1
|
Melo APC, Teixeira HMP, Coelho RS, Silva HDS, Silva RR, Alcantara-Neves NM, Costa G, Barreto ML, Costa RDS, Pinto LC, Figueiredo CA. Genome-wide association study on overweight in Brazilian children with asthma: Old stories and new discoveries. Gene 2025; 941:149219. [PMID: 39761804 DOI: 10.1016/j.gene.2025.149219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Revised: 11/18/2024] [Accepted: 01/02/2025] [Indexed: 01/14/2025]
Abstract
INTRODUCTION Overweight and obesity are chronic and multifactorial diseases with a strong genetic component contributing to weight gain across all age groups. This study aimed to conduct a Genome-wide Association Study (GWAS) on a cohort of 1,004 Brazilian children (5-11 years old) to identify specific DNA regions associated with susceptibility to overweight. METHODS The GWAS was performed on children participating in the SCAALA (Asthma and Allergy Social Changes in Latin America) program, with participants classified as either overweight or non-overweight. Genotyping was carried out using the Illumina 2.5 Human Omni bead chip. Using ELISA, cytokine levels (IL-5, IL-13, IL-10, and IFN) were measured in the blood culture supernatant. Furthermore, pathway analyses were conducted utilizing the Gene Ontology tool. RESULTS Our analysis revealed eight significant signals distributed across the genome. The most prominent single nucleotide variant (SNV) was identified in the IL1R1 gene, followed by three variants in the LOC105377841 region (located between the ADH5P4 and EYS genes), as well as variants in the KNTC1, RAPTOR, and DSCAM genes. Among the identified variants, three (IL1R1, RAPTOR, and DSCAM) are associated with immune mechanisms, one (ST18) is linked to the death pathway, and one (KNTC1) is associated with mitotic spindle assembly. The genetic risk score analysis demonstrated that having one or more variants among the six analyzed significantly increased the risk of being overweight by eightfold. CONCLUSIONS Our study uncovered genetic loci within pathways with strong biological plausibility, including identifying a novel region (LOC105377841) not previously associated with overweight. Understanding the genetic variants involved in overweight and obesity is crucial for advancing our knowledge of these diseases, particularly within mixed populations such as the Brazilian population.
Collapse
Affiliation(s)
| | | | - Raisa Santos Coelho
- Institute for Health Sciences, Federal University of Bahia, Salvador, Brazil
| | | | - Raimon R Silva
- Institute for Health Sciences, Federal University of Bahia, Salvador, Brazil
| | | | - Gustavo Costa
- Institute of Public Health, Federal University of Bahia, Salvador, Brazil
| | - Maurício Lima Barreto
- Institute of Public Health, Federal University of Bahia, Salvador, Brazil; Center for Data and Knowledge Integration for Health (CIDACS), Fiocruz, Bahia, Brazil
| | | | | | | |
Collapse
|
2
|
Guggeri L, Sosa-Redaelli I, Cárdenas-Rodríguez M, Alonso M, González G, Naya H, Prieto-Echagüe V, Lepanto P, Badano JL. Follistatin like-1 ( Fstl1) regulates adipose tissue development in zebrafish. Adipocyte 2024; 13:2435862. [PMID: 39644214 PMCID: PMC11633180 DOI: 10.1080/21623945.2024.2435862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 11/22/2024] [Accepted: 11/25/2024] [Indexed: 12/09/2024] Open
Abstract
Obesity is a highly prevalent disorder with complex aetiology. Therefore, studying its associated cellular and molecular pathways may be aided by analysing genetic tractable diseases. In this context, the study of ciliopathies such as Bardet-Biedl syndrome has highlighted the relevance of primary cilia in obesity, both in the central nervous system and peripheral tissues. Based on our previous in vitro results supporting the role of a novel Bbs4-cilia-Fstl1 axis in adipocyte differentiation, we evaluated the in vivo relevance of the zebrafish orthologous genes fstl1a and fstl1b in primary cilia and adipose tissue development. Using a combination of knockdowns and a new fstl1a mutant line, we show that fstl1a promotes primary cilia formation in early embryos and participates in adipose tissue formation in larvae. We also show that fstl1b partially compensates for the loss of fstl1a. Moreover, in high fat diet, fstl1a depletion affects the expression of differentiation and mature adipocyte markers. These results agree with our previous in vitro data and provide further support for the role of FSTL1 as a regulator of adipose tissue formation. Dissecting the exact biological role of proteins such as FSTL1 will likely contribute to understand obesity onset and presentation.
Collapse
Affiliation(s)
- Lucía Guggeri
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Ileana Sosa-Redaelli
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | | | - Martina Alonso
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Gisell González
- Zebrafish Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Hugo Naya
- Bioinformatics Unit, Institut Pasteur de Montevideo, Montevideo, Uruguay
- Facultad de Agronomía, Universidad de la República, Montevideo, Uruguay
| | | | - Paola Lepanto
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| | - Jose L. Badano
- Human Molecular Genetics Laboratory, Institut Pasteur de Montevideo, Montevideo, Uruguay
| |
Collapse
|
3
|
Iqbal Z, Vasan SK, Fachim H, Warner-Levy J, Donn RP, Ammori BJ, Heald AH, Soran H, Syed AA. Are weight loss and metabolic outcomes of bariatric surgery influenced by candidate glucocorticoid receptor gene polymorphisms? A prospective study. Adipocyte 2024; 13:2369776. [PMID: 38982594 PMCID: PMC11238915 DOI: 10.1080/21623945.2024.2369776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/25/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
BACKGROUND Bariatric surgery is the most effective treatment for severe obesity. There can be variation in the degree of weight reduction following bariatric surgery. It is unknown whether single nucleotide polymorphisms (SNPs) in the glucocorticoid receptor locus (GRL) affect postoperative weight loss and metabolic outcomes. MATERIALS/METHODS We studied the association between selected candidate SNPs and postoperative weight loss and metabolic outcomes in patients with severe obesity undergoing bariatric surgery. The polymorphisms rs41423247 (Bcl1), rs56149945 (N363S) and rs6189/rs6190 (ER22/23EK) were analysed. RESULTS The 139 participants included 95 women (68.3%) and had a median (interquartile range) age of 53.0 (46.0-60.0) years and mean (SD) weight of 140.8 (28.8) kg and body mass index of 50.3 (8.6) kg/m2. At baseline, 59 patients had type 2 diabetes (T2D), 60 had hypertension and 35 had obstructive sleep apnoea syndrome treated with continuous positive airway pressure (CPAP). 84 patients (60.4%) underwent gastric bypass and 55 (39.6%) underwent sleeve gastrectomy. There were no significant differences in weight loss, glycated haemoglobin (HbA1c) or lipid profile categorized by genotype status, sex or median age. There was significant weight reduction after bariatric surgery with a postoperative BMI of 34.1 (6.8) kg/m2 at 24 months (p < 0.001). CONCLUSION While GRL polymorphisms with a known deleterious effect on adipose tissue mass and function may have a small, additive effect on the prevalence of obesity and related metabolic disorders in the population, we suggest that the relatively weak biological influence of these SNPs is readily overcome by bariatric surgery.
Collapse
Affiliation(s)
- Zohaib Iqbal
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Senthil Kandaswamy Vasan
- Endocrinology and Diabetes, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | | | - John Warner-Levy
- Endocrinology and Diabetes, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| | - Rachelle P. Donn
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Basil J. Ammori
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Adrian H. Heald
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Handrean Soran
- Faculty of Biology, Medicine and Health, The University of Manchester, Manchester Academic Health Science Centre, Manchester, UK
| | - Akheel A. Syed
- Endocrinology and Diabetes, Salford Royal Hospital, Northern Care Alliance NHS Foundation Trust, Salford, UK
| |
Collapse
|
4
|
Haddad A, Suter M, Greve JW, Shikora S, Prager G, Dayyeh BA, Galvao M, Grothe K, Herrera M, Kow L, Le Roux C, O'Kane M, Parmar C, Quadros LG, Ramos A, Vidal J, Cohen RV. Therapeutic Options for Recurrence of Weight and Obesity Related Complications After Metabolic and Bariatric Surgery: An IFSO Position Statement. Obes Surg 2024; 34:3944-3962. [PMID: 39400870 DOI: 10.1007/s11695-024-07489-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/16/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
Obesity is a chronic disease that may require multiple interventions and escalation of therapy throughout the years. Until recently, no universal definition existed for recurrent weight gain and insufficient weight loss. Standardization of reporting is key so outcomes can be compared and data can be pooled. The recent IFSO consensus provided standard terminology and definitions that will likely resolve this in the future, and publishers will need to enforce for authors to use these definitions. This current IFSO position statement provides guidance for the management of recurrent weight gain after bariatric surgery.
Collapse
Affiliation(s)
- Ashraf Haddad
- Gastrointestinal Metabolic and Bariatric Surgery Center -GBMC- Jordan Hospital, Amman, Jordan.
| | | | | | | | | | | | - Manoel Galvao
- Orlando Health Weight Loss and Bariatric Surgery Institute, Orlando, FL, USA
| | | | - Miguel Herrera
- Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Mexico City, Mexico
| | - Lilian Kow
- Flinders University, Adelaide, Australia
| | | | - Mary O'Kane
- Leeds Teaching Hospitals NHS Trust, Leeds, UK
| | | | | | - Almino Ramos
- GastroObesoCenter - Institute for Metabolic Optimization, São Paulo, Brazil
| | - Josep Vidal
- Hospital Clínic de Barcelona, Barcelona, Spain
| | | |
Collapse
|
5
|
Gala K, Ghusn W, Fansa S, Anazco D, Storm AC, Abu Dayyeh BK, Acosta A. Impact of Leptin-Melanocortin Pathway Genetic Variants on Weight Loss Outcomes After Endoscopic Transoral Outlet Reduction. Obes Surg 2024; 34:4203-4210. [PMID: 39419959 DOI: 10.1007/s11695-024-07547-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
PURPOSE Variants in the leptin-melanocortin pathway (LMP) are associated with severe obesity. We evaluated weight loss of patients with or without heterozygous LMP variants, with weight recurrence after Roux-en-Y gastric bypass, who underwent endoscopic transoral outlet reduction (TORe). MATERIALS AND METHODS We retrospectively reviewed patients genotyped for an LMP who had undergone TORe, classified as "carriers" or "non-carriers" of genetic variants. RESULTS We included 54 patients (22 carriers, 32 non-carriers). We identified 34 genetic variants in 21 different genes in 22 patients. Total body weight loss (%TBWL) after TORe was significantly different at 9 and 12 months (12 months: 0.68 ± 7.5% vs. 9.6 ± 8.2%, p < 0.01). This difference in weight loss was present even when analyzed in subgroups of patients who had undergone tubular TORe technique, and TORe plus APC. At 3, 6, and 12 months, the percentage of carriers achieving ≥ 5% and ≥ 10% TBWL was lower than non-carriers. CONCLUSIONS Patients with LMP variant who underwent RYGB had decreased weight loss 1 year after undergoing TORe.
Collapse
Affiliation(s)
- Khushboo Gala
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Wissam Ghusn
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Sima Fansa
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Diego Anazco
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Andrew C Storm
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Barham K Abu Dayyeh
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, MN, USA.
| |
Collapse
|
6
|
Bayhaghi G, Karim ZA, Silva J. Descriptive analysis of MC4R gene variants associated with obesity listed on ClinVar. Sci Prog 2024; 107:368504241297197. [PMID: 39552559 PMCID: PMC11571248 DOI: 10.1177/00368504241297197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
OBJECTIVES The most recent version of ClinVar was utilized to filter variants of the MC4R gene based on location, condition, and clinical significance with the goal of obtaining benign and disease-associated variants of the MC4R gene. MC4R gene variants can lead to dysregulation of energy expenditure and appetite control, which prompted this study to delineate the distinctive features of MC4R gene variants submitted to the ClinVar repository regarding their association with obesity and related phenotypes. METHOD A thorough search was conducted in the ClinVar repository for clinically significant MC4R variants through the utilization of the gene name MC4R[gene] and MeSH terms "MC4R[gene]" and "single gene"[properties]" in the search box. Leading to the identification of clinically significant genetic variants associated with obesity. RESULTS Utilizing the ClinVar clinical significance ranking system, the MC4R variants were categorized into six groups based on ClinVar/ClinGen's ranking system: pathogenic (P), likely pathogenic (LP), variant of uncertain significance (VUS), benign (B), likely benign (LB), and conflicting classifications (CC). A total of 103 pathogenic variants were observed. These variants have different clinical significance that are associated with monogenic obesity, monogenic diabetes, and body mass index quantitative traits. It was observed that over 80% of the mutations were single nucleotide variants, with nearly half being missense mutations spread throughout the topological and transmembrane domains. Furthermore, TM7 had the highest number of single nucleotide missense mutations. CONCLUSION Further analysis of the relationships between monogenic obesity and diabetes requires additional investigation to discover the underlying causes of these conditions. The study findings imply that mutations in MC4R's topological and transmembrane regions may significantly influence receptor activation and signaling. As more MC4R variants are discovered and their correlation with obesity is established, there is potential to definitively establish a strong connection between MC4R pathogenic variants and the development of obesity.
Collapse
Affiliation(s)
- Giti Bayhaghi
- Department of Undergraduate Health Professions, College of Allied Health Sciences, Augusta University, Augusta, GA, USA
| | - Zubair A. Karim
- Department of Nutrition & Dietetics, College of Allied Health Science, Augusta University, Augusta, GA, USA
| | - Jeane Silva
- Department of Health Management, Economics and Policy, School of Public Health Augusta University, Augusta, GA, USA
| |
Collapse
|
7
|
Song Y, Li X, Hu B, Chen Y, Cui P, Liang Y, He X, Yang G, Li J. A study on the configuration of factors influencing overweight and obesity in adolescents based on fuzzy set qualitative comparative analysis. J Adolesc 2024; 96:1617-1627. [PMID: 38946211 DOI: 10.1002/jad.12369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 06/14/2024] [Accepted: 06/20/2024] [Indexed: 07/02/2024]
Abstract
OBJECTIVE Overweight and obesity among adolescents are grave public health issues around the world. Although the conditions that contribute to obesity have been extensively researched, little is known about how multiple conditions interact to cause overweight and obesity. The current study intends to investigate the histomorphic configuration pathways of several conditions of adolescent overweight and obesity by gender. METHOD The data came from a social survey conducted in June 2021 in Changchun, Jilin Province, China. The sample collected was 14-year-old adolescents, including 167 boys and 137 girls. The school physicians examined the participants' weight and height, and questionnaires were used to collect risk indicators from adolescents, such as sleep duration, electronic screens times, consumption of sugary drinks and fried foods, and physical activity. Simultaneously, a Fuzzy Qualitative Comparative Analysis will be performed to investigate the combinations of diverse conditions. RESULT We found that there is no determining necessary condition that, once present, directly determines that an individual is in a state of overweight and obesity. Simultaneously, this study revealed nine alternative configurational paths of overweight and obesity in teenagers of different genders, with a concordance of 0.805 for six male groupings and 0.916 for three female groupings. The outcomes of overweight obesity in adolescents under different genders are similar but not identical. CONCLUSION This study examined the interactions of a number of conditions from the individual, behavioral, learning and living environment that led to the same overweight obese outcome among adolescents of different genders. Our research will be useful to policymakers in that interventions should take into account the combined effects of a number of different aspects rather than focusing on a single factor that causes overweight and obesity.
Collapse
Affiliation(s)
- Yiwen Song
- School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Xinru Li
- School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Bingqin Hu
- School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Yitong Chen
- School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Peiyao Cui
- School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Yifang Liang
- School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Xin He
- School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Guofeng Yang
- School of Public Health, Jilin University, Changchun, Jilin Province, China
| | - Jinghua Li
- School of Public Health, Jilin University, Changchun, Jilin Province, China
| |
Collapse
|
8
|
Tyler AL, Mahoney JM, Keller MP, Baker CN, Gaca M, Srivastava A, Gerdes Gyuricza I, Braun MJ, Rosenthal NA, Attie AD, Churchill GA, Carter GW. Transcripts with high distal heritability mediate genetic effects on complex metabolic traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.26.613931. [PMID: 39386475 PMCID: PMC11463413 DOI: 10.1101/2024.09.26.613931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Although many genes are subject to local regulation, recent evidence suggests that complex distal regulation may be more important in mediating phenotypic variability. To assess the role of distal gene regulation in complex traits, we combined multi-tissue transcriptomes with physiological outcomes to model diet-induced obesity and metabolic disease in a population of Diversity Outbred mice. Using a novel high-dimensional mediation analysis, we identified a composite transcriptome signature that summarized genetic effects on gene expression and explained 30% of the variation across all metabolic traits. The signature was heritable, interpretable in biological terms, and predicted obesity status from gene expression in an independently derived mouse cohort and multiple human studies. Transcripts contributing most strongly to this composite mediator frequently had complex, distal regulation distributed throughout the genome. These results suggest that trait-relevant variation in transcription is largely distally regulated, but is nonetheless identifiable, interpretable, and translatable across species.
Collapse
|
9
|
Leońska-Duniec A. Comprehensive Genetic Analysis of Associations between Obesity-Related Parameters and Physical Activity: A Scoping Review. Genes (Basel) 2024; 15:1137. [PMID: 39336728 PMCID: PMC11431730 DOI: 10.3390/genes15091137] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 08/19/2024] [Accepted: 08/27/2024] [Indexed: 09/30/2024] Open
Abstract
Genetic epidemiological studies have shown that numerous genetic variants cumulatively increase obesity risk. Although genetically predisposed individuals are more prone to developing obesity, it has been shown that physical activity can modify the genetic predisposition to obesity. Therefore, genetic data obtained from earlier studies, including 30 polymorphisms located in 18 genes, were analyzed using novel methods such as the total genetic score and Biofilter 2.4 software to combine genotypic and phenotypic information for nine obesity-related traits measured before and after the realization of the 12-week training program. The results revealed six genes whose genotypes were most important for post-training changes-LEP, LEPR, ADIPOQ, ADRA2A, ADRB3, and DRD2. Five noteworthy pairwise interactions, LEP × LEPR, ADRB2 × ADRB3, ADRA2A × ADRB3, ADRA2A × ADRB2, ADRA2A × DRD2, and three specific interactions demonstrating significant associations with key parameters crucial for health, total cholesterol (TC), high-density lipoprotein (HDL), and fat-free mass (FFM), were also identified. The molecular basis of training adaptation described in this study would have an enormous impact on the individualization of training programs, which, designed according to a given person's genetic profile, will be effective and safe intervention strategies for preventing obesity and improving health.
Collapse
Affiliation(s)
- Agata Leońska-Duniec
- Faculty of Physical Education, Gdansk University of Physical Education and Sport, 80-336 Gdansk, Poland
| |
Collapse
|
10
|
Zafirovska M, Zafirovski A, Režen T, Pintar T. The Outcome of Metabolic and Bariatric Surgery in Morbidly Obese Patients with Different Genetic Variants Associated with Obesity: A Systematic Review. Nutrients 2024; 16:2510. [PMID: 39125390 PMCID: PMC11313945 DOI: 10.3390/nu16152510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 07/22/2024] [Accepted: 07/27/2024] [Indexed: 08/12/2024] Open
Abstract
Metabolic and bariatric surgery (MBS) effectively treats obesity and related comorbidities, though individual responses vary. This systematic review examines how genetic variants influence MBS outcomes in morbidly obese patients. A comprehensive search in PubMed, Embase, Medline, and the Cochrane Library identified 1572 studies, with 52 meeting the inclusion criteria. Two reviewers independently filtered and selected studies, including relevant cross-references. Research focused on polymorphisms in genes such as UCP2, UCP3, 5-HT2C, MC4R, FKBP5, FTO, CAT haplotypes, LYPAL-1, PTEN, FABP-2, CNR1, LEP656, LEP223, GLP-1R, APOA-1, APOE, ADIPOQ, IL-6, PGC1a, TM6SF2, MBOAT7, PNPLA3, TCF7L2, ESR1, GHSR, GHRL, CD40L, DIO2, ACSL5, CG, TAS2R38, CD36, OBPIIa, NPY, BDNF, CLOCK, and CAMKK2. Most studies explored associations with post-surgery weight loss, while some examined metabolic, cardiovascular, taste, and eating behavior effects as well. Understanding the role of genetic factors in weight loss and metabolic outcomes post-MBS can help tailor personalized treatment plans for improved efficacy and long-term success. Further research with larger sample sizes and extended follow-up is needed to clarify the effects of many genetic variants on MBS outcomes in morbidly obese patients.
Collapse
Affiliation(s)
- Marija Zafirovska
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (M.Z.); (A.Z.)
- Association of General Practice/Family Medicine of South-East Europe (AGP/FM SEE), St. Vladimir Komarov No. 40/6, 1000 Skopje, North Macedonia
| | - Aleksandar Zafirovski
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (M.Z.); (A.Z.)
- General Hospital Jesenice, Cesta maršala Tita 112, 4270 Jesenice, Slovenia
- Clinical Institute of Radiology, University Medical Centre Ljubljana, Zaloška cesta 7, 1000 Ljubljana, Slovenia
| | - Tadeja Režen
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (M.Z.); (A.Z.)
- Centre for Functional Genomics and Bio-Chips, Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Zaloška cesta 4, 1000 Ljubljana, Slovenia
| | - Tadeja Pintar
- Faculty of Medicine, University of Ljubljana, Vrazov trg 2, 1000 Ljubljana, Slovenia; (M.Z.); (A.Z.)
- Department of Abdominal Surgery, University Medical Centre Ljubljana, Zaloška cesta 2, 1000 Ljubljana, Slovenia
| |
Collapse
|
11
|
Cheraghi S, Taheri G, Safari S, Bakhshandeh H, Malek M, Moghimian B, Mottaghi A. Survey on Interaction Between Nutrient Status and Selected Polymorphisms in Association with Weight Loss of Patients with Severe Obesity Underwent Bariatric Surgery. Obes Surg 2024; 34:2854-2861. [PMID: 38972938 DOI: 10.1007/s11695-024-07305-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 05/18/2024] [Accepted: 05/23/2024] [Indexed: 07/09/2024]
Abstract
BACKGROUND There is little information about the effect of single nucleotide polymorphisms (SNP) and nutritional status and weight loss after bariatric surgery. This study investigated the interactive effect of eight obesity-related SNPs and nutritional status on weight loss after Roux-en-Y gastric bypass (RYGB). METHOD This is a case-control study. After 1-year follow-up, the patients who underwent RYGB were dividing into two groups. The case group consisted of patients who lost more than 50% of their excess body weight (EBW%) 1 year after the surgery. The control group included patients who lost < 50% of EBW at same time frame. Then, the relationship between eight SNPs related to UCP2, FTO, LEPR, GHRL, and NPY genes with weight loss were checked. RESULTS In this study, 160 patients were recruited. The median of age for case and control group were 43 and 42 respectively. The presence of mutant variant NPYrs16147 had a significant relationship in terms of weight loss between the two groups (P > 0.05). In dominant model, two SNPs, UCP2 rs659366 and UCP2 rs660339, showed protective effect of the vitamin D deficiency. CONCLUSION In conclusion, the presence mutant variant of NPYrs16147 is directly related to the incidence of weight loss greater than 50% of EBW. However, it is apparent individual behavioral, dietary, and other factors may have more influence on weight loss among patients underwent RYGB.
Collapse
Affiliation(s)
- Sara Cheraghi
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Golmehr Taheri
- Department of Endocrinology and Metabolism, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Saeed Safari
- Firoozgar General Hospital, Iran University of Medical Sciences, Tehran, Iran
| | - Hooman Bakhshandeh
- Heart Research Center, Rajaie Cardiovascular Medical and Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Mojtaba Malek
- Research Center for Prevention of Cardiovascular Diseases, Institute of Endocrinology Metabolism, Iran University of Medical Sciences, Endocrinology & Metabolism, Tehran, Iran
| | - Bahar Moghimian
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Azadeh Mottaghi
- Endocrine Research Center, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran.
- Research Center for Prevention of Cardiovascular Diseases, Institute of Endocrinology Metabolism, Iran University of Medical Sciences, Endocrinology & Metabolism, Tehran, Iran.
| |
Collapse
|
12
|
Gómez-Hernández A, de las Heras N, Gálvez BG, Fernández-Marcelo T, Fernández-Millán E, Escribano Ó. New Mediators in the Crosstalk between Different Adipose Tissues. Int J Mol Sci 2024; 25:4659. [PMID: 38731880 PMCID: PMC11083914 DOI: 10.3390/ijms25094659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 04/19/2024] [Accepted: 04/22/2024] [Indexed: 05/13/2024] Open
Abstract
Adipose tissue is a multifunctional organ that regulates many physiological processes such as energy homeostasis, nutrition, the regulation of insulin sensitivity, body temperature, and immune response. In this review, we highlight the relevance of the different mediators that control adipose tissue activity through a systematic review of the main players present in white and brown adipose tissues. Among them, inflammatory mediators secreted by the adipose tissue, such as classical adipokines and more recent ones, elements of the immune system infiltrated into the adipose tissue (certain cell types and interleukins), as well as the role of intestinal microbiota and derived metabolites, have been reviewed. Furthermore, anti-obesity mediators that promote the activation of beige adipose tissue, e.g., myokines, thyroid hormones, amino acids, and both long and micro RNAs, are exhaustively examined. Finally, we also analyze therapeutic strategies based on those mediators that have been described to date. In conclusion, novel regulators of obesity, such as microRNAs or microbiota, are being characterized and are promising tools to treat obesity in the future.
Collapse
Affiliation(s)
- Almudena Gómez-Hernández
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
| | - Natalia de las Heras
- Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain;
| | - Beatriz G. Gálvez
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
| | - Tamara Fernández-Marcelo
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
| | - Elisa Fernández-Millán
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| | - Óscar Escribano
- Departamento de Bioquímica y Biología Molecular, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza Ramón y Cajal, s/n, 28040 Madrid, Spain; (A.G.-H.); (B.G.G.); (T.F.-M.); (E.F.-M.)
- CIBER de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM), Instituto de Salud Carlos III (ISCIII), 28029 Madrid, Spain
| |
Collapse
|
13
|
Dutta S, Singhal AK, Suryan V, Chandra NC. Obesity: An Impact with Cardiovascular and Cerebrovascular Diseases. Indian J Clin Biochem 2024; 39:168-178. [PMID: 38577137 PMCID: PMC10987439 DOI: 10.1007/s12291-023-01157-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 09/23/2023] [Indexed: 04/06/2024]
Abstract
The authors sought to correlate the complex sequel of obesity with various parameters known to develop metabolic syndrome viz. insulin resistance, dyslipidemia, hypertension etc., as these anomalies are linked to vascular atherosclerosis and outbreak of cardiovascular and cerebrovascular diseases. A comprehensive online survey using MEDLINE, Scopus, PubMed and Google Scholar was conducted for relevant journals from 1970 till present time (2023) with key search terms like: 'obesity', 'leptin', type-2 diabetes', 'atherosclerosis', 'cardiovascular and cerebrovascular diseases'. The findings of the reports were compared and correlated. The information was then collated for developing this review. Reports showed that in human obesity, hyper-leptinemia could induce hyperglycemia, which in turn templates hypercholesterolemia. Persisting hypercholesterolemia over a period of time may en-route atherosclerosis in blood vessels. Thus obesity has been considered as a template for originating hyperglycemia, hypercholesterolemia and outbreak of vascular atherogenesis or in other words, obesity in long run can trigger atherosclerosis and its related disorders e.g. heart attack and stroke. Literature survey shows that primarily, co-morbidities of human obesity start with leptin and insulin resistance and then multiplies with metabolic irregularities to an extreme that results in pathogenesis of heart attack and stroke. Atherosclerosis associated cardiovascular and cerebrovascular events are independent risks of obese subjects and particularly in the cases of persisting obesity.
Collapse
Affiliation(s)
- Savi Dutta
- Department of Biochemistry, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana 122505 India
| | - A. K. Singhal
- Department of Biochemistry, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana 122505 India
- Present Address: Department of Biochemistry, Al Falah School of Medical Sciences & Research Centre, Faridabad, Haryana India
| | - Varsha Suryan
- Department of Biochemistry, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana 122505 India
- Present Address: Department of Paramedical Science, Faculty of Allied Health Sciences, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana 122505 India
| | - Nimai Chand Chandra
- Department of Biochemistry, Shree Guru Gobind Singh Tricentenary University, Gurugram, Haryana 122505 India
| |
Collapse
|
14
|
Fansa S, Acosta A. The melanocortin-4 receptor pathway and the emergence of precision medicine in obesity management. Diabetes Obes Metab 2024; 26 Suppl 2:46-63. [PMID: 38504134 DOI: 10.1111/dom.15555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/15/2024] [Accepted: 02/29/2024] [Indexed: 03/21/2024]
Abstract
Over the past few decades, there has been a global surge in the prevalence of obesity, rendering it a globally recognized epidemic. Contrary to simply being a medical condition, obesity is an intricate disease with a multifactorial aetiology. Understanding the precise cause of obesity remains a challenge; nevertheless, there seems to be a complex interplay among biological, psychosocial and behavioural factors. Studies on the genetic factors of obesity have revealed several pathways in the brain that play a crucial role in food intake regulation. The best characterized pathway, thus far, is the leptin-melanocortin pathway, from which disruptions are responsible for the majority of monogenic obesity disorders. The effectiveness of conservative lifestyle interventions in addressing monogenic obesity has been limited. Therefore, it is crucial to complement the management strategy with pharmacological and surgical options. Emphasis has been placed on developing drugs aimed at replacing the absent signals, with the goal of restoring the pathway. In both monogenic and polygenic forms of obesity, outcomes differ across various interventions, likely due to the multifaceted nature of the disease. This underscores the need to explore alternative therapeutic strategies that can mitigate this heterogeneity. Precision medicine can be regarded as a powerful tool that can address this concern, as it values the understanding of the underlying abnormality triggering the disease and provides a tailored treatment accordingly. This would assist in optimizing outcomes of the current therapeutic approaches and even aid in the development of novel treatments capable of more effectively managing the global obesity epidemic.
Collapse
Affiliation(s)
- Sima Fansa
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| | - Andres Acosta
- Precision Medicine for Obesity Program, Division of Gastroenterology and Hepatology, Department of Medicine, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
15
|
Supti DA, Akter F, Rahman MI, Munim MA, Tonmoy MIQ, Tarin RJ, Afroz S, Reza HA, Yeasmin R, Alam MR, Hossain MS. Meta-analysis investigating the impact of the LEPR rs1137101 (A>G) polymorphism on obesity risk in Asian and Caucasian ethnicities. Heliyon 2024; 10:e27213. [PMID: 38496879 PMCID: PMC10944198 DOI: 10.1016/j.heliyon.2024.e27213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/12/2023] [Accepted: 02/26/2024] [Indexed: 03/19/2024] Open
Abstract
Obesity is a chronic condition which is identified by the buildup of excess body fat caused by a combination of various factors, including genetic predisposition and lifestyle choices. rs1137101 (A > G) polymorphism in the CHR1 domain of LEPR protein linked to different diseases including obesity. Nevertheless, the connection between this polymorphism and the likelihood of developing obesity has not been determined definitively. Therefore, a meta-analysis was conducted to assess the relationship between rs1137101 and the risk of obesity. The meta-analysis included all studies meeting pre-defined criteria, found through searching databases up until February 2023. A combined odds ratio with a 95% confidence interval was estimated as overall and in continent subgroups for homozygous, heterozygous, recessive, dominant and allelic models using the fixed or the random-effects model. The meta-analysis identified 39 eligible studies with cases and controls (6099 cases/6711 controls) in 38 articles under different ethnic backgrounds. The results indicated a significant relationship between rs1137101 and the likelihood of developing obesity in each of the genetic models [the homozygous model (GG vs. AA: 95% Confidence Interval = 1.12-1.73, Odds Ratio = 1.39, P value = 0.003); the heterozygous model (AG vs. AA: 95% Confidence Interval = 1.07-1.42, Odds Ratio = 1.23, P value = 0.005); the dominant model (AG/GG vs AA: 95% Confidence Interval = 1.10-1.49, Odds Ratio = 1.28, P value = 0.001); the recessive model (GG vs AA/AG: 95% Confidence Interval = 1.02-1.45, Odds Ratio = 1.21, P value = 0.03); and the allelic model (G vs A; 95% Confidence Interval = 1.07-1.33, Odds Ratio = 1.19, P value = 0.002)] tested. Additionally, with an FDR <0.05, all genotypic models demonstrated statistical significance. The association remained significant among subgroups of Asian and Caucasian populations, although analysis in some genetic models did not show a significant association. Begg's and Egger's tests did not show publication biases. In sensitivity analysis, one particular study was found to have an impact on the Recessive model's significance, but other models remained unaffected. The current meta-analysis found significant indications supporting the association between rs1137101 and obesity. To avail a deeper understanding of this association, future research should include large-scale studies conducted in diverse ethnic populations.
Collapse
Affiliation(s)
- Dilara Akhter Supti
- Department of Food Technology and Nutrition Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Farzana Akter
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Imranur Rahman
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Adnan Munim
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | | | - Rabia Jahan Tarin
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Sumaiya Afroz
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Hasan Al Reza
- Department of Genetic Engineering and Biotechnology, University of Dhaka, Dhaka, Bangladesh
| | - Roksana Yeasmin
- Department of Biochemistry, Ibrahim Medical College, Dhaka, Bangladesh
| | - Mohammad Rahanur Alam
- Department of Food Technology and Nutrition Science, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Md Shahadat Hossain
- Department of Biotechnology and Genetic Engineering, Noakhali Science and Technology University, Noakhali, Bangladesh
| |
Collapse
|
16
|
Chand S, Dikkatwar MS, Varghese TP, Singh R, Sah SK, Sutar AS, Biswas J, Shandily S. Potential therapies for obesity management: Exploring novel frontiers. Curr Probl Cardiol 2024; 49:102382. [PMID: 38184131 DOI: 10.1016/j.cpcardiol.2024.102382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/08/2024]
Abstract
Humans are becoming less active in the current age of technological advancement, which leads to poor health. Many factors, including unregulated diet, lack of exercise, environmental pollution and genetic factors are contributing to an increase in overweight. Obesity is a chronic condition that disturbs the physical health of a person, resulting in various other complications including cardiac, respiratory, and psychosocial issues. According to WHO, the current trend of obesity has shown a sharp increase in recent years. Methods ranging from as simple as regulating the diet to as complex as surgery are available. There are many approved drugs to treat the obesity majority of them works as suppressing the appetite and making the patient satisfy. Some of other agents works by insulinotropic activity. However, these agents need to be taken for longer period of time thus are associated with significant adverse drug reactions. Thus, the motive of this study is to understand obesity and the various methods available to manage it using the recent pharmacological and non-pharmacological approaches.
Collapse
Affiliation(s)
- Sharad Chand
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra 411038, India.
| | - Manoj S Dikkatwar
- DY Patil University School of Pharmacy, DY Patil (Deemed to be University), Nerul, Navi Mumbai, Maharashtra 400706, India.
| | - Treesa P Varghese
- Department of Pharmacy Practice, Yenepoya Pharmacy College & Research Centre (Yenepoya deemed to be University), Naringana, Mangalore, Karnataka, India.
| | - Rohit Singh
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra 411038, India
| | - Sujit Kumar Sah
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra 411038, India
| | - Abhijeet S Sutar
- Department of Pharmaceutical Sciences, School of Health Sciences and Technology, Dr. Vishwanath Karad MIT World Peace University, Pune, Maharashtra 411038, India.
| | - Jeetu Biswas
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector 125, Noida 201313, India.
| | - Shrishti Shandily
- Amity Institute of Pharmacy, Amity University Uttar Pradesh, Sector 125, Noida 201313, India.
| |
Collapse
|
17
|
Ramasamy I. Physiological Appetite Regulation and Bariatric Surgery. J Clin Med 2024; 13:1347. [PMID: 38546831 PMCID: PMC10932430 DOI: 10.3390/jcm13051347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 02/22/2024] [Accepted: 02/24/2024] [Indexed: 04/10/2024] Open
Abstract
Obesity remains a common metabolic disorder and a threat to health as it is associated with numerous complications. Lifestyle modifications and caloric restriction can achieve limited weight loss. Bariatric surgery is an effective way of achieving substantial weight loss as well as glycemic control secondary to weight-related type 2 diabetes mellitus. It has been suggested that an anorexigenic gut hormone response following bariatric surgery contributes to weight loss. Understanding the changes in gut hormones and their contribution to weight loss physiology can lead to new therapeutic treatments for weight loss. Two distinct types of neurons in the arcuate hypothalamic nuclei control food intake: proopiomelanocortin neurons activated by the anorexigenic (satiety) hormones and neurons activated by the orexigenic peptides that release neuropeptide Y and agouti-related peptide (hunger centre). The arcuate nucleus of the hypothalamus integrates hormonal inputs from the gut and adipose tissue (the anorexigenic hormones cholecystokinin, polypeptide YY, glucagon-like peptide-1, oxyntomodulin, leptin, and others) and orexigeneic peptides (ghrelin). Replicating the endocrine response to bariatric surgery through pharmacological mimicry holds promise for medical treatment. Obesity has genetic and environmental factors. New advances in genetic testing have identified both monogenic and polygenic obesity-related genes. Understanding the function of genes contributing to obesity will increase insights into the biology of obesity. This review includes the physiology of appetite control, the influence of genetics on obesity, and the changes that occur following bariatric surgery. This has the potential to lead to the development of more subtle, individualised, treatments for obesity.
Collapse
Affiliation(s)
- Indra Ramasamy
- Department of Blood Sciences, Conquest Hospital, Hastings TN37 7RD, UK
| |
Collapse
|
18
|
Concepción-Zavaleta MJ, Quiroz-Aldave JE, Durand-Vásquez MDC, Gamarra-Osorio ER, Valencia de la Cruz JDC, Barrueto-Callirgos CM, Puelles-León SL, Alvarado-León EDJ, Leiva-Cabrera F, Zavaleta-Gutiérrez FE, Concepción-Urteaga LA, Paz-Ibarra J. A comprehensive review of genetic causes of obesity. World J Pediatr 2024; 20:26-39. [PMID: 37725322 DOI: 10.1007/s12519-023-00757-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/16/2023] [Indexed: 09/21/2023]
Abstract
BACKGROUND Obesity is a multifactorial chronic disease with a high, increasing worldwide prevalence. Genetic causes account for 7% of the cases in children with extreme obesity. DATA SOURCES This narrative review was conducted by searching for papers published in the PubMed/MEDLINE, Embase and SciELO databases and included 161 articles. The search used the following search terms: "obesity", "obesity and genetics", "leptin", "Prader-Willi syndrome", and "melanocortins". The types of studies included were systematic reviews, clinical trials, prospective cohort studies, cross-sectional and prospective studies, narrative reviews, and case reports. RESULTS The leptin-melanocortin pathway is primarily responsible for the regulation of appetite and body weight. However, several important aspects of the pathophysiology of obesity remain unknown. Genetic causes of obesity can be grouped into syndromic, monogenic, and polygenic causes and should be assessed in children with extreme obesity before the age of 5 years, hyperphagia, or a family history of extreme obesity. A microarray study, an analysis of the melanocortin type 4 receptor gene mutations and leptin levels should be performed for this purpose. There are three therapeutic levels: lifestyle modifications, pharmacological treatment, and bariatric surgery. CONCLUSIONS Genetic study technologies are in constant development; however, we are still far from having a personalized approach to genetic causes of obesity. A significant proportion of the affected individuals are associated with genetic causes; however, there are still barriers to its approach, as it continues to be underdiagnosed. Video Abstract (MP4 1041807 KB).
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - José Paz-Ibarra
- Department of Medicine, School of Medicine, Universidad Nacional Mayor de San Marcos, Lima, Peru
| |
Collapse
|
19
|
Nemoto S, Kubota T, Ishikura T, Nakayama M, Kobayashi A, Yazaki J, Uchida K, Matsuda M, Kondo T, Ohara O, Koseki H, Koyasu S, Ohno H. Characterization of metabolic phenotypes and distinctive genes in mice with low-weight gain. FASEB J 2024; 38:e23339. [PMID: 38069905 DOI: 10.1096/fj.202301565r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/08/2023] [Accepted: 11/14/2023] [Indexed: 12/18/2023]
Abstract
Being overweight exacerbates various metabolic diseases, necessitating the identification of target molecules for obesity control. In the current study, we investigated common physiological features related to metabolism in mice with low weight gain: (1) G protein-coupled receptor, family C, group 5, member B-knockout; (2) gastric inhibitory polypeptide receptor-knockout; and (3) Iroquois-related homeobox 3-knockout. Moreover, we explored genes involved in metabolism by analyzing differentially expressed genes (DEGs) between low-weight gain mice and the respective wild-type control mice. The common characteristics of the low-weight gain mice were low inguinal white adipose tissue (iWAT) and liver weight despite similar food intake along with lower blood leptin levels and high energy expenditure. The DEGs of iWAT, epididymal (gonadal) WAT, brown adipose tissue, muscle, liver, hypothalamus, and hippocampus common to these low-weight gain mice were designated as candidate genes associated with metabolism. One such gene tetraspanin 7 (Tspan7) from the iWAT was validated using knockout and overexpressing mouse models. Mice with low Tspan7 expression gained more weight, while those with high Tspan7 expression gained less weight, confirming the involvement of the Tspan7 gene in weight regulation. Collectively, these findings suggest that the candidate gene list generated in this study contains potential target molecules for obesity regulation. Further validation and additional data from low-weight gain mice will aid in understanding the molecular mechanisms associated with obesity.
Collapse
Affiliation(s)
- Shino Nemoto
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Tetsuya Kubota
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Division of Diabetes and Metabolism, The Institute of Medical Science, Asahi Life Foundation, Tokyo, Japan
- Division of Cardiovascular Medicine, Toho University Ohashi Medical Center, Tokyo, Japan
- Department of Diabetes and Metabolic Diseases, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tomoyuki Ishikura
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Manabu Nakayama
- Laboratory of Medical Omics Research, Department of Frontier Research and Development, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Atsuo Kobayashi
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Junshi Yazaki
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Kazuyo Uchida
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Masashi Matsuda
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Takashi Kondo
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Osamu Ohara
- Laboratory for Integrative Genomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Department of Applied Genomics, Kazusa DNA Research Institute, Kisarazu, Chiba, Japan
| | - Haruhiko Koseki
- Laboratory for Developmental Genetics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Shigeo Koyasu
- Laboratory for Immune Cell Systems, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Hiroshi Ohno
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
- Laboratory for Immune Regulation, Graduate School of Medical and Pharmaceutical Sciences, Chiba University, Chiba, Japan
- Immunobiology Laboratory, Graduate School of Medical Life Science, Yokohama City University, Yokohama, Japan
| |
Collapse
|
20
|
Poklukar K, Mestre C, Škrlep M, Čandek-Potokar M, Ovilo C, Fontanesi L, Riquet J, Bovo S, Schiavo G, Ribani A, Muñoz M, Gallo M, Bozzi R, Charneca R, Quintanilla R, Kušec G, Mercat MJ, Zimmer C, Razmaite V, Araujo JP, Radović Č, Savić R, Karolyi D, Servin B. A meta-analysis of genetic and phenotypic diversity of European local pig breeds reveals genomic regions associated with breed differentiation for production traits. Genet Sel Evol 2023; 55:88. [PMID: 38062367 PMCID: PMC10704730 DOI: 10.1186/s12711-023-00858-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 11/17/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND Intense selection of modern pig breeds has resulted in genetic improvement of production traits while the performance of local pig breeds has remained lower. As local pig breeds have been bred in extensive systems, they have adapted to specific environmental conditions, resulting in a rich genotypic and phenotypic diversity. This study is based on European local pig breeds that have been genetically characterized using DNA-pool sequencing data and phenotypically characterized using breed level phenotypes related to stature, fatness, growth, and reproductive performance traits. These data were analyzed using a dedicated approach to detect signatures of selection linked to phenotypic traits in order to uncover potential candidate genes that may underlie adaptation to specific environments. RESULTS Analysis of the genetic data of European pig breeds revealed four main axes of genetic variation represented by the Iberian and three modern breeds (i.e. Large White, Landrace, and Duroc). In addition, breeds clustered according to their geographical origin, for example French Gascon and Basque breeds, Italian Apulo Calabrese and Casertana breeds, Spanish Iberian, and Portuguese Alentejano breeds. Principal component analysis of the phenotypic data distinguished the larger and leaner breeds with better growth potential and reproductive performance from the smaller and fatter breeds with low growth and reproductive efficiency. Linking the signatures of selection with phenotype identified 16 significant genomic regions associated with stature, 24 with fatness, 2 with growth, and 192 with reproduction. Among them, several regions contained candidate genes with possible biological effects on stature, fatness, growth, and reproductive performance traits. For example, strong associations were found for stature in two regions containing, respectively, the ANXA4 and ANTXR1 genes, for fatness in a region containing the DNMT3A and POMC genes and for reproductive performance in a region containing the HSD17B7 gene. CONCLUSIONS In this study on European local pig breeds, we used a dedicated approach for detecting signatures of selection that were supported by phenotypic data at the breed level to identify potential candidate genes that may have adapted to different living environments and production systems.
Collapse
Affiliation(s)
- Klavdija Poklukar
- Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000, Ljubljana, Slovenia
| | - Camille Mestre
- GenPhySE, Université de Toulouse, INRAE, INP, ENVT, 31320, Castanet-Tolosan, France
| | - Martin Škrlep
- Agricultural Institute of Slovenia, Hacquetova Ulica 17, 1000, Ljubljana, Slovenia
| | | | - Cristina Ovilo
- Departamento Mejora Genética Animal, INIA-CSIC, Crta. de la Coruña Km. 7,5, 28040, Madrid, Spain
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Juliette Riquet
- GenPhySE, Université de Toulouse, INRAE, INP, ENVT, 31320, Castanet-Tolosan, France
| | - Samuele Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Giuseppina Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Anisa Ribani
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale Fanin 46, 40127, Bologna, Italy
| | - Maria Muñoz
- Departamento Mejora Genética Animal, INIA-CSIC, Crta. de la Coruña Km. 7,5, 28040, Madrid, Spain
| | - Maurizio Gallo
- Associazione Nazionale Allevatori Suini (ANAS), Via Nizza 53, 00198, Rome, Italy
| | - Ricardo Bozzi
- DAGRI-Animal Science Section, Università Di Firenze, Via Delle Cascine 5, 50144, Florence, Italy
| | - Rui Charneca
- MED- Mediterranean Institute for Agriculture, Environment and Development, Universidade de Évora, Pólo da Mitra, Apartado 94, 7006-554, Évora, Portugal
| | - Raquel Quintanilla
- Programa de Genética y Mejora Animal, IRTA, Torre Marimon, Caldes de Montbui, 08140, Barcelona, Spain
| | - Goran Kušec
- Faculty of Agrobiotechnical Sciences, University of Osijek, Vladimira Preloga 1, 31000, Osijek, Croatia
| | - Marie-José Mercat
- IFIP Institut du Porc, La Motte au Vicomte, BP 35104, 35651, Le Rheu Cedex, France
| | - Christoph Zimmer
- Bauerliche Erzeugergemeinschaft Schwäbisch Hall, Haller Str. 20, 74549, Wolpertshausen, Germany
| | - Violeta Razmaite
- Animal Science Institute, Lithuanian University of Health Sciences, 82317, Baisogala, Lithuania
| | - Jose P Araujo
- Centro de Investigação de Montanha (CIMO), Instituto Politécnico de Viana do Castelo, Escola Superior Agrária, Refóios do Lima, 4990-706, Ponte de Lima, Portugal
| | - Čedomir Radović
- Department of Pig Breeding and Genetics, Institute for Animal Husbandry, 11080, Belgrade-Zemun, Serbia
| | - Radomir Savić
- Faculty of Agriculture, University of Belgrade, Nemanjina 6, 11080, Belgrade-Zemun, Serbia
| | - Danijel Karolyi
- Department of Animal Science, Faculty of Agriculture, University of Zagreb, Svetošimunska c. 25, 10000, Zagreb, Croatia
| | - Bertrand Servin
- GenPhySE, Université de Toulouse, INRAE, INP, ENVT, 31320, Castanet-Tolosan, France.
| |
Collapse
|
21
|
Niu S, Ren L. Treatment of obesity by acupuncture combined with medicine based on pathophysiological mechanism: A review. Medicine (Baltimore) 2023; 102:e36071. [PMID: 38050318 PMCID: PMC10695503 DOI: 10.1097/md.0000000000036071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/20/2023] [Indexed: 12/06/2023] Open
Abstract
Obesity is a complex, multifactorial disease. The incidence of overweight and obesity has doubled worldwide since 1980, and nearly one-third of the world population is now classified as overweight or obese. Obesity rates are increasing in all age groups and for both sexes, regardless of geographic region, race, or socioeconomic status, although they are generally higher in older adults and women. Although the absolute prevalence of overweight and obesity varies widely, this trend is similar across different regions and countries. In some developed countries, the prevalence of obesity has levelled off over the past few years. However, obesity has become a health problem that cannot be ignored in low- and middle-income countries. Although the drug treatment model of modern medicine has a significant therapeutic effect in the treatment of obesity, its adverse effects are also obvious. Acupuncture combined with Chinese medicine treatment of obesity has prominent advantages in terms of clinical efficacy, and its clinical safety is higher, with fewer adverse reactions. The combination of acupuncture and medicine in the treatment of obesity is worth exploring.
Collapse
Affiliation(s)
- Shiyu Niu
- Second Affiliated Hospital of Heilongjiang Traditional Chinese Medicine, Harbin, Heilongjiang Province
| | - Lihong Ren
- The Second Hospital of Harbin, Harbin, Heilongjiang Province
| |
Collapse
|
22
|
Ferreira-Hermosillo A, de Miguel Ibañez R, Pérez-Dionisio EK, Villalobos-Mata KA. Obesity as a Neuroendocrine Disorder. Arch Med Res 2023; 54:102896. [PMID: 37945442 DOI: 10.1016/j.arcmed.2023.102896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/28/2023] [Accepted: 10/05/2023] [Indexed: 11/12/2023]
Abstract
Obesity is one of the most prevalent diseases in the world. Based on hundreds of clinical and basic investigations, its etiopathogenesis goes beyond the simple imbalance between energy intake and expenditure. The center of the regulation of appetite and satiety lies in the nuclei of the hypothalamus where peripheral signals derived from adipose tissue (e.g., leptin), the gastrointestinal tract, the pancreas, and other brain structures, arrive. These signals are part of the homeostatic control system (eating to survive). Additionally, a hedonic or reward system (eating for pleasure) is integrated into the regulation of appetite. This reward system consists of a dopaminergic circuit that affects eating-related behaviors influencing food preferences, food desires, gratification when eating, and impulse control to avoid compulsions. These systems are not separate. Indeed, many of the hormones that participate in the homeostatic system also participate in the regulation of the hedonic system. In addition, factors such as genetic and epigenetic changes, certain environmental and sociocultural elements, the microbiota, and neuronal proinflammatory effects of high-energy diets also contribute to the development of obesity. Therefore, obesity can be considered a complex neuroendocrine disease, and all of the aforementioned components should be considered for the management of obesity.
Collapse
Affiliation(s)
- Aldo Ferreira-Hermosillo
- Endocrine Research Unit, Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico.
| | - Regina de Miguel Ibañez
- Endocrinology Service, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Enid Karina Pérez-Dionisio
- Endocrinology Service, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| | - Karen Alexandra Villalobos-Mata
- Endocrinology Service, Hospital de Especialidades del Centro Médico Nacional Siglo XXI, Instituto Mexicano del Seguro Social, Mexico City, Mexico
| |
Collapse
|
23
|
Mohammed I, Haris B, Al-Barazenji T, Vasudeva D, Tomei S, Al Azwani I, Dauleh H, Shehzad S, Chirayath S, Mohamadsalih G, Petrovski G, Khalifa A, Love DR, Al-Shafai M, Hussain K. Understanding the Genetics of Early-Onset Obesity in a Cohort of Children From Qatar. J Clin Endocrinol Metab 2023; 108:3201-3213. [PMID: 37329217 PMCID: PMC10655519 DOI: 10.1210/clinem/dgad366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 06/10/2023] [Accepted: 06/14/2023] [Indexed: 06/18/2023]
Abstract
CONTEXT Monogenic obesity is a rare form of obesity due to pathogenic variants in genes implicated in the leptin-melanocortin signaling pathway and accounts for around 5% of severe early-onset obesity. Mutations in the genes encoding the MC4R, leptin, and leptin receptor are commonly reported in various populations to cause monogenic obesity. Determining the genetic cause has important clinical benefits as novel therapeutic interventions are now available for some forms of monogenic obesity. OBJECTIVE To unravel the genetic causes of early-onset obesity in the population of Qatar. METHODS In total, 243 patients with early-onset obesity (above the 95% percentile) and age of onset below 10 years were screened for monogenic obesity variants using a targeted gene panel, consisting of 52 obesity-related genes. RESULTS Thirty rare variants potentially associated with obesity were identified in 36 of 243 (14.8%) probands in 15 candidate genes (LEP, LEPR, POMC, MC3R, MC4R, MRAP2, SH2B1, BDNF, NTRK2, DYRK1B, SIM1, GNAS, ADCY3, RAI1, and BBS2). Twenty-three of the variants identified were novel to this study and the rest, 7 variants, were previously reported in literature. Variants in MC4R were the most common cause of obesity in our cohort (19%) and the c.485C>T p.T162I variant was the most frequent MC4R variant seen in 5 patients. CONCLUSION We identified likely pathogenic/pathogenic variants that seem to explain the phenotype of around 14.8% of our cases. Variants in the MC4R gene are the commonest cause of early-onset obesity in our population. Our study represents the largest monogenic obesity cohort in the Middle East and revealed novel obesity variants in this understudied population. Functional studies will be required to elucidate the molecular mechanism of their pathogenicity.
Collapse
Affiliation(s)
- Idris Mohammed
- College of Health & Life Sciences, Hamad Bin Khalifa University, PO Box 34110, Doha, Qatar
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Basma Haris
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Tara Al-Barazenji
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - Dhanya Vasudeva
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Sara Tomei
- Omics Core, Integrated Genomic Services, Research Branch, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Iman Al Azwani
- Omics Core, Integrated Genomic Services, Research Branch, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Hajar Dauleh
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Saira Shehzad
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Shiga Chirayath
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Ghassan Mohamadsalih
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Goran Petrovski
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Amel Khalifa
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Donald R Love
- Division of Genetic Pathology, Department of Pathology, Sidra Medicine, PO Box 26999, Doha, Qatar
| | - Mashael Al-Shafai
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, PO Box 2713, Doha, Qatar
- Biomedical Research Center, Qatar University, PO Box 2713, Doha, Qatar
| | - Khalid Hussain
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, PO Box 26999, Doha, Qatar
| |
Collapse
|
24
|
Mohammed I, Selvaraj S, Ahmed WS, Al-Barazenji T, Hammad AS, Dauleh H, Saraiva LR, Al-Shafai M, Hussain K. Functional Characterization of Novel MC4R Variants Identified in Two Unrelated Patients with Morbid Obesity in Qatar. Int J Mol Sci 2023; 24:16361. [PMID: 38003551 PMCID: PMC10671262 DOI: 10.3390/ijms242216361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 11/06/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
The leptin-melanocortin pathway is pivotal in appetite and energy homeostasis. Pathogenic variants in genes involved in this pathway lead to severe early-onset monogenic obesity (MO). The MC4R gene plays a central role in leptin-melanocortin signaling, and heterozygous variants in this gene are the most common cause of MO. A targeted gene panel consisting of 52 obesity-related genes was used to screen for variants associated with obesity. Variants were analyzed and filtered to identify potential disease-causing activity and validated using Sanger sequencing. We identified two novel heterozygous variants, c.253A>G p.Ser85Gly and c.802T>C p.Tyr268His, in the MC4R gene in two unrelated patients with morbid obesity and evaluated the functional impact of these variants. The impact of the variants on the MC4R gene was assessed using in silico prediction tools and molecular dynamics simulation. To further study the pathogenicity of the identified variants, GT1-7 cells were transfected with plasmid DNA encoding either wild-type or mutant MC4R variants. The effects of allelic variations in the MC4R gene on cAMP synthesis, MC4R protein level, and activation of PKA, ERB, and CREB signaling pathways in both stimulated and unstimulated ɑ-MSH paradigms were determined for their functional implications. In silico analysis suggested that the variants destabilized the MC4R structure and affected the overall dynamics of the MC4R protein, possibly leading to intracellular receptor retention. In vitro analysis of the functional impact of these variants showed a significant reduction in cell surface receptor expression and impaired extracellular ligand binding activity, leading to reduced cAMP production. Our analysis shows that the variants do not affect total protein expression; however, they are predicted to affect the post-translational localization of the MC4R protein to the cell surface and impair downstream signaling cascades such as PKA, ERK, and CREB signaling pathways. This finding might help our patients to benefit from the novel therapeutic advances for monogenic forms of obesity.
Collapse
Affiliation(s)
- Idris Mohammed
- College of Health & Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (I.M.); (W.S.A.); (L.R.S.)
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar;
| | - Senthil Selvaraj
- Department of Disease Modeling and Therapeutics, Sidra Medicine, Doha P.O. Box 26999, Qatar;
| | - Wesam S. Ahmed
- College of Health & Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (I.M.); (W.S.A.); (L.R.S.)
| | - Tara Al-Barazenji
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (T.A.-B.); (A.S.H.)
| | - Ayat S Hammad
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (T.A.-B.); (A.S.H.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Hajar Dauleh
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar;
| | - Luis R. Saraiva
- College of Health & Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar; (I.M.); (W.S.A.); (L.R.S.)
- Department of Disease Modeling and Therapeutics, Sidra Medicine, Doha P.O. Box 26999, Qatar;
| | - Mashael Al-Shafai
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar; (T.A.-B.); (A.S.H.)
- Biomedical Research Center, Qatar University, Doha P.O. Box 2713, Qatar
| | - Khalid Hussain
- Division of Endocrinology, Department of Pediatric Medicine, Sidra Medicine, Doha P.O. Box 26999, Qatar;
| |
Collapse
|
25
|
Jiang N, Wang Z, Guo X, Peng Z, He Y, Wang Q, Wu H, Cui Y. Hepatic Runx1t1 improves body fat index after endurance exercise in obese mice. Sci Rep 2023; 13:19427. [PMID: 37940636 PMCID: PMC10632374 DOI: 10.1038/s41598-023-46302-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
Endurance exercise could attenuate obesity induced by high fat diet (HFD). Thus, the purpose of this study was to explore the crucial targets that play key roles in the improvement of body fat index (BFI) in obese mice by endurance exercise. Firstly, we constructed murine obesity models: High fat diet control (HFD) group, HFD exercise (HFE) group, normal chow diet control (NC) group, and normal chow diet exercise (NE) group. Next, we identified the BFI improvement related genes using differential gene analysis, and investigated these genes' functional pathways using functional enrichment analysis. The qRT-PCR and western blot assays were used to determine the gene expression and protein expression, respectively. Gene set enrichment analysis was used to explore the potential pathways associated with endurance exercise in obese mice and Mitochondrial respiratory control ratio (RCR) assay was applied to determine the RCR in the liver tissues of mice. We discovered that endurance exercise remarkably reduced the body weights and BFI of HFD-induced obese mice. Runx1t1 was related to the improvement of BFI by endurance exercise in HFD-induced obese mice. Runx1t1 mRNA and protein levels in liver tissues were observably decreased in HFD mice compared to mice in HFE, NC and NE groups. Moreover, Glucagon signaling pathway that was associated with mitochondrial function was significantly activated in HFE mice. The Runx1t1 expression exhibited an observable negative correlation with Acaca in HFD mice. Moreover, the mitochondrial RCR level was significantly increased in HFE mice than that in HFD mice. In HFD-induced obese mice, Runx1t1 was implicated in the improvement of BFI via endurance exercise. Endurance exercise could improve mitochondrial dysfunction in obese mice by activating the Runx1t1.
Collapse
Affiliation(s)
- Ning Jiang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Zhe Wang
- Department of Basic Teaching of Military Common Subjects, Logistics University of Chinese People's Armed Police Force, Tianjin, 300309, China
| | - Xiangying Guo
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Zifu Peng
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Yimin He
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Qian Wang
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Huaduo Wu
- Tianjin Key Laboratory of Exercise Physiology and Sports Medicine, Institute of Sport, Exercise and Health, Tianjin University of Sport, Tianjin, 301617, China
| | - Yunlong Cui
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, Huanhu West Road, Hexi District, Tianjin, 300061, China.
| |
Collapse
|
26
|
Choi H, Lee H, Ahn YS. Association Between Parental BMI and Offspring's Blood Pressure by Mediation Analysis: A Study Using Data From the Korean National Health and Nutrition Examination Survey. J Prev Med Public Health 2023; 56:533-541. [PMID: 37905326 DOI: 10.3961/jpmph.23.289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 10/16/2023] [Indexed: 11/02/2023] Open
Abstract
OBJECTIVES This study analyzed the relationship between parental body mass index (BMI; BMI_p) and hypertension in their adolescent offspring (HTN_a), focusing on the mediating effect of adolescents' BMI (BMI_a). METHODS Utilizing data from the Korea National Health and Nutrition Examination Survey, including participants aged 12-18, we conducted a mediation analysis while controlling for confounding factors such as age, sex, physical activity, dietary habits, household income quartile, and parents' alcohol and smoking habits. RESULTS The study included a total of 5731 participants, of whom 3381 and 5455 participants had data on fathers' and mothers' BMI, respectively. For adolescent systolic blood pressure (SBP_a), the father's BMI (BMI_f) had a significant total effect (β, 0.23; 95% confidence interval [CI], 0.12 to 0.34) and average controlled mediated effect (ACME) (β, 0.27; 95% CI, 0.23 to 0.32), but the average direct effect (ADE) was not significant. The mother's BMI (BMI_m) had a significant total effect (β, 0.17; 95% CI, 0.09 to 0.25), ACME (β, 0.25; 95% CI, 0.22 to 0.28) and ADE (β, -0.08; 95% CI, -0.16 to 0.00). For adolescent diastolic blood pressure, both BMI_f and BMI_m had significant ACMEs (β, 0.10; 95% CI, 0.08 to 0.12 and β, 0.09; 95% CI, 0.07 to 0.12, respectively), BMI_m had a significant ADE (β, -0.09; 95% CI, -0.16 to -0.02) but BMI_f had an insignificant ADE and total effect. CONCLUSIONS The study found that parental BMI had a significant effect on SBP_a, mediated through BMI_a. Therefore, a high BMI in parents could be a risk factor, mediated through BMI_a, for systolic hypertension in adolescents, necessitating appropriate management.
Collapse
Affiliation(s)
- Hyowon Choi
- Department of Prevention Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Hunju Lee
- Department of Prevention Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
| | - Yeon-Soon Ahn
- Department of Prevention Medicine, Yonsei University Wonju College of Medicine, Wonju, Korea
- Genomic Cohort Institute, Yonsei University Wonju College of Medicine, Wonju, Korea
| |
Collapse
|
27
|
Mainieri F, La Bella S, Rinaldi M, Chiarelli F. Rare genetic forms of obesity in childhood and adolescence, a comprehensive review of their molecular mechanisms and diagnostic approach. Eur J Pediatr 2023; 182:4781-4793. [PMID: 37607976 DOI: 10.1007/s00431-023-05159-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/09/2023] [Accepted: 08/10/2023] [Indexed: 08/24/2023]
Abstract
Obesity represents a major health problem in the pediatric population with an increasing prevalence worldwide, associated with cardiovascular and metabolic disorders, and due to both genetic and environmental factors. Rare forms of obesity are mostly monogenic, and less frequently due to polygenic influence. Polygenic form of obesity is usually the common obesity with single gene variations exerting smaller impact on weight and is commonly non-syndromic.Non-syndromic monogenic obesity is associated with variants in single genes typically related to the hypothalamic leptin-melanocortin signalling pathway, which plays a key role in hunger and satiety regulation, thus body weight control. Patients with these genetic defects usually present with hyperphagia and early-onset severe obesity. Significant progress in genetic diagnostic testing has recently made for early identification of patients with genetic obesity, which guarantees prompt intervention in terms of therapeutic management of the disease. What is Known: • Obesity represents a major health problem among children and adolescents, with an increasing prevalence worldwide, associated with cardiovascular disease and metabolic abnormalities, and it can be due to both genetic and environmental factors. • Non-syndromic monogenic obesity is linked to modifications in single genes usually involved in the hypothalamic leptin-melanocortin signalling pathway, which plays a key role in hunger and satiety regulation. What is New: • The increasing understanding of rare forms of monogenic obesity has provided significant insights into the genetic causes of pediatric obesity, and our current knowledge of the various genes associated with childhood obesity is rapidly expanding. • A useful diagnostic algorithm for early identification of genetic obesity has been proposed, which can ensure a prompt intervention in terms of therapeutic management of the disease and an early prevention of the development of associated metabolic conditions.
Collapse
Affiliation(s)
| | | | - Marta Rinaldi
- Paediatric Department, Stoke Mandeville Hospital, Thames Valley Deanery, Oxford, UK
| | | |
Collapse
|
28
|
Fajardo CM, Cerda A, Bortolin RH, de Oliveira R, Stefani TIM, Dos Santos MA, Braga AA, Dorea EL, Bernik MMS, Bastos GM, Sampaio MF, Damasceno NRT, Verlengia R, de Oliveira MRM, Hirata MH, Hirata RDC. Influence of polymorphisms in IRS1, IRS2, MC3R, and MC4R on metabolic and inflammatory status and food intake in Brazilian adults: An exploratory pilot study. Nutr Res 2023; 119:21-32. [PMID: 37716291 DOI: 10.1016/j.nutres.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/18/2023]
Abstract
Polymorphisms in genes of leptin-melanocortin and insulin pathways have been associated with obesity and type 2 diabetes. We hypothesized that polymorphisms in IRS1, IRS2, MC3R, and MC4R influence metabolic and inflammatory markers and food intake composition in Brazilian subjects. This exploratory pilot study included 358 adult subjects. Clinical, anthropometric, and laboratory data were obtained through interview and access to medical records. The variants IRS1 rs2943634 A˃C, IRS2 rs1865434 C>T, MC3R rs3746619 C>A, and MC4R rs17782313 T>C were analyzed by real-time polymerase chain reaction. Food intake composition was assessed in a group of subjects with obesity (n = 84) before and after a short-term nutritional counseling program (9 weeks). MC4R rs17782313 was associated with increased risk of obesity (P = .034). Multivariate linear regression analysis adjusted by covariates indicated associations of IRS2 rs1865434 with reduced low-density lipoprotein cholesterol and resistin, MC3R rs3746619 with high glycated hemoglobin, and IRS1 rs2943634 and MC4R rs17782313 with increased high-sensitivity C-reactive protein (P < .05). Energy intake and carbohydrate and total fat intakes were reduced after the diet-oriented program (P < .05). Multivariate linear regression analysis showed associations of IRS2 rs1865434 with high basal fiber intake, IRS1 rs2943634 with low postprogram carbohydrate intake, and MC4R rs17782313 with low postprogram total fat and saturated fatty acid intakes (P < .05). Although significant associations did not survive correction for multiple comparisons using the Benjamini-Hochberg method in this exploratory study, polymorphisms in IRS1, IRS2, MC3R, and MC4R influence metabolic and inflammatory status in Brazilian adults. IRS1 and MC4R variants may influence carbohydrate, total fat, and saturated fatty acid intakes in response to a diet-oriented program in subjects with obesity.
Collapse
MESH Headings
- Adult
- Humans
- Pilot Projects
- Diabetes Mellitus, Type 2/genetics
- Polymorphism, Single Nucleotide
- Brazil
- Obesity/genetics
- Obesity/metabolism
- Eating
- Carbohydrates
- Fatty Acids
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Insulin Receptor Substrate Proteins/genetics
- Insulin Receptor Substrate Proteins/metabolism
- Receptor, Melanocortin, Type 3/genetics
- Receptor, Melanocortin, Type 3/metabolism
Collapse
Affiliation(s)
- Cristina Moreno Fajardo
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Alvaro Cerda
- Department of Basic Sciences, Center of Excellence in Translational Medicine, CEMT-BIOREN, Universidad de La Frontera, Temuco 4810296, Chile
| | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil; Department of Cardiology, Boston Children's Hospital, Boston, MA 02115, United States
| | - Raquel de Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Tamires Invencioni Moraes Stefani
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Marina Aparecida Dos Santos
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Aécio Assunção Braga
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Egídio Lima Dorea
- Medical Clinic Division, University Hospital, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | | | - Gisele Medeiros Bastos
- Laboratory of Molecular Research in Cardiology, Institute of Cardiology Dante Pazzanese, Sao Paulo 04012-909, Brazil; Hospital Beneficiencia Portuguesa de Sao Paulo, Sao Paulo 01323-001, Brazil
| | - Marcelo Ferraz Sampaio
- Hospital Beneficiencia Portuguesa de Sao Paulo, Sao Paulo 01323-001, Brazil; Medical Clinic Division, Institute of Cardiology Dante Pazzanese, Sao Paulo 04012-909, Brazil
| | | | - Rozangela Verlengia
- Research Laboratory in Human Performance, Methodist University of Piracicaba, Piracicaba 13400-901, Brazil
| | | | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo 05508-000, Brazil.
| |
Collapse
|
29
|
Bairqdar A, Shakhtshneider E, Ivanoshchuk D, Mikhailova S, Kashtanova E, Shramko V, Polonskaya Y, Ragino Y. Rare Variants of Obesity-Associated Genes in Young Adults with Abdominal Obesity. J Pers Med 2023; 13:1500. [PMID: 37888112 PMCID: PMC10608506 DOI: 10.3390/jpm13101500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/02/2023] [Accepted: 10/11/2023] [Indexed: 10/28/2023] Open
Abstract
The increase in the prevalence of overweight, obesity and associated diseases is a serious problem. The aim of the study was to identify rare variants in obesity-associated genes in young adults with abdominal obesity in our population and to analyze information about these variants in other populations. Targeted high-throughput sequencing of obesity-associated genes was performed (203 young adults with an abdominal obesity phenotype). In our study, all of the 203 young adults with abdominal obesity had some rare variant in the genes associated with obesity. The widest range of rare and common variants was presented in ADIPOQ, FTO, GLP1R, GHRL, and INS genes. The use of targeted sequencing and clinical criteria makes it possible to identify carriers of rare clinically significant variants in a wide range of obesity-associated genes and to investigate their influence on phenotypic manifestations of abdominal obesity.
Collapse
Affiliation(s)
- Ahmad Bairqdar
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (A.B.)
- Department of Genetics, Novosibirsk State University, Pirogova Str., 1, 630090 Novosibirsk, Russia
| | - Elena Shakhtshneider
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (A.B.)
- Institute of Internal and Preventive Medicine, Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| | - Dinara Ivanoshchuk
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (A.B.)
- Institute of Internal and Preventive Medicine, Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| | - Svetlana Mikhailova
- Federal Research Center, Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Prospekt Lavrentyeva 10, 630090 Novosibirsk, Russia; (A.B.)
| | - Elena Kashtanova
- Institute of Internal and Preventive Medicine, Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| | - Viktoriya Shramko
- Institute of Internal and Preventive Medicine, Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| | - Yana Polonskaya
- Institute of Internal and Preventive Medicine, Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| | - Yuliya Ragino
- Institute of Internal and Preventive Medicine, Branch of Institute of Cytology and Genetics, Siberian Branch of Russian Academy of Sciences, Bogatkova Str. 175/1, 630004 Novosibirsk, Russia
| |
Collapse
|
30
|
Shagdarova B, Konovalova M, Varlamov V, Svirshchevskaya E. Anti-Obesity Effects of Chitosan and Its Derivatives. Polymers (Basel) 2023; 15:3967. [PMID: 37836016 PMCID: PMC10575173 DOI: 10.3390/polym15193967] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/26/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
The number of obese people in the world is rising, leading to an increase in the prevalence of type 2 diabetes and other metabolic disorders. The search for medications including natural compounds for the prevention of obesity is an urgent task. Chitosan polysaccharide obtained through the deacetylation of chitin, and its derivatives, including short-chain oligosaccharides (COS), have hypolipidemic, anti-inflammatory, anti-diabetic, and antioxidant properties. Chemical modifications of chitosan can produce derivatives with increased solubility under neutral conditions, making them potential therapeutic substances for use in the treatment of metabolic disorders. Multiple studies both in animals and clinical trials have demonstrated that chitosan improves the gut microbiota, restores intestinal barrier dysfunction, and regulates thermogenesis and lipid metabolism. However, the effect of chitosan is rather mild, especially if used for a short periods, and is mostly independent of chitosan's physical characteristics. We hypothesized that the major mechanism of chitosan's anti-obesity effect is its flocculant properties, enabling it to collect the chyme in the gastrointestinal tract and facilitating the removal of extra food. This review summarizes the results of the use of COS, chitosan, and its derivatives in obesity control in terms of pathways of action and structural activity.
Collapse
Affiliation(s)
- Balzhima Shagdarova
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Mariya Konovalova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia;
| | - Valery Varlamov
- Research Center of Biotechnology, Russian Academy of Sciences, 119071 Moscow, Russia;
| | - Elena Svirshchevskaya
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia;
| |
Collapse
|
31
|
Vasile CM, Padovani P, Rujinski SD, Nicolosu D, Toma C, Turcu AA, Cioboata R. The Increase in Childhood Obesity and Its Association with Hypertension during Pandemics. J Clin Med 2023; 12:5909. [PMID: 37762850 PMCID: PMC10531996 DOI: 10.3390/jcm12185909] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 09/07/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
There has been a major ongoing health impact of the COVID-19 pandemic on children's lives, including lifestyle and overall health. Enforcement of prevention measures, such as school closures and social distancing, has significantly affected children's daily routines and activities. This perspective manuscript aims to explore the rise in childhood obesity and its association with hypertension during pandemics. The COVID-19 pandemic has led to significant disruptions in children's routines, including reduced physical activity, increased sedentary behavior, and changes in dietary patterns. These factors, coupled with the psychological impact of the pandemic, have contributed to an alarming increase in childhood obesity rates. This paper has highlighted the concerning increase in childhood obesity and hypertension during pandemics. The disruptions caused by the COVID-19 pandemic, including reduced physical activity, increased sedentary behaviors, and changes in dietary patterns, have contributed to the rise in these health conditions. It is crucial to recognize the long-term consequences of childhood obesity and hypertension and the urgent need for a comprehensive approach to address them.
Collapse
Affiliation(s)
- Corina Maria Vasile
- Department of Pediatric and Adult Congenital Cardiology, University Hospital of Bordeaux, F-33600 Bordeaux, France;
| | - Paul Padovani
- Nantes Université, CHU Nantes, Department of Pediatric Cardiology and Pediatric Cardiac Surgery, FHU PreciCare, F-44000 Nantes, France;
- Nantes Université, CHU Nantes, INSERM, CIC FEA 1413, F-44000 Nantes, France
| | | | - Dragos Nicolosu
- Pneumology Department, Victor Babes University Hospital Craiova, 200515 Craiova, Romania; (D.N.); (R.C.)
| | - Claudia Toma
- Pneumology Department, University of Medicine Carol Davila, 020021 Bucharest, Romania;
| | - Adina Andreea Turcu
- Faculty of Dentistry, University of Pharmacy and Medicine Craiova, 200349 Craiova, Romania
| | - Ramona Cioboata
- Pneumology Department, Victor Babes University Hospital Craiova, 200515 Craiova, Romania; (D.N.); (R.C.)
- Pneumology Department, University of Medicine and Pharmacy, 200349 Craiova, Romania
| |
Collapse
|
32
|
Chen T, Tang R, Lin J, Kuo W, Yang I, Liang Y, Lin F. The synthesis and evaluation of thiolated alginate as the barrier to block nutrient absorption on small intestine for body-weight control. Bioeng Transl Med 2023; 8:e10382. [PMID: 37693067 PMCID: PMC10487312 DOI: 10.1002/btm2.10382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Revised: 07/01/2022] [Accepted: 07/21/2022] [Indexed: 11/12/2022] Open
Abstract
Obesity is the most common health concern all over the world. However, till now, there is no promising way to manage obesity or body-weight control. The aim of the study is to develop an edible gel as a health supplement that temporarily attaches to the mucus of the intestines, forming an absorption barrier to block the nutrients. We modify the alginate with the thiol group as thiolated alginate (TA) that may stay on the mucosa layer for a much longer time to reduce nutrient absorption. In this study, the TA is synthesized successfully and proved a good mucosal adhesion to serve as a barrier for nutrient absorption both in vitro and in vivo. The results of in vivo imaging system (IVIS) show that the synthesized TA can be exiled from the gastrointestinal tract within 24 h. The animal study shows that the TA by daily oral administration can effectively reduce body weight and fat deposition. The biosafety is evaluated in vitro at the cellular level, based on ISO-10993, and further checked by animal study. We do believe that the TA could have a greater potential to be developed into a safe health supplement to manage obesity and for body-weight control.
Collapse
Affiliation(s)
- Tzu‐Chien Chen
- Department of Biomedical Engineering, College of Medicine and College of EngineeringNational Taiwan UniversityTaipeiTaiwan
| | - Rui‐Chian Tang
- Institute of Biomedical Engineering and Nanomedicine, National Health Research InstitutesZhunan, Miaoli CountyTaiwan
| | - Jhih‐Ni Lin
- Department of Biomedical Engineering, College of Medicine and College of EngineeringNational Taiwan UniversityTaipeiTaiwan
| | - Wei‐Ting Kuo
- Department of Biomedical Engineering, College of Medicine and College of EngineeringNational Taiwan UniversityTaipeiTaiwan
| | - I‐Hsuan Yang
- Department of Biomedical Engineering, College of Medicine and College of EngineeringNational Taiwan UniversityTaipeiTaiwan
| | - Ya‐Jyun Liang
- Department of Biomedical Engineering, College of Medicine and College of EngineeringNational Taiwan UniversityTaipeiTaiwan
| | - Feng‐Huei Lin
- Department of Biomedical Engineering, College of Medicine and College of EngineeringNational Taiwan UniversityTaipeiTaiwan
- Institute of Biomedical Engineering and Nanomedicine, National Health Research InstitutesZhunan, Miaoli CountyTaiwan
| |
Collapse
|
33
|
Swope SD, Jones TW, Mellina KN, Nichols SJ, DiAngelo JR. Arc1 : a regulator of triglyceride homeostasis in male Drosophila. MICROPUBLICATION BIOLOGY 2023; 2023:10.17912/micropub.biology.000945. [PMID: 37675078 PMCID: PMC10477910 DOI: 10.17912/micropub.biology.000945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 08/09/2023] [Accepted: 08/17/2023] [Indexed: 09/08/2023]
Abstract
Achieving metabolic homeostasis is necessary for survival, and many genes are required to control organismal metabolism. A genetic screen in Drosophila larvae identified putative fat storage genes including Arc1 . Arc1 has been shown to act in neurons to regulate larval lipid storage; however, whether Arc1 functions to regulate adult metabolism is unknown. Arc1 esm18 males store more fat than controls while both groups eat similar amounts. Arc1 esm18 flies express more brummer lipase and less of the glycolytic enzyme triose phosphate isomerase, which may contribute to excess fat observed in these mutants. These results suggest that Arc1 regulates adult Drosophila lipid homeostasis.
Collapse
Affiliation(s)
| | - Tyler W. Jones
- Pennsylvania State University, Berks Campus, Reading, PA
| | | | | | | |
Collapse
|
34
|
Glympi A, Odegi D, Zandian M, Södersten P, Bergh C, Langlet B. Eating Behavior and Satiety With Virtual Reality Meals Compared With Real Meals: Randomized Crossover Study. JMIR Serious Games 2023; 11:e44348. [PMID: 37561558 PMCID: PMC10450530 DOI: 10.2196/44348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 03/09/2023] [Accepted: 06/07/2023] [Indexed: 08/11/2023] Open
Abstract
BACKGROUND Eating disorders and obesity are serious health problems with poor treatment outcomes and high relapse rates despite well-established treatments. Several studies have suggested that virtual reality technology could enhance the current treatment outcomes and could be used as an adjunctive tool in their treatment. OBJECTIVE This study aims to investigate the differences between eating virtual and real-life meals and test the hypothesis that eating a virtual meal can reduce hunger among healthy women. METHODS The study included 20 healthy women and used a randomized crossover design. The participants were asked to eat 1 introduction meal, 2 real meals, and 2 virtual meals, all containing real or virtual meatballs and potatoes. The real meals were eaten on a plate that had been placed on a scale that communicated with analytical software on a computer. The virtual meals were eaten in a room where participants were seated on a real chair in front of a real table and fitted with the virtual reality equipment. The eating behavior for both the real and virtual meals was filmed. Hunger was measured before and after the meals using questionnaires. RESULTS There was a significant difference in hunger from baseline to after the real meal (mean difference=61.8, P<.001) but no significant change in hunger from before to after the virtual meal (mean difference=6.9, P=.10). There was no significant difference in food intake between the virtual and real meals (mean difference=36.8, P=.07). Meal duration was significantly shorter in the virtual meal (mean difference=-5.4, P<.001), which led to a higher eating rate (mean difference=82.9, P<.001). Some participants took bites and chewed during the virtual meal, but the number of bites and chews was lower than in the real meal. The meal duration was reduced from the first virtual meal to the second virtual meal, but no significant difference was observed between the 2 real meals. CONCLUSIONS Eating a virtual meal does not appear to significantly reduce hunger in healthy individuals. Also, this methodology does not significantly result in eating behaviors identical to real-life conditions but does evoke chewing and bite behavior in certain individuals. TRIAL REGISTRATION ClinicalTrials.gov NCT05734209, https://clinicaltrials.gov/ct2/show/NCT05734209.
Collapse
Affiliation(s)
- Alkyoni Glympi
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Dorothy Odegi
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Modjtaba Zandian
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | - Per Södersten
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Stockholm, Sweden
| | | | - Billy Langlet
- Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institutet, Huddinge, Stockholm, Sweden
| |
Collapse
|
35
|
Potocka N, Skrzypa M, Zadarko-Domaradzka M, Barabasz Z, Penar-Zadarko B, Sakowicz A, Zadarko E, Zawlik I. Effects of the Trp64Arg Polymorphism in the ADRB3 Gene on Body Composition, Cardiorespiratory Fitness, and Physical Activity in Healthy Adults. Genes (Basel) 2023; 14:1541. [PMID: 37628593 PMCID: PMC10454489 DOI: 10.3390/genes14081541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/20/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
The ADRB3 gene plays a role in energy expenditure by participating in lipolysis, which affects body composition and performance. The ADRB3 rs4994 polymorphism has been studied in groups of athletes, overweight individuals, and obese and diabetic patients, but it has not been studied in young and healthy adults so far. In the present study, we examined the association of ADRB3 rs4994 polymorphism with body composition, somatotype, cardiorespiratory fitness and physical activity in young, healthy adults (N = 304). All subjects had anthropometric measurements, and somatotypes were assessed using the Heath-Carter method. In addition, cardiorespiratory fitness and physical activity levels were assessed. Genotyping for the ADRB3 gene was performed using a PCR-RFLP method. In the male group, body components were associated with the Trp64Trp genotype (waist circumference (p = 0.035), hip circumference (p = 0.029), BF (%) (p = 0.008), and BF (kg) (p = 0.010), BMI (p = 0.005), WHtR (p = 0.021), and BAI (p = 0.006)). In addition, we observed that the Trp64Trp genotype was associated with somatotype components (p = 0.013). In contrast, the Arg allele was associated with the ectomorphic components (0.006). We also observed a positive impact of the Trp64Trp genotype with maximal oxygen uptake (p= 0.023) and oxygen pulse (p = 0.024). We observed a negative relationship of the Trp64Trp genotype in the female group with reported moderate-intensity exercise (p = 0.036). In conclusion, we found an association of the Trp64 allele with anthropometric traits, somatotype and parameters describing physical performance in the male group. In the female subpopulation, we only found an effect of the polymorphism Trp64Arg on the level of physical activity for moderate-intensity exercise.
Collapse
Affiliation(s)
- Natalia Potocka
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Warzywna 1a, 35-959 Rzeszow, Poland; (N.P.); (M.S.)
| | - Marzena Skrzypa
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Warzywna 1a, 35-959 Rzeszow, Poland; (N.P.); (M.S.)
| | - Maria Zadarko-Domaradzka
- Institute of Physical Culture Sciences, Medical College of Rzeszow University, Cicha 2a, 35-959 Rzeszow, Poland; (M.Z.-D.); (E.Z.)
| | - Zbigniew Barabasz
- Department of Physical Education, State University of Applied Sciences in Krosno, Rynek 1, 38-400 Krosno, Poland;
| | - Beata Penar-Zadarko
- Institute of Health Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland;
| | - Agata Sakowicz
- Department of Medical Biotechnology, Medical University of Lodz, Żeligowskiego 7/9, 90-752 Lodz, Poland;
| | - Emilian Zadarko
- Institute of Physical Culture Sciences, Medical College of Rzeszow University, Cicha 2a, 35-959 Rzeszow, Poland; (M.Z.-D.); (E.Z.)
| | - Izabela Zawlik
- Laboratory of Molecular Biology, Centre for Innovative Research in Medical and Natural Sciences, Medical College of Rzeszow University, Warzywna 1a, 35-959 Rzeszow, Poland; (N.P.); (M.S.)
- Institute of Medical Sciences, Medical College of Rzeszow University, Kopisto 2a, 35-959 Rzeszow, Poland
| |
Collapse
|
36
|
Scorrano G, La Bella S, Matricardi S, Chiarelli F, Giannini C. Neuroendocrine Effects on the Risk of Metabolic Syndrome in Children. Metabolites 2023; 13:810. [PMID: 37512517 PMCID: PMC10383317 DOI: 10.3390/metabo13070810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The endocrine and nervous systems reciprocally interact to manage physiological individual functions and homeostasis. The nervous system modulates hormone release through the hypothalamus, the main cerebrally specialized structure of the neuroendocrine system. The hypothalamus is involved in various metabolic processes, administering hormone and neuropeptide release at different levels. This complex activity is affected by the neurons of various cerebral areas, environmental factors, peripheral organs, and mediators through feedback mechanisms. Therefore, neuroendocrine pathways play a key role in metabolic homeostasis control, and their abnormalities are associated with the development of metabolic syndrome (MetS) in children. The impaired functioning of the genes, hormones, and neuropeptides of various neuroendocrine pathways involved in several metabolic processes is related to an increased risk of dyslipidaemia, visceral obesity, insulin resistance, type 2 diabetes mellitus, and hypertension. This review examines the neuroendocrine effects on the risk of MetS in children, identifying and underlying several conditions associated with neuroendocrine pathway disruption. Neuroendocrine systems should be considered in the complex pathophysiology of MetS, and, when genetic or epigenetic mutations in "hot" pathways occur, they could be studied for new potential target therapies in severe and drug-resistant paediatric forms of MetS.
Collapse
Affiliation(s)
- Giovanna Scorrano
- Department of Pediatrics, University of Chieti-Pescara, Via Dei Vestini, 66100 Chieti, Italy
| | - Saverio La Bella
- Department of Pediatrics, University of Chieti-Pescara, Via Dei Vestini, 66100 Chieti, Italy
| | - Sara Matricardi
- Department of Pediatrics, University of Chieti-Pescara, Via Dei Vestini, 66100 Chieti, Italy
| | - Francesco Chiarelli
- Department of Pediatrics, University of Chieti-Pescara, Via Dei Vestini, 66100 Chieti, Italy
| | - Cosimo Giannini
- Department of Pediatrics, University of Chieti-Pescara, Via Dei Vestini, 66100 Chieti, Italy
| |
Collapse
|
37
|
Novelli G, Cassadonte C, Sbraccia P, Biancolella M. Genetics: A Starting Point for the Prevention and the Treatment of Obesity. Nutrients 2023; 15:2782. [PMID: 37375686 DOI: 10.3390/nu15122782] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 06/15/2023] [Accepted: 06/16/2023] [Indexed: 06/29/2023] Open
Abstract
Obesity is a common, serious, and costly disease. More than 1 billion people worldwide are obese-650 million adults, 340 million adolescents, and 39 million children. The WHO estimates that, by 2025, approximately 167 million people-adults and children-will become less healthy because they are overweight or obese. Obesity-related conditions include heart disease, stroke, type 2 diabetes, and certain types of cancer. These are among the leading causes of preventable, premature death. The estimated annual medical cost of obesity in the United States was nearly $173 billion in 2019 dollars. Obesity is considered the result of a complex interaction between genes and the environment. Both genes and the environment change in different populations. In fact, the prevalence changes as the result of eating habits, lifestyle, and expression of genes coding for factors involved in the regulation of body weight, food intake, and satiety. Expression of these genes involves different epigenetic processes, such as DNA methylation, histone modification, or non-coding micro-RNA synthesis, as well as variations in the gene sequence, which results in functional alterations. Evolutionary and non-evolutionary (i.e., genetic drift, migration, and founder's effect) factors have shaped the genetic predisposition or protection from obesity in modern human populations. Understanding and knowing the pathogenesis of obesity will lead to prevention and treatment strategies not only for obesity, but also for other related diseases.
Collapse
Affiliation(s)
- Giuseppe Novelli
- Department of Biomedicine and Prevention, Medical School, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
- Italian Barometer Diabetes Observatory Foundation, IBDO, 00186 Rome, Italy
- Department of Pharmacology, School of Medicine, University of Nevada, Reno, NV 89557, USA
| | - Carmen Cassadonte
- Department of Biomedicine and Prevention, Medical School, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Paolo Sbraccia
- Italian Barometer Diabetes Observatory Foundation, IBDO, 00186 Rome, Italy
- Department of Systems Medicine, Medical School, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy
| | - Michela Biancolella
- Department of Biology, Tor Vergata University of Rome, Via della Ricerca Scientifica 1, 00133 Rome, Italy
| |
Collapse
|
38
|
Millington GWM, Palmer HE. Proopiomelanocortin (POMC) and psychodermatology. SKIN HEALTH AND DISEASE 2023; 3:e201. [PMID: 37275429 PMCID: PMC10233089 DOI: 10.1002/ski2.201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 11/30/2022] [Accepted: 12/13/2022] [Indexed: 06/07/2023]
Abstract
Psychodermatology is the crossover discipline between Dermatology and Clinical Psychology and/or Psychiatry. It encompasses both Psychiatric diseases that present with cutaneous manifestations (such as delusional infestation) or more commonly, the psychiatric or psychological problems associated with skin disease, such as depression associated with psoriasis. These problems may be the result either of imbalance in or be the consequence of alteration in the homoeostatic endocrine mechanisms found in the systemic hypothalamic-pituitary-adrenal axis or in the local cutaneous corticotrophin-releasing factor-proopiomelanocortin-corticosteroid axis. Alteration in either of these systems can lead to immune disruption and worsening of immune dermatoses and vice-versa. These include diseases such as psoriasis, atopic eczema, acne, alopecia areata, vitiligo and melasma, all of which are known to be linked to stress. Similarly, stress and illnesses such as depression are linked with many immunodermatoses and may reflect alterations in the body's central and peripheral neuroendocrine stress pathways. It is important to consider issues pertaining to skin of colour, particularly with pigmentary disorders.
Collapse
Affiliation(s)
- George W. M. Millington
- Dermatology DepartmentNorfolk and Norwich University HospitalNorwichUK
- Norwich Medical SchoolNorwichUK
| | | |
Collapse
|
39
|
Basu T, Sehar U, Selman A, Reddy AP, Reddy PH. Support Provided by Caregivers for Community-Dwelling Obesity Individuals: Focus on Elderly and Hispanics. Healthcare (Basel) 2023; 11:1442. [PMID: 37239728 PMCID: PMC10218002 DOI: 10.3390/healthcare11101442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 05/11/2023] [Accepted: 05/13/2023] [Indexed: 05/28/2023] Open
Abstract
Obesity is a chronic disease marked by the buildup of extra adipose tissue and a higher chance of developing concomitant illnesses such as heart disease, diabetes, high blood pressure, and some malignancies. Over the past few decades, there has been a global increase in the prevalence of obesity, which now affects around one-third of the world's population. According to recent studies, a variety of factors, including genetics and biology as well as environmental, physiological, and psychosocial factors, may have a role in the development of obesity. The prevalence of obesity is often higher among Hispanic American groups than among White people in the U.S. Obesity is a widespread condition with a high risk of morbidity and death, and it is well-recognized that the prevalence of comorbidities rises with rising levels of obesity or body mass index. To combat the rising prevalence of obesity in the USA, especially among Hispanics, one of the fastest-growing racial/ethnic groups in the country, there is an urgent need for obesity therapies. The exact cause of this disparity is unclear, but some responsible factors are a lack of education, high unemployment rates, high levels of food insecurity, an unhealthy diet, inadequate access to physical activity resources, a lack of health insurance, and constricted access to culturally adequate healthcare. Additionally, managing obesity and giving needed/timely support to obese people is a difficult responsibility for medical professionals and their loved ones. The need for caregivers is increasing with the increased number of individuals with obesity, particularly Hispanics. Our article summarizes the status of obesity, focusing on Hispanic populations, and we also highlight specific factors that contribute to obesity, including genetics, epigenetics, biological, physiological, and psychosocial factors, medication and disease, environment, and socio-demographics. This article also reviews caregiver duties and challenges associated with caring for people with obesity.
Collapse
Affiliation(s)
- Tanisha Basu
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (T.B.)
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (T.B.)
| | - Ashley Selman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (T.B.)
| | - Arubala P. Reddy
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
| | - P. Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; (T.B.)
- Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA
- Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Public Health, School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
40
|
Grover L, Sklioutovskaya-Lopez K, Parkman JK, Wang K, Hendricks E, Adams-Duffield J, Kim JH. Diet, sex, and genetic predisposition to obesity and type 2 diabetes modulate motor and anxiety-related behaviors in mice, and alter cerebellar gene expression. Behav Brain Res 2023; 445:114376. [PMID: 36868363 PMCID: PMC10065959 DOI: 10.1016/j.bbr.2023.114376] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 12/28/2022] [Accepted: 02/28/2023] [Indexed: 03/05/2023]
Abstract
Obesity and type 2 diabetes (T2D) are serious health problems linked to neurobehavioral alterations. We compared motor function, anxiety-related behavior, and cerebellar gene expression in TALLYHO/Jng (TH), a polygenic model prone to insulin resistance, obesity, and T2D, and normal C57BL/6 J (B6) mice. Male and female mice were weaned onto chow or high fat (HF) diet at 4 weeks of age (wk), and experiments conducted at young (5 wk) and old (14 - 20 wk) ages. In the open field, distance traveled was significantly lower in TH (vs. B6). For old mice, anxiety-like behavior (time in edge zone) was significantly increased for TH (vs B6), females (vs males), and for both ages HF diet (vs chow). In Rota-Rod testing, latency to fall was significantly shorter in TH (vs B6). For young mice, longer latencies to fall were observed for females (vs males) and HF (vs chow). Grip strength in young mice was greater in TH (vs B6), and there was a diet-strain interaction, with TH on HF showing increased strength, whereas B6 on HF showed decreased strength. For older mice, there was a strain-sex interaction, with B6 males (but not TH males) showing increased strength compared to the same strain females. There were significant sex differences in cerebellar mRNA levels, with Tnfα higher, and Glut4 and Irs2 lower in females (vs males). There were significant strain effects for Gfap and Igf1 mRNA levels with lower in TH (vs B6). Altered cerebellar gene expression may contribute to strain differences in coordination and locomotion.
Collapse
Affiliation(s)
- Lawrence Grover
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | | | - Jacaline K Parkman
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Katherine Wang
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Emily Hendricks
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Jessica Adams-Duffield
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA
| | - Jung Han Kim
- Department of Biomedical Sciences, Joan C. Edwards School of Medicine, Marshall University, Huntington, WV 25755, USA.
| |
Collapse
|
41
|
O’Neill KN, Aubrey E, Howe LD, Stergiakouli E, Rodriguez S, Kearney PM, O’Keeffe LM. Mitochondrial DNA haplogroups and trajectories of cardiometabolic risk factors during childhood and adolescence: A prospective cohort study. PLoS One 2023; 18:e0284226. [PMID: 37043466 PMCID: PMC10096512 DOI: 10.1371/journal.pone.0284226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 03/27/2023] [Indexed: 04/13/2023] Open
Abstract
BACKGROUND Mitochondria are organelles responsible for converting glucose into energy. Mitochondrial DNA is exclusively maternally inherited. The role of mitochondrial DNA haplogroups in the aetiology of cardiometabolic disease risk is not well understood. METHODS Sex-specific associations between common European mitochondrial DNA haplogroups (H, U, J, T, K, V, W, I and X) and trajectories of cardiometabolic risk factors from birth to 18 years were examined in a prospective cohort. Cardiometabolic risk factors measured from birth/mid-childhood to 18 years included body mass index (BMI), fat and lean mass, systolic and diastolic blood pressure, pulse rate, high-density lipoprotein cholesterol (HDL-c), non-HDL-c and triglycerides. Fractional polynomial and linear spline multilevel models explored the sex-specific association between haplogroups and risk factor trajectories. RESULTS Among a total of 7,954 participants with 79,178 repeated measures per outcome, we found no evidence that haplogroups U, T, J, K and W were associated with cardiometabolic risk factors compared to haplogroup H. In females, haplogroup V was associated with 4.0% (99% CI: -7.5, -0.6) lower BMI at age one but associations did not persist at age 18. Haplogroup X was associated with 1.3kg (99% CI: -2.5, -0.2) lower lean mass at age 9 which persisted at 18. Haplogroup V and X were associated with 9.3% (99% CI: -0.4, 19.0) and 16.4% (99% CI: -0.5,33.3) lower fat mass at age 9, respectively, although confidence intervals spanned the null and associations did not persist at 18. In males, haplogroup I was associated with 2.4% (99% CI: -0.5, 5.3) higher BMI at age 7; widening to 5.1% (99% CI: -0.5, 10.6) at 18 with confidence intervals spanning the null. CONCLUSIONS Our study demonstrated little evidence of sex-specific associations between mitochondrial DNA haplogroups and cardiometabolic risk factors.
Collapse
Affiliation(s)
- Kate N. O’Neill
- School of Public Health, University College Cork, Cork, Ireland
| | - Emily Aubrey
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, Bristol, United Kingdom
| | - Laura D. Howe
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, Bristol, United Kingdom
| | - Evie Stergiakouli
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, Bristol, United Kingdom
| | - Santiago Rodriguez
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, Bristol, United Kingdom
| | | | - Linda M. O’Keeffe
- School of Public Health, University College Cork, Cork, Ireland
- MRC Integrative Epidemiology Unit at the University of Bristol, Bristol, United Kingdom
- Population Health Sciences, Bristol Medical School, Bristol, United Kingdom
| |
Collapse
|
42
|
Hidalgo Vira N, Oyarce K, Valladares Vega M, Goldfield GS, Guzmán-Gutiérrez E, Obregón AM. No association of the dopamine D2 receptor genetic bilocus score (rs1800497/rs1799732) on food addiction and food reinforcement in Chilean adults. Front Behav Neurosci 2023; 17:1067384. [PMID: 37064299 PMCID: PMC10102336 DOI: 10.3389/fnbeh.2023.1067384] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/08/2023] [Indexed: 04/03/2023] Open
Abstract
Purpose: Different systems regulate food intake. In the reward system, dopamine (DA) is the main neurotransmitter, and a variety of genetic variants (rs1799732 and rs1800497) are associated with addiction. Addiction is a highly polygenic disease, where each allelic variant adds a small amount of vulnerability. Polymorphisms rs1799732 and rs1800497 are associated with eating behavior and hedonic hunger, but links to food addiction remain unclear.Aim: To evaluate the association between the bilocus profile (rs1799732-rs1800497) of the dopaminergic pathway with food reinforcement and food addiction in Chilean adults.Methods: A cross-sectional study recruited a convenience sample of 97 obese, 25 overweight, and 99 normal-weight adults (18–35 years). Anthropometric measurements were performed by standard procedures and eating behavior was assessed using the: Food Reinforcement Value Questionnaire (FRVQ) and Yale Food Addiction scale (YFAS). The DRD2 genotypes were determined by TaqMan assays (rs1800497 and rs1799732). A bilocus composite score was calculated.Results: In the normal weight group, individuals who were heterozygous for the rs1977932 variant (G/del) showed higher body weight (p-value 0.01) and abdominal circumference (p-value 0.01) compared to those who were homozygous (G/G). When analyzing rs1800497, a significant difference in BMI was observed for the normal weight group (p-value 0.02) where heterozygous showed higher BMI. In the obese group, homozygous A1/A1 showed higher BMI in comparison to A1/A2 and A2/A2 (p-value 0.03). Also, a significant difference in food reinforcement was observed in the rs1800497, where homozygous for the variant (A1A1) show less reinforcement (p-value 0.01).In relation to the bilocus score in the total sample, 11% showed “very low dopaminergic signaling”, 24.4% were “under”, 49.7% showed “intermediate signaling”, 12.7% showed “high” and 1.4% showed “very high”. No significant genotypic differences were observed in food reinforcement and food addiction by bilocus score.Conclusions: The results indicate that the genetic variants rs1799732 and rs1800497 (Taq1A) were associated with anthropometric measurements but not with food addiction or food reinforcement in Chilean university students. These results suggest that other genotypes, such as rs4680 and rs6277, which affect DA signaling capacity through a multilocus composite score, should be studied. Level V: Evidence obtained from a cross-sectional descriptive study.
Collapse
Affiliation(s)
- Nicole Hidalgo Vira
- Escuela de Tecnología Médica, Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Concepción, Chile
| | - Karina Oyarce
- Escuela de Tecnología Médica, Facultad de Medicina y Ciencia, Universidad San Sebastián, Concepción, Chile
| | - Macarena Valladares Vega
- Escuela de Terapia Ocupacional, Facultad de Salud y Ciencias Sociales, Universidad de las Ámericas, Santiago, Chile
| | - Gary S. Goldfield
- Children’s Hospital of Eastern Ontario Research Institute, Ottawa, ON, Canada
| | - Enrique Guzmán-Gutiérrez
- Pregnancy Diseases Laboratory, Department of Clinical Biochemistry and Immunology, Faculty of Pharmacy, Universidad de Concepción, Concepción, Chile
| | - Ana M. Obregón
- Escuela de Nutrición y Dietética, Facultad de Ciencias para el Cuidado de la Salud, Universidad San Sebastián, Concepción, Chile
- *Correspondence: Ana M. Obregón
| |
Collapse
|
43
|
Brain functional and structural magnetic resonance imaging of obesity and weight loss interventions. Mol Psychiatry 2023; 28:1466-1479. [PMID: 36918706 DOI: 10.1038/s41380-023-02025-y] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 02/26/2023] [Accepted: 02/28/2023] [Indexed: 03/16/2023]
Abstract
Obesity has tripled over the past 40 years to become a major public health issue, as it is linked with increased mortality and elevated risk for various physical and neuropsychiatric illnesses. Accumulating evidence from neuroimaging studies suggests that obesity negatively affects brain function and structure, especially within fronto-mesolimbic circuitry. Obese individuals show abnormal neural responses to food cues, taste and smell, resting-state activity and functional connectivity, and cognitive tasks including decision-making, inhibitory-control, learning/memory, and attention. In addition, obesity is associated with altered cortical morphometry, a lowered gray/white matter volume, and impaired white matter integrity. Various interventions and treatments including bariatric surgery, the most effective treatment for obesity in clinical practice, as well as dietary, exercise, pharmacological, and neuromodulation interventions such as transcranial direct current stimulation, transcranial magnetic stimulation and neurofeedback have been employed and achieved promising outcomes. These interventions and treatments appear to normalize hyper- and hypoactivations of brain regions involved with reward processing, food-intake control, and cognitive function, and also promote recovery of brain structural abnormalities. This paper provides a comprehensive literature review of the recent neuroimaging advances on the underlying neural mechanisms of both obesity and interventions, in the hope of guiding development of novel and effective treatments.
Collapse
|
44
|
Pratelli G, Di Liberto D, Carlisi D, Emanuele S, Giuliano M, Notaro A, De Blasio A, Calvaruso G, D’Anneo A, Lauricella M. Hypertrophy and ER Stress Induced by Palmitate Are Counteracted by Mango Peel and Seed Extracts in 3T3-L1 Adipocytes. Int J Mol Sci 2023; 24:ijms24065419. [PMID: 36982490 PMCID: PMC10048994 DOI: 10.3390/ijms24065419] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/18/2023] Open
Abstract
A diet rich in saturated fatty acids (FAs) has been correlated with metabolic dysfunction and ROS increase in the adipose tissue of obese subjects. Thus, reducing hypertrophy and oxidative stress in adipose tissue can represent a strategy to counteract obesity and obesity-related diseases. In this context, the present study showed how the peel and seed extracts of mango (Mangifera indica L.) reduced lipotoxicity induced by high doses of sodium palmitate (PA) in differentiated 3T3-L1 adipocytes. Mango peel (MPE) and mango seed (MSE) extracts significantly lowered PA-induced fat accumulation by reducing lipid droplet (LDs) and triacylglycerol (TAGs) content in adipocytes. We showed that MPE and MSE activated hormone-sensitive lipase, the key enzyme of TAG degradation. In addition, mango extracts down-regulated the adipogenic transcription factor PPARγ as well as activated AMPK with the consequent inhibition of acetyl-CoA-carboxylase (ACC). Notably, PA increased endoplasmic reticulum (ER) stress markers GRP78, PERK and CHOP, as well as enhanced the reactive oxygen species (ROS) content in adipocytes. These effects were accompanied by a reduction in cell viability and the induction of apoptosis. Interestingly, MPE and MSE counteracted PA-induced lipotoxicity by reducing ER stress markers and ROS production. In addition, MPE and MSE increased the level of the anti-oxidant transcription factor Nrf2 and its targets MnSOD and HO-1. Collectively, these results suggest that the intake of mango extract-enriched foods in association with a correct lifestyle could exert beneficial effects to counteract obesity.
Collapse
Affiliation(s)
- Giovanni Pratelli
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Diana Di Liberto
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Daniela Carlisi
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Sonia Emanuele
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
| | - Michela Giuliano
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Antonietta Notaro
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Anna De Blasio
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Giuseppe Calvaruso
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Antonella D’Anneo
- Laboratory of Biochemistry, Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90127 Palermo, Italy
| | - Marianna Lauricella
- Section of Biochemistry, Department of Biomedicine, Neurosciences and Advanced Diagnostics (BIND), University of Palermo, 90127 Palermo, Italy
- Correspondence: ; Tel.: +39-09123865854
| |
Collapse
|
45
|
Functionally Significant Variants in Genes Associated with Abdominal Obesity: A Review. J Pers Med 2023; 13:jpm13030460. [PMID: 36983642 PMCID: PMC10056771 DOI: 10.3390/jpm13030460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/23/2023] [Accepted: 02/26/2023] [Indexed: 03/05/2023] Open
Abstract
The high prevalence of obesity and of its associated diseases is a major problem worldwide. Genetic predisposition and the influence of environmental factors contribute to the development of obesity. Changes in the structure and functional activity of genes encoding adipocytokines are involved in the predisposition to weight gain and obesity. In this review, variants in genes associated with adipocyte function are examined, as are variants in genes associated with metabolic aberrations and the accompanying disorders in visceral obesity.
Collapse
|
46
|
Considerations of the Genetic Background of Obesity among Patients with Psoriasis. Genes (Basel) 2023; 14:genes14030594. [PMID: 36980866 PMCID: PMC10048146 DOI: 10.3390/genes14030594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Revised: 01/31/2023] [Accepted: 02/23/2023] [Indexed: 03/02/2023] Open
Abstract
Psoriasis comorbidities may emerge from pleiotropic mechanisms, including common proinflammatory pathways, cellular mediators or genetic predisposition. Obesity is considered to be an independent risk factor of psoriasis, which may influence the severity of the disease and its early onset, decrease patients’ quality of life, alter response to psoriasis therapies and affect morbidity by reduced life expectancy due to cardiovascular events. Although novel approaches, including genetic techniques, have provided a wide range of new research, there are still scarce studies elaborating on the common genetic background of psoriasis and obesity. The aim of this study was to present and evaluate a possible common genetic background of psoriasis and concomitant increased body mass based on the review of the available literature.
Collapse
|
47
|
Ghanemi A, Yoshioka M, St-Amand J. Secreted Protein Acidic and Rich in Cysteine ( SPARC)-Mediated Exercise Effects: Illustrative Molecular Pathways against Various Diseases. Diseases 2023; 11:diseases11010033. [PMID: 36810547 PMCID: PMC9944512 DOI: 10.3390/diseases11010033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 02/06/2023] [Accepted: 02/10/2023] [Indexed: 02/15/2023] Open
Abstract
The strong benefits of exercise, in addition to the development of both the therapeutic applications of physical activity and molecular biology tools, means that it has become very important to explore the underlying molecular patterns linking exercise and its induced phenotypic changes. Within this context, secreted protein acidic and rich in cysteine (SPARC) has been characterized as an exercise-induced protein that would mediate and induce some important effects of exercise. Herein, we suggest some underlying pathways to explain such SPARC-induced exercise-like effects. Such mechanistic mapping would not only allow us to understand the molecular processes of exercise and SPARC effects but would also highlight the potential to develop novel molecular therapies. These therapies would be based on mimicking the exercise benefits via either introducing SPARC or pharmacologically targeting the SPARC-related pathways to produce exercise-like effects. This is of a particular importance for those who do not have the ability to perform the required physical activity due to disabilities or diseases. The main objective of this work is to highlight selected potential therapeutic applications deriving from SPARC properties that have been reported in various publications.
Collapse
Affiliation(s)
- Abdelaziz Ghanemi
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
| | - Mayumi Yoshioka
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
| | - Jonny St-Amand
- Department of Molecular Medicine, Faculty of Medicine, Laval University, Quebec, QC G1V 0A6, Canada
- Functional Genomics Laboratory, Endocrinology and Nephrology Axis, CHU de Québec-Université Laval Research Center, Quebec, QC G1V 4G2, Canada
- Correspondence: ; Tel.: +1-(418)-654-2296; Fax: +1-(418)-654-2761
| |
Collapse
|
48
|
Naringin Alleviates Glucose-Induced Aging by Reducing Fat Accumulation and Promoting Autophagy in Caenorhabditis elegans. Nutrients 2023; 15:nu15040907. [PMID: 36839265 PMCID: PMC9961211 DOI: 10.3390/nu15040907] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/07/2023] [Accepted: 02/08/2023] [Indexed: 02/16/2023] Open
Abstract
Naringin (Nar) is a dihydroflavonoid compound, widely found in citrus fruit and used in Chinese herbal medicine. As a phytochemical, it acts as a dietary supplement that can delay aging and prevent aging-related disease, such as obesity and diabetes. However, its exact mechanism remains unclear. In this study, the high-glucose-induced (HGI) Caenorhabditis elegans model was used to evaluate the anti-aging and anti-obesity effects of Nar. The mean lifespan and fast movement span of HGI worms were extended roughly 24% and 11%, respectively, by Nar treatment. Oil red O staining revealed a significant reduction in fat accumulation and dFP::LGG-labeled worms showed the promotion of autophagy. Additionally, whole transcriptome sequencing and gene set variation analysis suggested that Nar upregulated the lipid biosynthesis and metabolism pathways, as well as the TGF-β, Wnt and longevity signaling pathways. Protein-protein interaction (PPI) network analysis identified hub genes in these pathways for further analysis. Mutant worms and RNA interference were used to study mechanisms; the suppression of hlh-30, lgg-1, unc-51, pha-4, skn-1 and yap-1 disabled the fat-lowering, lifespan-prolonging, and health-promoting properties of Nar. Collectively, our findings indicate that Nar plays an important role in alleviating HGI-aging and anti-obesity effects by reducing fat accumulation and promoting autophagy.
Collapse
|
49
|
Gómez-Zúñiga RS, Wintergerst A. Effect of food portion on masticatory parameters in 8- to 10-year-old children. J Texture Stud 2023; 54:67-75. [PMID: 36146919 PMCID: PMC10092341 DOI: 10.1111/jtxs.12724] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 07/25/2022] [Accepted: 09/18/2022] [Indexed: 11/30/2022]
Abstract
The objective of this study was to explore differences in bite size and the amount of intraoral processing of four different foods between a reference and a double portion in 8- to 10-year-old children and, also to explore if there were differences depending on the child's weight status. The study was undertaken in 8- to 10-year-old children (n = 89). Body mass index was determined, and weight status was established based on Centers for Disease Control and Prevention(CDC) guidelines. A reference (half a banana, half a large peeled carrot, a slice of loaf cake, and half a salami stick), and a double portion of each food were offered to children in a randomized order in two different sessions. Three consecutive bites were taken and averaged. Variables in this study were bite size (g), number of cycles until swallowing, sequence duration as well as cycles/g. Comparisons were performed with Mann-Whitney, Kruskal-Wallis, and Wilcoxon tests, regressions and correlations were run. Bite size was ≈13% larger with the double portion (p ≤ .05 for salami, banana, and loaf cake). Cycles/g decreased for all foods with the double portion, although only significantly for banana and loaf cake. Normal and obese children had larger bite sizes (p ≤ .05) of banana than overweight children, while only obese had larger bites of loaf cake with the double portion. In conclusion, the bite size of foods in 8- to 10-year-old children increases (13%) when the portion size is doubled and the larger bite size leads to fewer cycles/g (8%). These effects differ among foods. These parameters do not depend on weight status.
Collapse
Affiliation(s)
- Roberto S Gómez-Zúñiga
- Graduate School of Dentistry, Universidad Nacional Autónoma de México, México City, Mexico
| | - Ana Wintergerst
- Graduate School of Dentistry, Universidad Nacional Autónoma de México, México City, Mexico.,Facultad de Estudios Superiores Zaragoza, Universidad Nacional Autónoma de México, México City, Mexico
| |
Collapse
|
50
|
Geng Z, Yuan Y, He D, Lee H, Wang H, Niu N, Ni Z, Abdullah S, Tang Z, Qu P. RNA-Seq analysis of obese Pdha1 fl/flLyz2-Cre mice induced by a high-fat diet. Exp Anim 2023; 72:112-122. [PMID: 36288929 PMCID: PMC9978130 DOI: 10.1538/expanim.22-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Pyruvate dehydrogenase complex (PDH) is an important complex of three enzymes that transforms pyruvate into acetyl-CoA, subsequently entering the tricarboxylic acid (TCA) cycle to produce ATP and electron donors. As a key regulator of energy and metabolic homeostasis, PDH is considered a potential therapeutic target of many diseases. On the other hand, the relationship between PDH and obesity is not clear. In this study, peripheral blood of Pdha1fl/flLyz2-Cre and C57BL/6 mice fed a high-fat diet (HFD) was collected and subjected to extensive transcriptome sequencing. Differentially expressed genes (DEGs) were identified. Enrichment of functions and signaling pathways analyses were performed based on Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) database. Quantitative real-time polymerase chain reaction (qRT-PCR) was used to verify the genes selected from RNA sequencing (RNA-seq). Eventually, we found that Pdha1fl/flLyz2-Cre mice were more susceptible to HFD-induced obesity. A total of 302 up-regulated genes and 30 down-regulated genes were screened that were differentially expressed between Pdha1fl/flLyz2-Cre mice fed the HFD and the control groups. Furthermore, we verified that significant transcriptional changes in the genes Sgstm1, Ncoa4, Rraga, Slc3a2, Usp15, Gabarapl2, Wipi1, Sh3glb1, Mtmr3, and Cd36 were consistent with the results obtained from RNA-seq analysis. In summary, this study preliminarily established that there is a close relationship between Pdha1 and obesity and revealed the possible downstream pathways and target genes involved, laying a good foundation for the further study of Pdha1 function in the future.
Collapse
Affiliation(s)
- Zhaohong Geng
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian 116000, P.R. China
| | - Yuchan Yuan
- Department of Cardiology, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, 1665 Kongjiang Road, Shanghai, 200092, China
| | - Dan He
- Department of Cardiology, Peking University People’s Hospital, No. 11, Xizhimen South Street, Xicheng District, Beijing, 100044, P.R. China
| | - Hewang Lee
- Kidney Disease Section, Kidney Diseases Branch, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, 9000 Rockville
Pike, Bethesda, MD 20892, USA
| | - Hongyan Wang
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian 116000, P.R. China
| | - Nan Niu
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian 116000, P.R. China
| | - Zhigang Ni
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian 116000, P.R. China
| | - Shopit Abdullah
- Academic Integrated Medicine & College of Pharmacy, Department of Pharmacology, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian
116044, P.R. China
| | - Zeyao Tang
- Academic Integrated Medicine & College of Pharmacy, Department of Pharmacology, Dalian Medical University, No. 9 West Section Lvshun South Road, Dalian
116044, P.R. China
| | - Peng Qu
- Department of Cardiology, Second Affiliated Hospital of Dalian Medical University, No. 467 Zhongshan Road, Dalian 116000, P.R. China
| |
Collapse
|