1
|
Yao D, Jiang Y, Daroch M, Tang J. Effect of light conditions on phycoerythrin accumulation by thermophilic cyanobacterium Leptothermofonsia sichuanensis and characterization of pigment stability. BIORESOURCE TECHNOLOGY 2024; 413:131542. [PMID: 39341424 DOI: 10.1016/j.biortech.2024.131542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 09/23/2024] [Accepted: 09/25/2024] [Indexed: 10/01/2024]
Abstract
Phycoerythrin (C-PE) is a cyanobacterial phycobiliprotein with extensive applications. This work sought to investigate the effects of various light conditions on C-PE accumulation by thermophilic Leptothermofonsia sichuanensis and characterize its C-PE stability and purity. Accumulation of C-PE as the predominant phycobiliprotein was significantly affected by light regime and light colours, reaching the highest C-PE accumulation (21.92 mg/gDCW) under blue light. Importantly, the results suggested the superior C-PE thermostability of Leptothermofonsia than the mesophilic counterparts and good pH stability at a range of 4 to 7. Additionally, C-PE indicated advantageous potential for preservation as revealed by photostability experiments. Moreover, sorbitol, sucrose, and NaCl can further stabilise C-PE at 60 °C, of which 10 % sorbitol is the most effective. The extraction process herein resulted in a C-PE purity of 2.68, much higher than the food grade. Collectively, this work demonstrates the Leptothermofonsia strain as a promising bioresource for thermostable C-PE production.
Collapse
Affiliation(s)
- Dan Yao
- School of Food and Bioengineering, Chengdu University, Chengdu 610106, China
| | - Ying Jiang
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, Shenzhen 518055, China.
| | - Jie Tang
- School of Food and Bioengineering, Chengdu University, Chengdu 610106, China.
| |
Collapse
|
2
|
di Stefano G, Battistuzzi M, La Rocca N, Selinger VM, Nürnberg DJ, Billi D. Far-red light photoacclimation in a desert Chroococcidiopsis strain with a reduced FaRLiP gene cluster and expression of its chlorophyll f synthase in space-resistant isolates. Front Microbiol 2024; 15:1450575. [PMID: 39328908 PMCID: PMC11424453 DOI: 10.3389/fmicb.2024.1450575] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 08/28/2024] [Indexed: 09/28/2024] Open
Abstract
Introduction Some cyanobacteria can use far-red light (FRL) to drive oxygenic photosynthesis, a phenomenon known as Far-Red Light Photoacclimation (FaRLiP). It can expand photosynthetically active radiation beyond the visible light (VL) range. Therefore, it holds promise for biotechnological applications and may prove useful for the future human exploration of outer space. Typically, FaRLiP relies on a cluster of ~20 genes, encoding paralogs of the standard photosynthetic machinery. One of them, a highly divergent D1 gene known as chlF (or psbA4), is the synthase responsible for the formation of the FRL-absorbing chlorophyll f (Chl f) that is essential for FaRLiP. The minimum gene set required for this phenotype is unclear. The desert cyanobacterium Chroococcidiopsis sp. CCMEE 010 is unusual in being capable of FaRLiP with a reduced gene cluster (15 genes), and it lacks most of the genes encoding FR-Photosystem I. Methods Here we investigated whether the reduced gene cluster of Chroococcidiopsis sp. CCMEE 010 is transcriptionally regulated by FRL and characterized the spectral changes that occur during the FaRLiP response of Chroococcidiopsis sp. CCMEE 010. In addition, the heterologous expression of the Chl f synthase from CCMEE 010 was attempted in three closely related desert strains of Chroococcidiopsis. Results All 15 genes of the FaRLiP cluster were preferentially expressed under FRL, accompanied by a progressive red-shift of the photosynthetic absorption spectrum. The Chl f synthase from CCMEE 010 was successfully expressed in two desert strains of Chroococcidiopsis and transformants could be selected in both VL and FRL. Discussion In Chroococcidiopsis sp. CCME 010, all the far-red genes of the unusually reduced FaRLiP cluster, are transcriptionally regulated by FRL and two closely related desert strains heterologously expressing the chlF010 gene could grow in FRL. Since the transformation hosts had been reported to survive outer space conditions, such an achievement lays the foundation toward novel cyanobacteria-based technologies to support human space exploration.
Collapse
Affiliation(s)
- Giorgia di Stefano
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
- Ph.D. Program in Cellular and Molecular Biology, Department of Biology, University of Rome Tor Vergata, Rome, Italy
| | - Mariano Battistuzzi
- Department of Biology, University of Padua, Padua, Italy
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), Padua, Italy
- Giuseppe Colombo University Center for Studies and Activities, University of Padua, Padua, Italy
| | - Nicoletta La Rocca
- Department of Biology, University of Padua, Padua, Italy
- National Council of Research of Italy, Institute for Photonics and Nanotechnologies (CNR-IFN), Padua, Italy
| | - Vera M. Selinger
- Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Dennis J. Nürnberg
- Institute of Experimental Physics, Freie Universität Berlin, Berlin, Germany
- Dahlem Centre of Plant Sciences, Freie Universität Berlin, Berlin, Germany
| | - Daniela Billi
- Department of Biology, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
3
|
Ding Q, Liu L. Reprogramming cellular metabolism to increase the efficiency of microbial cell factories. Crit Rev Biotechnol 2024; 44:892-909. [PMID: 37380349 DOI: 10.1080/07388551.2023.2208286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 04/11/2023] [Indexed: 06/30/2023]
Abstract
Recent studies are increasingly focusing on advanced biotechnological tools, self-adjusting smart microorganisms, and artificial intelligent networks, to engineer microorganisms with various functions. Microbial cell factories are a vital platform for improving the bioproduction of medicines, biofuels, and biomaterials from renewable carbon sources. However, these processes are significantly affected by cellular metabolism, and boosting the efficiency of microbial cell factories remains a challenge. In this review, we present a strategy for reprogramming cellular metabolism to enhance the efficiency of microbial cell factories for chemical biosynthesis, which improves our understanding of microbial physiology and metabolic control. Current methods are mainly focused on synthetic pathways, metabolic resources, and cell performance. This review highlights the potential biotechnological strategy to reprogram cellular metabolism and provide novel guidance for designing more intelligent industrial microbes with broader applications in this growing field.
Collapse
Affiliation(s)
- Qiang Ding
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, Anhui, China
- Anhui Key Laboratory of Modern Biomanufacturing, Hefei, Anhui, China
| | - Liming Liu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
4
|
Liu X, Tang K, Hu J. Application of Cyanobacteria as Chassis Cells in Synthetic Biology. Microorganisms 2024; 12:1375. [PMID: 39065143 PMCID: PMC11278661 DOI: 10.3390/microorganisms12071375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/28/2024] Open
Abstract
Synthetic biology is an exciting new area of research that combines science and engineering to design and build new biological functions and systems. Predictably, with the development of synthetic biology, more efficient and economical photosynthetic microalgae chassis will be successfully constructed, making it possible to break through laboratory research into large-scale industrial applications. The synthesis of a range of biochemicals has been demonstrated in cyanobacteria; however, low product titers are the biggest barrier to the commercialization of cyanobacterial biotechnology. This review summarizes the applied improvement strategies from the perspectives of cyanobacteria chassis cells and synthetic biology. The harvest advantages of cyanobacterial products and the latest progress in improving production strategies are discussed according to the product status. As cyanobacteria synthetic biology is still in its infancy, apart from the achievements made, the difficulties and challenges in the application and development of cyanobacteria genetic tool kits in biochemical synthesis, environmental monitoring, and remediation were assessed.
Collapse
Affiliation(s)
| | | | - Jinlu Hu
- School of Life Sciences, Northwestern Polytechnical University, Xi’an 710072, China; (X.L.); (K.T.)
| |
Collapse
|
5
|
Cardoso ACS, Azevedo RS, Brum RJ, Santos LO, Marins LF. Optimization of Recombinant Protein Production in Synechococcus elongatus PCC 7942: Utilizing Native Promoters and Magnetic Fields. Curr Microbiol 2024; 81:143. [PMID: 38627283 DOI: 10.1007/s00284-024-03672-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Accepted: 03/19/2024] [Indexed: 04/19/2024]
Abstract
The cyanobacterium Synechococcus elongatus PCC 7942 holds significant potential as a biofactory for recombinant protein (RP) production due to its capacity to harness light energy and utilize CO2. This study aimed to enhance RP production by integration of native promoters and magnetic field application (MF) in S. elongatus PCC 7942. The psbA2 promoter, which responds to stress conditions, was chosen for the integration of the ZsGreen1 gene. Results indicated successful gene integration, affirming prior studies that showed no growth alterations in transgenic strains. Interestingly, exposure to 30 mT (MF30) demonstrated a increase in ZsGreen1 transcription under the psbA2 promoter, revealing the influence of MF on cyanobacterial photosynthetic machinery. This enhancement is likely attributed to stress-induced shifts in gene expression and enzyme activity. MF30 positively impacted photosystem II (PSII) without disrupting the electron transport chain, aligning with the "quantum-mechanical mechanism" theory. Notably, fluorescence levels and gene expression with application of 30 mT were significantly different from control conditions. This study showcases the efficacy of utilizing native promoters and MF for enhancing RP production in S. elongatus PCC 7942. Native promoters eliminate the need for costly exogenous inducers and potential cell stress. Moreover, the study expands the scope of optimizing RP production in photoautotrophic microorganisms, providing valuable insights for biotechnological applications.
Collapse
Affiliation(s)
- Arthur C S Cardoso
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Av. Italia Km 8, Rio Grande, RS, CEP 96203-900, Brazil
| | - Raíza S Azevedo
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Av. Italia Km 8, Rio Grande, RS, CEP 96203-900, Brazil
| | - Rayanne J Brum
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Av. Italia Km 8, Rio Grande, RS, CEP 96203-900, Brazil
| | - Lucielen O Santos
- Laboratory of Biotechnology, School of Chemistry and Food, Federal University of Rio Grande (FURG), Rio Grande, RS, Brazil
| | - Luis F Marins
- LEGENE - Research Group in Genetic Engineering and Biotechnology, Laboratory of Molecular Biology, Institute of Biological Sciences, Federal University of Rio Grande (FURG), Av. Italia Km 8, Rio Grande, RS, CEP 96203-900, Brazil.
| |
Collapse
|
6
|
Faisal M, Sarnaik AP, Kannoju N, Hajinajaf N, Asad MJ, Davis RW, Varman AM. RuBisCO activity assays: a simplified biochemical redox approach for in vitro quantification and an RNA sensor approach for in vivo monitoring. Microb Cell Fact 2024; 23:83. [PMID: 38486280 PMCID: PMC10938803 DOI: 10.1186/s12934-024-02357-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 03/04/2024] [Indexed: 03/18/2024] Open
Abstract
BACKGROUND Ribulose-1,5-bisphosphate carboxylase/oxygenase (RuBisCO) is the most abundant soluble protein in nature. Extensive studies have been conducted for improving its activity in photosynthesis through approaches like protein engineering. Concurrently, multiple biochemical and radiolabeling assays have been developed for determining its activity. Although these existing assays yield reliable results, they require addition of multiple external components, rendering them less convenient and expensive. Therefore, in this study, we have developed two relatively cheaper, convenient, and easily reproducible assays for quantitative and qualitative estimation of RuBisCO activity. RESULTS We simplified a contemporary NADH based spectrophotometric RuBisCO assay by using cyanobacterial cell lysate as the source for Calvin cycle enzymes. We analyzed the influence of inorganic carbon substrates, CO2 and NaHCO3, and varying protein concentrations on RuBisCO activity. Ribulose-1,5-bisphosphate (RuBP) consumption rates for the cultures grown under 5% CO2 were 5-7 times higher than the ones grown with 20 mM NaHCO3, at different protein concentrations. The difference could be due to the impaired activity of carbonic anhydrase in the cell lysate, which is required for the conversion of HCO3- to CO2. The highest RuBisCO activity of 2.13 nmol of NAD+/ µg of Chl-a/ min was observed with 50 µg of protein and 5% CO2. Additionally, we developed a novel RNA-sensor based fluorescence assay that is based on the principle of tracking the kinetics of ATP hydrolysis to ADP during the conversion of 3-phosphoglycerate (3-PG) to 1,3-bisphosphoglycerate (1,3-BPG) in the Calvin cycle. Under in vitro conditions, the fluorometric assay exhibited ~ 3.4-fold slower reaction rate (0.37 min-1) than the biochemical assay when using 5% CO2. We also confirmed the in vivo application of this assay, where increase in the fluorescence was observed with the recombinant strain of Synechocystis sp. PCC 6803 (SSL142) expressing the ADP-specific RNA sensor, compared to the WT. In addition, SSL142 exhibited three-fold higher fluorescence when supplemented with 20 mM NaHCO3 as compared to the cells that were grown without NaHCO3 supplementation. CONCLUSIONS Overall, we have developed a simplified biochemical assay for monitoring RuBisCO activity and demonstrated that it can provide reliable results as compared to the prior literature. Furthermore, the biochemical assay using 5% CO2 (100% relative activity) provided faster RuBP consumption rate compared to the biochemical assay utilizing 20 mM NaHCO3 (30.70% relative activity) and the in vitro fluorometric assay using 5% CO2 (29.64% relative activity). Therefore, the absorbance-based biochemical assay using 5% CO2 or higher would be suitable for in vitro quantification of the RuBisCO activity. On the other hand, the RNA-sensor based in vivo fluorometric assay can be applied for qualitative analysis and be used for high-throughput screening of RuBisCO variants. As RuBisCO is an enzyme shared amongst all the photoautotrophs, the assays developed in this study can easily be extended for analyzing the RuBisCO activities even in microalgae and higher plants.
Collapse
Affiliation(s)
- Muhammad Faisal
- Chemical Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University, Tempe, AZ, 85281, USA
- University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46000, Pakistan
| | - Aditya P Sarnaik
- Chemical Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University, Tempe, AZ, 85281, USA
| | - Nandini Kannoju
- Chemical Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University, Tempe, AZ, 85281, USA
| | - Nima Hajinajaf
- Chemical Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University, Tempe, AZ, 85281, USA
| | - Muhammad Javaid Asad
- University Institute of Biochemistry and Biotechnology, PMAS-Arid Agriculture University Rawalpindi, Rawalpindi, 46000, Pakistan
| | - Ryan W Davis
- Sandia National Laboratories, Livermore, CA, USA
| | - Arul M Varman
- Chemical Engineering, School for Engineering of Matter, Transport and Energy (SEMTE), Arizona State University, Tempe, AZ, 85281, USA.
| |
Collapse
|
7
|
Dennis G, Posewitz MC. Advances in light system engineering across the phototrophic spectrum. FRONTIERS IN PLANT SCIENCE 2024; 15:1332456. [PMID: 38410727 PMCID: PMC10895028 DOI: 10.3389/fpls.2024.1332456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/24/2024] [Indexed: 02/28/2024]
Abstract
Current work in photosynthetic engineering is progressing along the lines of cyanobacterial, microalgal, and plant research. These are interconnected through the fundamental mechanisms of photosynthesis and advances in one field can often be leveraged to improve another. It is worthwhile for researchers specializing in one or more of these systems to be aware of the work being done across the entire research space as parallel advances of techniques and experimental approaches can often be applied across the field of photosynthesis research. This review focuses on research published in recent years related to the light reactions of photosynthesis in cyanobacteria, eukaryotic algae, and plants. Highlighted are attempts to improve photosynthetic efficiency, and subsequent biomass production. Also discussed are studies on cross-field heterologous expression, and related work on augmented and novel light capture systems. This is reviewed in the context of translatability in research across diverse photosynthetic organisms.
Collapse
Affiliation(s)
- Galen Dennis
- Department of Chemistry, Colorado School of Mines, Golden, CO, United States
| | - Matthew C Posewitz
- Department of Chemistry, Colorado School of Mines, Golden, CO, United States
| |
Collapse
|
8
|
Zedler JAZ, Schirmacher AM, Russo DA, Hodgson L, Gundersen E, Matthes A, Frank S, Verkade P, Jensen PE. Self-Assembly of Nanofilaments in Cyanobacteria for Protein Co-localization. ACS NANO 2023; 17:25279-25290. [PMID: 38065569 PMCID: PMC10754207 DOI: 10.1021/acsnano.3c08600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Revised: 11/12/2023] [Accepted: 11/15/2023] [Indexed: 12/27/2023]
Abstract
Cyanobacteria offer great potential as alternative biotechnological hosts due to their photoautotrophic capacities. However, in comparison to established heterotrophic hosts, several key aspects, such as product titers, are still lagging behind. Nanobiotechnology is an emerging field with great potential to improve existing hosts, but so far, it has barely been explored in microbial photosynthetic systems. Here, we report the establishment of large proteinaceous nanofilaments in the unicellular model cyanobacterium Synechocystis sp. PCC 6803 and the fast-growing cyanobacterial strain Synechococcus elongatus UTEX 2973. Transmission electron microscopy and electron tomography demonstrated that expression of pduA*, encoding a modified bacterial microcompartment shell protein, led to the generation of bundles of longitudinally aligned nanofilaments in S. elongatus UTEX 2973 and shorter filamentous structures in Synechocystis sp. PCC 6803. Comparative proteomics showed that PduA* was at least 50 times more abundant than the second most abundant protein in the cell and that nanofilament assembly had only a minor impact on cellular metabolism. Finally, as a proof-of-concept for co-localization with the filaments, we targeted a fluorescent reporter protein, mCitrine, to PduA* by fusion with an encapsulation peptide that natively interacts with PduA. The establishment of nanofilaments in cyanobacterial cells is an important step toward cellular organization of heterologous pathways and the establishment of cyanobacteria as next-generation hosts.
Collapse
Affiliation(s)
- Julie A. Z. Zedler
- Synthetic
Biology of Photosynthetic Organisms, Matthias Schleiden Institute
for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Alexandra M. Schirmacher
- Synthetic
Biology of Photosynthetic Organisms, Matthias Schleiden Institute
for Genetics, Bioinformatics and Molecular Botany, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - David A. Russo
- Bioorganic
Analytics, Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena, 07743 Jena, Germany
| | - Lorna Hodgson
- School
of Biochemistry, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Emil Gundersen
- Department
of Plant and Environmental Sciences, University
of Copenhagen, 1871 Frederiksberg, Denmark
| | - Annemarie Matthes
- Department
of Plant and Environmental Sciences, University
of Copenhagen, 1871 Frederiksberg, Denmark
| | - Stefanie Frank
- Department
of Biochemical Engineering, University College
London, London, WC1E 6BT, United
Kingdom
| | - Paul Verkade
- School
of Biochemistry, University of Bristol, Bristol, BS8 1TD, United Kingdom
| | - Poul Erik Jensen
- Department
of Food Science, University of Copenhagen, 1958 Frederiksberg, Denmark
| |
Collapse
|
9
|
Machida A, Kondo K, Wakabayashi KI, Tanaka K, Hisabori T. Molecular Bulkiness of a Single Amino Acid in the F1 α-Subunit Determines the Robustness of Cyanobacterial ATP Synthase. PLANT & CELL PHYSIOLOGY 2023; 64:1590-1600. [PMID: 37706547 DOI: 10.1093/pcp/pcad109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 08/18/2023] [Accepted: 09/12/2023] [Indexed: 09/15/2023]
Abstract
Cyanobacteria are promising photosynthetic organisms owing to their ease of genetic manipulation. Among them, Synechococcus elongatus UTEX 2973 exhibits faster growth, higher biomass production efficiency and more robust stress tolerance compared with S. elongatus PCC 7942. This is due to specific genetic differences, including four single-nucleotide polymorphisms (SNPs) in three genes. One of these SNPs alters an amino acid at position 252 of the FoF1 ATP synthase α-subunit from Tyr to Cys (αY252C) in S. elongatus 7942. This change has been shown to significantly affect growth rate and stress tolerance, specifically in S. elongatus. Furthermore, experimental substitutions with several other amino acids have been shown to alter the ATP synthesis rate in the cell. In the present study, we introduced identical amino acid substitutions into Synechocystis sp. PCC 6803 at position 252 to elucidate the amino acid's significance and generality across cyanobacteria. We investigated the resulting impact on growth, intracellular enzyme complex levels, intracellular ATP levels and enzyme activity. The results showed that the αY252C substitution decreased growth rate and high-light tolerance. This indicates that a specific bulkiness of this amino acid's side chain is important for maintaining cell growth. Additionally, a remarkable decrease in the membrane-bound enzyme complex level was observed. However, the αY252C substitution did not affect enzyme activity or intracellular ATP levels. Although the mechanism of growth suppression remains unknown, the amino acid at position 252 is expected to play an important role in enzyme complex formation.
Collapse
Affiliation(s)
- Akito Machida
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8501 Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1, Midori-Ku, Yokohama, 226-8501 Japan
| | - Kumiko Kondo
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1, Midori-Ku, Yokohama, 226-8501 Japan
| | | | - Kan Tanaka
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8501 Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1, Midori-Ku, Yokohama, 226-8501 Japan
| | - Toru Hisabori
- School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta-cho 4259, Midori-ku, Yokohama, 226-8501 Japan
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta-cho 4259-R1, Midori-Ku, Yokohama, 226-8501 Japan
- International Research Frontiers Initiative (IRFI), Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama, 226-8501 Japan
| |
Collapse
|
10
|
Cui J, Chen R, Sun H, Xue Y, Diao Z, Song J, Wang X, Zhang J, Wang C, Ma B, Xu J, Luan G, Lu X. Culture-free identification of fast-growing cyanobacteria cells by Raman-activated gravity-driven encapsulation and sequencing. Synth Syst Biotechnol 2023; 8:708-715. [PMID: 38053584 PMCID: PMC10693988 DOI: 10.1016/j.synbio.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/03/2023] [Accepted: 11/05/2023] [Indexed: 12/07/2023] Open
Abstract
By directly converting solar energy and carbon dioxide into biobased products, cyanobacteria are promising chassis for photosynthetic biosynthesis. To make cyanobacterial photosynthetic biosynthesis technology economically feasible on industrial scales, exploring and engineering cyanobacterial chassis and cell factories with fast growth rates and carbon fixation activities facing environmental stresses are of great significance. To simplify and accelerate the screening for fast-growing cyanobacteria strains, a method called Individual Cyanobacteria Vitality Tests and Screening (iCyanVS) was established. We show that the 13C incorporation ratio of carotenoids can be used to measure differences in cell growth and carbon fixation rates in individual cyanobacterial cells of distinct genotypes that differ in growth rates in bulk cultivations, thus greatly accelerating the process screening for fastest-growing cells. The feasibility of this approach is further demonstrated by phenotypically and then genotypically identifying individual cyanobacterial cells with higher salt tolerance from an artificial mutant library via Raman-activated gravity-driven encapsulation and sequencing. Therefore, this method should find broad applications in growth rate or carbon intake rate based screening of cyanobacteria and other photosynthetic cell factories.
Collapse
Affiliation(s)
- Jinyu Cui
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Rongze Chen
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Huili Sun
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Yingyi Xue
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Zhidian Diao
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Jingyun Song
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Xiaohang Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Jia Zhang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Chen Wang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Bo Ma
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Jian Xu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Guodong Luan
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Dalian National Laboratory for Clean Energy, Dalian, 116023, China
| | - Xuefeng Lu
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
- College of Life Science, University of Chinese Academy of Sciences, Beijing, China
- Dalian National Laboratory for Clean Energy, Dalian, 116023, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
11
|
Ding Q, Ye C. Microbial engineering for shikimate biosynthesis. Enzyme Microb Technol 2023; 170:110306. [PMID: 37598506 DOI: 10.1016/j.enzmictec.2023.110306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/03/2023] [Accepted: 08/14/2023] [Indexed: 08/22/2023]
Abstract
Shikimate, a precursor to the antiviral drug oseltamivir (Tamiflu®), can influence aromatic metabolites and finds extensive use in antimicrobial, antitumor, and cardiovascular applications. Consequently, various strategies have been developed for chemical synthesis and plant extraction to enhance shikimate biosynthesis, potentially impacting environmental conditions, economic sustainability, and separation and purification processes. Microbial engineering has been developed as an environmentally friendly approach for shikimate biosynthesis. In this review, we provide a comprehensive summary of microbial strategies for shikimate biosynthesis. These strategies primarily include chassis construction, biochemical optimization, pathway remodelling, and global regulation. Furthermore, we discuss future perspectives on shikimate biosynthesis and emphasize the importance of utilizing advanced metabolic engineering tools to regulate microbial networks for constructing robust microbial cell factories.
Collapse
Affiliation(s)
- Qiang Ding
- School of Life Sciences, Anhui University, Hefei 230601, China; Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei 230601, Anhui, China; Anhui Key Laboratory of Modern Biomanufacturing, Hefei 230601, Anhui, China
| | - Chao Ye
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
12
|
Moore RA, Azua-Bustos A, González-Silva C, Carr CE. Unveiling metabolic pathways involved in the extreme desiccation tolerance of an Atacama cyanobacterium. Sci Rep 2023; 13:15767. [PMID: 37737281 PMCID: PMC10516996 DOI: 10.1038/s41598-023-41879-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 09/01/2023] [Indexed: 09/23/2023] Open
Abstract
Gloeocapsopsis dulcis strain AAB1 is an extremely xerotolerant cyanobacterium isolated from the Atacama Desert (i.e., the driest and oldest desert on Earth) that holds astrobiological significance due to its ability to biosynthesize compatible solutes at ultra-low water activities. We sequenced and assembled the G. dulcis genome de novo using a combination of long- and short-read sequencing, which resulted in high-quality consensus sequences of the chromosome and two plasmids. We leveraged the G. dulcis genome to generate a genome-scale metabolic model (iGd895) to simulate growth in silico. iGd895 represents, to our knowledge, the first genome-scale metabolic reconstruction developed for an extremely xerotolerant cyanobacterium. The model's predictive capability was assessed by comparing the in silico growth rate with in vitro growth rates of G. dulcis, in addition to the synthesis of trehalose. iGd895 allowed us to explore simulations of key metabolic processes such as essential pathways for water-stress tolerance, and significant alterations to reaction flux distribution and metabolic network reorganization resulting from water limitation. Our study provides insights into the potential metabolic strategies employed by G. dulcis, emphasizing the crucial roles of compatible solutes, metabolic water, energy conservation, and the precise regulation of reaction rates in their adaptation to water stress.
Collapse
Affiliation(s)
- Rachel A Moore
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 275 Ferst Dr. NW, Atlanta, GA, 30332, USA.
| | - Armando Azua-Bustos
- Centro de Astrobiología (CSIC-INTA), Madrid, Spain
- Instituto de Ciencias Biomédicas, Facultad de Ciencias de la Salud, Universidad Autónoma de Chile, Santiago, Chile
| | | | - Christopher E Carr
- School of Earth and Atmospheric Sciences, Georgia Institute of Technology, 275 Ferst Dr. NW, Atlanta, GA, 30332, USA
- Daniel Guggenheim School of Aerospace Engineering, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| |
Collapse
|
13
|
Levä T, Rissanen V, Nikkanen L, Siitonen V, Heilala M, Phiri J, Maloney TC, Kosourov S, Allahverdiyeva Y, Mäkelä M, Tammelin T. Mapping Nanocellulose- and Alginate-Based Photosynthetic Cell Factory Scaffolds: Interlinking Porosity, Wet Strength, and Gas Exchange. Biomacromolecules 2023; 24:3484-3497. [PMID: 37384553 PMCID: PMC10428157 DOI: 10.1021/acs.biomac.3c00261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 06/20/2023] [Indexed: 07/01/2023]
Abstract
To develop efficient solid-state photosynthetic cell factories for sustainable chemical production, we present an interdisciplinary experimental toolbox to investigate and interlink the structure, operative stability, and gas transfer properties of alginate- and nanocellulose-based hydrogel matrices with entrapped wild-type Synechocystis PCC 6803 cyanobacteria. We created a rheological map based on the mechanical performance of the hydrogel matrices. The results highlighted the importance of Ca2+-cross-linking and showed that nanocellulose matrices possess higher yield properties, and alginate matrices possess higher rest properties. We observed higher porosity for nanocellulose-based matrices in a water-swollen state via calorimetric thermoporosimetry and scanning electron microscopy imaging. Finally, by pioneering a gas flux analysis via membrane-inlet mass spectrometry for entrapped cells, we observed that the porosity and rigidity of the matrices are connected to their gas exchange rates over time. Overall, these findings link the dynamic properties of the life-sustaining matrix to the performance of the immobilized cells in tailored solid-state photosynthetic cell factories.
Collapse
Affiliation(s)
- Tuukka Levä
- VTT
Technical Research Centre of Finland Ltd., VTT, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Ville Rissanen
- VTT
Technical Research Centre of Finland Ltd., VTT, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Lauri Nikkanen
- Molecular
Plant Biology, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Vilja Siitonen
- Molecular
Plant Biology, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Maria Heilala
- Department
of Applied Physics, Aalto University, FI-00076 Espoo, Finland
| | - Josphat Phiri
- Department
of Bioproducts and Biosystems, Aalto University, FI-00076 Espoo, Finland
| | - Thaddeus C. Maloney
- Department
of Bioproducts and Biosystems, Aalto University, FI-00076 Espoo, Finland
| | - Sergey Kosourov
- Molecular
Plant Biology, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Yagut Allahverdiyeva
- Molecular
Plant Biology, Department of Life Technologies, University of Turku, FI-20014 Turku, Finland
| | - Mikko Mäkelä
- VTT
Technical Research Centre of Finland Ltd., VTT, P.O. Box 1000, FI-02044 Espoo, Finland
| | - Tekla Tammelin
- VTT
Technical Research Centre of Finland Ltd., VTT, P.O. Box 1000, FI-02044 Espoo, Finland
| |
Collapse
|
14
|
Gao EB, Wu J, Ye P, Qiu H, Chen H, Fang Z. Rewiring carbon flow in Synechocystis PCC 6803 for a high rate of CO 2-to-ethanol under an atmospheric environment. Front Microbiol 2023; 14:1211004. [PMID: 37323905 PMCID: PMC10265512 DOI: 10.3389/fmicb.2023.1211004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 05/09/2023] [Indexed: 06/17/2023] Open
Abstract
Cyanobacteria are an excellent microbial photosynthetic platform for sustainable carbon dioxide fixation. One bottleneck to limit its application is that the natural carbon flow pathway almost transfers CO2 to glycogen/biomass other than designed biofuels such as ethanol. Here, we used engineered Synechocystis sp. PCC 6803 to explore CO2-to-ethanol potential under atmospheric environment. First, we investigated the effects of two heterologous genes (pyruvate decarboxylase and alcohol dehydrogenase) on ethanol biosynthesis and optimized their promoter. Furthermore, the main carbon flow of the ethanol pathway was strengthened by blocking glycogen storage and pyruvate-to-phosphoenolpyruvate backflow. To recycle carbon atoms that escaped from the tricarboxylic acid cycle, malate was artificially guided back into pyruvate, which also created NADPH balance and promoted acetaldehyde conversion into ethanol. Impressively, we achieved high-rate ethanol production (248 mg/L/day at early 4 days) by fixing atmospheric CO2. Thus, this study exhibits the proof-of-concept that rewiring carbon flow strategies could provide an efficient cyanobacterial platform for sustainable biofuel production from atmospheric CO2.
Collapse
Affiliation(s)
- E-Bin Gao
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Junhua Wu
- Ningbo Women and Children's Hospital, Ningbo, China
| | - Penglin Ye
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Haiyan Qiu
- Ningbo Women and Children's Hospital, Ningbo, China
| | - Huayou Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu, China
| | - Zhen Fang
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, Jiangsu, China
| |
Collapse
|
15
|
Ding Q, Ye C. Recent advances in producing food additive L-malate: Chassis, substrate, pathway, fermentation regulation and application. Microb Biotechnol 2023; 16:709-725. [PMID: 36604311 PMCID: PMC10034640 DOI: 10.1111/1751-7915.14206] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/22/2022] [Indexed: 01/07/2023] Open
Abstract
In addition to being an important intermediate in the TCA cycle, L-malate is also widely used in the chemical and beverage industries. Due to the resulting high demand, numerous studies investigated chemical methods to synthesize L-malate from petrochemical resources, but such approaches are hampered by complex downstream processing and environmental pollution. Accordingly, there is an urgent need to develop microbial methods for environmentally-friendly and economical L-malate biosynthesis. The rapid progress and understanding of DNA manipulation, cell physiology, and cell metabolism can improve industrial L-malate biosynthesis by applying intelligent biochemical strategies and advanced synthetic biology tools. In this paper, we mainly focused on biotechnological approaches for enhancing L-malate synthesis, encompassing the microbial chassis, substrate utilization, synthesis pathway, fermentation regulation, and industrial application. This review emphasizes the application of novel metabolic engineering strategies and synthetic biology tools combined with a deep understanding of microbial physiology to improve industrial L-malate biosynthesis in the future.
Collapse
Affiliation(s)
- Qiang Ding
- School of Life SciencesAnhui UniversityHefeiChina
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education InstitutesAnhui UniversityHefeiChina
- Anhui Key Laboratory of Modern BiomanufacturingHefeiChina
| | - Chao Ye
- School of Food Science and Pharmaceutical EngineeringNanjing Normal UniversityNanjingChina
| |
Collapse
|
16
|
Wu Y, Sun J, Xu X, Mao S, Luan G, Lu X. Engineering cyanobacteria for converting carbon dioxide into isomaltulose. J Biotechnol 2023; 364:1-4. [PMID: 36702257 DOI: 10.1016/j.jbiotec.2023.01.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/25/2023]
Abstract
Isomaltulose is a promising functional sweetener with broad application prospects in the food industry. Currently, isomaltulose is mainly produced through bioconversion processes based on the isomerization of sucrose, the economic feasibility of which is influenced by the cost of sucrose feedstocks, the biocatalyst preparation, and product purification. Cyanobacterial photosynthetic production utilizing solar energy and carbon dioxide represents a promising route for the supply of sugar products, which can promote both carbon reduction and green production. Previously, some cyanobacteria strains have been successfully engineered for synthesis of sucrose, the main feedstock for isomaltulose production. In this work, we introduced different sucrose isomerases into Synechococcus elongatus PCC 7942 and successfully achieved the isomaltulose synthesis and accumulation in the recombinant strains. Combinatory expression of an Escherichia coli sourced sucrose permease CscB with the sucrose isomerases led to efficient secretion of isomaltulose and significantly elevated the final titer. During a 6-day cultivation, 777 mg/L of isomaltulose was produced by the engineered Synechococcus cell factory. This work demonstrated a new route for isomaltulose biosynthesis utilizing carbon dioxide as the substrate, and provided novel understandings for the plasticity of cyanobacterial photosynthetic metabolism network.
Collapse
Affiliation(s)
- Yannan Wu
- Hunan Provincial Key Laboratory for Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China
| | - Jiahui Sun
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Xuejing Xu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China
| | - Shaoming Mao
- Hunan Provincial Key Laboratory for Forestry Biotechnology, College of Life Science and Technology, Central South University of Forestry and Technology, Changsha, China.
| | - Guodong Luan
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| | - Xuefeng Lu
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, No. 189 Songling Road, Qingdao 266101, China; Shandong Energy Institute, Qingdao, China; Qingdao New Energy Shandong Laboratory, Qingdao, China; College of Life Science, University of Chinese Academy of Sciences, Beijing, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
17
|
Production of 3-Hydroxypropionic Acid from Renewable Substrates by Metabolically Engineered Microorganisms: A Review. Molecules 2023; 28:molecules28041888. [PMID: 36838875 PMCID: PMC9960984 DOI: 10.3390/molecules28041888] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/08/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
3-Hydroxypropionic acid (3-HP) is a platform chemical with a wide range of existing and potential applications, including the production of poly(3-hydroxypropionate) (P-3HP), a biodegradable plastic. The microbial synthesis of 3-HP has attracted significant attention in recent years due to its green and sustainable properties. In this paper, we provide an overview of the microbial synthesis of 3-HP from four major aspects, including the main 3-HP biosynthesis pathways and chassis strains used for the construction of microbial cell factories, the major carbon sources used for 3-HP production, and fermentation processes. Recent advances in the biosynthesis of 3-HP and related metabolic engineering strategies are also summarized. Finally, this article provides insights into the future direction of 3-HP biosynthesis.
Collapse
|
18
|
Kokarakis E, Rillema R, Ducat DC, Sakkos JK. Developing Cyanobacterial Quorum Sensing Toolkits: Toward Interspecies Coordination in Mixed Autotroph/Heterotroph Communities. ACS Synth Biol 2023; 12:265-276. [PMID: 36573789 PMCID: PMC9872165 DOI: 10.1021/acssynbio.2c00527] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Indexed: 12/28/2022]
Abstract
There has been substantial recent interest in the promise of sustainable, light-driven bioproduction using cyanobacteria, including developing efforts for microbial bioproduction using mixed autotroph/heterotroph communities, which could provide useful properties, such as division of metabolic labor. However, building stable mixed-species communities of sufficient productivity remains a challenge, partly due to the lack of strategies for synchronizing and coordinating biological activities across different species. To address this obstacle, we developed an inter-species communication system using quorum sensing (QS) modules derived from well-studied pathways in heterotrophic microbes. In the model cyanobacterium, Synechococcus elongatus PCC 7942 (S. elongatus), we designed, integrated, and characterized genetic circuits that detect acyl-homoserine lactones (AHLs), diffusible signals utilized in many QS pathways. We showed that these receiver modules sense exogenously supplied AHL molecules and activate gene expression in a dose-dependent manner. We characterized these AHL receiver circuits in parallel with Escherichia coli W (E. coli W) to dissect species-specific properties, finding broad agreement, albeit with increased basal expression in S. elongatus. Our engineered "sender" E. coli strains accumulated biologically synthesized AHLs within the supernatant and activated receiver strains similarly to exogenous AHL activation. Our results will bolster the design of sophisticated genetic circuits in cyanobacterial/heterotroph consortia and the engineering of QS-like behaviors across cyanobacterial populations.
Collapse
Affiliation(s)
- Emmanuel
J. Kokarakis
- Plant
Research Laboratory, Michigan State University, East Lansing, Michigan48824-1312, United States
- Department
of Microbiology & Molecular Genetics, Michigan State University, East Lansing, Michigan48824-1312, United States
| | - Rees Rillema
- Plant
Research Laboratory, Michigan State University, East Lansing, Michigan48824-1312, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan48824-1312, United States
| | - Daniel C. Ducat
- Plant
Research Laboratory, Michigan State University, East Lansing, Michigan48824-1312, United States
- Department
of Biochemistry and Molecular Biology, Michigan
State University, East Lansing, Michigan48824-1312, United States
| | - Jonathan K. Sakkos
- Plant
Research Laboratory, Michigan State University, East Lansing, Michigan48824-1312, United States
| |
Collapse
|
19
|
Kondo K, Yoshimi R, Apdila ET, Wakabayashi KI, Awai K, Hisabori T. Changes in intracellular energetic and metabolite states due to increased galactolipid levels in Synechococcus elongatus PCC 7942. Sci Rep 2023; 13:259. [PMID: 36604524 PMCID: PMC9816115 DOI: 10.1038/s41598-022-26760-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/20/2022] [Indexed: 01/07/2023] Open
Abstract
The lipid composition of thylakoid membranes is conserved from cyanobacteria to green plants. However, the biosynthetic pathways of galactolipids, the major components of thylakoid membranes, are known to differ substantially between cyanobacteria and green plants. We previously reported on a transformant of the unicellular rod-shaped cyanobacterium Synechococcus elongatus PCC 7942, namely SeGPT, in which the synthesis pathways of the galactolipids monogalactosyldiacylglycerol and digalactosyldiacylglycerol are completely replaced by those of green plants. SeGPT exhibited increased galactolipid content and could grow photoautotrophically, but its growth rate was slower than that of wild-type S. elongatus PCC 7942. In the present study, we investigated pleiotropic effects that occur in SeGPT and determined how its increased lipid content affects cell proliferation. Microscopic observations revealed that cell division and thylakoid membrane development are impaired in SeGPT. Furthermore, physiological analyses indicated that the bioenergetic state of SeGPT is altered toward energy storage, as indicated by increased levels of intracellular ATP and glycogen. We hereby report that we have identified a new promising candidate as a platform for material production by modifying the lipid synthesis system in this way.
Collapse
Affiliation(s)
- Kumiko Kondo
- grid.32197.3e0000 0001 2179 2105Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama, 226-8503 Japan
| | - Rina Yoshimi
- grid.32197.3e0000 0001 2179 2105Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama, 226-8503 Japan ,grid.32197.3e0000 0001 2179 2105School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-Ku, Yokohama, 226-8503 Japan
| | - Egi Tritya Apdila
- grid.263536.70000 0001 0656 4913Department of Biological Science, Faculty of Science, Shizuoka University, Suruga-Ku, Shizuoka, 422-8529 Japan
| | - Ken-ichi Wakabayashi
- grid.32197.3e0000 0001 2179 2105Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama, 226-8503 Japan ,grid.32197.3e0000 0001 2179 2105School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-Ku, Yokohama, 226-8503 Japan
| | - Koichiro Awai
- Department of Biological Science, Faculty of Science, Shizuoka University, Suruga-Ku, Shizuoka, 422-8529, Japan.
| | - Toru Hisabori
- Laboratory for Chemistry and Life Science, Institute of Innovative Research, Tokyo Institute of Technology, Nagatsuta 4259-R1-8, Midori-Ku, Yokohama, 226-8503, Japan. .,School of Life Science and Technology, Tokyo Institute of Technology, Nagatsuta 4259, Midori-Ku, Yokohama, 226-8503, Japan.
| |
Collapse
|
20
|
Meng X, Liu L, Chen X. Bacterial photosynthesis: state-of-the-art in light-driven carbon fixation in engineered bacteria. Curr Opin Microbiol 2022; 69:102174. [DOI: 10.1016/j.mib.2022.102174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 05/24/2022] [Accepted: 05/30/2022] [Indexed: 11/03/2022]
|
21
|
Using synthetic biology to improve photosynthesis for sustainable food production. J Biotechnol 2022; 359:1-14. [PMID: 36126804 DOI: 10.1016/j.jbiotec.2022.09.010] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/31/2022] [Accepted: 09/15/2022] [Indexed: 11/23/2022]
Abstract
Photosynthesis is responsible for the primary productivity and maintenance of life on Earth, boosting biological activity and contributing to the maintenance of the environment. In the past, traditional crop improvement was considered sufficient to meet food demands, but the growing demand for food coupled with climate change has modified this scenario over the past decades. However, advances in this area have not focused on photosynthesis per se but rather on fixed carbon partitioning. In short, other approaches must be used to meet an increasing agricultural demand. Thus, several paths may be followed, from modifications in leaf shape and canopy architecture, improving metabolic pathways related to CO2 fixation, the inclusion of metabolic mechanisms from other species, and improvements in energy uptake by plants. Given the recognized importance of photosynthesis, as the basis of the primary productivity on Earth, we here present an overview of the latest advances in attempts to improve plant photosynthetic performance. We focused on points considered key to the enhancement of photosynthesis, including leaf shape development, RuBisCO reengineering, Calvin-Benson cycle optimization, light use efficiency, the introduction of the C4 cycle in C3 plants and the inclusion of other CO2 concentrating mechanisms (CCMs). We further provide compelling evidence that there is still room for further improvements. Finally, we conclude this review by presenting future perspectives and possible new directions on this subject.
Collapse
|
22
|
Influence of Geographical Location of Spirulina (Arthrospira platensis) on the Recovery of Bioactive Compounds Assisted by Pulsed Electric Fields. SEPARATIONS 2022. [DOI: 10.3390/separations9090257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Spirulina (Arthrospira platensis) has been consumed by humans since ancient times. It is rich in high added-value compounds such as chlorophylls, carotenoids and polyphenols. Pulsed electric fields (PEF) is an innovative non-thermal technique that improves the extraction of bioactive compounds from diverse sources. PEF pre-treatment (3 kV/cm, 100 kJ/kg) combined with supplementary extraction with binary solvents at different times was evaluated to obtain the optimal conditions for extraction. In addition, the results obtained were compared with conventional treatment (without PEF pre-treatment and constant shaking) and different strains of Spirulina from diverse geographical locations. The optimal extraction conditions for recovering the bioactive compounds were obtained after applying PEF treatment combined with the binary mixture EtOH/H2O for 180 min. The recovery of total phenolic content (TPC) (19.76 ± 0.50 mg/g DM (dry matter) and carotenoids (0.50 ± 0.01 mg/g DM) was more efficient in the Spirulina from Spain. On the other hand, there was a higher recovery of chlorophylls in the Spirulina from China. The highest extraction of total antioxidant compounds was in Spirulina from Costa Rica. These results show that PEF, solvents and the condition of growing affect the extraction of antioxidant bioactive compounds from Spirulina. The combination of PEF and EtOH/H2O is a promising technology due to its environmental sustainability.
Collapse
|
23
|
Guo L, Sun L, Huo YX. Toward bioproduction of oxo chemicals from C1 feedstocks using isobutyraldehyde as an example. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:80. [PMID: 35945564 PMCID: PMC9361566 DOI: 10.1186/s13068-022-02178-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 07/30/2022] [Indexed: 11/10/2022]
Abstract
AbstractOxo chemicals are valuable chemicals for synthesizing a wide array of industrial and consumer products. However, producing of oxo chemicals is predominately through the chemical process called hydroformylation, which requires petroleum-sourced materials and generates abundant greenhouse gas. Current concerns on global climate change have renewed the interest in reducing greenhouse gas emissions and recycling the plentiful greenhouse gas. A carbon–neutral manner in this regard is producing oxo chemicals biotechnologically using greenhouse gas as C1 feedstocks. Exemplifying isobutyraldehyde, this review demonstrates the significance of using greenhouse gas for oxo chemicals production. We highlight the current state and the potential of isobutyraldehyde synthesis with a special focus on the in vivo and in vitro scheme of C1-based biomanufacturing. Specifically, perspectives and scenarios toward carbon– and nitrogen–neutral isobutyraldehyde production are proposed. In addition, key challenges and promising approaches for enhancing isobutyraldehyde bioproduction are thoroughly discussed. This study will serve as a reference case in exploring the biotechnological potential and advancing oxo chemicals production derived from C1 feedstocks.
Collapse
|
24
|
Liang B, Sun G, Zhang X, Nie Q, Zhao Y, Yang J. Recent Advances, Challenges and Metabolic Engineering Strategies in the Biosynthesis of 3-Hydroxypropionic Acid. Biotechnol Bioeng 2022; 119:2639-2668. [PMID: 35781640 DOI: 10.1002/bit.28170] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 04/26/2022] [Accepted: 06/29/2022] [Indexed: 11/07/2022]
Abstract
As an attractive and valuable platform chemical, 3-hydroxypropionic acid (3-HP) can be used to produce a variety of industrially important commodity chemicals and biodegradable polymers. Moreover, the biosynthesis of 3-HP has drawn much attention in recent years due to its sustainability and environmental friendliness. Here, we focus on recent advances, challenges and metabolic engineering strategies in the biosynthesis of 3-HP. While glucose and glycerol are major carbon sources for its production of 3-HP via microbial fermentation, other carbon sources have also been explored. To increase yield and titer, synthetic biology and metabolic engineering strategies have been explored, including modifying pathway enzymes, eliminating flux blockages due to byproduct synthesis, eliminating toxic byproducts, and optimizing via genome-scale models. This review also provides insights on future directions for 3-HP biosynthesis. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Bo Liang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Guannan Sun
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Xinping Zhang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Qingjuan Nie
- Foreign Languages School, Qingdao Agricultural University, Qingdao, China
| | - Yukun Zhao
- Pony Testing International Group, Qingdao, China
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China.,Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
25
|
Sheikh T, Hamid B, Baba Z, Iqbal S, Yatoo A, Fatima S, Nabi A, Kanth R, Dar K, Hussain N, Alturki AI, Sunita K, Sayyed R. Extracellular polymeric substances in psychrophilic cyanobacteria: A potential bioflocculant and carbon sink to mitigate cold stress. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2022. [DOI: 10.1016/j.bcab.2022.102375] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
26
|
Theodosiou E, Tüllinghoff A, Toepel J, Bühler B. Exploitation of Hetero- and Phototrophic Metabolic Modules for Redox-Intensive Whole-Cell Biocatalysis. Front Bioeng Biotechnol 2022; 10:855715. [PMID: 35497353 PMCID: PMC9043136 DOI: 10.3389/fbioe.2022.855715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 03/09/2022] [Indexed: 11/13/2022] Open
Abstract
The successful realization of a sustainable manufacturing bioprocess and the maximization of its production potential and capacity are the main concerns of a bioprocess engineer. A main step towards this endeavor is the development of an efficient biocatalyst. Isolated enzyme(s), microbial cells, or (immobilized) formulations thereof can serve as biocatalysts. Living cells feature, beside active enzymes, metabolic modules that can be exploited to support energy-dependent and multi-step enzyme-catalyzed reactions. Metabolism can sustainably supply necessary cofactors or cosubstrates at the expense of readily available and cheap resources, rendering external addition of costly cosubstrates unnecessary. However, for the development of an efficient whole-cell biocatalyst, in depth comprehension of metabolic modules and their interconnection with cell growth, maintenance, and product formation is indispensable. In order to maximize the flux through biosynthetic reactions and pathways to an industrially relevant product and respective key performance indices (i.e., titer, yield, and productivity), existing metabolic modules can be redesigned and/or novel artificial ones established. This review focuses on whole-cell bioconversions that are coupled to heterotrophic or phototrophic metabolism and discusses metabolic engineering efforts aiming at 1) increasing regeneration and supply of redox equivalents, such as NAD(P/H), 2) blocking competing fluxes, and 3) increasing the availability of metabolites serving as (co)substrates of desired biosynthetic routes.
Collapse
Affiliation(s)
- Eleni Theodosiou
- Institute of Applied Biosciences, Centre for Research and Technology Hellas, Thessaloniki, Greece
| | - Adrian Tüllinghoff
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Jörg Toepel
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| | - Bruno Bühler
- Department of Solar Materials, Helmholtz Centre for Environmental Research GmbH—UFZ, Leipzig, Germany
| |
Collapse
|
27
|
Andrews F, Faulkner M, Toogood HS, Scrutton NS. Combinatorial use of environmental stresses and genetic engineering to increase ethanol titres in cyanobacteria. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:240. [PMID: 34920731 PMCID: PMC8684110 DOI: 10.1186/s13068-021-02091-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 12/05/2021] [Indexed: 06/07/2023]
Abstract
Current industrial bioethanol production by yeast through fermentation generates carbon dioxide. Carbon neutral bioethanol production by cyanobacteria uses biological fixation (photosynthesis) of carbon dioxide or other waste inorganic carbon sources, whilst being sustainable and renewable. The first ethanologenic cyanobacterial process was developed over two decades ago using Synechococcus elongatus PCC 7942, by incorporating the recombinant pdc and adh genes from Zymomonas mobilis. Further engineering has increased bioethanol titres 24-fold, yet current levels are far below what is required for industrial application. At the heart of the problem is that the rate of carbon fixation cannot be drastically accelerated and carbon partitioning towards bioethanol production impacts on cell fitness. Key progress has been achieved by increasing the precursor pyruvate levels intracellularly, upregulating synthetic genes and knocking out pathways competing for pyruvate. Studies have shown that cyanobacteria accumulate high proportions of carbon reserves that are mobilised under specific environmental stresses or through pathway engineering to increase ethanol production. When used in conjunction with specific genetic knockouts, they supply significantly more carbon for ethanol production. This review will discuss the progress in generating ethanologenic cyanobacteria through chassis engineering, and exploring the impact of environmental stresses on increasing carbon flux towards ethanol production.
Collapse
Affiliation(s)
- Fraser Andrews
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Matthew Faulkner
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Helen S Toogood
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK
| | - Nigel S Scrutton
- EPSRC/BBSRC Future Biomanufacturing Research Hub, BBSRC/EPSRC Synthetic Biology Research Centre SYNBIOCHEM Manchester Institute of Biotechnology and School of Chemistry, The University of Manchester, Manchester, M1 7DN, UK.
- C3 Biotechnologies Ltd, 20 Mannin Way, Lancaster Business Park, Caton Road, Lancaster, LA1 3SW, Lancashire, UK.
| |
Collapse
|
28
|
Biological Crusts to Increase Soil Carbon Sequestration: New Challenges in a New Environment. BIOLOGY 2021; 10:biology10111190. [PMID: 34827183 PMCID: PMC8614986 DOI: 10.3390/biology10111190] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 01/21/2023]
Abstract
The major priority of research in the present day is to conserve the environment by reducing GHG emissions. A proposed solution by an expert panel from 195 countries meeting at COP 21 was to increase global SOC stocks by 0.4% year−1 to compensate for GHG emissions, the ‘4 per 1000′ agreement. In this context, the application of biocrusts is a promising framework with which to increase SOC and other soil functions in the soil–plant continuum. Despite the importance of biocrusts, their application to agriculture is limited due to: (1) competition with native microbiota, (2) difficulties in applying them on a large scale, (3) a lack of studies based on carbon (C) balance and suitable for model parameterization, and (4) a lack of studies evaluating the contribution of biocrust weathering to increase C sequestration. Considering these four challenges, we propose three perspectives for biocrust application: (1) natural microbiome engineering by a host plant, using biocrusts; (2) quantifying the contribution of biocrusts to C sequestration in soils; and (3) enhanced biocrust weathering to improve C sequestration. Thus, we focus this opinion article on new challenges by using the specialized microbiome of biocrusts to be applied in a new environment to counteract the negative effects of climate change.
Collapse
|
29
|
Kallio P, Kugler A, Pyytövaara S, Stensjö K, Allahverdiyeva Y, Gao X, Lindblad P, Lindberg P. Photoautotrophic production of renewable ethylene by engineered cyanobacteria: Steering the cell metabolism towards biotechnological use. PHYSIOLOGIA PLANTARUM 2021; 173:579-590. [PMID: 33864400 DOI: 10.1111/ppl.13430] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/05/2021] [Accepted: 04/13/2021] [Indexed: 06/12/2023]
Abstract
Ethylene is a volatile hydrocarbon with a massive global market in the plastic industry. The ethylene now used for commercial applications is produced exclusively from nonrenewable petroleum sources, while competitive biotechnological production systems do not yet exist. This review focuses on the currently developed photoautotrophic bioproduction strategies that enable direct solar-driven conversion of CO2 into ethylene, based on the use of genetically engineered photosynthetic cyanobacteria expressing heterologous ethylene forming enzyme (EFE) from Pseudomonas syringae. The emphasis is on the different engineering strategies to express EFE and to direct the cellular carbon flux towards the primary metabolite 2-oxoglutarate, highlighting associated metabolic constraints, and technical considerations on cultivation strategies and conditional parameters. While the research field has progressed towards more robust strains with better production profiles, and deeper understanding of the associated metabolic limitations, it is clear that there is room for significant improvement to reach industrial relevance. At the same time, existing information and the development of synthetic biology tools for engineering cyanobacteria open new possibilities for improving the prospects for the sustainable production of renewable ethylene.
Collapse
Affiliation(s)
- Pauli Kallio
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Amit Kugler
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
| | - Samuli Pyytövaara
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Karin Stensjö
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
| | - Yagut Allahverdiyeva
- Molecular Plant Biology, Department of Life Technologies, University of Turku, Turku, Finland
| | - Xiang Gao
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
| | - Pia Lindberg
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Uppsala, Sweden
| |
Collapse
|
30
|
Sun X, Li S, Zhang F, Sun T, Chen L, Zhang W. Development of a N-Acetylneuraminic Acid-Based Sensing and Responding Switch for Orthogonal Gene Regulation in Cyanobacterial Synechococcus Strains. ACS Synth Biol 2021; 10:1920-1930. [PMID: 34370452 DOI: 10.1021/acssynbio.1c00139] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Advances in synthetic biology have allowed photosynthetic cyanobacteria as promising "green cell factories" for sustainable production of biofuels and biochemicals. However, a limited of genetic switches developed in cyanobacteria restrict the complex and orthogonal metabolic regulation. In addition, suitable and controllable switches sensing and responding to specific inducers would allow for the separation of cellular growth and expression of exogenous genes or pathways that cause metabolic burden or toxicity. Here in this study, we developed a genetic switch repressed by NanR and induced by N-acetylneuraminic acid (Neu5Ac) in a fast-growing cyanobacterium Synechococcus elongatus UTEX 2973 along with its highly homologous strain S. elongatus PCC 7942. First, nanR from Escherichia coli and a previously optimized cognate promoter PJ23119H10 were introduced into Syn2973 to control the expression of the reporter gene lacZ encoding β-galactosidase, achieving induction with negligible leakage. Second, the switch was systemically optimized to reach ∼738-fold induction by fine-tuning the expression level of NanR and introducing additional transporter of Neu5Ac. Finally, the orthogonality between the NanR/Neu5Ac switch and theophylline-responsive riboregulator was investigated, achieving a coordinated regulation or binary regulation toward the target gene. Our work here provided a new switch for transcriptional control and orthogonal regulation strategies in cyanobacteria, which would promote the metabolic regulation for the cyanobacterial chassis in the future.
Collapse
Affiliation(s)
- Xuyang Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Shubin Li
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Fenfang Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Tao Sun
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, People’s Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, People’s Republic of China
- Law School of Tianjin University, Tianjin 300072, People’s Republic of China
| | - Lei Chen
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
| | - Weiwen Zhang
- Laboratory of Synthetic Microbiology, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, People’s Republic of China
- Frontier Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering, Ministry of Education of China, Tianjin 300072, People’s Republic of China
- Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, People’s Republic of China
- Center for Biosafety Research and Strategy, Tianjin University, Tianjin 300072, People’s Republic of China
- Law School of Tianjin University, Tianjin 300072, People’s Republic of China
| |
Collapse
|
31
|
Liu X, Xie H, Roussou S, Lindblad P. Current advances in engineering cyanobacteria and their applications for photosynthetic butanol production. Curr Opin Biotechnol 2021; 73:143-150. [PMID: 34411807 DOI: 10.1016/j.copbio.2021.07.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 07/06/2021] [Accepted: 07/10/2021] [Indexed: 11/03/2022]
Abstract
Cyanobacteria are natural photosynthetic microbes which can be engineered for sustainable conversion of solar energy and carbon dioxide into chemical products. Attempts to improve target production often require an improved understanding of the native cyanobacterial host system. Valuable insights into cyanobacterial metabolism, biochemistry and physiology have been steadily increasing in recent years, stimulating key advancements of cyanobacteria as cell factories for biochemical, including biofuel, production. In the present review, we summarize the current progress in engineering cyanobacteria and discuss the achieved and potential utilization of these advances in cyanobacteria for the production of the bulk chemical butanol, specifically isobutanol and 1-butanol.
Collapse
Affiliation(s)
- Xufeng Liu
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Hao Xie
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Stamatina Roussou
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström Laboratory, Uppsala University, Box 523, SE-751 20 Uppsala, Sweden.
| |
Collapse
|
32
|
Yang F, Zhang J, Cai Z, Zhou J, Li Y. Exploring the oxygenase function of Form II Rubisco for production of glycolate from CO 2. AMB Express 2021; 11:65. [PMID: 33963929 PMCID: PMC8106553 DOI: 10.1186/s13568-021-01224-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
The oxygenase activity of Ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) converts ribulose-1,5-bisphosphate (RuBP) into 2-phosphoglycolate, which in turn channels into photorespiration, resulting in carbon and energy loss in higher plants. We observed that glycolate can be accumulated extracellularly when two genes encoding the glycolate dehydrogenase of cyanobacteria Synechocystis sp. PCC 6803 were inactivated. This inspired us to explore the oxygenase function of Rubisco for production of glycolate, an important industrial chemical, from CO2 by engineered cyanobacteria. Since the oxygenase activity of Rubisco is generally low in CO2-rich carboxysome of cyanobacteria, we introduced Form II Rubisco, which cannot be assembled in carboxysome, into the cytoplasm of cyanobacteria. Heterologous expression of a Form II Rubisco from endosymbiont of tubeworm Riftia pachyptila (RPE Rubisco) significantly increased glycolate production. We show that the RPE Rubisco is expressed in the cytoplasm. Glycolate production increased upon addition of NaHCO3 but decreased upon supplying CO2. The titer of glycolate reached 2.8 g/L in 18 days, a 14-fold increase compared with the initial strain with glycolate dehydrogenase inactivated. This is also the highest glycolate titer biotechnologically produced from CO2 ever reported. Photosynthetic production of glycolate demonstrated the oxygenase activity of Form II Rubisco can be explored for production of chemicals from CO2.
Collapse
|
33
|
Stephens S, Mahadevan R, Allen DG. Engineering Photosynthetic Bioprocesses for Sustainable Chemical Production: A Review. Front Bioeng Biotechnol 2021; 8:610723. [PMID: 33490053 PMCID: PMC7820810 DOI: 10.3389/fbioe.2020.610723] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 12/01/2020] [Indexed: 11/13/2022] Open
Abstract
Microbial production of chemicals using renewable feedstocks such as glucose has emerged as a green alternative to conventional chemical production processes that rely primarily on petroleum-based feedstocks. The carbon footprint of such processes can further be reduced by using engineered cells that harness solar energy to consume feedstocks traditionally considered to be wastes as their carbon sources. Photosynthetic bacteria utilize sophisticated photosystems to capture the energy from photons to generate reduction potential with such rapidity and abundance that cells often cannot use it fast enough and much of it is lost as heat and light. Engineering photosynthetic organisms could enable us to take advantage of this energy surplus by redirecting it toward the synthesis of commercially important products such as biofuels, bioplastics, commodity chemicals, and terpenoids. In this work, we review photosynthetic pathways in aerobic and anaerobic bacteria to better understand how these organisms have naturally evolved to harness solar energy. We also discuss more recent attempts at engineering both the photosystems and downstream reactions that transfer reducing power to improve target chemical production. Further, we discuss different methods for the optimization of photosynthetic bioprocess including the immobilization of cells and the optimization of light delivery. We anticipate this review will serve as an important resource for future efforts to engineer and harness photosynthetic bacteria for chemical production.
Collapse
Affiliation(s)
- Sheida Stephens
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| | - Radhakrishnan Mahadevan
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada.,Institute of Biomedical Engineering, University of Toronto, Toronto, ON, Canada
| | - D Grant Allen
- Department of Chemical Engineering and Applied Chemistry, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
34
|
Roussou S, Albergati A, Liang F, Lindblad P. Engineered cyanobacteria with additional overexpression of selected Calvin-Benson-Bassham enzymes show further increased ethanol production. Metab Eng Commun 2021; 12:e00161. [PMID: 33520653 PMCID: PMC7820548 DOI: 10.1016/j.mec.2021.e00161] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 12/21/2020] [Accepted: 01/06/2021] [Indexed: 12/20/2022] Open
Abstract
Cyanobacteria are one of the most promising microorganisms to produce biofuels and renewable chemicals due to their oxygenic autotrophic growth properties. However, to rely on photosynthesis, which is one of the main reasons for slow growth, low carbon assimlation rate and low production, is a bottleneck. To address this challenge, optimizing the Calvin-Benson-Bassham (CBB) cycle is one of the strategies since it is the main carbon fixation pathway. In a previous study, we showed that overexpression of either aldolase (FBA), transketolase (TK), or fructose-1,6/sedoheptulose-1,7-bisphosphatase (FBP/SBPase), enzymes responsible for RuBP regeneration and vital for controlling the CBB carbon flux, led to higher production rates and titers in ethanol producing strains of Synechocystis PCC 6803. In the present study, we investigated the combined effects of the above enzymes on ethanol production in Synechocystis PCC 6803. The ethanol production of the strains overexpressing two CBB enzymes (FBA + TK, FBP/SBPase + FBA or FBP/SBPase + TK) was higher than the respective control strains, overexpressing either FBA or TK. The co-overexpression of FBA and TK led to more than 9 times higher ethanol production compared to the overexpression of FBA. Compared to TK the respective increase is 4 times more ethanol production. Overexpression of FBP/SBPase in combination with FBA showed 2.5 times higher ethanol production compared to FBA. Finally, co-overexpression of FBP/SBPase and TK reached about twice the production of ethanol compared to overexpression of only TK. This study clearly demonstrates that overexpression of two selected CBB enzymes leads to significantly increased ethanol production compared to overexpression of a single CBB enzyme.
Collapse
Affiliation(s)
- Stamatina Roussou
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden
| | - Alessia Albergati
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden
| | - Feiyan Liang
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden
| | - Peter Lindblad
- Microbial Chemistry, Department of Chemistry-Ångström, Uppsala University, Box 523, SE-751 20, Uppsala, Sweden
| |
Collapse
|
35
|
Heise K, Kontturi E, Allahverdiyeva Y, Tammelin T, Linder MB, Nonappa, Ikkala O. Nanocellulose: Recent Fundamental Advances and Emerging Biological and Biomimicking Applications. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2004349. [PMID: 33289188 PMCID: PMC11468234 DOI: 10.1002/adma.202004349] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 08/01/2020] [Indexed: 06/12/2023]
Abstract
In the effort toward sustainable advanced functional materials, nanocelluloses have attracted extensive recent attention. Nanocelluloses range from rod-like highly crystalline cellulose nanocrystals to longer and more entangled cellulose nanofibers, earlier denoted also as microfibrillated celluloses and bacterial cellulose. In recent years, they have spurred research toward a wide range of applications, ranging from nanocomposites, viscosity modifiers, films, barrier layers, fibers, structural color, gels, aerogels and foams, and energy applications, until filtering membranes, to name a few. Still, nanocelluloses continue to show surprisingly high challenges to master their interactions and tailorability to allow well-controlled assemblies for functional materials. Rather than trying to review the already extensive nanocellulose literature at large, here selected aspects of the recent progress are the focus. Water interactions, which are central for processing for the functional properties, are discussed first. Then advanced hybrid gels toward (multi)stimuli responses, shape-memory materials, self-healing, adhesion and gluing, biological scaffolding, and forensic applications are discussed. Finally, composite fibers are discussed, as well as nanocellulose as a strategy for improvement of photosynthesis-based chemicals production. In summary, selected perspectives toward new directions for sustainable high-tech functional materials science based on nanocelluloses are described.
Collapse
Affiliation(s)
- Katja Heise
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
- Center of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials ResearchAalto UniversityFI‐00076Finland
| | - Eero Kontturi
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
| | - Yagut Allahverdiyeva
- Molecular Plant BiologyDepartment of BiochemistryUniversity of TurkuTurkuFI‐20014Finland
| | - Tekla Tammelin
- VTT Technical Research Centre of Finland LtdVTT, PO Box 1000FIN‐02044EspooFinland
| | - Markus B. Linder
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
- Center of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials ResearchAalto UniversityFI‐00076Finland
| | - Nonappa
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
- Center of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials ResearchAalto UniversityFI‐00076Finland
- Department of Applied PhysicsAalto UniversityEspooFI‐00076Finland
- Faculty of Engineering and Natural SciencesTampere UniversityP.O. Box 541TampereFI‐33101Finland
| | - Olli Ikkala
- Department of Bioproducts and BiosystemsAalto UniversityEspooFI‐00076Finland
- Center of Excellence in Molecular Engineering of Biosynthetic Hybrid Materials ResearchAalto UniversityFI‐00076Finland
- Department of Applied PhysicsAalto UniversityEspooFI‐00076Finland
| |
Collapse
|
36
|
Vijayakumar S, Rahman PK, Angione C. A Hybrid Flux Balance Analysis and Machine Learning Pipeline Elucidates Metabolic Adaptation in Cyanobacteria. iScience 2020; 23:101818. [PMID: 33354660 PMCID: PMC7744713 DOI: 10.1016/j.isci.2020.101818] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 10/23/2020] [Accepted: 11/13/2020] [Indexed: 01/20/2023] Open
Abstract
Machine learning has recently emerged as a promising tool for inferring multi-omic relationships in biological systems. At the same time, genome-scale metabolic models (GSMMs) can be integrated with such multi-omic data to refine phenotypic predictions. In this work, we use a multi-omic machine learning pipeline to analyze a GSMM of Synechococcus sp. PCC 7002, a cyanobacterium with large potential to produce renewable biofuels. We use regularized flux balance analysis to observe flux response between conditions across photosynthesis and energy metabolism. We then incorporate principal-component analysis, k-means clustering, and LASSO regularization to reduce dimensionality and extract key cross-omic features. Our results suggest that combining metabolic modeling with machine learning elucidates mechanisms used by cyanobacteria to cope with fluctuations in light intensity and salinity that cannot be detected using transcriptomics alone. Furthermore, GSMMs introduce critical mechanistic details that improve the performance of omic-based machine learning methods.
Collapse
Affiliation(s)
- Supreeta Vijayakumar
- Department of Computer Science and Information Systems, Teesside University, Middlesbrough, North Yorkshire TS1 3BX, UK
| | - Pattanathu K.S.M. Rahman
- Centre for Enzyme Innovation, Institute of Biological and Biomedical Sciences, School of Biological Sciences, University of Portsmouth, Portsmouth, Hampshire PO1 2UP, UK
- Tara Biologics, Woking, Surrey GU21 6BP, UK
| | - Claudio Angione
- Department of Computer Science and Information Systems, Teesside University, Middlesbrough, North Yorkshire TS1 3BX, UK
- Centre for Digital Innovation, Teesside University, Middlesbrough TS1 3BX, UK
- Healthcare Innovation Centre, Teesside University, Middlesbrough TS1 3BX, UK
| |
Collapse
|
37
|
Jeong Y, Cho SH, Lee H, Choi HK, Kim DM, Lee CG, Cho S, Cho BK. Current Status and Future Strategies to Increase Secondary Metabolite Production from Cyanobacteria. Microorganisms 2020; 8:E1849. [PMID: 33255283 PMCID: PMC7761380 DOI: 10.3390/microorganisms8121849] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 11/15/2020] [Accepted: 11/23/2020] [Indexed: 12/16/2022] Open
Abstract
Cyanobacteria, given their ability to produce various secondary metabolites utilizing solar energy and carbon dioxide, are a potential platform for sustainable production of biochemicals. Until now, conventional metabolic engineering approaches have been applied to various cyanobacterial species for enhanced production of industrially valued compounds, including secondary metabolites and non-natural biochemicals. However, the shortage of understanding of cyanobacterial metabolic and regulatory networks for atmospheric carbon fixation to biochemical production and the lack of available engineering tools limit the potential of cyanobacteria for industrial applications. Recently, to overcome the limitations, synthetic biology tools and systems biology approaches such as genome-scale modeling based on diverse omics data have been applied to cyanobacteria. This review covers the synthetic and systems biology approaches for advanced metabolic engineering of cyanobacteria.
Collapse
Affiliation(s)
- Yujin Jeong
- Department of Biological Sciences and KAIST Institutes for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.J.); (S.-H.C.)
| | - Sang-Hyeok Cho
- Department of Biological Sciences and KAIST Institutes for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.J.); (S.-H.C.)
| | - Hookeun Lee
- Institute of Pharmaceutical Research, College of Pharmacy, Gachon University, Incheon 21999, Korea;
| | | | - Dong-Myung Kim
- Department of Chemical Engineering and Applied Chemistry, Chungnam National University, Daejeon 34134, Korea;
| | - Choul-Gyun Lee
- Department of Biological Engineering, Inha University, Incheon 22212, Korea;
| | - Suhyung Cho
- Department of Biological Sciences and KAIST Institutes for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.J.); (S.-H.C.)
| | - Byung-Kwan Cho
- Department of Biological Sciences and KAIST Institutes for the BioCentury, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea; (Y.J.); (S.-H.C.)
| |
Collapse
|
38
|
Liang B, Zhao Y, Yang J. Recent Advances in Developing Artificial Autotrophic Microorganism for Reinforcing CO 2 Fixation. Front Microbiol 2020; 11:592631. [PMID: 33240247 PMCID: PMC7680860 DOI: 10.3389/fmicb.2020.592631] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 10/21/2020] [Indexed: 11/13/2022] Open
Abstract
With the goal of achieving carbon sequestration, emission reduction and cleaner production, biological methods have been employed to convert carbon dioxide (CO2) into fuels and chemicals. However, natural autotrophic organisms are not suitable cell factories due to their poor carbon fixation efficiency and poor growth rate. Heterotrophic microorganisms are promising candidates, since they have been proven to be efficient biofuel and chemical production chassis. This review first briefly summarizes six naturally occurring CO2 fixation pathways, and then focuses on recent advances in artificially designing efficient CO2 fixation pathways. Moreover, this review discusses the transformation of heterotrophic microorganisms into hemiautotrophic microorganisms and delves further into fully autotrophic microorganisms (artificial autotrophy) by use of synthetic biological tools and strategies. Rapid developments in artificial autotrophy have laid a solid foundation for the development of efficient carbon fixation cell factories. Finally, this review highlights future directions toward large-scale applications. Artificial autotrophic microbial cell factories need further improvements in terms of CO2 fixation pathways, reducing power supply, compartmentalization and host selection.
Collapse
Affiliation(s)
- Bo Liang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| | - Yukun Zhao
- Pony Testing International Group, Qingdao, China
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, Qingdao Agricultural University, Qingdao, China
- Shandong Key Lab of Applied Mycology, College of Life Sciences, Qingdao Agricultural University, Qingdao, China
| |
Collapse
|
39
|
Hasegawa M, Hosaka T, Kojima K, Nishimura Y, Nakajima Y, Kimura-Someya T, Shirouzu M, Sudo Y, Yoshizawa S. A unique clade of light-driven proton-pumping rhodopsins evolved in the cyanobacterial lineage. Sci Rep 2020; 10:16752. [PMID: 33028840 PMCID: PMC7541481 DOI: 10.1038/s41598-020-73606-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Accepted: 09/15/2020] [Indexed: 11/09/2022] Open
Abstract
Microbial rhodopsin is a photoreceptor protein found in various bacteria and archaea, and it is considered to be a light-utilization device unique to heterotrophs. Recent studies have shown that several cyanobacterial genomes also include genes that encode rhodopsins, indicating that these auxiliary light-utilizing proteins may have evolved within photoautotroph lineages. To explore this possibility, we performed a large-scale genomic survey to clarify the distribution of rhodopsin and its phylogeny. Our surveys revealed a novel rhodopsin clade, cyanorhodopsin (CyR), that is unique to cyanobacteria. Genomic analysis revealed that rhodopsin genes show a habitat-biased distribution in cyanobacterial taxa, and that the CyR clade is composed exclusively of non-marine cyanobacterial strains. Functional analysis using a heterologous expression system revealed that CyRs function as light-driven outward H+ pumps. Examination of the photochemical properties and crystal structure (2.65 Å resolution) of a representative CyR protein, N2098R from Calothrix sp. NIES-2098, revealed that the structure of the protein is very similar to that of other rhodopsins such as bacteriorhodopsin, but that its retinal configuration and spectroscopic characteristics (absorption maximum and photocycle) are distinct from those of bacteriorhodopsin. These results suggest that the CyR clade proteins evolved together with chlorophyll-based photosynthesis systems and may have been optimized for the cyanobacterial environment.
Collapse
Affiliation(s)
- Masumi Hasegawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan.,Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8563, Japan
| | - Toshiaki Hosaka
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Kanagawa, 230-0045, Japan
| | - Keiichi Kojima
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Yosuke Nishimura
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan
| | - Yu Nakajima
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan.,Bioproduction Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, 305-8766, Japan
| | - Tomomi Kimura-Someya
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Kanagawa, 230-0045, Japan
| | - Mikako Shirouzu
- Laboratory for Protein Functional and Structural Biology, RIKEN Center for Biosystems Dynamics Research, Kanagawa, 230-0045, Japan
| | - Yuki Sudo
- Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, 700-8530, Japan
| | - Susumu Yoshizawa
- Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, 277-8564, Japan. .,Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8563, Japan. .,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo, Tokyo, 113-8657, Japan.
| |
Collapse
|
40
|
Batista-Silva W, da Fonseca-Pereira P, Martins AO, Zsögön A, Nunes-Nesi A, Araújo WL. Engineering Improved Photosynthesis in the Era of Synthetic Biology. PLANT COMMUNICATIONS 2020; 1:100032. [PMID: 33367233 PMCID: PMC7747996 DOI: 10.1016/j.xplc.2020.100032] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 01/20/2020] [Accepted: 02/08/2020] [Indexed: 05/08/2023]
Abstract
Much attention has been given to the enhancement of photosynthesis as a strategy for the optimization of crop productivity. As traditional plant breeding is most likely reaching a plateau, there is a timely need to accelerate improvements in photosynthetic efficiency by means of novel tools and biotechnological solutions. The emerging field of synthetic biology offers the potential for building completely novel pathways in predictable directions and, thus, addresses the global requirements for higher yields expected to occur in the 21st century. Here, we discuss recent advances and current challenges of engineering improved photosynthesis in the era of synthetic biology toward optimized utilization of solar energy and carbon sources to optimize the production of food, fiber, and fuel.
Collapse
Affiliation(s)
- Willian Batista-Silva
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Paula da Fonseca-Pereira
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | | | - Agustín Zsögön
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Adriano Nunes-Nesi
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| | - Wagner L. Araújo
- Departamento de Biologia Vegetal, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570-900, Brazil
| |
Collapse
|