non-rapid eye movement (NREM) sleep and general anesthesia in fAD mouse models. The resultant hyperexcitability is attenuated by the mitochondrial dihydroorotate dehydrogenase (DHODH) enzyme inhibitor, which tunes MFR toward lower set-point values. Ex vivo fAD mutations impair downward MFR homeostasis, resulting in pathological MFR set points in response to anesthetic drug and inhibition blockade. Thus, firing rate dyshomeostasis of hippocampal circuits is masked during active wakefulness but surfaces during low-arousal brain states, representing an early failure of the silent disease stage.
Collapse
Affiliation(s)
- Daniel Zarhin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Refaela Atsmon
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Antonella Ruggiero
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Halit Baeloha
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Shiri Shoob
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oded Scharf
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Leore R Heim
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nadav Buchbinder
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ortal Shinikamin
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Ilana Shapira
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Boaz Styr
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Gabriella Braun
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Michal Harel
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Anton Sheinin
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Nitzan Geva
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Yaniv Sela
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Takashi Saito
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan; Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Sciences, Nagoya, Aichi 467-8601, Japan
| | - Takaomi Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Saitama 351-0198, Japan
| | - Tamar Geiger
- Department of Human Genetics and Biochemistry, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yuval Nir
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel
| | - Yaniv Ziv
- Department of Neurobiology, Weizmann Institute of Science, Rehovot 76100, Israel
| | - Inna Slutsky
- Department of Physiology and Pharmacology, Sackler Faculty of Medicine, Tel Aviv University, Tel Aviv 69978, Israel; Sagol School of Neuroscience, Tel Aviv University, Tel Aviv 69978, Israel.
| |
Collapse
|
44
|
Bi H, Cao S, Yan H, Jiang Z, Zhang J, Zou L. Resting State Functional Connectivity Analysis During General Anesthesia: A High-Density EEG Study. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2022; 19:3-13. [PMID: 34156946 DOI: 10.1109/tcbb.2021.3091000] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The depth of anesthesia monitoring is helpful to guide administrations of general anesthetics during surgical procedures,however, the conventional 2-4 channels electroencephalogram (EEG) derived monitors have their limitations in monitoring conscious states due to low spatial resolution and suboptimal algorithm. In this study, 256-channel high-density EEG signals in 24 subjects receiving three types of general anesthetics (propofol, sevoflurane and ketamine) respectively were recorded both before and after anesthesia. The raw EEG signals were preprocessed by EEGLAB 14.0. Functional connectivity (FC) analysis by traditional coherence analysis (CA) method and a novel sparse representation (SR) method. And the network parameters, average clustering coefficient (ACC) and average shortest path length (ASPL) before and after anesthesia were calculated. The results show SR method find more significant FC differences in frontal and occipital cortices, and whole brain network (p<0.05). In contrast, CA can hardly obtain consistent ASPL in the whole brain network (p>0.05). Further, ASPL calculated by SR for whole brain connections in all of three anesthesia groups increased, which can be a unified EEG biomarker of general anesthetics-induced loss of consciousness (LOC). Therefore FC analysis based on SR analysis has better performance in distinguishing anesthetic-induced LOC from awake state.
Collapse
|
45
|
Chamadia S, Gitlin J, Mekonnen J, Ethridge BR, Ibala R, Colon KM, Qu J, Akeju O. Ketamine induces EEG oscillations that may aid anesthetic state but not dissociation monitoring. Clin Neurophysiol 2021; 132:3010-3018. [PMID: 34715426 DOI: 10.1016/j.clinph.2021.08.021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 08/21/2021] [Accepted: 08/29/2021] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Ketamine is an anesthetic drug associated with dissociation. Decreased electroencephalogram alpha (8-13 Hz) and low-beta (13-20 Hz) oscillation power have been associated with ketamine-induced dissociation. We aimed to characterize surface electroencephalogram signatures that may serve as biomarkers for dissociation. METHODS We analyzed data from a single-site, open-label, high-density surface electroencephalogram study of ketamine anesthesia (2 mg/kg, n = 15). We assessed dissociation longitudinally using the Clinician Administered Dissociation States Scale (CADSS) and administered midazolam to attenuate dissociation and enable causal inference. We analyzed electroencephalogram power and global coherence with multitaper spectral methods. Mixed effects models were used to assess whether power and global coherence signatures of ketamine could be developed into dissociation-specific biomarkers. RESULTS Compared to baseline, ketamine unresponsiveness was associated with increased frontal power between 0.5 to 9.3 Hz, 12.2 to 16.6 Hz, and 24.4 to 50 Hz. As subjects transitioned into a responsive but dissociated state (mean CADSS ± SD, 22.1 ± 17), there was a decrease in power between 0.5 to 10.3 Hz and 11.7 to 50 Hz. Midazolam reduced dissociation scores (14.3 ± 11.6), decreased power between 4.4 to 11.7 Hz and increased power between 14.2 to 50 Hz. Our mixed-effects model demonstrated a quadratic relationship between time and CADSS scores. When models (frontal power, occipital power, global coherence) were reanalyzed with midazolam and electroencephalogram features as covariates, only midazolam was retained. CONCLUSIONS Ketamine is associated with structured electroencephalogram power and global coherence signatures that may enable principled anesthetic state but not dissociation monitoring. SIGNIFICANCE A neurophysiological biomarker for dissociation may lead to a better understanding of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Shubham Chamadia
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jacob Gitlin
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jennifer Mekonnen
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Breanna R Ethridge
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Reine Ibala
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Katia M Colon
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jason Qu
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA
| | - Oluwaseun Akeju
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Boston, MA, USA.
| |
Collapse
|
46
|
Coulter I, Timic Stamenic T, Eggan P, Fine BR, Corrigan T, Covey DF, Yang L, Pan JQ, Todorovic SM. Different roles of T-type calcium channel isoforms in hypnosis induced by an endogenous neurosteroid epipregnanolone. Neuropharmacology 2021; 197:108739. [PMID: 34339750 PMCID: PMC8478885 DOI: 10.1016/j.neuropharm.2021.108739] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Revised: 07/09/2021] [Accepted: 07/29/2021] [Indexed: 12/31/2022]
Abstract
BACKGROUND Many neuroactive steroids induce sedation/hypnosis by potentiating γ-aminobutyric acid (GABAA) currents. However, we previously demonstrated that an endogenous neuroactive steroid epipregnanolone [(3β,5β)-3-hydroxypregnan-20-one] (EpiP) exerts potent peripheral analgesia and blocks T-type calcium currents while sparing GABAA currents in rat sensory neurons. This study seeks to investigate the behavioral effects elicited by systemic administration of EpiP and to characterize its use as an adjuvant agent to commonly used general anesthetics (GAs). METHODS Here, we utilized electroencephalographic (EEG) recordings to characterize thalamocortical oscillations, as well as behavioral assessment and mouse genetics with wild-type (WT) and different knockout (KO) models of T-channel isoforms to investigate potential sedative/hypnotic and immobilizing properties of EpiP. RESULTS Consistent with increased oscillations in slower EEG frequencies, EpiP induced an hypnotic state in WT mice when injected alone intra-peritoneally (i.p.) and effectively facilitated anesthetic effects of isoflurane (ISO) and sevoflurane (SEVO). The CaV3.1 (Cacna1g) KO mice demonstrated decreased sensitivity to EpiP-induced hypnosis when compared to WT mice, whereas no significant difference was noted between CaV3.2 (Cacna1h), CaV3.3 (Cacna1i) and WT mice. Finally, when compared to WT mice, onset of EpiP-induced hypnosis was delayed in CaV3.2 KO mice but not in CaV3.1 and CaV3.3 KO mice. CONCLUSION We posit that EpiP may have an important role as novel hypnotic and/or adjuvant to volatile anesthetic agents. We speculate that distinct hypnotic effects of EpiP across all three T-channel isoforms is due to their differential expression in thalamocortical circuitry.
Collapse
Affiliation(s)
- Ian Coulter
- Department of Anesthesiology, University of Colorado,
Anschutz Medical Campus, Aurora 80045
| | - Tamara Timic Stamenic
- Department of Anesthesiology, University of Colorado,
Anschutz Medical Campus, Aurora 80045
| | - Pierce Eggan
- Department of Anesthesiology, University of Colorado,
Anschutz Medical Campus, Aurora 80045
| | - Brier R. Fine
- Department of Anesthesiology, University of Colorado,
Anschutz Medical Campus, Aurora 80045
| | - Timothy Corrigan
- Department of Pediatrics, Division of Neurology,
Translational Epilepsy Research Program, University of Colorado, Anschutz Medical
Campus, Aurora, CO 80045, USA
| | - Douglas F. Covey
- Department of Developmental Biology, Washington University
School of Medicine, St. Louis, MO 63110, USA;,Taylor Family Institute for Innovative Psychiatric
Research, Washington University School of Medicine, St. Louis, MO 63110, USA
| | - Lingling Yang
- Stanley Center for Psychiatric Research, Broad Institute of
Harvard and MIT
| | - Jen Q. Pan
- Stanley Center for Psychiatric Research, Broad Institute of
Harvard and MIT
| | - Slobodan M. Todorovic
- Department of Anesthesiology, University of Colorado,
Anschutz Medical Campus, Aurora 80045;,Neuroscience, University of Colorado, Anschutz Medical
Campus, Aurora 80045;,Pharmacology Graduate Programs, University of Colorado,
Anschutz Medical Campus, Aurora 80045
| |
Collapse
|
47
|
Fifel K, Deboer T. Heterogenous electrophysiological responses of functionally distinct striatal subregions to circadian and sleep-related homeostatic processes. Sleep 2021; 45:6369544. [PMID: 34516641 DOI: 10.1093/sleep/zsab230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/08/2021] [Indexed: 11/13/2022] Open
Abstract
Basal Ganglia (BG) are a set of subcortical nuclei that are involved in the control of a wide variety of motor, cognitive and affective behaviors. Although many behavioral abnormalities associated with BG dysfunction overlap with the clinical picture precipitated by the lack of sleep, the impact of sleep alterations on neuronal activity in BG is unknown. Using wildtype C57BI mice, we investigated the circadian and sleep-related homeostatic modulation of neuronal activity in the 3 functional subdivisions of the striatum (i.e. sensorimotor, associative and limbic striatum). We found no circadian modulation of activity in both ventral and dorso-medial striatum while the dorso-lateral striatum displayed a significant circadian rhythm with increased firing rates during the subjective dark, active phase. By combining neuronal activity recordings with electroencephalogram (EEG) recordings, we found a strong modulation of neuronal activity by the nature of vigilance states with increased activity during wakefulness and rapid eye movement sleep relative to non-rapid eye movement sleep in all striatal subregions. Depriving animals of sleep for 6 hours induced significant, but heterogenous alterations in the neuronal activity across striatal subregions. Notably, these alterations lasted for up to 48 hours in the sensorimotor striatum and persisted even after the normalization of cortical EEG power densities. Our results show that vigilance and sleep states as well as their disturbances significantly affect neuronal activity within the striatum. We propose that these changes in neuronal activity underlie both the well-established links between sleep alterations and several disorders involving BG dysfunction as well as the maladaptive changes in behavior induced in healthy subjects following sleep loss.
Collapse
Affiliation(s)
- Karim Fifel
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands.,International Institute for Integrative Sleep Medicine (WPI-IIIS), University of Tsukuba, Tennodai, Tsukuba, Ibaraki, Japan
| | - Tom Deboer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
48
|
Progress in modelling of brain dynamics during anaesthesia and the role of sleep-wake circuitry. Biochem Pharmacol 2021; 191:114388. [DOI: 10.1016/j.bcp.2020.114388] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 12/16/2020] [Accepted: 12/17/2020] [Indexed: 12/28/2022]
|
49
|
Lin D, Huang X, Sun Y, Wei C, Wu A. Perioperative Sleep Disorder: A Review. Front Med (Lausanne) 2021; 8:640416. [PMID: 34164409 PMCID: PMC8215143 DOI: 10.3389/fmed.2021.640416] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 05/13/2021] [Indexed: 12/28/2022] Open
Abstract
Patients in the perioperative period usually present with different types and degrees of sleep disorders, which can severely affect their post-operative outcomes. Multiple risk factors may lead to the occurrence of perioperative sleep disorders, including personal factors, psychological factors, surgery factors, and environmental factors. In this review, we summarize the potential risk factors for perioperative sleep disorders during hospitalization. And it also provides an overview of perioperative outcomes and potential therapeutic prevention of perioperative sleep disorders. However, the further search is necessary to investigate the effectiveness and safety of preventions in the clinical practice and push forward the therapies.
Collapse
Affiliation(s)
- Dandan Lin
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Xiao Huang
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Yi Sun
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Changwei Wei
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Anshi Wu
- Department of Anesthesiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
50
|
Dissociative and analgesic properties of ketamine are independent and unaltered by sevoflurane general anesthesia. Pain Rep 2021; 6:e936. [PMID: 34104842 PMCID: PMC8177870 DOI: 10.1097/pr9.0000000000000936] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 01/20/2021] [Accepted: 04/21/2021] [Indexed: 11/30/2022] Open
Abstract
Ketamine-induced dissociation and analgesia are independent and robust to general anesthesia neural circuit alterations, suggesting that ketamine can be refined into a targeted pain therapeutic. Introduction: Ketamine, an anesthetic adjunct, is routinely administered as part of a balanced general anesthetic technique. We recently showed that the acute analgesic and dissociation properties of ketamine are separable to suggest that distinct neural circuits underlie these states. Objective: We aimed to study whether this finding is robust to the substantial neural circuit alterations associated with general anesthesia. Methods: We conducted a single-site, open-label, randomized controlled, cross-over study of sevoflurane and sevoflurane-plus-ketamine (SK) general anesthesia in healthy subjects (n = 12). Before and after general anesthesia, we assessed precalibrated cuff pain intensity and nociceptive pain quality as well as dissociation using the Clinician-Administered Dissociative States Scale (CADSS). For statistical inference, we ran a variation of backward elimination repeated-measures analysis of covariance. Models with CADSS as a covariate term were used to assess whether dissociation mediated the effect of ketamine on pain intensity and quality. Results: Sevoflurane-plus-ketamine general anesthesia was associated with a significant (P = 0.0002) pain intensity decline of 3 (SE, 0.44). There was an order effect for dissociation such that SK was associated with a significant (P = 0.0043) CADSS increase of 17.8 (3.2) when the SK treatment came first. When the pain intensity model was reanalyzed with CADSS as an additional covariate, the effect of CADSS was not significant. These results were also conserved for pain quality. Conclusions: Our findings suggest that the analgesic and dissociation properties of ketamine remain separable despite general anesthesia. Thus, ketamine may be used as a probe to advance our knowledge of dissociation independent pain circuits.
Collapse
|