1
|
Sylvester AL, Hensenne E, Ivanov D, Poser BA, Linden DEJ, van Amelsvoort T, Vingerhoets C. Neural excitation/inhibition imbalance and neurodevelopmental pathology in human copy number variant syndromes: a systematic review. J Neurodev Disord 2025; 17:31. [PMID: 40490701 DOI: 10.1186/s11689-025-09614-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 04/12/2025] [Indexed: 06/11/2025] Open
Abstract
Cumulative evidence suggests neurodevelopmental disorders are closely related. The risk of these disorders is increased by a series of copy number variant syndromes - phenotypically heterogeneous genetic disorders, present in a minority of the population. Recent models suggest that a disruption in the balance between excitatory and inhibitory neural activity may contribute to the aetiology of neurodevelopmental disorders, and may be additionally disturbed in copy number variant syndromes. In this systematic review, the databases PubMed, Embase, and Scopus were searched for studies of excitation/inhibition imbalance in relation to neurodevelopmental disorders in human copy number variant samples. A total of 53 studies were included, representing a variety of copy number variants and research methodologies. The resulting data suggests excitation/inhibition balance is indeed disrupted in different copy number variant populations, providing insight into a putative mechanism of both idiopathic and genetic neurodevelopmental disorders. However, the high level of heterogeneity in the data set, alongside emerging techniques for excitation/inhibition assessment, prompts further investigation of this field.
Collapse
Affiliation(s)
- Amy L Sylvester
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, Netherlands.
| | - Eva Hensenne
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, Netherlands
| | - Dimo Ivanov
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Max Planck Institute for Empirical Aesthetics, Frankfurt, Germany
- Cooperative Brain Imaging Center - CoBIC, Frankfurt, Germany
| | - Benedikt A Poser
- Department of Cognitive Neuroscience, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
| | - David E J Linden
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, Netherlands
| | - Thérèse van Amelsvoort
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, Netherlands
| | - Claudia Vingerhoets
- Department of Psychiatry and Neuropsychology, Mental Health and Neuroscience Research Institute, Maastricht University, Maastricht, Netherlands
- Advisium 's Heeren Loo Zorggroep, Amersfoort, Netherlands
| |
Collapse
|
2
|
Lambert PM, Salvatore SV, Lu X, Shu HJ, Benz A, Rensing N, Yuede CM, Wong M, Zorumski CF, Mennerick S. A Role for δ Subunit-Containing GABA A Receptors on Parvalbumin-Positive Neurons in Maintaining Electrocortical Signatures of Sleep States. J Neurosci 2025; 45:e0601242025. [PMID: 40204438 PMCID: PMC12079746 DOI: 10.1523/jneurosci.0601-24.2025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 02/21/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025] Open
Abstract
GABAA receptors containing δ subunits have been shown to mediate tonic/slow inhibition in the CNS. These receptors are typically found extrasynaptically and are activated by relatively low levels of ambient GABA in the extracellular space. In the mouse neocortex, δ subunits are expressed by some pyramidal cells as well as on parvalbumin-positive (PV+) interneurons. An important function of PV+ interneurons is the organization of coordinated network activity that can be measured by EEG. However, it remains unclear what role tonic/slow inhibitory control of PV+ neurons may play in shaping oscillatory activity. After validating expected functional loss of δ-associated current in cortex of PV δcKO mice of both sexes, we performed EEG recordings to survey network activity across wake and sleep states. PV δcKO mice showed altered spectral content of EEG during NREM and REM sleep that was a result of increased oscillatory activity in NREM and the emergence of transient high-amplitude bursts of theta-frequency activity during REM. Viral reintroduction of Gabrd to PV+ interneurons in PV δcKO mice rescued REM EEG phenotypes, supporting an important role for δ subunit-mediated inhibition of PV+ interneurons for maintaining normal REM cortical oscillations.
Collapse
Affiliation(s)
- Peter M Lambert
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110
- Medical Scientist Training Program, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110
| | - Sofia V Salvatore
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110
| | - Xinguo Lu
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110
| | - Hong-Jin Shu
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110
| | - Ann Benz
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110
| | - Nicholas Rensing
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110
| | - Carla M Yuede
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110
| | - Michael Wong
- Department of Neurology, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110
| | - Charles F Zorumski
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110
| | - Steven Mennerick
- Department of Psychiatry, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110
- Taylor Family Institute for Innovative Psychiatric Research, Washington University in St. Louis School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
3
|
Nutt DJ. Drug development in psychiatry: 50 years of failure and how to resuscitate it. Lancet Psychiatry 2025; 12:228-238. [PMID: 39952266 DOI: 10.1016/s2215-0366(24)00370-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 10/29/2024] [Accepted: 10/30/2024] [Indexed: 02/17/2025]
Abstract
The past 50 years have seen remarkable advances in the science of medicine. The pharmacological treatments of disorders such as hypertension, immune disorders, and cancer are fundamentally different from those used in the 1970s, and are now more often based on disorder-specific pathologies. The same cannot be said for psychiatric medicines: despite remarkable advances in neuroscience, very few innovative treatments have been developed in this field since the 1970s. For depression, schizophrenia, anxiety disorders, and ADHD, pharmacological classes of medicines discovered through serendipity in the 1950s are still used despite hundreds of billions of US dollars being spent on drug discovery attempts based on new neuroscience targets. This Personal View presents my opinion on the reasons innovation in psychiatric treatment has not progressed as well as in other disorders. As a researcher in the field, I offer suggestions as to how this situation must be rectified soon, as by most analyses mental illness is becoming a major health burden globally. Most of my evidence is referenced, but where I have unpublished knowledge gained from consulting with pharmaceutical companies, it is presented as an opinion.
Collapse
Affiliation(s)
- David J Nutt
- Department of Brain Sciences, Faculty of Medicine, Imperial College London, London, UK.
| |
Collapse
|
4
|
Ferraguto C, Piquemal-Lagoueillat M, Lemaire V, Moreau MM, Trazzi S, Uguagliati B, Ciani E, Bertrand SS, Louette E, Bontempi B, Pietropaolo S. Therapeutic efficacy of the BKCa channel opener chlorzoxazone in a mouse model of Fragile X syndrome. Neuropsychopharmacology 2024; 49:2032-2041. [PMID: 39223257 PMCID: PMC11480417 DOI: 10.1038/s41386-024-01956-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/30/2024] [Accepted: 07/23/2024] [Indexed: 09/04/2024]
Abstract
Fragile X syndrome (FXS) is an X-linked neurodevelopmental disorder characterized by several behavioral abnormalities, including hyperactivity, anxiety, sensory hyper-responsiveness, and autistic-like symptoms such as social deficits. Despite considerable efforts, effective pharmacological treatments are still lacking, prompting the need for exploring the therapeutic value of existing drugs beyond their original approved use. One such repurposed drug is chlorzoxazone which is classified as a large-conductance calcium-dependent potassium (BKCa) channel opener. Reduced BKCa channel functionality has been reported in FXS patients, suggesting that molecules activating these channels could serve as promising treatments for this syndrome. Here, we sought to characterize the therapeutic potential of chlorzoxazone using the Fmr1-KO mouse model of FXS which recapitulates the main phenotypes of FXS, including BKCa channel alterations. Chlorzoxazone, administered either acutely or chronically, rescued hyperactivity and acoustic hyper-responsiveness as well as impaired social interactions exhibited by Fmr1-KO mice. Chlorzoxazone was more efficacious in alleviating these phenotypes than gaboxadol and metformin, two repurposed treatments for FXS that do not target BKCa channels. Systemic administration of chlorzoxazone modulated the neuronal activity-dependent gene c-fos in selected brain areas of Fmr1-KO mice, corrected aberrant hippocampal dendritic spines, and was able to rescue impaired BKCa currents recorded from hippocampal and cortical neurons of these mutants. Collectively, these findings provide further preclinical support for BKCa channels as a valuable therapeutic target for treating FXS and encourage the repurposing of chlorzoxazone for clinical applications in FXS and other related neurodevelopmental diseases.
Collapse
Affiliation(s)
| | | | - Valerie Lemaire
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France
| | - Maïté M Moreau
- Univ. Bordeaux, INSERM, Neurocentre Magendie, U1215, Bordeaux, France
| | - Stefania Trazzi
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Beatrice Uguagliati
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | - Elisabetta Ciani
- Department of Biomedical and Neuromotor Sciences, University of Bologna, Bologna, Italy
| | | | | | - Bruno Bontempi
- Univ. Bordeaux, CNRS, EPHE, INCIA, UMR 5287, Bordeaux, France
| | | |
Collapse
|
5
|
Chen G, Xu M, Chen Z, Yang F. Clinical applications of small-molecule GABA AR modulators for neurological disorders. Bioorg Chem 2024; 153:107983. [PMID: 39581171 DOI: 10.1016/j.bioorg.2024.107983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2024] [Revised: 10/31/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024]
Abstract
Gamma-aminobutyric acid type A receptor (GABAAR) modulators are crucial in treating neurological and psychiatric disorders, including epilepsy, anxiety, insomnia, and depression. This review examines the synthetic approaches and clinical applications of representative small-molecule GABAAR modulators. Benzodiazepines, such as Diazepam, are well-known positive allosteric modulators (PAMs) that enhance GABAAR function, providing therapeutic effects but also associated with side effects like sedation and dependence. Non-benzodiazepine modulators, including Z-drugs like Zolpidem and Zaleplon, offer improved selectivity for the α1 subunit of GABAAR, reducing some of these side effects. Neurosteroids such as allopregnanolone and its synthetic analogs, including Brexanolone, have emerged as potent GABAAR modulators with applications in conditions like postpartum depression and refractory epilepsy. Advances in molecular biology and pharmacology have facilitated the development of isoform-specific modulators, potentially reducing off-target effects and enhancing therapeutic profiles. Additionally, combining GABAAR modulators with other therapeutic agents has shown promise in enhancing efficacy and minimizing side effects. This review highlights the design strategies, pharmacodynamics, clinical efficacy, and safety profiles of these compounds, emphasizing the opportunities for developing novel GABAAR modulators with improved therapeutic outcomes.
Collapse
Affiliation(s)
- Guangyong Chen
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Meiling Xu
- Department of Rheumatology and Immunology, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Zhuo Chen
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| | - Fuwei Yang
- Department of Neurosurgery, China-Japan Union Hospital of Jilin University, Changchun, China.
| |
Collapse
|
6
|
Frohlich J, Mediano PAM, Bavato F, Gharabaghi A. Paradoxical pharmacological dissociations result from drugs that enhance delta oscillations but preserve consciousness. Commun Biol 2023; 6:654. [PMID: 37340024 DOI: 10.1038/s42003-023-04988-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/26/2023] [Indexed: 06/22/2023] Open
Abstract
Low-frequency (<4 Hz) neural activity, particularly in the delta band, is generally indicative of loss of consciousness and cortical down states, particularly when it is diffuse and high amplitude. Remarkably, however, drug challenge studies of several diverse classes of pharmacological agents-including drugs which treat epilepsy, activate GABAB receptors, block acetylcholine receptors, or produce psychedelic effects-demonstrate neural activity resembling cortical down states even as the participants remain conscious. Of those substances that are safe to use in healthy volunteers, some may be highly valuable research tools for investigating which neural activity patterns are sufficient for consciousness or its absence.
Collapse
Affiliation(s)
- Joel Frohlich
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany.
| | - Pedro A M Mediano
- Department of Computing, Imperial College London, London, UK
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Francesco Bavato
- Experimental and Clinical Pharmacopsychology, Department of Psychiatry, Psychotherapy, and Psychosomatics, Psychiatric University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Alireza Gharabaghi
- Institute for Neuromodulation and Neurotechnology, University Hospital and University of Tuebingen, Tuebingen, Germany
| |
Collapse
|
7
|
Huang YH, Lee MT, Hsueh HY, Knutson DE, Cook J, Mihovilovic MD, Sieghart W, Chiou LC. Cerebellar α6GABA A Receptors as a Therapeutic Target for Essential Tremor: Proof-of-Concept Study with Ethanol and Pyrazoloquinolinones. Neurotherapeutics 2023; 20:399-418. [PMID: 36696034 PMCID: PMC10121996 DOI: 10.1007/s13311-023-01342-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/29/2022] [Indexed: 01/26/2023] Open
Abstract
Ethanol has been shown to suppress essential tremor (ET) in patients at low-to-moderate doses, but its mechanism(s) of action remain unknown. One of the ET hypotheses attributes the ET tremorgenesis to the over-activated firing of inferior olivary neurons, causing synchronic rhythmic firings of cerebellar Purkinje cells. Purkinje cells, however, also receive excitatory inputs from granule cells where the α6 subunit-containing GABAA receptors (α6GABAARs) are abundantly expressed. Since ethanol is a positive allosteric modulator (PAM) of α6GABAARs, such action may mediate its anti-tremor effect. Employing the harmaline-induced ET model in male ICR mice, we evaluated the possible anti-tremor effects of ethanol and α6GABAAR-selective pyrazoloquinolinone PAMs. The burrowing activity, an indicator of well-being in rodents, was measured concurrently. Ethanol significantly and dose-dependently attenuated action tremor at non-sedative doses (0.4-2.4 g/kg, i.p.). Propranolol and α6GABAAR-selective pyrazoloquinolinones also significantly suppressed tremor activity. Neither ethanol nor propranolol, but only pyrazoloquinolinones, restored burrowing activity in harmaline-treated mice. Importantly, intra-cerebellar micro-injection of furosemide (an α6GABAAR antagonist) had a trend of blocking the effect of pyrazoloquinolinone Compound 6 or ethanol on harmaline-induced tremor. In addition, the anti-tremor effects of Compound 6 and ethanol were synergistic. These results suggest that low doses of ethanol and α6GABAAR-selective PAMs can attenuate action tremor, at least partially by modulating cerebellar α6GABAARs. Thus, α6GABAARs are potential therapeutic targets for ET, and α6GABAAR-selective PAMs may be a potential mono- or add-on therapy.
Collapse
Affiliation(s)
- Ya-Hsien Huang
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd., Section 1, Taipei, 10051, Taiwan
| | - Ming Tatt Lee
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd., Section 1, Taipei, 10051, Taiwan
- Faculty of Pharmaceutical Sciences, UCSI University, Kuala Lumpur, 56000, Malaysia
| | - Han-Yun Hsueh
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd., Section 1, Taipei, 10051, Taiwan
| | - Daniel E Knutson
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | - James Cook
- Department of Chemistry and Biochemistry, Milwaukee Institute for Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, 53211, USA
| | | | - Werner Sieghart
- Center for Brain Research, Department of Molecular Neurosciences, Medical University Vienna, Vienna, 1090, Austria
| | - Lih-Chu Chiou
- Department and Graduate Institute of Pharmacology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Rd., Section 1, Taipei, 10051, Taiwan.
- Graduate Institute of Brain and Mind Sciences, College of Medicine, National Taiwan University, Taipei, 10051, Taiwan.
- Graduate Institute of Acupuncture Science, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
8
|
Wang Z, Choi K. Pharmacological modulation of chloride channels as a therapeutic strategy for neurological disorders. Front Physiol 2023; 14:1122444. [PMID: 36935741 PMCID: PMC10017882 DOI: 10.3389/fphys.2023.1122444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Accepted: 02/09/2023] [Indexed: 03/06/2023] Open
Abstract
Chloride homeostasis is critical in the physiological functions of the central nervous system (CNS). Its concentration is precisely regulated by multiple ion-transporting proteins such as chloride channels and transporters that are widely distributed in the brain cells, including neurons and glia. Unlike ion transporters, chloride channels provide rapid responses to efficiently regulate ion flux. Some of chloride channels are also permeable to selected organic anions such as glutamate and γ-aminobutyric acid, suggesting neuroexcitatory and neuroinhibitory functions while gating. Dysregulated chloride channels are implicated in neurological disorders, e.g., ischemia and neuroinflammation. Modulation of chloride homeostasis through chloride channels has been suggested as a potential therapeutic approach for neurological disorders. The drug design for CNS diseases is challenging because it requires the therapeutics to traverse the blood-brain-barrier. Small molecules are a well-established modality with better cell permeability due to their lower molecular weight and flexibility for structure optimization compared to biologics. In this article, we describe the important roles of chloride homeostasis in each type of brain cells and introduce selected chloride channels identified in the CNS. We then discuss the contribution of their dysregulations towards the pathogenesis of neurological disorders, emphasizing the potential of targeting chloride channels as a therapeutic strategy for CNS disease treatment. Along with this literature survey, we summarize the small molecules that modulate chloride channels and propose the potential strategy of optimizing existing drugs to brain-penetrants to support future CNS drug discovery.
Collapse
|
9
|
Cerne R, Lippa A, Poe MM, Smith JL, Jin X, Ping X, Golani LK, Cook JM, Witkin JM. GABAkines - Advances in the discovery, development, and commercialization of positive allosteric modulators of GABA A receptors. Pharmacol Ther 2022; 234:108035. [PMID: 34793859 PMCID: PMC9787737 DOI: 10.1016/j.pharmthera.2021.108035] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 11/08/2021] [Indexed: 12/25/2022]
Abstract
Positive allosteric modulators of γ-aminobutyric acid-A (GABAA) receptors or GABAkines have been widely used medicines for over 70 years for anxiety, epilepsy, sleep, and other disorders. Traditional GABAkines like diazepam have safety and tolerability concerns that include sedation, motor-impairment, respiratory depression, tolerance and dependence. Multiple GABAkines have entered clinical development but the issue of side-effects has not been fully solved. The compounds that are presently being developed and commercialized include several neuroactive steroids (an allopregnanolone formulation (brexanolone), an allopregnanolone prodrug (LYT-300), Sage-324, zuranolone, and ganaxolone), the α2/3-preferring GABAkine, KRM-II-81, and the α2/3/5-preferring GABAkine PF-06372865 (darigabat). The neuroactive steroids are in clinical development for post-partum depression, intractable epilepsy, tremor, status epilepticus, and genetic epilepsy disorders. Darigabat is in development for epilepsy and anxiety. The imidazodiazepine, KRM-II-81 is efficacious in animal models for the treatment of epilepsy and post-traumatic epilepsy, acute and chronic pain, as well as anxiety and depression. The efficacy of KRM-II-81 in models of pharmacoresistant epilepsy, preventing the development of seizure sensitization, and in brain tissue of intractable epileptic patients bodes well for improved therapeutics. Medicinal chemistry efforts are also ongoing to identify novel and improved GABAkines. The data document gaps in our understanding of the molecular pharmacology of GABAkines that drive differential pharmacological profiles, but emphasize advancements in the ability to successfully utilize GABAA receptor potentiation for therapeutic gain in neurology and psychiatry.
Collapse
Affiliation(s)
- Rok Cerne
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA,Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, Ljubljana, Slovenia.,RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Arnold Lippa
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA
| | | | - Jodi L. Smith
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA
| | - Xiaoming Jin
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Xingjie Ping
- Department of Anatomy and Cell Biology, Indiana University/Purdue University, Indianapolis, IN, USA
| | - Lalit K. Golani
- Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - James M. Cook
- RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| | - Jeffrey M. Witkin
- Laboratory of Antiepileptic Drug Discovery, Ascension St. Vincent, Indianapolis, IN USA,RespireRx Pharmaceuticals Inc, Glen Rock, NJ, USA,Department of Chemistry and Biochemistry, Milwaukee Institute of Drug Discovery, University of Wisconsin-Milwaukee, Milwaukee, WI, USA
| |
Collapse
|
10
|
Sente A, Desai R, Naydenova K, Malinauskas T, Jounaidi Y, Miehling J, Zhou X, Masiulis S, Hardwick SW, Chirgadze DY, Miller KW, Aricescu AR. Differential assembly diversifies GABA A receptor structures and signalling. Nature 2022; 604:190-194. [PMID: 35355020 PMCID: PMC7612593 DOI: 10.1038/s41586-022-04517-3] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/04/2022] [Indexed: 01/07/2023]
Abstract
Type A γ-aminobutyric acid receptors (GABAARs) are pentameric ligand-gated chloride channels that mediate fast inhibitory signalling in neural circuits1,2 and can be modulated by essential medicines including general anaesthetics and benzodiazepines3. Human GABAAR subunits are encoded by 19 paralogous genes that can, in theory, give rise to 495,235 receptor types. However, the principles that govern the formation of pentamers, the permutational landscape of receptors that may emerge from a subunit set and the effect that this has on GABAergic signalling remain largely unknown. Here we use cryogenic electron microscopy to determine the structures of extrasynaptic GABAARs assembled from α4, β3 and δ subunits, and their counterparts incorporating γ2 instead of δ subunits. In each case, we identified two receptor subtypes with distinct stoichiometries and arrangements, all four differing from those previously observed for synaptic, α1-containing receptors4-7. This, in turn, affects receptor responses to physiological and synthetic modulators by creating or eliminating ligand-binding sites at subunit interfaces. We provide structural and functional evidence that selected GABAAR arrangements can act as coincidence detectors, simultaneously responding to two neurotransmitters: GABA and histamine. Using assembly simulations and single-cell RNA sequencing data8,9, we calculated the upper bounds for receptor diversity in recombinant systems and in vivo. We propose that differential assembly is a pervasive mechanism for regulating the physiology and pharmacology of GABAARs.
Collapse
Affiliation(s)
| | - Rooma Desai
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Tomas Malinauskas
- Division of Structural Biology, Wellcome Centre for Human Genetics, University of Oxford, Oxford, UK
| | - Youssef Jounaidi
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | | | - Xiaojuan Zhou
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Simonas Masiulis
- MRC Laboratory of Molecular Biology, Cambridge, UK
- Materials and Structural Analysis Division, Thermo Fisher Scientific, Achtseweg Noord, Eindhoven, Netherlands
| | | | | | - Keith W Miller
- Department of Anesthesia, Critical Care and Pain Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
11
|
Leong CWY, Leow JWS, Grunstein RR, Naismith SL, Teh JZ, D'Rozario AL, Saini B. A systematic scoping review of the effects of central nervous system active drugs on sleep spindles and sleep-dependent memory consolidation. Sleep Med Rev 2022; 62:101605. [PMID: 35313262 DOI: 10.1016/j.smrv.2022.101605] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/15/2022] [Accepted: 01/26/2022] [Indexed: 11/26/2022]
Abstract
Sleep spindles are key electroencephalogram (EEG) oscillatory events that occur during non-rapid eye movement (NREM) sleep. Deficits in sleep spindles are present in populations with sleep and neurological disorders, and in severe mental illness. Pharmacological manipulation of these waveforms is of growing interest with therapeutic potential in targeting spindle deficits relating to memory impairment. This review integrates studies that provide insight into the feasibility of manipulating sleep spindles by using psychoactive drug classes, with consequent effects on sleep-dependent memory. Most studies showed that benzodiazepines and Z-drugs consistently enhanced sleep spindle activity unlike other psychoactive drug classes reviewed. However, how these spindle enhancements translate into improved sleep-dependent memory remains to be fully elucidated. From the few studies that examined both spindles and memory, preliminary evidence suggests that zolpidem may have some therapeutic potential to enhance declarative memory through boosting sleep spindle activity. There is a greater need to standardise methodological approaches for identifying and quantifying spindle activity as well as more exploratory studies to elucidate the role of spindle enhancement for other types of memory.
Collapse
Affiliation(s)
- Celeste W Y Leong
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Josiah W S Leow
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| | - Ronald R Grunstein
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; Royal Prince Alfred Hospital, and Sydney Health Partners, NSW; Sydney Medical School, The University of Sydney, NSW, Australia
| | - Sharon L Naismith
- School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Jun Z Teh
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, NSW, Australia
| | - Angela L D'Rozario
- CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia; Sydney Medical School, The University of Sydney, NSW, Australia; School of Psychology, Faculty of Science, Brain and Mind Centre and Charles Perkins Centre, The University of Sydney, NSW, Australia.
| | - Bandana Saini
- School of Pharmacy, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia; CIRUS, Centre for Sleep and Chronobiology, Woolcock Institute of Medical Research, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
12
|
Falk-Petersen CB, Rostrup F, Löffler R, Buchleithner S, Harpsøe K, Gloriam DE, Frølund B, Wellendorph P. Molecular Determinants Underlying Delta Selective Compound 2 Activity at δ-Containing GABA A Receptors. Mol Pharmacol 2021; 100:46-56. [PMID: 33990405 DOI: 10.1124/molpharm.121.000266] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 04/22/2021] [Indexed: 11/22/2022] Open
Abstract
Delta selective compound 2 (DS2; 4-chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridin-3-yl]benzamide) is one of the most widely used tools to study selective actions mediated by δ-subunit-containing GABAA receptors. DS2 was discovered over 10 years ago, but despite great efforts, the precise molecular site of action has remained elusive. Using a combination of computational modeling, site-directed mutagenesis, and cell-based pharmacological assays, we probed three potential binding sites for DS2 and analogs at α 4 β 1 δ receptors: an α 4 (+) δ (-) interface site in the extracellular domain (ECD), equivalent to the diazepam binding site in αβγ 2 receptors, and two sites in the transmembrane domain (TMD) - one in the α 4 (+) β 1 (-) and one in the α 4 (-) β 1 (+) interface, with the α 4 (-) β 1 (+) site corresponding to the binding site for etomidate and a recently disclosed low-affinity binding site for diazepam. We show that mutations in the ECD site did not abrogate DS2 modulation. However, mutations in the TMD α 4 (+) β 1 (-) interface, either α 4(S303L) of the α 4 (+) side or β 1(I289Q) of the β 1 (-) side, convincingly disrupted the positive allosteric modulation by DS2. This was consistently demonstrated both in an assay measuring membrane potential changes and by whole-cell patch-clamp electrophysiology and rationalized by docking studies. Importantly, general sensitivity to modulators was not compromised in the mutated receptors. This study sheds important light on the long-sought molecular recognition site for DS2, refutes the misconception that the selectivity of DS2 for δ-containing receptors is caused by a direct interaction with the δ-subunit, and instead points toward a functional selectivity of DS2 and its analogs via a surprisingly well conserved binding pocket in the TMD. SIGNIFICANCE STATEMENT: δ-Containing GABAA receptors represent potential drug targets for the treatment of several neurological conditions with aberrant tonic inhibition, yet no drugs are currently in clinical use. With the identification of the molecular determinants responsible for positive modulation by the known compound delta selective compound 2, the ground is laid for design of ligands that selectively target δ-containing GABAA receptor subtypes, for better understanding of tonic inhibition, and ultimately, for rational development of novel drugs.
Collapse
Affiliation(s)
- Christina B Falk-Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Frederik Rostrup
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Rebekka Löffler
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Stine Buchleithner
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
13
|
Luo Y, Kusay AS, Jiang T, Chebib M, Balle T. Delta-containing GABA A receptors in pain management: Promising targets for novel analgesics. Neuropharmacology 2021; 195:108675. [PMID: 34153311 DOI: 10.1016/j.neuropharm.2021.108675] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 06/01/2021] [Accepted: 06/11/2021] [Indexed: 12/26/2022]
Abstract
Communication between nerve cells depends on the balance between excitatory and inhibitory circuits. GABA, the major inhibitory neurotransmitter, regulates this balance and insufficient GABAergic activity is associated with numerous neuropathological disorders including pain. Of the various GABAA receptor subtypes, the δ-containing receptors are particularly interesting drug targets in management of chronic pain. These receptors are pentameric ligand-gated ion channels composed of α, β and δ subunits and can be activated by ambient levels of GABA to generate tonic conductance. However, only a few ligands preferentially targeting δ-containing GABAA receptors have so far been identified, limiting both pharmacological understanding and drug-discovery efforts, and more importantly, understanding of how they affect pain pathways. Here, we systemically review and discuss the known drugs and ligands with analgesic potential targeting δ-containing GABAA receptors and further integrate the biochemical nature of the receptors with clinical perspectives in pain that might generate interest among researchers and clinical physicians to encourage analgesic discovery efforts leading to more efficient therapies.
Collapse
Affiliation(s)
- Yujia Luo
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Ali Saad Kusay
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Tian Jiang
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Mary Chebib
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia
| | - Thomas Balle
- Sydney Pharmacy School, Faculty of Medicine and Health, The University of Sydney, NSW, 2006, Australia; Brain and Mind Centre, The University of Sydney, Camperdown, NSW, 2050, Australia.
| |
Collapse
|
14
|
El-Mallakh RS, Ali Z. Extra-synaptic modulation of GABA A and efficacy in bipolar disorder. Med Hypotheses 2021; 147:110501. [PMID: 33515862 DOI: 10.1016/j.mehy.2021.110501] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 12/22/2020] [Accepted: 01/08/2021] [Indexed: 11/27/2022]
Abstract
BACKGROUND Bipolar disorder type I is a severe psychiatric condition that leads to significant morbidity and mortality and whose treatment remains suboptimal. Its pathophysiology involves disturbance in the control of ionic fluxes so that when patients are either manic or depressed, the resting membrane potential of neurons is more depolarized than normal. Available mood stabilizers have a shared mechanism of normalizing ion flux by compensating for ionic abnormalities, and normalizing membrane potential. HYPOTHESIS Agents that significantly potentiate extrasynaptic GABAA receptors are expected to be particularly effective in hyperpolarizing resting membrane potential in bipolar patients, thereby normalizing their membrane potential. DISCUSSION New neuroactive steroid-like agents are being tested in humans for depression and insomnia. These agents include brexanolone, ganaxolone, and gaboxadol. Brexanolone has been approved for the treatment of postpartum depression, ganaxolone is being studied for treatment-resistant depression, and gaboxadol development for the treatment of insomnia has been abandoned due to narrow therapeutic index. In addition to the current studies, these agents are expected to have particular efficacy in acute and prophylactic management of bipolar I disorder by hyperpolarizing the resting potential of neurons and antagonizing one of the most reproducible demonstrated biologic abnormalities of this illness.
Collapse
Affiliation(s)
- Rif S El-Mallakh
- Mood Disorders Research Program, Depression Center Department of Psychiatry and Behavioral Sciences University of Louisville School of Medicine, 401 East Chestnut Street, Suite 610 Louisville, Kentucky 40202, USA.
| | - Ziad Ali
- Department of Psychiatry, University of Kentucky College of Medicine, The Medical Center of Bowling Green, Bowling Green, KY, USA
| |
Collapse
|
15
|
Exploring the molecular determinants for subtype-selectivity of 2-amino-1,4,5,6-tetrahydropyrimidine-5-carboxylic acid analogs as betaine/GABA transporter 1 (BGT1) substrate-inhibitors. Sci Rep 2020; 10:12992. [PMID: 32747622 PMCID: PMC7400577 DOI: 10.1038/s41598-020-69908-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 07/17/2020] [Indexed: 12/13/2022] Open
Abstract
We have previously identified 2-amino-1,4,5,6-tetrahydropyrimidine-5-carboxylic acid (ATPCA) as the most potent substrate-inhibitor of the betaine/GABA transporter 1 (BGT1) (IC50 2.5 µM) reported to date. Herein, we characterize the binding mode of 20 novel analogs and propose the molecular determinants driving BGT1-selectivity. A series of N1-, exocyclic-N-, and C4-substituted analogs was synthesized and pharmacologically characterized in radioligand-based uptake assays at the four human GABA transporters (hGATs) recombinantly expressed in mammalian cells. Overall, the analogs retained subtype-selectivity for hBGT1, though with lower inhibitory activities (mid to high micromolar IC50 values) compared to ATPCA. Further characterization of five of these BGT1-active analogs in a fluorescence-based FMP assay revealed that the compounds are substrates for hBGT1, suggesting they interact with the orthosteric site of the transporter. In silico-guided mutagenesis experiments showed that the non-conserved residues Q299 and E52 in hBGT1 as well as the conformational flexibility of the compounds potentially contribute to the subtype-selectivity of ATPCA and its analogs. Overall, this study provides new insights into the molecular interactions governing the subtype-selectivity of BGT1 substrate-inhibitors. The findings may guide the rational design of BGT1-selective pharmacological tool compounds for future drug discovery.
Collapse
|
16
|
Falk-Petersen CB, Tsonkov TM, Nielsen MS, Harpsøe K, Bundgaard C, Frølund B, Kristiansen U, Gloriam DE, Wellendorph P. Discovery of a new class of orthosteric antagonists with nanomolar potency at extrasynaptic GABA A receptors. Sci Rep 2020; 10:10078. [PMID: 32572053 PMCID: PMC7308271 DOI: 10.1038/s41598-020-66821-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 05/20/2020] [Indexed: 02/06/2023] Open
Abstract
Brain GABAΑ receptors are ionotropic receptors belonging to the class of Cys-loop receptors and are important drug targets for the treatment of anxiety and sleep disorders. By screening a compound library (2,112 compounds) at recombinant human α4β1δ GABAΑ receptors heterologously expressed in a HEK cell line, we identified a scaffold of spirocyclic compounds with nanomolar antagonist activity at GABAΑ receptors. The initial screening hit 2027 (IC50 of 1.03 μM) was used for analogue search resulting in 018 (IC50 of 0.088 μM). 018 was most potent at α3,4,5-subunit containing receptors, thus showing preference for forebrain-expressed extrasynaptic receptors. Schild analysis of 018 at recombinant human α4β1δ receptors and displacement of [3H]muscimol binding in rat cortical homogenate independently confirmed a competitive profile. The antagonist profile of 018 was further validated by whole-cell patch-clamp electrophysiology, where kinetic studies revealed a slow dissociation rate and a shallow hill slope was observed. Membrane permeability studies showed that 2027 and 018 do not cross membranes, thus making the compounds less attractive for studying central GABAΑ receptors effects, but conversely more attractive as tool compounds in relation to emerging peripheral GABAΑ receptor-mediated effects of GABA e.g. in the immune system.
Collapse
Affiliation(s)
- Christina Birkedahl Falk-Petersen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| | - Tsonko M Tsonkov
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| | - Malene Sofie Nielsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| | - Kasper Harpsøe
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| | | | - Bente Frølund
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| | - Uffe Kristiansen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| | - David E Gloriam
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark
| | - Petrine Wellendorph
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark.
| |
Collapse
|
17
|
How well can a large number of polysomnography sleep measures predict subjective sleep quality in insomnia patients? Sleep Med 2020; 67:137-146. [DOI: 10.1016/j.sleep.2019.08.020] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2019] [Revised: 08/12/2019] [Accepted: 08/30/2019] [Indexed: 11/24/2022]
|
18
|
Abstract
Current GABAergic sleep-promoting medications were developed pragmatically, without making use of the immense diversity of GABAA receptors. Pharmacogenetic experiments are leading to an understanding of the circuit mechanisms in the hypothalamus by which zolpidem and similar compounds induce sleep at α2βγ2-type GABAA receptors. Drugs acting at more selective receptor types, for example, at receptors containing the α2 and/or α3 subunits expressed in hypothalamic and brain stem areas, could in principle be useful as hypnotics/anxiolytics. A highly promising sleep-promoting drug, gaboxadol, which activates αβδ-type receptors failed in clinical trials. Thus, for the time being, drugs such as zolpidem, which work as positive allosteric modulators at GABAA receptors, continue to be some of the most effective compounds to treat primary insomnia.
Collapse
Affiliation(s)
- W Wisden
- Department Life Sciences, Imperial College London, London, SW7 2AZ, UK.
| | - X Yu
- Department Life Sciences, Imperial College London, London, SW7 2AZ, UK
| | - N P Franks
- Department Life Sciences, Imperial College London, London, SW7 2AZ, UK
| |
Collapse
|
19
|
Mucke HA. Drug Repurposing Patent Applications July–September 2018. Assay Drug Dev Technol 2018; 16:472-477. [DOI: 10.1089/adt.2018.29083.pq3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
20
|
Artiushin G, Zhang SL, Tricoire H, Sehgal A. Endocytosis at the Drosophila blood-brain barrier as a function for sleep. eLife 2018; 7:e43326. [PMID: 30475209 PMCID: PMC6255390 DOI: 10.7554/elife.43326] [Citation(s) in RCA: 64] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/09/2018] [Indexed: 12/18/2022] Open
Abstract
Glia are important modulators of neural activity, yet few studies link glia to sleep regulation. We find that blocking activity of the endocytosis protein, dynamin, in adult Drosophila glia increases sleep and enhances sleep need, manifest as resistance to sleep deprivation. Surface glia comprising the fly equivalent of the blood-brain barrier (BBB) mediate the effect of dynamin on sleep. Blocking dynamin in the surface glia causes ultrastructural changes, albeit without compromising the integrity of the barrier. Supporting a role for endocytic trafficking in sleep, a screen of Rab GTPases identifies sleep-modulating effects of the recycling endosome Rab11 in surface glia. We also find that endocytosis is increased in BBB glia during sleep and reflects sleep need. We propose that endocytic trafficking through the BBB represents a function of sleep.
Collapse
Affiliation(s)
- Gregory Artiushin
- Neuroscience Graduate GroupPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Shirley L Zhang
- Howard Hughes Medical InstitutePerelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Hervé Tricoire
- Laboratory of Degenerative Processes, Stress and AgingUMR8251, Université Paris DiderotParisFrance
| | - Amita Sehgal
- Neuroscience Graduate GroupPerelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Howard Hughes Medical InstitutePerelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
21
|
Sieghart W, Savić MM. International Union of Basic and Clinical Pharmacology. CVI: GABA A Receptor Subtype- and Function-selective Ligands: Key Issues in Translation to Humans. Pharmacol Rev 2018; 70:836-878. [PMID: 30275042 DOI: 10.1124/pr.117.014449] [Citation(s) in RCA: 149] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2025] Open
Abstract
GABAA receptors are the major inhibitory transmitter receptors in the brain. They are ligand-gated chloride channels and the site of action of benzodiazepines, barbiturates, neuroactive steroids, anesthetics, and convulsants. GABAA receptors are composed of five subunits that can belong to different subunit classes. The existence of 19 homologous subunits and their distinct regional, cellular, and subcellular distribution gives rise to a large number of GABAA receptor subtypes with distinct pharmacology, which modulate different functions of the brain. A variety of compounds have been identified that were claimed to modulate selectively individual GABAA receptor subtypes. However, many of these compounds have only incompletely been investigated or, in addition to a preferential modulation of a receptor subtype, also modulate other subtypes at similar concentrations. Although their differential efficacy at distinct receptor subtypes reduced side effects in behavioral experiments in rodents, the exact receptor subtypes mediating their behavioral effects cannot be unequivocally delineated. In addition, the discrepant in vivo effects of some of these compounds in rodents and man raised doubts on the applicability of the concept of receptor subtype selectivity as a guide for the development of clinically useful drugs. Here, we provide an up-to-date review on the currently available GABAA receptor subtype-selective ligands. We present data on their actual activity at GABAA receptor subtypes, discuss the translational aspect of subtype-selective drugs, and make proposals for the future development of ligands with better anxioselectivity in humans. Finally, we discuss possible ways to strengthen the conclusions of behavioral studies with the currently available drugs.
Collapse
Affiliation(s)
- Werner Sieghart
- Center for Brain Research, Medical University of Vienna, Vienna, Austria (W.S.) and Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (M.M.S.)
| | - Miroslav M Savić
- Center for Brain Research, Medical University of Vienna, Vienna, Austria (W.S.) and Department of Pharmacology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia (M.M.S.)
| |
Collapse
|
22
|
Ko YH, Shim KY, Lee SY, Jang CG. Evodiamine Reduces Caffeine-Induced Sleep Disturbances and Excitation in Mice. Biomol Ther (Seoul) 2018; 26:432-438. [PMID: 29310424 PMCID: PMC6131020 DOI: 10.4062/biomolther.2017.146] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/11/2017] [Accepted: 09/14/2017] [Indexed: 11/05/2022] Open
Abstract
Worldwide, caffeine is among the most commonly used stimulatory substances. Unfortunately, significant caffeine consumption is associated with several adverse effects, ranging from sleep disturbances (including insomnia) to cardiovascular problems. This study investigates whether treatment with the Evodia rutaecarpa aqueous extract (ERAE) from berries and its major molecular component, evodiamine, can reduce the adverse caffeine-induced sleep-related and excitation effects. We combined measurements from the pentobarbital-induced sleep test, the open field test, and the locomotor activity test in mice that had been dosed with caffeine. We found that ERAE and evodiamine administration reduced the degree of caffeine-induced sleep disruption during the sleep test. Additionally, we found that evodiamine significantly inhibits caffeine-induced excitation during the open field test, as well as decreasing hyperlocomotion in the locomotor activity test. Additional in vitro experiments showed that caffeine administration decreased the expression of γ-aminobutyric acid (GABA)A receptor subunits in the mouse hypothalamus. However, evodiamine treatment significantly reversed this expression reduction. Taken together, our results demonstrate that ERAE and its major compound, evodiamine, provide an excellent candidate for the treatment or prevention of caffeine-induced sleep disturbances and excitatory states, and that the mechanism of these beneficial effects acts, at least in part, through the GABAA-ergic system.
Collapse
Affiliation(s)
- Yong-Hyun Ko
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Kyu-Yeon Shim
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Seok-Yong Lee
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Choon-Gon Jang
- Department of Pharmacology, School of Pharmacy, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
23
|
Stahl BA, Slocumb ME, Chaitin H, DiAngelo JR, Keene AC. Sleep-Dependent Modulation of Metabolic Rate in Drosophila. Sleep 2017; 40:3852476. [PMID: 28541527 DOI: 10.1093/sleep/zsx084] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 05/24/2017] [Indexed: 12/17/2022] Open
Abstract
Study Objectives Dysregulation of sleep is associated with metabolic diseases, and metabolic rate (MR) is acutely regulated by sleep-wake behavior. In humans and rodent models, sleep loss is associated with obesity, reduced metabolic rate, and negative energy balance, yet little is known about the neural mechanisms governing interactions between sleep and metabolism. Methods We have developed a system to simultaneously measure sleep and MR in individual Drosophila, allowing for interrogation of neural systems governing interactions between sleep and metabolic rate. Results Like mammals, MR in flies is reduced during sleep and increased during sleep deprivation suggesting sleep-dependent regulation of MR is conserved across phyla. The reduction of MR during sleep is not simply a consequence of inactivity because MR is reduced ~30 minutes following the onset of sleep, raising the possibility that CO2 production provides a metric to distinguish different sleep states in the fruit fly. To examine the relationship between sleep and metabolism, we determined basal and sleep-dependent changes in MR is reduced in starved flies, suggesting that starvation inhibits normal sleep-associated effects on metabolic rate. Further, translin mutant flies that fail to suppress sleep during starvation demonstrate a lower basal metabolic rate, but this rate was further reduced in response to starvation, revealing that regulation of starvation-induced changes in MR and sleep duration are genetically distinct. Conclusions Therefore, this system provides the unique ability to simultaneously measure sleep and oxidative metabolism, providing novel insight into the physiological changes associated with sleep and wakefulness in the fruit fly.
Collapse
Affiliation(s)
- Bethany A Stahl
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL
| | - Melissa E Slocumb
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL.,Integrative Biology Graduate Program, Jupiter, FL
| | - Hersh Chaitin
- Department of Ocean and Mechanical Engineering, Florida Atlantic University, Boca Raton, FL
| | | | - Alex C Keene
- Department of Biological Sciences, Florida Atlantic University, Jupiter, FL
| |
Collapse
|
24
|
Lozano R, Martinez-Cerdeno V, Hagerman RJ. Advances in the Understanding of the Gabaergic Neurobiology of FMR1 Expanded Alleles Leading to Targeted Treatments for Fragile X Spectrum Disorder. Curr Pharm Des 2016; 21:4972-4979. [PMID: 26365141 DOI: 10.2174/1381612821666150914121038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2015] [Accepted: 09/11/2015] [Indexed: 12/15/2022]
Abstract
Fragile X spectrum disorder (FXSD) includes: fragile X syndrome (FXS), fragile X-associated tremor ataxia syndrome (FXTAS) and fragile X-associated primary ovarian insufficiency (FXPOI), as well as other medical, psychiatric and neurobehavioral problems associated with the premutation and gray zone alleles. FXS is the most common monogenetic cause of autism (ASD) and intellectual disability (ID). The understanding of the neurobiology of FXS has led to many targeted treatment trials in FXS. The first wave of phase II clinical trials in FXS were designed to target the mGluR5 pathway; however the results did not show significant efficacy and the trials were terminated. The advances in the understanding of the GABA system in FXS have shifted the focus of treatment trials to GABA agonists, and a new wave of promising clinical trials is under way. Ganaxolone and allopregnanolone (GABA agonists) have been studied in individuals with FXSD and are currently in phase II trials. Both allopregnanolone and ganaxolone may be efficacious in treatment of FXS and FXTAS, respectively. Allopregnanolone, ganaxolone, riluzole, gaboxadol, tiagabine, and vigabatrin are potential GABAergic treatments. The lessons learned from the initial trials have not only shifted the targeted system, but also have refined the design of clinical trials. The results of these new trials will likely impact further clinical trials for FXS and other genetic disorders associated with ASD.
Collapse
Affiliation(s)
- Reymundo Lozano
- Icahn School of Medicine at Mount Sinai, New York, NY USA; Seaver Autism Center for Research and Treatment, Icahn School of Medicine at Mount Sinai, New York, NY USA; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY USA; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY USA
| | - Veronica Martinez-Cerdeno
- Medical Investigation of Neurodevelopmental Disorders MIND Institute, UC Davis, CA, USA; Institute for Pediatric Regenerative Medicine and Shriners Hospital for Children of Northern California, Sacramento, CA, USA; Department of Pathology and Laboratory Medicine, UC Davis, Sacramento, USA
| | - Randi J Hagerman
- Medical Investigation of Neurodevelopmental Disorders MIND Institute, UC Davis, CA, USA; Department of Pediatrics, UC Davis, Sacramento, CA, USA
| |
Collapse
|
25
|
Silverman NS, Popp S, Astafurov K, Vialou V, Nestler EJ, Dow-Edwards D. Effects of gaboxadol on the expression of cocaine sensitization in rats. Exp Clin Psychopharmacol 2016; 24:131-41. [PMID: 26901591 PMCID: PMC5088787 DOI: 10.1037/pha0000069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Behavioral sensitization to psychostimulants is associated with changes in dopamine (DA), glutamate, and GABA within the mesocorticolimbic and nigrostriatal DA systems. Because GABAA receptors are highly expressed within these systems, we examined the role of these receptors containing a δ subunit in cocaine behavioral sensitization. Experiment 1 examined the effects of Gaboxadol (GBX, also known as THIP [4,5,6,7-tetrahydro-isoxazolo[5,4-c]pyridin-3-ol]), a selective δ-GABAA receptor agonist, on the locomotor responses to acute cocaine. GBX at 1.25 mg/kg produced locomotor depression in female rats alone. We then examined the effects of GBX on the expression of cocaine-induced locomotion and stereotypy in female and male rats treated with 5 days of cocaine (15 mg/kg) followed by cocaine challenge 7 days later. We administered systemic (Experiment 2) or intranucleus accumbens (intra-NAC; Experiment 3) injections of GBX (0, 1.25, 2.5, 5, or 10 mg/kg subcutaneously, or 1 μmol/L or 1 mM intra-NAC, respectively) prior to cocaine challenge (10 mg/kg). In our experiments females were robustly sensitized to cocaine at low dose whereas males did not show such sensitization-limiting comparisons between the 2 sexes. Sensitized females showed a biphasic response to low (1.25 mg/kg and 1 μmol/L) and high (10 mg/kg and 1 mM) dose GBX whereas nonsensitized males showed this pattern only following intra-NAC injection. Immunohistochemical analysis of the NAC revealed that females have more δ-containing GABAA receptors than do males and that following chronic cocaine injections this difference persisted (Experiment 4). Together, our results support the notion of the key role of extrasynaptic GABAA δ-subunit containing receptors in cocaine sensitization.
Collapse
Affiliation(s)
| | - Susanna Popp
- Department of Physiology and Pharmacology, SUNY Downstate Medical Center
| | | | - Vincent Vialou
- INSERM, U952, CNRS, UMR 7224, Université Pierre et Marie Curie
| | - Eric J. Nestler
- Fishberg Department of Neuroscience and Friedman Brain Institute, Icahn School of Medicine at Mount Sinai
| | - Diana Dow-Edwards
- Neural and Behavioral Science and Department of Physiology and Pharmacology, SUNY Downstate Medical Center
| |
Collapse
|
26
|
The European College of Neuropsychopharmacology (ECNP) Medicines Chest Initiative: Rationale and Promise. Pharmaceut Med 2015. [DOI: 10.1007/s40290-015-0111-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
27
|
Fatemi SH, Folsom TD. GABA receptor subunit distribution and FMRP-mGluR5 signaling abnormalities in the cerebellum of subjects with schizophrenia, mood disorders, and autism. Schizophr Res 2015; 167:42-56. [PMID: 25432637 PMCID: PMC5301472 DOI: 10.1016/j.schres.2014.10.010] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/02/2014] [Revised: 10/06/2014] [Accepted: 10/08/2014] [Indexed: 12/24/2022]
Abstract
Gamma-aminobutyric acid (GABA) is the main inhibitory neurotransmitter in the brain. GABAergic receptor abnormalities have been documented in several major psychiatric disorders including schizophrenia, mood disorders, and autism. Abnormal expression of mRNA and protein for multiple GABA receptors has also been observed in multiple brain regions leading to alterations in the balance between excitatory/inhibitory signaling in the brain with potential profound consequences for normal cognition and maintenance of mood and perception. Altered expression of GABAA receptor subunits has been documented in fragile X mental retardation 1 (FMR1) knockout mice, suggesting that loss of its protein product, fragile X mental retardation protein (FMRP), impacts GABAA subunit expression. Recent postmortem studies from our laboratory have shown reduced expression of FMRP in the brains of subjects with schizophrenia, bipolar disorder, major depression, and autism. FMRP acts as a translational repressor and, under normal conditions, inhibits metabotropic glutamate receptor 5 (mGluR5)-mediated signaling. In fragile X syndrome (FXS), the absence of FMRP is hypothesized to lead to unregulated mGluR5 signaling, ultimately resulting in the behavioral and intellectual impairments associated with this disorder. Our laboratory has identified changes in mGluR5 expression in autism, schizophrenia, and mood disorders. In the current review article, we discuss our postmortem data on GABA receptors, FMRP, and mGluR5 levels and compare our results with other laboratories. Finally, we discuss the interactions between these molecules and the potential for new therapeutic interventions that target these interconnected signaling systems.
Collapse
Affiliation(s)
- S Hossein Fatemi
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA; Department of Neuroscience, University of Minnesota Medical School, 321 Church St. SE, Minneapolis, MN 55455, USA.
| | - Timothy D Folsom
- Department of Psychiatry, Division of Neuroscience Research, University of Minnesota Medical School, 420 Delaware St SE, MMC 392, Minneapolis, MN 55455, USA.
| |
Collapse
|
28
|
Martin BS, Martinez-Botella G, Loya CM, Salituro FG, Robichaud AJ, Huntsman MM, Ackley MA, Doherty JJ, Corbin JG. Rescue of deficient amygdala tonic γ-aminobutyric acidergic currents in the Fmr-/y mouse model of fragile X syndrome by a novel γ-aminobutyric acid type A receptor-positive allosteric modulator. J Neurosci Res 2015; 94:568-78. [PMID: 26308557 DOI: 10.1002/jnr.23632] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2015] [Revised: 08/01/2015] [Accepted: 08/04/2015] [Indexed: 11/07/2022]
Abstract
Alterations in the ratio of excitatory to inhibitory transmission are emerging as a common component of many nervous system disorders, including autism spectrum disorders (ASDs). Tonic γ-aminobutyric acidergic (GABAergic) transmission provided by peri- and extrasynaptic GABA type A (GABAA ) receptors powerfully controls neuronal excitability and plasticity and, therefore, provides a rational therapeutic target for normalizing hyperexcitable networks across a variety of disorders, including ASDs. Our previous studies revealed tonic GABAergic deficits in principal excitatory neurons in the basolateral amygdala (BLA) in the Fmr1(-/y) knockout (KO) mouse model fragile X syndrome. To correct amygdala deficits in tonic GABAergic neurotransmission in Fmr1(-/y) KO mice, we developed a novel positive allosteric modulator of GABAA receptors, SGE-872, based on endogenously active neurosteroids. This study shows that SGE-872 is nearly as potent and twice as efficacious for positively modulating GABAA receptors as its parent molecule, allopregnanolone. Furthermore, at submicromolar concentrations (≤1 μM), SGE-872 is selective for tonic, extrasynaptic α4β3δ-containing GABAA receptors over typical synaptic α1β2γ2 receptors. We further find that SGE-872 strikingly rescues the tonic GABAergic transmission deficit in principal excitatory neurons in the Fmr1(-/y) KO BLA, a structure heavily implicated in the neuropathology of ASDs. Therefore, the potent and selective action of SGE-872 on tonic GABAA receptors containing α4 subunits may represent a novel and highly useful therapeutic avenue for ASDs and related disorders involving hyperexcitability of neuronal networks.
Collapse
Affiliation(s)
- Brandon S Martin
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC
| | | | - Carlos M Loya
- SAGE Therapeutics, 215 First Street, Cambridge, MA 0214243
| | | | | | - Molly M Huntsman
- Pharmaceutical Sciences and Department of Pediatrics, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado
| | - Mike A Ackley
- SAGE Therapeutics, 215 First Street, Cambridge, MA 0214243
| | | | - Joshua G Corbin
- Center for Neuroscience Research, Children's National Medical Center, Washington, DC
| |
Collapse
|
29
|
Abstract
Intellectual disability, autism spectrum disorder, and epilepsy are prime examples of neurodevelopmental disorders that collectively affect a significant percentage of the world population. Recent technological breakthroughs allowed the elucidation of the genetic causes of many of these disorders. As neurodevelopmental disorders are genetically heterogeneous, the development of rational therapy is extremely challenging. Fortunately, many causative genes are interconnected and cluster in specific cellular pathways. Targeting a common node in such a network would allow us to interfere with a series of related neurodevelopmental disorders at once. Here, we argue that the GABAergic system is disturbed in many neurodevelopmental disorders, including fragile X syndrome, Rett syndrome, and Dravet syndrome, and is a key candidate target for therapeutic intervention. Many drugs that modulate the GABAergic system have already been tested in animal models with encouraging outcomes and are readily available for clinical trials.
Collapse
Affiliation(s)
- Sien Braat
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43, 2650 Edegem, Belgium
| | - R Frank Kooy
- Department of Medical Genetics, University of Antwerp, Prins Boudewijnlaan 43, 2650 Edegem, Belgium.
| |
Collapse
|
30
|
Hellsten K, Linden AM, Korpi E. Paradoxical widespread c-Fos expression induced by a GABA agonist in the forebrain of transgenic mice with ectopic expression of the GABAA α6 subunit. Neuroscience 2015; 293:123-35. [DOI: 10.1016/j.neuroscience.2015.02.052] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2014] [Revised: 01/30/2015] [Accepted: 02/28/2015] [Indexed: 10/23/2022]
|
31
|
Braat S, Kooy RF. Insights into GABAAergic system deficits in fragile X syndrome lead to clinical trials. Neuropharmacology 2015; 88:48-54. [DOI: 10.1016/j.neuropharm.2014.06.028] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2014] [Revised: 06/18/2014] [Accepted: 06/29/2014] [Indexed: 10/25/2022]
|
32
|
Abstract
Because of proven efficacy, reduced side effects, and less concern about addiction, non-benzodiazepine receptor agonists (non-BzRA) have become the most commonly prescribed hypnotic agents to treat onset and maintenance insomnia. First-line treatment is cognitive-behavioral therapy. When pharmacologic treatment is indicated, non-BzRA are first-line agents for the short-term and long-term management of transient and chronic insomnia related to adjustment, psychophysiologic, primary, and secondary causation. In this article, the benefits and risks of non-BzRA are reviewed, and the selection of a hypnotic agent is defined, based on efficacy, pharmacologic profile, and adverse events.
Collapse
Affiliation(s)
- Philip M Becker
- Department of Psychiatry, University of Texas Southwestern Medical Center at Dallas, Dallas, TX, USA; Sleep Medicine Associates of Texas, 5477 Glen Lakes Drive, Suite 100, Dallas, TX 75231, USA.
| | - Manya Somiah
- Sleep Medicine Associates of Texas, 5477 Glen Lakes Drive, Suite 100, Dallas, TX 75231, USA
| |
Collapse
|
33
|
Madsen KK, Hansen GH, Danielsen EM, Schousboe A. The subcellular localization of GABA transporters and its implication for seizure management. Neurochem Res 2014; 40:410-9. [PMID: 25519681 DOI: 10.1007/s11064-014-1494-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2014] [Revised: 11/27/2014] [Accepted: 12/01/2014] [Indexed: 10/24/2022]
Abstract
The ability to modulate the synaptic GABA levels has been demonstrated by using the clinically effective and selective GAT1 inhibitor tiagabine [(R)-N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]nipecotic acid]. N-[4,4-bis(3-methyl-2-thienyl)-3-butenyl]-3-hydroxy-4-(methylamino)-4,5,6,7-tetrahydrobenzo[d]isoxazol-3-ol (EF1502) which not only inhibits GAT1 like tiagabine but also BGT1 has been shown to modulate extrasynaptic GABA levels. The simultaneous inhibition of synaptic and extrasynaptic GABA transporters using tiagabine and EF1502, respectively has been demonstrated to exert a synergistic anticonvulsant effect in several seizure models in mice. The pharmacological profile of these and similar compounds has been thoroughly investigated in in vitro systems, comparing the GAT subtype selectivity with the ability to inhibit GABA uptake in primary cultures of neurons and astrocytes. However, an exact explanation has not yet been found. In the present study, the ability of GATs to form homo and/or heterodimers was investigated as well as to which membrane micro environment the GATs reside. To investigate dimerization of GATs, fusion proteins of GATs tagged with either yellow fluorescent protein or cerulean fluorescent protein were made and fluorescence resonance energy transfer (FRET) was measured. It was found that GATs form both homo- and hetero-dimers in N2A and HEK-293 cells. Microdomain localization of GATs as investigated by detergent resistant membrane fractions after treatment of tissue with Brij-98 or Triton X-100 revealed that BGT1 and GAT1 mostly localize to non-membrane rafts independent of the detergent used. However, GAT3 localizes to membrane rafts when using Brij-98. Taken together, these results suggest that the observed hetero dimerization of GATs in the FRET study is unlikely to have functional implications since the GATs are located to very different cellular compartments and cell types.
Collapse
Affiliation(s)
- Karsten K Madsen
- Department of Drug Design and Pharmacology, Faculty of Health and Medical Sciences, University of Copenhagen, Universitetsparken 2, 2100, Copenhagen Ø, Denmark,
| | | | | | | |
Collapse
|
34
|
Marowsky A, Vogt KE. Delta-subunit-containing GABAA-receptors mediate tonic inhibition in paracapsular cells of the mouse amygdala. Front Neural Circuits 2014; 8:27. [PMID: 24723854 PMCID: PMC3971179 DOI: 10.3389/fncir.2014.00027] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2013] [Accepted: 03/04/2014] [Indexed: 11/13/2022] Open
Abstract
The intercalated paracapsular cells (pcs) are small GABAergic interneurons that form densely populated clusters surrounding the basolateral (BLA) complex of the amygdala. Their main task in the amygdala circuitry appears to be the control of information flow, as they act as an inhibitory interface between input and output nuclei. Modulation of their activity is thus thought to affect amygdala output and the generation of fear and anxiety. Recent evidence indicates that pcs express benzodiazepine (BZ)-sensitive GABAA receptor (GABAAR) variants containing the α2- and α3-subunit for transmission of post-synaptic currents, yet little is known about the expression of extrasynaptic GABAARs, mediating tonic inhibition and regulating neuronal excitability. Here, we show that pcs from the lateral and medial intercalated cell cluster (l- and mITC, respectively) express a tonic GABAergic conductance that could be significantly increased in a concentration-dependent manner by the δ-preferring GABAAR agonist THIP (0.5-10 μM), but not by the BZ diazepam (1 μM). The neurosteroid THDOC (300 nM) also increased tonic currents in pcs significantly, but only in the presence of additional GABA (5 μM). Immunohistochemical stainings revealed that both the δ-GABAAR and the α4-GABAAR subunit are expressed throughout all ITCs, while no staining for the α5-GABAAR subunit could be detected. Moreover, 1 μM THIP dampened excitability in pcs most likely by increasing shunting inhibition. In line with this, THIP significantly decreased lITC-generated inhibition in target cells residing in the BLA nucleus by 30%. Taken together these results demonstrate for the first time that pcs express a tonic inhibitory conductance mediated most likely by α4/δ-containing GABAARs. This data also suggest that δ-GABAAR targeting compounds might possibly interfere with pcs-related neuronal processes such as fear extinction.
Collapse
Affiliation(s)
- Anne Marowsky
- Institute of Pharmacology and Toxicology, University of Zurich Zurich, Switzerland
| | - Kaspar E Vogt
- International Institute for Integrative Sleep Medicine, University of Tsukuba Tsukuba, Japan
| |
Collapse
|
35
|
Schousboe A, Madsen KK, Barker-Haliski ML, White HS. The GABA Synapse as a Target for Antiepileptic Drugs: A Historical Overview Focused on GABA Transporters. Neurochem Res 2014; 39:1980-7. [DOI: 10.1007/s11064-014-1263-9] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Revised: 02/10/2014] [Accepted: 02/12/2014] [Indexed: 01/18/2023]
|
36
|
Wójtowicz AM, Dvorzhak A, Semtner M, Grantyn R. Reduced tonic inhibition in striatal output neurons from Huntington mice due to loss of astrocytic GABA release through GAT-3. Front Neural Circuits 2013; 7:188. [PMID: 24324407 PMCID: PMC3840359 DOI: 10.3389/fncir.2013.00188] [Citation(s) in RCA: 74] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Accepted: 11/04/2013] [Indexed: 01/17/2023] Open
Abstract
The extracellular concentration of the two main neurotransmitters glutamate and GABA is low but not negligible which enables a number of tonic actions. The effects of ambient GABA vary in a region-, cell-type, and age-dependent manner and can serve as indicators of disease-related alterations. Here we explored the tonic inhibitory actions of GABA in Huntington's disease (HD). HD is a devastating neurodegenerative disorder caused by a mutation in the huntingtin gene. Whole cell patch clamp recordings from striatal output neurons (SONs) in slices from adult wild type mice and two mouse models of HD (Z_Q175_KI homozygotes or R6/2 heterozygotes) revealed an HD-related reduction of the GABA(A) receptor-mediated tonic chloride current (ITonic(GABA)) along with signs of reduced GABA(B) receptor-mediated presynaptic depression of synaptic GABA release. About half of ITonic(GABA) depended on tetrodotoxin-sensitive synaptic GABA release, but the remaining current was still lower in HD. Both in WT and HD, ITonic(GABA) was more prominent during the first 4 h after preparing the slices, when astrocytes but not neurons exhibited a transient depolarization. All further tests were performed within 1–4 h in vitro. Experiments with SNAP5114, a blocker of the astrocytic GABA transporter GAT-3, suggest that in WT but not HD GAT-3 operated in the releasing mode. Application of a transportable substrate for glutamate transporters (D-aspartate 0.1–1 mM) restored the non-synaptic GABA release in slices from HD mice. ITonic(GABA) was also rescued by applying the hyperagonist gaboxadol (0.33 μM). The results lead to the hypothesis that lesion-induced astrocyte depolarization facilitates non-synaptic release of GABA through GAT-3. However, the capacity of depolarized astrocytes to provide GABA for tonic inhibition is strongly reduced in HD.
Collapse
Affiliation(s)
- Anna M Wójtowicz
- Cluster of Excellence NeuroCure, University Medicine Charité Berlin, Germany ; Department of Experimental Neurology, University Medicine Charité Berlin, Germany
| | | | | | | |
Collapse
|
37
|
Lopez de Diego H, Koradia V, Bond AD. Enantiotropically related polymorphs of gaboxadol hydrochloride. Acta Crystallogr C 2013; 69:1234-7. [PMID: 24192165 DOI: 10.1107/s0108270113025961] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Accepted: 09/19/2013] [Indexed: 11/11/2022] Open
Abstract
Gaboxadol hydrochloride, also known as THIP hydrochloride (systematic name: 3-hydroxy-4,5,6,7-tetrahydro-1,2-oxazolo[5,4-c]pyridin-6-ium chloride), C6H9N2O2(+)·Cl(-), exists as two enantiotropically related polymorphs. Transformation between the polymorphs occurs in a single-crystal-to-single-crystal manner at 221 K, and the enthalpy of transformation from the high-temperature form to the low-temperature form is -0.7 kJ mol(-1). Single-crystal structures have been determined at 298 and 220 K. At 298 K, the structure is triclinic (space group P overline 1), with two formula units in the crystallographic asymmetric unit. At 220 K, the structure is monoclinic (space group I2/a), with one formula unit in the asymmetric unit. The structures contain identical hydrogen-bonded layers and the transformation between the polymorphs corresponds to a shift of adjacent layers relative to each other. The transformation is shown to be reversible by differential scanning calorimetry and variable-temperature powder X-ray diffraction.
Collapse
|
38
|
Carver CM, Reddy DS. Neurosteroid interactions with synaptic and extrasynaptic GABA(A) receptors: regulation of subunit plasticity, phasic and tonic inhibition, and neuronal network excitability. Psychopharmacology (Berl) 2013; 230:151-88. [PMID: 24071826 PMCID: PMC3832254 DOI: 10.1007/s00213-013-3276-5] [Citation(s) in RCA: 185] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2013] [Accepted: 08/29/2013] [Indexed: 12/25/2022]
Abstract
RATIONALE Neurosteroids are steroids synthesized within the brain with rapid effects on neuronal excitability. Allopregnanolone, allotetrahydrodeoxycorticosterone, and androstanediol are three widely explored prototype endogenous neurosteroids. They have very different targets and functions compared to conventional steroid hormones. Neuronal γ-aminobutyric acid (GABA) type A (GABA(A)) receptors are one of the prime molecular targets of neurosteroids. OBJECTIVE This review provides a critical appraisal of recent advances in the pharmacology of endogenous neurosteroids that interact with GABA(A) receptors in the brain. Neurosteroids possess distinct, characteristic effects on the membrane potential and current conductance of the neuron, mainly via potentiation of GABA(A) receptors at low concentrations and direct activation of receptor chloride channel at higher concentrations. The GABA(A) receptor mediates two types of inhibition, now characterized as synaptic (phasic) and extrasynaptic (tonic) inhibition. Synaptic release of GABA results in the activation of low-affinity γ2-containing synaptic receptors, while high-affinity δ-containing extrasynaptic receptors are persistently activated by the ambient GABA present in the extracellular fluid. Neurosteroids are potent positive allosteric modulators of synaptic and extrasynaptic GABA(A) receptors and therefore enhance both phasic and tonic inhibition. Tonic inhibition is specifically more sensitive to neurosteroids. The resulting tonic conductance generates a form of shunting inhibition that controls neuronal network excitability, seizure susceptibility, and behavior. CONCLUSION The growing understanding of the mechanisms of neurosteroid regulation of the structure and function of the synaptic and extrasynaptic GABA(A) receptors provides many opportunities to create improved therapies for sleep, anxiety, stress, epilepsy, and other neuropsychiatric conditions.
Collapse
Affiliation(s)
- Chase Matthew Carver
- Department of Neuroscience and Experimental Therapeutics, College of Medicine, Texas A&M University Health Science Center, 2008 Medical Research and Education Building, 8447 State Highway 47, Bryan, TX, 77807-3260, USA
| | | |
Collapse
|
39
|
Whissell PD, Eng D, Lecker I, Martin LJ, Wang DS, Orser BA. Acutely increasing δGABA(A) receptor activity impairs memory and inhibits synaptic plasticity in the hippocampus. Front Neural Circuits 2013; 7:146. [PMID: 24062648 PMCID: PMC3775149 DOI: 10.3389/fncir.2013.00146] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Accepted: 08/29/2013] [Indexed: 12/03/2022] Open
Abstract
Extrasynaptic γ-aminobutyric acid type A (GABAA) receptors that contain the δ subunit (δGABAA receptors) are expressed in several brain regions including the dentate gyrus (DG) and CA1 subfields of the hippocampus. Drugs that increase δGABAA receptor activity have been proposed as treatments for a variety of disorders including insomnia, epilepsy and chronic pain. Also, long-term pretreatment with the δGABAA receptor–preferring agonist 4,5,6,7-tetrahydroisoxazolo[5,4-c]pyridin-3-ol (THIP) enhances discrimination memory and increases neurogenesis in the DG. Despite the potential therapeutic benefits of such treatments, the effects of acutely increasing δGABAA receptor activity on memory behaviors remain unknown. Here, we studied the effects of THIP (4 mg/kg, i.p.) on memory performance in wild-type (WT) and δGABAA receptor null mutant (Gabrd−/−) mice. Additionally, the effects of THIP on long-term potentiation (LTP), a molecular correlate of memory, were studied within the DG and CA1 subfields of the hippocampus using electrophysiological recordings of field potentials in hippocampal slices. The results showed that THIP impaired performance in the Morris water maze, contextual fear conditioning and object recognition tasks in WT mice but not Gabrd−/− mice. Furthermore, THIP inhibited LTP in hippocampal slices from WT but not Gabrd−/− mice, an effect that was blocked by GABAA receptor antagonist bicuculline. Thus, acutely increasing δGABAA receptor activity impairs memory behaviors and inhibits synaptic plasticity. These results have important implications for the development of therapies aimed at increasing δGABAA receptor activity.
Collapse
Affiliation(s)
- Paul D Whissell
- Institute of Medical Science, University of Toronto Toronto, ON, Canada
| | | | | | | | | | | |
Collapse
|
40
|
Jensen ML, Wafford KA, Brown AR, Belelli D, Lambert JJ, Mirza NR. A study of subunit selectivity, mechanism and site of action of the delta selective compound 2 (DS2) at human recombinant and rodent native GABA(A) receptors. Br J Pharmacol 2013; 168:1118-32. [PMID: 23061935 DOI: 10.1111/bph.12001] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2012] [Revised: 07/18/2012] [Accepted: 08/23/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND AND PURPOSE Most GABA(A) receptor subtypes comprise 2α, 2β and 1γ subunit, although for some isoforms, a δ replaces a γ-subunit. Extrasynaptic δ-GABA(A) receptors are important therapeutic targets, but there are few suitable pharmacological tools. We profiled DS2, the purported positive allosteric modulator (PAM) of δ-GABA(A) receptors to better understand subtype selectivity, mechanism/site of action and activity at native δ-GABA(A) receptors. EXPERIMENTAL APPROACH Subunit specificity of DS2 was determined using electrophysiological recordings of Xenopus laevis oocytes expressing human recombinant GABA(A) receptor isoforms. Effects of DS2 on GABA concentration-response curves were assessed to define mechanisms of action. Radioligand binding and electrophysiology utilising mutant receptors and pharmacology were used to define site of action. Using brain-slice electrophysiology, we assessed the influence of DS2 on thalamic inhibition in wild-type and δ(0/0) mice. KEY RESULTS Actions of DS2 were primarily determined by the δ-subunit but were additionally influenced by the α, but not the β, subunit (α4/6βxδ > α1βxδ >> γ2-GABA(A) receptors > α4β3). For δ-GABA(A) receptors, DS2 enhanced maximum responses to GABA, with minimal influence on GABA potency. (iii) DS2 did not act via the orthosteric, or known modulatory sites on GABA(A) receptors. (iv) DS2 enhanced tonic currents of thalamocortical neurones from wild-type but not δ(0/0) mice. CONCLUSIONS AND IMPLICATIONS DS2 is the first PAM selective for α4/6βxδ receptors, providing a novel tool to investigate extrasynaptic δ-GABA(A) receptors. The effects of DS2 are mediated by an unknown site leading to GABA(A) receptor isoform selectivity.
Collapse
|
41
|
Sun Y, Wu Z, Kong S, Jiang D, Pitre A, Wang Y, Chen G. Regulation of epileptiform activity by two distinct subtypes of extrasynaptic GABAA receptors. Mol Brain 2013; 6:21. [PMID: 23634821 PMCID: PMC3652748 DOI: 10.1186/1756-6606-6-21] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2013] [Accepted: 04/20/2013] [Indexed: 11/13/2022] Open
Abstract
Background GABAergic deficit is one of the major mechanisms underlying epileptic seizures. Previous studies have mainly focused on alterations of synaptic GABAergic inhibition during epileptogenesis. Recent work suggested that tonic inhibition may also play a role in regulating epileptogenesis, but the underlying mechanism is not well understood. Results We employed molecular and pharmacological tools to investigate the role of tonic inhibition during epileptogenesis both in vitro and in vivo. We overexpressed two distinct subtypes of extrasynaptic GABAA receptors, α5β3γ2 and α6β3δ receptors, in cultured hippocampal neurons. We demonstrated that overexpression of both α5β3γ2 and α6β3δ receptors enhanced tonic inhibition and reduced epileptiform activity in vitro. We then showed that injection of THIP (5 μM), a selective agonist for extrasynaptic GABAA receptors at low concentration, into rat brain also suppressed epileptiform burst activity and behavioral seizures in vivo. Mechanistically, we discovered that low concentration of THIP had no effect on GABAergic synaptic transmission and did not affect the basal level of action potentials, but significantly inhibited high frequency neuronal activity induced by epileptogenic agents. Conclusions Our studies suggest that extrasynaptic GABAA receptors play an important role in controlling hyperexcitatory activity, such as that during epileptogenesis, but a less prominent role in modulating a low level of basal activity. We propose that tonic inhibition may play a greater role under pathological conditions than in physiological conditions in terms of modulating neural network activity.
Collapse
Affiliation(s)
- Yajie Sun
- Institutes of Brain Science and State Key Laboratory for Medical Neurobiology, Fudan University, Shanghai, 200032, China
| | | | | | | | | | | | | |
Collapse
|
42
|
Vanini G, Baghdoyan HA. Extrasynaptic GABAA receptors in rat pontine reticular formation increase wakefulness. Sleep 2013; 36:337-43. [PMID: 23450652 DOI: 10.5665/sleep.2444] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022] Open
Abstract
STUDY OBJECTIVES Gamma-aminobutyric acid (GABA) causes phasic inhibition via synaptic GABAA receptors and tonic inhibition via extrasynaptic GABAA receptors. GABA levels in the extracellular space regulate arousal state and cognition by volume transmission via extrasynaptic GABAA receptors. GABAergic transmission in the pontine reticular formation promotes wakefulness. No previous studies have determined whether an agonist at extrasynaptic GABAA receptors administered into the pontine reticular formation alters sleep and wakefulness. Therefore, this study used gaboxadol (THIP; agonist at extrasynaptic GABAA receptors that contain a δ subunit) to test the hypothesis that extrasynaptic GABAA receptors within the pontine reticular formation modulate sleep and wakefulness. DESIGN Within/between subjects. SETTING University of Michigan. PATIENTS OR PARTICIPANTS Adult male Crl:CD*(SD) (Sprague-Dawley) rats (n = 10). INTERVENTIONS Microinjection of gaboxadol, the nonsubtype selective GABAA receptor agonist muscimol (positive control), and saline (negative control) into the rostral pontine reticular formation. MEASUREMENTS AND RESULTS Gaboxadol significantly increased wakefulness and decreased both nonrapid eye movement sleep and rapid eye movement sleep in a concentration-dependent manner. Relative to saline, gaboxadol did not alter electroencephalogram power. Microinjection of muscimol into the pontine reticular formation of the same rats that received gaboxadol increased wakefulness and decreased sleep. CONCLUSION Tonic inhibition via extrasynaptic GABAA receptors that contain a δ subunit may be one mechanism by which the extracellular pool of endogenous GABA in the rostral pontine reticular formation promotes wakefulness. CITATION Vanini G; Baghdoyan HA. Extrasynaptic GABAA receptors in rat pontine reticular formation increase wakefulness. SLEEP 2013;36(3):337-343.
Collapse
Affiliation(s)
- Giancarlo Vanini
- Department of Anesthesiology, University of Michigan, Ann Arbor, MI 48109-5615, USA.
| | | |
Collapse
|
43
|
Frølund S, Nøhr M, Holm R, Brodin B, Nielsen C. Potential involvement of the proton-coupled amino acid transporter PAT1 (SLC36A1) in the delivery of pharmaceutical agents. J Drug Deliv Sci Technol 2013. [DOI: 10.1016/s1773-2247(13)50046-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
44
|
Caspary DM, Hughes LF, Ling LL. Age-related GABAA receptor changes in rat auditory cortex. Neurobiol Aging 2012; 34:1486-96. [PMID: 23257264 DOI: 10.1016/j.neurobiolaging.2012.11.009] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2012] [Revised: 11/13/2012] [Accepted: 11/16/2012] [Indexed: 01/06/2023]
Abstract
Auditory cortex (AI) shows age-related decreases in pre-synaptic markers for gamma-aminobutyric acid (GABA) and degraded AI neuronal response properties. Previous studies find age-related increases in spontaneous and driven activity, decreased spectral and directional sensitivity, and impaired novelty detection. The present study examined expression of GABA(A) receptor (GABA(A)R) subunit message, protein, and quantitative GABA(A)R binding in young, middle-aged, and aged rat AI, with comparisons with adjoining parietal cortex. Significant loss of GABA(A)R α(1) subunit message across AI layers was observed in middle-aged and aged rats and α(1) subunit protein levels declined in layers II and III. Age-related increases in GABA(A)R α(3) subunit message and protein levels were observed in certain AI layers. GABA(A)R subunits, including β(1), β(2), γ(1), γ(2s), and γ(2L), primarily, but not exclusively, showed age-related declines at the message and protein levels. The ability of GABA to modulate [(3)H]t-butylbicycloorthobenzoate binding in the chloride channel showed age-related decreases in peak binding and changes in desensitization kinetics. Collectively, age-related changes in GABA(A)R subunit composition would alter the magnitude and temporal properties of inhibitory synaptic transmission and could underpin observed age-related functional changes seen in the elderly.
Collapse
Affiliation(s)
- Donald M Caspary
- Department of Pharmacology, Southern Illinois University School of Medicine, Springfield, IL, USA.
| | | | | |
Collapse
|
45
|
Ferando I, Mody I. GABAAreceptor modulation by neurosteroids in models of temporal lobe epilepsies. Epilepsia 2012; 53 Suppl 9:89-101. [DOI: 10.1111/epi.12038] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
46
|
Lundahl J, Deacon S, Maurice D, Staner L. EEG spectral power density profiles during NREM sleep for gaboxadol and zolpidem in patients with primary insomnia. J Psychopharmacol 2012; 26:1081-7. [PMID: 22057018 DOI: 10.1177/0269881111424457] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
There is significant interest in the functional significance and the therapeutic value of slow-wave sleep (SWS)-enhancing drugs. A prerequisite for studies of the functional differences is characterization of the electroencephalography (EEG) spectra following treatment in relevant patients. We evaluate for the first time gaboxadol and zolpidem treatments in insomniac patients using power spectra analysis. We carried out two randomized, double-blind, crossover studies. Study 1, 38 patients received gaboxadol 10 mg and 20 mg and zolpidem 10 mg; study 2, 23 patients received gaboxadol 5 mg and 15 mg. Treatments were administered during two nights and compared with placebo. Gaboxadol 10, 15 and 20 mg enhanced slow-wave activity (SWA) and theta power. In 1 Hz bins gaboxadol 10 and 20 mg enhanced power up to 9 Hz. In study 2, 15 mg gaboxadol showed a similar effect pattern. Zolpidem suppressed theta and alpha power, and increased sigma power, with no effect on SWA. In the 1 Hz bins zolpidem suppressed power between 5-10 Hz. Gaboxadol dose-dependently increased SWA and theta power in insomniac patients. In contrast, zolpidem did not affect SWA, reduced theta and alpha activity and enhanced sigma power. EEG spectral power differences may be consequences of the different mechanisms of action for zolpidem and the SWS-enhancing agent, gaboxadol.
Collapse
Affiliation(s)
- Jonas Lundahl
- ICR Paediatric Neuro-Psychiatry, H. Lundbeck A/S, Ottiliavej 9, Valby, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
47
|
Morgan PT, Pace-Schott EF, Mason GF, Forselius E, Fasula M, Valentine GW, Sanacora G. Cortical GABA levels in primary insomnia. Sleep 2012; 35:807-14. [PMID: 22654200 PMCID: PMC3353043 DOI: 10.5665/sleep.1880] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
STUDY OBJECTIVES GABA is increasingly recognized as an important neurotransmitter for the initiation and maintenance of sleep. We sought to measure cortical GABA content through proton magnetic resonance spectroscopy (MRS) in persons with and without primary insomnia, and relate brain GABA levels to polysomnographic sleep measures. DESIGN Two-group comparison study. SETTING Outpatient study at a university research clinic. PARTICIPANTS Non-medicated persons with primary insomnia (N = 16) and no sleep complaints (N = 17). INTERVENTIONS Participants kept sleep diaries and a regular time-in-bed schedule for 9 days, culminating in 2 consecutive nights of ambulatory polysomnography and a single proton MRS session. The main outcome measure was occipital GABA/creatine ratios; secondary measures included sleep measurements and relationship between polysomnographically measured time awake after sleep onset and occipital GABA content. MEASUREMENTS AND RESULTS The primary insomnia group was distinguished from persons with no sleep complaints on self-reported and polysomnographically measured sleep. The two groups did not differ in age, sex, body mass index, habitual bed- and wake-times, napping, use of caffeine, or use of cigarettes. Mean occipital GABA level was 12% higher in persons with insomnia than in persons without sleep complaints (P < 0.05). In both groups, GABA levels correlated negatively with polysomnographically measured time awake after sleep onset (P < 0.05). CONCLUSIONS Increased GABA levels in persons with insomnia may reflect an allostatic response to chronic hyperarousal. The preserved, negative relationship between GABA and time awake after sleep onset supports this notion, indicating that the possible allostatic response is adaptive.
Collapse
Affiliation(s)
- Peter T Morgan
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, USA.
| | | | | | | | | | | | | |
Collapse
|
48
|
Abstract
High-affinity extrasynaptic GABA(A) receptors are persistently activated by the low ambient GABA levels that are known to be present in extracellular space. The resulting tonic conductance generates a form of shunting inhibition that is capable of altering cellular and network behavior. It has been suggested that this tonic inhibition will be enhanced by neurosteroids, antiepileptics, and sedative/hypnotic drugs. However, we show that the ability of sedative/hypnotic drugs to enhance tonic inhibition in the mouse cerebellum will critically depend on ambient GABA levels. For example, we show that the intravenous anesthetic propofol enhances tonic inhibition only when ambient GABA levels are <100 nm. More surprisingly, the actions of the sleep-promoting drug 4,5,6,7-tetrahydroisothiazolo-[5,4-c]pyridin-3-ol (THIP) are attenuated at ambient GABA levels of just 20 nm. In contrast, our data suggest that neurosteroid enhancement of tonic inhibition will be greater at high ambient GABA concentrations. We present a model that takes into account realistic estimates of ambient GABA levels and predicted extrasynaptic GABA(A) receptor numbers when considering the ability of sedative/hypnotic drugs to enhance tonic inhibition. These issues will be important when considering drug strategies designed to target extrasynaptic GABA(A) receptors in the treatment of sleep disorders and other neurological conditions.
Collapse
|
49
|
Vardya I, Hoestgaard-Jensen K, Nieto-Gonzalez JL, Dósa Z, Boddum K, Holm MM, Wolinsky TD, Jones KA, Dalby NO, Ebert B, Jensen K. Positive modulation of δ-subunit containing GABA(A) receptors in mouse neurons. Neuropharmacology 2012; 63:469-79. [PMID: 22579928 DOI: 10.1016/j.neuropharm.2012.04.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2010] [Revised: 04/20/2012] [Accepted: 04/23/2012] [Indexed: 12/23/2022]
Abstract
δ-subunit containing extrasynaptic GABA(A) receptors are potential targets for modifying neuronal activity in a range of brain disorders. With the aim of gaining more insight in synaptic and extrasynaptic inhibition, we used a new positive modulator, AA29504, of δ-subunit containing GABA(A) receptors in mouse neurons in vitro and in vivo. Whole-cell patch-clamp recordings were carried out in the dentate gyrus in mouse brain slices. In granule cells, AA29504 (1 μM) caused a 4.2-fold potentiation of a tonic current induced by THIP (1 μM), while interneurons showed a potentiation of 2.6-fold. Moreover, AA29504 (1 μM) increased the amplitude and prolonged the decay of miniature inhibitory postsynaptic currents (mIPSCs) in granule cells, and this effect was abolished by Zn²⁺ (15 μM). AA29504 (1 μM) also induced a small tonic current (12.7 ± 3.2 pA) per se, and when evaluated in a nominally GABA-free environment using Ca²⁺ imaging in cultured neurons, AA29504 showed GABA(A) receptor agonism in the absence of agonist. Finally, AA29504 exerted dose-dependent stress-reducing and anxiolytic effects in mice in vivo. We propose that AA29504 potentiates δ-containing GABA(A) receptors to enhance tonic inhibition, and possibly recruits perisynaptic δ-containing receptors to participate in synaptic phasic inhibition in dentate gyrus.
Collapse
Affiliation(s)
- Irina Vardya
- Synaptic Physiology Laboratory, Department of Biomedicine, Aarhus University, DK-8000 Aarhus C, Denmark
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Brickley SG, Mody I. Extrasynaptic GABA(A) receptors: their function in the CNS and implications for disease. Neuron 2012; 73:23-34. [PMID: 22243744 DOI: 10.1016/j.neuron.2011.12.012] [Citation(s) in RCA: 519] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/18/2011] [Indexed: 12/30/2022]
Abstract
Over the past two decades, research has identified extrasynaptic GABA(A) receptor populations that enable neurons to sense the low ambient GABA concentrations present in the extracellular space in order to generate a form of tonic inhibition not previously considered in studies of neuronal excitability. The importance of this tonic inhibition in regulating states of consciousness is highlighted by the fact that extrasynaptic GABA(A) receptors (GABA(A)Rs) are believed to be key targets for anesthetics, sleep-promoting drugs, neurosteroids, and alcohol. The neurosteroid sensitivity of these extrasynaptic GABA(A)Rs may explain their importance in stress-, ovarian cycle-, and pregnancy-related mood disorders. Moreover, disruptions in network dynamics associated with schizophrenia, epilepsy, and Parkinson's disease may well involve alterations in the tonic GABA(A)R-mediated conductance. Extrasynaptic GABA(A)Rs may therefore present a therapeutic target for treatment of these diseases, with the potential to enhance cognition and aid poststroke functional recovery.
Collapse
Affiliation(s)
- Stephen G Brickley
- Division of Cell & Molecular Biology, South Kensington Campus, Imperial College, London SW7 2AZ, UK.
| | | |
Collapse
|