1
|
Argentel-Martínez L, Peñuelas-Rubio O, Herrera-Sepúlveda A, González-Aguilera J, Sudheer S, Salim LM, Lal S, Pradeep CK, Ortiz A, Sansinenea E, Hathurusinghe SHK, Shin JH, Babalola OO, Azizoglu U. Biotechnological advances in plant growth-promoting rhizobacteria for sustainable agriculture. World J Microbiol Biotechnol 2024; 41:21. [PMID: 39738995 DOI: 10.1007/s11274-024-04231-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Accepted: 12/13/2024] [Indexed: 01/02/2025]
Abstract
The rhizosphere, the soil zone surrounding plant roots, serves as a reservoir for numerous beneficial microorganisms that enhance plant productivity and crop yield, with substantial potential for application as biofertilizers. These microbes play critical roles in ecological processes such as nutrient recycling, organic matter decomposition, and mineralization. Plant growth-promoting rhizobacteria (PGPR) represent a promising tool for sustainable agriculture, enabling green management of crop health and growth, being eco-friendly alternatives to replace chemical fertilizers and pesticides. In this sense, biotechnological advancements respecting genomics and gene editing have been crucial to develop microbiome engineering which is pivotal in developing microbial consortia to improve crop production. Genome mining, which involves comprehensive analysis of the entire genome sequence data of PGPR, is crucial for identifying genes encoding valuable bacterial enzymes and metabolites. The CRISPR-Cas system, a cutting-edge genome-editing technology, has shown significant promise in beneficial microbial species. Advances in genetic engineering, particularly CRISPR-Cas, have markedly enhanced grain output, plant biomass, resistance to pests, and the sensory and nutritional quality of crops. There has been a great advance about the use of PGPR in important crops; however, there is a need to go further studying synthetic microbial communities, microbiome engineering, and gene editing approaches in field trials. This review focuses on future research directions involving several factors and topics around the use of PGPR putting special emphasis on biotechnological advances.
Collapse
Affiliation(s)
- Leandris Argentel-Martínez
- Tecnológico Nacional de México/Instituto Tecnológico del Valle del Yaqui, CP: 85260, Bácum, Sonora, Mexico.
| | - Ofelda Peñuelas-Rubio
- Tecnológico Nacional de México/Instituto Tecnológico del Valle del Yaqui, CP: 85260, Bácum, Sonora, Mexico
| | - Angélica Herrera-Sepúlveda
- Tecnológico Nacional de México/Instituto Tecnológico del Valle del Yaqui, CP: 85260, Bácum, Sonora, Mexico
| | - Jorge González-Aguilera
- Department of Agronomy, Universidad Estadual de Mato Grosso Do Sul (UEMS), Cassilândia, MS, 79540-000, Brazil
| | - Surya Sudheer
- Institute of Ecology and Earth Sciences, Department of Botany, University of Tartu, 51005, Tartu, Estonia
| | - Linu M Salim
- Faculty of Fisheries Engineering, Kerala University of Fisheries and Ocean Studies, Cochin, India
| | - Sunaina Lal
- Department of Biochemistry, Sikkim Manipal Institute of Medical Sciences, Gangtok, Sikkim, India
| | - Chittethu Kunjan Pradeep
- Microbiology Division, Jawaharlal Nehru Tropical Botanic Garden & Research Institute, Palode, Thiruvananthapuram, Kerala, 695562, India
| | - Aurelio Ortiz
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Puebla, México
| | - Estibaliz Sansinenea
- Facultad de Ciencias Químicas, Benemérita Universidad Autónoma de Puebla, C.P. 72570, Puebla, Puebla, México
| | | | - Jae-Ho Shin
- School of Applied Biosciences, College of Agriculture and Life Sciences, Kyungpook National University, Daegu, 41566, Republic of Korea
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Private Bag X2046, Mmabatho, 2735, South Africa
| | - Ugur Azizoglu
- Department of Crop and Animal Production, Safiye Cikrikcioglu Vocational College, Kayseri University, Kayseri, Türkiye.
- Genome and Stem Cell Research Center, Erciyes University, Kayseri, Türkiye.
| |
Collapse
|
2
|
Gouli S, Majeed A, Liu J, Moseley D, Mukhtar MS, Ham JH. Microbiome Structures and Beneficial Bacteria in Soybean Roots Under Field Conditions of Prolonged High Temperatures and Drought Stress. Microorganisms 2024; 12:2630. [PMID: 39770832 PMCID: PMC11678281 DOI: 10.3390/microorganisms12122630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/11/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
Drought stress has a significant impact on agricultural productivity, affecting key crops such as soybeans, the second most widely cultivated crop in the United States. Endophytic and rhizospheric microbial diversity analyses were conducted with soybean plants cultivated during the 2023 growing season amid extreme weather conditions of prolonged high temperatures and drought in Louisiana. Specifically, surviving and non-surviving soybean plants were collected from two plots of a Louisiana soybean field severely damaged by extreme heat and drought conditions in 2023. Although no significant difference was observed between surviving and non-surviving plants in microbial diversity of the rhizosphere, obvious differences were found in the structure of the endophytic microbial community in root tissues between the two plant conditions. In particular, the bacterial genera belonging to Proteobacteria, Pseudomonas and Pantoea, were predominant in the surviving root tissues, while the bacterial genus Streptomyces was conspicuously dominant in the non-surviving (dead) root tissues. Co-occurrence patterns and network centrality analyses enabled us to discern the intricate characteristics of operational taxonomic units (OTUs) within endophytic and rhizospheric networks. Additionally, we isolated and identified bacterial strains that enhanced soybean tolerance to drought stresses, which were sourced from soybean plants under a drought field condition. The 16S rDNA sequence analysis revealed that the beneficial bacterial strains belong to the genera Acinetobacter, Pseudomonas, Enterobacter, and Stenotrophomonas. Specific bacterial strains, particularly those identified as Acinetobacter pittii and Pseudomonas sp., significantly enhanced plant growth metrics and reduced drought stress indices in soybean plants through seed treatment. Overall, this study advances our understanding of the soybean-associated microbiome structure under drought stress, paving the way for future research to develop innovative strategies and biological tools for enhancing soybean resilience to drought.
Collapse
Affiliation(s)
- Sandeep Gouli
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA;
| | - Aqsa Majeed
- Department of Biology, University of Alabama at Birmingham, 3100 Science & Engineering Complex–East Science Hall, 902 14 Street South, Birmingham, AL 35294, USA; (A.M.); (J.L.)
- Department of Genetics & Biochemistry, Clemson University, 105 Collings St. Biosystems Research Complex, Clemson, SC 29634, USA
| | - Jinbao Liu
- Department of Biology, University of Alabama at Birmingham, 3100 Science & Engineering Complex–East Science Hall, 902 14 Street South, Birmingham, AL 35294, USA; (A.M.); (J.L.)
| | - David Moseley
- Dean Lee Research & Extension Center, Louisiana State University Agricultural Center, Alexandria, LA 71302, USA;
| | - M. Shahid Mukhtar
- Department of Biology, University of Alabama at Birmingham, 3100 Science & Engineering Complex–East Science Hall, 902 14 Street South, Birmingham, AL 35294, USA; (A.M.); (J.L.)
- Department of Genetics & Biochemistry, Clemson University, 105 Collings St. Biosystems Research Complex, Clemson, SC 29634, USA
| | - Jong Hyun Ham
- Department of Plant Pathology and Crop Physiology, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA;
| |
Collapse
|
3
|
Kabir AH, Thapa A, Hasan MR, Parvej MR. Local signal from Trichoderma afroharzianum T22 induces host transcriptome and endophytic microbiome leading to growth promotion in sorghum. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:7107-7126. [PMID: 39110656 DOI: 10.1093/jxb/erae340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/05/2024] [Indexed: 12/11/2024]
Abstract
Trichoderma, a highly abundant soil fungus, may benefit plants, yet it remains understudied in sorghum (Sorghum bicolor). In this study, sorghum plants were grown for 5 weeks in pots of soil with or without inoculation of T. afroharzianum T22. Inoculation with T. afroharzianum T22 significantly increased growth parameters and nutrient levels, demonstrating its beneficial role in sorghum. A split-root assay demonstrated that T. afroharzianum T22 is essential in both compartments of the pot for promoting plant growth, suggesting that local signals from this fungus drive symbiotic benefits in sorghum. RNA-seq analysis revealed that inoculation with T. afroharzianum T22 induced genes responsible for mineral transport (such as nitrate and aquaporin transporters), auxin response, sugar assimilation (hexokinase), and disease resistance (thaumatin) in sorghum roots. Microbial community analysis further unveiled the positive role of T. afroharzianum T22 in enriching Penicillium and Streptomyces while reducing disease-causing Fusarium in the roots. The microbial consortium, consisting of enriched microbiomes from bacterial and fungal communities, showed disrupted morphological features in plants inoculated with T. afroharzianum T22 in the absence of Streptomyces griseus. However, this disruption was not observed in the absence of Penicillium chrysogenum. These results indicate that S. griseus acts as a helper microbe in close association with T. afroharzianum T22 in the sorghum endosphere. This study provides the first comprehensive explanation of how T. afroharzianum T22 modulates host molecular determinants and endophytic helper microbes, thereby collectively promoting sorghum growth. These findings may facilitate the formulation of synthetic microbial inoculants dominated by T. afroharzianum T22 to enhance growth and stress resilience in sorghum and similar crops.
Collapse
Affiliation(s)
- Ahmad H Kabir
- School of Sciences, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Asha Thapa
- School of Sciences, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Md Rokibul Hasan
- School of Sciences, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Md Rasel Parvej
- Scott Research, Extension, and Education Center, School of Plant, Environmental, and Soil Sciences, Louisiana State University, Winnsboro, LA 71295, USA
| |
Collapse
|
4
|
Santos F, Melkani S, Oliveira-Paiva C, Bini D, Pavuluri K, Gatiboni L, Mahmud A, Torres M, McLamore E, Bhadha JH. Biofertilizer use in the United States: definition, regulation, and prospects. Appl Microbiol Biotechnol 2024; 108:511. [PMID: 39531072 PMCID: PMC11557716 DOI: 10.1007/s00253-024-13347-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 10/23/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
The increasing demand for sustainable food production has driven a surge in the use and commercialization of biological inputs, including biofertilizers. In this context, biofertilizers offer potential benefits for nutrient use efficiency, crop yield and sustainability. However, inconsistent definition of the term "biofertilizer" and regulations, particularly in the USA, hinder market growth and consumer confidence. While the European Union, and countries like Brazil, India, and China have made progress in this area, the USA market, projected to exceed $1 billion by 2029, lacks clear guidelines for biofertilizer production and sale. The USA market is dominated by Rhizobium genus, Mycorrhizae fungi, and Azospirillum species and based products targeting various crops. Although there is a growing and promising market for the use of biofertilizers, there are still many challenges to overcome, and to fully realize the potential of biofertilizers, future research should focus on modes of action, specific claims, and robust regulations that must be established. KEY POINTS: • The term "biofertilizer" lacks a universally accepted definition • It is necessary establishing a national regulation for biofertilizers in the USA • The biofertilizer market is growing fast and the biggest one is in America.
Collapse
Affiliation(s)
- Flavia Santos
- Soil, Water & Ecosystem Sciences Department, University of Florida, Belle Glade, FL, USA
- Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, Brazil
| | - Suraj Melkani
- Soil, Water & Ecosystem Sciences Department, University of Florida, Belle Glade, FL, USA
| | | | - Daniel Bini
- Embrapa Maize and Sorghum, Sete Lagoas, Minas Gerais, Brazil
| | - Kiran Pavuluri
- International Fertilizer Development Center, Muscle Shoals, AL, USA
| | - Luke Gatiboni
- North Carolina State Extension, North Carolina State University, Raleigh, NC, USA
| | - Anik Mahmud
- Soil, Water & Ecosystem Sciences Department, University of Florida, Belle Glade, FL, USA
| | - Maria Torres
- Plant and Environmental Sciences, Clemson University, Clemson, SC, USA
| | - Eric McLamore
- Agricultural Sciences, Clemson University, Clemson, SC, USA
- Environmental Engineering and Earth Sciences, Clemson University, Clemson, SC, USA
| | - Jehangir H Bhadha
- Soil, Water & Ecosystem Sciences Department, University of Florida, Belle Glade, FL, USA.
| |
Collapse
|
5
|
Vishnu, Sharma P, Kaur J, Gosal SK, Walia SS. Characterization of Sulfur Oxidizing Bacteria and Their Effect on Growth Promotion of Brassica napus L. J Basic Microbiol 2024:e2400239. [PMID: 39466970 DOI: 10.1002/jobm.202400239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 09/16/2024] [Accepted: 10/09/2024] [Indexed: 10/30/2024]
Abstract
Oil seeds sector is one of the major dynamic components of the agriculture world. Oil seeds such as canola (Brassica napus) require a higher quantity of sulfur (S), which is supplied through inorganic fertilizers. However, the overapplication of agro-chemicals to get higher yields of crops is harming the soil health. Therefore, the application of bacterial cultures with plant growth-promoting activity as biofertilizers ensures soil health maintenance and enhances crop productivity. To achieve this aim, the present research was initiated by procuring three sulfur-oxidizing bacteria (SOBs), namely, SOB 5, SOB 10, and SOB 38, from the Microbiology Department, PAU. In the initial assessment, all three SOB cultures showed resilience to pesticide toxicity at the recommended dosage, with the exception of ridomil. These cultures were later characterized morphologically, biochemically, and at the molecular level using 16s rRNA resulting in their identification as Enterobacter ludwigii strain Remi_9 (SOB 5), Enterobacter hormaechei strain AUH-ENM30 (SOB 10), and Bacillus sp. 5BM21Y12 (SOB 38). Functional characterization of these SOB cultures revealed their ability to exhibit multifarious plant growth-promoting traits. Bacillus sp. 5BM21Y12 showed greater functional activity, including high P solubilization (14.903 µg/mL), IAA production (44.28 µg/mL), siderophore production (13.89 µg/mL), sulfate ion production (0.127 mM), ammonia excretion (2.369 µg/mL), and Zn solubilization (22.62 mm). Based on the results of functional and molecular characterization, Bacillus sp. 5BM21Y12 was selected for field trials by formulating different treatments. Composite treatment, T8 (100% S + Bacillus sp. + pesticides) significantly enhanced growth parameters (plant height, root, and shoot biomass), yield attributes (siliqua length, test weight, number of siliqua/plant), yield parameter (total biomass and seed yield), quality parameter (crude protein and oil) as compared to all other sole treatments employed in the field. A combined application of non-pathogenic Bacillus sp. 5BM21Y12, with good functional activity enhanced yield of crop due to synergistic and additive interaction with fertilizer/pesticides. As biofertilizer application reduces the input of pesticides/fertilizers new inoculant formulations with cell protectors and the development of compatible pesticides should be searched to assure the benefits of integrated treatment.
Collapse
Affiliation(s)
- Vishnu
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Poonam Sharma
- Department of Plant Breeding and Genetics, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Jupinder Kaur
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Satwant Kaur Gosal
- Department of Microbiology, College of Basic Sciences and Humanities, Punjab Agricultural University, Ludhiana, Punjab, India
| | - Sohan Singh Walia
- School of Organic Farming, College of Agriculture, Punjab Agricultural University, Ludhiana, Punjab, India
| |
Collapse
|
6
|
Clagnan E, Costanzo M, Visca A, Di Gregorio L, Tabacchioni S, Colantoni E, Sevi F, Sbarra F, Bindo A, Nolfi L, Magarelli RA, Trupo M, Ambrico A, Bevivino A. Culturomics- and metagenomics-based insights into the soil microbiome preservation and application for sustainable agriculture. Front Microbiol 2024; 15:1473666. [PMID: 39526137 PMCID: PMC11544545 DOI: 10.3389/fmicb.2024.1473666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024] Open
Abstract
Soil health is crucial for global food production in the context of an ever-growing global population. Microbiomes, a combination of microorganisms and their activities, play a pivotal role by biodegrading contaminants, maintaining soil structure, controlling nutrients' cycles, and regulating the plant responses to biotic and abiotic stresses. Microbiome-based solutions along the soil-plant continuum, and their scaling up from laboratory experiments to field applications, hold promise for enhancing agricultural sustainability by harnessing the power of microbial consortia. Synthetic microbial communities, i.e., selected microbial consortia, are designed to perform specific functions. In contrast, natural communities leverage indigenous microbial populations that are adapted to local soil conditions, promoting ecosystem resilience, and reducing reliance on external inputs. The identification of microbial indicators requires a holistic approach. It is fundamental for current understanding the soil health status and for providing a comprehensive assessment of sustainable land management practices and conservation efforts. Recent advancements in molecular technologies, such as high-throughput sequencing, revealed the incredible diversity of soil microbiomes. On one hand, metagenomic sequencing allows the characterization of the entire genetic composition of soil microbiomes, and the examination of their functional potential and ecological roles; on the other hand, culturomics-based approaches and metabolic fingerprinting offer complementary information by providing snapshots of microbial diversity and metabolic activities both in and ex-situ. Long-term storage and cryopreservation of mixed culture and whole microbiome are crucial to maintain the originality of the sample in microbiome biobanking and for the development and application of microbiome-based innovation. This review aims to elucidate the available approaches to characterize diversity, function, and resilience of soil microbial communities and to develop microbiome-based solutions that can pave the way for harnessing nature's untapped resources to cultivate crops in healthy soils, to enhance plant resilience to abiotic and biotic stresses, and to shape thriving ecosystems unlocking the potential of soil microbiomes is key to sustainable agriculture. Improving management practices by incorporating beneficial microbial consortia, and promoting resilience to climate change by facilitating adaptive strategies with respect to environmental conditions are the global challenges of the future to address the issues of climate change, land degradation and food security.
Collapse
Affiliation(s)
- Elisa Clagnan
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
- Gruppo Ricicla Labs, Department of Agricultural and Environmental Sciences-Production, Landscape, Agroenergy (DiSAA), University of Milan, Milan, Italy
| | - Manuela Costanzo
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Andrea Visca
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Luciana Di Gregorio
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Silvia Tabacchioni
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Eleonora Colantoni
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Filippo Sevi
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Federico Sbarra
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
- Department of Life Sciences and System Biology (DBIOS), University of Turin, Turin, Italy
| | - Arianna Bindo
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
- Department of Agricultural, Forest and Food Sciences (DISAFA), University of Turin, Turin, Italy
| | - Lorenzo Nolfi
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
- Department of Agriculture and Forest Sciences, University of Tuscia, Viterbo, Italy
| | - Rosaria Alessandra Magarelli
- Sustainable AgriFood Systems Division, Department for Sustainability, Trisaia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Mario Trupo
- Sustainable AgriFood Systems Division, Department for Sustainability, Trisaia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Alfredo Ambrico
- Sustainable AgriFood Systems Division, Department for Sustainability, Trisaia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| | - Annamaria Bevivino
- Sustainable AgriFood Systems Division, Department for Sustainability, Casaccia Research Center, ENEA, Italian National Agency for New Technologies, Energy and Sustainable Economic Development, Rome, Italy
| |
Collapse
|
7
|
Abdelsattar AM, El-Esawi MA, Elsayed A, Heikal YM. Comparison between bacterial bio-formulations and gibberellic acid effects on Stevia rebaudiana growth and production of steviol glycosides through regulating their encoding genes. Sci Rep 2024; 14:24130. [PMID: 39406770 PMCID: PMC11480349 DOI: 10.1038/s41598-024-73470-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/17/2024] [Indexed: 10/19/2024] Open
Abstract
Stevia rebaudiana is associated with the production of calorie-free steviol glycosides (SGs) sweetener, receiving worldwide interest as a sugar substitute for people with metabolic disorders. The aim of this investigation is to show the promising role of endophytic bacterial strains isolated from Stevia rebaudiana Egy1 leaves as a biofertilizer integrated with Azospirillum brasilense ATCC 29,145 and gibberellic acid (GA3) to improve another variety of stevia (S. rebaudiana Shou-2) growth, bioactive compound production, expression of SGs involved genes, and stevioside content. Endophytic bacteria isolated from S. rebaudiana Egy1 leaves were molecularly identified and assessed in vitro for plant growth promoting (PGP) traits. Isolated strains Bacillus licheniformis SrAM2, Bacillus paralicheniformis SrAM3 and Bacillus paramycoides SrAM4 with accession numbers MT066091, MW042693 and MT066092, respectively, induced notable variations in the majority of PGP traits production. B. licheniformis SrAM2 revealed the most phytohormones and hydrogen cyanide (HCN) production, while B. paralicheniformis SrAM3 was the most in exopolysaccharides (EPS) and ammonia production 290.96 ± 10.08 mg/l and 88.92 ± 2.96 mg/ml, respectively. Treated plants significantly increased in performance, and the dual treatment T7 (B. paramycoides SrAM4 + A. brasilense) exhibited the highest improvement in shoot and root length by 200% and 146.7%, respectively. On the other hand, T11 (Bacillus cereus SrAM1 + B. licheniformis SrAM2 + B. paralicheniformis SrAM3 + B. paramycoides SrAM4 + A. brasilense + GA3) showed the most elevation in number of leaves, total soluble sugars (TSS), and up-regulation in the expression of the four genes ent-KO, UGT85C2, UGT74G1 and UGT76G1 at 2.7, 3.3, 3.4 and 3.7, respectively. In High-Performance Liquid Chromatography (HPLC) analysis, stevioside content showed a progressive increase in all tested samples but the maximum was exhibited by dual and co-inoculations at 264.37% and 289.05%, respectively. It has been concluded that the PGP endophytes associated with S. rebaudiana leaves improved growth and SGs production, implying the usability of these strains as prospective tools to improve important crop production individually or in consortium.
Collapse
Affiliation(s)
- Amal M Abdelsattar
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed A El-Esawi
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Ashraf Elsayed
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt
| | - Yasmin M Heikal
- Botany Department, Faculty of Science, Mansoura University, Mansoura, 35516, Egypt.
| |
Collapse
|
8
|
Kumar S, Sindhu SS. Drought stress mitigation through bioengineering of microbes and crop varieties for sustainable agriculture and food security. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100285. [PMID: 39512260 PMCID: PMC11542684 DOI: 10.1016/j.crmicr.2024.100285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024] Open
Abstract
Climate change and agriculture are intrinsically connected and sudden changes in climatic conditions adversely impact global food production and security. The climate change-linked abiotic stressors like drought and high temperatures are resulting in crop failure. The most severe abiotic stress drought significantly affect the stomatal closure, production of reactive oxygen species, transpiration, photosynthesis or other physiological processes and plant morphology, and adversely affect plant growth and crop yield. Therefore, there is an exigent need for cost effective and eco-friendly modern technologies to induce drought tolerance in crop plants leading to climate-adapted sustainable agricultural practices for sustained food production. Among many options being pursued in this regard, the use of plant growth promoting microbes (PGPMs) is the most sustainable approach to promote drought stress resilience in crop plants leading to better plant growth and crop productivity. These PGPMs confer drought resistance via various direct or indirect mechanisms including production of antioxidants, enzymes, exopolysaccharides, modulation of phytohormones level, osmotic adjustment by inducing the accumulation of sugars, along with increases in nutrients, water uptake and photosynthetic pigments. However, several technological and ecological challenges limit their use in agriculture and sometimes treatment with plant beneficial microbes fails to produce desired results under field conditions. Thus, development of synthetic microbial communities or host mediated microbiome engineering or development of transgenic plants with the capacity to express desired traits may promote plant survival and growth under drought stress conditions. The present review critically assesses research evidence on the plant growth and stress resilience promoting potentials of PGPMs and their genes as an approach to develop drought resilient plants leading to increased crop productivity. Effective collaboration among scientific communities, policymakers and regulatory agencies is needed to create strong frameworks that both promote and regulate the utilization of synthetic microbial communities and transgenic plants in agriculture.
Collapse
Affiliation(s)
- Satish Kumar
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| | - Satyavir Singh Sindhu
- Department of Microbiology, CCS Haryana Agricultural University, Hisar, 125004, India
| |
Collapse
|
9
|
John SA, Ray JG. Ecology and diversity of arbuscular mycorrhizal fungi (AMF) in rice (Oryza sativa L.) in South India: an ecological analysis of factors influencing AMF in rice fields. J Appl Microbiol 2024; 135:lxae256. [PMID: 39363206 DOI: 10.1093/jambio/lxae256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 09/10/2024] [Accepted: 10/02/2024] [Indexed: 10/05/2024]
Abstract
AIMS This study examined the diversity of arbuscular mycorrhizal fungi (AMF), mean spore density (MSD), and root colonization in relation to factors such as agroclimatic zones, rice varieties and soil types in paddy fields of South India. The aim was to understand how these factors influence AMF association in rice, facilitating their effective use as a biological tool in paddy cultivation. METHODS AND RESULTS AMF were identified through light microscopy of spores, while MSD and percentage-root-length colonization (PRLC) were measured using standard methods. Correlation and principal component analyses were performed to explore the interrelationships between AMF characteristics and various environmental, soil, and plant variables. Sixteen AMF species were identified across 29 rice varieties from three agroclimatic zones, 6 soil orders, and 18 soil series over 2 seasons. Notably, 70% of chemicalized rice fields lacked AMF spores, and only 50% exhibited root colonization. This study offers new insights into the role of AMF in rice cultivation. CONCLUSION The AMF diversity and root colonization in relation to environmental variables underscore their significant impact on AMF in particular crop fields.
Collapse
Affiliation(s)
- Sayona Anna John
- Laboratory of Ecology and Plant Science, School of Biosciences, Mahatma Gandhi University, Athirampuzha 686560, India
| | - Joseph George Ray
- School of Biosciences, Mahatma Gandhi University, Athirampuzha 686560, India
| |
Collapse
|
10
|
Rai S, Mago Y, Aggarwal G, Yadav A, Tewari S. Liquid Bioformulation: A Trending Approach Towards Achieving Sustainable Agriculture. Mol Biotechnol 2024; 66:2725-2750. [PMID: 37923941 DOI: 10.1007/s12033-023-00901-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 09/10/2023] [Indexed: 11/06/2023]
Abstract
The human population is expanding at an exponential rate, and has created a great surge in the demand for food production. To intensify the rate of crop production, there is a tremendous usage of chemical pesticides and fertilizers. The practice of using these chemicals to enhance crop productivity has resulted in the degradation of soil fertility, leading to the depletion of native soil microflora. The constant application of these hazardous chemicals in the soil possesses major threat to humans and animals thereby impacting the agroecosystem severely. Hence, it is very important to hunt for certain new alternatives for enhancing crop productivity in an eco-friendly manner by using the microbial bioformulations. Microbial bioformulations can be mainly divided into two types: solid and liquid. There is a lot of information available on the subject of solid bioformulation, but the concept of liquid bioformulation is largely ignored. This article focuses on the diverse spectrum of liquid bioformulation pertaining to the market capture, its different types, potency of the product, mode of usage, and the limitations encountered. Also the authors have tried to include all the strategies required for sensitizing and making liquid bioformulation approach cost effective and as a greener strategy to succeed in developing countries.
Collapse
Affiliation(s)
- Samaksh Rai
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Yashika Mago
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Geetika Aggarwal
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Anjali Yadav
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India
| | - Sakshi Tewari
- Department of Life Sciences, J.C. Bose University of Science and Technology, YMCA, NH-2, Sector-6, Mathura Road, Faridabad, Haryana, 121006, India.
| |
Collapse
|
11
|
Rodamilans B, Cheng X, Simón-Mateo C, García JA. Use of Bacterial Toxin-Antitoxin Systems as Biotechnological Tools in Plants. Int J Mol Sci 2024; 25:10449. [PMID: 39408779 PMCID: PMC11476816 DOI: 10.3390/ijms251910449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 09/19/2024] [Accepted: 09/25/2024] [Indexed: 10/20/2024] Open
Abstract
Toxin-antitoxin (TA) systems in bacteria are key regulators of the cell cycle and can activate a death response under stress conditions. Like other bacterial elements, TA modules have been widely exploited for biotechnological purposes in diverse applications, such as molecular cloning and anti-cancer therapies. However, their use in plants has been limited, leaving room for the development of new approaches. In this study, we examined two TA systems previously tested in plants, MazEF and YefM-YoeB, and identified interesting differences between them, likely related to their modes of action. We engineered modifications to these specific modules to transform them into molecular switches that can be activated by a protease, inducing necrosis in the plant cells where they are expressed. Finally, we demonstrated the antiviral potential of the modified TA modules by using, as a proof-of-concept, the potyvirus plum pox virus as an activator of the death phenotype.
Collapse
Affiliation(s)
- Bernardo Rodamilans
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain; (C.S.-M.); (J.A.G.)
| | - Xiaofei Cheng
- College of Plant Protection, Northeast Agricultural University, Harbin 150030, China;
| | - Carmen Simón-Mateo
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain; (C.S.-M.); (J.A.G.)
| | - Juan Antonio García
- Centro Nacional de Biotecnología (CNB-CSIC), Campus Universidad Autónoma de Madrid, Darwin 3, 28049 Madrid, Spain; (C.S.-M.); (J.A.G.)
| |
Collapse
|
12
|
Plocek G, Rueda Kunz D, Simpson C. Impacts of Bacillus amyloliquefaciens and Trichoderma spp. on Pac Choi ( Brassica rapa var. chinensis) grown in different hydroponic systems. FRONTIERS IN PLANT SCIENCE 2024; 15:1438038. [PMID: 39376233 PMCID: PMC11456494 DOI: 10.3389/fpls.2024.1438038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 09/09/2024] [Indexed: 10/09/2024]
Abstract
Soilless production systems (i.e hydroponics, aeroponics, aquaponics) have become commonplace in urban settings and controlled environments. They are efficient nutrient recyclers, space savers, and water conservers. However, they lack high levels of biological richness in the root microbiome when compared to soil production systems, which may affect plant health and nutrient uptake. To address this issue and incorporate more sustainable practices, beneficial microorganisms (i.e. Trichoderma spp., Bacillus sp.) can be added in the form of biofertilizers. However, many factors affect impacts of microorganisms and their interactions with plants. In this experiment, Black Summer Pac Choi (Brassica rapa var. Chinensis) was grown for two trials in a Deep-Water system (DWS) or a Nutrient Film Technique system (NFT) with commercial biofertilizers containing Trichoderma spp., Bacillus amyloliquefaciens, a combination of both, and a control. Plant physiology, nutrient composition, and nutrient uptake efficiency (NUE) were generally negatively affected by Trichoderma spp. both growing systems, indicating that Trichoderma may not be recommended for hydroponic production. However, Bacillus amyloliquefaciens showed promise as an effective biofertilizer in the NFT systems and had a positive influence on NUE in DWS.
Collapse
Affiliation(s)
| | | | - Catherine Simpson
- Urban Horticulture and Sustainability Laboratory, Texas Tech University, Plant and Soil
Science, Lubbock, TX, United States
| |
Collapse
|
13
|
Sharma P, Pandey R, Chauhan NS. Unveiling wheat growth promotion potential of phosphate solubilizing Pantoea agglomerans PS1 and PS2 through genomic, physiological, and metagenomic characterizations. Front Microbiol 2024; 15:1467082. [PMID: 39318437 PMCID: PMC11420927 DOI: 10.3389/fmicb.2024.1467082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 08/19/2024] [Indexed: 09/26/2024] Open
Abstract
Introduction Phosphorus is an abundant element in the earth's crust and is generally found as complex insoluble conjugates. Plants cannot assimilate insoluble phosphorus and require external supplementation as chemical fertilizers to achieve a good yield. Continuous use of fertilizers has impacted soil ecology, and a sustainable solution is needed to meet plant elemental requirements. Phosphate solubilizing microbes could enhance phosphorus bioavailability for better crop production and can be employed to attain sustainable agriculture practices. Methods The current study unveils the biofertilizer potential of wheat rhizospheric bacteria through physiological, taxonomic, genomic, and microbiomics experimentations. Results and Discussion Culture-dependent exploration identified phosphate-solubilizing PS1 and PS2 strains from the wheat rhizosphere. These isolates were rod-shaped, gram-negative, facultative anaerobic bacteria, having optimum growth at 37°C and pH 7. Phylogenetic and phylogenomic characterization revealed their taxonomic affiliation as Pantoea agglomerans subspecies PS1 & PS2. Both isolates exhibited good tolerance against saline (>10% NaCl (w/v), >11.0% KCl (w/v), and >6.0% LiCl (w/v)), oxidizing (>5.9% H2O2 (v/v)) conditions. PS1 and PS2 genomes harbor gene clusters for biofertilization features, root colonization, and stress tolerance. PS1 and PS2 showed nitrate reduction, phosphate solubilization, auxin production, and carbohydrate utilization properties. Treatment of seeds with PS1 and PS2 significantly enhanced seed germination percentage (p = 0.028 and p = 0.008, respectively), number of tillers (p = 0.0018), number of leaves (p = 0.0001), number of spikes (p = 0.0001) and grain production (p = 0.0001). Wheat rhizosphere microbiota characterizations indicated stable colonization of PS1 and PS2 strains in treated seeds at different feek stages. Pretreatment of seeds with both strains engineered the wheat rhizosphere microbiota by recruiting plant growth-promoting microbial groups. In vitro, In vivo, and microbiota characterization studies indicated the biofertilizer potential of Pantoea sp. PS1 & PS2 to enhance wheat crop production. The employment of these strains could fulfill plant nutrient requirements and be a substitute for chemical fertilizers for sustainable agriculture.
Collapse
Affiliation(s)
- Pinki Sharma
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Rajesh Pandey
- INtegrative GENomics of HOst-PathogEn (INGEN-HOPE) Laboratory, CSIR-Institute of Genomics and Integrative Biology (CSIR-IGIB), Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, India
| | - Nar Singh Chauhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| |
Collapse
|
14
|
Kaur R, Gupta S, Tripathi V, Bharadwaj A. Unravelling the secrets of soil microbiome and climate change for sustainable agroecosystems. Folia Microbiol (Praha) 2024:10.1007/s12223-024-01194-9. [PMID: 39249146 DOI: 10.1007/s12223-024-01194-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/20/2024] [Indexed: 09/10/2024]
Abstract
The soil microbiota exhibits an important function in the ecosystem, and its response to climate change is of paramount importance for sustainable agroecosystems. The macronutrients, micronutrients, and additional constituents vital for the growth of plants are cycled biogeochemically under the regulation of the soil microbiome. Identifying and forecasting the effect of climate change on soil microbiomes and ecosystem services is the need of the hour to address one of the biggest global challenges of the present time. The impact of climate change on the structure and function of the soil microbiota is a major concern, explained by one or more sustainability factors around resilience, reluctance, and rework. However, the past research has revealed that microbial interventions have the potential to regenerate soils and improve crop resilience to climate change factors. The methods used therein include using soil microbes' innate capacity for carbon sequestration, rhizomediation, bio-fertilization, enzyme-mediated breakdown, phyto-stimulation, biocontrol of plant pathogens, antibiosis, inducing the antioxidative defense pathways, induced systemic resistance response (ISR), and releasing volatile organic compounds (VOCs) in the host plant. Microbial phytohormones have a major role in altering root shape in response to exposure to drought, salt, severe temperatures, and heavy metal toxicity and also have an impact on the metabolism of endogenous growth regulators in plant tissue. However, shelf life due to the short lifespan and storage time of microbial formulations is still a major challenge, and efforts should be made to evaluate their effectiveness in crop growth based on climate change. This review focuses on the influence of climate change on soil physico-chemical status, climate change adaptation by the soil microbiome, and its future implications.
Collapse
Affiliation(s)
- Rasanpreet Kaur
- Department of Biotechnology, IAH, GLA University, Mathura, India
- Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, 781039, India
| | - Saurabh Gupta
- Department of Biotechnology, IAH, GLA University, Mathura, India.
| | - Vishal Tripathi
- Department of Biotechnology, Graphic Era (Deemed to Be University), Dehradun, 248002, Uttarakhand, India.
| | - Alok Bharadwaj
- Department of Biotechnology, IAH, GLA University, Mathura, India
| |
Collapse
|
15
|
Sen A, Saha N, Sarkar A, Poddar R, Pramanik K, Samanta A. Assessing the effectiveness of indigenous phosphate-solubilizing bacteria in mitigating phosphorus fixation in acid soils. 3 Biotech 2024; 14:197. [PMID: 39131174 PMCID: PMC11310379 DOI: 10.1007/s13205-024-04042-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 07/31/2024] [Indexed: 08/13/2024] Open
Abstract
Phosphorus (P) is the key to several structural molecules and catalyzes numerous biochemical reactions in plant body besides its involvement in energy transfer. Any deficit in P availability is likely to result in reduced RNA and protein content, inhibiting crop growth and development. Thus, availability of soil P is extremely crucial for plant growth especially in acid soils of India, where most of the fraction is bound to solid phase rendering their availability. The present communication deals with the isolation of elite phosphate-solubilizing bacterial (PSB) strains from the acid soils to work out their ability to improve the fertilizer P use efficiency in the acidic environment. Initially twenty-six bacteria were isolated from the acid soils of Northeastern India. Among them, ten bacteria were selected based on formation of halo zone in the Pikovskaya agar plate. In addition, these bacteria were able to solubilize insoluble zinc (Zn) and potassium (K). The isolates were subject to in vitro optimization for P solubilization under different insoluble P source utilization and at different pH and salinity conditions. Strains AN3, AN11, and AN21 exhibited significant solubilization of insoluble P, Zn, and K, and were identified as Streptomyces sp., Enterobacter sp., and Paraburkholderia caribensis. These three bacteria solubilized 206.53 to 254.08 µg mL-1 P, 79.7 to 177.55 µg mL-1 Zn, and 0.96 to 1.56 µg mL-1 K from insoluble minerals. Their performance was further evaluated in pot culture experiment using green gram as test crop. These three bacteria were found to improve P uptake and dry matter accumulation in green gram plant substantially. Seed bio-priming with the PSB strains enhanced the efficiency of added P fertilizer, resulting in a 1.40 to 1.52 times higher effectiveness compared to the control. On the whole, AN11 may be ranked as best inoculant for the acidic soils of Northeastern India. Supplementary Information The online version contains supplementary material available at 10.1007/s13205-024-04042-2.
Collapse
Affiliation(s)
- Arup Sen
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia India
| | - Niharendu Saha
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia India
| | - Arindam Sarkar
- Regional Research Station (R and L Zone), Bidhan Chandra Krishi Viswavidyalaya, Kadamkanan, Jhargram India
| | - Ratneswar Poddar
- Department of Agronomy, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia India
| | - Krishnendu Pramanik
- Department of Agricultural Biotechnology, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia India
| | - Anwesha Samanta
- Department of Agricultural Chemistry and Soil Science, Bidhan Chandra Krishi Viswavidyalaya, Mohanpur, Nadia India
| |
Collapse
|
16
|
González-Mancilla A, Almaraz-Suárez JJ, Ferrera-Cerrato R, Rodríguez-Guzmán MDP, Taboada-Gaytán OR. Photosynthetic activity and growth of poblano pepper biofertilized with plant growth promoting rhizobacteria and arbuscular mycorrhizal fungi. CURRENT RESEARCH IN MICROBIAL SCIENCES 2024; 7:100269. [PMID: 39545204 PMCID: PMC11562540 DOI: 10.1016/j.crmicr.2024.100269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024] Open
Abstract
The rhizosphere of plants are natural hosts for beneficial microorganisms such as plant growth-promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF). The objective of this work was to determine the effect of a consortium of AMF and three strains of PGPR on growth, gas exchange and phosphorus content in poblano pepper plants. An experiment was established in a completely randomized design with factorial arrangement, with two factors: AMF [Funneliformis geosporum and Claroideoglomus sp. (AM) and without AM (WM)] and PGPR [Rhizobium nepotum (B1), Serratia plymuthica (B2), Pseudomonas tolaasii (B3) and without PGPR (WB)]; generating eight treatments: T1) AM+B1, T2) AM+B2, T3) AM+B3, T4) AM+WB, T5) WM+B1, T6) WM+B2, T7) WM+B3 and T8) WM+WB. Plant height, number of leaves, leaf area, number of flowers, dry biomass, phosphorus content and AMF colonization were measured; internal CO2 concentration (Ci), transpiration rate (E), stomatal conductance (gS) and photosynthesis rate (Pn) were determined in leaves. Co-inoculation with AM+B3 promoted greater height (35%), number of leaves (66%), leaf area (62%), dry biomass (140%), phosphorus content (195%) and mycorrhizal colonization (26%); AM+B2 improved Ci (5%), E (8%), gS (5%) and Pn (9%) in poblano pepper leaves, compared to the control treatment (WM+WB). Biofertilization with AMF and PGPR improved gas exchange and growth of poblano pepper.
Collapse
Affiliation(s)
- Apolinar González-Mancilla
- Colegio de Postgraduados-Campus Montecillo, Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México, CP 56230, Mexico
- Facultad de Agricultura y Zootecnia, Universidad Juárez del Estado de Durango, Carretera Gómez Palacio-Tlahualilo km 28, Ejido Venecia, Gómez Palacio, Durango, Mexico, CP 35111
| | - Juan José Almaraz-Suárez
- Colegio de Postgraduados-Campus Montecillo, Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México, CP 56230, Mexico
| | - Ronald Ferrera-Cerrato
- Colegio de Postgraduados-Campus Montecillo, Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México, CP 56230, Mexico
| | - María del Pilar Rodríguez-Guzmán
- Colegio de Postgraduados-Campus Montecillo, Carretera México-Texcoco km 36.5, Montecillo, Texcoco, Estado de México, CP 56230, Mexico
| | - Oswaldo Rey Taboada-Gaytán
- Colegio de Postgraduados-Campus Puebla. Boulevard Forjadores de Puebla núm, 205. Santiago Momoxpan, San Pedro Cholula, Puebla, Mexico, CP 72760
| |
Collapse
|
17
|
Alam MZ, Dey (Roy) M. The reduction of abiotic stress in food crops through climate-smart mycorrhiza-enriched biofertilizer. AIMS Microbiol 2024; 10:674-693. [PMID: 39219755 PMCID: PMC11362269 DOI: 10.3934/microbiol.2024031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 09/04/2024] Open
Abstract
Climate change enhances stress in food crops. Recently, abiotic stress such as metalloid toxicity, salinity, and drought have increased in food crops. Mycorrhizal fungi can accumulate several nutrients within their hyphae through a symbiotic relationship and release them to cells in the root of the food crops under stress conditions. We have studied arbuscular mycorrhizal fungi (AMF)-enriched biofertilizers as a climate-smart technology option to increase safe and healthy food production under abiotic stress. AMF such as Glomus sp., Rhizophagus sp., Acaulospora morrowiae, Paraglomus occultum, Funneliformis mosseae, and Claroideoglomus etunicatum enhance growth and yield in food crops grown in soils under abiotic stress. AMF also works as a bioremediation material in food crops grown in soil. More precisely, the arsenic concentrations in grains decrease by 57% with AMF application. In addition, AMF increases mineral contents, and antioxidant activities under drought and salinity stress in food crops. Catalase (CAT) and ascorbate peroxidase (APX) increased by 45% and 70% in AMF-treated plants under drought stress. AMF-enriched biofertilizers are used in crop fields like precision agriculture to reduce the demand for chemical fertilizers. Subsequently, AMF-enriched climate-smart biofertilizers increase nutritional quality by reducing abiotic stress in food crops grown in soils. Consequently, a climate resilience environment might be developed using AMF-enriched biofertilizers for sustainable livelihood.
Collapse
Affiliation(s)
- Mohammad Zahangeer Alam
- Department of Environmental Science, Faculty of Agriculture, Bangabandhu Sheikh Mujibur Rahman Agricultural University (BSMRAU), Gazipur-1706, Bangladesh
| | - Malancha Dey (Roy)
- Progyan Foundation for Research and Innovation (PFRI), Research Organ of the South Asian Forum for Environment (SAFE), India
| |
Collapse
|
18
|
Xing Y, Wang X. Impact of Agricultural Activities on Climate Change: A Review of Greenhouse Gas Emission Patterns in Field Crop Systems. PLANTS (BASEL, SWITZERLAND) 2024; 13:2285. [PMID: 39204720 PMCID: PMC11360188 DOI: 10.3390/plants13162285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2024] [Revised: 08/13/2024] [Accepted: 08/16/2024] [Indexed: 09/04/2024]
Abstract
This review paper synthesizes the current understanding of greenhouse gas (GHG) emissions from field cropping systems. It examines the key factors influencing GHG emissions, including crop type, management practices, and soil conditions. The review highlights the variability in GHG emissions across different cropping systems. Conventional tillage systems generally emit higher levels of carbon dioxide (CO2) and nitrous oxide (N2O) than no-till or reduced tillage systems. Crop rotation, cover cropping, and residue management can significantly reduce GHG emissions by improving soil carbon sequestration and reducing nitrogen fertilizer requirements. The paper also discusses the challenges and opportunities for mitigating GHG emissions in field cropping systems. Precision agriculture techniques, such as variable rate application of fertilizers and water, can optimize crop production while minimizing environmental impacts. Agroforestry systems, which integrate trees and crops, offer the potential for carbon sequestration and reducing N2O emissions. This review provides insights into the latest research on GHG emissions from field cropping systems and identifies areas for further study. It emphasizes the importance of adopting sustainable management practices to reduce GHG emissions and enhance the environmental sustainability of agricultural systems.
Collapse
Affiliation(s)
| | - Xiukang Wang
- Key Laboratory of Applied Ecology of Loess Plateau, College of Life Science, Yan’an University, Yan’an 716000, China;
| |
Collapse
|
19
|
Babinska-Wensierska W, Motyka-Pomagruk A, Fondi M, Misztak AE, Mengoni A, Lojkowska E. Differences in the constituents of bacterial microbiota of soils collected from two fields of diverse potato blackleg and soft rot diseases incidences, a case study. Sci Rep 2024; 14:18802. [PMID: 39138329 PMCID: PMC11322387 DOI: 10.1038/s41598-024-69213-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
The presence of bacteria from the Dickeya spp. and Pectobacterium spp. in farmlands leads to global crop losses of over $420 million annually. Since 1982, the scientists have started to suspect that the development of disease symptoms in crops might be inhibited by bacteria present in the soil. Here, we characterized in terms of physicochemical properties and the composition of bacterial soil microbiota two fields differing, on the basis of long-term studies, in the occurrence of Dickeya spp.- and Pectobacterium spp.-triggered infections. Majority, i.e. 17 of the investigated physicochemical features of the soils collected from two fields of either low or high potato blackleg and soft rot diseases incidences turned out to be similar, in contrast to the observed 4 deviations in relation to Mg, Mn, organic C and organic substance contents. By performing microbial cultures and molecular diagnostics-based identification, 20 Pectobacterium spp. strains were acquired from the field showing high blackleg and soft rot incidences. In addition, 16S rRNA gene amplicon sequencing followed by bioinformatic analysis revealed differences at various taxonomic levels in the soil bacterial microbiota of the studied fields. We observed that bacteria from the genera Bacillus, Rumeliibacillus, Acidobacterium and Gaiella turned out to be more abundant in the soil samples originating from the field of low comparing to high frequency of pectinolytic bacterial infections. In the herein presented case study, it is shown for the first time that the composition of bacterial soil microbiota varies between two fields differing in the incidences of soft rot and blackleg infections.
Collapse
Affiliation(s)
- Weronika Babinska-Wensierska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307, Gdansk, Poland
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824, Gdansk, Poland
| | - Agata Motyka-Pomagruk
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307, Gdansk, Poland
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824, Gdansk, Poland
| | - Marco Fondi
- Laboratorio di Genetica Microbica, Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, Florence, Italy
| | - Agnieszka Emilia Misztak
- Génétique et Physiologie des Microalgues, InBioS/Phytosystems, Institut de Botanique, Université de Liège, Place du 20 Août 7, 4000, Liège, Belgium
| | - Alessio Mengoni
- Laboratorio di Genetica Microbica, Department of Biology, University of Florence, Via Madonna del Piano 6, Sesto Fiorentino, Florence, Italy
| | - Ewa Lojkowska
- Laboratory of Plant Protection and Biotechnology, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, University of Gdansk, 58 Abrahama, 80-307, Gdansk, Poland.
- Research and Development Laboratory, Intercollegiate Faculty of Biotechnology, University of Gdansk and Medical University of Gdansk, University of Gdansk, 20 Podwale Przedmiejskie, 80-824, Gdansk, Poland.
| |
Collapse
|
20
|
Rowińska P, Gutarowska B, Janas R, Szulc J. Biopreparations for the decomposition of crop residues. Microb Biotechnol 2024; 17:e14534. [PMID: 39109491 PMCID: PMC11304075 DOI: 10.1111/1751-7915.14534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 07/10/2024] [Indexed: 08/10/2024] Open
Abstract
Recently, there has been growing interest in biopreparations that intensify the decomposition of crop residues. These preparations can promote nutrient cycling and soil fertility, ultimately supporting healthy plant growth and increasing agricultural productivity. However, the development and commercialization of biopreparations poses unique challenges. Producers of biopreparations struggle to develop highly effective preparations, which then face regulatory hurdles and must win market acceptance. This literature review provides up-to-date data on microbial preparations available commercially on the European market, along with information on current relevant regulations. Challenges for the development and commercialization of new biopreparations are also discussed. The development and commercialization of biopreparations require a comprehensive approach that addresses the complex interplay of microbial and environmental factors. The need for more specific regulations on biopreparations for decomposing crop residues, clearer instructions on their use, and further research on the overall impact of biopreparations on the soil metabolome and optimal conditions for their application were indicated. Moreover, manufacturers should prioritize the development of high-quality products that meet the needs of farmers and address concerns about environmental impact and public acceptance.
Collapse
Affiliation(s)
- Patrycja Rowińska
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food SciencesLodz University of TechnologyŁódźPoland
- Interdisciplinary Doctoral SchoolLodz University of TechnologyŁódźPoland
| | - Beata Gutarowska
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food SciencesLodz University of TechnologyŁódźPoland
| | - Regina Janas
- National Institute of Horticultural ResearchSkierniewicePoland
| | - Justyna Szulc
- Department of Environmental Biotechnology, Faculty of Biotechnology and Food SciencesLodz University of TechnologyŁódźPoland
| |
Collapse
|
21
|
Amerian M, Palangi A, Gohari G, Ntatsi G. Humic acid and grafting as sustainable agronomic practices for increased growth and secondary metabolism in cucumber subjected to salt stress. Sci Rep 2024; 14:15883. [PMID: 38987579 PMCID: PMC11237161 DOI: 10.1038/s41598-024-66677-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/03/2024] [Indexed: 07/12/2024] Open
Abstract
Salinity stress poses a significant treat to crop yields and product quality worldwide. Application of a humic acid bio stimulant and grafting onto tolerant rootstocks can both be considered sustainable agronomic practices that can effectively ameliorate the negative effects of salinity stress. This study aimed to assess the above mentioned ameliorative effects of both practices on cucumber plants subjected to saline environments. To attain this goal a factorial experiment was carried out in the form of a completely randomized design with three replications. The three factors considered were (a) three different salinity levels (0, 5, and 10 dS m-1 of NaCl), (b) foliar application of humic acid at three levels (0, 100, and 200 mg L-1), and (c) both grafted and ungrafted plants. Vegetative traits including plant height, fresh and dry weight and number of leaf exhibited a significant decrease under increasing salinity stress. However, the application of humic acid at both levels mitigated these effects compared to control plants. The reduction in relative water content (RWC) of the leaf caused by salinity, was compensated by the application of humic acid and grafting. Thus, the highest RWC (86.65%) was observed in grafting plants with 0 dS m-1 of NaCl and 20 mg L-1 of humic acid. Electrolyte leakage (EL) increased under salinity stress, but the application of humic acid and grafting improved this trait and the lowest amount of EL (26.95%) was in grafting plants with 0 dS m-1 of NaCl and 20 mg L-1 of humic acid. The highest amount of catalase (0.53 mmol H2O2 g-1 fw min-1) and peroxidase (12.290 mmol H2O2 g-1 fw min-1) enzymes were observed in the treatment of 10 dS m-1 of NaCl and 200 mg L-1 humic acid. The highest amount of total phenol (1.99 mg g-1 FW), total flavonoid (0.486 mg g-1 FW), total soluble carbohydrate (30.80 mg g-1 FW), soluble protein (34.56 mg g-1 FW), proline (3.86 µg g-1 FW) was in grafting plants with 0 dS m-1 of NaCl and 200 mg L-1 of humic acid. Phenolic acids and phenylalanine ammonia lyase (PAL) and polyphenol oxidase (PPO) enzymes increased with increasing salinity and humic acid levels. Contrary to humic acid, salt stress increased the sodium (Na+) and chlorine (Cl-) and decreased the amount of potassium (K+) and calcium (Ca2+) in the root and leaf of ungrafted cucumber. However, the application 200 mg L-1 humic acid appeared to mitigate these effects, thereby suggesting a potential role in moderating physiological processes and improving growth of cucumber plants subjected to salinity stress. According to the obtained results, spraying of humic acid (200 mg L-1) and the use of salt resistant rootstocks are recommended to increase tolerance to salt stress in cucumber. These results, for the first time, clearly demonstrated that fig leaf gourd a new highly salt-tolerant rootstock, enhances salt tolerance and improves yield and quality of grafted cucumber plants by reducing sodium transport to the shoot and increasing the amount of compatible osmolytes.
Collapse
Affiliation(s)
- Masoomeh Amerian
- Department of Horticultural Sciences and Engineering, Faculty of Agricultural Sciences and Engineering, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran.
| | - Amir Palangi
- Department of Horticultural Sciences and Engineering, Faculty of Agricultural Sciences and Engineering, Campus of Agriculture and Natural Resources, Razi University, Kermanshah, Iran
| | - Gholamreza Gohari
- Department of Horticultural Sciecne, Faculty of Agriculture, University of Maragheh, Maragheh, Iran
| | - Georgia Ntatsi
- Department of Crop Science, Laboratory of Vegetable Crops, Agricultural University of Athens, Athens, Greece
| |
Collapse
|
22
|
Aso RE, Obuekwe IS. Polycyclic aromatic hydrocarbon: underpinning the contribution of specialist microbial species to contaminant mitigation in the soil. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:654. [PMID: 38913190 DOI: 10.1007/s10661-024-12778-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 06/06/2024] [Indexed: 06/25/2024]
Abstract
The persistence of PAHs poses a significant challenge for conventional remediation approaches, necessitating the exploration of alternative, sustainable strategies for their mitigation. This review underscores the vital role of specialized microbial species (nitrogen-fixing, phosphate-solubilizing, and biosurfactant-producing bacteria) in tackling the environmental impact of polycyclic aromatic hydrocarbons (PAHs). These resistant compounds demand innovative remediation strategies. The study explores microbial metabolic capabilities for converting complex PAHs into less harmful byproducts, ensuring sustainable mitigation. Synthesizing literature from 2016 to 2023, it covers PAH characteristics, sources, and associated risks. Degradation mechanisms by bacteria and fungi, key species, and enzymatic processes are examined. Nitrogen-fixing and phosphate-solubilizing bacteria contributions in symbiotic relationships with plants are highlighted. Biosurfactant-producing bacteria enhance PAH solubility, expanding microbial accessibility for degradation. Cutting-edge trends in omics technologies, synthetic biology, genetic engineering, and nano-remediation offer promising avenues. Recommendations emphasize genetic regulation, field-scale studies, sustainability assessments, interdisciplinary collaboration, and knowledge dissemination. These insights pave the way for innovative, sustainable PAH-contaminated environment restoration.
Collapse
Affiliation(s)
- Rufus Emamoge Aso
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin, Edo State, Nigeria
| | - Ifeyinwa Sarah Obuekwe
- Department of Microbiology, Faculty of Life Sciences, University of Benin, Benin, Edo State, Nigeria.
| |
Collapse
|
23
|
Hilário S, Gonçalves MFM, Matos I, Rangel LF, Sousa JA, Santos MJ, Ayra-Pardo C. Comparative genomics reveals insights into the potential of Lysinibacillus irui as a plant growth promoter. Appl Microbiol Biotechnol 2024; 108:370. [PMID: 38861018 PMCID: PMC11166776 DOI: 10.1007/s00253-024-13210-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 05/23/2024] [Accepted: 05/28/2024] [Indexed: 06/12/2024]
Abstract
Members of the genus Lysinibacillus attract attention for their mosquitocidal, bioremediation, and plant growth-promoting abilities. Despite this interest, comprehensive studies focusing on genomic traits governing plant growth and stress resilience in this genus using whole-genome sequencing are still scarce. Therefore, we sequenced and compared the genomes of three endophytic Lysinibacillus irui strains isolated from Canary Island date palms with the ex-type strain IRB4-01. Overall, the genomes of these strains consist of a circular chromosome with an average size of 4.6 Mb and a GC content of 37.2%. Comparative analysis identified conserved gene clusters within the core genome involved in iron acquisition, phosphate solubilization, indole-3-acetic acid biosynthesis, and volatile compounds. In addition, genome analysis revealed the presence of genes encoding carbohydrate-active enzymes, and proteins that confer resistance to oxidative, osmotic, and salinity stresses. Furthermore, pathways of putative novel bacteriocins were identified in all genomes. This illustrates possible common plant growth-promoting traits shared among all strains of L. irui. Our findings highlight a rich repertoire of genes associated with plant lifestyles, suggesting significant potential for developing inoculants to enhance plant growth and resilience. This study is the first to provide insights into the overall genomic signatures and mechanisms of plant growth promotion and biocontrol in the genus Lysinibacillus. KEY POINTS: • Pioneer study in elucidating plant growth promoting in L. irui through comparative genomics. • Genome mining identified biosynthetic pathways of putative novel bacteriocins. • Future research directions to develop L. irui-based biofertilizers for sustainable agriculture.
Collapse
Affiliation(s)
- Sandra Hilário
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal.
- GreenUPorto, Sustainable Agrifood Production Research Centre/Inov4Agro, DGAOT, Faculty of Sciences, University of Porto, Campus de Vairão, 747, 4485-646, Vila do Conde, Portugal.
| | - Micael F M Gonçalves
- Department of Biology, Centre for Environmental and Marine Studies (CESAM), University of Aveiro, Campus Universitário de Santiago, 3810-193, Aveiro, Portugal
| | - Inês Matos
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
| | - Luis F Rangel
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
| | - José A Sousa
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, FC4, 4169-007, Porto, Portugal
| | - Maria J Santos
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal
- Biology Department, Faculty of Sciences, University of Porto, Rua do Campo Alegre, s/n, FC4, 4169-007, Porto, Portugal
| | - Camilo Ayra-Pardo
- Interdisciplinary Centre of Marine and Environmental Research, CIIMAR, Terminal de Cruzeiros do Porto de Leixões, Av. General Norton de Matos s/n, 4450-208, Porto, Portugal.
| |
Collapse
|
24
|
Verma KK, Joshi A, Song XP, Liang Q, Xu L, Huang HR, Wu KC, Seth CS, Arora J, Li YR. Regulatory mechanisms of plant rhizobacteria on plants to the adaptation of adverse agroclimatic variables. FRONTIERS IN PLANT SCIENCE 2024; 15:1377793. [PMID: 38855463 PMCID: PMC11157439 DOI: 10.3389/fpls.2024.1377793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Accepted: 05/07/2024] [Indexed: 06/11/2024]
Abstract
The mutualistic plant rhizobacteria which improve plant development and productivity are known as plant growth-promoting rhizobacteria (PGPR). It is more significant due to their ability to help the plants in different ways. The main physiological responses, such as malondialdehyde, membrane stability index, relative leaf water content, photosynthetic leaf gas exchange, chlorophyll fluorescence efficiency of photosystem-II, and photosynthetic pigments are observed in plants during unfavorable environmental conditions. Plant rhizobacteria are one of the more crucial chemical messengers that mediate plant development in response to stressed conditions. The interaction of plant rhizobacteria with essential plant nutrition can enhance the agricultural sustainability of various plant genotypes or cultivars. Rhizobacterial inoculated plants induce biochemical variations resulting in increased stress resistance efficiency, defined as induced systemic resistance. Omic strategies revealed plant rhizobacteria inoculation caused the upregulation of stress-responsive genes-numerous recent approaches have been developed to protect plants from unfavorable environmental threats. The plant microbes and compounds they secrete constitute valuable biostimulants and play significant roles in regulating plant stress mechanisms. The present review summarized the recent developments in the functional characteristics and action mechanisms of plant rhizobacteria in sustaining the development and production of plants under unfavorable environmental conditions, with special attention on plant rhizobacteria-mediated physiological and molecular responses associated with stress-induced responses.
Collapse
Affiliation(s)
- Krishan K. Verma
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Abhishek Joshi
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Xiu-Peng Song
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Qiang Liang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Lin Xu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Hai-rong Huang
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | - Kai-Chao Wu
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| | | | - Jaya Arora
- Department of Botany, Mohanlal Sukhadia University, Udaipur, Rajasthan, India
| | - Yang-Rui Li
- Sugarcane Research Institute, Guangxi Academy of Agricultural Sciences/Key Laboratory of Sugarcane Biotechnology and Genetic Improvement (Guangxi), Ministry of Agriculture and Rural Affairs/Guangxi Key Laboratory of Sugarcane Genetic Improvement, Nanning, China
| |
Collapse
|
25
|
Ganesh J, Hewitt K, Devkota AR, Wilson T, Kaundal A. IAA-producing plant growth promoting rhizobacteria from Ceanothus velutinus enhance cutting propagation efficiency and Arabidopsis biomass. FRONTIERS IN PLANT SCIENCE 2024; 15:1374877. [PMID: 38807777 PMCID: PMC11131947 DOI: 10.3389/fpls.2024.1374877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/23/2024] [Indexed: 05/30/2024]
Abstract
Climate-induced drought impacts plant growth and development. Recurring droughts increase the demand for water for food production and landscaping. Native plants in the Intermountain West region of the US are of keen interest in low water use landscaping as they are acclimatized to dry and cold environments. These native plants do very well at their native locations but are difficult to propagate in landscape. One of the possible reasons is the lack of associated microbiome in the landscaping. Microbiome in the soil contributes to soil health and impacts plant growth and development. Here, we used the bulk soil from the native plant Ceanothus velutinus (snowbrush ceanothus) as inoculant to enhance its propagation. Snowbrush ceanothus is an ornamental plant for low-water landscaping that is hard to propagate asexually. Using 50% native bulk soil as inoculant in the potting mix significantly improved the survival rate of the cuttings compared to no-treated cuttings. Twenty-four plant growth-promoting rhizobacteria (PGPR) producing indole acetic acid (IAA) were isolated from the rhizosphere and roots of the survived snowbrush. Seventeen isolates had more than 10µg/mL of IAA were shortlisted and tested for seven different plant growth-promoting (PGP) traits; 76% showed nitrogen-fixing ability on Norris Glucose Nitrogen free media,70% showed phosphate solubilization activity, 76% showed siderophore production, 36% showed protease activity, 94% showed ACC deaminase activity on DF-ACC media, 76% produced catalase and all of isolates produced ammonia. Eight of seventeen isolates, CK-6, CK-22, CK-41, CK-44, CK-47, CK-50, CK-53, and CK-55, showed an increase in shoot biomass in Arabidopsis thaliana. Seven out of eight isolates were identified as Pseudomonas, except CK-55, identified as Sphingobium based on 16S rRNA gene sequencing. The shortlisted isolates are being tested on different grain and vegetable crops to mitigate drought stress and promote plant growth.
Collapse
Affiliation(s)
| | | | | | | | - Amita Kaundal
- Plants, Soils, and Climate, College of Agriculture and Applied Sciences, Utah State University, Logan, UT, United States
| |
Collapse
|
26
|
Esparza-Reynoso S, Ayala-Rodríguez JÁ, López-Bucio J. Pseudomonas putida configures Arabidopsis root architecture through modulating the sensing systems for phosphate and iron acquisition. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2024; 342:112028. [PMID: 38360401 DOI: 10.1016/j.plantsci.2024.112028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/16/2024] [Accepted: 02/08/2024] [Indexed: 02/17/2024]
Abstract
Iron (Fe) and phosphate (Pi) are two essential nutrients that are poorly available in the soil and should be supplemented either as fertilizers or organic amendments to sustain crop production. Currently, determining how rhizosphere bacteria contribute to plant mineral nutrient acquisition is an area of growing interest regarding its potential application in agriculture. The aim of this study was to investigate the influence of root colonization by Pseudomonas putida for Arabidopsis growth through Fe and Pi nutritional signaling. We found that root colonization by the bacterium inhibits primary root elongation and promotes the formation of lateral roots. These effects could be related to higher expression of two Pi starvation-induced genes and AtPT1, the major Pi transporter in root tips. In addition, P. putida influenced the accumulation of Fe in the root and the expression of different elements of the Fe uptake pathway. The loss of function of the protein ligase BRUTUS (BTS), and the bHLH transcription factors POPEYE (PYE) and IAA-LEUCINE RESISTANT3 (ILR3) compromised the root branching stimulation triggered by bacterial inoculation while the leaf chlorosis in the fit1 and irt1-1 mutant plants grown under standard conditions could be bypassed by P. putida inoculation. The WT and both mutant lines showed similar Fe accumulation in roots. P. putida repressed the expression of the IRON-REGULATED TRANSPORTER 1 (IRT1) gene suggesting that the bacterium promotes an alternative Fe uptake mechanism. These results open the door for the use of P. putida to enhance nutrient uptake and optimize fertilizer usage by plants.
Collapse
Affiliation(s)
- Saraí Esparza-Reynoso
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, Michoacán C.P. 58030, Mexico
| | - Juan Ángel Ayala-Rodríguez
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, Michoacán C.P. 58030, Mexico
| | - José López-Bucio
- Instituto de Investigaciones Químico-Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Edificio B3, Ciudad Universitaria, Morelia, Michoacán C.P. 58030, Mexico.
| |
Collapse
|
27
|
Jing T, Li J, He Y, Shankar A, Saxena A, Tiwari A, Maturi KC, Solanki MK, Singh V, Eissa MA, Ding Z, Xie J, Awasthi MK. Role of calcium nutrition in plant Physiology: Advances in research and insights into acidic soil conditions - A comprehensive review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 210:108602. [PMID: 38608506 DOI: 10.1016/j.plaphy.2024.108602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 03/20/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024]
Abstract
Plant mineral nutrition has immense significance for crop productivity and human well-being. Soil acidity plays a major role in determining the nutrient availability that influences plant growth. The importance of calcium (Ca) in biological processes, such as signaling, metabolism, and cell growth, underlines its critical role in plant growth and development. This review focuses on soil acidification, a gradual process resulting from cation leaching, fertilizer utilization, and drainage issues. Soil acidification significantly hampers global crop production by modifying nutrient accessibility. In acidic soils, essential nutrients, such as nitrogen (N), phosphorus (P), potassium (K), magnesium (Mg), and Ca become less accessible, establishing a correlation between soil pH and plant nutrition. Cutting-edge Ca nutrition technologies, including nanotechnology, genetic engineering, and genome sequencing, offer the potential to deliver Ca and reduce the reliance on conventional soluble fertilizers. These fertilizers not only contribute to environmental contamination but also impose economic burdens on farmers. Nanotechnology can enhance nutrient uptake, and Ca nanoparticles improve nutrient absorption and release. Genetic engineering enables the cultivation of acid-tolerant crop varieties by manipulating Ca-related genes. High-throughput technologies such as next-generation sequencing and microarrays aid in identifying the microbial structures, functions, and biosynthetic pathways involved in managing plant nutritional stress. The ultimate goal is to shed light on the importance of Ca, problems associated with soil acidity, and potential of emerging technologies to enhance crop production while minimizing the environmental impact and economic burden on farmers.
Collapse
Affiliation(s)
- Tao Jing
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Hainan Province, China
| | - Jingyang Li
- Tropical Crops Genetic and Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, Hainan, 571101, China
| | - Yingdui He
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Hainan Province, China
| | - Alka Shankar
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| | - Abhishek Saxena
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Archana Tiwari
- Diatom Research Laboratory, Amity Institute of Biotechnology, Amity University, Noida, India
| | - Krishna Chaitanya Maturi
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, India; Department of Biology, Hong Kong Baptist University, Hong Kong, Hong Kong SAR
| | - Manoj Kumar Solanki
- Department of Life Sciences and Biological Sciences, IES University, Bhopal, Madhya Pradesh, India
| | - Vijai Singh
- Department of Biosciences, School of Science, Indrashil University, Rajpur, Mehsana, 382715, Gujarat, India
| | - Mamdouh A Eissa
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Hainan Province, China; Department of Soils and Water, Faculty of Agriculture, Assiut University, Assiut, 71526, Egypt
| | - Zheli Ding
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Hainan Province, China
| | - Jianghui Xie
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Key Laboratory of Genetic Improvement of Bananas, Sanya Research Institute, State Key Laboratory of Biological Breeding for Tropical Crops, Hainan Province, China.
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province, 712100, China.
| |
Collapse
|
28
|
Cho A, Joshi A, Hur HG, Lee JH. Nodulation Experiment by Cross-Inoculation of Nitrogen-Fixing Bacteria Isolated from Root Nodules of Several Leguminous Plants. J Microbiol Biotechnol 2024; 34:570-579. [PMID: 38213271 PMCID: PMC11016771 DOI: 10.4014/jmb.2310.10025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Revised: 12/13/2023] [Accepted: 12/21/2023] [Indexed: 01/13/2024]
Abstract
Root-nodule nitrogen-fixing bacteria are known for being specific to particular legumes. This study isolated the endophytic root-nodule bacteria from the nodules of legumes and examined them to determine whether they could be used to promote the formation of nodules in other legumes. Forty-six isolates were collected from five leguminous plants and screened for housekeeping (16S rRNA), nitrogen fixation (nifH), and nodulation (nodC) genes. Based on the 16S rRNA gene sequencing and phylogenetic analysis, the bacterial isolates WC15, WC16, WC24, and GM5 were identified as Rhizobium, Sphingomonas, Methylobacterium, and Bradyrhizobium, respectively. The four isolates were found to have the nifH gene, and the study confirmed that one isolate (GM5) had both the nifH and nodC genes. The Salkowski method was used to measure the isolated bacteria for their capacity to produce phytohormone indole acetic acid (IAA). Additional experiments were performed to examine the effect of the isolated bacteria on root morphology and nodulation. Among the four tested isolates, both WC24 and GM5 induced nodulation in Glycine max. The gene expression studies revealed that GM5 had a higher expression of the nifH gene. The existence and expression of the nitrogen-fixing genes implied that the tested strain had the ability to fix the atmospheric nitrogen. These findings demonstrated that a nitrogen-fixing bacterium, Methylobacterium (WC24), isolated from a Trifolium repens, induced the formation of root nodules in non-host leguminous plants (Glycine max). This suggested the potential application of these rhizobia as biofertilizer. Further studies are required to verify the N2-fixing efficiency of the isolates.
Collapse
Affiliation(s)
- Ahyeon Cho
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Alpana Joshi
- Department of Bioenvironmental Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Agriculture Technology & Agri-Informatics, Shobhit Institute of Engineering & Technology, Meerut 250110, India
| | - Hor-Gil Hur
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology, Gwangju 61005, Republic of Korea
| | - Ji-Hoon Lee
- Department of Agricultural Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Bioenvironmental Chemistry, Jeonbuk National University, Jeonju 54896, Republic of Korea
| |
Collapse
|
29
|
Wu C, Yang Y, Wang Y, Zhang W, Sun H. Colonization of root endophytic fungus Serendipita indica improves drought tolerance of Pinus taeda seedlings by regulating metabolome and proteome. Front Microbiol 2024; 15:1294833. [PMID: 38559354 PMCID: PMC10978793 DOI: 10.3389/fmicb.2024.1294833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 02/08/2024] [Indexed: 04/04/2024] Open
Abstract
Pinus taeda is an important forest tree species for plantations because of its rapid growth and high yield of oleoresins. Although P. taeda plantations distribute in warm and wet southern China, drought, sometime serious and long time, often occurs in the region. To explore drought tolerance of P. taeda and usage of beneficial microorganisms, P. taeda seedlings were planted in pots and were inoculated with root endophytic fungus Serendipita indica and finally were treated with drought stress for 53 d. Metabolome and proteome of their needles were analyzed. The results showed that S. indica inoculation of P. taeda seedlings under drought stress caused great changes in levels of some metabolites in their needles, especially some flavonoids and organic acids. Among them, the levels of eriocitrin, trans-aconitic acid, vitamin C, uric acid, alpha-ketoglutaric acid, vitamin A, stachydrine, coumalic acid, itaconic acid, calceolarioside B, 2-oxoglutaric acid, and citric acid were upregulated more than three times in inoculated seedlings under drought stress, compared to those of non-inoculated seedlings under drought stress. KEGG analysis showed that some pathways were enriched in inoculated seedlings under drought stress, such as flavonoid biosynthesis, ascorbate and aldarate metabolism, C5-branched dibasic acid metabolism. Proteome analysis revealed some specific differential proteins. Two proteins, namely, H9X056 and H9VDW5, only appeared in the needles of inoculated seedlings under drought stress. The protein H9VNE7 was upregulated more than 11.0 times as that of non-inoculated seedlings under drought stress. In addition, S. indica inoculation increased enrichment of water deficient-inducible proteins (such as LP3-1, LP3-2, LP3-3, and dehydrins) and those involved in ribosomal structures (such as A0A385JF23). Meanwhile, under drought stress, the inoculation caused great changes in biosynthesis and metabolism pathways, mainly including phenylpropanoid biosynthesis, cutin, suberine and wax biosynthesis, and 2-oxocarboxylic acid metabolism. In addition, there were positive relationships between accumulation of some metabolites and enrichment of proteins in P. taeda under drought stress. Altogether, our results showed great changes in metabolome and proteome in inoculated seedlings under drought stress and provided a guideline to further study functions of metabolites and proteins, especially those related to drought stress.
Collapse
Affiliation(s)
- Chu Wu
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Yujie Yang
- College of Horticulture and Gardening, Yangtze University, Jingzhou, Hubei, China
| | - Yun Wang
- College of Life Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Wenying Zhang
- College of Agricultural Sciences, Yangtze University, Jingzhou, Hubei, China
| | - Honggang Sun
- Research Institute of Subtropical Forestry, Chinese Academy of Forestry, Hangzhou, China
| |
Collapse
|
30
|
Saberi Riseh R, Vatankhah M, Hassanisaadi M, Varma RS. A review of chitosan nanoparticles: Nature's gift for transforming agriculture through smart and effective delivery mechanisms. Int J Biol Macromol 2024; 260:129522. [PMID: 38246470 DOI: 10.1016/j.ijbiomac.2024.129522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 12/29/2023] [Accepted: 01/13/2024] [Indexed: 01/23/2024]
Abstract
Chitosan nanoparticles (CNPs) have emerged as a promising tool in agricultural advancements due to their unique properties including, biocompatability, biodegradability, non-toxicity and remarkable versatility. These inherent properties along with their antimicrobial, antioxidant and eliciting activities enable CNPs to play an important role in increasing agricultural productivity, enhancing nutrient absorption and improving pest management strategies. Furthermore, the nano-formulation of chitosan have the ability to encapsulate various agricultural amendments, enabling the controlled release of pesticides, fertilizers, plant growth promoters and biocontrol agents, thus offering precise and targeted delivery mechanisms for enhanced efficiency. This review provides a comprehensive analysis of the latest research and developments in the use of CNPs for enhancing agricultural practices through smart and effective delivery mechanisms. It discusses the synthesis methods, physicochemical properties, and their role in enhancing seed germination and plant growth, crop protection against biotic and abiotic stresses, improving soil quality and reducing the environmental pollution and delivery of agricultural amendments. Furthermore, the potential environmental benefits and future directions for integrating CNPs into sustainable agricultural systems are explored. This review aims to shed light on the transformative potential of chitosan nanoparticles as nature's gift for revolutionizing agriculture and fostering eco-friendly farming practices.
Collapse
Affiliation(s)
- Roohallah Saberi Riseh
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran; Pistachio Safety Research Center, Rafsanjan University of Medical Sciences, Rafsanjan 771751735, Iran.
| | - Masoumeh Vatankhah
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran
| | - Mohadeseh Hassanisaadi
- Department of Plant Protection, Faculty of Agriculture, Vali-e-Asr University of Rafsanjan, Rafsanjan 7718897111, Iran
| | - Rajender S Varma
- Centre of Excellence for Research in Sustainable Chemistry, Department of Chemistry, Federal University of São Carlos, 13565-905 São Carlos, SP, Brazil
| |
Collapse
|
31
|
Bini D, Mattos BB, Figueiredo JEF, Dos Santos FC, Marriel IE, Dos Santos CA, de Oliveira-Paiva CA. Parameter evaluation for developing phosphate-solubilizing Bacillus inoculants. Braz J Microbiol 2024; 55:737-748. [PMID: 38008804 PMCID: PMC10920567 DOI: 10.1007/s42770-023-01182-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/11/2023] [Indexed: 11/28/2023] Open
Abstract
Bacterial inoculants have been used in agriculture to improve plant performance. However, laboratory and field requirements must be completed before a candidate can be employed as an inoculant. Therefore, this study aimed to evaluate the parameters for inoculant formulation and the potential of Bacillus subtilis (B70) and B. pumilus (B32) to improve phosphorus availability in maize (Zea mays L.) crops. In vitro experiments assessed the bacterial ability to solubilize and mineralize phosphate, their adherence to roots, and shelf life in cassava starch (CS), carboxymethyl cellulose (CMC), peat, and activated charcoal (AC) stored at 4 °C and room temperature for 6 months. A field experiment evaluated the effectiveness of strains to increase the P availability to plants growing with rock phosphate (RP) and a mixture of RP and triple superphosphate (TS) and their contribution to improving maize yield and P accumulation in grains. The B70 was outstanding in solubilizing RP and phytate mineralization and more stable in carriers and storage conditions than B32. However, root adherence was more noticeable in B32. Among carriers, AC was the most effective for preserving viable cell counts, closely similar to those of the initial inoculum of both strains. Maize productivity using the mixture RPTS was similar for B70 and B32. The best combination was B70 with RP, which improved the maize yield (6532 kg ha-1) and P accumulation in grains (15.95 kg ha-1). Our results indicated that the inoculant formulation with AC carrier and B70 is a feasible strategy for improving phosphorus mobilization in the soil and maize productivity.
Collapse
Affiliation(s)
- Daniel Bini
- Embrapa Milho E Sorgo, Sete Lagoas, MG, 35701-970, Brazil
| | | | | | | | | | | | | |
Collapse
|
32
|
Zhang Y, Chen Y, Penttinen P, Wang X, Quan Y, Wen L, Yang M, Zhang X, Chen Q, Zhang L, Zhang J, Zhang X, Xu K. Ciceribacter sichuanensis sp. nov., a plant growth promoting rhizobacterium isolated from root nodules of soybean in Sichuan, China. Antonie Van Leeuwenhoek 2024; 117:46. [PMID: 38427093 DOI: 10.1007/s10482-024-01941-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 02/02/2024] [Indexed: 03/02/2024]
Abstract
The fast-growing rhizobia-like strains S101T and S153, isolated from root nodules of soybean (Glycine max) in Sichuan, People's Republic of China, underwent characterization using a polyphasic taxonomy approach. The strains exhibited growth at 20-40 °C (optimum, 28 °C), pH 4.0-10.0 (optimum, pH 7.0) and up to 2.0% (w/v) NaCl (optimum, 0.01%) on Yeast Mannitol Agar plates. The 16S rRNA gene of strain S101T showed 98.4% sequence similarity to the closest type strain, Ciceribacter daejeonense L61T. Major cellular fatty acids in strain S101T included summed feature 8 (C18:1ω7c and/or C18:1ω6c) and C19:0 cyclo ω8c. The predominant quinone was ubiquinone-10. The polar lipids of strain S101T included diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmethyl ethanolamine, phosphatidyl ethanolamine, amino phospholipid, unidentified phosphoglycolipid and unidentified amino-containing lipids. The DNA G + C contents of S101T and S153 were 61.1 and 61.3 mol%, respectively. Digital DNA-DNA hybridization relatedness and average nucleotide identity values between S101T and C. daejeonense L61T were 46.2% and 91.4-92.2%, respectively. In addition, strain S101T promoted the growth of soybean and carried nitrogen fixation genes in its genome, hinting at potential applications in sustainable agriculture. We propose that strains S101T and S153 represent a novel species, named Ciceribacter sichuanensis sp. nov., with strain S101T as the type strain (= CGMCC 1.61309 T = JCM 35649 T).
Collapse
Affiliation(s)
- Yanqin Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Yuanxue Chen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Petri Penttinen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Xing Wang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China
| | - Ying Quan
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Licheng Wen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Miao Yang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Xiaoping Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Qiang Chen
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Lingzi Zhang
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China
| | - Junjie Zhang
- College of Food and Bioengineering, Zhengzhou University of Light Industry, Zhengzhou, 450000, People's Republic of China
| | - Xiaoxia Zhang
- Key Laboratory of Microbial Resources Collection and Preservation, Ministry of Agriculture, Institute of Agricultural Resources and Regional Planning, Chinese Academy of Agricultural Sciences, Beijing, 100081, People's Republic of China.
| | - Kaiwei Xu
- Department of Microbiology, College of Resources, Sichuan Agricultural University, Chengdu, 611130, People's Republic of China.
| |
Collapse
|
33
|
Serrão CP, Ortega JCG, Rodrigues PC, de Souza CRB. Bacillus species as tools for biocontrol of plant diseases: A meta-analysis of twenty-two years of research, 2000-2021. World J Microbiol Biotechnol 2024; 40:110. [PMID: 38411743 DOI: 10.1007/s11274-024-03935-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 02/21/2024] [Indexed: 02/28/2024]
Abstract
The traditional way of dealing with plant diseases has been the use of chemical products, but these harm the environment and are incompatible with the global effort for sustainable development. The use of Bacillus and related species in the biological control of plant diseases is a trend in green agriculture. Many studies report the positive effect of these bacteria, but a synthesis is still necessary. So, the objective of this work is to perform a meta-analysis of Bacillus biocontrol potential and identify factors that drive its efficacy. Data were compiled from articles published in journals listed in two of the main scientific databases between 2000 and 2021. Among 6159 articles retrieved, 399 research papers met the inclusion criteria for a systematic review. Overall, Bacilli biocontrol agents reduced disease by 60% compared to control groups. Furthermore, experimental tests with higher concentrations show a strong protective effect, unlike low and single concentration essays. Biocontrol efficacy also increased when used as a protective inoculation rather than therapeutic inoculation. Inoculation directly in the fruit has a greater effect than soil drenching. The size of the effect of Bacillus-based commercial products is lower than the newly tested strains. The findings presented in this study confirm the power of Bacillus-based bioinoculants and provide valuable guidance for practitioners, researchers, and policymakers seeking effective and sustainable solutions in plant disease management.
Collapse
Affiliation(s)
- Cleyson Pantoja Serrão
- Instituto de Ciências Biológicas, Universidade Federal do Pará (UFPA), Belém, CEP 66075-110, PA, Brazil
- Programa de Pós-Graduação em Genética e Biologia Molecular, UFPA, Belém, CEP 66075-110, PA, Brazil
| | | | - Paulo Canas Rodrigues
- Departamento de Estatística, Universidade Federal da Bahia (UFBA), Salvador, CEP 40170-110, BA, Brazil
| | | |
Collapse
|
34
|
Lorentz JF, Calijuri ML, Rad C, Cecon PR, Assemany PP, Martinez JM, Kholssi R. Microalgae biomass as a conditioner and regulator of soil quality and fertility. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:198. [PMID: 38265731 DOI: 10.1007/s10661-024-12355-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 01/11/2024] [Indexed: 01/25/2024]
Abstract
Characteristics of an acid soil cultivated with Urochloa brizantha cv. Marandu were evaluated in relation to two types of fertilization: a conventional one, chemical based on nitrogen and potassium, and a biofertilizer, based on microalgae biomass. The results were compared among three treatments, control, conventional, and biological fertilization, with seven replications each. The study evaluated microalgae community, total carbon and nitrogen contents, mineral nitrogen, and enzymatic activity. Chlorella vulgaris showed the highest organism density, which can be explained by its rapid growth and high resistance. The highest species diversity was detected in the control 1,380,938 org cm-3 and biological 1,841,250 org cm-3 treatments, with the latter showing a higher density of cyanobacteria, especially Pseudanabaena limnetica with 394,554 org cm-3. The soil treated with chemical fertilization showed higher nitrate (9.14 mg NKg-1 NO3--N) and potassium (52.32 mg dm-3) contents. The highest levels of sulfur (21.73 mg dm-3) and iron (96.46 mgdm-3) were detected in the biological treatment. The chemical treatment showed higher activity of the enzymes acid phosphatase, acetylglucosaminidase, and sulfatase, while α-glucosidase and leucine aminopeptidase stood out in the biological treatment. Soil properties were not significantly affected by the treatments. The use of microalgae biomass derived from wastewater treatment from milking parlors was evaluated and presented as a promising biofertilizer for agriculture, following the line of recovering nutrient-rich wastes. In this sense, although many challenges need to be overcome, the results suggest that microalgal-based fertilizers could lead to low-impact agriculture.
Collapse
Affiliation(s)
| | - Maria Lúcia Calijuri
- Department of Civil Engineering, Federal University of Viçosa, Viçosa, MG, Brazil
| | - Carlos Rad
- Composting Research Group, Faculty of Sciences, University of Burgos, Burgos, Spain
| | | | - Paula Peixoto Assemany
- Department of Environmental Engineering, Federal University of Lavras, Lavras, MG, Brazil
| | - Jorge Miñon Martinez
- Composting Research Group, Faculty of Sciences, University of Burgos, Burgos, Spain
| | - Rajaa Kholssi
- Composting Research Group, Faculty of Sciences, University of Burgos, Burgos, Spain
| |
Collapse
|
35
|
Ibarra-Villarreal AL, Villarreal-Delgado MF, Parra-Cota FI, Yepez EA, Guzmán C, Gutierrez-Coronado MA, Valdez LC, Saint-Pierre C, Santos-Villalobos SDL. Effect of a native bacterial consortium on growth, yield, and grain quality of durum wheat ( Triticum turgidum L. subsp. durum) under different nitrogen rates in the Yaqui Valley, Mexico. PLANT SIGNALING & BEHAVIOR 2023; 18:2219837. [PMID: 37294039 PMCID: PMC10730153 DOI: 10.1080/15592324.2023.2219837] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023]
Abstract
A field experiment was carried out to quantify the effect of a native bacterial inoculant on the growth, yield, and quality of the wheat crop, under different nitrogen (N) fertilizer rates in two agricultural seasons. Wheat was sown under field conditions at the Experimental Technology Transfer Center (CETT-910), as a representative wheat crop area from the Yaqui Valley, Sonora México. The experiment was conducted using different doses of nitrogen (0, 130, and 250 kg N ha-1) and a bacterial consortium (BC) (Bacillus subtilis TSO9, B. cabrialesii subsp. tritici TSO2T, B. subtilis TSO22, B. paralicheniformis TRQ65, and Priestia megaterium TRQ8). Results showed that the agricultural season affected chlorophyll content, spike size, grains per spike, protein content, and whole meal yellowness. The highest chlorophyll and Normalized Difference Vegetation Index (NDVI) values, as well as lower canopy temperature values, were observed in treatments under the application of 130 and 250 kg N ha-1 (the conventional Nitrogen dose). Wheat quality parameters such as yellow berry, protein content, Sodium dodecyl sulfate (SDS)-Sedimentation, and whole meal yellowness were affected by the N dose. Moreover, the application of the native bacterial consortium, under 130 kg N ha-1, resulted in a higher spike length and grain number per spike, which led to a higher yield (+1.0 ton ha-1 vs. un-inoculated treatment), without compromising the quality of grains. In conclusion, the use of this bacterial consortium has the potential to significantly enhance wheat growth, yield, and quality while reducing the nitrogen fertilizer application, thereby offering a promising agro-biotechnological alternative for improving wheat production.
Collapse
Affiliation(s)
| | - María Fernanda Villarreal-Delgado
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Sonora, México
- Sartorius de México, Estado de México, México
| | - Fannie Isela Parra-Cota
- Campo Experimental Norman E. Borlaug, Centro de Investigación Regional Noroeste, Instituto Nacional de Investigaciones Forestales Agrícolas y Pecuarias, Sonora, México
| | - Enrico A. Yepez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Sonora, México
| | - Carlos Guzmán
- Departamento de Genética, Escuela Técnica Superior de Ingeniería Agronómica Y de Montes, Edificio Gregor Mendel, Campus de Rabanales, Universidad de Córdoba. CeiA3, Córdoba, Spain
| | | | - Luis Carlos Valdez
- Departamento de Ciencias Agronómicas y Veterinarias, Instituto Tecnológico de Sonora, Sonora, México
| | | | | |
Collapse
|
36
|
Yousef AF, Ali AM, Azab MA, Lamlom SF, Al-Sayed HM. Improved plant yield of potato through exogenously applied potassium fertilizer sources and biofertilizer. AMB Express 2023; 13:124. [PMID: 37938361 PMCID: PMC10632356 DOI: 10.1186/s13568-023-01627-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Accepted: 10/06/2023] [Indexed: 11/09/2023] Open
Abstract
Excessive usage of chemical fertilizers has detrimental effects on the environment and the safety of food. Conversely, utilizing organic fertilizers such as sage offers several advantages, including cost-effectiveness, soil enhancement, and promotion of root development. A two-year field experiment was conducted to investigate the impact of different potassium fertilizer sources and biofertilizers (specifically Bacillus cereus (MBc)) on potato plants. The experiment employed a split-plot design with three replicates, where the main plot factor was MBc (with and without), and the subplot factor was the sources of potassium fertilizer (control without K fertilizer, 100% Feldspar (FD), 100% Filter cake (FC), 75% FD + 25% FC, 25% FD + 75% FC, and 50% FD + 50% FC). The purpose was to examine the growth response of potato plants to these treatments. The results indicated that all treatments increased plant height, stem count, and tuber dry matter compared to the control. Furthermore, all treatments exhibited a higher uptake of macronutrients (N, P, and K) compared to the control. Notably, the plants treated with 100FC combined with MBc showed a significant 104.74% increase in total tuber weight compared to the control treatment. Additionally, the addition of 100FC with MBc significantly enhanced the availability of N, P, and K by 73.13%, 110.33%, and 51.88% respectively, compared to the control treatment. Apart from the biofertilizers, the individual application of FC and its combination with FD also demonstrated positive effects on soil fertility, potato growth, and yield.
Collapse
Affiliation(s)
- Ahmed Fathy Yousef
- Department of Horticulture, College of Agriculture, University of Al-Azhar (branch Assiut), Assiut, 71524, Egypt.
| | - Ahmed Mahmoud Ali
- Department of Soils and Water Sciences, Faculty of Agriculture, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| | - Mohamed AbdAllah Azab
- Horticulture Department, Faculty of Agriculture (Assiut branch), Vegetable Sciences, Al-Azhar University, Assiut, 71524, Egypt
| | - Sobhi F Lamlom
- Plant Production Department, Faculty of Agriculture Saba Basha, Alexandria University, Alexandria, 21531, Egypt
| | - Hassan Mohamed Al-Sayed
- Department of Soils and Water Sciences, Faculty of Agriculture, Al-Azhar University (Assiut Branch), Assiut, 71524, Egypt
| |
Collapse
|
37
|
Ammar EE, Rady HA, Khattab AM, Amer MH, Mohamed SA, Elodamy NI, Al-Farga A, Aioub AAA. A comprehensive overview of eco-friendly bio-fertilizers extracted from living organisms. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:113119-113137. [PMID: 37851256 PMCID: PMC10663222 DOI: 10.1007/s11356-023-30260-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 09/30/2023] [Indexed: 10/19/2023]
Abstract
Currently, sustainable agriculture involves ecofriendly techniques, which include biofertilization. Biofertilizers increase plant productivity by improving soil fertility and nutrient content. A wide range of living organisms can be applied as biofertilizers and increase soil fertility without causing pollution due to their biodegradability. The organisms can be microorganisms like bacteria, microalgae, and micro fungi or macro organisms like macroalgae, macro fungi, and higher plants. Biofertilizers extracted from living organisms or their residues will be increasingly used rather than chemical fertilizers, which cause heavy metal accumulation in soil. Biofertilizer use aims for sustainable development in agriculture by maintaining the soil. This will mitigate climate change and related impacts and will also lower many serious diseases resulting from pollution such as cancer, liver and renal failure, and immune diseases. This review is a comprehensive overview of biofertilizers extracted from a range of living organisms from the Kingdoms Monera to Plantae and included bacteria, algae, fungi, and higher plants. Organisms that play a vital role in elevating soil nutrients in a safe, cheap, and ecofriendly manner are included in the review to promote their potential commercial application.
Collapse
Affiliation(s)
- Esraa E Ammar
- Plant Ecology, Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Hadeer A Rady
- Biotechnology, Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Ahmed M Khattab
- Chemistry Department, Faculty of Pharmacy, Al-Azhar University, Cairo, 11675, Egypt
| | - Mohamed H Amer
- Biotechnology, Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Sohila A Mohamed
- Biotechnology, Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Nour I Elodamy
- Biotechnology, Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Ammar Al-Farga
- Department of Biochemistry, Faculty of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Ahmed A A Aioub
- Plant Protection Department, Faculty of Agriculture, Zagazig University, Zagazig, 44511, Egypt
| |
Collapse
|
38
|
Delamare J, Brunel-Muguet S, Boukerb AM, Bressan M, Dumas L, Firmin S, Leroy F, Morvan-Bertrand A, Prigent-Combaret C, Personeni E. Impact of PGPR inoculation on root morphological traits and root exudation in rapeseed and camelina: interactions with heat stress. PHYSIOLOGIA PLANTARUM 2023; 175:e14058. [PMID: 38148195 DOI: 10.1111/ppl.14058] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 10/09/2023] [Accepted: 10/11/2023] [Indexed: 12/28/2023]
Abstract
Root exudation is involved in the recruitment of beneficial microorganisms by trophic relationships and/or signalling pathways. Among beneficial microorganisms, Plant Growth-Promoting Rhizobacteria (PGPR) are known to improve plant growth and stress resistance. These interactions are of particular importance for species that do not interact with mycorrhizal fungi, such as rapeseed (Brassica napus L.) and camelina (Camelina sativa (L.) Crantz). However, heat stress is known to have a quantitative and qualitative impact on root exudation and could affect the interactions between plants and PGPR. We aimed to analyse the effects of PGPR inoculation on root morphology and exudation in rapeseed and camelina at the reproductive stage. The modulation of the effects of these interactions under heat stress was also investigated. The plants were inoculated twice at the reproductive stage with two different Pseudomonas species and were exposed to heat stress after the second inoculation. In non-stressing conditions, after bacterial inoculation, rapeseed and camelina exhibited two contrasting behaviours in C root allocation. While rapeseed plants seemed to suffer from the interactions with the bacteria, camelina plants appeared to control the relationship with the PGPR by modifying the composition of their root exudates. Under heat stress, the plant-PGPR interaction was unbalanced for rapeseed, for which the C allocation strategy is mainly driven by the C cost from the bacteria. Alternatively, camelina plants prioritized C allocation for their own above-ground development. This work opens up new perspectives for understanding plant-PGPR interactions, especially in an abiotic stress context.
Collapse
Affiliation(s)
- Jérémy Delamare
- UNICAEN, INRAE, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, Normandie Université, Caen Cedex 5, France
| | - Sophie Brunel-Muguet
- UNICAEN, INRAE, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, Normandie Université, Caen Cedex 5, France
| | - Amine M Boukerb
- CBSA UR4312, Univ Rouen Normandie, Unité de Recherche Communication Bactérienne et Stratégies Anti-infectieuses, Évreux, France
| | | | - Lucien Dumas
- UNICAEN, INRAE, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, Normandie Université, Caen Cedex 5, France
| | | | | | - Annette Morvan-Bertrand
- UNICAEN, INRAE, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, Normandie Université, Caen Cedex 5, France
| | - Claire Prigent-Combaret
- Université Claude Bernard Lyon 1, CNRS, INRAE, VetAgro Sup, UMR5557 Ecologie Microbienne, 43 bd du 11 Novembre 1918, Université de Lyon, Villeurbanne, France
| | - Emmanuelle Personeni
- UNICAEN, INRAE, UMR 950 Ecophysiologie Végétale, Agronomie et nutritions N, C, S, Esplanade de la Paix, CS14032, Normandie Université, Caen Cedex 5, France
| |
Collapse
|
39
|
Sun H, Hu D, Zhang X. Green economic revival acquisition: evaluating impact of digital finance and natural resource development. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:108667-108680. [PMID: 37749476 DOI: 10.1007/s11356-023-29180-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Accepted: 08/01/2023] [Indexed: 09/27/2023]
Abstract
Digital financing is an emerging source after COVID-19 to address novel problems of economies and different industries. With the growing concern about the sustainability of the global environment, developing countries are now moving toward unprecedented economic development. This research analyzes the impact of digital finance and economic growth on environmental sustainability in China from 1995 to 2020, focusing on natural resource management. To include asymmetric patterns and handle socioeconomic shocks during the last three decades, the research uses the cutting-edge ordinary least square (O.L.S.) methodology. The O.L.S. helps the research findings and illustrated patterns of ecological sustainability dependency across various data distributions. According to the empirical results, N.R., F.D.P., and G.D.P. all benefited from carbon emissions at higher and lower emissions quantiles. Green technology innovation, on the other hand, considerably reduces emissions across all quantiles. Notably, the effect of each repressor significantly changed for lower, medium, and higher emissions quantiles, showing a thorough understanding of China's resource scarcity and sustainable growth.
Collapse
Affiliation(s)
- HongXia Sun
- School of Economics and Management, Southwest University, Chongqing, 400715, China.
- School of Economics and Management, Yibin University, Sichuanyibin, 644000, China.
| | - DingHe Hu
- School of Economics and Management, Southwest University, Chongqing, 400715, China
| | - Xu Zhang
- People's Government of Longchi Township, Xuzhou District, Yibin, 644608, China
| |
Collapse
|
40
|
Asghar I, Ahmed M, Farooq MA, Ishtiaq M, Arshad M, Akram M, Umair A, Alrefaei AF, Jat Baloch MY, Naeem A. Characterizing indigenous plant growth promoting bacteria and their synergistic effects with organic and chemical fertilizers on wheat ( Triticum aestivum). FRONTIERS IN PLANT SCIENCE 2023; 14:1232271. [PMID: 37727857 PMCID: PMC10505817 DOI: 10.3389/fpls.2023.1232271] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/24/2023] [Indexed: 09/21/2023]
Abstract
The excessive use of chemical fertilizers is deteriorating both the environment and soil, making it a big challenge faced by sustainable agriculture. To assist the efforts for the solution of this burning issue, nine different potential native strains of plant growth-promoting bacteria (PGPB) namely, SA-1(Bacillus subtilis), SA-5 (Stenotrophomonas humi),SA-7(Azospirillum brasilense), BH-1(Azospirillum oryzae), BH-7(Azotobacter armeniacus), BH-8(Rhizobium pusense), BA-3(Azospirillum zeae), BA-6(Rhizobium pusense), and BA-7(Pseudomonas fragi) were isolated that were characterized morphologically, biochemically and molecularly on the basis of 16S rRNA sequencing. Furthermore, the capability of indigenous PGPB in wheat (Triticum aestivum, Chakwal-50) under control, DAP+FYM, SA-1,5,7, BH-1,7,8, BA-3,6,7, DAP+ FYM + SA-1,5,7, DAP+FYM+ BH-1,7,8 and DAP+FYM+ BA-3,6,7 treatments was assessed in a randomized complete block design (RCBD). The results of the study showed that there was a significant increase in plant growth, nutrients, quality parameters, crop yield, and soil nutrients at three depths under SA-1,5,7, BH-1,7,8, and BA-3,6,7 in combination with DAP+FYM. Out of all these treatments, DAP+ FYM + BA-3,6,7 was found to be the most efficient for wheat growth having the highest 1000-grain weight of 55.1 g. The highest values for plant height, no. of grains/spike, spike length, shoot length, root length, shoot dry weight, root dry weight, 1000 grain weight, biological yield, and economic yield were found to be 90.7 cm, 87.7 cm, 7.20 cm, 53.5 cm, 33.5 cm, 4.87 g, 1.32 g, 55.1 g, 8209 kg/h, and 4572 kg/h, respectively, in the DAP+FYM+BA treatment. The DAP+FYM+BA treatment had the highest values of TN (1.68 µg/mL), P (0.38%), and K (1.33%). Likewise, the value of mean protein (10.5%), carbohydrate (75%), lipid (2.5%), and available P (4.68 ppm) was also highest in the DAP+FYM+BA combination. C:P was found to be significantly highest (20.7) in BA alone but was significantly lowest (11.9) in DAP+FYM+BA. Hence, the integration of strains BA-3, BA-5, and BA-7 in fertilizers can be regarded as the most suitable choice for agricultural growth in the sub-mountainous lower region of AJK. This could serve as the best choice for sustainable wheat growth and improved soil fertility with lesser impacts on the environment.
Collapse
Affiliation(s)
- Israr Asghar
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur, Pakistan
| | - Maqsood Ahmed
- Department of Biotechnology, Mirpur University of Science and Technology (MUST), Mirpur, Pakistan
| | - Muhammad Ansar Farooq
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Ishtiaq
- Department of Botany, Mirpur University of Science and Technology (MUST), Bhimber, Pakistan
| | - Muhammad Arshad
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| | - Muhammad Akram
- Department of Environmental Sciences, COMSATS University Islamabad (CUI), Vehari, Pakistan
| | - Adnan Umair
- Department of Agriculture, Research wing, Soil and Water Testing Laboratory, Sialkot, Pakistan
| | | | | | - Aamna Naeem
- Institute of Environmental Sciences and Engineering, School of Civil and Environmental Engineering, National University of Sciences and Technology (NUST), Islamabad, Pakistan
| |
Collapse
|
41
|
Gen-Jiménez A, Flores-Félix JD, Rincón-Molina CI, Manzano-Gomez LA, Rogel MA, Ruíz-Valdiviezo VM, Rincón-Molina FA, Rincón-Rosales R. Enhance of tomato production and induction of changes on the organic profile mediated by Rhizobium biofortification. Front Microbiol 2023; 14:1235930. [PMID: 37601341 PMCID: PMC10433389 DOI: 10.3389/fmicb.2023.1235930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 07/18/2023] [Indexed: 08/22/2023] Open
Abstract
Introduction The extensive use of chemical fertilizers has served as a response to the increasing need for crop production in recent decades. While it addresses the demand for food, it has resulted in a decline in crop productivity and a heightened negative environmental impact. In contrast, plant probiotic bacteria (PPB) offer a promising alternative to mitigate the negative consequences of chemical fertilizers. PPB can enhance nutrient availability, promote plant growth, and improve nutrient uptake efficiency, thereby reducing the reliance on chemical fertilizers. Methods This study aimed to evaluate the impact of native Rhizobium strains, specifically Rhizobium calliandrae LBP2-1, Rhizobium mayense NSJP1-1, and Rhizobium jaguaris SJP1- 2, on the growth, quality, and rhizobacterial community of tomato crops. Various mechanisms promoting plant growth were investigated, including phosphate solubilization, siderophore production, indole acetic acid synthesis, and cellulose and cellulase production. Additionally, the study involved the assessment of biofilm formation and root colonization by GFP-tagged strains, conducted a microcosm experiment, and analyzed the microbial community using metagenomics of rhizospheric soil. Results The results showed that the rhizobial strains LBP2-1, NSJP1-1 and SJP1-2 had the ability to solubilize dicalcium phosphate, produce siderophores, synthesize indole acetic acid, cellulose production, biofilm production, and root colonization. Inoculation of tomato plants with native Rhizobium strains influenced growth, fruit quality, and plant microbiome composition. Metagenomic analysis showed increased Proteobacteria abundance and altered alpha diversity indices, indicating changes in rhizospheric bacterial community. Discussion Our findings demonstrate the potential that native Rhizobium strains have to be used as a plant probiotic in agricultural crops for the generation of safe food and high nutritional value.
Collapse
Affiliation(s)
- Adriana Gen-Jiménez
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| | | | - Clara Ivette Rincón-Molina
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Luis Alberto Manzano-Gomez
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
- Departamento de Investigación y Desarrollo, 3R Biotec SA de CV, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Marco Antonio Rogel
- Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, Mexico
| | - Víctor Manuel Ruíz-Valdiviezo
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Francisco Alexander Rincón-Molina
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| | - Reiner Rincón-Rosales
- Laboratorio de Ecología Genómica, Tecnológico Nacional de México, Instituto Tecnológico de Tuxtla Gutiérrez, Tuxtla Gutiérrez, Chiapas, Mexico
| |
Collapse
|
42
|
Song S, Jiang M, Liu H, Dai X, Wang P. Application of the biogas residue of anaerobic co-digestion of gentamicin mycelial residues and wheat straw as soil amendment: Focus on nutrients supply, soil enzyme activities and antibiotic resistance genes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117512. [PMID: 36827805 DOI: 10.1016/j.jenvman.2023.117512] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Land utilization of the biogas residue (BR) produced by anaerobic co-digestion of gentamicin mycelial residues (GMRs) and wheat straw is a promising method to achieve the deep recycling of GMRs. This study evaluated the feasibility and efficacy of application of using BR as a soil amendment by using a pot experiment. Results indicated that BR could improve the soil fertility better than commercial chicken manure fertilizer (CMF) in terms of the soil enzyme activities and nutrients supply. Random Forest (RF) model was applied to predict soil enzyme activities and identify key influencing factors. Combining the Random Forest (RF) model with the Three-dimensional Excitation-emission Matrix and Parallel Factor (3D-EEM-PARAFAC) analysis, revealing that humic-like substances provided by BR protected soil enzymes, thus improving soil fertility. Furthermore, gentamicin and antibiotic resistance genes (ARGs)/mobile genetic elements (MEGs) introduced by BR decreased greatly after cultivation, implying a low risk of antimicrobial resistance. This study suggested that reasonable application of BR could improve soil nutrients supply, soil enzyme activity and control antimicrobial resistance risk.
Collapse
Affiliation(s)
- Siqi Song
- School of Environment, State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Mingye Jiang
- School of Environment, State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Huiling Liu
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China.
| | - Xiaohu Dai
- School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai, 200092, China
| | - Peng Wang
- School of Environment, State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| |
Collapse
|
43
|
Kushwaha RK, Joshi SM, Bajaj R, Mastan A, Kumar V, Patel H, Jayashree S, Chaudhary SP. Copper and iron metal resistant rhizospheric bacteria boost the plant growth and bacoside A content in Bacopa monnieri under stress conditions. FUNCTIONAL PLANT BIOLOGY : FPB 2023; 50:482-496. [PMID: 37045602 DOI: 10.1071/fp22263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 03/21/2023] [Indexed: 06/07/2023]
Abstract
Bacteria that enhance plant growth and development and are found in the vicinity of roots are referred to as plant growth-promoting rhizobacteria. Some beneficial bacteria help plant tolerance to many hazardous chemical elements. In this context, Cupriavidus basilensis , Novosphingobium humi , Bacillus zanthoxyli , Bacillus sp., Paenibacillus alvei , Ancylobacter aquaticus and Ralstonia syzygii metal-tolerant rhizospheric bacteria were isolated from rhizospheric soil associated with Bacopa monnieri . The beneficial effects of rhizospheric bacteria on B. monnieri plant physiology and biochemical responses were investigated under pot conditions at two levels (100μM and 500μM) of CuSO4 or FeCl3 . N. humi , A. aquaticus and R. syzygii bacterial strains were associated with significantly increased height and biomass under normal and stress conditions. An assay for indole acetic acid in isolated rhizospheric bacteria found differential secretion except Bacillus zanthoxyli . Bacoside A is a major phytocompound in B. monnieri with medicinal value; maximum induction was observed in the R. syzygii treatment. High concentration of copper and iron salts negatively influenced height, biomass and photosynthetic pigments; however N. humi , A. aquaticus , Bacilllus sp. and R. syzygii beneficial bacterial helped plants under stress conditions. Moreover, a significant enhancement in chlorophyll a and b was noticed in C. basilensis , B. zanthoxyli , Bacilllus sp., P. alvei and R. syzygii treatments, without much influence on carotenoid levels. Therefore, the present study emphasises the importance of isolating plant growth-promoting rhizobacteria for use in bacopa plants exposed to metals such as copper and iron in soil.
Collapse
Affiliation(s)
- Ramesh Kumar Kushwaha
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore 560064, Karnataka, India
| | - Samyukta Madhav Joshi
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore 560064, Karnataka, India
| | - Renuka Bajaj
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore 560064, Karnataka, India
| | - Anthati Mastan
- Microbial Technology Laboratory, CSIR (Council of Scientific and Industrial Research)-Central Institute of Medicinal and Aromatic Plants, Research Center, Bangalore 560065, Karnataka, India
| | - Vinay Kumar
- Plant Genetic Resources and Improvement Division, CSIR-National Botanical Research Institute, Lucknow 226001, Uttar Pradesh, India
| | - Himani Patel
- Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow 226007, Uttar Pradesh, India
| | - S Jayashree
- Department of Biochemistry, School of Allied Health Sciences, REVA University, Bangalore 560064, Karnataka, India
| | - Satya Prakash Chaudhary
- Department of Dravyagun, IMS (Institute of Medical Sciences), Banaras Hindu University, Varanasi 221005, Uttar Pradesh, India
| |
Collapse
|
44
|
Jalal A, Oliveira CEDS, Fernandes GC, da Silva EC, da Costa KN, de Souza JS, Leite GDS, Biagini ALC, Galindo FS, Teixeira Filho MCM. Integrated use of plant growth-promoting bacteria and nano-zinc foliar spray is a sustainable approach for wheat biofortification, yield, and zinc use efficiency. FRONTIERS IN PLANT SCIENCE 2023; 14:1146808. [PMID: 37223804 PMCID: PMC10200892 DOI: 10.3389/fpls.2023.1146808] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 04/19/2023] [Indexed: 05/25/2023]
Abstract
Introduction and aims The intensive cropping system and imbalance use of chemical fertilizers to pursue high grain production and feed the fast-growing global population has disturbed agricultural sustainability and nutritional security. Understanding micronutrient fertilizer management especially zinc (Zn) through foliar application is a crucial agronomic approach that could improve agronomic biofortification of staple grain crops. The use of plant growth-promoting bacteria (PGPBs) is considered as one of the sustainable and safe strategies that could improve nutrient acquisition and uptake in edible tissues of wheat to combat Zn malnutrition and hidden hunger in humans. Therefore, the objective of this study was to evaluate the best-performing PGPB inoculants in combination with nano-Zn foliar application on the growth, grain yield, and concentration of Zn in shoots and grains, Zn use efficiencies, and estimated Zn intake under wheat cultivation in the tropical savannah of Brazil. Methods The treatments consisted of four PGPB inoculations (without inoculation, Azospirillum brasilense, Bacillus subtilis, and Pseudomonas fluorescens, applied by seeds) and five Zn doses (0, 0.75, 1.5, 3, and 6 kg ha-1, applied from nano ZnO in two splits by leaf). Results Inoculation of B. subtilis and P. fluorescens in combination with 1.5 kg ha-1 foliar nano-Zn fertilization increased the concentration of Zn, nitrogen, and phosphorus in the shoot and grain of wheat in the 2019 and 2020 cropping seasons. Shoot dry matter was increased by 5.3% and 5.4% with the inoculation of P. fluorescens, which was statistically not different from the treatments with inoculation of B. subtilis as compared to control. The grain yield of wheat was increased with increasing nano-Zn foliar application up to 5 kg Zn ha-1 with the inoculation of A. brasilense in 2019, and foliar nano-Zn up to a dose of 1.5 kg ha-1 along with the inoculation of P. fluorescens in the 2020 cropping season. The zinc partitioning index was increased with increasing nano Zn application up to 3 kg ha-1 along with the inoculation of P. fluorescens. Zinc use efficiency and applied Zn recovery were improved at low doses of nano-Zn application in combination with the inoculation of A. brasilense, B. subtilis, and P. fluorescens, respectively, as compared to control. Discussion Therefore, inoculation with B. subtilis and P. fluorescens along with foliar nano-Zn application is considered a sustainable and environmentally safe strategy to increase nutrition, growth, productivity, and Zn biofortification of wheat in tropical savannah.
Collapse
Affiliation(s)
- Arshad Jalal
- Department of Rural Engineering, Plant Health and Soils, São Paulo State University (UNESP), Ilha Solteira, Brazil
| | | | - Guilherme Carlos Fernandes
- Department of Rural Engineering, Plant Health and Soils, São Paulo State University (UNESP), Ilha Solteira, Brazil
| | - Edson Cabral da Silva
- Department of Rural Engineering, Plant Health and Soils, São Paulo State University (UNESP), Ilha Solteira, Brazil
| | - Kaway Nunes da Costa
- Department of Rural Engineering, Plant Health and Soils, São Paulo State University (UNESP), Ilha Solteira, Brazil
| | - Jeferson Silva de Souza
- Department of Rural Engineering, Plant Health and Soils, São Paulo State University (UNESP), Ilha Solteira, Brazil
| | - Gabriel da Silva Leite
- Department of Rural Engineering, Plant Health and Soils, São Paulo State University (UNESP), Ilha Solteira, Brazil
| | | | - Fernando Shintate Galindo
- Faculty of Agricultural Sciences and Technology, Department of Plant Production, São Paulo State University (UNESP), Dracena, Brazil
| | | |
Collapse
|
45
|
Rehan M, Al-Turki A, Abdelmageed AHA, Abdelhameid NM, Omar AF. Performance of Plant-Growth-Promoting Rhizobacteria (PGPR) Isolated from Sandy Soil on Growth of Tomato ( Solanum lycopersicum L.). PLANTS (BASEL, SWITZERLAND) 2023; 12:1588. [PMID: 37111812 PMCID: PMC10145201 DOI: 10.3390/plants12081588] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/03/2023] [Accepted: 04/07/2023] [Indexed: 06/19/2023]
Abstract
The plant-growth-promoting rhizobacteria (PGPR) in the rhizosphere affect plant growth, health, and productivity, as well as soil-nutrient contents. They are considered a green and eco-friendly technology that will reduce chemical-fertilizer usage, thereby reducing production costs and protecting the environment. Out of 58 bacterial strains isolated in Qassim, Saudi Arabia, four strains were identified by the 16S rRNA as the Streptomyces cinereoruber strain P6-4, Priestia megaterium strain P12, Rossellomorea aquimaris strain P22-2, and Pseudomonas plecoglossicida strain P24. The plant-growth-promoting (PGP) features of the identified bacteria involving inorganic phosphate (P) solubilization, the production of indole acetic acid (IAA), and siderophore secretion were assessed in vitro. Regarding the P solubilization, the previous strains' efficacy reached 37.71%, 52.84%, 94.31%, and 64.20%, respectively. The strains produced considerable amounts of IAA (69.82, 251.70, 236.57, and 101.94 µg/mL) after 4 days of incubation at 30 °C. Furthermore, the rates of siderophore production reached 35.51, 26.37, 26.37, and 23.84 psu, respectively, in the same strains. The application of the selected strains in the presence of rock phosphate (RP) with tomato plants under greenhouse conditions was evaluated. The plant growth and P-uptake traits positively and significantly increased in response to all the bacterial treatments, except for some traits, such as plant height, number of leaves, and leaf DM at 21 DAT, compared to the negative control (rock phosphate, T2). Notably, the P. megaterium strain P12 (T4), followed by R. aquimaris strain P22-2 (T5), revealed the best values related to plant height (at 45 DAT), number of leaves per plant (at 45 DAT), root length, leaf area, leaf-P uptake, stem P uptake, and total plant P uptake compared to the rock phosphate. The first two components of the PCA (principal component analysis) represented 71.99% (PCA1 = 50.81% and PCA2 = 21.18%) of the variation at 45 DAT. Finally, the PGPR improved the vegetative-growth traits of the tomato plants through P solubilization, IAA, and siderophore production, and ameliorated the availability of nutrients. Thus, applying in PGPR in sustainable agriculture will potentially reduce production costs and protect the environment from contamination by chemical fertilizers and pesticides.
Collapse
Affiliation(s)
- Medhat Rehan
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.-T.); (A.H.A.A.); (A.F.O.)
- Department of Genetics, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| | - Ahmad Al-Turki
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.-T.); (A.H.A.A.); (A.F.O.)
| | - Adil H. A. Abdelmageed
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.-T.); (A.H.A.A.); (A.F.O.)
- Department of Horticulture, University of Khartoum, Khartoum North, Shambat 13314, Sudan
| | - Noha M. Abdelhameid
- Soil Fertility and Microbiology Department, Desert Research Center (DRC), Cairo 11753, Egypt;
| | - Ayman F. Omar
- Department of Plant Production and Protection, College of Agriculture and Veterinary Medicine, Qassim University, Buraydah 51452, Saudi Arabia; (A.A.-T.); (A.H.A.A.); (A.F.O.)
- Plant Pathology and Biotechnology Lab, EPCRS Excellence Center, Department of Plant Pathology, Faculty of Agriculture, Kafrelsheikh University, Kafr El-Sheikh 33516, Egypt
| |
Collapse
|
46
|
Comparison of the Rhizobacteria Serratia sp. H6 and Enterobacter sp. L7 on Arabidopsis thaliana Growth Promotion. Curr Microbiol 2023; 80:117. [PMID: 36853512 DOI: 10.1007/s00284-023-03227-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2022] [Accepted: 02/13/2023] [Indexed: 03/01/2023]
Abstract
The genera Serratia and Enterobacter belong to the Enterobacteriaceae family and several members have been described as plant growth-promoting rhizobacteria (PGPR). However, how these bacteria influence growth and development is unclear. We performed in vitro interaction assays between either Serratia sp. H6 or Enterobacter sp. L7 with Arabidopsis thaliana seedlings to analyze their effects on plant growth. In experiments of co-cultivation distant from the root tip, Enterobacter sp. decreased root length, markedly increased lateral root number, and slightly increased plant biomass by 33%, 230%, and 69%, respectively, and relative to the control. The volatile organic compounds (VOCs) emitted from Serratia sp. H6 but not those from Enterobacter sp. L7 promoted Arabidopsis growth. A blend of volatile compounds from the two bacteria had effects on plant growth that were similar to those observed for volatile compounds from H6 only. At several densities, the direct contact of roots with Serratia sp. H6 had phytostimulant properties but Enterobacter sp. L7 had clear deleterious effects. Together, these results suggest that direct contact and VOCs of Serratia sp. H6 were the main mechanisms to promote plant growth of A. thaliana, while diffusible compounds of Enterobacter sp. L7 were predominant in their PGPR activity.
Collapse
|
47
|
Tariq M, Hasnain N, Rasul I, Asad MA, Javed A, Rashid K, Shafique J, Iram W, Hameed A, Zafar M. Reconnoitering the capabilities of nodule endophytic Pantoea dispersa for improved nodulation and grain yield of chickpea (Cicer arietinum L.). World J Microbiol Biotechnol 2023; 39:85. [PMID: 36705812 DOI: 10.1007/s11274-023-03525-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 01/11/2023] [Indexed: 01/28/2023]
Abstract
Microorganisms belonging to root and soil provide a wide range of services and benefits to the plant by promoting plant growth and controlling phytopathogens. This study aimed to isolate endophytic bacteria from the root nodules of chickpea (Cicer arietinum L.) and determine their potential in improving plant growth. A total of nineteen different bacterial morphotypes were isolated from root nodules of chickpea and characterized in vitro for plant growth promotion abilities. All bacterial isolates were able to produce indole acetic acid at varying levels, out of which MCA19 was screened as the most efficient indole acetic acid producer (10.25 µg mL-1). MCA8, MCA9, MCA10, MCA11, MCA16, MCA17 and MCA19 were positive for phosphate solubilization, out of which MCA9 was best phosphate solubilizer (18.8 µg mL-1). All bacterial strains showed varying ability to grow on nitrogen-free media. Hydrogen cyanide, pectinase, and cellulase production ability were also observed in isolates, in which MCA9, MCA12, MCA17 and MCA19 were found best. Based on in vitro testing, five isolates MCA2, MCA9, MCA11, MCA17 and MCA19 were selected for further studies. Bacterial isolates MCA9, MCA11, MCA17 and MCA19 were identified by 16S rRNA gene sequence analysis as Pantoea dispersa while MCA2 as Rhizobium pusense. This is the first report on the existence of Pantoea dispersa in the root nodules of chickpea. In pot experiment, a maximum increase of 30% was recorded in plant dry weight upon the application of MCA19. Under field conditions, bacterial isolates, MCA2, MCA11 and MCA19 significantly enhanced nodulation and yield parameters of chickpea, compared to control. Pantoea dispersa MCA19 displayed the highest plant growth-promoting potential by increasing 38% grain yield. Our results indicate that Pantoea dispersa MCA19 is a promising biofertilizer for future applications.
Collapse
Affiliation(s)
- Mohsin Tariq
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan.
| | - Nayab Hasnain
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Ijaz Rasul
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | | | - Aqsa Javed
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Kamran Rashid
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Javeria Shafique
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Wajeeha Iram
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Amir Hameed
- Plant Breeding and Acclimatization Institute, National Research Institute, 05-870, Radzikow, Blonie, Poland
| | - Marriam Zafar
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| |
Collapse
|
48
|
Robas Mora M, Fernández Pastrana VM, Oliva LLG, Lobo AP, Jiménez Gómez PA. Plant growth promotion of the forage plant Lupinus albus Var. Orden Dorado using Pseudomonas agronomica sp. nov. and Bacillus pretiosus sp. nov. added over a valorized agricultural biowaste. Front Microbiol 2023; 13:1046201. [PMID: 36777023 PMCID: PMC9910085 DOI: 10.3389/fmicb.2022.1046201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 12/28/2022] [Indexed: 01/28/2023] Open
Abstract
Introduction The overexploitation of natural ecosystems and the evolution of climate change currently force us to design new strategies for more sustainable agronomic uses. The recovery of plant residues, as an alternative to agrochemicals, can help alleviate these problems, for example, through its use for the synthesis of biofertilizers. In this work, the effect of the organic fertilizer matrix ORGAON® from the valorization of horticultural waste is tested, to which two strains of bacteria (and their consortium) are added (SAICEU11T identified as Bacillus pretiosus and SAICEU22T identified as Pseudomonas agronomica), selected for their demonstrated ability to promote plant growth (PGPB), on the lupine forage plant (Lupinus albus). Methods For the synthesis of the biofertilizer, both strains were added to the ORGAON® organic matrix separately, until reaching a final optical density (OD) of 0.5 McFarland in each case in the irrigation matrix. As a control, sterile ORGAON® (ORGAON®st) was used, also supplemented with the PGPB strains and a chemical fertilizer widely used in agronomy (Chem-F). With these treatments, a 6-week experiment was started under controlled laboratory conditions and on agricultural substrate, to recreate field conditions as accurately as possible. All the tests were carried out with 9 repetitions and 3 replicates of each treatment. After harvest, the improvements on the following biometric variables were studied for each treatment: total weight (Weight_T, g), shoot weight (Weight_S, g), root weight (Weight_R, g), number of leaves (Leaves, No.), shoot length (Length_S), root length (Length_R) and number of secondary roots (Roots, No.). Likewise, the identification of the tested strains and their description as new species was carried out. For this, they were studied from the phenotypic point of view (Transmission electron microscopy (TEM), metabolic profile, PGP activities, fatty acid profile and Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF)) and genotypic (sequencing of the main housekeeping genes and sequencing of the whole genome, genomic characteristics (dDDH and ANI) and phylogenetic analysis). Results and discussion After the statistical analysis of the results, it is shown that the individual addition of both strains on the ORGAON® and ORGAON®st organic matrix improve certain biometric variables. In the case of the SAICEU11T (Bacillus pretiosus) strain, the variables root weight (Weight_R, g), total weight (Weight_T, g) and length of the plant, and number of secondary roots (Roots, No.) significantly improve, while in the case of the strain SAICEU22T (Pseudmonas agronomica), a significant improvement of root length (Length_R) and number of secondary roots (Roots, No.) is demonstrated. On the other hand, the genotaxonomic analysis showed that both species have not been described to date. The identification based on the main housekeeping genes, show that for the Bacillus strain (SAICEU11T) the sequence similarity of the 16S rRNA was 100%, gyrB 92.69%, rpoB 97.70% and rpoD 94.67%. For the Pseudomonas strain (SAICEU22T) the results were 100% for 16S rRNA, 98.43% for rpoD and 96.94% for gyrB. However, in both cases, the dDDH and ANI values, as well as the phylogenetic analysis, show that both species are below the species threshold, which would support the hypothesis that both are new species, in line with the chemotaxonomic results obtained by MALDI-TOF spectrometry and fatty acid profile. To verify the biosafety in their handling and release into the natural environment, we have ruled out the presence of genes that encode virulence factors or resistance to antibiotics, concluding that they are suitable for use in the field to improve the yield of crop plants. Type strains are SAICEU11T (= DSM 114702T = CECT30674T) for Bacillus pretiosus and SAICEU22T (= DSM 114959T = CECT30673T) for Pseudomonas agronomicae.
Collapse
Affiliation(s)
- Marina Robas Mora
- Department of Pharmaceutical Science and Health, Montepríncipe Campus, CEU San Pablo University, Madrid, Spain,*Correspondence: Marina Robas Mora, ✉
| | - Vanesa M. Fernández Pastrana
- Department of Pharmaceutical Science and Health, Montepríncipe Campus, CEU San Pablo University, Madrid, Spain,Vanesa M. Fernández Pastrana, ✉
| | | | - Agustín Probanza Lobo
- Department of Pharmaceutical Science and Health, Montepríncipe Campus, CEU San Pablo University, Madrid, Spain
| | - Pedro A. Jiménez Gómez
- Department of Pharmaceutical Science and Health, Montepríncipe Campus, CEU San Pablo University, Madrid, Spain,Pedro A. Jiménez Gómez, ✉
| |
Collapse
|
49
|
Jaffar NS, Jawan R, Chong KP. The potential of lactic acid bacteria in mediating the control of plant diseases and plant growth stimulation in crop production - A mini review. FRONTIERS IN PLANT SCIENCE 2023; 13:1047945. [PMID: 36714743 PMCID: PMC9880282 DOI: 10.3389/fpls.2022.1047945] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/27/2022] [Indexed: 06/18/2023]
Abstract
The microbial diseases cause significant damage in agriculture, resulting in major yield and quality losses. To control microbiological damage and promote plant growth, a number of chemical control agents such as pesticides, herbicides, and insecticides are available. However, the rising prevalence of chemical control agents has led to unintended consequences for agricultural quality, environmental devastation, and human health. Chemical agents are not naturally broken down by microbes and can be found in the soil and environment long after natural decomposition has occurred. As an alternative to chemical agents, biocontrol agents are employed to manage phytopathogens. Interest in lactic acid bacteria (LAB) research as another class of potentially useful bacteria against phytopathogens has increased in recent years. Due to the high level of biosafety, they possess and the processes they employ to stimulate plant growth, LAB is increasingly being recognized as a viable option. This paper will review the available information on the antagonistic and plant-promoting capabilities of LAB and its mechanisms of action as well as its limitation as BCA. This review aimed at underlining the benefits and inputs from LAB as potential alternatives to chemical usage in sustaining crop productivity.
Collapse
Affiliation(s)
- Nur Sulastri Jaffar
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Sabah, Malaysia
- Horticulture Research Centre, Malaysian Agricultural Research and Development Institute (MARDI), Selangor, Malaysia
| | - Roslina Jawan
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Sabah, Malaysia
| | - Khim Phin Chong
- Faculty of Science and Natural Resources, Universiti Malaysia Sabah, Sabah, Malaysia
| |
Collapse
|
50
|
Agyekum DVA, Kobayashi T, Dastogeer KMG, Yasuda M, Sarkodee-Addo E, Ratu STN, Xu Q, Miki T, Matsuura E, Okazaki S. Diversity and function of soybean rhizosphere microbiome under nature farming. Front Microbiol 2023; 14:1130969. [PMID: 36937301 PMCID: PMC10014912 DOI: 10.3389/fmicb.2023.1130969] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Accepted: 02/10/2023] [Indexed: 03/05/2023] Open
Abstract
Nature farming is a farming system that entails cultivating crops without using chemical fertilizers and pesticides. The present study investigated the bacterial and fungal communities in the rhizosphere of soybean grown in conventional and nature farming soils using wild-type and non-nodulating mutant soybean. The effect of soil fumigant was also analyzed to reveal its perturbation of microbial communities and subsequent effects on the growth of soybean. Overall, the wild-type soybean exhibited a better growth index compared to mutant soybean and especially in nature farming. Nodulation and arbuscular mycorrhiza (AM) fungi colonization were higher in plants under nature farming than in conventionally managed soil; however, fumigation drastically affected these symbioses with greater impacts on plants in nature farming soil. The rhizosphere microbiome diversity in nature farming was higher than that in conventional farming for both cultivars. However, the diversity was significantly decreased after fumigation treatment with a greater impact on nature farming. Principal coordinate analysis revealed that nature farming and conventional farming soil harbored distinct microbial communities and that soil fumigation significantly altered the communities in nature farming soils but not in conventional farming soils. Intriguingly, some beneficial microbial taxa related to plant growth and health, including Rhizobium, Streptomyces, and Burkholderia, were found as distinct microbes in the nature farming soil but were selectively bleached by fumigant treatment. Network analysis revealed a highly complex microbial network with high taxa connectivity observed under nature farming soil than in conventional soil; however, fumigation strongly broke it. Overall, the results highlighted that nature farming embraced higher microbial diversity and the abundance of beneficial soil microbes with a complex and interconnected network structure, and also demonstrated the underlying resilience of the microbial community to environmental perturbations, which is critical under nature farming where chemical fertilizers and pesticides are not applied.
Collapse
Affiliation(s)
- Dominic V. A. Agyekum
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Tatsuyuki Kobayashi
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Khondoker M. G. Dastogeer
- Department of Plant Pathology, Faculty of Agriculture, Bangladesh Agricultural University, Mymensingh, Bangladesh
| | - Michiko Yasuda
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Elsie Sarkodee-Addo
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Safirah T. N. Ratu
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Japan
| | - Qicong Xu
- International Nature Farming Research Center, Nagano, Japan
| | - Takaaki Miki
- International Nature Farming Research Center, Nagano, Japan
| | - Eri Matsuura
- College of Agriculture, Ibaraki University, Mito, Japan
| | - Shin Okazaki
- United Graduate School of Agricultural Science, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Faculty of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Japan
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Japan
- *Correspondence: Shin Okazaki,
| |
Collapse
|