1
|
Çabuk T, Şahin Çevik D, Çakmak IB, Yılmaz Kafalı H, Şenol B, Avcı H, Karlı Oğuz K, Toulopoulou T. Analyzing language ability in first-episode psychosis and their unaffected siblings: A diffusion tensor imaging tract-based spatial statistics analysis study. J Psychiatr Res 2024; 179:229-237. [PMID: 39321521 DOI: 10.1016/j.jpsychires.2024.09.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/16/2024] [Accepted: 09/19/2024] [Indexed: 09/27/2024]
Abstract
Schizophrenia (SZ) is a highly heritable mental disorder, and language dysfunctions play a crucial role in diagnosing it. Although language-related symptoms such as disorganized speech were predicted by the polygenic risk for SZ which emphasized the common genetic liability for the disease, few studies investigated possible white matter integrity abnormalities in the language-related tracts in those at familial high-risk for SZ. Also, their results are not consistent. In this current study, we examined possible aberrations in language-related white matter tracts in patients with first-episode psychosis (FEP, N = 20), their siblings (SIB, N = 20), and healthy controls (CON, N = 20) by applying whole-brain Tract-Based Spatial Statistics and region-of-interest analyses. We also assessed language ability by Thought and Language Index (TLI) using Thematic Apperception Test (TAT) pictures and verbal fluency to see whether the scores of these language tests would predict the differences in these tracts. We found significant alterations in language-related tracts such as inferior longitudinal fasciculus (ILF) and uncinate fasciculus (UF) among three groups and between SIB and CON. We also proved partly their relationship with the language test as indicated by the significant correlation detected between TLI Impoverished thought/language sub-scale and ILF. We could not find any difference between FEP and CON. These results showed that the abnormalities, especially in the ILF and UF, could be important pathophysiological vulnerability indexes of schizophrenia. Further studies are required to understand better the role of language as a possible endophenotype in schizophrenia with larger samples.
Collapse
Affiliation(s)
- Tuğçe Çabuk
- Department of Psychology, National Magnetic Resonance Research Center (UMRAM) & Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; Department of Psychology, Başkent University, Ankara, Turkey
| | - Didenur Şahin Çevik
- Department of Neuroscience, National Magnetic Resonance Research Center (UMRAM) & Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey
| | | | - Helin Yılmaz Kafalı
- Department of Psychology, Fevziye Schools Foundations Işık University, İstanbul, Turkey
| | - Bedirhan Şenol
- Department of Psychiatry, Bilkent Şehir Hospital, Ankara, Turkey
| | - Hanife Avcı
- Department of Biostatistics, Hacettepe University, Ankara, Turkey
| | - Kader Karlı Oğuz
- Department of Radiology, University of California Medical Center, Sacramento, USA
| | - Timothea Toulopoulou
- Department of Psychology, National Magnetic Resonance Research Center (UMRAM) & Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; Department of Neuroscience, National Magnetic Resonance Research Center (UMRAM) & Aysel Sabuncu Brain Research Center, Bilkent University, Ankara, Turkey; 1st Department of Psychiatry, National and Kapodistrian University of Athens, Athens, Greece; Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, USA.
| |
Collapse
|
2
|
Aron O, Mezjan I, Krieg J, Ferrand M, Colnat-Coulbois S, Maillard L. Mapping the basal temporal language network: a SEEG functional connectivity study. BRAIN AND LANGUAGE 2024; 258:105486. [PMID: 39388909 DOI: 10.1016/j.bandl.2024.105486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/04/2024] [Accepted: 10/04/2024] [Indexed: 10/12/2024]
Abstract
The Basal Temporal Language Area (BTLA) is recognized in epilepsy surgery setting when cortical electrical stimulation (CES) of the ventral temporal cortex (VTC) trigger anomia or paraphasia during naming tasks. Despite acknowledging a ventral language stream, current cognitive language models fail to properly integrate this entity. In this SEEG study we used cortico-cortical evoked potentials in nine epileptic patients to assess and compare the effective connectivity of 73 sites in the left VTC of which 26 were deemed eloquent for naming after CES (BTLA). Eloquent sites connectivity supports the existence of a basal temporal language network (BTLN) structured around posterior projectors while the fusiform gyrus behaved as an integrator. BTLN was strongly connected to the amygdala and hippocampus unlike the non-eloquent sites, except for the anterior fusiform gyrus (FG). These observations support the FG as a multimodal functional hub and add to our understanding of ventral temporal language processing.
Collapse
Affiliation(s)
- Olivier Aron
- Lorraine University, CHRU Nancy, Neurology Department, Nancy, France; Lorraine University, CNRS, IMoPA, F-54000, Nancy, France.
| | - Insafe Mezjan
- Lorraine University, CHRU Nancy, Neurosurgery Department, Nancy, France; Lorraine University, CNRS, IMoPA, F-54000, Nancy, France
| | - Julien Krieg
- Lorraine University, CHRU Nancy, Neurology Department, Nancy, France
| | - Mickael Ferrand
- Lorraine University, CHRU Nancy, Neurology Department, Nancy, France
| | - Sophie Colnat-Coulbois
- Lorraine University, CHRU Nancy, Neurosurgery Department, Nancy, France; Lorraine University, CNRS, IMoPA, F-54000, Nancy, France
| | - Louis Maillard
- Lorraine University, CHRU Nancy, Neurology Department, Nancy, France; Lorraine University, CNRS, IMoPA, F-54000, Nancy, France
| |
Collapse
|
3
|
Zhang Y, Shen SX, Bibic A, Wang X. Evolutionary continuity and divergence of auditory dorsal and ventral pathways in primates revealed by ultra-high field diffusion MRI. Proc Natl Acad Sci U S A 2024; 121:e2313831121. [PMID: 38377216 PMCID: PMC10907247 DOI: 10.1073/pnas.2313831121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Accepted: 01/22/2024] [Indexed: 02/22/2024] Open
Abstract
Auditory dorsal and ventral pathways in the human brain play important roles in supporting speech and language processing. However, the evolutionary root of the dual auditory pathways in the primate brain is unclear. By parcellating the auditory cortex of marmosets (a New World monkey species), macaques (an Old World monkey species), and humans using the same individual-based analysis method and tracking the pathways from the auditory cortex based on multi-shell diffusion-weighted MRI (dMRI), homologous auditory dorsal and ventral fiber tracks were identified in these primate species. The ventral pathway was found to be well conserved in all three primate species analyzed but extend to more anterior temporal regions in humans. In contrast, the dorsal pathway showed a divergence between monkey and human brains. First, frontal regions in the human brain have stronger connections to the higher-level auditory regions than to the lower-level auditory regions along the dorsal pathway, while frontal regions in the monkey brain show opposite connection patterns along the dorsal pathway. Second, the left lateralization of the dorsal pathway is only found in humans. Moreover, the connectivity strength of the dorsal pathway in marmosets is more similar to that of humans than macaques. These results demonstrate the continuity and divergence of the dual auditory pathways in the primate brains along the evolutionary path, suggesting that the putative neural networks supporting human speech and language processing might have emerged early in primate evolution.
Collapse
Affiliation(s)
- Yang Zhang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Sherry Xinyi Shen
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
| | - Adnan Bibic
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD21205
- Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, F. M. Kirby Center, Baltimore, MD21205
| | - Xiaoqin Wang
- Laboratory of Auditory Neurophysiology, Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD21205
| |
Collapse
|
4
|
Yu Q, Jiang Y, Sun Y, Ju X, Ye T, Liu N, Qian S, Liu K. Effects of Damage to the Integrity of the Left Dual-Stream Frontotemporal Network Mediated by the Arcuate Fasciculus and Uncinate Fasciculus on Acute/Subacute Post-Stroke Aphasia. Brain Sci 2023; 13:1324. [PMID: 37759925 PMCID: PMC10526853 DOI: 10.3390/brainsci13091324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 09/10/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
(1) Background: To investigate the correlation between the integrity of the left dual-stream frontotemporal network mediated by the arcuate fasciculus (AF) and uncinate fasciculus (UF), and acute/subacute post-stroke aphasia (PSA). (2) Methods: Thirty-six patients were recruited and received both a language assessment and a diffusion tensor imaging (DTI) scan. Correlations between diffusion indices in the bilateral LSAF/UF and language performance assessment were analyzed with correlation analyses. Multiple linear regression analysis was also implemented to investigate the effects of the integrity of the left LSAF/UF on language performance. (3) Results: Correlation analyses showed that the diffusion indices, including mean fractional anisotropy (FA) values and the fiber number of the left LSAF rather than the left UF was significantly positively associated with language domain scores (p < 0.05). Multiple linear regression analysis revealed an independent and positive association between the mean FA value of the left LSAF and the percentage score of language subsets. In addition, no interaction effect of the integrity of the left LSAF and UF on language performance was found (p > 0.05). (4) Conclusions: The integrity of the left LSAF, but not the UF, might play important roles in supporting residual language ability in individuals with acute/subacute PSA; simultaneous disruption of the dual-stream frontotemporal network mediated by the left LSAF and UF would not result in more severe aphasia than damage to either pathway alone.
Collapse
Affiliation(s)
- Qiwei Yu
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China; (Q.Y.); (Y.J.); (X.J.); (T.Y.); (N.L.); (S.Q.)
| | - Yuer Jiang
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China; (Q.Y.); (Y.J.); (X.J.); (T.Y.); (N.L.); (S.Q.)
| | - Yan Sun
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China;
| | - Xiaowen Ju
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China; (Q.Y.); (Y.J.); (X.J.); (T.Y.); (N.L.); (S.Q.)
| | - Tianfen Ye
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China; (Q.Y.); (Y.J.); (X.J.); (T.Y.); (N.L.); (S.Q.)
| | - Na Liu
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China; (Q.Y.); (Y.J.); (X.J.); (T.Y.); (N.L.); (S.Q.)
| | - Surong Qian
- Department of Rehabilitation Medicine, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China; (Q.Y.); (Y.J.); (X.J.); (T.Y.); (N.L.); (S.Q.)
| | - Kefu Liu
- Department of Radiology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215008, China;
| |
Collapse
|
5
|
Zhang Y, Mirman D, Hoffman P. Taxonomic and thematic relations rely on different types of semantic features: Evidence from an fMRI meta-analysis and a semantic priming study. BRAIN AND LANGUAGE 2023; 242:105287. [PMID: 37263104 DOI: 10.1016/j.bandl.2023.105287] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 03/20/2023] [Accepted: 05/17/2023] [Indexed: 06/03/2023]
Abstract
Taxonomic and thematic relations are major components of semantic representation but their neurocognitive underpinnings are still debated. We hypothesised that taxonomic relations preferentially activate parts of anterior temporal lobe (ATL) because they rely more on colour and shape features, while thematic relations preferentially activate temporoparietal cortex (TPC) because they rely more on action and location knowledge. We first conducted activation likelihood estimation (ALE) meta-analysis to assess evidence for neural specialisation in the existing fMRI literature (Study 1), then used a primed semantic judgement task to examine if the two relations are primed by different feature types (Study 2). We find that taxonomic relations show minimal feature-based specialisation but preferentially activate the lingual gyrus. Thematic relations are more dependent on action and location features and preferentially engage TPC. The meta-analysis also showed that lateral ATL is preferentially engaged by Thematic relations, which may reflect their greater reliance on verbal associations.
Collapse
Affiliation(s)
- Yueyang Zhang
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, UK
| | - Daniel Mirman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, UK
| | - Paul Hoffman
- School of Philosophy, Psychology & Language Sciences, University of Edinburgh, UK.
| |
Collapse
|
6
|
Olivé G, Peñaloza C, Vaquero L, Laine M, Martin N, Rodriguez-Fornells A. The right uncinate fasciculus supports verbal short-term memory in aphasia. Brain Struct Funct 2023; 228:875-893. [PMID: 37005932 PMCID: PMC10147778 DOI: 10.1007/s00429-023-02628-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2022] [Accepted: 03/05/2023] [Indexed: 04/04/2023]
Abstract
Verbal short-term memory (STM) deficits are associated with language processing impairments in people with aphasia. Importantly, the integrity of STM can predict word learning ability and anomia therapy gains in aphasia. While the recruitment of perilesional and contralesional homologous brain regions has been proposed as a possible mechanism for aphasia recovery, little is known about the white-matter pathways that support verbal STM in post-stroke aphasia. Here, we investigated the relationships between the language-related white matter tracts and verbal STM ability in aphasia. Nineteen participants with post-stroke chronic aphasia completed a subset of verbal STM subtests of the TALSA battery including nonword repetition (phonological STM), pointing span (lexical-semantic STM without language output) and repetition span tasks (lexical-semantic STM with language output). Using a manual deterministic tractography approach, we investigated the micro- and macrostructural properties of the structural language network. Next, we assessed the relationships between individually extracted tract values and verbal STM scores. We found significant correlations between volume measures of the right Uncinate Fasciculus and all three verbal STM scores, with the association between the right UF volume and nonword repetition being the strongest one. These findings suggest that the integrity of the right UF is associated with phonological and lexical-semantic verbal STM ability in aphasia and highlight the potential compensatory role of right-sided ventral white matter language tracts in supporting verbal STM after aphasia-inducing left hemisphere insult.
Collapse
Affiliation(s)
- Guillem Olivé
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain.
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
| | - Claudia Peñaloza
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain
| | - Lucía Vaquero
- Legal Medicine, Psychiatry and Pathology Department, Faculty of Medicine, Complutense University of Madrid, Madrid, Spain
- Center for Cognitive and Computational Neuroscience, Complutense University of Madrid, Madrid, Spain
| | - Matti Laine
- Department of Psychology, Åbo Akademi University, Turku, Finland
| | - Nadine Martin
- Department of Communication Sciences and Disorders, Eleanor M. Saffran Center for Cognitive Neuroscience, Temple University, Philadelphia, PA, USA
| | - Antoni Rodriguez-Fornells
- Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain.
- Cognition and Brain Plasticity Group, Bellvitge Biomedical Research Institute (IDIBELL), L'Hospitalet de Llobregat, Barcelona, Spain.
- Institute of Neurosciences, University of Barcelona, Barcelona, Spain.
- Institució Catalana de Recerca i Estudis Avançats, ICREA, 08010, Barcelona, Spain.
| |
Collapse
|
7
|
Xiong Y, Khlif MS, Egorova-Brumley N, Brodtmann A, Stark BC. Neural correlates of verbal fluency revealed by longitudinal T1, T2 and FLAIR imaging in stroke. Neuroimage Clin 2023; 38:103406. [PMID: 37104929 PMCID: PMC10165164 DOI: 10.1016/j.nicl.2023.103406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/24/2023] [Accepted: 04/13/2023] [Indexed: 04/29/2023]
Abstract
Diffusion-weighted imaging has been widely used in the research on post-stroke verbal fluency but acquiring diffusion data is not always clinically feasible. Achieving comparable reliability for detecting brain variables associated with verbal fluency impairments, based on more readily available anatomical, non-diffusion images (T1, T2 and FLAIR), enables clinical practitioners to have complementary neurophysiological information at hand to facilitate diagnosis and treatment of language impairment. Meanwhile, although the predominant focus in the stroke recovery literature has been on cortical contributions to verbal fluency, it remains unclear how subcortical regions and white matter disconnection are related to verbal fluency. Our study thus utilized anatomical scans of ischaemic stroke survivors (n = 121) to identify longitudinal relationships between subcortical volume, white matter tract disconnection, and verbal fluency performance at 3- and 12-months post-stroke. Subcortical grey matter volume was derived from FreeSurfer. We used an indirect probabilistic approach to quantify white matter disconnection in terms of disconnection severity, the proportion of lesioned voxel volume to the total volume of a tract, and disconnection probability, the probability of the overlap between the stroke lesion and a tract. These disconnection variables of each subject were identified based on the disconnectome map of the BCBToolkit. Using a linear mixed multiple regression method with 5-fold cross-validations, we correlated the semantic and phonemic fluency scores with longitudinal measurements of subcortical grey matter volume and 22 bilateral white matter tracts, while controlling for demographic variables (age, sex, handedness and education), total brain volume, lesion volume, and cortical thickness. The results showed that the right subcortical grey matter volume was positively correlated with phonemic fluency averaged over 3 months and 12 months. The finding generalized well on the test data. The disconnection probability of left superior longitudinal fasciculus II and left posterior arcuate fasciculus was negatively associated with semantic fluency only on the training data, but the result aligned with our previous study using diffusion scans in the same clinical population. In sum, our results presented evidence that routinely acquired anatomical scans can serve as a reliable source for deriving neural variables of post-stroke verbal fluency performance. The use of this method might provide an ecologically valid and more readily implementable analysis tool.
Collapse
Affiliation(s)
- Yanyu Xiong
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington IN 47408, USA.
| | - Mohamed Salah Khlif
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Natalia Egorova-Brumley
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Amy Brodtmann
- The Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, Victoria, Australia
| | - Brielle C Stark
- Department of Speech, Language and Hearing Sciences, Indiana University, Bloomington IN 47408, USA
| |
Collapse
|
8
|
Bullock DN, Hayday EA, Grier MD, Tang W, Pestilli F, Heilbronner SR. A taxonomy of the brain's white matter: twenty-one major tracts for the 21st century. Cereb Cortex 2022; 32:4524-4548. [PMID: 35169827 PMCID: PMC9574243 DOI: 10.1093/cercor/bhab500] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 01/26/2023] Open
Abstract
The functional and computational properties of brain areas are determined, in large part, by their connectivity profiles. Advances in neuroimaging and network neuroscience allow us to characterize the human brain noninvasively, but a comprehensive understanding of the human brain demands an account of the anatomy of brain connections. Long-range anatomical connections are instantiated by white matter, which itself is organized into tracts. These tracts are often disrupted by central nervous system disorders, and they can be targeted by neuromodulatory interventions, such as deep brain stimulation. Here, we characterized the connections, morphology, traversal, and functions of the major white matter tracts in the brain. There are major discrepancies across different accounts of white matter tract anatomy, hindering our attempts to accurately map the connectivity of the human brain. However, we are often able to clarify the source(s) of these discrepancies through careful consideration of both histological tract-tracing and diffusion-weighted tractography studies. In combination, the advantages and disadvantages of each method permit novel insights into brain connectivity. Ultimately, our synthesis provides an essential reference for neuroscientists and clinicians interested in brain connectivity and anatomy, allowing for the study of the association of white matter's properties with behavior, development, and disorders.
Collapse
Affiliation(s)
- Daniel N Bullock
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University Bloomington, Bloomington, IN 47405, USA
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Elena A Hayday
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark D Grier
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Wei Tang
- Department of Psychological and Brain Sciences, Program in Neuroscience, Indiana University Bloomington, Bloomington, IN 47405, USA
- Department of Computer Science, Indiana University Bloomington, Bloomington, IN 47408, USA
| | - Franco Pestilli
- Department of Psychology, The University of Texas at Austin, Austin, TX 78712, USA
| | - Sarah R Heilbronner
- Department of Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| |
Collapse
|
9
|
Jarret J, Ferré P, Chedid G, Bedetti C, Bore A, Joanette Y, Rouleau I, Maria Brambati S. Functional network and structural connections involved in picture naming. BRAIN AND LANGUAGE 2022; 231:105146. [PMID: 35709592 DOI: 10.1016/j.bandl.2022.105146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 04/14/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
We mapped the left hemisphere cortical regions and fiber bundles involved in picture naming in adults by integrating task-based fMRI with dMRI tractography. We showed that a ventral pathway that "maps image and sound to meaning" involves the middle occipital, inferior temporal, superior temporal, inferior frontal gyri, and the temporal pole where a signal exchange is made possible by the inferior fronto-occipital, inferior longitudinal, middle longitudinal, uncinate fasciculi, and the extreme capsule. A dorsal pathway that "maps sound to speech" implicates the inferior temporal, superior temporal, inferior frontal, precentral gyri, and the supplementary motor area where the arcuate fasciculus and the frontal aslant ensure intercommunication. This study provides a neurocognitive model of picture naming and supports the hypothesis that the ventral indirect route passes through the temporal pole. This further supports the idea that the inferior and superior temporal gyri may play pivotal roles within the dual-stream framework of language.
Collapse
Affiliation(s)
- Julien Jarret
- Département de psychologie, Université de Montréal, Montréal, QC, Canada; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
| | - Perrine Ferré
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
| | - Georges Chedid
- Département de psychologie, Université de Montréal, Montréal, QC, Canada; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
| | - Christophe Bedetti
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
| | - Arnaud Bore
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
| | - Yves Joanette
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada
| | - Isabelle Rouleau
- Département de psychologie, Université du Québec à Montréal (UQÀM), QC, Canada
| | - Simona Maria Brambati
- Département de psychologie, Université de Montréal, Montréal, QC, Canada; Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montréal, QC, Canada.
| |
Collapse
|
10
|
Zhong AJ, Baldo JV, Dronkers NF, Ivanova MV. The unique role of the frontal aslant tract in speech and language processing. Neuroimage Clin 2022; 34:103020. [PMID: 35526498 PMCID: PMC9095886 DOI: 10.1016/j.nicl.2022.103020] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 03/08/2022] [Accepted: 04/23/2022] [Indexed: 02/08/2023]
Abstract
The frontal aslant tract (FAT) is a recently described intralobar tract that connects the superior and inferior frontal gyri. The FAT has been implicated in various speech and language processes and disorders, including motor speech impairments, stuttering disorders, opercular syndrome, and verbal fluency, but the specific function(s) of the FAT have yet to be elucidated. In the current study, we aimed to address this knowledge gap by investigating the underlying role that the FAT plays in motor aspects of speech and language abilities in post-stroke aphasia. Our goals were three-fold: 1) To identify which specific motor speech or language abilities are impacted by FAT damage by utilizing a powerful imaging analysis method, High Angular Resolution Diffusion Imaging (HARDI) tractography; 2) To determine whether damage to the FAT is associated with functional deficits on a range of motor speech and language tasks even when accounting for cortical damage to adjacent cortical regions; and 3) To explore whether subsections of the FAT (lateral and medial segments) play distinct roles in motor speech performance. We hypothesized that damage to the FAT would be most strongly associated with motor speech performance in comparison to language tasks. We analyzed HARDI data from thirty-three people with aphasia (PWA) with a history of chronic left hemisphere stroke. FAT metrics were related to scores on several speech and language tests: the Motor Speech Evaluation (MSE), the Western Aphasia Battery (WAB) aphasia quotient and subtests, and the Boston Naming Test (BNT). Our results indicated that the integrity of the FAT was strongly associated with the MSE as predicted, and weakly negatively associated with WAB subtest scores including Naming, Comprehension, and Repetition, likely reflecting the fact that performance on these WAB subtests is associated with damage to posterior areas of the brain that are unlikely to be damaged with a frontal lesion. We also performed hierarchical stepwise regressions to predict language function based on FAT properties and lesion load to surrounding cortical areas. After accounting for the contributions of the inferior frontal gyrus, the ventral precentral gyrus, and the superior precentral gyrus of the insula, the FAT still remained a significant predictor of MSE apraxia scores. Our results further showed that the medial and lateral subsections of the FAT did not appear to play distinct roles but rather may indicate normal anatomical variations of the FAT. Overall, current results indicate that the FAT plays a specific and unique role in motor speech. These results further our understanding of the role that white matter tracts play in speech and language.
Collapse
Affiliation(s)
- Allison J Zhong
- School of Medicine, New York Medical College, 40 Sunshine Cottage Road, Valhalla, NY 10595, USA; Center for Language, Imaging, Mind & Brain, VA Northern California Healthcare System, Martinez, CA, USA
| | - Juliana V Baldo
- Center for Language, Imaging, Mind & Brain, VA Northern California Healthcare System, Martinez, CA, USA
| | - Nina F Dronkers
- Aphasia Recovery Lab, Department of Psychology, University of California, Berkeley, CA, USA; Department of Neurology, University of California, Davis, CA, USA
| | - Maria V Ivanova
- Center for Language, Imaging, Mind & Brain, VA Northern California Healthcare System, Martinez, CA, USA; Aphasia Recovery Lab, Department of Psychology, University of California, Berkeley, CA, USA.
| |
Collapse
|
11
|
Deng X, Yin H, Zhang Y, Zhang D, Wang S, Cao Y, Li M, Wang B, Zong F, Zhao J. Impairment and Plasticity of Language-Related White Matter in Patients With Brain Arteriovenous Malformations. Stroke 2021; 53:1682-1691. [PMID: 34847706 DOI: 10.1161/strokeaha.121.035506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND AND PURPOSE Language dysfunction is rarely seen in patients with unruptured brain arteriovenous malformation (AVM) albeit the AVM nidus involving language areas, which provides a unique disease model to study language reorganization. The objective of this study was to investigate the impairment and reorganization patterns and characteristics of language-related white matter in AVMs located at different brain areas. METHODS Thirty-three patients with AVMs involving language areas were prospectively enrolled. Patients were categorized into 3 groups according to the lesion locations: the frontal (14 patients), temporal (15 patients), and parietal groups (4 patients). Thirty age- and sex-matched healthy controls were enrolled as comparison. All participants underwent diffusion tensor imaging scans, and automated fiber quantification method was applied to quantitatively study the difference of segmented language-related white matter connectivity between 3 AVM groups and control group. RESULTS Language functions were normal in all subjects according to Western Aphasia Battery test. In the frontal group, fractional anisotropy (FA) value decreased in the left arcuate fascicle and increased in left superior longitudinal fasciculus and uncinate fascicle; in the temporal group, FA values decreased in left inferior fronto-occipital fascicle and inferior longitudinal fascicle and increased in right anterior thalamic radiation and uncinate fascicle; in the parietal group, FA values decreased in left arcuate fascicle and inferior longitudinal fascicle and increased in bilateral anterior thalamic radiations and uncinate fascicles and right inferior fronto-occipital fascicle. In fascicles with decreased FA values, the increase of radial diffusivity was common, and fascicles with increased FA values usually presented along with increased axial diffusivity values. CONCLUSIONS Remodeling of language-related white matter occurs when traditional language areas are involved by AVM nidus, and its reorganization patterns vary with locations of AVM nidus. Fascicle impairment is mainly caused by the myelin deficits, and its plasticity may be dominated by the axon remodeling procedure.
Collapse
Affiliation(s)
- Xiaofeng Deng
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (X.D., H.Y., Y.Z., D.Z., S.W., Y.C., M.L., J.Z.).,China National Clinical Research Center for Neurological Diseases, Beijing (X.D., H.Y., Y.Z., D.Z., S.W., Y.C., M.L., J.Z.)
| | - Hu Yin
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (X.D., H.Y., Y.Z., D.Z., S.W., Y.C., M.L., J.Z.).,China National Clinical Research Center for Neurological Diseases, Beijing (X.D., H.Y., Y.Z., D.Z., S.W., Y.C., M.L., J.Z.)
| | - Yan Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (X.D., H.Y., Y.Z., D.Z., S.W., Y.C., M.L., J.Z.).,China National Clinical Research Center for Neurological Diseases, Beijing (X.D., H.Y., Y.Z., D.Z., S.W., Y.C., M.L., J.Z.)
| | - Dong Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (X.D., H.Y., Y.Z., D.Z., S.W., Y.C., M.L., J.Z.).,China National Clinical Research Center for Neurological Diseases, Beijing (X.D., H.Y., Y.Z., D.Z., S.W., Y.C., M.L., J.Z.)
| | - Shuo Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (X.D., H.Y., Y.Z., D.Z., S.W., Y.C., M.L., J.Z.).,China National Clinical Research Center for Neurological Diseases, Beijing (X.D., H.Y., Y.Z., D.Z., S.W., Y.C., M.L., J.Z.)
| | - Yong Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (X.D., H.Y., Y.Z., D.Z., S.W., Y.C., M.L., J.Z.).,China National Clinical Research Center for Neurological Diseases, Beijing (X.D., H.Y., Y.Z., D.Z., S.W., Y.C., M.L., J.Z.)
| | - Maogui Li
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (X.D., H.Y., Y.Z., D.Z., S.W., Y.C., M.L., J.Z.).,China National Clinical Research Center for Neurological Diseases, Beijing (X.D., H.Y., Y.Z., D.Z., S.W., Y.C., M.L., J.Z.)
| | - Bo Wang
- Hefei Comprehensive National Science Center, Institute of Artificial Intelligence, China (B.W.).,Institute of Biophysics, Chinese Academy of Sciences, Beijing (B.W., F.Z.).,University of Chinese Academy of Sciences, Beijing (B.W., F.Z.)
| | - Fangrong Zong
- Institute of Biophysics, Chinese Academy of Sciences, Beijing (B.W., F.Z.).,University of Chinese Academy of Sciences, Beijing (B.W., F.Z.)
| | - Jizong Zhao
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, China (X.D., H.Y., Y.Z., D.Z., S.W., Y.C., M.L., J.Z.).,China National Clinical Research Center for Neurological Diseases, Beijing (X.D., H.Y., Y.Z., D.Z., S.W., Y.C., M.L., J.Z.)
| |
Collapse
|
12
|
Schilling KG, Rheault F, Petit L, Hansen CB, Nath V, Yeh FC, Girard G, Barakovic M, Rafael-Patino J, Yu T, Fischi-Gomez E, Pizzolato M, Ocampo-Pineda M, Schiavi S, Canales-Rodríguez EJ, Daducci A, Granziera C, Innocenti G, Thiran JP, Mancini L, Wastling S, Cocozza S, Petracca M, Pontillo G, Mancini M, Vos SB, Vakharia VN, Duncan JS, Melero H, Manzanedo L, Sanz-Morales E, Peña-Melián Á, Calamante F, Attyé A, Cabeen RP, Korobova L, Toga AW, Vijayakumari AA, Parker D, Verma R, Radwan A, Sunaert S, Emsell L, De Luca A, Leemans A, Bajada CJ, Haroon H, Azadbakht H, Chamberland M, Genc S, Tax CMW, Yeh PH, Srikanchana R, Mcknight CD, Yang JYM, Chen J, Kelly CE, Yeh CH, Cochereau J, Maller JJ, Welton T, Almairac F, Seunarine KK, Clark CA, Zhang F, Makris N, Golby A, Rathi Y, O'Donnell LJ, Xia Y, Aydogan DB, Shi Y, Fernandes FG, Raemaekers M, Warrington S, Michielse S, Ramírez-Manzanares A, Concha L, Aranda R, Meraz MR, Lerma-Usabiaga G, Roitman L, Fekonja LS, Calarco N, Joseph M, Nakua H, Voineskos AN, Karan P, Grenier G, Legarreta JH, Adluru N, Nair VA, Prabhakaran V, Alexander AL, Kamagata K, Saito Y, Uchida W, Andica C, Abe M, Bayrak RG, Wheeler-Kingshott CAMG, D'Angelo E, Palesi F, Savini G, Rolandi N, Guevara P, Houenou J, López-López N, Mangin JF, Poupon C, Román C, Vázquez A, Maffei C, Arantes M, Andrade JP, Silva SM, Calhoun VD, Caverzasi E, Sacco S, Lauricella M, Pestilli F, Bullock D, Zhan Y, Brignoni-Perez E, Lebel C, Reynolds JE, Nestrasil I, Labounek R, Lenglet C, Paulson A, Aulicka S, Heilbronner SR, Heuer K, Chandio BQ, Guaje J, Tang W, Garyfallidis E, Raja R, Anderson AW, Landman BA, Descoteaux M. Tractography dissection variability: What happens when 42 groups dissect 14 white matter bundles on the same dataset? Neuroimage 2021; 243:118502. [PMID: 34433094 PMCID: PMC8855321 DOI: 10.1016/j.neuroimage.2021.118502] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 08/10/2021] [Accepted: 08/21/2021] [Indexed: 10/20/2022] Open
Abstract
White matter bundle segmentation using diffusion MRI fiber tractography has become the method of choice to identify white matter fiber pathways in vivo in human brains. However, like other analyses of complex data, there is considerable variability in segmentation protocols and techniques. This can result in different reconstructions of the same intended white matter pathways, which directly affects tractography results, quantification, and interpretation. In this study, we aim to evaluate and quantify the variability that arises from different protocols for bundle segmentation. Through an open call to users of fiber tractography, including anatomists, clinicians, and algorithm developers, 42 independent teams were given processed sets of human whole-brain streamlines and asked to segment 14 white matter fascicles on six subjects. In total, we received 57 different bundle segmentation protocols, which enabled detailed volume-based and streamline-based analyses of agreement and disagreement among protocols for each fiber pathway. Results show that even when given the exact same sets of underlying streamlines, the variability across protocols for bundle segmentation is greater than all other sources of variability in the virtual dissection process, including variability within protocols and variability across subjects. In order to foster the use of tractography bundle dissection in routine clinical settings, and as a fundamental analytical tool, future endeavors must aim to resolve and reduce this heterogeneity. Although external validation is needed to verify the anatomical accuracy of bundle dissections, reducing heterogeneity is a step towards reproducible research and may be achieved through the use of standard nomenclature and definitions of white matter bundles and well-chosen constraints and decisions in the dissection process.
Collapse
Affiliation(s)
- Kurt G Schilling
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States.
| | | | - Laurent Petit
- Groupe dImagerie Neurofonctionnelle, Institut Des Maladies Neurodegeneratives, CNRS, CEA University of Bordeaux, Bordeaux, France
| | - Colin B Hansen
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Vishwesh Nath
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gabriel Girard
- CIBM Center for BioMedical Imaging, Lausanne, Switzerland
| | - Muhamed Barakovic
- Translational Imaging in Neurology (ThINK), Department of Medicine and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland
| | - Jonathan Rafael-Patino
- Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Thomas Yu
- Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Elda Fischi-Gomez
- Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Marco Pizzolato
- Department of Applied Mathematics and Computer Science, Technical University of Denmark, Kongens Lyngby, Denmark
| | | | - Simona Schiavi
- Department of Computer Science, University of Verona, Italy
| | | | | | - Cristina Granziera
- Translational Imaging in Neurology (ThINK), Department of Medicine and Biomedical Engineering, University Hospital and University of Basel, Basel, Switzerland
| | - Giorgio Innocenti
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Jean-Philippe Thiran
- Signal Processing Lab (LTS5), École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Laura Mancini
- Lysholm Department of Neuroradiology, National Hospital for Neurology & Neurosurgery, UCL Hospitals NHS Foundation Trust, London, United Kingdom
| | - Stephen Wastling
- Lysholm Department of Neuroradiology, National Hospital for Neurology & Neurosurgery, UCL Hospitals NHS Foundation Trust, London, United Kingdom
| | - Sirio Cocozza
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Maria Petracca
- Department of Neurosciences and Reproductive and Odontostomatological Sciences, University "Federico II", Naples, Italy
| | - Giuseppe Pontillo
- Department of Advanced Biomedical Sciences, University "Federico II", Naples, Italy
| | - Matteo Mancini
- Department of Neuroscience, Brighton and Sussex Medical School, University of Sussex, Brighton, United Kingdom
| | - Sjoerd B Vos
- Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Vejay N Vakharia
- Department of Clinical and Experimental Epilepsy, University College London, London, United Kingdom
| | - John S Duncan
- Epilepsy Society MRI Unit, Chalfont St Peter, United Kingdom
| | - Helena Melero
- Departamento de Psicobiología y Metodología en Ciencias del Comportamiento - Universidad Complutense de Madrid, Spain Laboratorio de Análisis de Imagen Médica y Biometría (LAIMBIO), Universidad Rey Juan Carlos, Madrid, Spain
| | - Lidia Manzanedo
- Facultad de Ciencias de la Salud, Universidad Rey Juan Carlos, Madrid, Spain
| | - Emilio Sanz-Morales
- Laboratorio de Análisis de Imagen Médica y Biometría (LAIMBIO), Universidad Rey Juan Carlos, Madrid, Spain
| | - Ángel Peña-Melián
- Departamento de Anatomía, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Fernando Calamante
- Sydney Imaging and School of Biomedical Engineering, The University of Sydney, Sydney, Australia
| | - Arnaud Attyé
- School of Biomedical Engineering, The University of Sydney, Sydney, Australia
| | - Ryan P Cabeen
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Laura Korobova
- Center for Integrative Connectomics, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | - Arthur W Toga
- Laboratory of Neuro Imaging, Stevens Neuroimaging and Informatics Institute, Keck School of Medicine of USC, University of Southern California, Los Angeles, CA, United States
| | | | - Drew Parker
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Ragini Verma
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, United States
| | - Ahmed Radwan
- KU Leuven, Department of Imaging and Pathology, Translational MRI, B-3000, Leuven, Belgium
| | - Stefan Sunaert
- KU Leuven, Department of Imaging and Pathology, Translational MRI, B-3000, Leuven, Belgium
| | - Louise Emsell
- KU Leuven, Department of Imaging and Pathology, Translational MRI, B-3000, Leuven, Belgium
| | | | | | - Claude J Bajada
- Department of Physiology and Biochemistry, Faculty of Medicine and Surgery, University of Malta, Malta
| | - Hamied Haroon
- Division of Neuroscience & Experimental Psychology, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, United Kingdom
| | | | - Maxime Chamberland
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Sila Genc
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Chantal M W Tax
- Cardiff University Brain Research Imaging Centre (CUBRIC), Cardiff University, Cardiff, United Kingdom
| | - Ping-Hong Yeh
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Rujirutana Srikanchana
- National Intrepid Center of Excellence, Walter Reed National Military Medical Center, Bethesda, MD, USA
| | - Colin D Mcknight
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, United States
| | - Joseph Yuan-Mou Yang
- Department of Neurosurgery, Neuroscience Advanced Clinical Imaging Suite (NACIS), Royal Children's Hospital, Parkville, Melbourne, Australia
| | - Jian Chen
- Developmental Imaging, Murdoch Children's Research Institute, Melbourne, Australia
| | - Claire E Kelly
- Victorian Infant Brain Studies, Murdoch Children's Research Institute, Melbourne, Australia
| | - Chun-Hung Yeh
- Institute for Radiological Research, Chang Gung University & Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | | | - Jerome J Maller
- MRI Clinical Science Specialist, General Electric Healthcare, Australia
| | | | - Fabien Almairac
- Neurosurgery department, Hôpital Pasteur, University Hospital of Nice, Côte d'Azur University, France
| | - Kiran K Seunarine
- Developmental Imaging and Biophysics Section, UCL GOS Institute of Child Health, London
| | - Chris A Clark
- Developmental Imaging and Biophysics Section, UCL GOS Institute of Child Health, London
| | - Fan Zhang
- Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Nikos Makris
- Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Alexandra Golby
- Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yogesh Rathi
- Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Lauren J O'Donnell
- Brigham & Women's Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Yihao Xia
- University of Southern California, Keck School of Medicine, Neuroimaging and Informatics Institute, Los Angeles, California, United States
| | - Dogu Baran Aydogan
- Department of Neuroscience and Biomedical Engineering, Aalto University School of Science, Espoo, Finland
| | - Yonggang Shi
- University of Southern California, Keck School of Medicine, Neuroimaging and Informatics Institute, Los Angeles, California, United States
| | | | - Mathijs Raemaekers
- UMC Utrecht Brain Center, Department of Neurology&Neurosurgery, Utrecht, the Netherlands
| | - Shaun Warrington
- Sir Peter Mansfield Imaging Centre, School of Medicine, University of Nottingham, UK
| | - Stijn Michielse
- Department of Neurosurgery, School for Mental Health and Neuroscience, Maastricht University
| | | | - Luis Concha
- Universidad Nacional Autonoma de Mexico, Institute of Neurobiology, Mexico City, Mexico
| | - Ramón Aranda
- Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE-UT3), Cátedras-CONACyT, Ensenada, Mexico
| | | | | | - Lucas Roitman
- Department of Psychology, Stanford University, Stanford, California, USA
| | - Lucius S Fekonja
- Department of Neurosurgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Navona Calarco
- Kimel Family Translational Imaging-Genetics Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario
| | - Michael Joseph
- Kimel Family Translational Imaging-Genetics Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario
| | - Hajer Nakua
- Kimel Family Translational Imaging-Genetics Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario
| | - Aristotle N Voineskos
- Kimel Family Translational Imaging-Genetics Laboratory, Research Imaging Centre, Centre for Addiction and Mental Health, Toronto, Ontario
| | | | | | | | | | - Veena A Nair
- University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Koji Kamagata
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo Japan
| | - Yuya Saito
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo Japan
| | - Wataru Uchida
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo Japan
| | - Christina Andica
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo Japan
| | - Masahiro Abe
- Department of Radiology, Juntendo University Graduate School of Medicine, Tokyo Japan
| | - Roza G Bayrak
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| | - Claudia A M Gandini Wheeler-Kingshott
- NMR Research Unit, Queen Square MS Centre, Department of Neuroinflammation, UCL Queen Square Institute of Neurology, Faculty of Brain Sciences, University College London, London, United Kingdom
| | - Egidio D'Angelo
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Fulvia Palesi
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Giovanni Savini
- Brain MRI 3T Research Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Nicolò Rolandi
- Department of Brain and Behavioral Sciences, University of Pavia, Italy
| | - Pamela Guevara
- Universidad de Concepción, Faculty of Engineering, Concepción, Chile
| | - Josselin Houenou
- Université Paris-Saclay, CEA, CNRS, Neurospin, Gif-sur-Yvette, France
| | | | | | - Cyril Poupon
- Université Paris-Saclay, CEA, CNRS, Neurospin, Gif-sur-Yvette, France
| | - Claudio Román
- Universidad de Concepción, Faculty of Engineering, Concepción, Chile
| | - Andrea Vázquez
- Universidad de Concepción, Faculty of Engineering, Concepción, Chile
| | - Chiara Maffei
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts, USA
| | - Mavilde Arantes
- Department of Biomedicine, Unit of Anatomy, Faculty of Medicine of the University of Porto, Al. Professor Hernâni Monteiro, Porto, Portugal
| | - José Paulo Andrade
- Department of Biomedicine, Unit of Anatomy, Faculty of Medicine of the University of Porto, Al. Professor Hernâni Monteiro, Porto, Portugal
| | - Susana Maria Silva
- Department of Biomedicine, Unit of Anatomy, Faculty of Medicine of the University of Porto, Al. Professor Hernâni Monteiro, Porto, Portugal
| | - Vince D Calhoun
- Tri-institutional Center for Translational Research in Neuroimaging and Data Science (TReNDS), Georgia State University, Georgia Institute of Technology, Emory University, Atlanta, GA 30303, United States
| | - Eduardo Caverzasi
- Neurology Department UCSF Weill Institute for Neurosciences, University of California, San Francisco
| | - Simone Sacco
- Neurology Department UCSF Weill Institute for Neurosciences, University of California, San Francisco
| | - Michael Lauricella
- Memory and Aging Center. UCSF Weill Institute for Neurosciences, University of California, San Francisco, USA
| | - Franco Pestilli
- Department of Psychology, The University of Texas at Austin, TX 78731, USA
| | - Daniel Bullock
- Department of Psychology, The University of Texas at Austin, TX 78731, USA
| | - Yang Zhan
- Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Edith Brignoni-Perez
- Developmental-Behavioral Pediatrics Division, Department of Pediatrics, Stanford School of Medicine, Stanford, CA, United States
| | - Catherine Lebel
- Department of Radiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Jess E Reynolds
- Department of Radiology, University of Calgary, 2500 University Drive NW, Calgary, AB, Canada, T2N 1N4
| | - Igor Nestrasil
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - René Labounek
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Christophe Lenglet
- Center for Magnetic Resonance Research, Department of Radiology, University of Minnesota, Minneapolis, MN, USA
| | - Amy Paulson
- Division of Clinical Behavioral Neuroscience, Department of Pediatrics, University of Minnesota, Minneapolis, MN, USA
| | - Stefania Aulicka
- Department of Paediatric Neurology, University Hospital and Medicine Faculty, Masaryk University, Brno, Czech Republic
| | | | - Katja Heuer
- Center for Research and Interdisciplinarity (CRI), INSERM U1284, Université de Paris, Paris, France
| | - Bramsh Qamar Chandio
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Javier Guaje
- Department of Intelligent Systems Engineering, Indiana University, Bloomington, IN, USA
| | - Wei Tang
- Department of Computer Science, Indiana University, Bloomington, IN, USA
| | | | - Rajikha Raja
- University of Arkansas for Medical Sciences, Little Rock, AR, USA
| | - Adam W Anderson
- Department of Radiology and Radiological Sciences, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bennett A Landman
- Department of Electrical Engineering and Computer Science, Vanderbilt University, Nashville, TN, United States
| | | |
Collapse
|
13
|
Braunsdorf M, Blazquez Freches G, Roumazeilles L, Eichert N, Schurz M, Uithol S, Bryant KL, Mars RB. Does the temporal cortex make us human? A review of structural and functional diversity of the primate temporal lobe. Neurosci Biobehav Rev 2021; 131:400-410. [PMID: 34480913 DOI: 10.1016/j.neubiorev.2021.08.032] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 08/03/2021] [Accepted: 08/30/2021] [Indexed: 10/20/2022]
Abstract
Temporal cortex is a primate specialization that shows considerable variation in size, morphology, and connectivity across species. Human temporal cortex is involved in many behaviors that are considered especially well developed in humans, including semantic processing, language, and theory of mind. Here, we ask whether the involvement of temporal cortex in these behaviors can be explained in the context of the 'general' primate organization of the temporal lobe or whether the human temporal lobe contains unique specializations indicative of a 'step change' in the lineage leading to modern humans. We propose that many human behaviors can be explained as elaborations of temporal cortex functions observed in other primates. However, changes in temporal lobe white matter suggest increased integration of information within temporal cortex and between posterior temporal cortex and other association areas, which likely enable behaviors not possible in other species.
Collapse
Affiliation(s)
- Marius Braunsdorf
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands.
| | - Guilherme Blazquez Freches
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Lea Roumazeilles
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Nicole Eichert
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Matthias Schurz
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands; Institute of Psychology, University of Innsbruck, Innsbruck, Austria
| | - Sebo Uithol
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands
| | - Katherine L Bryant
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Rogier B Mars
- Donders Institute for Brain Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, the Netherlands; Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
14
|
Ivanova MV, Zhong A, Turken A, Baldo JV, Dronkers NF. Functional Contributions of the Arcuate Fasciculus to Language Processing. Front Hum Neurosci 2021; 15:672665. [PMID: 34248526 PMCID: PMC8267805 DOI: 10.3389/fnhum.2021.672665] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Accepted: 06/01/2021] [Indexed: 12/29/2022] Open
Abstract
Current evidence strongly suggests that the arcuate fasciculus (AF) is critical for language, from spontaneous speech and word retrieval to repetition and comprehension abilities. However, to further pinpoint its unique and differential role in language, its anatomy needs to be explored in greater detail and its contribution to language processing beyond that of known cortical language areas must be established. We address this in a comprehensive evaluation of the specific functional role of the AF in a well-characterized cohort of individuals with chronic aphasia (n = 33) following left hemisphere stroke. To evaluate macro- and microstructural integrity of the AF, tractography based on the constrained spherical deconvolution model was performed. The AF in the left and right hemispheres were then manually reconstructed using a modified 3-segment model (Catani et al., 2005), and a modified 2-segment model (Glasser and Rilling, 2008). The normalized volume and a measure of microstructural integrity of the long and the posterior segments of the AF were significantly correlated with language indices while controlling for gender and lesion volume. Specific contributions of AF segments to language while accounting for the role of specific cortical language areas – inferior frontal, inferior parietal, and posterior temporal – were tested using multiple regression analyses. Involvement of the following tract segments in the left hemisphere in language processing beyond the contribution of cortical areas was demonstrated: the long segment of the AF contributed to naming abilities; anterior segment – to fluency and naming; the posterior segment – to comprehension. The results highlight the important contributions of the AF fiber pathways to language impairments beyond that of known cortical language areas. At the same time, no clear role of the right hemisphere AF tracts in language processing could be ascertained. In sum, our findings lend support to the broader role of the left AF in language processing, with particular emphasis on comprehension and naming, and point to the posterior segment of this tract as being most crucial for supporting residual language abilities.
Collapse
Affiliation(s)
- Maria V Ivanova
- Aphasia Recovery Lab, Department of Psychology, University of California, Berkeley, Berkeley, CA, United States.,Center for Language, Imaging, Mind & Brain, VA Northern California Health Care System, Martinez, CA, United States
| | - Allison Zhong
- Center for Language, Imaging, Mind & Brain, VA Northern California Health Care System, Martinez, CA, United States.,School of Medicine, New York Medical College, Valhalla, NY, United States
| | - And Turken
- Center for Language, Imaging, Mind & Brain, VA Northern California Health Care System, Martinez, CA, United States
| | - Juliana V Baldo
- Center for Language, Imaging, Mind & Brain, VA Northern California Health Care System, Martinez, CA, United States
| | - Nina F Dronkers
- Aphasia Recovery Lab, Department of Psychology, University of California, Berkeley, Berkeley, CA, United States.,Center for Language, Imaging, Mind & Brain, VA Northern California Health Care System, Martinez, CA, United States.,Department of Neurology, University of California, Davis, Davis, CA, United States
| |
Collapse
|
15
|
Finkl T, Hahne A, Friederici AD, Gerber J, Mürbe D, Anwander A. Language Without Speech: Segregating Distinct Circuits in the Human Brain. Cereb Cortex 2021; 30:812-823. [PMID: 31373629 DOI: 10.1093/cercor/bhz128] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/08/2019] [Accepted: 05/20/2019] [Indexed: 01/09/2023] Open
Abstract
Language is a fundamental part of human cognition. The question of whether language is processed independently of speech, however, is still heavily discussed. The absence of speech in deaf signers offers the opportunity to disentangle language from speech in the human brain. Using probabilistic tractography, we compared brain structural connectivity of adult deaf signers who had learned sign language early in life to that of matched hearing controls. Quantitative comparison of the connectivity profiles revealed that the core language tracts did not differ between signers and controls, confirming that language is independent of speech. In contrast, pathways involved in the production and perception of speech displayed lower connectivity in deaf signers compared to hearing controls. These differences were located in tracts towards the left pre-supplementary motor area and the thalamus when seeding in Broca's area, and in ipsilateral parietal areas and the precuneus with seeds in left posterior temporal regions. Furthermore, the interhemispheric connectivity between the auditory cortices was lower in the deaf than in the hearing group, underlining the importance of the transcallosal connection for early auditory processes. The present results provide evidence for a functional segregation of the neural pathways for language and speech.
Collapse
Affiliation(s)
- Theresa Finkl
- Saxonian Cochlear Implant Centre, Phoniatrics and Audiology, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden, Germany
| | - Anja Hahne
- Saxonian Cochlear Implant Centre, Phoniatrics and Audiology, Faculty of Medicine, Technische Universität Dresden, Fetscherstraße 74, Dresden, Germany
| | - Angela D Friederici
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Johannes Gerber
- Neuroradiology, Faculty of Medicine, Technische Universität Dresden, Dresden, Germany
| | - Dirk Mürbe
- Department of Audiology and Phoniatrics, Charité-Universitätsmedizin, Berlin, Germany
| | - Alfred Anwander
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| |
Collapse
|
16
|
Zemmoura I, Burkhardt E, Herbet G. The inferior longitudinal fasciculus: anatomy, function and surgical considerations. J Neurosurg Sci 2021; 65:590-604. [PMID: 33940783 DOI: 10.23736/s0390-5616.21.05391-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The inferior longitudinal fasciculus (ILF) is a large association white matter tract that interconnects, in a bidirectional manner, the occipital cortex to anterior temporal structures. In view of both its pattern of cortical projections and its recently evidenced multilayered anatomical organization, the ILF has been supposed to be vital for maintaining a wide range of cognitive and affective processes operating on the visual modality. As tumors commonly damage the temporal cortex, an updated knowledge of the functional anatomy of this ventral tract is needed to better map and monitor online its potential functions and thus to improve surgical outcomes. In this review, we first describe the gross anatomy of the ILF, its array of cortical terminations and its different layers. We then provide a comprehensive review of the functions that have been assigned to the tract. We successively address its role in object and face recognition, visual emotion recognition, language and semantic, including reading, and memory. It is especially shown that the ILF is critically involved in visually-guided behaviors, as its breakdown, both in sudden neurosurgical and progressive neurodegenerative diseases, is commonly associated with visual-specific neuropsychological syndromes (e.g. prosopagnosia and pure alexia, and so on). In the last section, we discuss the extent to which the ILF can reorganize in response to glioma infiltration and to surgery, and provide some reflections on how its intra-operative mapping may be refined.
Collapse
Affiliation(s)
- Ilyess Zemmoura
- UMR 1253, iBrain, Université de Tours, Inserm, Tours, France - .,CHRU de Tours, Neurosurgery Department, Tours, France -
| | - Eléonor Burkhardt
- Praxiling, CNRS UMR 5267, Paul Valéry Montpellier 3 University, Montpellier, France
| | - Guillaume Herbet
- Institute of Functional Genomics, University of Montpellier, CNRS UMR5203, INSERM U1191, Montpellier, France.,Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
| |
Collapse
|
17
|
Shekari E, Goudarzi S, Shahriari E, Joghataei MT. Extreme capsule is a bottleneck for ventral pathway. IBRO Neurosci Rep 2021; 10:42-50. [PMID: 33861816 PMCID: PMC8019950 DOI: 10.1016/j.ibneur.2020.11.002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2020] [Accepted: 11/30/2020] [Indexed: 11/25/2022] Open
Abstract
As neuroscience literature suggests, extreme capsule is considered a whiter matter tract. Nevertheless, it is not clear whether extreme capsule itself is an association fiber pathway or only a bottleneck for other association fibers to pass. Via our review, investigating anatomical position, connectivity and cognitive role of the bundles in extreme capsule, and by analyzing data from the dissection, it can be argued that extreme capsule is probably a bottleneck for the passage of uncinated fasciculus (UF) and inferior fronto-occipital fasciculus (IFOF), and these fasciculi are responsible for the respective roles in language processing.
Collapse
Affiliation(s)
- Ehsan Shekari
- Department of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Sepideh Goudarzi
- Department of pharmacology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Elahe Shahriari
- Department of Physiology, Faculty of Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mohammad Taghi Joghataei
- Department of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
- Corresponding author.
| |
Collapse
|
18
|
Jackson RL, Bajada CJ, Lambon Ralph MA, Cloutman LL. The Graded Change in Connectivity across the Ventromedial Prefrontal Cortex Reveals Distinct Subregions. Cereb Cortex 2021; 30:165-180. [PMID: 31329834 PMCID: PMC7029692 DOI: 10.1093/cercor/bhz079] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 02/21/2019] [Accepted: 03/19/2019] [Indexed: 11/20/2022] Open
Abstract
The functional heterogeneity of the ventromedial prefrontal cortex (vmPFC) suggests it may include distinct functional subregions. To date these have not been well elucidated. Regions with differentiable connectivity (and as a result likely dissociable functions) may be identified using emergent data-driven approaches. However, prior parcellations of the vmPFC have only considered hard splits between distinct regions, although both hard and graded connectivity changes may exist. Here we determine the full pattern of change in structural and functional connectivity across the vmPFC for the first time and extract core distinct regions. Both structural and functional connectivity varied along a dorsomedial to ventrolateral axis from relatively dorsal medial wall regions to relatively lateral basal orbitofrontal cortex. The pattern of connectivity shifted from default mode network to sensorimotor and multimodal semantic connections. This finding extends the classical distinction between primate medial and orbital regions by demonstrating a similar gradient in humans for the first time. Additionally, core distinct regions in the medial wall and orbitofrontal cortex were identified that may show greater correspondence to functional differences than prior hard parcellations. The possible functional roles of the orbitofrontal cortex and medial wall are discussed.
Collapse
Affiliation(s)
- Rebecca L Jackson
- Medical Research Council Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Claude J Bajada
- Faculty of Medicine and Surgery, University of Malta, Msida, MSD, Malta
| | - Matthew A Lambon Ralph
- Medical Research Council Cognition & Brain Sciences Unit, University of Cambridge, Cambridge, UK
| | - Lauren L Cloutman
- Neuroscience and Aphasia Research Unit (NARU), Division of Neuroscience & Experimental Psychology (Zochonis Building), University of Manchester, Manchester, UK
| |
Collapse
|
19
|
Weiller C, Reisert M, Peto I, Hennig J, Makris N, Petrides M, Rijntjes M, Egger K. The ventral pathway of the human brain: A continuous association tract system. Neuroimage 2021; 234:117977. [PMID: 33757905 DOI: 10.1016/j.neuroimage.2021.117977] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 02/24/2021] [Accepted: 03/16/2021] [Indexed: 11/25/2022] Open
Abstract
The brain hemispheres can be divided into an upper dorsal and a lower ventral system. Each system consists of distinct cortical regions connected via long association tracts. The tracts cross the central sulcus or the limen insulae to connect the frontal lobe with the posterior brain. The dorsal stream is associated with sensorimotor mapping. The ventral stream serves structural analysis and semantics in different domains, as visual, acoustic or space processing. How does the prefrontal cortex, regarded as the platform for the highest level of integration, incorporate information from these different domains? In the current view, the ventral pathway consists of several separate tracts, related to different modalities. Originally the assumption was that the ventral path is a continuum, covering all modalities. The latter would imply a very different anatomical basis for cognitive and clinical models of processing. To further define the ventral connections, we used cutting-edge in vivo global tractography on high-resolution diffusion tensor imaging (DTI) data from 100 normal subjects from the human connectome project and ex vivo preparation of fiber bundles in the extreme capsule of 8 humans using the Klingler technique. Our data showed that ventral stream tracts, traversing through the extreme capsule, form a continuous band of fibers that fan out anteriorly to the prefrontal cortex, and posteriorly to temporal, occipital and parietal cortical regions. Introduction of additional volumes of interest in temporal and occipital lobes differentiated between the inferior fronto-occipital fascicle (IFOF) and uncinate fascicle (UF). Unequivocally, in both experiments, in all subjects a connection between the inferior frontal and middle-to-posterior temporal cortical region, otherwise known as the temporo-frontal extreme capsule fascicle (ECF) from nonhuman primate brain-tracing experiments was identified. In the human brain, this tract connects the language domains of "Broca's area" and "Wernicke's area". The differentiation in the three tracts, IFOF, UF and ECF seems arbitrary, all three pass through the extreme capsule. Our data show that the ventral pathway represents a continuum. The three tracts merge seamlessly and streamlines showed considerable overlap in their anterior and posterior course. Terminal maps identified prefrontal cortex in the frontal lobe and association cortex in temporal, occipital and parietal lobes as streamline endings. This anatomical substrate potentially facilitates the prefrontal cortex to integrate information across different domains and modalities.
Collapse
Affiliation(s)
- Cornelius Weiller
- Department of Neurology and Clinical Neuroscience, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106 Freiburg, Germany.
| | - Marco Reisert
- Department of Medical Physics, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ivo Peto
- Department of Neuroradiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany; Department of Neurosurgery and Brain Repair, University of South Florida, Morsani College of Medicine, Tampa, FL, USA
| | - Jürgen Hennig
- Department of Medical Physics, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Nikos Makris
- Center for Morphometric Analysis, Department of Psychiatry and Neurology, A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital and Psychiatric Neuroimaging Laboratory, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States; Department of Anatomy and Neurobiology, Boston University School of Medicine, Boston, MA, United States
| | - Michael Petrides
- Department of Neurology and Neurosurgery, McGill University, Montreal, Quebec, Canada
| | - Michel Rijntjes
- Department of Neurology and Clinical Neuroscience, Faculty of Medicine, University of Freiburg, Breisacher Str. 64, 79106 Freiburg, Germany
| | - Karl Egger
- Department of Neuroradiology, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
20
|
Schendel K, Herron TJ, Curran B, Dronkers NF, Ivanova M, Baldo J. Case study: A selective tactile naming deficit for letters and numbers due to interhemispheric disconnection. Neuroimage Clin 2021; 30:102614. [PMID: 33770548 PMCID: PMC8022252 DOI: 10.1016/j.nicl.2021.102614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2020] [Revised: 02/05/2021] [Accepted: 02/24/2021] [Indexed: 11/18/2022]
Abstract
The role of white matter pathways in cognition is a topic of active investigation that is vital to both the fields of clinical neurology and cognitive neuroscience. White matter pathways provide critical connectivity amongst numerous specialized brain regions thereby enabling higher level cognition. While the effects of dissections and lesions of the corpus callosum have been reported, it is less understood how unilateral focal white matter lesions may impact cognitive processes. Here, we report a unique case study in which a small left lateralized stroke in the white matter adjacent to the body of the corpus callosum selectively impaired the ability to name letters and numbers presented to the ipsilesional, left hand. Naming of letters, numbers and objects was tested in both the visual and tactile modalities in both hands. Diffusion-weighted imaging showed a marked reduction in white matter pathway integrity through the body of the corpus callosum. Clinically, this case highlights the significant impact that a focal white matter lesion can have on higher-level cognition, specifically the integration of verbal and tactile information. Moreover, this case adds to prior reports on tactile agnosia by including DTI imaging data and emphasizing the role that white matter pathways through the body of the corpus callosum play in integrating tactile input from the right hemisphere with verbal naming capabilities of the left hemisphere. Finally, the findings also provoke fresh insight into alternative strategies for rehabilitating cognitive functioning when structural connectivity may be compromised.
Collapse
Affiliation(s)
| | | | - Brian Curran
- VA Northern California Health Care System, United States
| | | | | | - Juliana Baldo
- VA Northern California Health Care System, United States
| |
Collapse
|
21
|
Jiao Y, Lin F, Wu J, Li H, Fu W, Huo R, Cao Y, Wang S, Zhao J. Plasticity in language cortex and white matter tracts after resection of dominant inferior parietal lobule arteriovenous malformations: a combined fMRI and DTI study. J Neurosurg 2021; 134:953-960. [PMID: 32197246 DOI: 10.3171/2019.12.jns191987] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2019] [Accepted: 12/10/2019] [Indexed: 11/06/2022]
Abstract
OBJECTIVE The dominant inferior parietal lobe (IPL) contains cortical and subcortical structures that serve language processing. A high incidence of postoperative short-term aphasia and good potential for language reorganization have been observed. The authors' goal was to study the plasticity of the language cortex and language-related fibers in patients with brain arteriovenous malformations (BAVMs) located in the IPL. METHODS A total of 6 patients who underwent microsurgical treatment of an IPL BAVM were prospectively recruited between September 2016 and May 2018. Blood oxygen level-dependent functional MRI (BOLD-fMRI) and diffusion tensor imaging (DTI) were performed within 1 week before and 6 months after microsurgery. Language-related white matter (WM) eloquent fiber tracts and their contralateral homologous fiber tracts were tracked. The Western Aphasia Battery was administered to assess language function. The authors determined the total number of fibers and mean fractional anisotropy (FA) indices for each individual tract. In addition, they calculated the laterality index (LI) between the activated language cortex voxels in the lesional and contralesional hemispheres and compared these indices between the preoperative and postoperative fMR and DT images. RESULTS Of the 6 patients with IPL BAVMs, all experienced postoperative short-term language deficits, and 5 (83.3%) recovered completely at 6 months after surgery. Five patients (83.3%) had right homologous reorganization of BOLD signal activations in both Broca's and Wernicke's areas. More fibers were observed in the arcuate fasciculus (AF) in the lesional hemisphere than in the contralesional hemisphere (1905 vs 254 fibers, p = 0.035). Six months after surgery, a significantly increased number of fibers was seen in the right hemispheric AF (249 fibers preoperatively vs 485 postoperatively, p = 0.026). There were significantly more nerve fibers in the postoperative left inferior frontooccipital fasciculus (IFOF) (874 fibers preoperatively vs 1186 postoperatively, p = 0.010). A statistically significant increase in right hemispheric dominance of Wernicke's area was observed. The overall functional LI showed functional lateralization of Wernicke's area in the right hemisphere (LI ≤ -0.20) in all patients. CONCLUSIONS The authors' findings provide evidence for the functional reorganization by recruiting the right hemispheric homologous region of Broca's and Wernicke's areas, right hemispheric AFs, and left hemispheric IFOFs following resection of IPL BAVMs.Clinical trial registration no.: NCT02868008 (clinicaltrials.gov).
Collapse
Affiliation(s)
- Yuming Jiao
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
- 2China National Clinical Research Center for Neurological Diseases, Beijing
- 3Center of Stroke, Beijing Institute for Brain Disorders, Beijing
- 4Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing; and
| | - Fuxin Lin
- 5Department of Neurosurgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, People's Republic of China
| | - Jun Wu
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
- 2China National Clinical Research Center for Neurological Diseases, Beijing
- 3Center of Stroke, Beijing Institute for Brain Disorders, Beijing
- 4Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing; and
| | - Hao Li
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
- 2China National Clinical Research Center for Neurological Diseases, Beijing
- 3Center of Stroke, Beijing Institute for Brain Disorders, Beijing
- 4Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing; and
| | - Weilun Fu
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
- 2China National Clinical Research Center for Neurological Diseases, Beijing
- 3Center of Stroke, Beijing Institute for Brain Disorders, Beijing
- 4Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing; and
| | - Ran Huo
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
- 2China National Clinical Research Center for Neurological Diseases, Beijing
- 3Center of Stroke, Beijing Institute for Brain Disorders, Beijing
- 4Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing; and
| | - Yong Cao
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
- 2China National Clinical Research Center for Neurological Diseases, Beijing
- 3Center of Stroke, Beijing Institute for Brain Disorders, Beijing
- 4Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing; and
| | - Shuo Wang
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
- 2China National Clinical Research Center for Neurological Diseases, Beijing
- 3Center of Stroke, Beijing Institute for Brain Disorders, Beijing
- 4Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing; and
| | - Jizong Zhao
- 1Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing
- 2China National Clinical Research Center for Neurological Diseases, Beijing
- 3Center of Stroke, Beijing Institute for Brain Disorders, Beijing
- 4Beijing Key Laboratory of Translational Medicine for Cerebrovascular Disease, Beijing; and
| |
Collapse
|
22
|
Lee JK, Ko MH, Park SH, Kim GW. Prediction of Aphasia Severity in Patients with Stroke Using Diffusion Tensor Imaging. Brain Sci 2021; 11:304. [PMID: 33673638 PMCID: PMC7997243 DOI: 10.3390/brainsci11030304] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/31/2021] [Accepted: 02/23/2021] [Indexed: 11/26/2022] Open
Abstract
This study classified the severity of aphasia through the Western Aphasia Battery and determined the optimal cut-off value for each Language-Related White Matter fiber and their combinations, we further examined the correlations between Language-Related White Matter and Western Aphasia Battery subscores. This retrospective study recruited 64 patients with aphasia. Mild/moderate and severe aphasia were classified according to cut-off Aphasia Quotient score of 51 points. Diffusion tensor imaging and fractional anisotropy reconstructed Language-Related White Matter in multiple fasciculi. We determined the area under the covariate-adjusted receiver operating characteristic curve to evaluate the accuracy of predicting aphasia severity. The optimal fractional-anisotropy cut-off values for the individual fibers of the Language-Related White Matter and their combinations were determined. Their correlations with Western Aphasia Battery subscores were analyzed. The arcuate and superior longitudinal fasciculi showed fair accuracy, the inferior frontal occipital fasciculus poor accuracy, and their combinations fair accuracy. Correlations between Language-Related White Matter parameters and Western Aphasia Battery subscores were found between the arcuate, superior longitudinal, and inferior frontal occipital fasciculi and spontaneous speech, auditory verbal comprehension, repetition, and naming. Diffusion-tensor-imaging-based language-Related White Matter analysis may help predict the severity of language impairment in patients with aphasia following stroke.
Collapse
Affiliation(s)
- Jin-Kook Lee
- Department of Physical Medicine & Rehabilitation, Jeonbuk National University Medical School, Jeonju 54907, Korea; (J.-K.L.); (M.-H.K.); (S.-H.P.)
- Department of Speech-Language Therapy, The Graduate School, Jeonbuk National University, Jeonju 54907, Korea
| | - Myoung-Hwan Ko
- Department of Physical Medicine & Rehabilitation, Jeonbuk National University Medical School, Jeonju 54907, Korea; (J.-K.L.); (M.-H.K.); (S.-H.P.)
- Department of Speech-Language Therapy, The Graduate School, Jeonbuk National University, Jeonju 54907, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Sung-Hee Park
- Department of Physical Medicine & Rehabilitation, Jeonbuk National University Medical School, Jeonju 54907, Korea; (J.-K.L.); (M.-H.K.); (S.-H.P.)
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea
| | - Gi-Wook Kim
- Department of Physical Medicine & Rehabilitation, Jeonbuk National University Medical School, Jeonju 54907, Korea; (J.-K.L.); (M.-H.K.); (S.-H.P.)
- Research Institute of Clinical Medicine of Jeonbuk National University, Biomedical Research Institute of Jeonbuk National University Hospital, Jeonju 54907, Korea
| |
Collapse
|
23
|
François C, Garcia-Alix A, Bosch L, Rodriguez-Fornells A. Signatures of brain plasticity supporting language recovery after perinatal arterial ischemic stroke. BRAIN AND LANGUAGE 2021; 212:104880. [PMID: 33220646 DOI: 10.1016/j.bandl.2020.104880] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 09/11/2020] [Accepted: 10/11/2020] [Indexed: 06/11/2023]
Abstract
Brain imaging methods such as functional Magnetic Resonance Imaging (fMRI) and Diffusion Tensor Imaging (DTI) have already been used to decipher the functional and structural brain changes occurring during normal language development. However, little is known about the differentiation of the language network after an early lesion. While in adults, stroke over the left hemisphere generally induces post-stroke aphasia, it is not always the case when a stroke occurs in the perinatal period, thus revealing a remarkable plastic power of the language network during early development. In particular, the role of perilesional tissues, as opposed to undamaged brain areas in the functional recovery of language functions after an early insult, remains unclear. In this review article, we provide an overview of the extant literature using functional and structural neuroimaging data revealing the signatures of brain plasticity underlying near-normal language development.
Collapse
Affiliation(s)
| | - Alfredo Garcia-Alix
- Service of Genetic and Molecular Medicine, Hospital Sant Joan de Déu, Barcelona, Spain; Institut de Recerca Sant Joan de Déu, Barcelona, Spain; NeNe Foundation, Madrid, Spain
| | - Laura Bosch
- Institut de Recerca Sant Joan de Déu, Barcelona, Spain; Department of Cognition, Development and Educational Psychology, University of Barcelona, Barcelona, Spain; Institute of Neurosciences (UBNeuro), University of Barcelona, Barcelona, Spain
| | - Antoni Rodriguez-Fornells
- Cognition and Brain Plasticity Group, IDIBELL, L'Hospitalet de Llobregat, Barcelona, Spain; Catalan Institution for Research and Advanced Studies, ICREA, Barcelona, Spain
| |
Collapse
|
24
|
Barendse ME, Simmons JG, Smith RE, Seal ML, Whittle S. Adrenarcheal hormone-related development of white matter during late childhood. Neuroimage 2020; 223:117320. [DOI: 10.1016/j.neuroimage.2020.117320] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/11/2020] [Accepted: 08/21/2020] [Indexed: 12/13/2022] Open
|
25
|
Lee JC, Dick AS, Tomblin JB. Altered brain structures in the dorsal and ventral language pathways in individuals with and without developmental language disorder (DLD). Brain Imaging Behav 2020; 14:2569-2586. [PMID: 31933046 PMCID: PMC7354888 DOI: 10.1007/s11682-019-00209-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Developmental Language Disorder (DLD) is a neurodevelopmental disorder characterized by difficulty learning and using language, and this difficulty cannot be attributed to other developmental conditions. The aim of the current study was to examine structural differences in dorsal and ventral language pathways between adolescents and young adults with and without DLD (age range: 14-27 years) using anatomical magnetic resonance imaging (MRI) and diffusion tensor imaging (DTI). Results showed age-related structural brain differences in both dorsal and ventral pathways in individuals with DLD. These findings provide evidence for neuroanatomical correlates of persistent language deficits in adolescents/young adults with DLD, and further suggest that this brain-language relationship in DLD is better characterized by taking account the dynamic course of the disorder along development.
Collapse
Affiliation(s)
- Joanna C Lee
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, 52242, USA.
| | | | - J Bruce Tomblin
- Department of Communication Sciences and Disorders, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
26
|
Zheng W, Minama Reddy GK, Dai F, Chandramani A, Brang D, Hunter S, Kohrman MH, Rose S, Rossi M, Tao J, Wu S, Byrne R, Frim DM, Warnke P, Towle VL. Chasing language through the brain: Successive parallel networks. Clin Neurophysiol 2020; 132:80-93. [PMID: 33360179 DOI: 10.1016/j.clinph.2020.10.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2020] [Revised: 10/06/2020] [Accepted: 10/11/2020] [Indexed: 11/29/2022]
Abstract
OBJECTIVE To describe the spatio-temporal dynamics and interactions during linguistic and memory tasks. METHODS Event-related electrocorticographic (ECoG) spectral patterns obtained during cognitive tasks from 26 epilepsy patients (aged: 9-60 y) were analyzed in order to examine the spatio-temporal patterns of activation of cortical language areas. ECoGs (1024 Hz/channel) were recorded from 1567 subdural electrodes and 510 depth electrodes chronically implanted over or within the frontal, parietal, occipital and/or temporal lobes as part of their surgical work-up for intractable seizures. Six language/memory tasks were performed, which required responding verbally to auditory or visual word stimuli. Detailed analysis of electrode locations allowed combining results across patients. RESULTS Transient increases in induced ECoG gamma power (70-100 Hz) were observed in response to hearing words (central superior temporal gyrus), reading text and naming pictures (occipital and fusiform cortex) and speaking (pre-central, post-central and sub-central cortex). CONCLUSIONS Between these activations there was widespread spatial divergence followed by convergence of gamma activity that reliably identified cortical areas associated with task-specific processes. SIGNIFICANCE The combined dataset supports the concept of functionally-specific locally parallel language networks that are widely distributed, partially interacting in succession to serve the cognitive and behavioral demands of the tasks.
Collapse
Affiliation(s)
- Weili Zheng
- Department of Engineering, The University of Illinois, Chicago, IL, USA
| | | | - Falcon Dai
- Department of Neurology, The University of Chicago, Chicago, IL, USA
| | | | - David Brang
- Department of Psychology, University of Michigan, Ann Arbor, MI, USA
| | - Scott Hunter
- Department of Psychiatry and Behavioral Neuroscience, The University of Chicago, Chicago, IL, USA
| | - Michael H Kohrman
- Department of Pediatrics, The University of Chicago, Chicago, IL 60487, USA
| | - Sandra Rose
- Department of Neurology, The University of Chicago, Chicago, IL, USA
| | - Marvin Rossi
- Department of Neurology, Rush University, Chicago, IL, USA
| | - James Tao
- Department of Neurology, The University of Chicago, Chicago, IL, USA
| | - Shasha Wu
- Department of Neurology, The University of Chicago, Chicago, IL, USA
| | - Richard Byrne
- Department of Surgery, Rush University, Chicago, IL, USA
| | - David M Frim
- Department of Surgery, The University of Chicago, 5841 S. Maryland Ave, 60487 Chicago, IL, USA
| | - Peter Warnke
- Department of Surgery, The University of Chicago, 5841 S. Maryland Ave, 60487 Chicago, IL, USA
| | - Vernon L Towle
- Department of Neurology, The University of Chicago, Chicago, IL, USA.
| |
Collapse
|
27
|
Both activation and deactivation of functional networks support increased sentence processing costs. Neuroimage 2020; 225:117475. [PMID: 33169698 DOI: 10.1016/j.neuroimage.2020.117475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 10/12/2020] [Accepted: 10/13/2020] [Indexed: 12/28/2022] Open
Abstract
The research on the neural correlates underlying the language system has gradually moved away from the traditional Broca-Wernicke framework to a network perspective in the past 15 years. Language processing is found to be supported by the co-activation of both core and peripheral brain regions. However, the dynamic co-activation patterns of these brain regions serving different language functions remain to be fully revealed. The present functional magnetic resonance imaging (fMRI) study focused on sentence processing at different syntactic complexity levels to examine how the co-activation of different brain networks will be modulated by increased processing costs. Chinese relative clauses were used to probe the two dimensions of syntactic complexity: embeddedness (left-branching vs. center-embedded) and gap-filler dependency (subject-gap vs. object-gap) using the general linear model (GLM) approach, independent component analysis (ICA) and graph theoretical analysis. In contrast to localized activation revealed by the GLM approach, ICA identified more extensive networks both positively and negatively correlated with the task. We found that the posterior default mode network was anti-correlated to the gap-filler integration costs with increased deactivation for the left-branching object relative clauses compared to subject relative clauses, suggesting the involvement of this network in leveraging the cognitive resources based on the complexity level of the language task. Concurrent activation and deactivation of networks were found to be associated with the higher costs induced by center-embedding and its interaction with gap-filler integration. The graph theoretical analysis further unveiled that center-embeddedness imposed more attentional demand on the subject relative clause, as characterized by its higher degree and strength in the ventral attention network, and higher processing costs of syntactic reanalysis on the object relative clause, as characterized by increased intermodular connections of the language network with other networks. The results suggest that network activation and deactivation profiles are modulated by different dimensions of syntactic complexity to serve the higher demand of creating a coherent semantic representation.
Collapse
|
28
|
Marino Dávolos J, Arias JC, Jefferies E. Linking individual differences in semantic cognition to white matter microstructure. Neuropsychologia 2020; 141:107438. [PMID: 32171737 DOI: 10.1016/j.neuropsychologia.2020.107438] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2019] [Revised: 02/28/2020] [Accepted: 03/10/2020] [Indexed: 12/15/2022]
Abstract
Semantic cognition is thought to involve the interaction of heteromodal conceptual representations with control processes that (i) focus retrieval on currently-relevant information, and (ii) suppress dominant yet irrelevant features and associations. Research suggests that semantic control demands are higher when retrieving a link between weakly-associated word pairs, since there is a mismatch between the pattern of semantic retrieval required by the task and the dominant associations of individual words. In addition, given that heteromodal concepts are thought to reflect the integration of vision, audition, valence and other features, the control demands of semantic tasks should be higher when there is less consistency between these features. In the present study, 62 volunteers completed a semantic decision task, where association strength and semantic-affective congruence were manipulated. We used diffusion tensor magnetic resonance imaging to obtain fractional anisotropy (FA) measures of white matter tracts hypothesized to be part of the semantic network. The behavioural data revealed an interaction between semantic-affective congruence and strength of association, suggesting these manipulations both contribute to semantic control demands. Next we considered how individual differences in these markers of semantic control relate to the microstructure of canonical white matter tracts, complementing previous studies that have largely focused on measures of intrinsic functional connectivity. Repeated-measures analysis of covariance showed opposing interactions between semantic control markers and FA of two tracts: left inferior longitudinal fasciculus (ILF) and right inferior fronto-occipital fasciculus (IFOF). Participants with higher FA in left ILF showed more efficient retrieval of weak associations, and more accurate performance for weak associations when meaning and valence were incongruent, consistent with the hypothesis that this left hemisphere tract supports semantic control. In contrast, participants with higher FA in right IFOF were more accurate for trials in which meaning and valence were congruent, and consequently when semantic control demands were minimised. These findings are consistent with recent studies showing that semantic control processes are strongly left-lateralised. In contrast, long-range connections from vision to semantic regions in the right hemisphere might support relatively automatic patterns of semantic retrieval.
Collapse
Affiliation(s)
- Julián Marino Dávolos
- Department of Psychology and York Neuroimaging Centre, University of York, YO10 5DD, York, UK.
| | - Juan Cruz Arias
- Instituto de Investigación Oulton, Córdoba, Córdoba, Argentina.
| | - Elizabeth Jefferies
- Department of Psychology and York Neuroimaging Centre, University of York, YO10 5DD, York, UK.
| |
Collapse
|
29
|
Auclair-Ouellet N, Fossard M, Macoir J, Laforce R. The Nonverbal Processing of Actions Is an Area of Relative Strength in the Semantic Variant of Primary Progressive Aphasia. JOURNAL OF SPEECH, LANGUAGE, AND HEARING RESEARCH : JSLHR 2020; 63:569-584. [PMID: 32013713 DOI: 10.1044/2019_jslhr-19-00271] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Purpose Better performance for actions compared to objects has been reported in the semantic variant of primary progressive aphasia (svPPA). This study investigated the influence of the assessment task (naming, semantic picture matching) over the dissociation between objects and actions. Method Ten individuals with svPPA and 17 matched controls completed object and action naming tests, and object and action semantic picture matching tests. Performance was compared between the svPPA and control groups, within the svPPA group, and for each participant with svPPA versus the control group individually. Results Compared to controls, participants with svPPA were impaired on object and action naming, and object and action semantic picture matching. As a group, participants with svPPA had an advantage for actions over objects and for semantic picture matching tests over naming tests. Eight participants had a better performance for actions compared to objects in naming, with three showing a significant difference. Nine participants had a better performance for actions compared to objects in semantic picture matching, with six showing a significant difference. For objects, semantic picture matching was better than naming in nine participants, with five showing a significant difference. For actions, semantic picture matching was better than naming in all 10 participants, with nine showing a significant difference. Conclusion The nonverbal processing of actions, as assessed with a semantic picture matching test, is an area of relative strength in svPPA. Clinical implications for assessment planning and interpretation and theoretical implications for current models of semantic cognition are discussed.
Collapse
Affiliation(s)
- Noémie Auclair-Ouellet
- Faculty of Medicine, School of Communication Sciences and Disorders, McGill University, Montréal, Québec, Canada
- Centre for Research on Brain, Language and Music, Montréal, Québec, Canada
- Centre de Recherche de l'Institut Universitaire de Gériatrie de Montréal, Québec, Canada
| | - Marion Fossard
- Faculté des lettres et sciences humaines, Institut des sciences logopédiques, Université de Neuchâtel, Neuchâtel, Switzerland
| | - Joël Macoir
- Faculté de Médecine, Département de Réadaptation, Université Laval, Quebec City, Québec, Canada
- Centre de Recherche CERVO, Québec City, Québec, Canada
| | - Robert Laforce
- Faculté de Médecine, Département de Médecine, Université Laval, Quebec City, Québec, Canada
- Clinique Interdisciplinaire de Mémoire, Centre Hospitalier Universitaire de Québec, Quebec City, Québec, Canada
- Chaire de recherche sur les aphasies primaires progressives-Fondation de la famille Lemaire, Quebec City, Québec, Canada
| |
Collapse
|
30
|
Discourse management during speech perception: A functional magnetic resonance imaging (fMRI) study. Neuroimage 2019; 202:116047. [DOI: 10.1016/j.neuroimage.2019.116047] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 07/09/2019] [Accepted: 07/22/2019] [Indexed: 11/22/2022] Open
|
31
|
Cocquyt EM, Lanckmans E, van Mierlo P, Duyck W, Szmalec A, Santens P, De Letter M. The white matter architecture underlying semantic processing: A systematic review. Neuropsychologia 2019; 136:107182. [PMID: 31568774 DOI: 10.1016/j.neuropsychologia.2019.107182] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2019] [Revised: 09/02/2019] [Accepted: 09/03/2019] [Indexed: 12/23/2022]
Abstract
From a holistic point of view, semantic processes are subserved by large-scale subcortico-cortical networks. The dynamic routing of information between grey matter structures depends on the integrity of subcortical white matter pathways. Nonetheless, controversy remains on which of these pathways support semantic processing. Therefore, a systematic review of the literature was performed with a focus on anatomo-functional correlations obtained from direct electrostimulation during awake tumor surgery, and conducted between diffusion tensor imaging metrics and behavioral semantic performance in healthy and aphasic individuals. The 43 included studies suggest that the left inferior fronto-occipital fasciculus contributes to the essential connectivity that allows semantic processing. However, it remains uncertain whether its contributive role is limited to the organization of semantic knowledge or extends to the level of semantic control. Moreover, the functionality of the left uncinate fasciculus, inferior longitudinal fasciculus and the posterior segment of the indirect arcuate fasciculus in semantic processing has to be confirmed by future research.
Collapse
Affiliation(s)
- E-M Cocquyt
- Department of Rehabilitation Sciences, Ghent University, Belgium; Research Group BrainComm, Ghent University, Belgium.
| | - E Lanckmans
- Department of Rehabilitation Sciences, Ghent University, Belgium; Research Group BrainComm, Ghent University, Belgium
| | - P van Mierlo
- Research Group BrainComm, Ghent University, Belgium; Department of Electronics and Information Systems, Medical Image and Signal Processing Group, Ghent University, Belgium
| | - W Duyck
- Faculty of Psychology and Educational Sciences, Department of Experimental Psychology, Ghent University, Belgium
| | - A Szmalec
- Faculty of Psychology and Educational Sciences, Department of Experimental Psychology, Ghent University, Belgium; Psychological Sciences Research Institute, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - P Santens
- Research Group BrainComm, Ghent University, Belgium; Department of Neurology, Ghent University Hospital, Belgium
| | - M De Letter
- Department of Rehabilitation Sciences, Ghent University, Belgium; Research Group BrainComm, Ghent University, Belgium
| |
Collapse
|
32
|
Right Structural and Functional Reorganization in Four-Year-Old Children with Perinatal Arterial Ischemic Stroke Predict Language Production. eNeuro 2019; 6:ENEURO.0447-18.2019. [PMID: 31383726 PMCID: PMC6749144 DOI: 10.1523/eneuro.0447-18.2019] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Revised: 04/24/2019] [Accepted: 06/03/2019] [Indexed: 11/21/2022] Open
Abstract
Brain imaging methods have contributed to shed light on the mechanisms of recovery after early brain insult. The assumption that the unaffected right hemisphere can take over language functions after left perinatal stroke is still under debate. Here, we report how patterns of brain structural and functional reorganization were associated with language outcomes in a group of four-year-old children with left perinatal arterial ischemic stroke (PAIS). Specifically, we gathered specific fine-grained developmental measures of receptive and productive aspects of language as well as standardized measures of cognitive development. We also collected structural neuroimaging data as well as functional activations during a passive listening story-telling fMRI task and a resting state session (rs-fMRI). Children with a left perinatal stroke showed larger lateralization indices of both structural and functional connectivity of the dorsal language pathway towards the right hemisphere that, in turn, were associated with better language outcomes. Importantly, the pattern of structural asymmetry was significantly more right-lateralized in children with a left perinatal brain insult than in a group of matched healthy controls. These results strongly suggest that early lesions of the left dorsal pathway and the associated perisylvian regions can induce the interhemispheric transfer of language functions to right homolog regions. This study provides combined evidence of structural and functional brain reorganization of language networks after early stroke with strong implications for neurobiological models of language development.
Collapse
|
33
|
Associative white matter connecting the dorsal and ventral posterior human cortex. Brain Struct Funct 2019; 224:2631-2660. [DOI: 10.1007/s00429-019-01907-8] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 06/07/2019] [Indexed: 02/05/2023]
|
34
|
Chiou R, Lambon Ralph MA. Unveiling the dynamic interplay between the hub- and spoke-components of the brain's semantic system and its impact on human behaviour. Neuroimage 2019; 199:114-126. [PMID: 31132452 PMCID: PMC6693526 DOI: 10.1016/j.neuroimage.2019.05.059] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/26/2019] [Accepted: 05/23/2019] [Indexed: 01/05/2023] Open
Abstract
The neural architecture of semantic knowledge comprises two key structures: (i) A set of widely dispersed regions, located adjacent to the sensorimotor cortices, serve as spokes that represent various modality-specific and context-dependent contents. (ii) The anterior-temporal lobe (ATL) serves as a hub that computes the nonlinear mappings required to transform modality-specific information into pan-modality, multifaceted concepts. Little is understood regarding whether neural dynamics between the hub and spokes might flexibly alter depending on the nature of a concept and how it impinges upon behaviour. Using fMRI, we demonstrate for the first time that the ATL serves as a 'pivot' which dynamically forms flexible long-range networks with cortical modules specialised for different domains (in the present case, the knowledge about actions and places). In two experiments, we manipulated semantic congruity and asked participants to recognise visually presented items. In Experiment 1 (dual-object displays), the ATL increased its functional coupling with the bilateral frontoparietal action-sensitive system when the objects formed a pair that permitted semantically meaningful action. In Experiment 2 (objects embedded in a scene), the ATL augmented its coupling with the retrosplenial cortex of the place-sensitive system when the objects and scene formed a semantically coherent ensemble. Causative connectivity revealed that, while communication between the hub and spokes was bidirectional, the hub's directional impact on spokes dwarfed the strength of the inverse spoke-to-hub connectivity. Furthermore, the size of behavioural congruity effects co-varied with the strength of neural coupling between the ATL hub and action- / place-related spokes, evident both at the within-individual level (the behavioural fluctuation across scanning runs) and between-individual level (the behavioural variation of between participants). Together, these findings have important implications for understanding the machinery that links neural dynamics with semantic cognition.
Collapse
Affiliation(s)
- Rocco Chiou
- MRC Cognition and Brain Sciences Unit, University of Cambridge, UK.
| | | |
Collapse
|
35
|
Bajada CJ, Banks B, Lambon Ralph MA, Cloutman LL. Reconnecting with Joseph and Augusta Dejerine: 100 years on. Brain 2019; 140:2752-2759. [PMID: 28969389 PMCID: PMC5841156 DOI: 10.1093/brain/awx225] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 07/26/2017] [Indexed: 11/14/2022] Open
Affiliation(s)
- Claude J Bajada
- Neuroscience and Aphasia Research Unit (NARU), Division of Neuroscience and Experimental Psychology, School of Biological Sciences, The University of Manchester, UK
| | - Briony Banks
- Neuroscience and Aphasia Research Unit (NARU), Division of Neuroscience and Experimental Psychology, School of Biological Sciences, The University of Manchester, UK
| | - Matthew A Lambon Ralph
- Neuroscience and Aphasia Research Unit (NARU), Division of Neuroscience and Experimental Psychology, School of Biological Sciences, The University of Manchester, UK
| | - Lauren L Cloutman
- Neuroscience and Aphasia Research Unit (NARU), Division of Neuroscience and Experimental Psychology, School of Biological Sciences, The University of Manchester, UK
| |
Collapse
|
36
|
Food knowledge depends upon the integrity of both sensory and functional properties: a VBM, TBSS and DTI tractography study. Sci Rep 2019; 9:7439. [PMID: 31092880 PMCID: PMC6520382 DOI: 10.1038/s41598-019-43919-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 04/12/2019] [Indexed: 11/30/2022] Open
Abstract
Food constitutes a fuel of life for human beings. It is therefore of chief importance that their recognition system readily identifies the most relevant properties of food by drawing on semantic memory. One of the most relevant properties to be considered is the level of processing impressed by humans on food. We hypothesized that recognition of raw food capitalizes on sensory properties and that of transformed food on functional properties, consistently with the hypothesis of a sensory-functional organization of semantic knowledge. To test this hypothesis, patients with Alzheimer’s disease, frontotemporal dementia, primary progressive aphasia, and healthy controls performed lexical-semantic tasks with food (raw and transformed) and non-food (living and nonliving) stimuli. Correlations between task performance and local grey matter concentration (VBM) and white matter fractional anisotropy (TBSS) led to two main findings. First, recognition of raw food and living things implicated occipital cortices, typically involved in processing sensory information and, second, recognition of processed food and nonliving things implicated the middle temporal gyrus and surrounding white matter tracts, regions that have been associated with functional properties. In conclusion, the present study confirms and extends the hypothesis of a sensory and a functional organization of semantic knowledge.
Collapse
|
37
|
Hellbernd N, Sammler D. Neural bases of social communicative intentions in speech. Soc Cogn Affect Neurosci 2019; 13:604-615. [PMID: 29771359 PMCID: PMC6022564 DOI: 10.1093/scan/nsy034] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2017] [Accepted: 05/13/2018] [Indexed: 11/15/2022] Open
Abstract
Our ability to understand others’ communicative intentions in speech is key to successful social interaction. Indeed, misunderstanding an ‘excuse me’ as apology, while meant as criticism, may have important consequences. Recent behavioural studies have provided evidence that prosody, that is, vocal tone, is an important indicator for speakers’ intentions. Using a novel audio-morphing paradigm, the present functional magnetic resonance imaging study examined the neurocognitive mechanisms that allow listeners to ‘read’ speakers’ intents from vocal prosodic patterns. Participants categorized prosodic expressions that gradually varied in their acoustics between criticism, doubt, and suggestion. Categorizing typical exemplars of the three intentions induced activations along the ventral auditory stream, complemented by amygdala and mentalizing system. These findings likely depict the stepwise conversion of external perceptual information into abstract prosodic categories and internal social semantic concepts, including the speaker’s mental state. Ambiguous tokens, in turn, involved cingulo-opercular areas known to assist decision-making in case of conflicting cues. Auditory and decision-making processes were flexibly coupled with the amygdala, depending on prosodic typicality, indicating enhanced categorization efficiency of overtly relevant, meaningful prosodic signals. Altogether, the results point to a model in which auditory prosodic categorization and socio-inferential conceptualization cooperate to translate perceived vocal tone into a coherent representation of the speaker’s intent.
Collapse
Affiliation(s)
- Nele Hellbernd
- Otto Hahn Group Neural Bases of Intonation in Speech and Music, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, D-04103 Leipzig, Germany
| | - Daniela Sammler
- Otto Hahn Group Neural Bases of Intonation in Speech and Music, Max Planck Institute for Human Cognitive and Brain Sciences, Stephanstraße 1a, D-04103 Leipzig, Germany
| |
Collapse
|
38
|
Busby N, Halai AD, Parker GJM, Coope DJ, Lambon Ralph MA. Mapping whole brain connectivity changes: The potential impact of different surgical resection approaches for temporal lobe epilepsy. Cortex 2018; 113:1-14. [PMID: 30557759 DOI: 10.1016/j.cortex.2018.11.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 10/15/2018] [Accepted: 11/05/2018] [Indexed: 11/16/2022]
Abstract
In neurosurgery there are several situations that require transgression of the temporal cortex. For example, a subset of patients with temporal lobe epilepsy require surgical resection (most typically, en-bloc anterior temporal lobectomy). This procedure is the gold standard to alleviate seizures but is associated with chronic cognitive deficits. In recent years there have been multiple attempts to find the optimum balance between minimising the size of resection in order to preserve cognitive function, while still ensuring seizure freedom. Some attempts involve reducing the distance that the resection stretches back from the temporal pole, whilst others try to preserve one or more of the temporal gyri. More recent advanced surgical techniques (selective amygdalo-hippocamptectomies) try to remove the least amount of tissue by going under (sub-temporal), over (trans-Sylvian) or through the temporal lobe (middle-temporal), which have been related to better cognitive outcomes. Previous comparisons of these surgical techniques focus on comparing seizure freedom or behaviour post-surgery, however there have been no systematic studies showing the effect of surgery on white matter connectivity. The main aim of this study, therefore, was to perform systematic 'pseudo-neurosurgery' based on existing resection methods on healthy neuroimaging data and measuring the effect on long-range connectivity. We use anatomical connectivity maps (ACM) to determine long-range disconnection, which is complementary to existing measures of local integrity such as fractional anisotropy or mean diffusivity. ACMs were generated for each diffusion scan in order to compare whole-brain connectivity with an 'ideal resection', nine anterior temporal lobectomy and three selective approaches. For en-bloc resections, as distance from the temporal pole increased, reduction in connectivity was evident within the arcuate fasciculus, inferior longitudinal fasciculus, inferior fronto-occipital fasciculus, and the uncinate fasciculus. Increasing the height of resections dorsally reduced connectivity within the uncinate fasciculus. Sub-temporal amygdalohippocampectomy resections were associated with connectivity patterns most similar to the 'ideal' baseline resection, compared to trans-Sylvian and middle-temporal approaches. In conclusion, we showed the utility of ACM in assessing long-range disconnections/disruptions during temporal lobe resections, where we identified the sub-temporal resection as the least disruptive to long-range connectivity which may explain its better cognitive outcome. These results have a direct impact on understanding the amount and/or type of cognitive deficit post-surgery, which may not be obtainable using local measures of white matter integrity.
Collapse
Affiliation(s)
- Natalie Busby
- Neuroscience and Aphasia Research Unit, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, UK.
| | - Ajay D Halai
- Neuroscience and Aphasia Research Unit, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, UK; MRC Cognition and Brain Sciences Unit, University of Cambridge, UK
| | - Geoff J M Parker
- Division of Neuroscience and Experimental Psychology, University of Manchester, UK; Bioxydyn Ltd., Manchester, UK
| | - David J Coope
- Manchester Centre for Clinical Neurosciences, Salford Royal NHS Foundation Trust, Salford, UK; Wolfson Molecular Imaging Centre, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, UK
| | - Matthew A Lambon Ralph
- Neuroscience and Aphasia Research Unit, Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, UK; MRC Cognition and Brain Sciences Unit, University of Cambridge, UK.
| |
Collapse
|
39
|
Bajada CJ, Schreiber J, Caspers S. Fiber length profiling: A novel approach to structural brain organization. Neuroimage 2018; 186:164-173. [PMID: 30399419 DOI: 10.1016/j.neuroimage.2018.10.070] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 10/03/2018] [Accepted: 10/26/2018] [Indexed: 10/27/2022] Open
Abstract
There has been a recent increased interest in the structural connectivity of the cortex. However, an important feature of connectivity remains relatively unexplored; tract length. In this article, we develop an approach to characterize fiber length distributions across the human cerebral cortex. We used data from 76 participants of the Adult WU-Minn Human Connectome Project using probabilistic tractography. We found that connections of different lengths are not evenly distributed across the cortex. They form patterns where certain areas have a high density of fibers of a specific length while other areas have very low density. To assess the relevance of these new maps in relation to established characteristics, we compared them to structural indices such as cortical myelin content and cortical thickness. Additionally, we assessed their relation to resting state network organization. We noted that areas with very short fibers have relatively more myelin and lower cortical thickness while the pattern is inverted for longer fibers. Furthermore, the cortical fiber length distributions produce specific correlation patterns with functional resting state networks. Specifically, we find evidence that as resting state networks increase in complexity, their length profiles change. The functionally more complex networks correlate with maps of varying lengths while primary networks have more restricted correlations. We posit that these maps are a novel way of differentiating between 'local modules' that have restricted connections to 'neighboring' areas and 'functional integrators' that have more far reaching connectivity.
Collapse
Affiliation(s)
- Claude J Bajada
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, 52425, Juelich, Germany; Faculty of Medicine and Surgery, University of Malta, Msida, MSD, 2080, Malta
| | - Jan Schreiber
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, 52425, Juelich, Germany
| | - Svenja Caspers
- Institute of Neuroscience and Medicine (INM-1), Research Centre Juelich, 52425, Juelich, Germany; Institute for Anatomy I, Medical Faculty, Heinrich-Heine-University Duesseldorf, 40221, Duesseldorf, Germany; JARA-BRAIN, Juelich-Aachen Research Alliance, 52425, Juelich, Germany.
| |
Collapse
|
40
|
Jung J, Visser M, Binney RJ, Lambon Ralph MA. Establishing the cognitive signature of human brain networks derived from structural and functional connectivity. Brain Struct Funct 2018; 223:4023-4038. [PMID: 30120553 PMCID: PMC6267264 DOI: 10.1007/s00429-018-1734-x] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 08/12/2018] [Indexed: 11/26/2022]
Abstract
Numerous neuroimaging studies have identified various brain networks using task-free analyses. While these networks undoubtedly support higher cognition, their precise functional characteristics are rarely probed directly. The frontal, temporal, and parietal lobes contain the majority of the tertiary association cortex, which are key substrates for higher cognition including executive function, language, memory, and attention. Accordingly, we established the cognitive signature of a set of contrastive brain networks on the main tertiary association cortices, identified in two task-independent datasets. Using graph-theory analysis, we revealed multiple networks across the frontal, temporal, and parietal cortex, derived from structural and functional connectivity. The patterns of network activity were then investigated using three task-active fMRI datasets to generate the functional profiles of the identified networks. We employed representational dissimilarity analysis on these functional data to quantify and compare the representational characteristics of the networks. Our results demonstrated that the topology of the task-independent networks was strongly associated with the patterns of network activity in the task-active fMRI. Our findings establish a direct relationship between the brain networks identified from task-free datasets and higher cognitive functions including cognitive control, language, memory, visuospatial function, and perception. Not only does this study support the widely held view that higher cognitive functions are supported by widespread, distributed cortical networks, but also it elucidates a methodological approach for formally establishing their relationship.
Collapse
Affiliation(s)
- JeYoung Jung
- Neuroscience and Aphasia Research Unit (NARU), Division of Neuroscience and Experimental Psychology, School of Biological Sciences (Zochonis Building), University of Manchester, Brunswick Street, Manchester, M13 9PL, UK.
| | - Maya Visser
- Neuroscience and Aphasia Research Unit (NARU), Division of Neuroscience and Experimental Psychology, School of Biological Sciences (Zochonis Building), University of Manchester, Brunswick Street, Manchester, M13 9PL, UK
- Grupo de Neuropslcología y NeuroLmagen Functional, University Jaume I, Castellón de la Plana, Castellón, Spain
| | - Richard J Binney
- Neuroscience and Aphasia Research Unit (NARU), Division of Neuroscience and Experimental Psychology, School of Biological Sciences (Zochonis Building), University of Manchester, Brunswick Street, Manchester, M13 9PL, UK
- School of Psychology, Bangor University, Bangor, UK
| | - Matthew A Lambon Ralph
- Neuroscience and Aphasia Research Unit (NARU), Division of Neuroscience and Experimental Psychology, School of Biological Sciences (Zochonis Building), University of Manchester, Brunswick Street, Manchester, M13 9PL, UK.
| |
Collapse
|
41
|
Herbet G, Moritz-Gasser S, Lemaitre AL, Almairac F, Duffau H. Functional compensation of the left inferior longitudinal fasciculus for picture naming. Cogn Neuropsychol 2018; 36:140-157. [DOI: 10.1080/02643294.2018.1477749] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Institute for Neuroscience of Montpellier, INSERM U1051 (Plasticity of Central Nervous System, Human Stem Cells and Glial Tumors research group), Montpellier, France
- Department of Medicine, University of Montpellier, Montpellier, France
| | - Sylvie Moritz-Gasser
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Institute for Neuroscience of Montpellier, INSERM U1051 (Plasticity of Central Nervous System, Human Stem Cells and Glial Tumors research group), Montpellier, France
- Department of Medicine, University of Montpellier, Montpellier, France
| | - Anne-Laure Lemaitre
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Department of Psychology, University of Lille, Lille, France
| | - Fabien Almairac
- Department of Neurosurgery, Nice University Medical Center, Nice, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, Montpellier, France
- Institute for Neuroscience of Montpellier, INSERM U1051 (Plasticity of Central Nervous System, Human Stem Cells and Glial Tumors research group), Montpellier, France
- Department of Medicine, University of Montpellier, Montpellier, France
| |
Collapse
|
42
|
Chiou R, Humphreys GF, Jung J, Lambon Ralph MA. Controlled semantic cognition relies upon dynamic and flexible interactions between the executive 'semantic control' and hub-and-spoke 'semantic representation' systems. Cortex 2018; 103:100-116. [PMID: 29604611 PMCID: PMC6006425 DOI: 10.1016/j.cortex.2018.02.018] [Citation(s) in RCA: 70] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 11/18/2017] [Accepted: 02/25/2018] [Indexed: 11/16/2022]
Abstract
Built upon a wealth of neuroimaging, neurostimulation, and neuropsychology data, a recent proposal set forth a framework termed controlled semantic cognition (CSC) to account for how the brain underpins the ability to flexibly use semantic knowledge (Lambon Ralph et al., 2017; Nature Reviews Neuroscience). In CSC, the ‘semantic control’ system, underpinned predominantly by the prefrontal cortex, dynamically monitors and modulates the ‘semantic representation’ system that consists of a ‘hub’ (anterior temporal lobe, ATL) and multiple ‘spokes’ (modality-specific areas). CSC predicts that unfamiliar and exacting semantic tasks should intensify communication between the ‘control’ and ‘representation’ systems, relative to familiar and less taxing tasks. In the present study, we used functional magnetic resonance imaging (fMRI) to test this hypothesis. Participants paired unrelated concepts by canonical colours (a less accustomed task – e.g., pairing ketchup with fire-extinguishers due to both being red) or paired well-related concepts by semantic relationship (a typical task – e.g., ketchup is related to mustard). We found the ‘control’ system was more engaged by atypical than typical pairing. While both tasks activated the ATL ‘hub’, colour pairing additionally involved occipitotemporal ‘spoke’ regions abutting areas of hue perception. Furthermore, we uncovered a gradient along the ventral temporal cortex, transitioning from the caudal ‘spoke’ zones preferring canonical colour processing to the rostral ‘hub’ zones preferring semantic relationship. Functional connectivity also differed between the tasks: Compared with semantic pairing, colour pairing relied more upon the inferior frontal gyrus, a key node of the control system, driving enhanced connectivity with occipitotemporal ‘spoke’. Together, our findings characterise the interaction within the neural architecture of semantic cognition – the control system dynamically heightens its connectivity with relevant components of the representation system, in response to different semantic contents and difficulty levels.
Collapse
Affiliation(s)
- Rocco Chiou
- Neuroscience and Aphasia Research Unit (NARU), Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, UK.
| | - Gina F Humphreys
- Neuroscience and Aphasia Research Unit (NARU), Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, UK
| | - JeYoung Jung
- Neuroscience and Aphasia Research Unit (NARU), Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, UK
| | - Matthew A Lambon Ralph
- Neuroscience and Aphasia Research Unit (NARU), Division of Neuroscience and Experimental Psychology, School of Biological Sciences, University of Manchester, UK.
| |
Collapse
|
43
|
Herbet G, Moritz-Gasser S, Boiseau M, Duvaux S, Cochereau J, Duffau H. Converging evidence for a cortico-subcortical network mediating lexical retrieval. Brain 2018; 139:3007-3021. [PMID: 27604309 DOI: 10.1093/brain/aww220] [Citation(s) in RCA: 72] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Accepted: 07/13/2016] [Indexed: 11/12/2022] Open
Affiliation(s)
- Guillaume Herbet
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295, Montpellier, France.,Institute for Neuroscience of Montpellier (INM), INSERM-1051, Team 4, Saint-Eloi Hospital, Montpellier University Medical Center, F-34091, Montpellier, France
| | - Sylvie Moritz-Gasser
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295, Montpellier, France.,Institute for Neuroscience of Montpellier (INM), INSERM-1051, Team 4, Saint-Eloi Hospital, Montpellier University Medical Center, F-34091, Montpellier, France.,Department of Neurology, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295, Montpellier, France
| | - Morgane Boiseau
- Department of Neurology, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295, Montpellier, France
| | - Sophie Duvaux
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295, Montpellier, France
| | - Jérôme Cochereau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295, Montpellier, France
| | - Hugues Duffau
- Department of Neurosurgery, Gui de Chauliac Hospital, Montpellier University Medical Center, F-34295, Montpellier, France.,Institute for Neuroscience of Montpellier (INM), INSERM-1051, Team 4, Saint-Eloi Hospital, Montpellier University Medical Center, F-34091, Montpellier, France
| |
Collapse
|
44
|
Dronkers NF, Ivanova MV, Baldo JV. What Do Language Disorders Reveal about Brain-Language Relationships? From Classic Models to Network Approaches. J Int Neuropsychol Soc 2017; 23:741-754. [PMID: 29198286 PMCID: PMC6606454 DOI: 10.1017/s1355617717001126] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Studies of language disorders have shaped our understanding of brain-language relationships over the last two centuries. This article provides a review of this research and how our thinking has changed over the years regarding how the brain processes language. In the 19th century, a series of famous case studies linked distinct speech and language functions to specific portions of the left hemisphere of the brain, regions that later came to be known as Broca's and Wernicke's areas. One hundred years later, the emergence of new brain imaging tools allowed for the visualization of brain injuries in vivo that ushered in a new era of brain-behavior research and greatly expanded our understanding of the neural processes of language. Toward the end of the 20th century, sophisticated neuroimaging approaches allowed for the visualization of both structural and functional brain activity associated with language processing in both healthy individuals and in those with language disturbance. More recently, language is thought to be mediated by a much broader expanse of neural networks that covers a large number of cortical and subcortical regions and their interconnecting fiber pathways. Injury to both grey and white matter has been seen to affect the complexities of language in unique ways that have altered how we think about brain-language relationships. The findings that support this paradigm shift are described here along with the methodologies that helped to discover them, with some final thoughts on future directions, techniques, and treatment interventions for those with communication impairments. (JINS, 2017, 23, 741-754).
Collapse
Affiliation(s)
- Nina F. Dronkers
- VA Northern California Health Care System, Martinez, California
- University of California, Davis, California
- National Research University Higher School of Economics, Moscow, Russia
| | - Maria V. Ivanova
- VA Northern California Health Care System, Martinez, California
- National Research University Higher School of Economics, Moscow, Russia
| | | |
Collapse
|
45
|
Laterality of anterior temporal lobe repetitive transcranial magnetic stimulation determines the degree of disruption in picture naming. Brain Struct Funct 2017; 222:3749-3759. [PMID: 28756485 PMCID: PMC5676810 DOI: 10.1007/s00429-017-1430-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2016] [Accepted: 04/19/2017] [Indexed: 10/27/2022]
Abstract
The bilateral anterior temporal lobes play a key role in semantic representation. This is clearly demonstrated by the performance of patients with semantic dementia, a disorder characterised by a progressive and selective decline in semantic memory over all modalities as a result of anterior temporal atrophy. Although all patients exhibit a progressive decline in both single-word production and comprehension, those with greater atrophy to the left anterior temporal lobe show a stronger decline in word production than comprehension. This asymmetry has been attributed to the greater connectivity of the left anterior temporal lobe with left-lateralised speech production mechanisms. Virtual lesioning of the left ATL using offline repetitive transcranial magnetic stimulation (rTMS) has been shown to disrupt picture naming, but, the impact of right ATL rTMS is yet to be explored. We tested the prediction that disruption of picture naming in normal participants by rTMS should be greater for the left than the right ATL. We found a significant increase in picture naming latencies specifically for stimulation of the left ATL only. Neither left nor right ATL TMS slowed performance in a number naming control task. These results support the hypothesis that although both temporal lobes are part of a widespread semantic network in the human brain, the left anterior temporal lobe possesses a stronger connection to left-lateralised speech production areas than the right temporal lobe.
Collapse
|
46
|
Brain grey and white matter predictors of verbal ability traits in older age: The Lothian Birth Cohort 1936. Neuroimage 2017; 156:394-402. [PMID: 28549795 PMCID: PMC5554782 DOI: 10.1016/j.neuroimage.2017.05.052] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2016] [Revised: 05/15/2017] [Accepted: 05/23/2017] [Indexed: 11/21/2022] Open
Abstract
Cerebral grey and white matter MRI parameters are related to general intelligence and some specific cognitive abilities. Less is known about how structural brain measures relate specifically to verbal processing abilities. We used multi-modal structural MRI to investigate the grey matter (GM) and white matter (WM) correlates of verbal ability in 556 healthy older adults (mean age = 72.68 years, s.d. = .72 years). Structural equation modelling was used to decompose verbal performance into two latent factors: a storage factor that indexed participants' ability to store representations of verbal knowledge and an executive factor that measured their ability to regulate their access to this information in a flexible and task-appropriate manner. GM volumes and WM fractional anisotropy (FA) for components of the language/semantic network were used as predictors of these verbal ability factors. Volume of the ventral temporal cortices predicted participants' storage scores (β = .12, FDR-adjusted p = .04), consistent with the theory that this region acts as a key substrate of semantic knowledge. This effect was mediated by childhood IQ, suggesting a lifelong association between ventral temporal volume and verbal knowledge, rather than an effect of cognitive decline in later life. Executive ability was predicted by FA fractional anisotropy of the arcuate fasciculus (β = .19, FDR-adjusted p = .001), a major language-related tract implicated in speech production. This result suggests that this tract plays a role in the controlled retrieval of word knowledge during speech. At a more general level, these data highlight a basic distinction between information representation, which relies on the accumulation of tissue in specialised GM regions, and executive control, which depends on long-range WM pathways for efficient communication across distributed cortical networks.
Collapse
|
47
|
Hartwigsen G, Bzdok D, Klein M, Wawrzyniak M, Stockert A, Wrede K, Classen J, Saur D. Rapid short-term reorganization in the language network. eLife 2017; 6. [PMID: 28537558 PMCID: PMC5472437 DOI: 10.7554/elife.25964] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 05/23/2017] [Indexed: 11/29/2022] Open
Abstract
The adaptive potential of the language network to compensate for lesions remains elusive. We show that perturbation of a semantic region in the healthy brain induced suppression of activity in a large semantic network and upregulation of neighbouring phonological areas. After perturbation, the disrupted area increased its inhibitory influence on another semantic key node. The inhibitory influence predicted the individual delay in response speed, indicating that inhibition at remote nodes is functionally relevant. Individual disruption predicted the upregulation of semantic activity in phonological regions. In contrast, perturbation over a phonological region suppressed activity in the network and disrupted behaviour without inducing upregulation. The beneficial contribution of a neighbouring network might thus depend on the level of functional disruption and may be interpreted to reflect a differential compensatory potential of distinct language networks. These results might reveal generic mechanisms of plasticity in cognitive networks and inform models of language reorganization. DOI:http://dx.doi.org/10.7554/eLife.25964.001 Taking part in a conversation requires us to extract meaning from a complex series of sounds by recognising words and phrases. We then need to decide on a response, and plan and execute the lip and tongue movements necessary to generate that response. Each of these processes – from analysing the meaning of words to producing speech – requires a distinct set of brain regions to work together. However, we know relatively little about how these regions interact with one another during specific language processes, or about what happens when key regions are damaged. Hartwigsen et al. have now used a technique called TMS in healthy volunteers to temporarily disrupt the activity of individual brain regions with a role in language. TMS involves applying small magnetic fields to the scalp over a target brain area. The magnetic fields induce electrical currents in the underlying brain tissue and temporarily scramble its activity. Hartwigsen et al. examined how this affected the volunteers’ performance on a language task, as well as the activity of other language areas. Temporarily disrupting a single brain region involved in analysing the meaning of words reduced the activity of multiple other areas in the brain’s language networks. The greater this reduction in activity, the more poorly the volunteers performed on a language task. However, not all brain regions showed reduced activity. Areas adjacent to the disrupted region, which normally process the sounds of words, increased their activity. This increase may have partially compensated for the effects of the TMS to help limit the language impairments. These findings offer insights into how the brain reacts and adapts when key language areas are damaged, for example as a result of stroke. The next step is to determine the extent to which healthy brain tissue can take over from damaged regions, and whether we can target this process to improve recovery after stroke. DOI:http://dx.doi.org/10.7554/eLife.25964.002
Collapse
Affiliation(s)
- Gesa Hartwigsen
- Department of Neuropsychology, Max Planck Institute for Human Cognitive and Brain Sciences Leipzig, Leipzig, Germany.,Language and Aphasia Laboratory, Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Danilo Bzdok
- Department of Psychiatry, Psychotherapy and Psychosomatics, RWTH Aachen, Aachen, Germany.,JARA-BRAIN, Jülich-Aachen Research Alliance, , Germany.,Parietal team, INRIA, Neurospin, bat 145, CEA Saclay, Gif-sur-Yvette, France
| | - Maren Klein
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Max Wawrzyniak
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Anika Stockert
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Katrin Wrede
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Joseph Classen
- Human Cortical Physiology and Motor Control Laboratory, Department of Neurology, University of Leipzig, Leipzig, Germany
| | - Dorothee Saur
- Language and Aphasia Laboratory, Department of Neurology, University of Leipzig, Leipzig, Germany
| |
Collapse
|
48
|
A graded tractographic parcellation of the temporal lobe. Neuroimage 2017; 155:503-512. [PMID: 28411156 PMCID: PMC5518769 DOI: 10.1016/j.neuroimage.2017.04.016] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 04/06/2017] [Accepted: 04/06/2017] [Indexed: 02/06/2023] Open
Abstract
The temporal lobe has been implicated in multiple cognitive domains through lesion studies as well as cognitive neuroimaging research. There has been a recent increased interest in the structural and connective architecture that underlies these functions. However there has not yet been a comprehensive exploration of the patterns of connectivity that appear across the temporal lobe. This article uses a data driven, spectral reordering approach in order to understand the general axes of structural connectivity within the temporal lobe. Two important findings emerge from the study. Firstly, the temporal lobe's overarching patterns of connectivity are organised along two key structural axes: medial to lateral and anteroventral to posterodorsal, mirroring findings in the functional literature. Secondly, the connective organisation of the temporal lobe is graded and transitional; this is reminiscent of the original work of 19th Century neuroanatomists, who posited the existence of some regions which transitioned between one another in a graded fashion. While regions with unique connectivity exist, the boundaries between these are not always sharp. Instead there are zones of graded connectivity reflecting the influence and overlap of shared connectivity. A graded parcellation identified changes in connectivity across the temporal lobe Connective organisation of the temporal lobe was graded and transitional Two axes of organisation were found: medial-lateral and anterovental-posterodorsal While regions of distinct connectivity exist, their boundaries are not always sharp Zones of graded connectivity exist reflecting influence of shared connectivity
Collapse
|
49
|
Abstract
How is knowledge about the meanings of words and objects represented in the human brain? Current theories embrace two radically different proposals: either distinct cortical systems have evolved to represent different kinds of things, or knowledge for all kinds is encoded within a single domain-general network. Neither view explains the full scope of relevant evidence from neuroimaging and neuropsychology. Here we propose that graded category-specificity emerges in some components of the semantic network through joint effects of learning and network connectivity. We test the proposal by measuring connectivity amongst cortical regions implicated in semantic representation, then simulating healthy and disordered semantic processing in a deep neural network whose architecture mirrors this structure. The resulting neuro-computational model explains the full complement of neuroimaging and patient evidence adduced in support of both domain-specific and domain-general approaches, reconciling long-standing disputes about the nature and origins of this uniquely human cognitive faculty.
Collapse
|
50
|
Toward a functional neuroanatomy of semantic aphasia: A history and ten new cases. Cortex 2016; 97:164-182. [PMID: 28277283 DOI: 10.1016/j.cortex.2016.09.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2015] [Revised: 04/17/2016] [Accepted: 09/18/2016] [Indexed: 11/21/2022]
Abstract
Almost 70 years ago, Alexander Luria incorporated semantic aphasia among his aphasia classifications by demonstrating that deficits in linking the logical relationships of words in a sentence could co-occur with non-linguistic disorders of calculation, spatial gnosis and praxis deficits. In line with his comprehensive approach to the assessment of language and other cognitive functions, he argued that deficits in understanding semantically reversible sentences and prepositional phrases, for example, were in line with a single neuropsychological factor of impaired spatial analysis and synthesis, since understanding such grammatical relationships would also draw on their spatial relationships. Critically, Luria demonstrated the neural underpinnings of this syndrome with the critical implication of the cortex of the left temporal-parietal-occipital (TPO) junction. In this study, we report neuropsychological and lesion profiles of 10 new cases of semantic aphasia. Modern neuroimaging techniques provide support for the relevance of the left TPO area for semantic aphasia, but also extend Luria's neuroanatomical model by taking into account white matter pathways. Our findings suggest that tracts with parietal connectivity - the arcuate fasciculus (long and posterior segments), the inferior fronto-occipital fasciculus, the inferior longitudinal fasciculus, the superior longitudinal fasciculus II and III, and the corpus callosum - are implicated in the linguistic and non-linguistic deficits of patients with semantic aphasia.
Collapse
|