1
|
Hurst CH, Turnbull D, Xhelilaj K, Myles S, Pflughaupt RL, Kopischke M, Davies P, Jones S, Robatzek S, Zipfel C, Gronnier J, Hemsley PA. S-acylation stabilizes ligand-induced receptor kinase complex formation during plant pattern-triggered immune signaling. Curr Biol 2023; 33:1588-1596.e6. [PMID: 36924767 DOI: 10.1016/j.cub.2023.02.065] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 01/20/2023] [Accepted: 02/21/2023] [Indexed: 03/17/2023]
Abstract
Plant receptor kinases are key transducers of extracellular stimuli, such as the presence of beneficial or pathogenic microbes or secreted signaling molecules. Receptor kinases are regulated by numerous post-translational modifications.1,2,3 Here, using the immune receptor kinases FLS24 and EFR,5 we show that S-acylation at a cysteine conserved in all plant receptor kinases is crucial for function. S-acylation involves the addition of long-chain fatty acids to cysteine residues within proteins, altering their biochemical properties and behavior within the membrane environment.6 We observe S-acylation of FLS2 at C-terminal kinase domain cysteine residues within minutes following the perception of its ligand, flg22, in a BAK1 co-receptor and PUB12/13 ubiquitin ligase-dependent manner. We demonstrate that S-acylation is essential for FLS2-mediated immune signaling and resistance to bacterial infection. Similarly, mutating the corresponding conserved cysteine residue in EFR suppressed elf18-triggered signaling. Analysis of unstimulated and activated FLS2-containing complexes using microscopy, detergents, and native membrane DIBMA nanodiscs indicates that S-acylation stabilizes, and promotes retention of, activated receptor kinase complexes at the plasma membrane to increase signaling efficiency.
Collapse
Affiliation(s)
- Charlotte H Hurst
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK; Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Dionne Turnbull
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Kaltra Xhelilaj
- ZMBP Universität Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany
| | - Sally Myles
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Robin L Pflughaupt
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Michaela Kopischke
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Paul Davies
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK
| | - Susan Jones
- Information and Computational Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK
| | - Silke Robatzek
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK
| | - Cyril Zipfel
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich NR4 7UH, UK; Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Julien Gronnier
- ZMBP Universität Tübingen, Auf der Morgenstelle 32, 72076 Tübingen, Germany; Institute of Plant and Microbial Biology, Zurich-Basel Plant Science Center, University of Zurich, 8008 Zurich, Switzerland
| | - Piers A Hemsley
- Division of Plant Sciences, School of Life Sciences, University of Dundee, Dow Street, Dundee DD1 5EH, UK; Cell and Molecular Sciences, The James Hutton Institute, Invergowrie, Dundee DD2 5DA, UK.
| |
Collapse
|
2
|
Todd JNA, Carreón-Anguiano KG, Islas-Flores I, Canto-Canché B. Microbial Effectors: Key Determinants in Plant Health and Disease. Microorganisms 2022; 10:1980. [PMID: 36296254 PMCID: PMC9610748 DOI: 10.3390/microorganisms10101980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 09/27/2022] [Accepted: 09/29/2022] [Indexed: 11/17/2022] Open
Abstract
Effectors are small, secreted molecules that alter host cell structure and function, thereby facilitating infection or triggering a defense response. Effectoromics studies have focused on effectors in plant-pathogen interactions, where their contributions to virulence are determined in the plant host, i.e., whether the effector induces resistance or susceptibility to plant disease. Effector molecules from plant pathogenic microorganisms such as fungi, oomycetes and bacteria are major disease determinants. Interestingly, the effectors of non-pathogenic plant organisms such as endophytes display similar functions but have different outcomes for plant health. Endophyte effectors commonly aid in the establishment of mutualistic interactions with the plant and contribute to plant health through the induction of systemic resistance against pathogens, while pathogenic effectors mainly debilitate the plant's immune response, resulting in the establishment of disease. Effectors of plant pathogens as well as plant endophytes are tools to be considered in effectoromics for the development of novel strategies for disease management. This review aims to present effectors in their roles as promotors of health or disease for the plant host.
Collapse
Affiliation(s)
- Jewel Nicole Anna Todd
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Karla Gisel Carreón-Anguiano
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Ignacio Islas-Flores
- Unidad de Bioquímica y Biología Molecular de Plantas, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| | - Blondy Canto-Canché
- Unidad de Biotecnología, Centro de Investigación Científica de Yucatán, A.C., Calle 43 No. 130 x 32 y 34, Colonia Chuburná de Hidalgo, Mérida C.P. 97205, Yucatán, Mexico
| |
Collapse
|
3
|
Cordelier S, Crouzet J, Gilliard G, Dorey S, Deleu M, Dhondt-Cordelier S. Deciphering the role of plant plasma membrane lipids in response to invasion patterns: how could biology and biophysics help? JOURNAL OF EXPERIMENTAL BOTANY 2022; 73:2765-2784. [PMID: 35560208 DOI: 10.1093/jxb/erab517] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 11/25/2021] [Indexed: 06/15/2023]
Abstract
Plants have to constantly face pathogen attacks. To cope with diseases, they have to detect the invading pathogen as early as possible via the sensing of conserved motifs called invasion patterns. The first step of perception occurs at the plasma membrane. While many invasion patterns are perceived by specific proteinaceous immune receptors, several studies have highlighted the influence of the lipid composition and dynamics of the plasma membrane in the sensing of invasion patterns. In this review, we summarize current knowledge on how some microbial invasion patterns could interact with the lipids of the plasma membrane, leading to a plant immune response. Depending on the invasion pattern, different mechanisms are involved. This review outlines the potential of combining biological with biophysical approaches to decipher how plasma membrane lipids are involved in the perception of microbial invasion patterns.
Collapse
Affiliation(s)
- Sylvain Cordelier
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| | - Jérôme Crouzet
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| | - Guillaume Gilliard
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, TERRA Research Center, Gembloux Agro-Bio Tech, Université de Liège, 2 Passage des Déportés, B-5030 Gembloux, Belgium
| | - Stéphan Dorey
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| | - Magali Deleu
- Laboratoire de Biophysique Moléculaire aux Interfaces, SFR Condorcet FR CNRS 3417, TERRA Research Center, Gembloux Agro-Bio Tech, Université de Liège, 2 Passage des Déportés, B-5030 Gembloux, Belgium
| | - Sandrine Dhondt-Cordelier
- Université de Reims Champagne Ardenne, RIBP EA 4707, USC INRAE 1488, SFR Condorcet FR CNRS 3417, 51100 Reims, France
| |
Collapse
|
4
|
Nehra M, Dilbaghi N, Marrazza G, Kaushik A, Sonne C, Kim KH, Kumar S. Emerging nanobiotechnology in agriculture for the management of pesticide residues. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123369. [PMID: 32763682 DOI: 10.1016/j.jhazmat.2020.123369] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2020] [Revised: 06/12/2020] [Accepted: 06/30/2020] [Indexed: 05/18/2023]
Abstract
Utilization of pesticides is often necessary for meeting commercial requirements for crop quality and yield. However, incessant global pesticide use poses potential risks to human and ecosystem health. This situation increases the urgency of developing nano-biotechnology-assisted pesticide formulations that have high efficacy and low risk of side effects. The risks associated with both conventional and nanopesticides are summarized in this review. Moreover, the management of residual pesticides is still a global challenge. The contamination of soil and water resources with pesticides has adverse impact over agricultural productivity and food security; ultimately posing threats to living organisms. Pesticide residues in the eco-system may be treated via several biological and physicochemical processes, such as microbe-based degradation and advanced oxidation processes. With these issues in mind, we present a review that explores both existing and emerging techniques for management of pesticide residues and environmental risks. These techniques can offer a sustainable solution to revitalize the tarnished water/soil resources. Further, state-of-the-art research approaches to investigate biotechnological alternatives to conventional pesticides are discussed along with future prospects and mitigation techniques are recommended.
Collapse
Affiliation(s)
- Monika Nehra
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Neeraj Dilbaghi
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India
| | - Giovanna Marrazza
- Department of Chemistry "Ugo Schiff", University of Florence, Via della Lastruccia 3, 50019, Sesto Fiorentino, Florence, Italy
| | - Ajeet Kaushik
- NanoBioTech Laboratory, Department of Natural Sciences, Division of Sciences, Arts & Mathematics, Florida Polytechnic University, Lakeland, FL, 33805-8531, United States
| | - Christian Sonne
- Aarhus University, Department of Bioscience, Arctic Research Centre (ARC), Frederiksborgvej 399, PO Box 358, DK-4000, Roskilde, Denmark
| | - Ki-Hyun Kim
- Department of Civil & Environmental Engineering, Hanyang University, 222 Wangsimni-Ro, Seoul, 04763, Republic of Korea
| | - Sandeep Kumar
- Department of Bio and Nano Technology, Guru Jambheshwar University of Science and Technology, Hisar, Haryana, 125001, India.
| |
Collapse
|
5
|
Metabolic Profiling of PGPR-Treated Tomato Plants Reveal Priming-Related Adaptations of Secondary Metabolites and Aromatic Amino Acids. Metabolites 2020; 10:metabo10050210. [PMID: 32443694 PMCID: PMC7281251 DOI: 10.3390/metabo10050210] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/10/2020] [Accepted: 05/12/2020] [Indexed: 12/12/2022] Open
Abstract
Plant growth–promoting rhizobacteria (PGPR) are beneficial microbes in the rhizosphere that can directly or indirectly stimulate plant growth. In addition, some can prime plants for enhanced defense against a broad range of pathogens and insect herbivores. In this study, four PGPR strains (Pseudomonas fluorescens N04, P. koreensis N19, Paenibacillus alvei T19, and Lysinibacillus sphaericus T22) were used to induce priming in Solanum lycopersicum (cv. Moneymaker) plants. Plants were inoculated with each of the four PGPRs, and plant tissues (roots, stems, and leaves) were harvested at 24 h and 48 h post-inoculation. Methanol-extracted metabolites were analyzed by ultra-high performance liquid chromatography mass spectrometry (UHPLC-MS). Chemometric methods were applied to mine the data and characterize the differential metabolic profiles induced by the PGPR. The results revealed that all four strains induced defense-related metabolic reprogramming in the plants, characterized by dynamic changes to the metabolomes involving hydroxycinnamates, benzoates, flavonoids, and glycoalkaloids. In addition, targeted analysis of aromatic amino acids indicated differential quantitative increases or decreases over a two-day period in response to the four PGPR strains. The metabolic alterations point to an altered or preconditioned state that renders the plants primed for enhanced defense responses. The results contribute to ongoing efforts in investigating and unraveling the biochemical processes that define the PGPR priming phenomenon.
Collapse
|
6
|
Agrahari RK, Singh P, Koyama H, Panda SK. Plant-microbe Interactions for Sustainable Agriculture in the Post-genomic Era. Curr Genomics 2020; 21:168-178. [PMID: 33071611 PMCID: PMC7521031 DOI: 10.2174/1389202921999200505082116] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Revised: 03/21/2020] [Accepted: 03/30/2020] [Indexed: 11/22/2022] Open
Abstract
Plant-microbe interactions are both symbiotic and antagonistic, and the knowledge of both these interactions is equally important for the progress of agricultural practice and produce. This review gives an insight into the recent advances that have been made in the plant-microbe interaction study in the post-genomic era and the application of those for enhancing agricultural production. Adoption of next-generation sequencing (NGS) and marker assisted selection of resistant genes in plants, equipped with cloning and recombination techniques, has progressed the techniques for the development of resistant plant varieties by leaps and bounds. Genome-wide association studies (GWAS) of both plants and microbes have made the selection of desirable traits in plants and manipulation of the genomes of both plants and microbes effortless and less time-consuming. Stress tolerance in plants has been shown to be accentuated by association of certain microorganisms with the plant, the study and application of the same have helped develop stress-resistant varieties of crops. Beneficial microbes associated with plants are being extensively used for the development of microbial consortia that can be applied directly to the plants or the soil. Next-generation sequencing approaches have made it possible to identify the function of microbes associated in the plant microbiome that are both culturable and non-culturable, thus opening up new doors and possibilities for the use of these huge resources of microbes that can have a potential impact on agriculture.
Collapse
Affiliation(s)
| | | | | | - Sanjib Kumar Panda
- Address correspondence to this author at the Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH 8, Bandarsindri, Ajmer 305817, Rajasthan, India; Tel: 9435370608; E-mail:
| |
Collapse
|
7
|
Kumar A, Kumar R, Sengupta D, Das SN, Pandey MK, Bohra A, Sharma NK, Sinha P, Sk H, Ghazi IA, Laha GS, Sundaram RM. Deployment of Genetic and Genomic Tools Toward Gaining a Better Understanding of Rice- Xanthomonas oryzae pv. oryzae Interactions for Development of Durable Bacterial Blight Resistant Rice. FRONTIERS IN PLANT SCIENCE 2020; 11:1152. [PMID: 32849710 PMCID: PMC7417518 DOI: 10.3389/fpls.2020.01152] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/15/2020] [Indexed: 05/05/2023]
Abstract
Rice is the most important food crop worldwide and sustainable rice production is important for ensuring global food security. Biotic stresses limit rice production significantly and among them, bacterial blight (BB) disease caused by Xanthomonas oryzae pv. oryzae (Xoo) is very important. BB reduces rice yields severely in the highly productive irrigated and rainfed lowland ecosystems and in recent years; the disease is spreading fast to other rice growing ecosystems as well. Being a vascular pathogen, Xoo interferes with a range of physiological and biochemical exchange processes in rice. The response of rice to Xoo involves specific interactions between resistance (R) genes of rice and avirulence (Avr) genes of Xoo, covering most of the resistance genes except the recessive ones. The genetic basis of resistance to BB in rice has been studied intensively, and at least 44 genes conferring resistance to BB have been identified, and many resistant rice cultivars and hybrids have been developed and released worldwide. However, the existence and emergence of new virulent isolates of Xoo in the realm of a rapidly changing climate necessitates identification of novel broad-spectrum resistance genes and intensification of gene-deployment strategies. This review discusses about the origin and occurrence of BB in rice, interactions between Xoo and rice, the important roles of resistance genes in plant's defense response, the contribution of rice resistance genes toward development of disease resistance varieties, identification and characterization of novel, and broad-spectrum BB resistance genes from wild species of Oryza and also presents a perspective on potential strategies to achieve the goal of sustainable disease management.
Collapse
Affiliation(s)
- Anirudh Kumar
- Department of Botany, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
- *Correspondence: Raman Meenakshi Sundaram, ; Anirudh Kumar,
| | - Rakesh Kumar
- Department of Life Science, Central University of Karnataka, Kalaburagi, India
| | - Debashree Sengupta
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad (UoH), Hyderabad, India
| | - Subha Narayan Das
- Department of Botany, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Manish K. Pandey
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Abhishek Bohra
- ICAR-Crop Improvement Division, Indian Institute of Pulses Research (IIPR), Kanpur, India
| | - Naveen K. Sharma
- Department of Botany, Indira Gandhi National Tribal University (IGNTU), Amarkantak, India
| | - Pragya Sinha
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Hajira Sk
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Irfan Ahmad Ghazi
- Department of Plant Sciences, School of Life Sciences, University of Hyderabad (UoH), Hyderabad, India
| | - Gouri Sankar Laha
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
| | - Raman Meenakshi Sundaram
- Department of Biotechnology, ICAR-Indian Institute of Rice Research (IIRR), Hyderabad, India
- *Correspondence: Raman Meenakshi Sundaram, ; Anirudh Kumar,
| |
Collapse
|
8
|
Albert I, Zhang L, Bemm H, Nürnberger T. Structure-Function Analysis of Immune Receptor AtRLP23 with Its Ligand nlp20 and Coreceptors AtSOBIR1 and AtBAK1. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2019; 32:1038-1046. [PMID: 31237473 DOI: 10.1094/mpmi-09-18-0263-r] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Pattern-triggered immunity is an inherent feature of the plant immune system. Recognition of either microbe-derived surface structures (patterns) or of plant materials released due to the deleterious impact of microbial infection is brought about by plasma membrane pattern recognition receptors (PRRs). PRRs composed of leucine-rich repeat (LRR) ectodomains are thought to mediate sensing of proteinaceous patterns and to initiate signaling cascades culminating in the activation of generic plant defenses. In contrast to LRR receptor kinases, LRR receptor proteins (LRR-RPs) lack a cytoplasmic kinase domain for initiation of downstream signal transduction. LRR-RPs form heteromeric constitutive, ligand-independent complexes with coreceptor SOBIR1. Upon ligand binding to LRR-RPs, recruitment of coreceptor SERK3/BAK1 results in formation of a ternary PRR complex. Structure-function analysis of LRR-RP-type PRRs is missing. AtRLP23 constitutes an LRR-RP PRR that mediates recognition of a peptide motif (nlp20) found in numerous bacterial, fungal, and oomycete necrosis and ethylene-inducing peptide 1-like proteins (NLPs). We here report the use of a series of AtRLP23 variants to decipher subdomains required for ligand binding and interaction with coreceptors AtSOBIR1 and AtBAK1, respectively. Deletion of LRR1 or LRR3 subdomains efficiently abrogated the ability of AtRLP23 receptor variants to confer nlp20 pattern sensitivity, to bind nlp20, and to recruit AtBAK1 into a ternary PRR complex. This suggests that the very N-terminal part of the AtRLP23 ectodomain is crucial for receptor function. Deletion of the intracellular 17-amino-acid tail of AtRLP23 reduced but did not abolish receptor function, suggesting an auxiliary role of this domain in receptor function. We further found that interaction of AtRLP23 and other LRR-RP-type PRRs with AtSOBIR1 does not require the AtRLP23 LRR ectodomain but is brought about by a GxxxG protein dimerization motif in the transmembrane domain and a stretch of negatively charged glutamic acid residues in the outer juxtamembrane domain of the receptor. Further, AtRLP23 levels were found to be unaltered in Atsobir1-1 mutant genotypes, suggesting that AtSOBIR1 does not act as a protein scaffold in stabilizing LRR-RP-type PRRs in Arabidopsis.
Collapse
Affiliation(s)
- Isabell Albert
- 1Eberhard-Karls-University Tübingen, Center of Plant Molecular Biology, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Lisha Zhang
- 1Eberhard-Karls-University Tübingen, Center of Plant Molecular Biology, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Hannah Bemm
- 1Eberhard-Karls-University Tübingen, Center of Plant Molecular Biology, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Thorsten Nürnberger
- 1Eberhard-Karls-University Tübingen, Center of Plant Molecular Biology, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
- 2Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
9
|
Prasad P, Savadi S, Bhardwaj SC, Gangwar OP, Kumar S. Rust pathogen effectors: perspectives in resistance breeding. PLANTA 2019; 250:1-22. [PMID: 30980247 DOI: 10.1007/s00425-019-03167-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 04/09/2019] [Indexed: 06/09/2023]
Abstract
Identification and functional characterization of plant pathogen effectors promise to ameliorate future research and develop effective and sustainable strategies for controlling or containing crop diseases. Wheat is the second most important food crop of the world after rice. Rust pathogens, one of the major biotic stresses in wheat production, are capable of threatening the world food security. Understanding the molecular basis of plant-pathogen interactions is essential for devising novel strategies for resistance breeding and disease management. Now, it has been established that effectors, the proteins secreted by pathogens, play a key role in plant-pathogen interactions. Therefore, effector biology has emerged as one of the most important research fields in plant biology. Recent advances in genomics and bioinformatics have allowed identification of a large repertoire of candidate effectors, while the evolving high-throughput tools have continued to assist in their functional characterization. The repertoires of effectors have become an important resource for better understanding of effector biology of pathosystems and resistance breeding of crop plants. In recent years, a significant progress has been made in the field of rust effector biology. This review describes the recent advances in effector biology of obligate fungal pathogens, identification and functional analysis of wheat rust pathogens effectors and the potential applications of effectors in molecular plant biology and rust resistance breeding in wheat.
Collapse
Affiliation(s)
- Pramod Prasad
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| | - Siddanna Savadi
- ICAR-Directorate of Cashew Research, Puttur, Karnataka, 574202, India
| | - S C Bhardwaj
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India.
| | - O P Gangwar
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| | - Subodh Kumar
- ICAR-Indian Institute of Wheat and Barley Research, Regional Station, Shimla, Himachal Pradesh, 171002, India
| |
Collapse
|
10
|
Rossouw LT, Madala NE, Tugizimana F, Steenkamp PA, Esterhuizen LL, Dubery IA. Deciphering the Resistance Mechanism of Tomato Plants Against Whitefly-Mediated Tomato Curly Stunt Virus Infection through Ultra-High-Performance Liquid Chromatography Coupled to Mass Spectrometry (UHPLC-MS)-Based Metabolomics Approaches. Metabolites 2019; 9:E60. [PMID: 30925828 PMCID: PMC6523100 DOI: 10.3390/metabo9040060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 03/18/2019] [Accepted: 03/25/2019] [Indexed: 01/13/2023] Open
Abstract
Begomoviruses, such as the Tomato curly stunt virus (ToCSV), pose serious economic consequences due to severe crop losses. Therefore, the development and screening of possible resistance markers is imperative. While some tomato cultivars exhibit differential resistance to different begomovirus species, in most cases, the mechanism of resistance is not fully understood. In this study, the response of two near-isogenic lines of tomato (Solanum lycopersicum), differing in resistance against whitefly-mediated ToCSV infection were investigated using untargeted ultra-high-performance liquid chromatography coupled to mass spectrometry (UHPLC-MS)-based metabolomics. The responses of the two lines were deciphered using multivariate statistics models. Principal component analysis (PCA) scores plots from various time intervals revealed that the resistant line responded more rapidly with changes to the metabolome than the susceptible counterpart. Moreover, the metabolic reprogramming of chemically diverse metabolites that span a range of metabolic pathways was associated with the defence response. Biomarkers primarily included hydroxycinnamic acids conjugated to quinic acid, galactaric acid, and glucose. Minor constituents included benzenoids, flavonoids, and steroidal glycoalkaloids. Interestingly, when reduced to the level of metabolites, the phytochemistry of the infected plants' responses was very similar. However, the resistant phenotype was strongly associated with the hydroxycinnamic acid derivatives deployed in response to infection. In addition, the resistant line was able to mount a stronger and quicker response.
Collapse
Affiliation(s)
- Leandri T Rossouw
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa.
| | - Ntakadzeni E Madala
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa.
| | - Fidele Tugizimana
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa.
| | - Paul A Steenkamp
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa.
| | - Lindy L Esterhuizen
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa.
| | - Ian A Dubery
- Centre for Plant Metabolomics Research, Department of Biochemistry, University of Johannesburg, Auckland Park 2006, South Africa.
| |
Collapse
|
11
|
Ali S, Kim WC. A Fruitful Decade Using Synthetic Promoters in the Improvement of Transgenic Plants. FRONTIERS IN PLANT SCIENCE 2019; 10:1433. [PMID: 31737027 PMCID: PMC6838210 DOI: 10.3389/fpls.2019.01433] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 10/16/2019] [Indexed: 05/17/2023]
Abstract
Advances in plant biotechnology provide various means to improve crop productivity and greatly contributing to sustainable agriculture. A significant advance in plant biotechnology has been the availability of novel synthetic promoters for precise spatial and temporal control of transgene expression. In this article, we review the development of various synthetic promotors and the rise of their use over the last several decades for regulating the transcription of various transgenes. Similarly, we provided a brief description of the structure and scope of synthetic promoters and the engineering of their cis-regulatory elements for different targets. Moreover, the functional characteristics of different synthetic promoters, their modes of regulating the expression of candidate genes in response to different conditions, and the resulting plant trait improvements reported in the past decade are discussed.
Collapse
|
12
|
Pattern Recognition Receptors—Versatile Genetic Tools for Engineering Broad-Spectrum Disease Resistance in Crops. AGRONOMY-BASEL 2018. [DOI: 10.3390/agronomy8080134] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Infestations of crop plants with pathogens pose a major threat to global food supply. Exploiting plant defense mechanisms to produce disease-resistant crop varieties is an important strategy to control plant diseases in modern plant breeding and can greatly reduce the application of agrochemicals. The discovery of different types of immune receptors and a detailed understanding of their activation and regulation mechanisms in the last decades has paved the way for the deployment of these central plant immune components for genetic plant disease management. This review will focus on a particular class of immune sensors, termed pattern recognition receptors (PRRs), that activate a defense program termed pattern-triggered immunity (PTI) and outline their potential to provide broad-spectrum and potentially durable disease resistance in various crop species—simply by providing plants with enhanced capacities to detect invaders and to rapidly launch their natural defense program.
Collapse
|
13
|
Igiehon NO, Babalola OO. Below-ground-above-ground Plant-microbial Interactions: Focusing on Soybean, Rhizobacteria and Mycorrhizal Fungi. Open Microbiol J 2018; 12:261-279. [PMID: 30197700 PMCID: PMC6110075 DOI: 10.2174/1874285801812010261] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2018] [Revised: 07/10/2018] [Accepted: 07/15/2018] [Indexed: 11/22/2022] Open
Abstract
INTRODUCTION Organisms seldom exist in isolation and are usually involved in interactions with several hosts and these interactions in conjunction with the physicochemical parameters of the soil affect plant growth and development. Researches into below and aboveground microbial community are unveiling a myriad of intriguing interactions within the rhizosphere, and many of the interactions are facilitated by exudates that are secreted by plants roots. These interactions can be harnessed for beneficial use in agriculture to enhance crop productivity especially in semi-arid and arid environments. THE RHIZOSPHERE The rhizosphere is the region of soil close to plants roots that contain large number of diverse organisms. Examples of microbial candidates that are found in the rhizosphere include the Arbuscular Mycorrhizal Fungi (AMF) and rhizobacteria. These rhizosphere microorganisms use plant root secretions such as mucilage and flavonoids which are able to influence their diversity and function and also enhance their potential to colonize plants root. NATURAL INTERACTIONS BETWEEN MICROORGANISMS AND PLANT In the natural environments, plants live in interactions with different microorganisms, which thrive belowground in the rhizosphere and aboveground in the phyllosphere. Some of the plant-microbial interactions (which can be in the form of antagonism, amensalism, parasitism and symbiosis) protect the host plants against detrimental microbial and non-microbial invaders and provide nutrients for plants while others negatively affect plants. These interactions can influence below-ground-above-ground plants' biomass development thereby playing significant role in sustaining plants. Therefore, understanding microbial interactions within the rhizosphere and phyllosphere is urgent towards farming practices that are less dependent on conventional chemical fertilizers, which have known negative impacts on the environments. BELOW GROUND RHIZOBACTERIA INTERACTIONS ALLEVIATE DROUGHT STRESS Drought stress is one of the major factors militating against agricultural productivity globally and is likely to further increase. Belowground rhizobacteria interactions could play important role in alleviating drought stress in plants. These beneficial rhizobacterial colonize the rhizosphere of plants and impart drought tolerance by up regulation or down regulation of drought responsive genes such as ascorbate peroxidase, S-adenosyl-methionine synthetase, and heat shock protein. INSIGHTS INTO BELOW AND ABOVE THE GROUND MICROBIAL INTERACTIONS VIA OMIC STUDIES Investigating complex microbial community in the environment is a big challenge. Therefore, omic studies of microorganisms that inhabit the rhizosphere are important since this is where most plant-microbial interactions occur. One of the aims of this review is not to give detailed account of all the present omic techniques, but instead to highlight the current omic techniques that can possibly lead to detection of novel genes and their respective proteins within the rhizosphere which may be of significance in enhancing crop plants (such as soybean) productivity especially in semi-arid and arid environments. FUTURE PROSPECTS AND CONCLUSIONS Plant-microbial interactions are not totally understood, and there is, therefore, the need for further studies on these interactions in order to get more insights that may be useful in sustainable agricultural development. With the emergence of omic techniques, it is now possible to effectively monitor transformations in rhizosphere microbial community together with their effects on plant development. This may pave way for scientists to discover new microbial species that will interact effectively with plants. Such microbial species can be used as biofertilizers and/or bio-pesticides to increase crop yield and enhance global food security.
Collapse
Affiliation(s)
- Nicholas O. Igiehon
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, Private Mail Bag X2046, North-West University, Mmabatho 2735, South Africa
| | - Olubukola O. Babalola
- Food Security and Safety Niche, Faculty of Natural and Agricultural Sciences, Private Mail Bag X2046, North-West University, Mmabatho 2735, South Africa
| |
Collapse
|
14
|
Tugizimana F, Mhlongo MI, Piater LA, Dubery IA. Metabolomics in Plant Priming Research: The Way Forward? Int J Mol Sci 2018; 19:ijms19061759. [PMID: 29899301 PMCID: PMC6032392 DOI: 10.3390/ijms19061759] [Citation(s) in RCA: 54] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 06/02/2018] [Accepted: 06/04/2018] [Indexed: 12/26/2022] Open
Abstract
A new era of plant biochemistry at the systems level is emerging, providing detailed descriptions of biochemical phenomena at the cellular and organismal level. This new era is marked by the advent of metabolomics—the qualitative and quantitative investigation of the entire metabolome (in a dynamic equilibrium) of a biological system. This field has developed as an indispensable methodological approach to study cellular biochemistry at a global level. For protection and survival in a constantly-changing environment, plants rely on a complex and multi-layered innate immune system. This involves surveillance of ‘self’ and ‘non-self,’ molecule-based systemic signalling and metabolic adaptations involving primary and secondary metabolites as well as epigenetic modulation mechanisms. Establishment of a pre-conditioned or primed state can sensitise or enhance aspects of innate immunity for faster and stronger responses. Comprehensive elucidation of the molecular and biochemical processes associated with the phenotypic defence state is vital for a better understanding of the molecular mechanisms that define the metabolism of plant–pathogen interactions. Such insights are essential for translational research and applications. Thus, this review highlights the prospects of metabolomics and addresses current challenges that hinder the realisation of the full potential of the field. Such limitations include partial coverage of the metabolome and maximising the value of metabolomics data (extraction of information and interpretation). Furthermore, the review points out key features that characterise both the plant innate immune system and enhancement of the latter, thus underlining insights from metabolomic studies in plant priming. Future perspectives in this inspiring area are included, with the aim of stimulating further studies leading to a better understanding of plant immunity at the metabolome level.
Collapse
Affiliation(s)
- Fidele Tugizimana
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park 2006, South Africa.
| | - Msizi I Mhlongo
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park 2006, South Africa.
| | - Lizelle A Piater
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park 2006, South Africa.
| | - Ian A Dubery
- Department of Biochemistry, Research Centre for Plant Metabolomics, University of Johannesburg, Auckland Park 2006, South Africa.
| |
Collapse
|
15
|
Solanki DS, Kumar S, Parihar K, Tak A, Gehlot P, Pathak R, Singh SK. Characterization of a novel seed protein of Prosopis cineraria showing antifungal activity. Int J Biol Macromol 2018; 116:16-22. [PMID: 29733925 DOI: 10.1016/j.ijbiomac.2018.05.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 12/18/2022]
Abstract
An antifungal protein with a molecular mass of 38.6 kDa was isolated from the seed of Prosopis cineraria. The protein was purified using ammonium sulphate precipitation, ion exchange chromatography and gel filtration. The antifungal activity of purified protein was retained up to 50 °C for 10 min. The MALDI TOF mass spectroscopy revealed 15 assorted peptides. The molecular weight of the antifungal protein is different from antifungal proteins reported in seeds of other leguminous plants. The purified protein exerted antifungal activity against post-harvest fruit fungal pathogens Lasiodiplodia theobromae and Aspergillus fumigatus, isolated from the rotten fruits. The antifungal properties of this novel antifungal protein can be potentially exploited to manage post-harvest fungal disease of fruits through alternative means to reduce use of hazardous chemicals.
Collapse
Affiliation(s)
- D S Solanki
- Mycology and Microbiology Laboratory, Department of Botany, JNV University, Jodhpur 342001, India
| | - S Kumar
- Mycology and Microbiology Laboratory, Department of Botany, JNV University, Jodhpur 342001, India
| | - K Parihar
- Mycology and Microbiology Laboratory, Department of Botany, JNV University, Jodhpur 342001, India
| | - A Tak
- Mycology and Microbiology Laboratory, Department of Botany, JNV University, Jodhpur 342001, India
| | - P Gehlot
- Mycology and Microbiology Laboratory, Department of Botany, JNV University, Jodhpur 342001, India.
| | - R Pathak
- Center Arid Zone Research Institute, Jodhpur 342003, India
| | - S K Singh
- Center Arid Zone Research Institute, Jodhpur 342003, India
| |
Collapse
|
16
|
Mhlongo MI, Piater LA, Madala NE, Labuschagne N, Dubery IA. The Chemistry of Plant-Microbe Interactions in the Rhizosphere and the Potential for Metabolomics to Reveal Signaling Related to Defense Priming and Induced Systemic Resistance. FRONTIERS IN PLANT SCIENCE 2018; 9:112. [PMID: 29479360 PMCID: PMC5811519 DOI: 10.3389/fpls.2018.00112] [Citation(s) in RCA: 169] [Impact Index Per Article: 28.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Accepted: 01/22/2018] [Indexed: 05/21/2023]
Abstract
Plant roots communicate with microbes in a sophisticated manner through chemical communication within the rhizosphere, thereby leading to biofilm formation of beneficial microbes and, in the case of plant growth-promoting rhizomicrobes/-bacteria (PGPR), resulting in priming of defense, or induced resistance in the plant host. The knowledge of plant-plant and plant-microbe interactions have been greatly extended over recent years; however, the chemical communication leading to priming is far from being well understood. Furthermore, linkage between below- and above-ground plant physiological processes adds to the complexity. In metabolomics studies, the main aim is to profile and annotate all exo- and endo-metabolites in a biological system that drive and participate in physiological processes. Recent advances in this field has enabled researchers to analyze 100s of compounds in one sample over a short time period. Here, from a metabolomics viewpoint, we review the interactions within the rhizosphere and subsequent above-ground 'signalomics', and emphasize the contributions that mass spectrometric-based metabolomic approaches can bring to the study of plant-beneficial - and priming events.
Collapse
Affiliation(s)
- Msizi I. Mhlongo
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Lizelle A. Piater
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Ntakadzeni E. Madala
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| | - Nico Labuschagne
- Department of Plant and Soil Sciences, University of Pretoria, Pretoria, South Africa
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg, Johannesburg, South Africa
| |
Collapse
|
17
|
Walker LR, Tfaily MM, Shaw JB, Hess NJ, Paša-Tolić L, Koppenaal DW. Unambiguous identification and discovery of bacterial siderophores by direct injection 21 Tesla Fourier transform ion cyclotron resonance mass spectrometry. Metallomics 2017; 9:82-92. [PMID: 27905613 DOI: 10.1039/c6mt00201c] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Under iron-limiting conditions, bacteria produce low molecular mass Fe(iii) binding molecules known as siderophores to sequester the Fe(iii), along with other elements, increasing their bioavailability. Siderophores are thought to influence iron cycling and biogeochemistry in both marine and terrestrial ecosystems and hence the need for rapid, confident characterization of these compounds has increased. In this study, the type of siderophores produced by two marine bacterial species, Synechococcus sp. PCC 7002 and Vibrio cyclitrophicus 1F53, were characterized by use of a newly developed 21 T Fourier Transform Ion Cyclotron Resonance Mass Spectrometer (FTICR MS) with direct injection electrospray ionization. This technique allowed for the rapid detection of synechobactins from Synechococcus sp. PCC 7002 as well as amphibactins from Vibrio cyclitrophicus 1F53 based on high mass accuracy and resolution allowing for observation of specific Fe isotopes and isotopic fine structure enabling highly confident identification of these siderophores. When combined with molecular network analysis two new amphibactins were discovered and verified by tandem MS. These results show that high-field FTICR MS is a powerful technique that will greatly improve the ability to rapidly identify and discover metal binding species in the environment.
Collapse
Affiliation(s)
- Lawrence R Walker
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA.
| | - Malak M Tfaily
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA.
| | - Jared B Shaw
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA.
| | - Nancy J Hess
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA.
| | - Ljiljana Paša-Tolić
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA.
| | - David W Koppenaal
- Environmental Molecular Sciences Laboratory, Pacific Northwest National Laboratory, Richland, Washington, USA.
| |
Collapse
|
18
|
Zarattini M, Launay A, Farjad M, Wénès E, Taconnat L, Boutet S, Bernacchia G, Fagard M. The bile acid deoxycholate elicits defences in Arabidopsis and reduces bacterial infection. MOLECULAR PLANT PATHOLOGY 2017; 18:540-554. [PMID: 27085087 PMCID: PMC6638291 DOI: 10.1111/mpp.12416] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Disease has an effect on crop yields, causing significant losses. As the worldwide demand for agricultural products increases, there is a need to pursue the development of new methods to protect crops from disease. One mechanism of plant protection is through the activation of the plant immune system. By exogenous application, 'plant activator molecules' with elicitor properties can be used to activate the plant immune system. These defence-inducing molecules represent a powerful and often environmentally friendly tool to fight pathogens. We show that the secondary bile acid deoxycholic acid (DCA) induces defence in Arabidopsis and reduces the proliferation of two bacterial phytopathogens: Erwinia amylovora and Pseudomonas syringae pv. tomato. We describe the global defence response triggered by this new plant activator in Arabidopsis at the transcriptional level. Several induced genes were selected for further analysis by quantitative reverse transcription-polymerase chain reaction. We describe the kinetics of their induction and show that abiotic stress, such as moderate drought or nitrogen limitation, does not impede DCA induction of defence. Finally, we investigate the role in the activation of defence by this bile acid of the salicylic acid biosynthesis gene SID2, of the receptor-like kinase family genes WAK1-3 and of the NADPH oxidase-encoding RbohD gene. Altogether, we show that DCA constitutes a promising molecule for plant protection which can induce complementary lines of defence, such as callose deposition, reactive oxygen species accumulation and the jasmonic acid and salicylic acid signalling pathways.
Collapse
Affiliation(s)
- Marco Zarattini
- Institut Jean‐Pierre BourginUMR 1318, INRA, AgroParistech, ERL CNRS 3559, U. Paris‐Saclay, RD10VersaillesF‐78026France
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerrara 44121Italy
| | - Alban Launay
- Institut Jean‐Pierre BourginUMR 1318, INRA, AgroParistech, ERL CNRS 3559, U. Paris‐Saclay, RD10VersaillesF‐78026France
- Université Paris‐Sud, U. Paris‐SaclayOrsay91405France
| | - Mahsa Farjad
- Institut Jean‐Pierre BourginUMR 1318, INRA, AgroParistech, ERL CNRS 3559, U. Paris‐Saclay, RD10VersaillesF‐78026France
| | - Estelle Wénès
- Institut Jean‐Pierre BourginUMR 1318, INRA, AgroParistech, ERL CNRS 3559, U. Paris‐Saclay, RD10VersaillesF‐78026France
| | - Ludivine Taconnat
- Institute of Plant Sciences – Paris‐Saclay, INRA, CNRSU. Paris‐Sud, U. Paris‐SaclayOrsay91405France
| | - Stéphanie Boutet
- Institut Jean‐Pierre BourginUMR 1318, INRA, AgroParistech, ERL CNRS 3559, U. Paris‐Saclay, RD10VersaillesF‐78026France
| | - Giovanni Bernacchia
- Department of Life Sciences and BiotechnologyUniversity of FerraraFerrara 44121Italy
| | - Mathilde Fagard
- Institut Jean‐Pierre BourginUMR 1318, INRA, AgroParistech, ERL CNRS 3559, U. Paris‐Saclay, RD10VersaillesF‐78026France
| |
Collapse
|
19
|
Blanvillain‐Baufumé S, Reschke M, Solé M, Auguy F, Doucoure H, Szurek B, Meynard D, Portefaix M, Cunnac S, Guiderdoni E, Boch J, Koebnik R. Targeted promoter editing for rice resistance to Xanthomonas oryzae pv. oryzae reveals differential activities for SWEET14-inducing TAL effectors. PLANT BIOTECHNOLOGY JOURNAL 2017; 15:306-317. [PMID: 27539813 PMCID: PMC5316920 DOI: 10.1111/pbi.12613] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2016] [Revised: 08/12/2016] [Accepted: 08/12/2016] [Indexed: 05/04/2023]
Abstract
As a key virulence strategy to cause bacterial leaf blight, Xanthomonas oryzae pv. oryzae (Xoo) injects into the plant cell DNA-binding proteins called transcription activator-like effectors (TALEs) that bind to effector-binding elements (EBEs) in a sequence-specific manner, resulting in host gene induction. TALEs AvrXa7, PthXo3, TalC and Tal5, found in geographically distant Xoo strains, all target OsSWEET14, thus considered as a pivotal TALE target acting as major susceptibility factor during rice-Xoo interactions. Here, we report the generation of an allele library of the OsSWEET14 promoter through stable expression of TALE-nuclease (TALEN) constructs in rice. The susceptibility level of lines carrying mutations in AvrXa7, Tal5 or TalC EBEs was assessed. Plants edited in AvrXa7 or Tal5 EBEs were resistant to bacterial strains relying on the corresponding TALE. Surprisingly, although indels within TalC EBE prevented OsSWEET14 induction in response to BAI3 wild-type bacteria relying on TalC, loss of TalC responsiveness failed to confer resistance to this strain. The TalC EBE mutant line was, however, resistant to a strain expressing an artificial SWEET14-inducing TALE whose EBE was also edited in this line. This work offers the first set of alleles edited in TalC EBE and uncovers a distinct, broader range of activities for TalC compared to AvrXa7 or Tal5. We propose the existence of additional targets for TalC beyond SWEET14, suggesting that TALE-mediated plant susceptibility may result from induction of several, genetically redundant, host susceptibility genes by a single effector.
Collapse
Affiliation(s)
- Servane Blanvillain‐Baufumé
- UMR Interactions Plantes Microorganismes Environnement (IPME)IRD‐CIRAD‐UniversitéMontpellierFrance
- Present address: LabEx CeMEBUniversité de MontpellierMontpellierFrance
| | - Maik Reschke
- Institut für BiologieInstitutsbereich GenetikMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
- Present address: Institut für PflanzengenetikLeibniz Universität HannoverHannoverGermany
| | - Montserrat Solé
- Institut für BiologieInstitutsbereich GenetikMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
- Present address: Sustainable Agro Solutions S.A.Almacelles (Lleida)Spain
| | - Florence Auguy
- UMR Interactions Plantes Microorganismes Environnement (IPME)IRD‐CIRAD‐UniversitéMontpellierFrance
| | - Hinda Doucoure
- UMR Interactions Plantes Microorganismes Environnement (IPME)IRD‐CIRAD‐UniversitéMontpellierFrance
| | - Boris Szurek
- UMR Interactions Plantes Microorganismes Environnement (IPME)IRD‐CIRAD‐UniversitéMontpellierFrance
| | - Donaldo Meynard
- CIRADUMR AGAP (Amélioration génétique et Adaptation des Plantes)MontpellierFrance
| | - Murielle Portefaix
- CIRADUMR AGAP (Amélioration génétique et Adaptation des Plantes)MontpellierFrance
| | - Sébastien Cunnac
- UMR Interactions Plantes Microorganismes Environnement (IPME)IRD‐CIRAD‐UniversitéMontpellierFrance
| | - Emmanuel Guiderdoni
- CIRADUMR AGAP (Amélioration génétique et Adaptation des Plantes)MontpellierFrance
| | - Jens Boch
- Institut für BiologieInstitutsbereich GenetikMartin‐Luther‐Universität Halle‐WittenbergHalle (Saale)Germany
- Present address: Institut für PflanzengenetikLeibniz Universität HannoverHannoverGermany
| | - Ralf Koebnik
- UMR Interactions Plantes Microorganismes Environnement (IPME)IRD‐CIRAD‐UniversitéMontpellierFrance
| |
Collapse
|
20
|
Mhlongo MI, Tugizimana F, Piater LA, Steenkamp PA, Madala NE, Dubery IA. Untargeted metabolomics analysis reveals dynamic changes in azelaic acid- and salicylic acid derivatives in LPS-treated Nicotiana tabacum cells. Biochem Biophys Res Commun 2017; 482:1498-1503. [PMID: 27956183 DOI: 10.1016/j.bbrc.2016.12.063] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Accepted: 12/08/2016] [Indexed: 12/14/2022]
Abstract
To counteract biotic stress factors, plants employ multilayered defense mechanisms responsive to pathogen-derived elicitor molecules, and regulated by different phytohormones and signaling molecules. Here, lipopolysaccharide (LPS), a microbe-associated molecular pattern (MAMP) molecule, was used to induce defense responses in Nicotiana tabacum cell suspensions. Intracellular metabolites were extracted with methanol and analyzed using a liquid chromatography-mass spectrometry (UHPLC-qTOF-MS/MS) platform. The generated data were processed and examined with multivariate and univariate statistical tools. The results show time-dependent dynamic changes and accumulation of glycosylated signaling molecules, specifically those of azelaic acid, salicylic acid and methyl-salicylate as contributors to the altered metabolomic state in LPS-treated cells.
Collapse
Affiliation(s)
- M I Mhlongo
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa
| | - F Tugizimana
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa
| | - L A Piater
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa
| | - P A Steenkamp
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa; CSIR Biosciences, Natural Products Group, Pretoria, 0001, South Africa
| | - N E Madala
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa
| | - I A Dubery
- Department of Biochemistry, University of Johannesburg, P.O. Box 524, Auckland Park, 2006, South Africa.
| |
Collapse
|
21
|
Helliwell EE, Wang Q, Yang Y. Ethylene Biosynthesis and Signaling Is Required for Rice Immune Response and Basal Resistance Against Magnaporthe oryzae Infection. MOLECULAR PLANT-MICROBE INTERACTIONS : MPMI 2016; 29:831-843. [PMID: 27671120 DOI: 10.1094/mpmi-06-16-0121-r] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Recent studies have suggested that ethylene enhances host resistance to fungal pathogen Magnaporthe oryzae, the causal agent of rice blast disease. Among the six 1-aminocyclopropane-1-carboxylic acid synthase genes in rice, OsACS1 and OsACS2 are induced within 24 h of inoculation by M. oryzae. This induction occurs simultaneously with an increase in ethylene production that is noticeable 12 h postinoculation. The purpose of this study was to examine the dynamics of ethylene production and signaling in wild type and RNA interference-mediated suppression lines deficient in ethylene production (acs2) or signaling (eil1) after challenge with M. oryzae as well as fungal cell-wall elicitors. Ethylene-insensitive mutant lines show an attenuated basal defense response including lower basal expression of the genes encoding a chitin-binding receptor, pathogenesis-related (PR) proteins, and the enzymes involved in the synthesis of diterprenoid phytoalexins, a reduction on early hypersensitive response (HR)-like cell death, and reduced incidence of callose deposition. Ethylene-deficient mutants showed an intermediate phenotype, with a significant reduction in expression of defense-related genes and callose deposition, but only a slight reduction in HR-like cell death. As a result, all ethylene-insensitive mutants show increased susceptibility to M. oryzae, whereas the ethylene-deficient lines show a slight but less significant increase in disease severity. These results show that ethylene signaling and, to some extent, ethylene production are required for rice basal resistance against the blast fungus Magnaporthe oryzae.
Collapse
Affiliation(s)
- Emily E Helliwell
- Department of Plant Pathology and Environmental Microbiology, and Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Qin Wang
- Department of Plant Pathology and Environmental Microbiology, and Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, U.S.A
| | - Yinong Yang
- Department of Plant Pathology and Environmental Microbiology, and Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA 16802, U.S.A
| |
Collapse
|
22
|
Imam J, Singh PK, Shukla P. Plant Microbe Interactions in Post Genomic Era: Perspectives and Applications. Front Microbiol 2016; 7:1488. [PMID: 27725809 PMCID: PMC5035750 DOI: 10.3389/fmicb.2016.01488] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 09/07/2016] [Indexed: 01/17/2023] Open
Abstract
Deciphering plant-microbe interactions is a promising aspect to understand the benefits and the pathogenic effect of microbes and crop improvement. The advancement in sequencing technologies and various 'omics' tool has impressively accelerated the research in biological sciences in this area. The recent and ongoing developments provide a unique approach to describing these intricate interactions and test hypotheses. In the present review, we discuss the role of plant-pathogen interaction in crop improvement. The plant innate immunity has always been an important aspect of research and leads to some interesting information like the adaptation of unique immune mechanisms of plants against pathogens. The development of new techniques in the post - genomic era has greatly enhanced our understanding of the regulation of plant defense mechanisms against pathogens. The present review also provides an overview of beneficial plant-microbe interactions with special reference to Agrobacterium tumefaciens-plant interactions where plant derived signal molecules and plant immune responses are important in pathogenicity and transformation efficiency. The construction of various Genome-scale metabolic models of microorganisms and plants presented a better understanding of all metabolic interactions activated during the interactions. This review also lists the emerging repertoire of phytopathogens and its impact on plant disease resistance. Outline of different aspects of plant-pathogen interactions is presented in this review to bridge the gap between plant microbial ecology and their immune responses.
Collapse
Affiliation(s)
| | | | - Pratyoosh Shukla
- Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology, Maharshi Dayanand UniversityRohtak, India
| |
Collapse
|
23
|
Bundó M, Coca M. Enhancing blast disease resistance by overexpression of the calcium-dependent protein kinase OsCPK4 in rice. PLANT BIOTECHNOLOGY JOURNAL 2016; 14:1357-67. [PMID: 26578239 DOI: 10.1111/pbi.12500] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2015] [Revised: 10/04/2015] [Accepted: 10/09/2015] [Indexed: 05/07/2023]
Abstract
Rice is the most important staple food for more than half of the human population, and blast disease is the most serious disease affecting global rice production. In this work, the isoform OsCPK4 of the rice calcium-dependent protein kinase family is reported as a regulator of rice immunity to blast fungal infection. It shows that overexpression of OsCPK4 gene in rice plants enhances resistance to blast disease by preventing fungal penetration. The constitutive accumulation of OsCPK4 protein prepares rice plants for a rapid and potentiated defence response, including the production of reactive oxygen species, callose deposition and defence gene expression. OsCPK4 overexpression leads also to constitutive increased content of the glycosylated salicylic acid hormone in leaves without compromising rice yield. Given that OsCPK4 overexpression was known to confer also salt and drought tolerance in rice, the results reported in this article demonstrate that OsCPK4 acts as a convergence component that positively modulates both biotic and abiotic signalling pathways. Altogether, our findings indicate that OsCPK4 is a potential molecular target to improve not only abiotic stress tolerance, but also blast disease resistance of rice crops.
Collapse
Affiliation(s)
- Mireia Bundó
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Bellaterra, Barcelona, Spain
| | - María Coca
- Centre for Research in Agricultural Genomics (CRAG), CSIC-IRTA-UAB-UB. Edifici CRAG, Bellaterra, Barcelona, Spain
| |
Collapse
|
24
|
Mhlongo MI, Piater LA, Madala NE, Steenkamp PA, Dubery IA. Phenylpropanoid Defences in Nicotiana tabacum Cells: Overlapping Metabolomes Indicate Common Aspects to Priming Responses Induced by Lipopolysaccharides, Chitosan and Flagellin-22. PLoS One 2016; 11:e0151350. [PMID: 26978774 PMCID: PMC4792386 DOI: 10.1371/journal.pone.0151350] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2015] [Accepted: 02/26/2016] [Indexed: 01/17/2023] Open
Abstract
Plants have evolved both constitutive and inducible defence strategies to cope with different biotic stimuli and stresses. Exposure of a plant to a challenging stress can lead to a primed state that allows it to launch a more rapid and stronger defence. Here we applied a metabolomic approach to study and compare the responses induced in Nicotiana tabacum cells by microbe-associated molecular pattern (MAMP) molecules, namely lipopolysaccharides (LPS), chitosan (CHT) and flagellin-22 (FLG22). Early response metabolites, extracted with methanol, were analysed by UHPLC-MS/MS. Using multivariate statistical tools the metabolic profiles induced by these elicitors were analysed. In the metabolic fingerprint of these agents a total of 19 cinnamic acid derivatives conjugated to quinic acids (chlorogenic acids), shikimic acid, tyramine, polyamines or glucose were found as discriminant biomarkers. In addition, treatment with the phytohormones salicylic acid (SA), methyljasmonic acid (MJ) and abscisic acid (ABA) resulted in differentially-induced phenylpropanoid pathway metabolites. The results indicate that the phenylpropanoid pathway is activated by these elicitors while hydroxycinnamic acid derivatives are commonly associated with the metabolic response to the MAMPs, and that the activated responses are modulated by both SA and MJ, with ABA not playing a role.
Collapse
Affiliation(s)
- Msizi I. Mhlongo
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Lizelle A. Piater
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Ntakadzeni E. Madala
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| | - Paul A. Steenkamp
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
- CSIR Biosciences, Natural Products and Agroprocessing Group, Pretoria, South Africa
| | - Ian A. Dubery
- Department of Biochemistry, University of Johannesburg, Auckland Park, Johannesburg, South Africa
| |
Collapse
|
25
|
Albert I, Böhm H, Albert M, Feiler CE, Imkampe J, Wallmeroth N, Brancato C, Raaymakers TM, Oome S, Zhang H, Krol E, Grefen C, Gust AA, Chai J, Hedrich R, Van den Ackerveken G, Nürnberger T. An RLP23-SOBIR1-BAK1 complex mediates NLP-triggered immunity. NATURE PLANTS 2015; 1:15140. [PMID: 27251392 DOI: 10.1038/nplants.2015.140] [Citation(s) in RCA: 279] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2015] [Accepted: 08/28/2015] [Indexed: 05/20/2023]
Abstract
Plants and animals employ innate immune systems to cope with microbial infection. Pattern-triggered immunity relies on the recognition of microbe-derived patterns by pattern recognition receptors (PRRs). Necrosis and ethylene-inducing peptide 1-like proteins (NLPs) constitute plant immunogenic patterns that are unique, as these proteins are produced by multiple prokaryotic (bacterial) and eukaryotic (fungal, oomycete) species. Here we show that the leucine-rich repeat receptor protein (LRR-RP) RLP23 binds in vivo to a conserved 20-amino-acid fragment found in most NLPs (nlp20), thereby mediating immune activation in Arabidopsis thaliana. RLP23 forms a constitutive, ligand-independent complex with the LRR receptor kinase (LRR-RK) SOBIR1 (Suppressor of Brassinosteroid insensitive 1 (BRI1)-associated kinase (BAK1)-interacting receptor kinase 1), and recruits a second LRR-RK, BAK1, into a tripartite complex upon ligand binding. Stable, ectopic expression of RLP23 in potato (Solanum tuberosum) confers nlp20 pattern recognition and enhanced immunity to destructive oomycete and fungal plant pathogens, such as Phytophthora infestans and Sclerotinia sclerotiorum. PRRs that recognize widespread microbial patterns might be particularly suited for engineering immunity in crop plants.
Collapse
Affiliation(s)
- Isabell Albert
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen D-72076, Germany
| | - Hannah Böhm
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen D-72076, Germany
| | - Markus Albert
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen D-72076, Germany
| | - Christina E Feiler
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen D-72076, Germany
| | - Julia Imkampe
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen D-72076, Germany
| | - Niklas Wallmeroth
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen D-72076, Germany
| | - Caterina Brancato
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen D-72076, Germany
| | - Tom M Raaymakers
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
| | - Stan Oome
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
- Centre for BioSystems Genomics (CBSG), Wageningen, The Netherlands
| | - Heqiao Zhang
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Elzbieta Krol
- Department of Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, Würzburg D-97082, Germany
| | - Christopher Grefen
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen D-72076, Germany
| | - Andrea A Gust
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen D-72076, Germany
| | - Jijie Chai
- Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Rainer Hedrich
- Department of Plant Physiology and Biophysics, University of Würzburg, Julius-von-Sachs-Platz 2, Würzburg D-97082, Germany
| | - Guido Van den Ackerveken
- Plant-Microbe Interactions, Department of Biology, Utrecht University, Padualaan 8, Utrecht 3584 CH, The Netherlands
- Centre for BioSystems Genomics (CBSG), Wageningen, The Netherlands
| | - Thorsten Nürnberger
- Center of Plant Molecular Biology (ZMBP), University of Tübingen, Auf der Morgenstelle 32, Tübingen D-72076, Germany
| |
Collapse
|
26
|
Yan J, Yuan SS, Jiang LL, Ye XJ, Ng TB, Wu ZJ. Plant antifungal proteins and their applications in agriculture. Appl Microbiol Biotechnol 2015; 99:4961-81. [PMID: 25971197 DOI: 10.1007/s00253-015-6654-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2015] [Revised: 04/26/2015] [Accepted: 04/27/2015] [Indexed: 11/24/2022]
Abstract
Fungi are far more complex organisms than viruses or bacteria and can develop numerous diseases in plants that cause loss of a substantial portion of the crop every year. Plants have developed various mechanisms to defend themselves against these fungi which include the production of low-molecular-weight secondary metabolites and proteins and peptides with antifungal activity. In this review, families of plant antifungal proteins (AFPs) including defensins, lectins, and several others will be summarized. Moreover, the application of AFPs in agriculture will also be analyzed.
Collapse
Affiliation(s)
- Juan Yan
- Key Laboratory of Plant Virology of Fujian Province, Institute of Plant Virology, Fujian Agriculture and Forestry University, Fuzhou, Fujian, 350002, China,
| | | | | | | | | | | |
Collapse
|
27
|
Mullins E. Engineering for disease resistance: persistent obstacles clouding tangible opportunities. PEST MANAGEMENT SCIENCE 2015; 71:645-651. [PMID: 25353158 DOI: 10.1002/ps.3930] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 10/21/2014] [Accepted: 10/21/2014] [Indexed: 06/04/2023]
Abstract
The accelerating pace of gene discovery, coupled with novel plant breeding technologies, provides tangible opportunities with which to engineer disease resistance into agricultural and horticultural crops. This is especially the case for potato, wheat, apple and banana, which are afflicted with fungal and bacterial diseases that impact significantly on each crop's economic viability. Yet public scepticism and burdensome regulatory systems remain the two primary obstacles preventing the translation of research discoveries into cultivars of agronomic value. In this perspective review, the potential to address these issues is explained, and specific opportunities arising from recent genomics-based initiatives are highlighted as clear examples of what can be achieved in respect of developing disease resistance in crop species. There is an urgent need to tackle the challenge of agrichemical dependency in current crop production systems, and, while engineering for disease resistance is possible, it is not the sole solution and should not be proclaimed as so. Instead, all systems must be given due consideration, with none dismissed in the absence of science-based support, thereby ensuring that future cropping systems have the necessary advantage over those pathogens that continue to inflict losses year after year.
Collapse
Affiliation(s)
- Ewen Mullins
- Department of Crop Science, Teagasc, Oak Park, Carlow, Ireland
| |
Collapse
|
28
|
Fahad S, Hussain S, Bano A, Saud S, Hassan S, Shan D, Khan FA, Khan F, Chen Y, Wu C, Tabassum MA, Chun MX, Afzal M, Jan A, Jan MT, Huang J. Potential role of phytohormones and plant growth-promoting rhizobacteria in abiotic stresses: consequences for changing environment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2015; 22:4907-21. [PMID: 25369916 DOI: 10.1007/s11356-014-3754-2] [Citation(s) in RCA: 186] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/18/2014] [Accepted: 10/20/2014] [Indexed: 05/18/2023]
Abstract
Plants are sessile beings, so the need of mechanisms to flee from unfavorable circumstances has provided the development of unique and sophisticated responses to environmental stresses. Depending on the degree of plasticity, many morphological, cellular, anatomical, and physiological changes occur in plants in response to abiotic stress. Phytohormones are small molecules that play critical roles in regulating plant growth and development, as well as stress tolerance to promote survival and acclimatize to varying environments. To congregate the challenges of salinity, temperature extremes, and osmotic stress, plants use their genetic mechanism and different adaptive and biological approaches for survival and high production. In the present attempt, we review the potential role of different phytohormones and plant growth-promoting rhizobacteria in abiotic stresses and summarize the research progress in plant responses to abiotic stresses at physiological and molecular levels. We emphasized the regulatory circuits of abscisic acid, indole acetic acid, cytokinins, gibberellic acid, salicylic acid, brassinosteroids, jasmonates, ethylene, and triazole on exposure to abiotic stresses. Current progress is exemplified by the identification and validation of several significant genes that enhanced crop tolerance to stress in the field. These findings will make the modification of hormone biosynthetic pathways for the transgenic plant generation with augmented abiotic stress tolerance and boosting crop productivity in the coming decades possible.
Collapse
Affiliation(s)
- Shah Fahad
- National Key Laboratory of Crop Genetic Improvement, MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, 430070, Hubei, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Djami-Tchatchou AT, Maake MP, Piater LA, Dubery IA. Isonitrosoacetophenone drives transcriptional reprogramming in Nicotiana tabacum cells in support of innate immunity and defense. PLoS One 2015; 10:e0117377. [PMID: 25658943 PMCID: PMC4319752 DOI: 10.1371/journal.pone.0117377] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2014] [Accepted: 12/25/2014] [Indexed: 11/24/2022] Open
Abstract
Plants respond to various stress stimuli by activating broad-spectrum defense responses both locally as well as systemically. As such, identification of expressed genes represents an important step towards understanding inducible defense responses and assists in designing appropriate intervention strategies for disease management. Genes differentially expressed in tobacco cell suspensions following elicitation with isonitrosoacetophenone (INAP) were identified using mRNA differential display and pyro-sequencing. Sequencing data produced 14579 reads, which resulted in 198 contigs and 1758 singletons. Following BLAST analyses, several inducible plant defense genes of interest were identified and classified into functional categories including signal transduction, transcription activation, transcription and protein synthesis, protein degradation and ubiquitination, stress-responsive, defense-related, metabolism and energy, regulation, transportation, cytoskeleton and cell wall-related. Quantitative PCR was used to investigate the expression of 17 selected target genes within these categories. Results indicate that INAP has a sensitising or priming effect through activation of salicylic acid-, jasmonic acid- and ethylene pathways that result in an altered transcriptome, with the expression of genes involved in perception of pathogens and associated cellular re-programming in support of defense. Furthermore, infection assays with the pathogen Pseudomonas syringae pv. tabaci confirmed the establishment of a functional anti-microbial environment in planta.
Collapse
Affiliation(s)
| | - Mmapula P Maake
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Lizelle A Piater
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| | - Ian A Dubery
- Department of Biochemistry, University of Johannesburg, Auckland Park, South Africa
| |
Collapse
|
30
|
Saubeau G, Gaillard F, Legentil L, Nugier-Chauvin C, Ferrières V, Andrivon D, Val F. Identification of three elicitins and a galactan-based complex polysaccharide from a concentrated culture filtrate of Phytophthora infestans efficient against Pectobacterium atrosepticum. Molecules 2014; 19:15374-90. [PMID: 25264828 PMCID: PMC6270706 DOI: 10.3390/molecules191015374] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 09/10/2014] [Accepted: 09/15/2014] [Indexed: 12/21/2022] Open
Abstract
The induction of plant immunity by Pathogen Associated Molecular Patterns (PAMPs) constitutes a powerful strategy for crop protection. PAMPs indeed induce general defense responses in plants and thus increase plant resistance to pathogens. Phytophthora infestans culture filtrates (CCFs) are known to induce defense responses and decrease the severity of soft rot due to Pectobacterium atrosepticum in potato tubers. The aim of this study was to identify and characterize the active compounds from P. infestans filtrate. The filtrate was fractionated by gel filtration, and the protection effects against P. atrosepticum and the ability to induce PAL activity were tested for each fraction. The fraction active in protection (F1) also induced PAL activity, as did the whole filtrate. Three elicitins (INF1, INF4 and INF5) were identified in F1b, subfraction of F1, by MALDI-TOF-MS and MS/MS analyses. However, deproteinized F1b still showed biological activity against the bacterium, revealing the presence of an additional active compound. GC-MS analyses of the deproteinized fraction highlighted the presence of a galactan-based complex polysaccharide. These experiments demonstrate that the biological activity of the CCF against P. atrosepticum results from a combined action of three elicitins and a complex polysaccharide, probably through the activation of general defense responses.
Collapse
Affiliation(s)
| | - Fanny Gaillard
- CNRS-Université Pierre et Marie Curie, FR2424, Station Biologique de Roscoff, Roscoff-Cedex 29682, France.
| | - Laurent Legentil
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, Rennes Cedex 7 35708, France.
| | - Caroline Nugier-Chauvin
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, Rennes Cedex 7 35708, France.
| | - Vincent Ferrières
- Ecole Nationale Supérieure de Chimie de Rennes, CNRS, UMR 6226, 11 Allée de Beaulieu, CS 50837, Rennes Cedex 7 35708, France.
| | | | - Florence Val
- Agrocampus Ouest, UMR1349 IGEPP, Rennes F-35000, France.
| |
Collapse
|
31
|
Böhm H, Albert I, Fan L, Reinhard A, Nürnberger T. Immune receptor complexes at the plant cell surface. CURRENT OPINION IN PLANT BIOLOGY 2014; 20:47-54. [PMID: 24835204 DOI: 10.1016/j.pbi.2014.04.007] [Citation(s) in RCA: 175] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2014] [Revised: 03/10/2014] [Accepted: 04/24/2014] [Indexed: 05/24/2023]
Abstract
Immunity to microbial infection is a common feature of metazoans and plants. Plants employ plasma membrane and cytoplasmic receptor systems for sensing microbe-derived or host-derived patterns and effectors and to trigger inducible immune defenses. Different biochemical types of plasma membrane immune receptors mediate recognition predominantly of peptide and carbohydrate patterns. Current research highlights the role of immune receptor complex formation in plant immunity. In particular, ligand binding by immune receptors generates molecular surfaces that enable either receptor homo-dimerization or co-receptor recruitment for subsequent signal transduction. New insight into negative regulatory principles of immune receptor function further suggests substantial dynamics in protein-protein interactions at the plasma membrane that we are only beginning to understand.
Collapse
Affiliation(s)
- Hannah Böhm
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Isabell Albert
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Li Fan
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - André Reinhard
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany
| | - Thorsten Nürnberger
- Center of Plant Molecular Biology (ZMBP), Eberhard-Karls-University Tübingen, Auf der Morgenstelle 32, D-72076 Tübingen, Germany.
| |
Collapse
|
32
|
Terzi V, Tumino G, Stanca AM, Morcia C. Reducing the incidence of cereal head infection and mycotoxins in small grain cereal species. J Cereal Sci 2014. [DOI: 10.1016/j.jcs.2013.10.005] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
33
|
Zhang W, Fraiture M, Kolb D, Löffelhardt B, Desaki Y, Boutrot FF, Tör M, Zipfel C, Gust AA, Brunner F. Arabidopsis receptor-like protein30 and receptor-like kinase suppressor of BIR1-1/EVERSHED mediate innate immunity to necrotrophic fungi. THE PLANT CELL 2013; 25:4227-41. [PMID: 24104566 PMCID: PMC3877809 DOI: 10.1105/tpc.113.117010] [Citation(s) in RCA: 188] [Impact Index Per Article: 17.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2013] [Revised: 08/03/2013] [Accepted: 09/20/2013] [Indexed: 05/18/2023]
Abstract
Effective plant defense strategies rely in part on the perception of non-self determinants, so-called microbe-associated molecular patterns (MAMPs), by transmembrane pattern recognition receptors leading to MAMP-triggered immunity. Plant resistance against necrotrophic pathogens with a broad host range is complex and yet not well understood. Particularly, it is unclear if resistance to necrotrophs involves pattern recognition receptors. Here, we partially purified a novel proteinaceous elicitor called sclerotinia culture filtrate elicitor1 (SCFE1) from the necrotrophic fungal pathogen Sclerotinia sclerotiorum that induces typical MAMP-triggered immune responses in Arabidopsis thaliana. Analysis of natural genetic variation revealed five Arabidopsis accessions (Mt-0, Lov-1, Lov-5, Br-0, and Sq-1) that are fully insensitive to the SCFE1-containing fraction. We used a forward genetics approach and mapped the locus determining SCFE1 sensitivity to receptor-like protein30 (RLP30). We also show that SCFE1-triggered immune responses engage a signaling pathway dependent on the regulatory receptor-like kinases brassinosteroid insensitive1-associated receptor kinase1 (BAK1) and Suppressor of BIR1-1/evershed (SOBIR1/EVR). Mutants of RLP30, BAK1, and SOBIR1 are more susceptible to S. sclerotiorum and the related fungus Botrytis cinerea. The presence of an elicitor in S. sclerotiorum evoking MAMP-triggered immune responses and sensed by RLP30/SOBIR1/BAK1 demonstrates the relevance of MAMP-triggered immunity in resistance to necrotrophic fungi.
Collapse
Affiliation(s)
- Weiguo Zhang
- Department of Biochemistry, Center for Plant Molecular Biology, Eberhard Karls University, D-72076 Tuebingen, Germany
| | - Malou Fraiture
- Department of Biochemistry, Center for Plant Molecular Biology, Eberhard Karls University, D-72076 Tuebingen, Germany
| | - Dagmar Kolb
- Department of Biochemistry, Center for Plant Molecular Biology, Eberhard Karls University, D-72076 Tuebingen, Germany
| | - Birgit Löffelhardt
- Department of Biochemistry, Center for Plant Molecular Biology, Eberhard Karls University, D-72076 Tuebingen, Germany
| | - Yoshitake Desaki
- Department of Biochemistry, Center for Plant Molecular Biology, Eberhard Karls University, D-72076 Tuebingen, Germany
| | | | - Mahmut Tör
- National Pollen and Aerobiology Research Unit, Institute of Science and the Environment, University of Worcester, Worcester WR2 6AJ, United Kingdom
| | - Cyril Zipfel
- The Sainsbury Laboratory, Norwich NR4 7UH, United Kingdom
| | - Andrea A. Gust
- Department of Biochemistry, Center for Plant Molecular Biology, Eberhard Karls University, D-72076 Tuebingen, Germany
| | - Frédéric Brunner
- Department of Biochemistry, Center for Plant Molecular Biology, Eberhard Karls University, D-72076 Tuebingen, Germany
- Address correspondence to
| |
Collapse
|
34
|
Abstract
Rice diseases such as blast (Magnaporthe oryzae), sheath blight (Rhizoctonia solani) and bacterial blight (Xanthomonas oryzae pv oryzae) are a major obstacle to achieving optimal yields. To complement conventional breeding method, molecular and transgenic method represents an increasingly important approach for genetic improvement of disease resistance and reduction of pesticide usage. During the past two decades, a wide variety of genes and mechanisms involved in rice defense response have been identified and elucidated. These include components of pathogen recognition, signal transduction, downstream defense-related proteins, and crosstalk among different signaling pathways. In addition, various molecular strategies including use of specialized promoters, modification of target protein structures have been studied and proposed to improve the effectiveness of transgenes. While genetically improving rice for enhanced disease resistance, it is important to consider potential effects of the transgene on rice yield, tolerance to abiotic stresses, and defense against other pathogens.
Collapse
Affiliation(s)
- Emily E Helliwell
- Department of Plant Pathology, Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, USA
| | | |
Collapse
|
35
|
Mitter B, Brader G, Afzal M, Compant S, Naveed M, Trognitz F, Sessitsch A. Advances in Elucidating Beneficial Interactions Between Plants, Soil, and Bacteria. ADVANCES IN AGRONOMY 2013:381-445. [PMID: 0 DOI: 10.1016/b978-0-12-407685-3.00007-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
|
36
|
Helliwell EE, Wang Q, Yang Y. Transgenic rice with inducible ethylene production exhibits broad-spectrum disease resistance to the fungal pathogens Magnaporthe oryzae and Rhizoctonia solani. PLANT BIOTECHNOLOGY JOURNAL 2013; 11:33-42. [PMID: 23031077 DOI: 10.1111/pbi.12004] [Citation(s) in RCA: 85] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 08/25/2012] [Accepted: 08/31/2012] [Indexed: 05/20/2023]
Abstract
Rice blast (Magnaporthe oryzae) and sheath blight (Rhizoctonia solani) are the two most devastating diseases of rice (Oryza sativa), and have severe impacts on crop yield and grain quality. Recent evidence suggests that ethylene (ET) may play a more prominent role than salicylic acid and jasmonic acid in mediating rice disease resistance. In this study, we attempt to genetically manipulate endogenous ET levels in rice for enhancing resistance to rice blast and sheath blight diseases. Transgenic lines with inducible production of ET were generated by expressing the rice ACS2 (1-aminocyclopropane-1-carboxylic acid synthase, a key enzyme of ET biosynthesis) transgene under control of a strong pathogen-inducible promoter. In comparison with the wild-type plant, the OsACS2-overexpression lines showed significantly increased levels of the OsACS2 transcripts, endogenous ET and defence gene expression, especially in response to pathogen infection. More importantly, the transgenic lines exhibited increased resistance to a field isolate of R. solani, as well as different races of M. oryzae. Assessment of the growth rate, generational time and seed production revealed little or no differences between wild type and transgenic lines. These results suggest that pathogen-inducible production of ET in transgenic rice can enhance resistance to necrotrophic and hemibiotrophic fungal pathogens without negatively impacting crop productivity.
Collapse
Affiliation(s)
- Emily E Helliwell
- Department of Plant Pathology and Huck Institutes of Life Sciences, Pennsylvania State University, University Park, PA, USA
| | | | | |
Collapse
|
37
|
Gawehns F, Cornelissen BJC, Takken FLW. The potential of effector-target genes in breeding for plant innate immunity. Microb Biotechnol 2012; 6:223-9. [PMID: 23279965 PMCID: PMC3815917 DOI: 10.1111/1751-7915.12023] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2012] [Revised: 11/23/2012] [Accepted: 11/27/2012] [Indexed: 12/11/2022] Open
Abstract
Increasing numbers of infectious crop diseases that are caused by fungi and oomycetes urge the need to develop alternative strategies for resistance breeding. As an alternative for the use of resistance (R) genes, the application of mutant susceptibility (S) genes has been proposed as a potentially more durable type of resistance. Identification of S genes is hampered by their recessive nature. Here we explore the use of pathogen-derived effectors as molecular probes to identify S genes. Effectors manipulate specific host processes thereby contributing to disease. Effector targets might therefore represent S genes. Indeed, the Pseudomonas syringae effector HopZ2 was found to target MLO2, an Arabidopsis thaliana homologue of the barley S gene Mlo. Unfortunately, most effector targets identified so far are not applicable as S genes due to detrimental effects they have on other traits. However, some effector targets such as Mlo are successfully used, and with the increase in numbers of effector targets being identified, the numbers of S genes that can be used in resistance breeding will rise as well.
Collapse
Affiliation(s)
- Fleur Gawehns
- Department of Molecular Plant Pathology, Swammerdam Institute for Life Sciences, University of Amsterdam, Science Park 904, 1098 XH, Amsterdam, the Netherlands
| | | | | |
Collapse
|
38
|
Fujikawa T, Sakaguchi A, Nishizawa Y, Kouzai Y, Minami E, Yano S, Koga H, Meshi T, Nishimura M. Surface α-1,3-glucan facilitates fungal stealth infection by interfering with innate immunity in plants. PLoS Pathog 2012; 8:e1002882. [PMID: 22927818 PMCID: PMC3426526 DOI: 10.1371/journal.ppat.1002882] [Citation(s) in RCA: 122] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2012] [Accepted: 07/13/2012] [Indexed: 01/20/2023] Open
Abstract
Plants evoke innate immunity against microbial challenges upon recognition of pathogen-associated molecular patterns (PAMPs), such as fungal cell wall chitin. Nevertheless, pathogens may circumvent the host PAMP-triggered immunity. We previously reported that the ascomycete Magnaporthe oryzae, a famine-causing rice pathogen, masks cell wall surfaces with α-1,3-glucan during invasion. Here, we show that the surface α-1,3-glucan is indispensable for the successful infection of the fungus by interfering with the plant's defense mechanisms. The α-1,3-glucan synthase gene MgAGS1 was not essential for infectious structure development but was required for infection in M. oryzae. Lack or degradation of surface α-1,3-glucan increased fungal susceptibility towards chitinase, suggesting the protective role of α-1,3-glucan against plants' antifungal enzymes during infection. Furthermore, rice plants secreting bacterial α-1,3-glucanase (AGL-rice) showed strong resistance not only to M. oryzae but also to the phylogenetically distant ascomycete Cochlioborus miyabeanus and the polyphagous basidiomycete Rhizoctonia solani; the histocytochemical analysis of the latter two revealed that α-1,3-glucan also concealed cell wall chitin in an infection-specific manner. Treatment with α-1,3-glucanase in vitro caused fragmentation of infectious hyphae in R. solani but not in M. oryzae or C. miyabeanus, indicating that α-1,3-glucan is also involved in maintaining infectious structures in some fungi. Importantly, rapid defense responses were evoked (a few hours after inoculation) in the AGL-rice inoculated with M. oryzae, C. miyabeanus and R. solani as well as in non-transgenic rice inoculated with the ags1 mutant. Taken together, our results suggest that α-1,3-glucan protected the fungal cell wall from degradative enzymes secreted by plants even from the pre-penetration stage and interfered with the release of PAMPs to delay innate immune defense responses. Because α-1,3-glucan is nondegradable in plants, it is reasonable that many fungal plant pathogens utilize α-1,3-glucan in the innate immune evasion mechanism and some in maintaining the structures. Magnaporthe oryzae, Cochlioborus miyabeanus, and Rhizoctonia solani are the top three fungal pathogens that are responsible for devastating damage to the production of rice, a staple cereal for half of the world's population. These fungal pathogens infect host plants despite the plants' innate immunity, which is activated upon recognition of a conserved cell wall component in fungi, such as chitin. Fungal pathogens seem to have evading mechanism(s) against the host innate immunity; however, the mechanisms are still unclear. In this study, we discovered a novel mechanism that is commonly used by fungal pathogens to prevent host innate immunity. In this mechanism, fungal pathogens mask the cell wall surfaces with α-1,3-glucan, a polysaccharide that plants cannot degrade. In fact, a transgenic rice secreting a bacterial α-1,3-glucanase, which is able to remove α-1,3-glucan on the fungal surfaces, obtained strong resistance to all of those fungal pathogens. We also showed that plants rapidly activated defense responses against fungi (even before the fungal penetration) when α-1,3-glucan on the fungal surfaces were damaged or removed. Our study suggests that fungal surface α-1,3-glucan interferes with host immunity in many fungal pathogens and that α-1,3-glucan is a potential target for controlling various fungal diseases in plants.
Collapse
Affiliation(s)
- Takashi Fujikawa
- National Institute of Agrobiological Sciences-NIAS, Tsukuba, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
39
|
Abstract
The improvement of the agricultural and wine-making qualities of the grapevine (Vitis vinifera) is hampered by adherence to traditional varieties, the recalcitrance of this plant to genetic modifications, and public resistance to genetically modified organism (GMO) technologies. To address these challenges, we developed an RNA virus-based vector for the introduction of desired traits into grapevine without heritable modifications to the genome. This vector expresses recombinant proteins in the phloem tissue that is involved in sugar transport throughout the plant, from leaves to roots to berries. Furthermore, the vector provides a powerful RNA interference (RNAi) capability of regulating the expression of endogenous genes via virus-induced gene-silencing (VIGS) technology. Additional advantages of this vector include superb genetic capacity and stability, as well as the swiftness of technology implementation. The most significant applications of the viral vector include functional genomics of the grapevine and disease control via RNAi-enabled vaccination against pathogens or invertebrate pests.
Collapse
|
40
|
Identification of immunogenic microbial patterns takes the fast lane. Proc Natl Acad Sci U S A 2012; 109:4029-30. [PMID: 22403065 DOI: 10.1073/pnas.1201444109] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
41
|
Bruce TJA. GM as a route for delivery of sustainable crop protection. JOURNAL OF EXPERIMENTAL BOTANY 2012; 63:537-41. [PMID: 22016426 DOI: 10.1093/jxb/err281] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Modern agriculture, with its vast monocultures of lush fertilized crops, provides an ideal environment for adapted pests, weeds, and diseases. This vulnerability has implications for food security: when new pesticide-resistant pest biotypes evolve they can devastate crops. Even with existing crop protection measures, approximately one-third yield losses occur globally. Given the projected increase in demand for food (70% by 2050 according to the UN), sustainable ways of preventing these losses are needed. Development of resistant crop cultivars can make an important contribution. However, traditional crop breeding programmes are limited by the time taken to move resistance traits into elite crop genetic backgrounds and the limited gene pools in which to search for novel resistance. Furthermore, resistance based on single genes does not protect against the full spectrum of pests, weeds, and diseases, and is more likely to break down as pests evolve counter-resistance. Although not necessarily a panacea, GM (genetic modification) techniques greatly facilitate transfer of genes and thus provide a route to overcome these constraints. Effective resistance traits can be precisely and conveniently moved into mainstream crop cultivars. Resistance genes can be stacked to make it harder for pests to evolve counter-resistance and to provide multiple resistances to different attackers. GM-based crop protection could substantially reduce the need for farmers to apply pesticides to their crops and would make agricultural production more efficient in terms of resources used (land, energy, water). These benefits merit consideration by environmentalists willing to keep an open mind on the GM debate.
Collapse
Affiliation(s)
- Toby J A Bruce
- Biological Chemistry Department, Rothamsted Research, Harpenden, Herts AL5 2JQ, UK.
| |
Collapse
|
42
|
Unraveling plant-microbe interactions: can multi-species transcriptomics help? Trends Biotechnol 2011; 30:177-84. [PMID: 22209623 DOI: 10.1016/j.tibtech.2011.11.002] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2011] [Revised: 11/04/2011] [Accepted: 11/04/2011] [Indexed: 01/17/2023]
Abstract
Plants in their natural habitats are surrounded by a large number of microorganisms. Some microbes directly interact with plants in a mutually beneficial manner whereas others colonize the plant only for their own benefit. In addition, microbes can indirectly affect plants by drastically altering their environments. Understanding the complex nature of plant-microbe interactions can potentially offer new strategies to enhance plant productivity in an environmentally friendly manner. As briefly reviewed here, the emerging area of multi-species transcriptomics holds the promise to provide knowledge on how this can be achieved. We discuss key aspects of how transcriptome analysis can be used to provide a more comprehensive picture of the complex interactions of plants with their biotic and abiotic environments.
Collapse
|
43
|
Broekgaarden C, Snoeren TAL, Dicke M, Vosman B. Exploiting natural variation to identify insect-resistance genes. PLANT BIOTECHNOLOGY JOURNAL 2011; 9:819-25. [PMID: 21679292 DOI: 10.1111/j.1467-7652.2011.00635.x] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Herbivorous insects are widespread and often serious constraints to crop production. The use of insect-resistant crops is a very effective way to control insect pests in agriculture, and the development of such crops can be greatly enhanced by knowledge on plant resistance mechanisms and the genes involved. Plants have evolved diverse ways to cope with insect attack that has resulted in natural variation for resistance towards herbivorous insects. Studying the molecular genetics and transcriptional background of this variation has facilitated the identification of resistance genes and processes that lead to resistance against insects. With the development of new technologies, molecular studies are not restricted to model plants anymore. This review addresses the need to exploit natural variation in resistance towards insects to increase our knowledge on resistance mechanisms and the genes involved. We will discuss how this knowledge can be exploited in breeding programmes to provide sustainable crop protection against insect pests. Additionally, we discuss the current status of genetic research on insect-resistance genes. We conclude that insect-resistance mechanisms are still unclear at the molecular level and that exploiting natural variation with novel technologies will contribute greatly to the development of insect-resistant crop varieties.
Collapse
Affiliation(s)
- Colette Broekgaarden
- Wageningen UR Plant Breeding, Wageningen University & Research Centre, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
44
|
Fradin EF, Abd-El-Haliem A, Masini L, van den Berg GC, Joosten MH, Thomma BP. Interfamily transfer of tomato Ve1 mediates Verticillium resistance in Arabidopsis. PLANT PHYSIOLOGY 2011; 156:2255-65. [PMID: 21617027 PMCID: PMC3149960 DOI: 10.1104/pp.111.180067] [Citation(s) in RCA: 187] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 05/25/2011] [Indexed: 05/18/2023]
Abstract
Vascular wilts caused by soil-borne fungal species of the Verticillium genus are devastating plant diseases. The most common species, Verticillium dahliae and Verticillium albo-atrum, have broad host ranges and are notoriously difficult to control. Therefore, genetic resistance is the preferred method for disease control. Only from tomato (Solanum lycopersicum) has a Verticillium resistance locus been cloned, comprising the Ve1 gene that encodes a receptor-like protein-type cell surface receptor. Due to lack of a suitable model for receptor-like protein (RLP)-mediated resistance signaling in Arabidopsis (Arabidopsis thaliana), so far relatively little is known about RLP signaling in pathogen resistance. Here, we show that Ve1 remains fully functional after interfamily transfer to Arabidopsis and that Ve1-transgenic Arabidopsis is resistant to race 1 but not to race 2 strains of V. dahliae and V. albo-atrum, nor to the Brassicaceae-specific pathogen Verticillium longisporum. Furthermore, we show that signaling components utilized by Ve1 in Arabidopsis to establish Verticillium resistance overlap with those required in tomato and include SERK3/BAK1, EDS1, and NDR1, which strongly suggests that critical components for resistance signaling are conserved. We subsequently investigated the requirement of SERK family members for Ve1 resistance in Arabidopsis, revealing that SERK1 is required in addition to SERK3/BAK1. Using virus-induced gene silencing, the requirement of SERK1 for Ve1-mediated resistance was confirmed in tomato. Moreover, we show the requirement of SERK1 for resistance against the foliar fungal pathogen Cladosporium fulvum mediated by the RLP Cf-4. Our results demonstrate that Arabidopsis can be used as model to unravel the genetics of Ve1-mediated resistance.
Collapse
|
45
|
Choi J, Choi D, Lee S, Ryu CM, Hwang I. Cytokinins and plant immunity: old foes or new friends? TRENDS IN PLANT SCIENCE 2011; 16:388-94. [PMID: 21470894 DOI: 10.1016/j.tplants.2011.03.003] [Citation(s) in RCA: 117] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2010] [Revised: 02/28/2011] [Accepted: 03/07/2011] [Indexed: 05/19/2023]
Abstract
Cytokinins are plant growth promoting hormones involved in the specification of embryonic cells, maintenance of meristematic cells, shoot formation and development of vasculature. Cytokinins have also emerged as a major factor in plant-microbe interactions during nodule organogenesis and pathogenesis. Microbe-originated cytokinins confer abnormal hypersensitivity of cytokinins to plants, augmenting the sink activity of infected regions. However, recent findings have shed light on a distinct role of cytokinins in plant immune responses. Plant-borne cytokinins systemically induce resistance against pathogen infection. This resistance is orchestrated by endogenous cytokinin and salicylic acid signaling. Here, we discuss how plant- and pathogen-derived cytokinins inversely affect the plant defense response. In addition, we consider the molecular mechanisms underlying plant-derived cytokinin action in plant immunity.
Collapse
Affiliation(s)
- Jaemyung Choi
- Department of Life Sciences, Pohang University of Science and Technology, Korea
| | | | | | | | | |
Collapse
|
46
|
Ahmad S, Gordon-Weeks R, Pickett J, Ton J. Natural variation in priming of basal resistance: from evolutionary origin to agricultural exploitation. MOLECULAR PLANT PATHOLOGY 2010; 11:817-27. [PMID: 21029325 PMCID: PMC6640509 DOI: 10.1111/j.1364-3703.2010.00645.x] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Biotic stress has a major impact on the process of natural selection in plants. As plants have evolved under variable environmental conditions, they have acquired a diverse spectrum of defensive strategies against pathogens and herbivores. Genetic variation in the expression of plant defence offers valuable insights into the evolution of these strategies. The 'zigzag' model, which describes an ongoing arms race between inducible plant defences and their suppression by pathogens, is now a commonly accepted model of plant defence evolution. This review explores additional strategies by which plants have evolved to cope with biotic stress under different selective circumstances. Apart from interactions with plant-beneficial micro-organisms that can antagonize pathogens directly, plants have the ability to prime their immune system in response to selected environmental signals. This defence priming offers disease protection that is effective against a broad spectrum of virulent pathogens, as long as the augmented defence reaction is expressed before the invading pathogen has the opportunity to suppress host defences. Furthermore, priming has been shown to be a cost-efficient defence strategy under relatively hostile environmental conditions. Accordingly, it is possible that selected plant varieties have evolved a constitutively primed immune system to adapt to levels of disease pressure. Here, we examine this hypothesis further by evaluating the evidence for natural variation in the responsiveness of basal defence mechanisms, and discuss how this genetic variation can be exploited in breeding programmes to provide sustainable crop protection against pests and diseases.
Collapse
Affiliation(s)
- Shakoor Ahmad
- Department of Biological Chemistry, Rothamsted Research, West Common Harpenden, Hertfordshire AL5 2JQ, UK
| | | | | | | |
Collapse
|