1
|
Liu Z, Kabir MT, Chen S, Zhang H, Wakim LM, Rehm BHA. Intranasal Epitope-Polymer Vaccine Lodges Resident Memory T Cells Protecting Against Influenza Virus. Adv Healthc Mater 2024; 13:e2304188. [PMID: 38411375 PMCID: PMC11469178 DOI: 10.1002/adhm.202304188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 02/22/2024] [Indexed: 02/28/2024]
Abstract
Intranasal vaccines, unlike injectable vaccines, boost immunity along the respiratory tract; this can significantly limit respiratory virus replication and shedding. There remains a need to develop mucosal adjuvants and vaccine delivery systems that are both safe and effective following intranasal administration. Here, biopolymer particles (BP) densely coated with repeats of MHC class I restricted immunodominant epitopes derived from influenza A virus namely NP366, a nucleoprotein-derived epitope and PA224, a polymerase acidic subunit derived epitope, are bioengineered. These BP-NP366/PA224 can be manufactured at a high yield and are obtained at ≈93% purity, exhibiting ambient-temperature stability. Immunological characterization includes comparing systemic and mucosal immune responses mounted following intramuscular or intranasal immunization. Immunization with BP-NP366/PA224 without adjuvant triggers influenza-specific CD8+ T cell priming and memory CD8+ T cell development. Co-delivery with the adjuvant poly(I:C) significantly boosts the size and functionality of the influenza-specific pulmonary resident memory CD8+ T cell pool. Intranasal, but not intramuscular delivery of BP-NP366/PA224 with poly(I:C), provides protection against influenza virus challenge. Overall, the BP approach demonstrates as a suitable antigen formulation for intranasal delivery toward induction of systemic protective T cell responses against influenza virus.
Collapse
Affiliation(s)
- Ziyang Liu
- Department of Microbiology and ImmunologyThe University of MelbourneThe Peter Doherty Institute for Infection and ImmunityMelbourneVictoria3000Australia
| | - Md. Tanvir Kabir
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityDon Young RoadNathanQueensland4111Australia
| | - Shuxiong Chen
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityDon Young RoadNathanQueensland4111Australia
| | - Heran Zhang
- Department of Microbiology and ImmunologyThe University of MelbourneThe Peter Doherty Institute for Infection and ImmunityMelbourneVictoria3000Australia
| | - Linda M. Wakim
- Department of Microbiology and ImmunologyThe University of MelbourneThe Peter Doherty Institute for Infection and ImmunityMelbourneVictoria3000Australia
| | - Bernd H. A. Rehm
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityDon Young RoadNathanQueensland4111Australia
| |
Collapse
|
2
|
Li L, Yin S, Zhou J, Zhang L, Teng Z, Qiao L, Wang Y, Yu J, Zang H, Ding Y, Liu X, Sun S, Guo H. Spike 1 trimer, a nanoparticle vaccine against porcine epidemic diarrhea virus induces protective immunity challenge in piglets. Front Microbiol 2024; 15:1386136. [PMID: 38650887 PMCID: PMC11033347 DOI: 10.3389/fmicb.2024.1386136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 03/27/2024] [Indexed: 04/25/2024] Open
Abstract
Porcine epidemic diarrhea virus (PEDV) is considered the cause for porcine epidemic diarrhea (PED) outbreaks and hefty losses in pig farming. However, no effective commercial vaccines against PEDV mutant strains are available nowadays. Here, we constructed three native-like trimeric candidate nanovaccines, i.e., spike 1 trimer (S1-Trimer), collagenase equivalent domain trimer (COE-Trimer), and receptor-binding domain trimer (RBD-Trimer) for PEDV based on Trimer-Tag technology. And evaluated its physical properties and immune efficacy. The result showed that the candidate nanovaccines were safe for mice and pregnant sows, and no animal death or miscarriage occurred in our study. S1-Trimer showed stable physical properties, high cell uptake rate and receptor affinity. In the mouse, sow and piglet models, immunization of S1-Trimer induced high-level of humoral immunity containing PEDV-specific IgG and IgA. S1-Trimer-driven mucosal IgA responses and systemic IgG responses exhibited high titers of virus neutralizing antibodies (NAbs) in vitro. S1-Trimer induced Th1-biased cellular immune responses in mice. Moreover, the piglets from the S1-Trimer and inactivated vaccine groups displayed significantly fewer microscopic lesions in the intestinal tissue, with only one and two piglets showing mild diarrhea. The viral load in feces and intestines from the S1-Trimer and inactivated vaccine groups were significantly lower than those of the PBS group. For the first time, our data demonstrated the protective efficacy of Trimer-Tag-based nanovaccines used for PEDV. The S1-Trimer developed in this study was a competitive vaccine candidate, and Trimer-Tag may be an important platform for the rapid production of safe and effective subunit vaccines in the future.
Collapse
Affiliation(s)
- Linjie Li
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Shuanghui Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Jingjing Zhou
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Liping Zhang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Zhidong Teng
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Lu Qiao
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yunhang Wang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Jiaxi Yu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Haoyue Zang
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Yaozhong Ding
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Xinsheng Liu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Shiqi Sun
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| | - Huichen Guo
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou, China
| |
Collapse
|
3
|
Chen S, Ozberk V, Sam G, Gonzaga ZJC, Calcutt A, Pandey M, Good MF, Rehm BHA. Polymeric epitope-based vaccine induces protective immunity against group A Streptococcus. NPJ Vaccines 2023; 8:102. [PMID: 37452052 PMCID: PMC10349049 DOI: 10.1038/s41541-023-00695-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 06/16/2023] [Indexed: 07/18/2023] Open
Abstract
Group A Streptococcus (Strep A) is a life-threatening human pathogen with no licensed vaccine. Here, we used a biopolymer particle (BP) approach to display repeats of Strep A vaccine candidate peptides p*17 and K4S2 derived from M and non-M protein, respectively. BPs densely displaying both peptides (BP-p*17-S2) were successfully assembled in one-step inside an engineered endotoxin-free Escherichia coli strain. Purified BP-p*17-S2 showed a spherical core-shell morphology with a biopolymer core and peptide shell. Upon formulation with aluminum hydroxide as adjuvant, BP-p*17-S2 exhibited a mean diameter of 2.9 µm and a positive surface charge of 22 mV. No cytotoxicity was detected when tested against HEK-293 cells. Stability studies showed that BP-p*17-S2 is ambient-temperature stable. Immunized mice showed no adverse reactions, while producing high titers of peptide specific antibodies and cytokines. This immune response could be correlated with protective immunity in an animal model of infection, i.e. intranasal challenge of mice with Strep A, where a significant reduction of >100-fold of pathogen burden in nose-associated lymphoid tissue, lung, and spleen was obtained. The cost-effective scalable manufacture of ambient-temperature stable BPs coated with Strep A peptides combined with their immunogenic properties offer an attractive alternative strategy to current Strep A vaccine development.
Collapse
Affiliation(s)
- Shuxiong Chen
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University (Nathan Campus), Nathan, QLD, 4111, Australia.
| | - Victoria Ozberk
- The Institute for Glycomics, Griffith University (Gold Coast Campus), Southport, QLD, 4215, Australia
| | - Gayathri Sam
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University (Nathan Campus), Nathan, QLD, 4111, Australia
| | - Zennia Jean C Gonzaga
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University (Nathan Campus), Nathan, QLD, 4111, Australia
| | - Ainslie Calcutt
- The Institute for Glycomics, Griffith University (Gold Coast Campus), Southport, QLD, 4215, Australia
| | - Manisha Pandey
- The Institute for Glycomics, Griffith University (Gold Coast Campus), Southport, QLD, 4215, Australia
| | - Michael F Good
- The Institute for Glycomics, Griffith University (Gold Coast Campus), Southport, QLD, 4215, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University (Nathan Campus), Nathan, QLD, 4111, Australia.
- Menzies Health Institute Queensland (MHIQ), Griffith University (Gold Coast Campus), Southport, QLD, 4215, Australia.
| |
Collapse
|
4
|
Chen S, Pounraj S, Sivakumaran N, Kakkanat A, Sam G, Kabir MT, Rehm BHA. Precision-engineering of subunit vaccine particles for prevention of infectious diseases. Front Immunol 2023; 14:1131057. [PMID: 36817419 PMCID: PMC9935699 DOI: 10.3389/fimmu.2023.1131057] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
Vaccines remain the best approach for the prevention of infectious diseases. Protein subunit vaccines are safe compared to live-attenuated whole cell vaccines but often show reduced immunogenicity. Subunit vaccines in particulate format show improved vaccine efficacy by inducing strong immune responses leading to protective immunity against the respective pathogens. Antigens with proper conformation and function are often required to induce functional immune responses. Production of such antigens requiring post-translational modifications and/or composed of multiple complex domains in bacterial hosts remains challenging. Here, we discuss strategies to overcome these limitations toward the development of particulate vaccines eliciting desired humoral and cellular immune responses. We also describe innovative concepts of assembling particulate vaccine candidates with complex antigens bearing multiple post-translational modifications. The approaches include non-covalent attachments (e.g. biotin-avidin affinity) and covalent attachments (e.g. SpyCatcher-SpyTag) to attach post-translationally modified antigens to particles.
Collapse
Affiliation(s)
- Shuxiong Chen
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia,*Correspondence: Bernd H. A. Rehm, ; Shuxiong Chen,
| | - Saranya Pounraj
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Nivethika Sivakumaran
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Anjali Kakkanat
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Gayathri Sam
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Md. Tanvir Kabir
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Nathan, QLD, Australia,Menzies Health Institute Queensland (MHIQ), Griffith University, Gold Coast, QLD, Australia,*Correspondence: Bernd H. A. Rehm, ; Shuxiong Chen,
| |
Collapse
|
5
|
Chen S, Quan DH, Sam G, Ozberk V, Wang XT, Halfmann P, Pandey M, Good MF, Kawaoka Y, Britton WJ, Rehm BHA. Assembly of Immunogenic Protein Particles toward Advanced Synthetic Vaccines. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2205819. [PMID: 36564365 DOI: 10.1002/smll.202205819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Immunogenic carrier proteins such as the non-toxic diphtheria toxin variant, cross-reacting material 197 (CRM197), are widely used in subunit vaccine formulations to boost immunogenicity of chemically conjugated antigens. Conjugate vaccines are inherently expensive due to laborious manufacturing steps. Here, this work develops a particulate vaccine platform based on using engineered Escherichia coli to assemble CRM197-antigen fusion proteins into discrete submicron-sized particles. This approach enables precise loading of diverse antigens and epitopes enhancing their immunogenicity. A cost-effective, high-yield, and scalable biomanufacturing process is developed. Purified particulate CRM197-antigen vaccines are ambient-temperature stable. CRM197 particles incorporating pathogen-specific antigens or epitopes from SARS-CoV-2, Streptococcus pyogenes (group A), and Mycobacterium tuberculosis induced cell-mediated and humoral immune responses mediating protective immunity in respective animal models of infection. The CRM197 particle vaccine platform is versatile, enabling co-delivery of selected antigens/epitopes together with immunogenic CRM197 as discrete stable particles avoiding laborious manufacture of soluble CRM197 and antigen followed by chemical conjugation.
Collapse
Affiliation(s)
- Shuxiong Chen
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, 4111, Australia
| | - Diana H Quan
- Centenary Institute, The University of Sydney, Sydney, New South Wales, 2050, Australia
| | - Gayathri Sam
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, 4111, Australia
| | - Victoria Ozberk
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4215, Australia
| | - Xiaonan T Wang
- Centenary Institute, The University of Sydney, Sydney, New South Wales, 2050, Australia
| | - Peter Halfmann
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Manisha Pandey
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4215, Australia
| | - Michael F Good
- Institute for Glycomics, Griffith University, Gold Coast, Queensland, 4215, Australia
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI, 53706, USA
| | - Warwick J Britton
- Centenary Institute, The University of Sydney, Sydney, New South Wales, 2050, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, Queensland, 4111, Australia
- Menzies Health Institute Queensland, Griffith University, Gold Coast, Queensland, 4215, Australia
| |
Collapse
|
6
|
Raghuwanshi VS, Lin M, Garnier G. Biomolecules adsorption to trigger the self-assembly of nanospheres and nanorods. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.130181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
7
|
Gonzaga ZJC, Zhang J, Rehm BHA. Intranasal Delivery of Antigen-Coated Polymer Particles Protects against Pseudomonas aeruginosa Infection. ACS Infect Dis 2022; 8:744-756. [PMID: 35238554 DOI: 10.1021/acsinfecdis.1c00434] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Pseudomonas aeruginosa is an opportunistic human pathogen that is intrinsically resistant to multiple antibiotics, causing severe and persistent infections in immunocompromised individuals. This bacterium has been listed as a priority pathogen by the WHO in 2017, and there is no vaccine available for human use. In this study, 10 vaccine candidate antigens were selected for particulate vaccine design. We engineered Escherichia coli to assemble biopolymer particles (BPs) that were either coated with epitopes (Ag) derived from OprF/I-AlgE proteins or PopB or PopB-Ag or coated with single or double copies of epitopes (10Ag and 10Ag(2x)) derived from OprF, OprI, AlgE, OprL, PopB, PilA, PilO, FliC, Hcp1, and CdrA. Antigen-coated BPs showed a diameter of 0.93-1.16 μm with negative surface charge. Antigens attached to BPs were identified by mass spectrometry. Vaccination with BP-Ag, BP-PopB, BP-PopBAg, PB-10Ag, and BP-10Ag(2x) with and without Alhydrogel adjuvant induced significant antigen-specific humoral and cell-mediated immune responses in mice. All particulate vaccines with Alhydrogel induced protection in an acute pneumonia murine model of P. aeruginosa infection, contributing to up to 80% survival when administered intramuscularly, and the addition of Alhydrogel boosted immunity. The BP-10Ag(2x) vaccine candidate showed the best performance and even induced protective immunity in the absence of Alhydrogel. Intramuscular administration of the BP-10Ag(2x) without Alhydrogel vaccine resulted in 60% survival. Intranasal vaccination induced immunity, contributing to about 90% survival. Overall, our data suggest that vaccination with BPs coated with P. aeruginosa antigens induce protective immunity against P. aeruginosa infections. The possibility of intranasal delivery will strongly facilitate administration and use of BP vaccines.
Collapse
Affiliation(s)
- Zennia Jean C. Gonzaga
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia
| | - Jinyong Zhang
- National Engineering Research Center of Immunological Products, Department of Microbiology and Biochemical Pharmacy, College of Pharmacy, Third Military Medical University, Chongqing 400038, PR China
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, Queensland 4111, Australia
- Menzies Health Institute Queensland (MHIQ), Griffith University, Gold Coast, Queensland 4222, Australia
| |
Collapse
|
8
|
Chen S, Evert B, Adeniyi A, Salla‐Martret M, Lua LH, Ozberk V, Pandey M, Good MF, Suhrbier A, Halfmann P, Kawaoka Y, Rehm BHA. Ambient Temperature Stable, Scalable COVID-19 Polymer Particle Vaccines Induce Protective Immunity. Adv Healthc Mater 2022; 11:e2102089. [PMID: 34716678 PMCID: PMC8652985 DOI: 10.1002/adhm.202102089] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Indexed: 12/15/2022]
Abstract
There is an unmet need for safe and effective severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines that are stable and can be cost-effectively produced at large scale. Here, a biopolymer particle (BP) vaccine technology that can be quickly adapted to new and emerging variants of SARS-CoV-2 is used. Coronavirus antigen-coated BPs are described as vaccines against SARS-CoV-2. The spike protein subunit S1 or epitopes from S and M proteins (SM) plus/minus the nucleocapsid protein (N) are selected as antigens to either coat BPs during assembly inside engineered Escherichia coli or BPs are engineered to specifically ligate glycosylated spike protein (S1-ICC) produced by using baculovirus expression in insect cell culture (ICC). BP vaccines are safe and immunogenic in mice. BP vaccines, SM-BP-N and S1-ICC-BP induced protective immunity in the hamster SARS-CoV-2 infection model as shown by reduction of virus titers up to viral clearance in lungs post infection. The BP platform offers the possibility for rapid design and cost-effective large-scale manufacture of ambient temperature stable and globally available vaccines to combat the coronavirus disease 2019 (COVID-19) pandemic.
Collapse
Affiliation(s)
- Shuxiong Chen
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityNathanQLD4111Australia
| | - Benjamin Evert
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityNathanQLD4111Australia
| | - Adetayo Adeniyi
- Protein Expression FacilityUniversity of QueenslandBrisbaneQLD4072Australia
| | | | - Linda H.‐L. Lua
- Protein Expression FacilityUniversity of QueenslandBrisbaneQLD4072Australia
| | - Victoria Ozberk
- Institute for GlycomicsGriffith UniversityGold CoastQLD4215Australia
| | - Manisha Pandey
- Institute for GlycomicsGriffith UniversityGold CoastQLD4215Australia
| | - Michael F. Good
- Institute for GlycomicsGriffith UniversityGold CoastQLD4215Australia
| | - Andreas Suhrbier
- QIMR Berghofer Medical Research InstituteBrisbaneQLD4006Australia
| | - Peter Halfmann
- Department of Pathobiological SciencesSchool of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Yoshihiro Kawaoka
- Department of Pathobiological SciencesSchool of Veterinary MedicineUniversity of Wisconsin‐MadisonMadisonWI53706USA
| | - Bernd H. A. Rehm
- Centre for Cell Factories and BiopolymersGriffith Institute for Drug DiscoveryGriffith UniversityNathanQLD4111Australia
- Menzies Health Institute QueenslandGriffith UniversityGold Coast4222Australia
| |
Collapse
|
9
|
Gonzaga ZJC, Chen S, Lehoux M, Segura M, Rehm BHA. Engineering Antigens to Assemble into Polymer Particle Vaccines for Prevention of Streptococcus suis Infection. Vaccines (Basel) 2021; 9:1386. [PMID: 34960132 PMCID: PMC8709461 DOI: 10.3390/vaccines9121386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 11/08/2021] [Accepted: 11/15/2021] [Indexed: 11/24/2022] Open
Abstract
Streptococcus suis is a zoonotic pathogen affecting pigs and humans. This bacterium causes severe economic losses in the swine industry and poses a serious threat to public health and food safety. There is no effective commercial vaccine available for pigs or humans. In this study, we applied the biopolymer particle (BP) vaccine technology to incorporate seven conserved S. suis antigens (38 kDa protein (38), enolase (Enol), SSU1915, SSU1355, SSU0185, SSU1215, and SSU1773 (SSU1 and SSU2)). Two combinations of these antigens (38 and Enol; all SSU antigens designated as SSU1 and SSU2) were engineered to mediate production of BPs coated with either antigens 38 and Enol or SSU1 and SSU2 inside recombinant Escherichia coli. The isolated and purified empty BPs, 38-BP-Enol and SSU1-BP-SSU2, showed size ranges of 312-428 nm and 292-344 nm with and without the QuilA® adjuvant, respectively, and all showed a negative surface charge. Further characterization of purified BPs confirmed the presence of the expected antigen-comprising fusion proteins as assessed by tryptic peptide fingerprinting analysis using quadrupole time-of-flight mass spectrometry and immunoblotting. Vaccination with 38-BP-Enol and SSU1-BP-SSU2 formulated with and without QuilA® adjuvant induced significant antigen-specific humoral immune responses in mice. Antigen-coated BPs induced significant and specific Ig (IgM + IgG) and IgG immune responses (1.0 × 106-1.0 × 107) when compared with mice vaccinated with empty BPs. Functionality of the immune response was confirmed in challenge experiments using an acute murine S. suis infection model, which showed 100% survival of the 38-BP-Enol and SSU1-BP-SSU2 vaccinated mice compared to 70% survival when vaccinated with empty BPs. Overall, our data suggest that S. suis antigen-coated BPs could be developed into particulate vaccines that induce protective immunity against S. suis infections.
Collapse
Affiliation(s)
- Zennia Jean C. Gonzaga
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Natha, QLD 4111, Australia; (Z.J.C.G.); (S.C.)
| | - Shuxiong Chen
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Natha, QLD 4111, Australia; (Z.J.C.G.); (S.C.)
| | - Mélanie Lehoux
- Research Group on Infectious Diseases in Production Animals and Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, Université de Montréal, 3200 Rue Sicotte, CP5000, St-Hyacinthe, QC J2S 7C6, Canada; (M.L.); (M.S.)
| | - Mariela Segura
- Research Group on Infectious Diseases in Production Animals and Swine and Poultry Infectious Diseases Research Centre, Faculty of Veterinary Medicine, Université de Montréal, 3200 Rue Sicotte, CP5000, St-Hyacinthe, QC J2S 7C6, Canada; (M.L.); (M.S.)
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Natha, QLD 4111, Australia; (Z.J.C.G.); (S.C.)
- Menzies Health Institute Queensland (MHIQ), Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
10
|
Rodrigues MQ, Alves PM, Roldão A. Functionalizing Ferritin Nanoparticles for Vaccine Development. Pharmaceutics 2021; 13:1621. [PMID: 34683914 PMCID: PMC8540537 DOI: 10.3390/pharmaceutics13101621] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 09/24/2021] [Accepted: 09/28/2021] [Indexed: 12/24/2022] Open
Abstract
In the last decade, the interest in ferritin-based vaccines has been increasing due to their safety and immunogenicity. Candidates against a wide range of pathogens are now on Phase I clinical trials namely for influenza, Epstein-Barr, and SARS-CoV-2 viruses. Manufacturing challenges related to particle heterogeneity, improper folding of fused antigens, and antigen interference with intersubunit interactions still need to be overcome. In addition, protocols need to be standardized so that the production bioprocess becomes reproducible, allowing ferritin-based therapeutics to become readily available. In this review, the building blocks that enable the formulation of ferritin-based vaccines at an experimental stage, including design, production, and purification are presented. Novel bioengineering strategies of functionalizing ferritin nanoparticles based on modular assembly, allowing the challenges associated with genetic fusion to be circumvented, are discussed. Distinct up/down-stream approaches to produce ferritin-based vaccines and their impact on production yield and vaccine efficacy are compared. Finally, ferritin nanoparticles currently used in vaccine development and clinical trials are summarized.
Collapse
Affiliation(s)
- Margarida Q. Rodrigues
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (M.Q.R.); (P.M.A.)
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - Paula M. Alves
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (M.Q.R.); (P.M.A.)
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| | - António Roldão
- iBET, Instituto de Biologia Experimental e Tecnológica, Apartado 12, 2781-901 Oeiras, Portugal; (M.Q.R.); (P.M.A.)
- ITQB NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157 Oeiras, Portugal
| |
Collapse
|
11
|
Chen S, Quan DH, Wang XT, Sandford S, Kirman JR, Britton WJ, Rehm BHA. Particulate Mycobacterial Vaccines Induce Protective Immunity against Tuberculosis in Mice. NANOMATERIALS 2021; 11:nano11082060. [PMID: 34443891 PMCID: PMC8402087 DOI: 10.3390/nano11082060] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/11/2021] [Accepted: 08/11/2021] [Indexed: 12/16/2022]
Abstract
Currently available vaccines fail to provide consistent protection against tuberculosis (TB). New, improved vaccines are urgently needed for controlling the disease. The mycobacterial antigen fusions H4 (Ag85B-TB10.4) and H28 (Ag85B-TB10.4-Rv2660c) have been shown to be very immunogenic and have been considered as potential candidates for TB vaccine development. However, soluble protein vaccines are often poorly immunogenic, but augmented immune responses can be induced when selected antigens are delivered in particulate form. This study investigated whether the mycobacterial antigen fusions H4 and H28 can induce protective immunity when assembled into particulate vaccines (polyester nanoparticle-H4, polyester nanoparticle-H28, H4 nanoparticles and H28 nanoparticles). The particulate mycobacterial vaccines were assembled inside an engineered endotoxin-free production strain of Escherichia coli at high yield. Vaccine nanoparticles were purified and induced long-lasting antigen-specific T cell responses and protective immunity in mice challenged by aerosol with virulent Mycobacterium tuberculosis. A significant reduction of M. tuberculosis CFU, up to 0.7-log10 protection, occurred in the lungs of mice immunized with particulate vaccines in comparison to placebo-vaccinated mice (p < 0.0001). Polyester nanoparticles displaying the mycobacterial antigen fusion H4 induced a similar level of protective immunity in the lung when compared to M. bovis bacillus Calmette-Guérin (BCG), the currently approved TB vaccine. The safe and immunogenic polyester nanoparticle-H4 vaccine is a promising subunit vaccine candidate, as it can be cost-effectively manufactured and efficiently induces protection against TB.
Collapse
Affiliation(s)
- Shuxiong Chen
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia;
| | - Diana H. Quan
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia; (D.H.Q.); (X.T.W.); (W.J.B.)
| | - Xiaonan T. Wang
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia; (D.H.Q.); (X.T.W.); (W.J.B.)
| | - Sarah Sandford
- The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Joanna R. Kirman
- Microbiology & Immunology Department, University of Otago, Dunedin 9016, New Zealand;
| | - Warwick J. Britton
- Centenary Institute, The University of Sydney, Sydney, NSW 2050, Australia; (D.H.Q.); (X.T.W.); (W.J.B.)
- Department of Clinical Immunology, Royal Prince Alfred Hospital, Sydney, NSW 2050, Australia
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD 4111, Australia;
- Menzies Health Institute Queensland, Griffith University, Gold Coast, QLD 4222, Australia
- Correspondence: ; Tel.: +61-(0)7-3735-4233
| |
Collapse
|
12
|
Liu ZH, Xu HL, Han GW, Tao LN, Lu Y, Zheng SY, Fang WH, He F. A self-assembling nanoparticle: Implications for the development of thermostable vaccine candidates. Int J Biol Macromol 2021; 183:2162-2173. [PMID: 34102236 DOI: 10.1016/j.ijbiomac.2021.06.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/27/2021] [Accepted: 06/03/2021] [Indexed: 11/16/2022]
Abstract
Effective controls on viral infections rely on the continuous development in vaccine technology. Nanoparticle (NP) antigens are highly immunogenic based on their unique physicochemical properties, making them molecular scaffolds to present soluble vaccine antigens. Here, viral targets (113-354 aas) were genetically fused to N terminal of mi3, a protein that self-assembles into nanoparticles composed of 60 subunits. With transmission electron microscopy, it was confirmed that target-mi3 fusion proteins which have insertions of up to 354 aas in N terminal form intact NPs. Moreover, viral targets are surface-displayed on NPs as indicated in dynamic light scattering. NPs exhibit perfect stability after long-term storage at room temperature. Moreover, SP-E2-mi3 NPs enhance antigen uptake and maturation in dendritic cells (DCs) via up-regulating marker molecules and immunostimulatory cytokines. Importantly, in a mouse model, SP-E2-mi3 nanovaccines against Classical swine fever virus (CSFV) remarkably improved CSFV-specific neutralizing antibodies (NAbs) and cellular immunity related cytokines (IFN-γ and IL-4) as compared to monomeric E2. Specially, improved NAb response with more than tenfold increase in NAb titer against both CSFV Shimen and HZ-08 strains indicated better cross-protection against different genotypes. Collectively, this structure-based, self-assembling NP provides an attractive platform to improve the potency of subunit vaccine for emerging pathogens.
Collapse
MESH Headings
- Animals
- Antibodies, Neutralizing/blood
- Antibodies, Viral/blood
- Antigens, Viral/genetics
- Antigens, Viral/immunology
- Antigens, Viral/pharmacology
- Cells, Cultured
- Classical Swine Fever/blood
- Classical Swine Fever/immunology
- Classical Swine Fever/prevention & control
- Classical Swine Fever/virology
- Classical Swine Fever Virus/immunology
- Cytokines/metabolism
- Dendritic Cells/drug effects
- Dendritic Cells/immunology
- Dendritic Cells/metabolism
- Disease Models, Animal
- Drug Stability
- Female
- Immunogenicity, Vaccine
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Nanoparticles
- Recombinant Fusion Proteins/immunology
- Recombinant Fusion Proteins/pharmacology
- Swine
- Temperature
- Vaccines, Subunit/immunology
- Vaccines, Subunit/pharmacology
- Vaccines, Synthetic/immunology
- Vaccines, Synthetic/pharmacology
- Viral Vaccines/immunology
- Viral Vaccines/pharmacology
- Mice
Collapse
Affiliation(s)
- Ze-Hui Liu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Hui-Ling Xu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Guang-Wei Han
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Li-Na Tao
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Ying Lu
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Su-Ya Zheng
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Wei-Huan Fang
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China.
| | - Fang He
- Institute of Preventive Veterinary Medicine, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Hangzhou 310058, China.
| |
Collapse
|
13
|
Liu ZH, Xu HL, Han GW, Tao LN, Lu Y, Zheng SY, Fang WH, He F. Self-Assembling Nanovaccine Enhances Protective Efficacy Against CSFV in Pigs. Front Immunol 2021; 12:689187. [PMID: 34367147 PMCID: PMC8334734 DOI: 10.3389/fimmu.2021.689187] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/01/2021] [Indexed: 01/01/2023] Open
Abstract
Classical swine fever virus (CSFV) is a highly contagious pathogen, which pose continuous threat to the swine industry. Though most attenuated vaccines are effective, they fail to serologically distinguish between infected and vaccinated animals, hindering CSFV eradication. Beneficially, nanoparticles (NPs)-based vaccines resemble natural viruses in size and antigen structure, and offer an alternative tool to circumvent these limitations. Using self-assembling NPs as multimerization platforms provides a safe and immunogenic tool against infectious diseases. This study presented a novel strategy to display CSFV E2 glycoprotein on the surface of genetically engineered self-assembling NPs. Eukaryotic E2-fused protein (SP-E2-mi3) could self-assemble into uniform NPs as indicated in transmission electron microscope (TEM) and dynamic light scattering (DLS). SP-E2-mi3 NPs showed high stability at room temperature. This NP-based immunization resulted in enhanced antigen uptake and up-regulated production of immunostimulatory cytokines in antigen presenting cells (APCs). Moreover, the protective efficacy of SP-E2-mi3 NPs was evaluated in pigs. SP-E2-mi3 NPs significantly improved both humoral and cellular immunity, especially as indicated by the elevated CSFV-specific IFN-γ cellular immunity and >10-fold neutralizing antibodies as compared to monomeric E2. These observations were consistent to in vivo protection against CSFV lethal virus challenge in prime-boost immunization schedule. Further results revealed single dose of 10 μg of SP-E2-mi3 NPs provided considerable clinical protection against lethal virus challenge. In conclusion, these findings demonstrated that this NP-based technology has potential to enhance the potency of subunit vaccine, paving ways for nanovaccine development.
Collapse
Affiliation(s)
- Ze-Hui Liu
- Institute of Preventive Veterinary Sciences & College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Hui-Ling Xu
- Institute of Preventive Veterinary Sciences & College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Guang-Wei Han
- Institute of Preventive Veterinary Sciences & College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Li-Na Tao
- Institute of Preventive Veterinary Sciences & College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Ying Lu
- Institute of Preventive Veterinary Sciences & College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Su-Ya Zheng
- Institute of Preventive Veterinary Sciences & College of Animal Sciences, Zhejiang University, Hangzhou, China
| | - Wei-Huan Fang
- Institute of Preventive Veterinary Sciences & College of Animal Sciences, Zhejiang University, Hangzhou, China.,Department of Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| | - Fang He
- Institute of Preventive Veterinary Sciences & College of Animal Sciences, Zhejiang University, Hangzhou, China.,Department of Veterinary Medicine, Zhejiang Provincial Key Laboratory of Preventive Veterinary Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
14
|
Gonzaga ZJC, Merakou C, DiGiandomenico A, Priebe GP, Rehm BHA. A Pseudomonas aeruginosa-Derived Particulate Vaccine Protects against P. aeruginosa Infection. Vaccines (Basel) 2021; 9:803. [PMID: 34358220 PMCID: PMC8309987 DOI: 10.3390/vaccines9070803] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/12/2021] [Accepted: 07/16/2021] [Indexed: 01/05/2023] Open
Abstract
Despite numerous efforts to develop an effective vaccine against Pseudomonas aeruginosa, no vaccine has yet been approved for human use. This study investigates the utility of the P. aeruginosa inherently produced polyhydroxyalkanaote (PHA) inclusions and associated host-cell proteins (HCP) as a particulate vaccine platform. We further engineered PHA inclusions to display epitopes derived from the outer membrane proteins OprF/OprI/AlgE (Ag) or the type III secretion system translocator PopB. PHA and engineered PHA beads induced antigen-specific humoral, cell-mediated immune responses, anti-HCP and anti-polysaccharide Psl responses in mice. Antibodies mediated opsonophagocytic killing and serotype-independent protective immunity as shown by 100% survival upon challenge with P. aeruginosa in an acute pneumonia murine model. Vaccines were stable at 4 °C for at least one year. Overall, our data suggest that vaccination with subcellular empty PHA beads was sufficient to elicit multiple immune effectors that can prevent P. aeruginosa infection.
Collapse
Affiliation(s)
- Zennia Jean C. Gonzaga
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, QLD 4111, Australia;
| | - Christina Merakou
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (C.M.); (G.P.P.)
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
| | - Antonio DiGiandomenico
- Discovery Microbiome, Microbial Sciences, Biopharmaceuticals R&D, AstraZeneca, Gaithersburg, MD 34321, USA;
| | - Gregory P. Priebe
- Division of Critical Care Medicine, Department of Anesthesiology, Critical Care and Pain Medicine, Boston Children’s Hospital, Boston, MA 02115, USA; (C.M.); (G.P.P.)
- Department of Anaesthesia, Harvard Medical School, Boston, MA 02115, USA
- Division of Infectious Diseases, Department of Pediatrics, Boston Children’s Hospital, Boston, MA 02115, USA
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers (CCFB), Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, QLD 4111, Australia;
- Menzies Health Institute Queensland (MHIQ), Griffith University, Gold Coast, QLD 4222, Australia
| |
Collapse
|
15
|
Dau VT, Bui TT, Tran CD, Nguyen TV, Nguyen TK, Dinh T, Phan HP, Wibowo D, Rehm BHA, Ta HT, Nguyen NT, Dao DV. In-air particle generation by on-chip electrohydrodynamics. LAB ON A CHIP 2021; 21:1779-1787. [PMID: 33730135 DOI: 10.1039/d0lc01247e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Electrohydrodynamic atomization has been emerging as a powerful approach for respiratory treatment, including the generation and delivery of micro/nanoparticles as carriers for drugs and antigens. In this work, we present a new conceptual design in which two nozzles facilitate dual electrospray coexisting with ionic wind at chamfered tips by a direct current power source. Experimental results by a prototype have demonstrated the capability of simultaneously generating-and-delivering a stream of charged reduced particles. The concept can be beneficial to pulmonary nano-medicine delivery since the mist of nanoparticles is migrated without any restriction of either the collector or the assistance of external flow, but is pretty simple in designing and manufacturing devices.
Collapse
Affiliation(s)
- Van T Dau
- School of Engineering and Built Environment, Griffith University, Australia. and Centre of Catalysis and Clean Energy, Griffith University, Australia
| | - Tung T Bui
- University of Engineering and Technology, Vietnam National University, Hanoi, Vietnam
| | - Canh-Dung Tran
- School of Mechanical and Electrical Engineering, University of Southern Queensland, Australia
| | - Thanh Viet Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Australia
| | - Tuan-Khoa Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Australia
| | - Toan Dinh
- School of Mechanical and Electrical Engineering, University of Southern Queensland, Australia
| | - Hoang-Phuong Phan
- Queensland Micro and Nanotechnology Centre, Griffith University, Australia
| | - David Wibowo
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Australia
| | - Hang Thu Ta
- Queensland Micro and Nanotechnology Centre, Griffith University, Australia and School of Environment and Science, Griffith University, Australia
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Australia
| | - Dzung V Dao
- School of Engineering and Built Environment, Griffith University, Australia. and Queensland Micro and Nanotechnology Centre, Griffith University, Australia
| |
Collapse
|
16
|
Wibowo D, Jorritsma SHT, Gonzaga ZJ, Evert B, Chen S, Rehm BHA. Polymeric nanoparticle vaccines to combat emerging and pandemic threats. Biomaterials 2020; 268:120597. [PMID: 33360074 PMCID: PMC7834201 DOI: 10.1016/j.biomaterials.2020.120597] [Citation(s) in RCA: 90] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 11/30/2020] [Accepted: 12/06/2020] [Indexed: 02/07/2023]
Abstract
Subunit vaccines are more advantageous than live attenuated vaccines in terms of safety and scale-up manufacture. However, this often comes as a trade-off to their efficacy. Over the years, polymeric nanoparticles have been developed to improve vaccine potency, by engineering their physicochemical properties to incorporate multiple immunological cues to mimic pathogenic microbes and viruses. This review covers recent advances in polymeric nanostructures developed toward particulate vaccines. It focuses on the impact of microbe mimicry (e.g. size, charge, hydrophobicity, and surface chemistry) on modulation of the nanoparticles’ delivery, trafficking, and targeting antigen-presenting cells to elicit potent humoral and cellular immune responses. This review also provides up-to-date progresses on rational designs of a wide variety of polymeric nanostructures that are loaded with antigens and immunostimulatory molecules, ranging from particles, micelles, nanogels, and polymersomes to advanced core-shell structures where polymeric particles are coated with lipids, cell membranes, or proteins.
Collapse
Affiliation(s)
- David Wibowo
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia.
| | - Sytze H T Jorritsma
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia
| | - Zennia Jean Gonzaga
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia
| | - Benjamin Evert
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia
| | - Shuxiong Chen
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan QLD, 4111, Australia.
| |
Collapse
|
17
|
Chang D, Liu Y, Chen Y, Hu X, Burov A, Puzyr A, Bondar V, Yao L. Study of the immunogenicity of the VP2 protein of canine parvovirus produced using an improved Baculovirus expression system. BMC Vet Res 2020; 16:202. [PMID: 32552679 PMCID: PMC7301529 DOI: 10.1186/s12917-020-02422-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 06/09/2020] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND Canine parvovirus (CPV) is now recognized as a serious threat to the dog breeding industry worldwide. Currently used CPV vaccines all have their specific drawbacks, prompting a search for alternative safe and effective vaccination strategies such as subunit vaccine. VP2 protein is the major antigen targeted for developing CPV subunit vaccine, however, its production in baculovirus expression system remains challenging due to the insufficient yield. Therefore, our study aims to increase the VP2 protein production by using an improved baculovirus expression system and to evaluate the immunogenicity of the purified VP2 protein in mice. RESULTS The results showed that high-level expression of the full length VP2 protein was achieved using our modified baculovirus expression system. The recombinant virus carrying two copies of VP2 gene showed the highest expression level, with a productivity of 186 mg/L, which is about 1.4-1.6 fold that of the recombinant viruses carrying only one copy. The purified protein reacted with Mouse anti-His tag monoclonal antibody and Rabbit anti-VP2 polyclonal antibody. BALB/c mice were intramuscularly immunized with purified VP2 protein twice at 2 week intervals. After vaccination, VP2 protein could induce the mice produce high level of hemagglutination inhibition antibodies. CONCLUSIONS Full length CPV VP2 protein was expressed at high level and purified efficiently. Moreover, it stimulated mice to produce high level of antibodies with hemmaglutination inhibition properties. The VP2 protein expressed in this study could be used as a putative economic and efficient subunit vaccine against CPV infection.
Collapse
Affiliation(s)
- Dao Chang
- Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Yangkun Liu
- Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Yangyang Chen
- Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Xiaomin Hu
- Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China
| | - Andrey Burov
- Institute of Biophysics, Siberian Branch of Russian Academy of Science, Federal Research Center "Krasnoyarsk Science Center SB RAS", 660036, Krasnoyarsk, Russia
| | - Alexey Puzyr
- Institute of Biophysics, Siberian Branch of Russian Academy of Science, Federal Research Center "Krasnoyarsk Science Center SB RAS", 660036, Krasnoyarsk, Russia
| | - Vladimir Bondar
- Institute of Biophysics, Siberian Branch of Russian Academy of Science, Federal Research Center "Krasnoyarsk Science Center SB RAS", 660036, Krasnoyarsk, Russia
| | - Lunguang Yao
- Henan Provincal Engineering and Technology Center of Health Products for Livestock and Poultry; Key Laboratory of Ecological Security and Collaborative Innovation Centre of Water Security for Water Source Region of Mid-line of South-to-North Diversion Project of Henan Province, School of Agricultural Engineering, Nanyang Normal University, Nanyang, 473061, China.
| |
Collapse
|
18
|
Abstract
Bacteria are prime cell factories that can efficiently convert carbon and nitrogen sources into a large diversity of intracellular and extracellular biopolymers, such as polysaccharides, polyamides, polyesters, polyphosphates, extracellular DNA and proteinaceous components. Bacterial polymers have important roles in pathogenicity, and their varied chemical and material properties make them suitable for medical and industrial applications. The same biopolymers when produced by pathogenic bacteria function as major virulence factors, whereas when they are produced by non-pathogenic bacteria, they become food ingredients or biomaterials. Interdisciplinary research has shed light on the molecular mechanisms of bacterial polymer synthesis, identified new targets for antibacterial drugs and informed synthetic biology approaches to design and manufacture innovative materials. This Review summarizes the role of bacterial polymers in pathogenesis, their synthesis and their material properties as well as approaches to design cell factories for production of tailor-made bio-based materials suitable for high-value applications.
Collapse
Affiliation(s)
- M Fata Moradali
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, USA
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Brisbane, QLD, Australia.
| |
Collapse
|
19
|
Beugeling M, De Zee J, Woerdenbag HJ, Frijlink HW, Wilschut JC, Hinrichs WLJ. Respiratory syncytial virus subunit vaccines based on the viral envelope glycoproteins intended for pregnant women and the elderly. Expert Rev Vaccines 2019; 18:935-950. [PMID: 31446807 DOI: 10.1080/14760584.2019.1657013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Introduction: Respiratory syncytial virus (RSV) causes high morbidity and mortality rates among infants, young children, and the elderly worldwide. Unfortunately, a safe and effective vaccine is still unavailable. In 1966, a formalin-inactivated RSV vaccine failed and resulted in the death of two young children. This failure shifted research toward the development of subunit-based vaccines for pregnant women (to passively vaccinate infants) and the elderly. Among these subunit-based vaccines, the viral envelope glycoproteins show great potential as antigens. Areas covered: In this review, progress in the development of safe and effective subunit RSV vaccines based on the viral envelope glycoproteins and intended for pregnant women and the elderly, are reviewed and discussed. Studies published in the period 2012-2018 were included. Expert opinion: Researchers are close to bringing safe and effective subunit-based RSV vaccines to the market using the viral envelope glycoproteins as antigens. However, it remains a major challenge to elicit protective immunity, with a formulation that has sufficient (storage) stability. These issues may be overcome by using the RSV fusion protein in its pre-fusion conformation, and by formulating this protein as a dry powder. It may further be convenient to administer this powder via the pulmonary route.
Collapse
Affiliation(s)
- Max Beugeling
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen , The Netherlands
| | - Jildou De Zee
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen , The Netherlands
| | - Herman J Woerdenbag
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen , The Netherlands
| | - Henderik W Frijlink
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen , The Netherlands
| | - Jan C Wilschut
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen , Groningen , The Netherlands
| | - Wouter L J Hinrichs
- Department of Pharmaceutical Technology and Biopharmacy, University of Groningen , Groningen , The Netherlands
| |
Collapse
|
20
|
Zeigler DF, Gage E, Roque R, Clegg CH. Epitope targeting with self-assembled peptide vaccines. NPJ Vaccines 2019; 4:30. [PMID: 31341647 PMCID: PMC6642127 DOI: 10.1038/s41541-019-0125-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 06/26/2019] [Indexed: 12/16/2022] Open
Abstract
Nanoparticle-based delivery systems are being used to simplify and accelerate new vaccine development. Previously, we described the solid-phase synthesis of a 61-amino acid conjugate vaccine carrier comprising a α-helical domain followed by two universal T cell epitopes. Circular dichroism, analytical centrifugation, and dynamic light scattering indicate that this carrier forms coiled-coil nanoparticles. Here we expand the potential of this carrier by appending B cell epitopes to its amino acid sequence, thereby eliminating the need for traditional conjugation reactions. Peptides containing Tau or amyloid-β epitopes at either terminus assemble into ~20 nm particles and induce antibody responses in outbred mice. Vaccine function was verified in three experiments. The first targeted gonadotropin-releasing hormone, a 10-amino acid neuropeptide that regulates sexual development. Induction of peak antibody titers in male mice stimulated a dramatic loss in fertility and marked testis degeneration. The second experiment generated antibodies to an epitope on the murine IgE heavy chain analogous to human IgE sequence recognized by omalizumab, the first monoclonal antibody approved for the treatment of allergic asthma. Like omalizumab, the anti-IgE antibodies in immunized mice reduced the concentrations of circulating free IgE and prevented IgE-induced anaphylaxis. Finally, a peptide containing the highly conserved Helix A epitope within the influenza hemagglutinin stem domain induced antibodies that successfully protected mice against a lethal H1N1 challenge. These results establish the utility of a new vaccine platform for eliciting prophylactic and therapeutic antibodies to linear and helical B cell epitopes. Synthetic nanoparticles have the potential to be a simple, efficacious, and customizable platform for vaccine delivery. Christopher H. Clegg and colleagues include B cell epitopes on a self-assembling α-helical peptide nanoparticle carrier in order to elicit robust antibody generation. This novel vaccine platform is validated in vivo to produce physiologically-relevant antibodies in three different settings: an antibody-mediated ‘castration’ approach (anti-gonadotropin-releasing hormone), depletion of IgE (by generation of anti-IgE), and finally production of antibodies to a conserved H1N1 influenza epitope that mediates a protective effect in mice.
Collapse
Affiliation(s)
- David F Zeigler
- 1TRIA Bioscience Corp, Suite 260, 1616 Eastlake Avenue East, Seattle, WA 98102 USA
| | - Emily Gage
- 1TRIA Bioscience Corp, Suite 260, 1616 Eastlake Avenue East, Seattle, WA 98102 USA
| | - Richard Roque
- 1TRIA Bioscience Corp, Suite 260, 1616 Eastlake Avenue East, Seattle, WA 98102 USA.,2Present Address: MedImmune, One MedImmune Way, Gaithersburg, MD 20878 USA
| | - Christopher H Clegg
- 1TRIA Bioscience Corp, Suite 260, 1616 Eastlake Avenue East, Seattle, WA 98102 USA
| |
Collapse
|
21
|
Hildenbrand JC, Reinhardt S, Jendrossek D. Formation of an Organic-Inorganic Biopolymer: Polyhydroxybutyrate-Polyphosphate. Biomacromolecules 2019; 20:3253-3260. [PMID: 31062966 DOI: 10.1021/acs.biomac.9b00208] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A considerable variety of different biopolymers is formed by the entirety of organisms present on earth. Most of these compounds are organic polymers such as polysaccharides, polyamino acids, polynucleotides, polyisoprenes or polyhydroxyalkanoates (PHAs), but some biopolymers can consist of solely inorganic monomers such as phosphate in polyphosphates (polyPs). In this contribution, we describe the formation of an organic-inorganic block copolymer consisting of poly(3-hydroxybutyrate) (PHB) and polyP. This was achieved by the expression of a fusion of the polyP kinase gene (ppk2c) with the PHB synthase gene (phaC) of Ralstonia eutropha in a polyP-free and PHB-free mutant background of R. eutropha. The fusion protein catalyzed both the formation of polyP by its polyP kinase domain and the formation of PHB by its PHB synthase domain. It was also possible to synthesize the polyP-PHB polymer in vitro with purified Ppk2c-PhaC, if the monomers, adenosine triphosphate (ATP) and 3-hydroxybutyryl-CoA (3HB-CoA), were provided. Most likely, the formed block copolymer (polyP-protein-PHB) turns into a blend of polyP and PHB after release from the enzyme.
Collapse
Affiliation(s)
| | - Simone Reinhardt
- Institute of Microbiology , University of Stuttgart , 70174 Stuttgart , Germany
| | - Dieter Jendrossek
- Institute of Microbiology , University of Stuttgart , 70174 Stuttgart , Germany
| |
Collapse
|
22
|
Gonzalez-Miro M, Chen S, Gonzaga ZJ, Evert B, Wibowo D, Rehm BHA. Polyester as Antigen Carrier toward Particulate Vaccines. Biomacromolecules 2019; 20:3213-3232. [DOI: 10.1021/acs.biomac.9b00509] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Affiliation(s)
- Majela Gonzalez-Miro
- School of Fundamental Sciences, Massey University, Palmerston North 4474, New Zealand
| | - Shuxiong Chen
- Centre for Cell
Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Zennia Jean Gonzaga
- Centre for Cell
Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Benjamin Evert
- Centre for Cell
Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - David Wibowo
- Centre for Cell
Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| | - Bernd H. A. Rehm
- Centre for Cell
Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland 4111, Australia
| |
Collapse
|
23
|
Chen S, Sandford S, Kirman JR, Rehm BHA. Innovative antigen carrier system for the development of tuberculosis vaccines. FASEB J 2019; 33:7505-7518. [PMID: 30870010 DOI: 10.1096/fj.201802501rr] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A major obstacle to tuberculosis (TB)-subunit-vaccine development has been the induction of inadequate levels of protective immunity due to the limited breadth of antigen in vaccine preparations. In this study, immunogenic mycobacterial fusion peptides Ag85B-TB10.4 and Ag85B-TB10.4-Rv2660c were covalently displayed on the surface of self-assembled polyester particles. This study investigated whether polyester particles displaying mycobacterial antigens could provide augmented immunogenicity (i.e., offer an innovative vaccine formulation) when compared with free soluble antigens. Herein, polyester particle-based particulate vaccines were produced in an endotoxin-free Escherichia coli strain and emulsified with the adjuvant dimethyl dioctadecyl ammonium bromide. C57BL/6 mice were used to study the immunogenicity of formulated particulate vaccines. The result of humoral immunity showed the antibodies only interacted with target antigens and not with PhaC and the background proteins of the production host. The analysis of T helper 1 cellular immunity indicated that a relatively strong production of cellular immunity biomarkers, IFN-γ and IL-17A cytokines, was induced by particulate vaccines when compared with the respective soluble controls. This study demonstrated that polyester particles have the potential to perform as a mycobacterial antigen-delivery agent to induce augmented antigen-specific immune responses in contrast to free soluble vaccines.-Chen, S., Sandford, S., Kirman, J. R., Rehm, B. H. A. Innovative antigen carrier system for the development of tuberculosis vaccines.
Collapse
Affiliation(s)
- Shuxiong Chen
- Institute of Fundamental Sciences, Massey University Manawatu, Palmerston North, New Zealand
| | - Sarah Sandford
- Microbiology and Immunology Department, Otago University, Dunedin, New Zealand; and
| | - Joanna R Kirman
- Microbiology and Immunology Department, Otago University, Dunedin, New Zealand; and
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan Campus, Brisbane, Queensland, Australia
| |
Collapse
|
24
|
Hepatitis E vaccine candidate harboring a non-particulate immunogen of E2 fused with CRM197 fragment A. Antiviral Res 2019; 164:154-161. [PMID: 30802475 DOI: 10.1016/j.antiviral.2019.02.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Revised: 01/27/2019] [Accepted: 02/19/2019] [Indexed: 12/16/2022]
Abstract
The Hepatitis E vaccine (Hecolin, licensed in China) harbors a potent particulate immunogen, p239, designed from a 26-aa N-terminal extension of its poorly immunogenic parental protein, E2. Although an effective vaccine, we sought to design a fusion protein in a non-particulate form that could improve the delivery and immunogenicity of E2 epitopes. The non-toxic mutant of diphtheria toxin, CRM197 (Cross-Reacting Material 197) has been successfully used as a carrier protein for conjugated vaccines to enhance the immunogenicity of polysaccharides. Here, we designed a fusion non-particulate protein of E2 and the catalytic domain (fragment A) of CRM197 and evaluated its antigenicity, immunogenicity and disease prevention efficacy in primates. This fusion protein, named CRM197(A)-E2, was bacterially expressed and purified by chromatography. CRM197(A)-E2 presented as a homodimer in solution, similar to its parental E2 protein, and exhibited excellent antigenicity against representative neutralizing monoclonal antibodies, like E2 and p239. However, CRM197(A)-E2 manifested higher immunogenicity in mice compared with that achieved by the particulate p239, as indicated by the 10-times lower ED50 value and 2-log higher HEV-specific antibody level that could persist for at least 28 weeks. In addition, both the 1 μg and 10 μg doses of CRM197(A)-E2 adjuvanted with aluminum could protect vaccinated monkeys against HEV challenge, matching that achieved with only the higher (10 μg) dose of the p239 vaccine. These results suggest that the CRM197 fragment A alone serves as an intra-molecular adjuvant to remarkably enhance the immunogenicity of the target of interest in a non-particulate form. These findings may pave the way for rational vaccine design, especially in cases where particulates are not accessible.
Collapse
|
25
|
Chen S, Sandford S, Kirman J, Rehm BHA. Design of Bacterial Inclusion Bodies as Antigen Carrier Systems. ACTA ACUST UNITED AC 2018. [DOI: 10.1002/adbi.201800118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Shuxiong Chen
- Institute of Fundamental Sciences; Massey University Manawatu; Palmerston North 4474 New Zealand
| | - Sarah Sandford
- Microbiology and Immunology Department; Otago University; Dunedin 9054 New Zealand
| | - Joanna Kirman
- Microbiology and Immunology Department; Otago University; Dunedin 9054 New Zealand
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers; Griffith Institute for Drug Discovery; Griffith University Nathan Campus; Brisbane 4111 Australia
| |
Collapse
|
26
|
González-Miró M, Radecker AM, Rodríguez-Noda LM, Fariñas-Medina M, Zayas-Vignier C, Hernández-Cedeño M, Serrano Y, Cardoso F, Santana-Mederos D, García-Rivera D, Valdés-Balbín Y, Vérez-Bencomo V, Rehm BHA. Design and Biological Assembly of Polyester Beads Displaying Pneumococcal Antigens as Particulate Vaccine. ACS Biomater Sci Eng 2018; 4:3413-3424. [DOI: 10.1021/acsbiomaterials.8b00579] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Majela González-Miró
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
- Institute of Fundamental Sciences, Massey University, Colombo Road, Palmerston North 4422, New Zealand
| | - Anna-Maria Radecker
- Institute of Fundamental Sciences, Massey University, Colombo Road, Palmerston North 4422, New Zealand
| | - Laura M. Rodríguez-Noda
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Mildrey Fariñas-Medina
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Caridad Zayas-Vignier
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Mabel Hernández-Cedeño
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Yohana Serrano
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Félix Cardoso
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Darielys Santana-Mederos
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Dagmar García-Rivera
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Yury Valdés-Balbín
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Vicente Vérez-Bencomo
- Finlay Vaccine Institute, 27th Avenue, No. 19805 between 198 and 202, La Lisa, Havana 11600, Cuba
| | - Bernd H. A. Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan Campus, Nathan, Queensland 4111, Australia
| |
Collapse
|
27
|
Engineering detoxified pneumococcal pneumolysin derivative ΔA146PLY for self-biomineralization of calcium phosphate: Assessment of their protective efficacy in murine infection models. Biomaterials 2018; 155:152-164. [DOI: 10.1016/j.biomaterials.2017.11.018] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2017] [Revised: 11/14/2017] [Accepted: 11/16/2017] [Indexed: 11/19/2022]
|
28
|
González-Miró M, Rodríguez-Noda LM, Fariñas-Medina M, Cedré-Marrero B, Madariaga-Zarza S, Zayas-Vignier C, Hernández-Cedeño M, Kleffmann T, García-Rivera D, Vérez-Bencomo V, Rehm BHA. Bioengineered polyester beads co-displaying protein and carbohydrate-based antigens induce protective immunity against bacterial infection. Sci Rep 2018; 8:1888. [PMID: 29382864 PMCID: PMC5789850 DOI: 10.1038/s41598-018-20205-7] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Accepted: 01/15/2018] [Indexed: 12/17/2022] Open
Abstract
The efficacy of protein and carbohydrate antigens as vaccines can be improved via particulate delivery strategies. Here, protein and carbohydrate antigens used in formulations of vaccines against Neisseria menigitidis were displayed on in vivo assembled polyester beads using a combined bioengineering and conjugation approach. An endotoxin-free mutant of Escherichia coli was engineered to produce translational fusions of antigens (Neisseria adhesin A (NadA) and factor H binding protein (fHbp) derived from serogroup B) to the polyhydroxybutyrate synthase (PhaC), in order to intracellularly assemble polyester beads displaying the respective antigens. Purified beads displaying NadA showed enhanced immunogenicity compared to soluble NadA. Both soluble and particulate NadA elicited functional antibodies with bactericidal activity associated with protective immunity. To expand the antigen repertoire and to design a more broadly protective vaccine, NadA-PhaC beads were additionally conjugated to the capsular polysaccharide from serogroup C. Co-delivery of surface displayed NadA and the capsular polysaccharide induced a strong and specific Th1/Th17 mediated immune response associated with functional bactericidal antibodies. Our findings provide the foundation for the design of multivalent antigen-coated polyester beads as suitable carriers for protein and polysaccharide antigens in order to induce protective immunity.
Collapse
Affiliation(s)
- Majela González-Miró
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand
- Finlay Vaccine Institute, La Havana, Cuba
| | | | | | | | | | | | | | | | | | | | - Bernd H A Rehm
- Institute of Fundamental Sciences, Massey University, Palmerston North, New Zealand.
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Nathan, Queensland, Australia.
| |
Collapse
|
29
|
Grage K, McDermott P, Rehm BHA. Engineering Bacillus megaterium for production of functional intracellular materials. Microb Cell Fact 2017; 16:211. [PMID: 29166918 PMCID: PMC5700737 DOI: 10.1186/s12934-017-0823-5] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2017] [Accepted: 11/13/2017] [Indexed: 01/28/2023] Open
Abstract
BACKGROUND Over the last 10-15 years, a technology has been developed to engineer bacterial poly(3-hydroxybutyrate) (PHB) inclusions as functionalized beads, for applications such as vaccines, diagnostics and enzyme immobilization. This has been achieved by translational fusion of foreign proteins to the PHB synthase (PhaC). The respective fusion protein mediates self-assembly of PHB inclusions displaying the desired protein function. So far, beads have mainly been produced in recombinant Escherichia coli, which is problematic for some applications as the lipopolysaccharides (LPS) co-purified with such inclusions are toxic to humans and animals. RESULTS In this study, we have bioengineered the formation of functional PHB inclusions in the Gram-positive bacterium Bacillus megaterium, an LPS-free and established industrial production host. As B. megaterium is a natural PHB producer, the PHB-negative strain PHA05 was used to avoid any background PHB production. Plasmid-mediated T7 promoter-driven expression of the genes encoding β-ketothiolase (phaA), acetoacetyl-CoA-reductase (phaB) and PHB synthase (phaC) enabled PHB production in B. megaterium PHA05. To produce functionalized PHB inclusions, the N- and C-terminus of PhaC was fused to four and two IgG binding Z-domains from Staphylococcus aureus, respectively. The ZZ-domain PhaC fusion protein was strongly overproduced at the surface of the PHB inclusions and the corresponding isolated ZZ-domain displaying PHB beads were found to purify IgG with a binding capacity of 40-50 mg IgG/g beads. As B. megaterium has the ability to sporulate and respective endospores could co-purify with cellular inclusions, a sporulation negative production strain was generated by disrupting the spoIIE gene in PHA05. This strain did not produce spores when tested under sporulation inducing conditions and it was still able to synthesize ZZ-domain displaying PHB beads. CONCLUSIONS This study provides proof of concept for the successful genetic engineering of B. megaterium as a host for the production of functionalized PHB beads. Disruption of the spoIIE gene rendered B. megaterium incapable of sporulation but particularly suitable for production of functionalized PHB beads. This sporulation-negative mutant represents an improved industrial production strain for biotechnological processes otherwise impaired by the possibility of endospore formation.
Collapse
Affiliation(s)
- Katrin Grage
- Institute of Fundamental Sciences, Massey University, Private Bag 11222, Palmerston North, 4442, New Zealand
| | - Paul McDermott
- Bioline Reagents Ltd., Unit 16, The Edge Business Centre, Humber Road, London, NW2 6EW, UK
| | - Bernd H A Rehm
- Centre for Cell Factories and Biopolymers, Griffith Institute for Drug Discovery, Griffith University, Don Young Road, Nathan, QLD, Australia.
| |
Collapse
|