1
|
Oláh E. Learning from cancer to address COVID-19. Biol Futur 2023:10.1007/s42977-023-00156-5. [PMID: 37410273 DOI: 10.1007/s42977-023-00156-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 02/24/2023] [Indexed: 07/07/2023]
Abstract
Patients with cancer have been disproportionately affected by the novel coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Knowledge collected during the last three decades of cancer research has helped the medical research community worldwide to respond to many of the challenges raised by COVID-19, during the pandemic. The review, briefly summarizes the underlying biology and risk factors of COVID-19 and cancer, and aims to present recent evidence on cellular and molecular relationship between the two diseases, with a focus on those that are related to the hallmarks of cancer and uncovered in the first less than three years of the pandemic (2020-2022). This may not only help answer the question "Why cancer patients are considered to be at a particularly high risk of developing severe COVID-19 illness?", but also helped treatments of patients during the COVID-19 pandemic. The last session highlights the pioneering mRNA studies and the breakthrough discovery on nucleoside-modifications of mRNA by Katalin Karikó, which led to the innovation and development of the mRNA-based SARSCoV-2 vaccines saving lives of millions and also opened the door for a new era of vaccines and a new class of therapeutics.
Collapse
Affiliation(s)
- Edit Oláh
- Department of Molecular Genetics, National Institute of Oncology, Ráth György u. 7-9, Budapest, 1122, Hungary.
| |
Collapse
|
2
|
Dalamaga M, Nasiri-Ansari N, Spyrou N. Perspectives and Challenges of COVID-19 with Obesity-Related Cancers. Cancers (Basel) 2023; 15:cancers15061771. [PMID: 36980657 PMCID: PMC10046880 DOI: 10.3390/cancers15061771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/07/2023] [Accepted: 03/10/2023] [Indexed: 03/17/2023] Open
Abstract
The emergence of COVID-19 has created an unprecedented threat worldwide, involving overwhelmed health-care systems in the majority of countries [...]
Collapse
Affiliation(s)
- Maria Dalamaga
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece
- Correspondence:
| | - Narjes Nasiri-Ansari
- Department of Biological Chemistry, School of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias, 11527 Athens, Greece
| | - Nikolaos Spyrou
- Tisch Cancer Institute Icahn School of Medicine at Mount Sinai, 1190 One Gustave L. Levy Place, New York, NY 10029, USA
| |
Collapse
|
3
|
Behura A, Naik L, Patel S, Das M, Kumar A, Mishra A, Nayak DK, Manna D, Mishra A, Dhiman R. Involvement of epigenetics in affecting host immunity during SARS-CoV-2 infection. Biochim Biophys Acta Mol Basis Dis 2023; 1869:166634. [PMID: 36577469 PMCID: PMC9790847 DOI: 10.1016/j.bbadis.2022.166634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 10/26/2022] [Accepted: 12/13/2022] [Indexed: 12/27/2022]
Abstract
Coronavirus disease 19 (COVID-19) is caused by a highly contagious RNA virus Severe Acute Respiratory Syndrome coronavirus-2 (SARS-CoV-2), originated in December 2019 in Wuhan, China. Since then, it has become a global public health concern and leads the disease table with the highest mortality rate, highlighting the necessity for a thorough understanding of its biological properties. The intricate interaction between the virus and the host immune system gives rise to diverse implications of COVID-19. RNA viruses are known to hijack the host epigenetic mechanisms of immune cells to regulate antiviral defence. Epigenetics involves processes that alter gene expression without changing the DNA sequence, leading to heritable phenotypic changes. The epigenetic landscape consists of reversible modifications like chromatin remodelling, DNA/RNA methylation, and histone methylation/acetylation that regulates gene expression. The epigenetic machinery contributes to many aspects of SARS-CoV-2 pathogenesis, like global DNA methylation and receptor angiotensin-converting enzyme 2 (ACE2) methylation determines the viral entry inside the host, viral replication, and infection efficiency. Further, it is also reported to epigenetically regulate the expression of different host cytokines affecting antiviral response. The viral proteins of SARS-CoV-2 interact with various host epigenetic enzymes like histone deacetylases (HDACs) and bromodomain-containing proteins to antagonize cellular signalling. The central role of epigenetic factors in SARS-CoV-2 pathogenesis is now exploited as promising biomarkers and therapeutic targets against COVID-19. This review article highlights the ability of SARS-CoV-2 in regulating the host epigenetic landscape during infection leading to immune evasion. It also discusses the ongoing therapeutic approaches to curtail and control the viral outbreak.
Collapse
Affiliation(s)
- Assirbad Behura
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Lincoln Naik
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Salina Patel
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Mousumi Das
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Ashish Kumar
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Abtar Mishra
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Dev Kiran Nayak
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Debraj Manna
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology Jodhpur, Rajasthan 342011, India
| | - Rohan Dhiman
- Laboratory of Mycobacterial Immunology, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| |
Collapse
|
4
|
Liao Y, Wang J, Zou J, Liu Y, Liu Z, Huang Z. Multi-omics analysis reveals genomic, clinical and immunological features of SARS-CoV-2 virus target genes in pan-cancer. Front Immunol 2023; 14:1112704. [PMID: 36875081 PMCID: PMC9982007 DOI: 10.3389/fimmu.2023.1112704] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 01/25/2023] [Indexed: 02/19/2023] Open
Abstract
The SARS-CoV-2 virus, also known as the severe acute respiratory syndrome coronavirus 2, has raised great threats to humans. The connection between the SARS-CoV-2 virus and cancer is currently unclear. In this study, we thus evaluated the multi-omics data from the Cancer Genome Atlas (TCGA) database utilizing genomic and transcriptomic techniques to fully identify the SARS-CoV-2 target genes (STGs) in tumor samples from 33 types of cancers. The expression of STGs was substantially linked with the immune infiltration and may be used to predict survival in cancer patients. STGs were also substantially associated with immunological infiltration, immune cells, and associated immune pathways. At the molecular level, the genomic changes of STGs were frequently related with carcinogenesis and patient survival. In addition, pathway analysis revealed that STGs were involved in the control of signaling pathways associated with cancer. The prognostic features and nomogram of clinical factors of STGs in cancers have been developed. Lastly, by mining the cancer drug sensitivity genomics database, a list of potential STG-targeting medicines was compiled. Collectively, this work demonstrated comprehensively the genomic alterations and clinical characteristics of STGs, which may offer new clues to explore the mechanisms on a molecular level between SARS-CoV-2 virus and cancers as well as provide new clinical guidance for cancer patients who are threatened by the COVID-19 epidemic.
Collapse
Affiliation(s)
- Yong Liao
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Department of Pharmacy, Maoming People's Hospital, Maoming, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Jiaojiao Wang
- Center of Scientific Research, Department of Cardiology, Maoming People's Hospital, Maoming, China
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Jiami Zou
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Yong Liu
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| | - Zhiping Liu
- Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, College of Pharmacy, Jinan University, Guangzhou, China
| | - Zunnan Huang
- Key Laboratory of Computer-Aided Drug Design of Dongguan City, The First Dongguan Affiliated Hospital, Guangdong Medical University, Dongguan, China
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, Dongguan, China
| |
Collapse
|
5
|
The impact of the SARS-COV-2 pandemic on the quality of breast cancer care in EUSOMA-certified breast centres. Eur J Cancer 2022; 177:72-79. [PMID: 36332437 PMCID: PMC9554010 DOI: 10.1016/j.ejca.2022.09.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 01/06/2023]
Abstract
AIMS We analysed the impact of the SARS-CoV-2 pandemic (COVID-19) on the quality of breast cancer care in certified EUSOMA (European Society of Breast Cancer Specialists) breast centres. MATERIALS AND METHODS The results of the EUSOMA quality indicators were compared, based on pseudonymised individual records, for the periods 1 March 2020 till 30 June 2020 (first COVID-19 peak in most countries in Europe) and 1 March 2019 till 30 June 2019. In addition, a questionnaire was sent to the participating Centres for investigating the impact of the COVID-19 pandemic on the organisation and the quality of breast cancer care. RESULTS Forty-five centres provided data and 31 (67%) responded to the questionnaire. The total number of new cases dropped by 19% and there was a small significant higher tumour (p = 0.003) and lymph node (p = 0.011) stage at presentation. Comparing quality indicators (12,736 patients) by multivariable analysis showed mostly non-significant differences. Surgery could be performed in a COVID-free zone in 94% of the centres, COVID testing was performed before surgery in 96% of the centres, and surgical case load was reduced in 55% of the centres. Modifications of the indications for neoadjuvant endocrine therapy, chemotherapy, and targeted therapy were necessary in 23%, 23%, and 10% of the centres; changes in indications for adjuvant endocrine, chemo-, targeted, immune, and radiotherapy in 3%, 19%, 3%, 6%, and 10%, respectively. CONCLUSION Quality of breast cancer care was well maintained in EUSOMA breast centres during the first wave of the COVID-19 pandemic. A small but significantly higher tumour and lymph node stage at presentation was observed.
Collapse
|
6
|
Mozaffari SA, Salehi A, Mousavi E, Zaman BA, Nassaj AE, Ebrahimzadeh F, Nasiri H, Valedkarimi Z, Adili A, Asemani G, Akbari M. SARS-CoV-2-associated gut microbiome alteration; A new contributor to colorectal cancer pathogenesis. Pathol Res Pract 2022; 239:154131. [PMID: 36191449 PMCID: PMC9477615 DOI: 10.1016/j.prp.2022.154131] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/31/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022]
Abstract
The emergence of a novel coronavirus, COVID-19, in December 2019 led to a global pandemic with more than 170 million confirmed infections and more than 6 million deaths (by July 2022). Studies have shown that infection with SARS-CoV-2 in cancer patients has a higher mortality rate than in people without cancer. Here, we have reviewed the evidence showing that gut microbiota plays an important role in health and is linked to colorectal cancer development. Studies have shown that SARS-CoV-2 infection leads to a change in gut microbiota, which modify intestinal inflammation and barrier permeability and affects tumor-suppressor or oncogene genes, proposing SARS-CoV-2 as a potential contributor to CRC pathogenesis.
Collapse
Affiliation(s)
- Shahrooz Amin Mozaffari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Ali Salehi
- Department of Oral and Maxillofacial Radiology, School of Dentistry, Islamic Azad University, Isfahan (Khorasgan) Branch, Isfahan, Islamic Republic of Iran
| | - Elnaz Mousavi
- Dental Sciences Research Center, Department of Endodontics, School of Dentistry, Guilan University of Medical Sciences, Rasht, Islamic Republic of Iran
| | - Burhan Abdullah Zaman
- Department of Basic Sciences, College of Pharmacy, University of Duhok, Duhok, Kurdistan Region, Iraq
| | - Ali Eslambol Nassaj
- Department of Endodontics, School of Dentistry, Kerman University of Medical Sciences, Kerman, Islamic Republic of Iran
| | - Farnoosh Ebrahimzadeh
- Department of Internal Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Islamic Republic of Iran
| | - Hadi Nasiri
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Zahra Valedkarimi
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Ali Adili
- Senior Adult Oncology Department, Moffitt Cancer Center, University of South Florida, Tampa, USA; Department of Oncology, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Ghazaleh Asemani
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran
| | - Morteza Akbari
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran; Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Islamic Republic of Iran.
| |
Collapse
|
7
|
Bhattacharjee R, Das D, Bhadhuri R, Chakraborty S, Dey T, Buragohain R, Nath A, Muduli K, Barman P, Gundamaraju R. Cellular Landscaping of COVID-19 and Gynaecological Cancers: An Infrequent Correlation. JOURNAL OF ONCOLOGY 2022; 2022:5231022. [PMID: 36299504 PMCID: PMC9592241 DOI: 10.1155/2022/5231022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 07/16/2022] [Indexed: 01/08/2023]
Abstract
COVID-19 resulted in a mortality rate of 3-6% caused by SARS-CoV-2 and its variant leading to unprecedented consequences of acute respiratory distress septic shock and multiorgan failure. In such a situation, evaluation, diagnosis, treatment, and care for cancer patients are difficult tasks faced by medical staff. Moreover, patients with gynaecological cancer appear to be more prone to severe infection and mortality from COVID-19 due to immunosuppression by chemotherapy and coexisting medical disorders. To deal with such a circumtances oncologists have been obliged to reconsider the entire diagnostic, treatment, and management approach. This review will provide and discuss the molecular link with gynaecological cancer under COVID-19 infection, providing a novel bilateral relationship between the two infections. Moreover, the authors have provided insights to discuss the pathobiology of COVID-19 in gynaecological cancer and their risks associated with such comorbidity. Furthermore, we have depicted the overall impact of host immunity along with guidelines for the treatment of patients with gynaecological cancer under COVID-19 infection. We have also discussed the feasible scope for the management of COVID-19 and gynaecological cancer.
Collapse
Affiliation(s)
- Rahul Bhattacharjee
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Debanjan Das
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | | | | | - Tanima Dey
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Rupam Buragohain
- Department of Biotechnology, Gauhati UNiversity, Gopinath Bordoloi Nagar, Guwahati 781014, Assam, India
| | - Asim Nath
- Department of Biotechnology, Gauhati UNiversity, Gopinath Bordoloi Nagar, Guwahati 781014, Assam, India
| | - Kartik Muduli
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology (KIIT-DU), Bhubaneswar, Odisha, India
| | - Pranjan Barman
- Department of Biotechnology, Gauhati UNiversity, Gopinath Bordoloi Nagar, Guwahati 781014, Assam, India
| | - Rohit Gundamaraju
- ER Stress and Mucosal Immunology Lab, School of Health Sciences, University of Tasmania, Launceston, Tasmania, Australia
- Division of Gastroenterology, School of Medicine, Washington University at St Louis, St Louis, MO, USA
| |
Collapse
|
8
|
Deben C, Le Compte M, Siozopoulou V, Lambrechts H, Hermans C, Lau HW, Huizing M, Lamote K, Hendriks JMH, Van Dam P, Pauwels P, Smits ELJ, Peeters M, Lardon F. Expression of SARS-CoV-2-Related Surface Proteins in Non-Small-Cell Lung Cancer Patients and the Influence of Standard of Care Therapy. Cancers (Basel) 2022; 14:cancers14174074. [PMID: 36077610 PMCID: PMC9454734 DOI: 10.3390/cancers14174074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 08/16/2022] [Accepted: 08/17/2022] [Indexed: 11/16/2022] Open
Abstract
Simple Summary SARS-CoV-2 is a respiratory virus that uses ACE2 for host cell entry and the spike protein is primed by, among others, TMPRSS2 and FURIN. The goal of this study was to determine in which non-small-cell lung cancer (NSCLC) patients these proteins are expressed on the membrane of the lung cancer cells and in which patients this increased ACE2 expression results in higher levels of soluble (s)ACE2 in their serum. In addition, we studied the influence of standard of care (SOC) therapies on sACE2 levels. Membranous (m)ACE2 was co-expressed with mFURIN and/or mTMPRSS2 in 16% of the NSCLC patients, and mACE2 and sACE2 were more frequently expressed in mutant EGFR patients but not mutant-KRAS patients. Importantly, systemic SOC therapies did not result in increased sACE2 levels. This indicates that cancer cells can be infected by SARS-CoV-2 in these patients, as well as that soluble ACE2 could impact the course of COVID-19. Abstract In this study, we aimed to study the expression of SARS-CoV-2-related surface proteins in non-small-cell lung cancer (NSCLC) cells and identify clinicopathological characteristics that are related to increased membranous (m)ACE2 protein expression and soluble (s)ACE2 levels, with a particular focus on standard of care (SOC) therapies. ACE2 (n = 107), TMPRSS2, and FURIN (n = 38) protein expression was determined by immunohistochemical (IHC) analysis in NSCLC patients. sACE2 levels (n = 64) were determined in the serum of lung cancer patients collected before, during, or after treatment with SOC therapies. Finally, the TCGA lung adenocarcinoma (LUAD) database was consulted to study the expression of ACE2 in EGFR- and KRAS-mutant samples and ACE2 expression was correlated with EGFR/HER, RAS, BRAF, ROS1, ALK, and MET mRNA expression. Membranous (m)ACE2 was found to be co-expressed with mFURIN and/or mTMPRSS2 in 16% of the NSCLC samples and limited to the adenocarcinoma subtype. TMPRSS2 showed predominantly atypical cytoplasmic expression. mACE2 and sACE2 were more frequently expressed in mutant EGFR patients, but not mutant-KRAS patients. A significant difference was observed in sACE2 for patients treated with targeted therapies, but not for chemo- and immunotherapy. In the TCGA LUAD cohort, ACE2 expression was significantly higher in EGFR-mutant patients and significantly lower in KRAS-mutant patients. Finally, ACE2 expression was positively correlated with ERBB2-4 and ROS1 expression and inversely correlated with KRAS, NRAS, HRAS, and MET mRNA expression. We identified a role for EGFR pathway activation in the expression of mACE2 in NSCLC cells, associated with increased sACE2 levels in patients. Therefore, it is of great interest to study SARS-CoV-2-infected EGFR-mutated NSCLC patients in greater depth in order to obtain a better understanding of how mACE2, sACE2, and SOC TKIs can affect the course of COVID-19.
Collapse
Affiliation(s)
- Christophe Deben
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
- Correspondence:
| | - Maxim Le Compte
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Vasiliki Siozopoulou
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
- Department of Pathology, Antwerp University Hospital, B-2650 Edegem, Belgium
| | - Hilde Lambrechts
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Christophe Hermans
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
- Department of Pathology, Antwerp University Hospital, B-2650 Edegem, Belgium
| | - Ho Wa Lau
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Manon Huizing
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
- Biobank, Antwerp University Hospital, Wilrijkstraat 10, B-2650 Edegem, Belgium
| | - Kevin Lamote
- Laboratory of Experimental Medicine and Pediatrics, University of Antwerp, B-2610 Wilrijk, Belgium
- Internal Medicine and Pediatrics, Ghent University, B-9000 Ghent, Belgium
| | - Jeroen M. H. Hendriks
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Peter Van Dam
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| | - Patrick Pauwels
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
- Department of Pathology, Antwerp University Hospital, B-2650 Edegem, Belgium
| | - Evelien L. J. Smits
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
- Center for Cell Therapy and Regenerative Medicine, Antwerp University Hospital, B-2650 Edegem, Belgium
| | - Marc Peeters
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
- Department of Oncology, Multidisciplinary Oncological Center Antwerp, Antwerp University Hospital, B-2650 Edegem, Belgium
| | - Filip Lardon
- Center for Oncological Research (CORE), Integrated Personalized & Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, B-2610 Wilrijk, Belgium
| |
Collapse
|
9
|
Patra SK, Szyf M. Epigenetic perspectives of COVID-19: Virus infection to disease progression and therapeutic control. Biochim Biophys Acta Mol Basis Dis 2022; 1868:166527. [PMID: 36002132 PMCID: PMC9393109 DOI: 10.1016/j.bbadis.2022.166527] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 08/05/2022] [Accepted: 08/18/2022] [Indexed: 11/20/2022]
Abstract
COVID-19 has caused numerous deaths as well as imposed social isolation and upheaval world-wide. Although, the genome and the composition of the virus, the entry process and replication mechanisms are well investigated from by several laboratories across the world, there are many unknown remaining questions. For example, what are the functions of membrane lipids during entry, packaging and exit of virus particles? Also, the metabolic aspects of the infected tissue cells are poorly understood. In the course of virus replication and formation of virus particles within the host cell, the enhanced metabolic activities of the host is directly proportional to viral loads. The epigenetic landscape of the host cells is also altered, particularly the expression/repression of genes associated with cellular metabolism as well as cellular processes that are antagonistic to the virus. Metabolic pathways are enzyme driven processes and the expression profile and mechanism of regulations of the respective genes encoding those enzymes during the course of pathogen invasion might be highly informative on the course of the disease. Recently, the metabolic profile of the patients' sera have been analysed from few patients. In view of this, and to gain further insights into the roles that epigenetic mechanisms might play in this scenario in regulation of metabolic pathways during the progression of COVID-19 are discussed and summarised in this contribution for ensuring best therapy.
Collapse
Affiliation(s)
- Samir Kumar Patra
- Epigenetics and Cancer Research Laboratory, Biochemistry and Molecular Biology Group, Department of Life Science, National Institute of Technology, Rourkela 769008, Odisha, India.
| | - Moshe Szyf
- Department of Pharmacology & Therapeutics, McIntyre Medical Sciences Building, McGill University, Montreal, QC H3G 1Y6, Canada
| |
Collapse
|
10
|
Ahmad S, Manzoor S, Siddiqui S, Mariappan N, Zafar I, Ahmad A, Ahmad A. Epigenetic underpinnings of inflammation: Connecting the dots between pulmonary diseases, lung cancer and COVID-19. Semin Cancer Biol 2022; 83:384-398. [PMID: 33484868 PMCID: PMC8046427 DOI: 10.1016/j.semcancer.2021.01.003] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 12/08/2020] [Accepted: 01/07/2021] [Indexed: 12/11/2022]
Abstract
Inflammation is an essential component of several respiratory diseases, such as chronic obstructive pulmonary disease (COPD), asthma and acute respiratory distress syndrome (ARDS). It is central to lung cancer, the leading cancer in terms of associated mortality that has affected millions of individuals worldwide. Inflammation and pulmonary manifestations are also the major causes of COVID-19 related deaths. Acute hyperinflammation plays an important role in the COVID-19 disease progression and severity, and development of protective immunity against the virus is greatly sought. Further, the severity of COVID-19 is greatly enhanced in lung cancer patients, probably due to the genes such as ACE2, TMPRSS2, PAI-1 and furin that are commonly involved in cancer progression as well as SAR-CoV-2 infection. The importance of inflammation in pulmonary manifestations, cancer and COVID-19 calls for a closer look at the underlying processes, particularly the associated increase in IL-6 and other cytokines, the dysregulation of immune cells and the coagulation pathway. Towards this end, several reports have identified epigenetic regulation of inflammation at different levels. Expression of several key inflammation-related cytokines, chemokines and other genes is affected by methylation and acetylation while non-coding RNAs, including microRNAs as well as long non-coding RNAs, also affect the overall inflammatory responses. Select miRNAs can regulate inflammation in COVID-19 infection, lung cancer as well as other inflammatory lung diseases, and can serve as epigenetic links that can be therapeutically targeted. Furthermore, epigenetic changes also mediate the environmental factors-induced inflammation. Therefore, a better understanding of epigenetic regulation of inflammation can potentially help develop novel strategies to prevent, diagnose and treat chronic pulmonary diseases, lung cancer and COVID-19.
Collapse
Affiliation(s)
- Shama Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Shajer Manzoor
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Simmone Siddiqui
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Nithya Mariappan
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Iram Zafar
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aamir Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Aftab Ahmad
- Division of Molecular and Translational Biomedicine, Department of Anesthesiology and Perioperative Medicine, University of Alabama at Birmingham, Birmingham, AL, USA.
| |
Collapse
|
11
|
Organized Breast and Cervical Cancer Screening: Attendance and Determinants in Rural China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19148237. [PMID: 35886089 PMCID: PMC9318997 DOI: 10.3390/ijerph19148237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 06/30/2022] [Accepted: 07/02/2022] [Indexed: 01/27/2023]
Abstract
To evaluate the attendance and determinants of organized cervical and breast cancer (two-cancer) screening, especially higher-level factors, we conducted a cross-sectional survey in central China from June 2018 to November 2019 among 1949 women (age ≥ 35 years). We examined organizer-level factors, provider-level factors, receiver-lever factors and attendance and participation willingness of screening. The results indicate that the attendance and participation willingness of organized two-cancer screening was 61.19% and 77.15%, respectively. After adjustment for potential confounders, women who received screening notification were more likely to have greater participation willingness and higher attendance than those who received no notification (adjusted odds ratio [aOR] = 1.59, 95% confidence interval [CI]: 1.27-1.99; aOR = 98.03, 95% CI: 51.44-186.82, respectively). Compared with being notified about screening by GPs, being notified by community women's leaders and other community leaders were more likely to lead to greater willingness to participate again (aOR = 2.86, 95% CI: 1.13-7.24; aOR = 3.27, 95% CI: 1.26-8.48, respectively) and recommending screening to others (aOR = 2.18, 95% CI: 1.02-4.65; aOR = 4.14, 95% CI: 1.84-9.30, respectively). The results suggest that notification of women about screening by community leaders is an important organizer-level factor. As a part of public health services, the design and implementation of optimal cancer screening strategies may require public-sector involvement at the organizer level instead of a one-man show by the health sector.
Collapse
|
12
|
ling J, Peng N, luo L. ACE2 maybe serve as a prognostic biomarker in breast invasive carcinoma. J Clin Lab Anal 2022; 36:e24362. [PMID: 35373393 PMCID: PMC9169220 DOI: 10.1002/jcla.24362] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/15/2022] [Accepted: 03/11/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Breast cancer is a frequently occurring malignant tumor in women. Angiotensin-converting enzyme 2 (ACE2) is widely expressed in most organs; however, the association of ACE2 with prognosis and immune infiltration in breast invasive carcinoma (BRCA) remains elusive. METHODS We explored the expression level and prognostic value of ACE2 in patients with BRCA using a series of online bioinformatics analysis databases encompassing Oncomine, UALCAN, Kaplan-Meier plotter, TIMER, LinkedOmics, and GEO. qRT-PCR was performed to verify our findings. RESULTS Angiotensin-converting enzyme 2 mRNA and protein expression levels were decreased in BRCA tissues, and patients with low ACE2 expression levels had a poor prognosis. DNA promoter methylation of ACE2 significantly downregulated ACE2 expression in BRCA, while the expression of this protein was positively linked to immune infiltration of B cells, CD8+ and CD4+ T cells, neutrophils, and dendritic cells in BRCA tissues. The high expression level of ACE2 in enriched basophils, CD8+ T cells, and type-2 helper T cells, which showed decreasing levels, indicated a better prognosis for BRCA. Enrichment analyses revealed that NF-κB, IL-17, and TNF signaling pathways were highly correlated to ACE2 in BRCA. Verification study revealed that downregulation of ACE2 was associated with a better prognosis in BRCA. Univariate and multivariate analysis confirmed ACE2 expression and clinical stage as independent prognostic factors for breast cancer. CONCLUSIONS Angiotensin-converting enzyme 2 may be a potential prognostic biomarker and target for BRCA. Nevertheless, future investigations are needed for validating our findings and promoting the clinical application of ACE2 in BRCA.
Collapse
Affiliation(s)
- Jie ling
- Department of Clinical LaboratoryTaizhou First People’s HospitalHuangyan Hospital of Wenzhou Medical UniversityTaizhouChina
| | - Ning Peng
- Department of Clinical LaboratoryTaizhou First People’s HospitalHuangyan Hospital of Wenzhou Medical UniversityTaizhouChina
| | - Lifei luo
- Department of Clinical LaboratoryTaizhou Hospital of Zhengjiang Province affiliated of Wenzhou Medical UniversityLinhaiChina
- Department of Clinical LaboratoryTaizhou Enze Medical Center (Group)Enze HospitalTaizhouChina
| |
Collapse
|
13
|
Prodromidou A, Koulakmanidis AM, Haidopoulos D, Nelson G, Rodolakis A, Thomakos N. Where Enhanced Recovery after Surgery (ERAS) Protocols Meet the Three Major Current Pandemics: COVID-19, Obesity and Malignancy. Cancers (Basel) 2022; 14:cancers14071660. [PMID: 35406432 PMCID: PMC8996966 DOI: 10.3390/cancers14071660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 01/27/2023] Open
Abstract
Simple Summary The SARS-CoV-2 (COVID-19) pandemic has significantly modified the medical services provided for patients that receive care either for COVID-19 or for those that need care for benign diseases, including obesity, or for malignant ones, such as gynecological cancer. We sought to investigate the association among three major worldwide health issues (COVID-19, obesity, and malignancy) and how ERAS protocols can potentially provide optimal management of patients with obesity and malignancy during the COVID-19 pandemic, with special attention to patients who required surgery for gynecologic oncology. We strongly believe that the application of ERAS protocols could play a key role during these unprecedented COVID-19 times. Abstract The outbreak of the SARS-CoV-2 (COVID-19) pandemic has transformed the provision of medical services for both patients that receive care for COVID-19 and for those that need care either for benign diseases, including obesity, or for malignancies, such as gynecological cancer. In this perspective article, we focus on the association among three major worldwide health issues and how ERAS protocols can potentially provide optimal management of patients with obesity and malignancy during the COVID-19 pandemic, with special attention to patients who required surgery for gynecologic oncology. A thorough search of the literature on the respective topics was performed. Patients with malignancy and obesity presented with increased vulnerability to COVID-19 infection. However, the management of their disease should not be withheld. Protective measures should be established to reduce exposure of patients with oncological diseases to SARS-CoV-2 while simultaneously enabling their access to vaccination. Since ERAS protocols have proved to be efficient in many surgical fields, including gynecologic oncology, general surgery, and orthopedics, we strongly believe that ERAS protocols may play a significant role in this effort. The end of the COVID-19 pandemic cannot be accurately predicted. Nevertheless, we have to ensure the appropriate and efficient management of certain groups of patients.
Collapse
Affiliation(s)
- Anastasia Prodromidou
- Gynaecologic Oncology Unit, 1st Department of Obstetrics and Gynaecology, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.K.); (D.H.); (A.R.); (N.T.)
- Correspondence: ; Tel.: +30-6972751000
| | - Aristotelis-Marios Koulakmanidis
- Gynaecologic Oncology Unit, 1st Department of Obstetrics and Gynaecology, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.K.); (D.H.); (A.R.); (N.T.)
| | - Dimitrios Haidopoulos
- Gynaecologic Oncology Unit, 1st Department of Obstetrics and Gynaecology, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.K.); (D.H.); (A.R.); (N.T.)
| | - Gregg Nelson
- Department of Obstetrics and Gynecology, University of Calgary, Calgary, AB T2N 1N4, Canada;
| | - Alexandros Rodolakis
- Gynaecologic Oncology Unit, 1st Department of Obstetrics and Gynaecology, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.K.); (D.H.); (A.R.); (N.T.)
| | - Nikolaos Thomakos
- Gynaecologic Oncology Unit, 1st Department of Obstetrics and Gynaecology, Alexandra Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece; (A.-M.K.); (D.H.); (A.R.); (N.T.)
| |
Collapse
|
14
|
Li YS, Ren HC, Cao JH. Correlation of SARS‑CoV‑2 to cancer: Carcinogenic or anticancer? (Review). Int J Oncol 2022; 60:42. [PMID: 35234272 PMCID: PMC8923649 DOI: 10.3892/ijo.2022.5332] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 12/15/2021] [Indexed: 11/05/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is highly infectious and pathogenic. Among patients with severe SARS-CoV-2-caused by corona virus disease 2019 (COVID-19), those complicated with malignant tumor are vulnerable to COVID-19 due to compromised immune function caused by tumor depletion, malnutrition and anti-tumor treatment. Cancer is closely related to the risk of severe illness and mortality in patients with COVID-19. SARS-CoV-2 could promote tumor progression and stimulate metabolism switching in tumor cells to initiate tumor metabolic modes with higher productivity efficiency, such as glycolysis, for facilitating the massive replication of SARS-CoV-2. However, it has been shown that infection with SARS-CoV-2 leads to a delay in tumor progression of patients with natural killer cell (NK cell) lymphoma and Hodgkin's lymphoma, while SARS-CoV-2 elicited anti-tumor immune response may exert a potential oncolytic role in lymphoma patients. The present review briefly summarized potential carcinogenicity and oncolytic characteristics of SARS-CoV-2 as well as strategies to protect patients with cancer during the COVID-19 pandemic.
Collapse
Affiliation(s)
- Ying-Shuang Li
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Hua-Cheng Ren
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| | - Jian-Hua Cao
- Intravenous Drug Administration Center, Department of Pharmacy, The Third People's Hospital of Qingdao, Qingdao, Shandong 266041, P.R. China
| |
Collapse
|
15
|
Gastrointestinal Microbiota Dysbiosis Associated with SARS-CoV-2 Infection in Colorectal Cancer: The Implication of Probiotics. GASTROENTEROLOGY INSIGHTS 2022. [DOI: 10.3390/gastroent13010006] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The complexity of coronavirus disease 2019 (COVID-19)’s pathophysiology is such that microbial dysbiosis in the lung and gastrointestinal (GI) microbiota may be involved in its pathogenic process. GI microbiota dysbiosis has been associated with respiratory disorders, including COVID-19, as well as sporadic colorectal cancer (CRC) through imbalanced microbiota and compromised immune response. It is pertinent to understand the possible role of probiotics in stabilizing the microbial environment and maintaining the integrity of the respiratory and GI tracts in SARS-CoV-2 induced dysbiosis and colorectal carcinogenesis. The long-term implication of SARS-CoV-2 in GI dysbiosis via microbiota-gut-lung cross-talk could increase the risk of new CRC diagnosis or worsen the condition of previously diagnosed individuals. Recent knowledge shows that the immune-modulatory response to probiotics is shifting the beneficial use of probiotics towards the treatment of various diseases. In this review, we highlight the potential impact of probiotics on SARS-CoV-2 infection associated with CRC through microbiota imbalance in COVID-19 patients.
Collapse
|
16
|
Elkrief A, Wu JT, Jani C, Enriquez KT, Glover M, Shah MR, Shaikh HG, Beeghly-Fadiel A, French B, Jhawar SR, Johnson DB, McKay RR, Rivera DR, Reuben DY, Shah S, Tinianov SL, Vinh DC, Mishra S, Warner JL. Learning through a Pandemic: The Current State of Knowledge on COVID-19 and Cancer. Cancer Discov 2022; 12:303-330. [PMID: 34893494 PMCID: PMC8831477 DOI: 10.1158/2159-8290.cd-21-1368] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 11/26/2021] [Accepted: 12/09/2021] [Indexed: 12/15/2022]
Abstract
The ongoing coronavirus disease 2019 (COVID-19) pandemic has left patients with current or past history of cancer facing disparate consequences at every stage of the cancer trajectory. This comprehensive review offers a landscape analysis of the current state of the literature on COVID-19 and cancer, including the immune response to COVID-19, risk factors for severe disease, and impact of anticancer therapies. We also review the latest data on treatment of COVID-19 and vaccination safety and efficacy in patients with cancer, as well as the impact of the pandemic on cancer care, including the urgent need for rapid evidence generation and real-world study designs. SIGNIFICANCE: Patients with cancer have faced severe consequences at every stage of the cancer journey due to the COVID-19 pandemic. This comprehensive review offers a landscape analysis of the current state of the field regarding COVID-19 and cancer. We cover the immune response, risk factors for severe disease, and implications for vaccination in patients with cancer, as well as the impact of the COVID-19 pandemic on cancer care delivery. Overall, this review provides an in-depth summary of the key issues facing patients with cancer during this unprecedented health crisis.
Collapse
Affiliation(s)
- Arielle Elkrief
- Division of Medical Oncology (Department of Medicine), McGill University Health Centre, Montreal, Quebec, Canada
| | - Julie T Wu
- Stanford University, Palo Alto, California
| | - Chinmay Jani
- Mount Auburn Hospital, Harvard Medical School, Cambridge, Massachusetts
| | - Kyle T Enriquez
- Vanderbilt University School of Medicine, Nashville, Tennessee
| | | | - Mansi R Shah
- Rutgers Cancer Institute of New Jersey, New Brunswick, New Jersey
| | | | | | | | - Sachin R Jhawar
- The Ohio State University Comprehensive Cancer Center, Columbus, Ohio
| | | | - Rana R McKay
- University of California San Diego, San Diego, California
| | - Donna R Rivera
- Division of Cancer Control and Population Services, National Cancer Institute, Rockville, Maryland
| | - Daniel Y Reuben
- Medical University of South Carolina, Charleston, South Carolina
| | - Surbhi Shah
- Hematology and Oncology, Mayo Clinic Arizona, Phoenix, Arizona
| | - Stacey L Tinianov
- Advocates for Collaborative Education, UCSF Breast Science Advocacy Core, San Francisco, California
| | - Donald Cuong Vinh
- Division of Infectious Diseases (Department of Medicine), Divisions of Medical Microbiology and of Molecular Diagnostics (OptiLab), McGill University Health Centre, Montreal, Quebec, Canada
| | - Sanjay Mishra
- Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jeremy L Warner
- Vanderbilt University Medical Center, Nashville, Tennessee.
- Vanderbilt University, Nashville, Tennessee
| |
Collapse
|
17
|
Ljubimov VA, Ramesh A, Davani S, Danielpour M, Breunig JJ, Black KL. Neurosurgery at the crossroads of immunology and nanotechnology. New reality in the COVID-19 pandemic. Adv Drug Deliv Rev 2022; 181:114033. [PMID: 34808227 PMCID: PMC8604570 DOI: 10.1016/j.addr.2021.114033] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 12/12/2022]
Abstract
Neurosurgery as one of the most technologically demanding medical fields rapidly adapts the newest developments from multiple scientific disciplines for treating brain tumors. Despite half a century of clinical trials, survival for brain primary tumors such as glioblastoma (GBM), the most common primary brain cancer, or rare ones including primary central nervous system lymphoma (PCNSL), is dismal. Cancer therapy and research have currently shifted toward targeted approaches, and personalized therapies. The orchestration of novel and effective blood-brain barrier (BBB) drug delivery approaches, targeting of cancer cells and regulating tumor microenvironment including the immune system are the key themes of this review. As the global pandemic due to SARS-CoV-2 virus continues, neurosurgery and neuro-oncology must wrestle with the issues related to treatment-related immune dysfunction. The selection of chemotherapeutic treatments, even rare cases of hypersensitivity reactions (HSRs) that occur among immunocompromised people, and number of vaccinations they have to get are emerging as a new chapter for modern Nano neurosurgery.
Collapse
Affiliation(s)
- Vladimir A Ljubimov
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA.
| | | | | | - Moise Danielpour
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Joshua J Breunig
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Keith L Black
- Department of Neurosurgery, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| |
Collapse
|
18
|
COVID-19-Related Knowledge and Practices of Cancer Patients and Their Anxiety and Depression During the Early Surge Phase of the Pandemic: A Cross-sectional Online Survey. Disaster Med Public Health Prep 2022; 17:e73. [PMID: 35094745 DOI: 10.1017/dmp.2021.341] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE We aimed to investigate the coronavirus disease 2019 (COVID-19)-related knowledge and practices of cancer patients and to assess their anxiety- and depression-related to COVID-19 during the early surge phase of the pandemic. METHODS An online questionnaire survey of cancer patients was conducted from February 10-29, 2020. Knowledge and practices related to COVID-19 were assessed using a custom-made questionnaire. The Hospital Anxiety and Depression Scale was used to assess the presence of anxiety and depression, with scores beyond 7 indicating anxiety or depressive disorder. Univariate and multiple linear regression analyses were used to identify the high-risk groups according to the level of knowledge, practices, anxiety, and depression scores. RESULTS A total of 341 patients were included. The rate of lower level of knowledge and practices was 49.9% and 18.8%, respectively. Education level of junior high school degree or lower showed a significant association with lower knowledge score (β: -3.503; P < 0.001) and lower practices score (β: -2.210; P < 0.001) compared to the education level of college degree and above. The prevalence of anxiety and depression among the respondents was 17.6% and 23.2%, respectively. A higher depression score was associated with older age, marital status of the widowed, and lower level of education, knowledge score, and practices score (P < 0.05). CONCLUSIONS Targeted COVID-19-related education interventions are required for cancer patients with a lower level of knowledge to help improve their practices. Interventions are also required to address the anxiety and depression of cancer patients.
Collapse
|
19
|
Abramczyk U, Nowaczyński M, Słomczyński A, Wojnicz P, Zatyka P, Kuzan A. Consequences of COVID-19 for the Pancreas. Int J Mol Sci 2022; 23:864. [PMID: 35055050 PMCID: PMC8776154 DOI: 10.3390/ijms23020864] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 01/10/2022] [Accepted: 01/11/2022] [Indexed: 02/06/2023] Open
Abstract
Although coronavirus disease 2019 (COVID-19)-related major health consequences involve the lungs, a growing body of evidence indicates that COVID-19 is not inert to the pancreas either. This review presents a summary of the molecular mechanisms involved in the development of pancreatic dysfunction during the course of COVID-19, the comparison of the effects of non-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) on pancreatic function, and a summary of how drugs used in COVID-19 treatment may affect this organ. It appears that diabetes is not only a condition that predisposes a patient to suffer from more severe COVID-19, but it may also develop as a consequence of infection with this virus. Some SARS-CoV-2 inpatients experience acute pancreatitis due to direct infection of the tissue with the virus or due to systemic multiple organ dysfunction syndrome (MODS) accompanied by elevated levels of amylase and lipase. There are also reports that reveal a relationship between the development and treatment of pancreatic cancer and SARS-CoV-2 infection. It has been postulated that evaluation of pancreatic function should be increased in post-COVID-19 patients, both adults and children.
Collapse
Affiliation(s)
- Urszula Abramczyk
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Maciej Nowaczyński
- Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.N.); (A.S.); (P.W.); (P.Z.)
| | - Adam Słomczyński
- Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.N.); (A.S.); (P.W.); (P.Z.)
| | - Piotr Wojnicz
- Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.N.); (A.S.); (P.W.); (P.Z.)
| | - Piotr Zatyka
- Faculty of Medicine, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.N.); (A.S.); (P.W.); (P.Z.)
| | - Aleksandra Kuzan
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| |
Collapse
|
20
|
Deligiorgi MV, Siasos G, Vakkas L, Trafalis DT. Charting the Unknown Association of COVID-19 with Thyroid Cancer, Focusing on Differentiated Thyroid Cancer: A Call for Caution. Cancers (Basel) 2021; 13:5785. [PMID: 34830939 PMCID: PMC8616091 DOI: 10.3390/cancers13225785] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 11/10/2021] [Accepted: 11/16/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Conceived of as the "silver lining" of the dark cloud of the coronavirus disease 2019 (COVID-19) pandemic, lessons taught by this catastrophe should be leveraged by medical authorities and policy makers to optimize health care globally. A major lesson is that resilient health systems should absorb sudden shocks incited by overwhelming health emergencies without compromising the continuum of care of chronic diseases, especially of cancer. METHODS The present review dissects the association between COVID-19 and thyroid cancer (TC), especially with differentiated TC (DTC), focusing on available data, knowledge gaps, current challenges, and future perspectives. RESULTS Obesity has been incriminated in terms of both COVID-19 severity and a rising incidence of TC, especially of DTC. The current conceptualization of the pathophysiological landscape of COVID-19-(D)TC association implicates an interplay between obesity, inflammation, immunity, and oxidative stress. Whether COVID-19 could aggravate the health burden posed by (D)TC or vice versa has yet to be clarified. Improved understanding and harnessing of the pathophysiological landscape of the COVID-19-(D)TC association will empower a mechanism-guided, safe, evidence-based, and risk-stratified management of (D)TC in the COVID-19 era and beyond. CONCLUSION A multidisciplinary patient-centered decision-making will ensure high-quality (D)TC care for patients, with or without COVID-19.
Collapse
Affiliation(s)
- Maria V. Deligiorgi
- Clinical Pharmacology Unit–Department of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias St., 11527 Athens, Greece; (L.V.); (D.T.T.)
| | - Gerasimos Siasos
- First Department of Cardiology, Hippokration General Hospital of Athens, Faculty of Mediine, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Lampros Vakkas
- Clinical Pharmacology Unit–Department of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias St., 11527 Athens, Greece; (L.V.); (D.T.T.)
| | - Dimitrios T. Trafalis
- Clinical Pharmacology Unit–Department of Pharmacology, Faculty of Medicine, National and Kapodistrian University of Athens, 75 Mikras Asias St., 11527 Athens, Greece; (L.V.); (D.T.T.)
| |
Collapse
|
21
|
De Winter FHR, Hotterbeekx A, Huizing MT, Konnova A, Fransen E, Jongers B’, Jairam RK, Van averbeke V, Moons P, Roelant E, Le Blon D, Vanden Berghe W, Janssens A, Lybaert W, Croes L, Vulsteke C, Malhotra-Kumar S, Goossens H, Berneman Z, Peeters M, van Dam PA, Kumar-Singh S. Blood Cytokine Analysis Suggests That SARS-CoV-2 Infection Results in a Sustained Tumour Promoting Environment in Cancer Patients. Cancers (Basel) 2021; 13:5718. [PMID: 34830872 PMCID: PMC8616215 DOI: 10.3390/cancers13225718] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/08/2021] [Accepted: 11/10/2021] [Indexed: 12/26/2022] Open
Abstract
Cytokines, chemokines, and (angiogenic) growth factors (CCGs) have been shown to play an intricate role in the progression of both solid and haematological malignancies. Recent studies have shown that SARS-CoV-2 infection leads to a worse outcome in cancer patients, especially in haematological malignancy patients. Here, we investigated how SARS-CoV-2 infection impacts the already altered CCG levels in solid or haematological malignancies, specifically, whether there is a protective effect or rather a potentially higher risk for major COVID-19 complications in cancer patients due to elevated CCGs linked to cancer progression. Serially analysing immune responses with 55 CCGs in cancer patients under active treatment with or without SARS-CoV-2 infection, we first showed that cancer patients without SARS-CoV-2 infection (n = 54) demonstrate elevated levels of 35 CCGs compared to the non-cancer, non-infected control group of health care workers (n = 42). Of the 35 CCGs, 19 were common to both the solid and haematological malignancy groups and comprised previously described cytokines such as IL-6, TNF-α, IL-1Ra, IL-17A, and VEGF, but also several less well described cytokines/chemokines such as Fractalkine, Tie-2, and T cell chemokine CTACK. Importantly, we show here that 7 CCGs are significantly altered in SARS-CoV-2 exposed cancer patients (n = 52). Of these, TNF-α, IFN-β, TSLP, and sVCAM-1, identified to be elevated in haematological cancers, are also known tumour-promoting factors. Longitudinal analysis conducted over 3 months showed persistence of several tumour-promoting CCGs in SARS-CoV-2 exposed cancer patients. These data demonstrate a need for increased vigilance for haematological malignancy patients as a part of long COVID follow-up.
Collapse
Affiliation(s)
- Fien H. R. De Winter
- Molecular Pathology Group, Laboratory of Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (F.H.R.D.W.); (A.H.); (A.K.); (B.J.); (R.K.J.); (V.V.a.)
| | - An Hotterbeekx
- Molecular Pathology Group, Laboratory of Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (F.H.R.D.W.); (A.H.); (A.K.); (B.J.); (R.K.J.); (V.V.a.)
| | - Manon T. Huizing
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Drie Eikenstraat 655, 2650 Edegem, Belgium; (M.T.H.); (A.J.); (Z.B.); (M.P.); (P.A.v.D.)
- Biobank Antwerp, Antwerp University Hospital, Drie Eikenstraat 655, 2650 Edegem, Belgium;
| | - Angelina Konnova
- Molecular Pathology Group, Laboratory of Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (F.H.R.D.W.); (A.H.); (A.K.); (B.J.); (R.K.J.); (V.V.a.)
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (S.M.-K.); (H.G.)
| | - Erik Fransen
- StatUa, Center for Statistics, University of Antwerp, 2000 Antwerp, Belgium; (E.F.); (E.R.)
| | - Bart ’s Jongers
- Molecular Pathology Group, Laboratory of Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (F.H.R.D.W.); (A.H.); (A.K.); (B.J.); (R.K.J.); (V.V.a.)
| | - Ravi Kumar Jairam
- Molecular Pathology Group, Laboratory of Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (F.H.R.D.W.); (A.H.); (A.K.); (B.J.); (R.K.J.); (V.V.a.)
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (S.M.-K.); (H.G.)
| | - Vincent Van averbeke
- Molecular Pathology Group, Laboratory of Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (F.H.R.D.W.); (A.H.); (A.K.); (B.J.); (R.K.J.); (V.V.a.)
| | - Pieter Moons
- Biobank Antwerp, Antwerp University Hospital, Drie Eikenstraat 655, 2650 Edegem, Belgium;
| | - Ella Roelant
- StatUa, Center for Statistics, University of Antwerp, 2000 Antwerp, Belgium; (E.F.); (E.R.)
- Clinical Trial Center (CTC), CRC Antwerp, Antwerp University Hospital, University of Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium;
| | - Debbie Le Blon
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (D.L.B.); (L.C.)
| | - Wim Vanden Berghe
- PPES Lab Protein Chemistry, Proteomics & Epigenetic Signaling, IPPON, Department Biomedical Sciences, University Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium;
| | - Annelies Janssens
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Drie Eikenstraat 655, 2650 Edegem, Belgium; (M.T.H.); (A.J.); (Z.B.); (M.P.); (P.A.v.D.)
| | - Willem Lybaert
- Department of Medical Oncology, AZ Nikolaas, Moerlandstraat 1, 9100 Sint-Niklaas, Belgium;
| | - Lieselot Croes
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (D.L.B.); (L.C.)
- Integrated Cancer Center Ghent, Department of Medical Oncology, AZ Maria Middelares, Buitenring Sint-Denijs 30, 9000 Ghent, Belgium
| | - Christof Vulsteke
- Clinical Trial Center (CTC), CRC Antwerp, Antwerp University Hospital, University of Antwerp, Drie Eikenstraat 655, 2650 Edegem, Belgium;
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (D.L.B.); (L.C.)
- Integrated Cancer Center Ghent, Department of Medical Oncology, AZ Maria Middelares, Buitenring Sint-Denijs 30, 9000 Ghent, Belgium
| | - Surbhi Malhotra-Kumar
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (S.M.-K.); (H.G.)
| | - Herman Goossens
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (S.M.-K.); (H.G.)
| | - Zwi Berneman
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Drie Eikenstraat 655, 2650 Edegem, Belgium; (M.T.H.); (A.J.); (Z.B.); (M.P.); (P.A.v.D.)
| | - Marc Peeters
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Drie Eikenstraat 655, 2650 Edegem, Belgium; (M.T.H.); (A.J.); (Z.B.); (M.P.); (P.A.v.D.)
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (D.L.B.); (L.C.)
| | - Peter A. van Dam
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Drie Eikenstraat 655, 2650 Edegem, Belgium; (M.T.H.); (A.J.); (Z.B.); (M.P.); (P.A.v.D.)
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (D.L.B.); (L.C.)
| | - Samir Kumar-Singh
- Molecular Pathology Group, Laboratory of Cell Biology & Histology, Faculty of Medicine and Health Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (F.H.R.D.W.); (A.H.); (A.K.); (B.J.); (R.K.J.); (V.V.a.)
- Laboratory of Medical Microbiology, Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium; (S.M.-K.); (H.G.)
| |
Collapse
|
22
|
Serraino D, Zucchetto A, Dal Maso L, Del Zotto S, Taboga F, Clagnan E, Fratino L, Tosolini F, Burba I. Prevalence, determinants, and outcomes of SARS-COV-2 infection among cancer patients. A population-based study in northern Italy. Cancer Med 2021; 10:7781-7792. [PMID: 34551210 PMCID: PMC8559499 DOI: 10.1002/cam4.4271] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/26/2021] [Accepted: 08/27/2021] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND It is well established that cancer patients infected with SARS-CoV-2 are at particularly elevated risk of adverse outcomes, but the comparison of SARS-CoV-2 infection risk between cancer patients and cancer-free individuals has been poorly investigated on a population-basis. METHODS A population-based study was thus conducted in Friuli Venezia Giulia region, northeastern Italy, to estimate prevalence and determinants of SARS-CoV-2 infection among cancer patients, as compared to cancer-free individuals, and to evaluate adverse outcomes of SARS-CoV-2 infection. The study included 263,042 individuals tested for SARS-CoV-2 in February-December 2020 with cancer history retrieved through the regional cancer registry. Odds ratios (ORs) of SARS-CoV-2 positivity, with corresponding 95% confidence intervals (CIs), were calculated using multivariable logistic regression models, adjusted for sex and age. Hazard ratios (HRs) adjusted for sex and age for intensive care unit (ICU) admission and all-cause death were estimated using Cox models. RESULTS Among 26,394 cancer patients tested for SARS-CoV-2, the prevalence of infection was 11.7% versus 16.2% among 236,648 cancer-free individuals, with a corresponding OR = 0.59 (95% CI: 0.57-0.62). The prevalence was much higher (29% in both groups) during the second pandemic wave (October-December 2020). Among cancer patients, age ≥80 years and cancer diagnosis ≥13 months before SARS-CoV-2 testing were the major risk factors of infection. Among 3098 infected cancer patients, the fatality rate was 17.4% versus 15.8% among 23,296 negative ones (HR = 1.63, 95% CI: 1.49-1.78), and versus 5.0% among 38,268 infected cancer-free individuals (HR = 1.23, 95% CI: 1.12-1.36). No significant differences emerged when considering ICU admission risk. CONCLUSION Albeit cancer patients reported reduced SARS-CoV-2 infection risk, those infected showed higher mortality than uninfected ones and infected cancer-free population. Study findings claim for continuing to protect cancer patients from SARS-CoV-2, without reducing the level of oncologic care.
Collapse
Affiliation(s)
- Diego Serraino
- Unit of Cancer EpidemiologyCentro di Riferimento Oncologico di Aviano (CRO) IRCCSAvianoItaly
| | - Antonella Zucchetto
- Unit of Cancer EpidemiologyCentro di Riferimento Oncologico di Aviano (CRO) IRCCSAvianoItaly
| | - Luigino Dal Maso
- Unit of Cancer EpidemiologyCentro di Riferimento Oncologico di Aviano (CRO) IRCCSAvianoItaly
| | | | - Francesca Taboga
- Unit of Cancer EpidemiologyCentro di Riferimento Oncologico di Aviano (CRO) IRCCSAvianoItaly
| | - Elena Clagnan
- Friuli Venezia Giulia Regional Health Coordination AgencyUdineItaly
| | - Lucia Fratino
- Unit of Medical Oncology and ImmunesuppressionCentro di Riferimento Oncologico di Aviano (CRO) IRCCSAvianoItaly
| | - Francesca Tosolini
- General DirectorateCentro di Riferimento Oncologico di Aviano (CRO) IRCCSAvianoItaly
| | - Ivana Burba
- Friuli Venezia Giulia Regional Health Coordination AgencyUdineItaly
| |
Collapse
|
23
|
Peeters M, Verbruggen L, Teuwen L, Vanhoutte G, Vande Kerckhove S, Peeters B, Raats S, Van der Massen I, De Keersmaecker S, Debie Y, Huizing M, Pannus P, Neven K, Ariën KK, Martens GA, Van Den Bulcke M, Roelant E, Desombere I, Anguille S, Goossens M, Vandamme T, van Dam P. Reduced humoral immune response after BNT162b2 coronavirus disease 2019 messenger RNA vaccination in cancer patients under antineoplastic treatment. ESMO Open 2021; 6:100274. [PMID: 34597941 PMCID: PMC8423808 DOI: 10.1016/j.esmoop.2021.100274] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 08/16/2021] [Accepted: 09/01/2021] [Indexed: 12/26/2022] Open
Abstract
Background Cancer patients are at a higher risk of developing severe coronavirus disease 2019 (COVID-19). However, the safety and efficacy of COVID-19 vaccination in cancer patients undergoing treatment remain unclear. Patients and methods In this interventional prospective multicohort study, priming and booster doses of the BNT162b2 COVID-19 vaccine were administered 21 days apart to solid tumor patients receiving chemotherapy, immunotherapy, targeted or hormonal therapy, and patients with a hematologic malignancy receiving rituximab or after allogeneic hematopoietic stem cell transplantation. Vaccine safety and efficacy (until 3 months post-booster) were assessed. Anti-severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) receptor-binding domain (RBD) antibody levels were followed over time (until 28 days after the booster) and in vitro SARS-CoV-2 50% neutralization titers (NT50) toward the wild-type Wuhan strain were analyzed 28 days after the booster. Results Local and systemic adverse events (AEs) were mostly mild to moderate (only 1%-3% of patients experienced severe AEs). Local, but not systemic, AEs occurred more frequently after the booster dose. Twenty-eight days after the booster vaccination of 197 cancer patients, RBD-binding antibody titers and NT50 were lower in the chemotherapy group {234.05 IU/ml [95% confidence interval (CI) 122.10-448.66] and 24.54 (95% CI 14.50-41.52), respectively} compared with healthy individuals [1844.93 IU/ml (95% CI 1383.57-2460.14) and 122.63 (95% CI 76.85-195.67), respectively], irrespective of timing of vaccination during chemotherapy cycles. Extremely low antibody responses were seen in hematology patients receiving rituximab; only two patients had RBD-binding antibody titers necessary for 50% protection against symptomatic SARS-CoV-2 infection (<200 IU/ml) and only one had NT50 above the limit of detection. During the study period, five cancer patients tested positive for SARS-CoV-2 infection, including a case of severe COVID-19 in a patient receiving rituximab, resulting in a 2-week hospital admission. Conclusion The BNT162b2 vaccine is well-tolerated in cancer patients under active treatment. However, the antibody response of immunized cancer patients was delayed and diminished, mainly in patients receiving chemotherapy or rituximab, resulting in breakthrough infections. The BNT162b2 vaccine is well-tolerated in cancer patients, including patients under immunotherapy. Full BNT162b2 vaccination results in a blunted humoral immune response in cancer patients under active treatment. The humoral immune response after BNT162b2 vaccination varies between different antineoplastic treatments. Two doses of BNT162b2 vaccination may insufficiently protect patients receiving chemotherapy or rituximab against SARS-CoV-2.
Collapse
Affiliation(s)
- M Peeters
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp and Antwerp University Hospital, Edegem, Belgium.
| | - L Verbruggen
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | - L Teuwen
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | - G Vanhoutte
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | - S Vande Kerckhove
- SD Infectious Diseases in Humans, Service Immune response, Sciensano, Brussels, Belgium
| | - B Peeters
- Department of Laboratory Medicine, Antwerp University Hospital, Edegem, Belgium
| | - S Raats
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | - I Van der Massen
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | - S De Keersmaecker
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | - Y Debie
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | | | - P Pannus
- SD Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | - K Neven
- SD Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | - K K Ariën
- Virology Unit, Institute of Tropical Medicine Antwerp, Antwerp, Belgium; Department of Biomedical Sciences, University of Antwerp, Edegem, Belgium
| | - G A Martens
- Department of Laboratory Medicine, AZ Delta General Hospital, Roeselare, Belgium
| | | | - E Roelant
- Clinical Trial Center (CTC), CRC Antwerp, Antwerp University Hospital, University of Antwerp, Edegem, Belgium; StatUa, Center for Statistics, University of Antwerp, Antwerp, Belgium
| | - I Desombere
- SD Infectious Diseases in Humans, Service Immune response, Sciensano, Brussels, Belgium
| | - S Anguille
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium
| | - M Goossens
- SD Epidemiology and Public Health, Sciensano, Brussels, Belgium
| | - T Vandamme
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| | - P van Dam
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Edegem, Belgium; Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), University of Antwerp and Antwerp University Hospital, Edegem, Belgium
| |
Collapse
|
24
|
Fiorino S, Tateo F, Biase DD, Gallo CG, Orlandi PE, Corazza I, Budriesi R, Micucci M, Visani M, Loggi E, Hong W, Pica R, Lari F, Zippi M. SARS-CoV-2: lessons from both the history of medicine and from the biological behavior of other well-known viruses. Future Microbiol 2021; 16:1105-1133. [PMID: 34468163 PMCID: PMC8412036 DOI: 10.2217/fmb-2021-0064] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/22/2021] [Indexed: 02/07/2023] Open
Abstract
SARS-CoV-2 is the etiological agent of the current pandemic worldwide and its associated disease COVID-19. In this review, we have analyzed SARS-CoV-2 characteristics and those ones of other well-known RNA viruses viz. HIV, HCV and Influenza viruses, collecting their historical data, clinical manifestations and pathogenetic mechanisms. The aim of the work is obtaining useful insights and lessons for a better understanding of SARS-CoV-2. These pathogens present a distinct mode of transmission, as SARS-CoV-2 and Influenza viruses are airborne, whereas HIV and HCV are bloodborne. However, these viruses exhibit some potential similar clinical manifestations and pathogenetic mechanisms and their understanding may contribute to establishing preventive measures and new therapies against SARS-CoV-2.
Collapse
Affiliation(s)
- Sirio Fiorino
- Internal Medicine Unit, Budrio Hospital, Budrio (Bologna), Azienda USL, Bologna, 40054, Italy
| | - Fabio Tateo
- Institute of Geosciences & Earth Resources, CNR, c/o Department of Geosciences, Padova University, 35127, Italy
| | - Dario De Biase
- Department of Pharmacy & Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Claudio G Gallo
- Fisiolaserterapico Emiliano, Castel San Pietro Terme, Bologna, 40024, Italy
| | | | - Ivan Corazza
- Department of Experimental, Diagnostic & Specialty Medicine, University of Bologna, Bologna, 40126, Italy
| | - Roberta Budriesi
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, 40126, Italy
| | - Matteo Micucci
- Department of Pharmacy & Biotechnology, Alma Mater Studiorum-University of Bologna, Bologna, 40126, Italy
| | - Michela Visani
- Department of Pharmacy & Biotechnology, University of Bologna, Bologna, 40126, Italy
| | - Elisabetta Loggi
- Hepatology Unit, Department of Medical & Surgical Sciences, University of Bologna, Bologna, 40126, Italy
| | - Wandong Hong
- Department of Gastroenterology & Hepatology, First Affiliated Hospital of Wenzhou Medical University, Wenzhou City, Zhejiang, 325035, PR China
| | - Roberta Pica
- Unit of Gastroenterology & Digestive Endoscopy, Sandro Pertini Hospital, Rome, 00157, Italy
| | - Federico Lari
- Internal Medicine Unit, Budrio Hospital, Budrio (Bologna), Azienda USL, Bologna, 40054, Italy
| | - Maddalena Zippi
- Unit of Gastroenterology & Digestive Endoscopy, Sandro Pertini Hospital, Rome, 00157, Italy
| |
Collapse
|
25
|
Shafiee S, Cegolon L, Khafaei M, Gholami N, Zhao S, Khalesi N, Moosavian H, Fathi S, Izadi M, Ghadian A, Javanbakht M, Javanbakht A, Akhavan-Sigari R. Gastrointestinal cancers, ACE-2/TMPRSS2 expression and susceptibility to COVID-19. Cancer Cell Int 2021; 21:431. [PMID: 34399734 PMCID: PMC8365127 DOI: 10.1186/s12935-021-02129-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 07/30/2021] [Indexed: 12/22/2022] Open
Abstract
Recent studies on the pathophysiology of COVID-19 are indicating that the Angiotensin convertase enzyme 2 (ACE-2) and transmembrane serine protease 2 (TMPRSS2) can act as a major component in the fusion of SARS-Cov-2 with target cells. It has also been observed that the expression of ACE-2 and TMPRSS2 can be altered in malignancies. Shedding light on this matter could be crucial since the COVID-19 pandemic interfered with many gastrointestinal cancer screening programs. Herein we discuss the possibility of severe forms of COVID-19 in patients with gastrointestinal cancers due to the gastrointestinal entry route of SARS-CoV-2 into the human body. The disruption of cancer screening programs caused by the current COVID-19 pandemic could therefore have massive negative health impact on patients affected by gastrointestinal malignancies.
Collapse
Affiliation(s)
- Sepehr Shafiee
- Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Luca Cegolon
- Public Health Department, Local Health Unit N.2 "Marca Trevigiana", 31100, Treviso, Italy
| | - Mostafa Khafaei
- Human Genetics Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Nasrin Gholami
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Shi Zhao
- JC School of Public Health and Primary Care, Chinese University of Hong Kong, Hong Kong, China
| | - Nasrin Khalesi
- Department of Pediatrics, Iran University of Medical Sciences, Tehran, Iran
| | - Hamidreza Moosavian
- Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Saeid Fathi
- Department of Parasite Vaccine Research and Production, Razi Vaccine and Serum Research Institute, Agriculture Research, Education and Extension Organization (AREEO), Karaj, Iran
| | - Morteza Izadi
- Health Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Alireza Ghadian
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran
| | - Mohammad Javanbakht
- Nephrology and Urology Research Center, Baqiyatallah University of Medical Sciences, Tehran, Iran.
| | | | | |
Collapse
|
26
|
Dos Santos Nascimento IJ, da Silva-Júnior EF, de Aquino TM. Molecular Modeling Targeting Transmembrane Serine Protease 2 (TMPRSS2) as an Alternative Drug Target Against Coronaviruses. Curr Drug Targets 2021; 23:240-259. [PMID: 34370633 DOI: 10.2174/1389450122666210809090909] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/03/2021] [Accepted: 06/07/2021] [Indexed: 11/22/2022]
Abstract
Since November 2019, the new Coronavirus disease (COVID-19) caused by the etiological agent SARS-CoV-2 has been responsible for several cases worldwide, becoming pandemic in March 2020. Pharmaceutical industries and academics have joined their efforts to discover new therapies to control the disease, since there are no specific drugs to combat this emerging virus. Thus, several targets have been explored, among them the transmembrane protease serine 2 (TMPRSS2) has gained greater interest in the scientific community. In this context, this review will describe the importance of TMPRSS2 protease and the significant advances in virtual screening focused on discovering new inhibitors. In this review, it was observed that molecular modeling methods could be powerful tools in identifying new molecules against SARS-CoV-2. Thus, this review could be used to guide researchers worldwide to explore the biological and clinical potential of compounds that could be promising drug candidates against SARS-CoV-2, acting by inhibition of TMPRSS2 protein.
Collapse
Affiliation(s)
- Igor José Dos Santos Nascimento
- Laboratory of Synthesis and Research in Medicinal Chemistry (LSRMEC), Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| | - Edeildo Ferreira da Silva-Júnior
- Laboratory of Synthesis and Research in Medicinal Chemistry (LSRMEC), Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| | - Thiago Mendonça de Aquino
- Laboratory of Synthesis and Research in Medicinal Chemistry (LSRMEC), Institute of Chemistry and Biotechnology, Federal University of Alagoas, Maceió, Brazil
| |
Collapse
|
27
|
Chatterjee S, Mishra S, Chowdhury KD, Ghosh CK, Saha KD. Various theranostics and immunization strategies based on nanotechnology against Covid-19 pandemic: An interdisciplinary view. Life Sci 2021; 278:119580. [PMID: 33991549 PMCID: PMC8114615 DOI: 10.1016/j.lfs.2021.119580] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Revised: 04/12/2021] [Accepted: 04/25/2021] [Indexed: 02/07/2023]
Abstract
COVID-19 pandemic is still a major risk to human civilization. Besides the global immunization policy, more than five lac new cases are documented everyday. Some countries newly implement partial/complete nationwid lockdown to mitigate recurrent community spreading. To avoid the new modified stain of SARS-CoV-2 spreading, some countries imposed any restriction on the movement of the citizens within or outside the country. Effective economical point of care diagnostic and therapeutic strategy is vigorously required to mitigate viral spread. Besides struggling with repurposed medicines, new engineered materials with multiple unique efficacies and specific antiviral potency against SARS-CoV-2 infection may be fruitful to save more lives. Nanotechnology-based engineering strategy sophisticated medicine with specific, effective and nonhazardous delivery mechanism for available repurposed antivirals as well as remedial for associated diseases due to malfeasance in immuno-system e.g. hypercytokinaemia, acute respiratory distress syndrome. This review will talk about gloomy but critical areas for nanoscientists to intervene and will showcase about the different laboratory diagnostic, prognostic strategies and their mode of actions. In addition, we speak about SARS-CoV-2 pathophysiology, pathogenicity and host specific interation with special emphasis on altered immuno-system and also perceptualized, copious ways to design prophylactic nanomedicines and next-generation vaccines based on recent findings.
Collapse
Affiliation(s)
- Sujan Chatterjee
- Molecular Biology and Tissue Culture Laboratory, Post Graduate Department of Zoology, Vidyasagar College, Kolkata-700006, India
| | - Snehasis Mishra
- Cancer and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata-700032, India
| | - Kaustav Dutta Chowdhury
- Cyto-genetics Laboratory, Department of Zoology, Rammohan College, 102/1, Raja Rammohan Sarani, Kolkata-700009, India
| | - Chandan Kumar Ghosh
- School of Material Science and Nanotechnology, Jadavpur University, Kolkata-700032, India.
| | - Krishna Das Saha
- Cancer and Inflammatory Disorder Division, CSIR-Indian Institute of Chemical Biology, Jadavpur, Kolkata-700032, India.
| |
Collapse
|
28
|
Wong DWL, Klinkhammer BM, Djudjaj S, Villwock S, Timm MC, Buhl EM, Wucherpfennig S, Cacchi C, Braunschweig T, Knüchel-Clarke R, Jonigk D, Werlein C, Bülow RD, Dahl E, von Stillfried S, Boor P. Multisystemic Cellular Tropism of SARS-CoV-2 in Autopsies of COVID-19 Patients. Cells 2021; 10:1900. [PMID: 34440669 PMCID: PMC8394956 DOI: 10.3390/cells10081900] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 12/18/2022] Open
Abstract
Multiorgan tropism of SARS-CoV-2 has previously been shown for several major organs. We have comprehensively analyzed 25 different formalin-fixed paraffin-embedded (FFPE) tissues/organs from autopsies of fatal COVID-19 cases (n = 8), using histopathological assessment, detection of SARS-CoV-2 RNA using polymerase chain reaction and RNA in situ hybridization, viral protein using immunohistochemistry, and virus particles using transmission electron microscopy. SARS-CoV-2 RNA was mainly localized in epithelial cells across all organs. Next to lung, trachea, kidney, heart, or liver, viral RNA was also found in tonsils, salivary glands, oropharynx, thyroid, adrenal gland, testicles, prostate, ovaries, small bowel, lymph nodes, skin and skeletal muscle. Viral RNA was predominantly found in cells expressing ACE2, TMPRSS2, or both. The SARS-CoV-2 replicating RNA was also detected in these organs. Immunohistochemistry and electron microscopy were not suitable for reliable and specific SARS-CoV-2 detection in autopsies. These findings were validated using in situ hybridization on external COVID-19 autopsy samples (n = 9). Apart from the lung, correlation of viral detection and histopathological assessment did not reveal any specific alterations that could be attributed to SARS-CoV-2. In summary, SARS-CoV-2 and its replication could be observed across all organ systems, which co-localizes with ACE2 and TMPRSS2 mainly in epithelial but also in mesenchymal and endothelial cells. Apart from the respiratory tract, no specific (histo-)morphologic alterations could be assigned to the SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Dickson W. L. Wong
- Institute of Pathology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (D.W.L.W.); (B.M.K.); (S.D.); (S.V.); (M.C.T.); (E.M.B.); (S.W.); (C.C.); (T.B.); (R.K.-C.); (R.D.B.); (E.D.)
| | - Barbara M. Klinkhammer
- Institute of Pathology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (D.W.L.W.); (B.M.K.); (S.D.); (S.V.); (M.C.T.); (E.M.B.); (S.W.); (C.C.); (T.B.); (R.K.-C.); (R.D.B.); (E.D.)
| | - Sonja Djudjaj
- Institute of Pathology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (D.W.L.W.); (B.M.K.); (S.D.); (S.V.); (M.C.T.); (E.M.B.); (S.W.); (C.C.); (T.B.); (R.K.-C.); (R.D.B.); (E.D.)
| | - Sophia Villwock
- Institute of Pathology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (D.W.L.W.); (B.M.K.); (S.D.); (S.V.); (M.C.T.); (E.M.B.); (S.W.); (C.C.); (T.B.); (R.K.-C.); (R.D.B.); (E.D.)
| | - M. Cherelle Timm
- Institute of Pathology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (D.W.L.W.); (B.M.K.); (S.D.); (S.V.); (M.C.T.); (E.M.B.); (S.W.); (C.C.); (T.B.); (R.K.-C.); (R.D.B.); (E.D.)
| | - Eva M. Buhl
- Institute of Pathology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (D.W.L.W.); (B.M.K.); (S.D.); (S.V.); (M.C.T.); (E.M.B.); (S.W.); (C.C.); (T.B.); (R.K.-C.); (R.D.B.); (E.D.)
- Electron Microscopy Facility, RWTH Aachen University Hospital, 52074 Aachen, Germany
| | - Sophie Wucherpfennig
- Institute of Pathology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (D.W.L.W.); (B.M.K.); (S.D.); (S.V.); (M.C.T.); (E.M.B.); (S.W.); (C.C.); (T.B.); (R.K.-C.); (R.D.B.); (E.D.)
| | - Claudio Cacchi
- Institute of Pathology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (D.W.L.W.); (B.M.K.); (S.D.); (S.V.); (M.C.T.); (E.M.B.); (S.W.); (C.C.); (T.B.); (R.K.-C.); (R.D.B.); (E.D.)
| | - Till Braunschweig
- Institute of Pathology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (D.W.L.W.); (B.M.K.); (S.D.); (S.V.); (M.C.T.); (E.M.B.); (S.W.); (C.C.); (T.B.); (R.K.-C.); (R.D.B.); (E.D.)
| | - Ruth Knüchel-Clarke
- Institute of Pathology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (D.W.L.W.); (B.M.K.); (S.D.); (S.V.); (M.C.T.); (E.M.B.); (S.W.); (C.C.); (T.B.); (R.K.-C.); (R.D.B.); (E.D.)
| | - Danny Jonigk
- Institute of Pathology, Hannover Medical School, 30625 Hannover, Germany;
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), 30625 Hannover, Germany;
| | - Christopher Werlein
- Member of the German Center for Lung Research (DZL), Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), 30625 Hannover, Germany;
| | - Roman D. Bülow
- Institute of Pathology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (D.W.L.W.); (B.M.K.); (S.D.); (S.V.); (M.C.T.); (E.M.B.); (S.W.); (C.C.); (T.B.); (R.K.-C.); (R.D.B.); (E.D.)
| | - Edgar Dahl
- Institute of Pathology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (D.W.L.W.); (B.M.K.); (S.D.); (S.V.); (M.C.T.); (E.M.B.); (S.W.); (C.C.); (T.B.); (R.K.-C.); (R.D.B.); (E.D.)
| | - Saskia von Stillfried
- Institute of Pathology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (D.W.L.W.); (B.M.K.); (S.D.); (S.V.); (M.C.T.); (E.M.B.); (S.W.); (C.C.); (T.B.); (R.K.-C.); (R.D.B.); (E.D.)
| | - Peter Boor
- Institute of Pathology, RWTH Aachen University Hospital, 52074 Aachen, Germany; (D.W.L.W.); (B.M.K.); (S.D.); (S.V.); (M.C.T.); (E.M.B.); (S.W.); (C.C.); (T.B.); (R.K.-C.); (R.D.B.); (E.D.)
- Electron Microscopy Facility, RWTH Aachen University Hospital, 52074 Aachen, Germany
- Department of Nephrology and Immunology, RWTH Aachen University Hospital, 52074 Aachen, Germany
| |
Collapse
|
29
|
Thorat N, Pricl S, Parchur AK, Somvanshi SB, Li Q, Umrao S, Townley H. Safeguarding COVID-19 and cancer management: drug design and therapeutic approach. OPEN RESEARCH EUROPE 2021; 1:77. [PMID: 37645153 PMCID: PMC10445946 DOI: 10.12688/openreseurope.13841.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/24/2021] [Indexed: 08/31/2023]
Abstract
Recent clinical cohort studies have highlighted that there is a three-fold greater SARS-Cov-2 infection risk in cancer patients, and overall mortality in individuals with tumours is increased by 41% with respect to general COVID-19 patients. Thus, access to therapeutics and intensive care is compromised for people with both diseases (comorbidity) and there is risk of delayed access to diagnosis. This comorbidity has resulted in extensive burden on the treatment of patients and health care system across the globe; moreover, mortality of hospitalized patients with comorbidity is reported to be 30% higher than for individuals affected by either disease. In this data-driven review, we aim specifically to address drug discoveries and clinical data of cancer management during the COVID-19 pandemic. The review will extensively address the treatment of COVID-19/cancer comorbidity; treatment protocols and new drug discoveries, including the description of drugs currently available in clinical settings; demographic features; and COVID-19 outcomes in cancer patients worldwide.
Collapse
Affiliation(s)
- Nanasaheb Thorat
- Nuffield Department of Women’s & Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
| | - Sabrina Pricl
- MolBNL@UniTS-DEA, University of Trieste, Piazzale Europa 1, Trieste, 34127, Italy
- Department of General Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Lodz, 90-136, Poland
| | - Abdul K. Parchur
- Radiation Oncology, Froedtert Hospital & Medical College of Wisconsin, Medical College of Wisconsin, Wisconsin, USA
| | - Sandeep B. Somvanshi
- School of Materials Engineering, Purdue University, West Stadium Avenue, West Lafayette, USA
| | - Qifei Li
- Division of Newborn Medicine, Boston Children’s Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Sachin Umrao
- Department of Therapeutic Radiology, Yale School of Medicine, Yale University, New Haven, USA
| | - Helen Townley
- Nuffield Department of Women’s & Reproductive Health, John Radcliffe Hospital, University of Oxford, Oxford, OX3 9DU, UK
- Department of Engineering Science, University of Oxford, Oxford, UK
| |
Collapse
|
30
|
Abstract
Coronavirus disease 2019 (COVID-19) is a respiratory disease caused by SARS-CoV-2. It appeared in China in late 2019 and rapidly spread to most countries of the world. Cancer patients infected with SARS-CoV-2 are at higher risk of developing severe infection and death. This risk increases further in the presence of lymphopenia affecting the lymphocytes count. Here, we develop a delayed within-host SARS-CoV-2/cancer model. The model describes the occurrence of SARS-CoV-2 infection in cancer patients and its effect on the functionality of immune responses. The model considers the time delays that affect the growth rates of healthy epithelial cells and cancer cells. We provide a detailed analysis of the model by proving the nonnegativity and boundedness of the solutions, finding steady states, and showing the global stability of the different steady states. We perform numerical simulations to highlight some important observations. The results indicate that increasing the time delay in the growth rate of cancer cells reduced the size of tumors and decreased the likelihood of deterioration in the condition of SARS-CoV-2/cancer patients. On the other hand, lymphopenia increased the concentrations of SARS-CoV-2 particles and cancer cells, which worsened the condition of the patient.
Collapse
|
31
|
Howell MC, Green R, McGill AR, Dutta R, Mohapatra S, Mohapatra SS. SARS-CoV-2-Induced Gut Microbiome Dysbiosis: Implications for Colorectal Cancer. Cancers (Basel) 2021; 13:2676. [PMID: 34071688 PMCID: PMC8198029 DOI: 10.3390/cancers13112676] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/22/2021] [Accepted: 05/24/2021] [Indexed: 12/12/2022] Open
Abstract
The emergence of a novel coronavirus, severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2), in December 2019 led to a worldwide pandemic with over 170 million confirmed infections and over 3.5 million deaths (as of May 2021). Early studies have shown higher mortality rates from SARS-CoV-2 infection in cancer patients than individuals without cancer. Herein, we review the evidence that the gut microbiota plays a crucial role in health and has been linked to the development of colorectal cancer (CRC). Investigations have shown that SARS-CoV-2 infection causes changes to the gut microbiota, including an overall decline in microbial diversity, enrichment of opportunistic pathogens such as Fusobacterium nucleatum bacteremia, and depletion of beneficial commensals, such as the butyrate-producing bacteria. Further, these changes lead to increased colonic inflammation, which leads to gut barrier disruption, expression of genes governing CRC tumorigenesis, and tumor immunosuppression, thus further exacerbating CRC progression. Additionally, a long-lasting impact of SARS-CoV-2 on gut dysbiosis might result in a greater possibility of new CRC diagnosis or aggravating the condition in those already afflicted. Herein, we review the evidence relating to the current understanding of how infection with SARS-CoV-2 impacts the gut microbiota and the effects this will have on CRC carcinogenesis and progression.
Collapse
Affiliation(s)
- Mark C. Howell
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (M.C.H.); (R.G.); (A.R.M.)
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Ryan Green
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (M.C.H.); (R.G.); (A.R.M.)
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Andrew R. McGill
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (M.C.H.); (R.G.); (A.R.M.)
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Rinku Dutta
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Subhra Mohapatra
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (M.C.H.); (R.G.); (A.R.M.)
- Department of Molecular Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA;
| | - Shyam S. Mohapatra
- Department of Veterans Affairs, James A. Haley Veterans Hospital, Tampa, FL 33612, USA; (M.C.H.); (R.G.); (A.R.M.)
- Department of Internal Medicine, Morsani College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
32
|
Declerck K, Novo CP, Grielens L, Van Camp G, Suter A, Vanden Berghe W. Echinacea purpurea (L.) Moench treatment of monocytes promotes tonic interferon signaling, increased innate immunity gene expression and DNA repeat hypermethylated silencing of endogenous retroviral sequences. BMC Complement Med Ther 2021; 21:141. [PMID: 33980308 PMCID: PMC8114977 DOI: 10.1186/s12906-021-03310-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 04/27/2021] [Indexed: 12/12/2022] Open
Abstract
Background Herbal remedies of Echinacea purpurea tinctures are widely used today to reduce common cold respiratory tract infections. Methods Transcriptome, epigenome and kinome profiling allowed a systems biology level characterisation of genomewide immunomodulatory effects of a standardized Echinacea purpurea (L.) Moench extract in THP1 monocytes. Results Gene expression and DNA methylation analysis revealed that Echinaforce® treatment triggers antiviral innate immunity pathways, involving tonic IFN signaling, activation of pattern recognition receptors, chemotaxis and immunometabolism. Furthermore, phosphopeptide based kinome activity profiling and pharmacological inhibitor experiments with filgotinib confirm a key role for Janus Kinase (JAK)-1 dependent gene expression changes in innate immune signaling. Finally, Echinaforce® treatment induces DNA hypermethylation at intergenic CpG, long/short interspersed nuclear DNA repeat elements (LINE, SINE) or long termininal DNA repeats (LTR). This changes transcription of flanking endogenous retroviral sequences (HERVs), involved in an evolutionary conserved (epi) genomic protective response against viral infections. Conclusions Altogether, our results suggest that Echinaforce® phytochemicals strengthen antiviral innate immunity through tonic IFN regulation of pattern recognition and chemokine gene expression and DNA repeat hypermethylated silencing of HERVs in monocytes. These results suggest that immunomodulation by Echinaforce® treatment holds promise to reduce symptoms and duration of infection episodes of common cold corona viruses (CoV), Severe Acute Respiratory Syndrome (SARS)-CoV, and new occurring strains such as SARS-CoV-2, with strongly impaired interferon (IFN) response and weak innate antiviral defense. Supplementary Information The online version contains supplementary material available at 10.1186/s12906-021-03310-5.
Collapse
Affiliation(s)
- Ken Declerck
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Claudina Perez Novo
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Lisa Grielens
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, Department of Biomedical Sciences, University of Antwerp (UA) and University Hospital Antwerp (UZA), Antwerp, Belgium
| | | | - Wim Vanden Berghe
- Laboratory of Protein Chemistry, Proteomics and Epigenetic Signaling (PPES), Department of Biomedical Sciences, University of Antwerp (UA), Antwerp, Belgium.
| |
Collapse
|
33
|
Dzobo K. Coronavirus Disease 19 and Future Ecological Crises: Hopes from Epigenomics and Unraveling Genome Regulation in Humans and Infectious Agents. OMICS-A JOURNAL OF INTEGRATIVE BIOLOGY 2021; 25:269-278. [PMID: 33904782 DOI: 10.1089/omi.2021.0024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
With coronavirus disease 19 (COVID-19), we have witnessed a shift from public health to planetary health and a growing recognition of the importance of systems science in developing effective solutions against pandemics in the 21st century. COVID-19 and the history of frequent infectious outbreaks in the last two decades suggest that COVID-19 is likely a dry run for future ecological crises. Now is the right time to plan ahead and deploy the armamentarium of systems science scholarship for planetary health. The science of epigenomics, which investigates both genetic and nongenetic traits regarding heritable phenotypic alterations, and new approaches to understanding genome regulation in humans and pathogens offer veritable prospects to boost the global scientific capacities to innovate therapeutics and diagnostics against novel and existing infectious agents. Several reversible epigenetic alterations, such as chromatin remodeling and histone methylation, control and influence gene expression. COVID-19 lethality is linked, in part, to the cytokine storm, age, and status of the immune system in a given person. Additionally, due to reduced human mobility and daily activities, effects of the pandemic on the environment have been both positive and negative. For example, reduction in environmental pollution and lesser extraction from nature have potential positive corollaries on water and air quality. Negative effects include pollution as plastics and other materials were disposed in unconventional places and spaces in the course of the pandemic. I discuss the opportunities and challenges associated with the science of epigenomics, specifically with an eye to inform and prevent future ecological crises and pandemics that are looming on the horizon in the 21st century. In particular, this article underscores that epigenetics of both viruses and the host may influence virus infectivity and severity of attendant disease.
Collapse
Affiliation(s)
- Kevin Dzobo
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Cape Town Component, Cape Town, South Africa.,Division of Medical Biochemistry and Institute of Infectious Disease and Molecular Medicine, Department of Integrative Biomedical Sciences, Faculty of Health Sciences, University of Cape Town, Cape Town, South Africa
| |
Collapse
|
34
|
Mangone L, Gioia F, Mancuso P, Bisceglia I, Ottone M, Vicentini M, Pinto C, Giorgi Rossi P. Cumulative COVID-19 incidence, mortality and prognosis in cancer survivors: A population-based study in Reggio Emilia, Northern Italy. Int J Cancer 2021; 149:820-826. [PMID: 33861870 PMCID: PMC8250826 DOI: 10.1002/ijc.33601] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 04/02/2021] [Accepted: 04/09/2021] [Indexed: 12/30/2022]
Abstract
The aim of this population-based study was to evaluate the impact of being a cancer survivor (CS) on COVID-19 risk and prognosis during the first wave of the pandemic (27 February 2020 to 13 May 2020) in Reggio Emilia Province. Prevalent cancer cases diagnosed between 1996 and 2019 were linked with the provincial COVID-19 surveillance system. We compared CS' cumulative incidence of being tested, testing positive for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), being hospitalized and dying of COVID-19 with that of the general population; we compared COVID-19 prognosis in CS and in patients without cancer. During the study period, 15 391 people (1527 CS) underwent real-time polymerase chain reaction for SARS-CoV-2, of whom 4541 (447 CS) tested positive; 541 (113 CS) died of COVID-19. CS had higher age- and sex-adjusted incidence rate ratios (IRR) of testing (1.28 [95% confidence interval, CI = 1.21-1.35]), of positive test (IRR 1.06 [95% CI = 0.96-1.18]) and of hospitalization and death (IRR 1.27 [95% CI = 1.09-1.48] and 1.39 [95%CI = 1.12-1.71], respectively). CS had worse prognosis when diagnosed with COVID-19, particularly those below age 70 (adjusted odds ratio [OR] of death 5.03; [95% CI = 2.59-9.75]), while the OR decreased after age 70. The OR of death was higher for CS with a recent diagnosis, that is, <2 years (OR = 2.92; 95% CI = 1.64-5.21), or metastases (OR = 2.09; 95% CI = 0.88-4.93). CS showed the same probability of being infected, despite a slightly higher probability of being tested than the general population. Nevertheless, CS were at higher risk of death once infected.
Collapse
Affiliation(s)
- Lucia Mangone
- Epidemiology UnitAzienda USL‐IRCCS di Reggio EmiliaReggio EmiliaItaly
| | - Francesco Gioia
- Epidemiology UnitAzienda USL‐IRCCS di Reggio EmiliaReggio EmiliaItaly
| | - Pamela Mancuso
- Epidemiology UnitAzienda USL‐IRCCS di Reggio EmiliaReggio EmiliaItaly
| | | | - Marta Ottone
- Epidemiology UnitAzienda USL‐IRCCS di Reggio EmiliaReggio EmiliaItaly
| | - Massimo Vicentini
- Epidemiology UnitAzienda USL‐IRCCS di Reggio EmiliaReggio EmiliaItaly
| | - Carmine Pinto
- Medical Oncology UnitAzienda USL‐IRCCS di Reggio EmiliaReggio EmiliaItaly
| | | |
Collapse
|
35
|
Bora VR, Patel BM. The Deadly Duo of COVID-19 and Cancer! Front Mol Biosci 2021; 8:643004. [PMID: 33912588 PMCID: PMC8072279 DOI: 10.3389/fmolb.2021.643004] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/05/2021] [Indexed: 12/15/2022] Open
Abstract
As of September 19, 2020, about 30 million people have been infected with the novel corona virus disease 2019 (COVID-19) globally, and the numbers are increasing at an alarming rate. The disease has a tremendous impact on every aspect of life, but one of the biggest, related to human health and medical sciences, is its effect on cancer. Nearly 2% of the total COVID-19 patients prior to May 2020 had cancer, and the statistics are quite frightening as the patient can be referred to as "doubly unfortunate" to suffer from cancer with the added misery of infection with COVID-19. Data regarding the present situation are scarce, so this review will focus on the deadly duo of COVID-19 and cancer. The focus is on molecular links between COVID-19 and cancer as inflammation, immunity, and the role of angiotensin converting enzyme 2 (ACE2). Complications may arise or severity may increase in cancer patients due to restrictions imposed by respective authorities as an effort to control COVID-19. The impact may vary from patient to patient and factors may include a delay in diagnosis, difficulty managing both cancer therapy and COVID-19 at same time, troubles in routine monitoring of cancer patients, and delays in urgent surgical procedures and patient care. The effect of anti-cancer agents on the condition of cancer patients suffering from COVID-19 and whether these anti-cancer agents can be repurposed for effective COVID-19 treatment are discussed. The review will be helpful in the management of deadly duo of COVID-19 and cancer.
Collapse
Affiliation(s)
| | - Bhoomika M. Patel
- Department of Pharmacology, Institute of Pharmacy, Nirma University, Ahmedabad, India
| |
Collapse
|
36
|
Cantini L, Bastianelli L, Lupi A, Pinterpe G, Pecci F, Belletti G, Stoico R, Vitarelli F, Moretti M, Onori N, Giampieri R, Rocchi MBL, Berardi R. Seroprevalence of SARS-CoV-2-Specific Antibodies in Cancer Patients Undergoing Active Systemic Treatment: A Single-Center Experience from the Marche Region, Italy. J Clin Med 2021; 10:jcm10071503. [PMID: 33916569 PMCID: PMC8038489 DOI: 10.3390/jcm10071503] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 03/28/2021] [Accepted: 04/02/2021] [Indexed: 12/30/2022] Open
Abstract
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) seroprevalence in cancer patients may vary widely dependent on the geographic area and this has significant implications for oncological care. The aim of this observational, prospective study was to assess the seroprevalence of SARS-CoV-2 IgM/IgG antibodies in solid cancer patients referred to the academic institution of the Marche Region, Italy, between 1 July and 26 October 2020 and to determine the accuracy of the rapid serological test. After performing 3767 GCCOV-402a rapid serological tests on a total of 949 patients, seroconversion was initially observed in 13 patients (1.4%). Ten (77% of the total positive) were IgG-positive, 1 (8%) were IgM-positive and 2 (15%) IgM-positive/IgG-positive. However, only 7 out of 13 were confirmed as positive at the reference serological test (true positives), thus seroprevalence after cross-checking was 0.7%. No false negatives were reported. The kappa value of the consistency analysis was 0.71. Due to rapid serological test high false positive rate, its role in assessing seroconversion rate is limited, and the standard serological tests should remain the gold standard. However, as rapid test negative predictive value is high, GCCOV-402a may instead be useful to monitor patient immunity over time, thus helping to assist ongoing vaccination programs.
Collapse
Affiliation(s)
- Luca Cantini
- Rossana Berardi, Clinical Oncology, Università Politecnica delle Marche, A.O.U. Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy; (L.C.); (L.B.); (A.L.); (G.P.); (F.P.); (G.B.); (R.S.); (F.V.); (R.G.)
| | - Lucia Bastianelli
- Rossana Berardi, Clinical Oncology, Università Politecnica delle Marche, A.O.U. Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy; (L.C.); (L.B.); (A.L.); (G.P.); (F.P.); (G.B.); (R.S.); (F.V.); (R.G.)
| | - Alessio Lupi
- Rossana Berardi, Clinical Oncology, Università Politecnica delle Marche, A.O.U. Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy; (L.C.); (L.B.); (A.L.); (G.P.); (F.P.); (G.B.); (R.S.); (F.V.); (R.G.)
| | - Giada Pinterpe
- Rossana Berardi, Clinical Oncology, Università Politecnica delle Marche, A.O.U. Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy; (L.C.); (L.B.); (A.L.); (G.P.); (F.P.); (G.B.); (R.S.); (F.V.); (R.G.)
| | - Federica Pecci
- Rossana Berardi, Clinical Oncology, Università Politecnica delle Marche, A.O.U. Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy; (L.C.); (L.B.); (A.L.); (G.P.); (F.P.); (G.B.); (R.S.); (F.V.); (R.G.)
| | - Giovanni Belletti
- Rossana Berardi, Clinical Oncology, Università Politecnica delle Marche, A.O.U. Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy; (L.C.); (L.B.); (A.L.); (G.P.); (F.P.); (G.B.); (R.S.); (F.V.); (R.G.)
| | - Rosa Stoico
- Rossana Berardi, Clinical Oncology, Università Politecnica delle Marche, A.O.U. Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy; (L.C.); (L.B.); (A.L.); (G.P.); (F.P.); (G.B.); (R.S.); (F.V.); (R.G.)
| | - Francesca Vitarelli
- Rossana Berardi, Clinical Oncology, Università Politecnica delle Marche, A.O.U. Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy; (L.C.); (L.B.); (A.L.); (G.P.); (F.P.); (G.B.); (R.S.); (F.V.); (R.G.)
| | - Marco Moretti
- SOD Medicina di Laboratorio, A.O.U. Ospedali Riuniti, 60126 Ancona, Italy; (M.M.); (N.O.)
| | - Nicoletta Onori
- SOD Medicina di Laboratorio, A.O.U. Ospedali Riuniti, 60126 Ancona, Italy; (M.M.); (N.O.)
| | - Riccardo Giampieri
- Rossana Berardi, Clinical Oncology, Università Politecnica delle Marche, A.O.U. Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy; (L.C.); (L.B.); (A.L.); (G.P.); (F.P.); (G.B.); (R.S.); (F.V.); (R.G.)
| | | | - Rossana Berardi
- Rossana Berardi, Clinical Oncology, Università Politecnica delle Marche, A.O.U. Ospedali Riuniti, Via Conca 71, 60126 Ancona, Italy; (L.C.); (L.B.); (A.L.); (G.P.); (F.P.); (G.B.); (R.S.); (F.V.); (R.G.)
- Correspondence: or
| |
Collapse
|
37
|
Barbosa LC, Gonçalves TL, de Araujo LP, Rosario LVDO, Ferrer VP. Endothelial cells and SARS-CoV-2: An intimate relationship. Vascul Pharmacol 2021; 137:106829. [PMID: 33422689 PMCID: PMC7834309 DOI: 10.1016/j.vph.2021.106829] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Revised: 11/24/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Angiotensin-converting enzyme 2 (ACE2) is an important player of the renin-angiotensin-aldosterone system (RAAS) in regulating the conversion of angiotensin II into angiotensin (1-7). While expressed on the surface of human cells, such as lung, heart, kidney, neurons, and endothelial cells (EC), ACE2 is the entry receptor for SARS-CoV-2. Here, we would like to highlight that ACE2 is predominant on the EC membrane. Many of coronavirus disease 2019 (COVID-19) symptoms have been associated with the large recruitment of immune cells, directly affecting EC. Additionally, cytokines, hypoxia, and complement activation can trigger the activation of EC leading to the coagulation cascade. The EC dysfunction plus the inflammation due to SARS-CoV-2 infection may lead to abnormal coagulation, actively participating in thrombo-inflammatory processes resulting in vasculopathy and indicating poor prognosis in patients with COVID-19. Considering the intrinsic relationship between EC and the pathophysiology of SARS-CoV-2, EC-associated therapies such as anticoagulants, fibrinolytic drugs, immunomodulators, and molecular therapies have been proposed. In this review, we will discuss the role of EC in the lung inflammation and edema, in the disseminate coagulation process, ACE2 positive cancer patients, and current and future EC-associated therapies to treat COVID-19.
Collapse
Affiliation(s)
- Lucas Cunha Barbosa
- Graduate Program in Medicine - Pathological Anatomy, Clementino Fraga Filho Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Brain's Biomedicine Lab, Paulo Niemeyer State Brain Institute, Rio de Janeiro, Brazil
| | | | | | | | - Valéria Pereira Ferrer
- Graduate Program in Medicine - Pathological Anatomy, Clementino Fraga Filho Hospital, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil; Department of Cellular and Molecular Biology, Institute of Biology, Fluminense Federal University, Niteroi, Brazil.
| |
Collapse
|
38
|
Silveira MAD, De Jong D, Berretta AA, Galvão EBDS, Ribeiro JC, Cerqueira-Silva T, Amorim TC, Conceição LFMRD, Gomes MMD, Teixeira MB, Souza SPD, Santos MHCAD, San Martin RLA, Silva MDO, Lírio M, Moreno L, Sampaio JCM, Mendonça R, Ultchak SS, Amorim FS, Ramos JGR, Batista PBP, Guarda SNFD, Mendes AVA, Passos RDH. Efficacy of Brazilian green propolis (EPP-AF®) as an adjunct treatment for hospitalized COVID-19 patients: A randomized, controlled clinical trial. Biomed Pharmacother 2021; 138:111526. [PMID: 34311528 PMCID: PMC7980186 DOI: 10.1016/j.biopha.2021.111526] [Citation(s) in RCA: 60] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/06/2021] [Accepted: 03/17/2021] [Indexed: 02/07/2023] Open
Abstract
Background Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) promotes challenging immune and inflammatory phenomena. Though various therapeutic possibilities have been tested against coronavirus disease 2019 (COVID-19), the most adequate treatment has not yet been established. Propolis is a natural product with considerable evidence of immunoregulatory and anti-inflammatory activities, and experimental data point to potential against viral targets. We hypothesized that propolis can reduce the negative effects of COVID-19. Methods In a randomized, controlled, open-label, single-center trial, hospitalized adult COVID-19 patients were treated with a standardized green propolis extract (EPP-AF®️) as an adjunct therapy. Patients were allocated to receive standard care plus an oral dose of 400 mg or 800 mg/day of green propolis for seven days, or standard care alone. Standard care included all necessary interventions, as determined by the attending physician. The primary end point was the time to clinical improvement, defined as the length of hospital stay or oxygen therapy dependency duration. Secondary outcomes included acute kidney injury and need for intensive care or vasoactive drugs. Patients were followed for 28 days after admission. Results We enrolled 124 patients; 40 were assigned to EPP-AF®️ 400 mg/day, 42 to EPP-AF®️ 800 mg/day, and 42 to the control group. The length of hospital stay post-intervention was shorter in both propolis groups than in the control group; lower dose, median 7 days versus 12 days (95% confidence interval [CI] −6.23 to −0.07; p = 0.049) and higher dose, median 6 days versus 12 days (95% CI −7.00 to −1.09; p = 0.009). Propolis did not significantly affect the need for oxygen supplementation. In the high dose propolis group, there was a lower rate of acute kidney injury than in the controls (4.8 vs 23.8%), (odds ratio [OR] 0.18; 95% CI 0.03–0.84; p = 0.048). No patient had propolis treatment discontinued due to adverse events. Conclusions Addition of propolis to the standard care procedures resulted in clinical benefits for the hospitalized COVID-19 patients, especially evidenced by a reduction in the length of hospital stay. Consequently, we conclude that propolis can reduce the impact of COVID-19.
Collapse
Affiliation(s)
- Marcelo Augusto Duarte Silveira
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil.
| | - David De Jong
- Genetics Department, Ribeirão Preto School of Medicine, University of São Paulo (USP), Ribeirão Preto, SP 14049-900, Brazil
| | - Andresa Aparecida Berretta
- Research, Development and Innovation Department, Apis Flora Indl. Coml. Ltda, Rua Triunfo 945, Subsetor Sul 3, Ribeirão Preto, SP 14020-670, Brazil
| | - Erica Batista Dos Santos Galvão
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Juliana Caldas Ribeiro
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil; Universidade de Salvador - UNIFACS, Avenida Luís Viana, 3100-3146 Pituaçu, Imbuí, Salvador 41720-200, BA, Brazil; Escola Bahiana de Medicina e Saúde Pública, EBMSP, Av. Dom João VI, 275 - Brotas, Salvador 40290-000, BA, Brazil
| | - Thiago Cerqueira-Silva
- Instituto Gonçalo Moniz, Fundação Oswaldo Cruz (FIOCRUZ), Rua Waldemar Falcão 121, Candeal, Salvador 40296-710, BA, Brazil; School of Medicine, Federal University of Bahia, Rua Augusto Viana s/n, Canela, Salvador 40110-909, BA, Brazil
| | - Thais Chaves Amorim
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | | | - Marcel Miranda Dantas Gomes
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Maurício Brito Teixeira
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil; Escola Bahiana de Medicina e Saúde Pública, EBMSP, Av. Dom João VI, 275 - Brotas, Salvador 40290-000, BA, Brazil; Universidade do Estado da Bahia (UNEB), Rua Silveira Martin 2555, Cabula, Salvador 41150-000, BA , Brazil
| | - Sergio Pinto de Souza
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil; Escola Bahiana de Medicina e Saúde Pública, EBMSP, Av. Dom João VI, 275 - Brotas, Salvador 40290-000, BA, Brazil
| | | | - Raissa Lanna Araújo San Martin
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Márcio de Oliveira Silva
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Monique Lírio
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Lis Moreno
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Julio Cezar Miranda Sampaio
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Renata Mendonça
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Silviana Salles Ultchak
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Fabio Santos Amorim
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - João Gabriel Rosa Ramos
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Paulo Benigno Pena Batista
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Suzete Nascimento Farias da Guarda
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil; School of Medicine, Federal University of Bahia, Rua Augusto Viana s/n, Canela, Salvador 40110-909, BA, Brazil
| | - Ana Verena Almeida Mendes
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | - Rogerio da Hora Passos
- D'Or Institute for Research and Education (IDOR), Hospital São Rafael, Avenida São Rafael 2152, São Marcos, Salvador 41253-190, BA, Brazil
| | | |
Collapse
|
39
|
Can Cancer Survivors Donate Convalescent Plasma for the Treatment of COVID-19? Indian J Med Paediatr Oncol 2021. [DOI: 10.1055/s-0041-1729734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
40
|
van Dam P, Huizing M, Roelant E, Hotterbeekx A, De Winter FHR, Kumar-Singh S, Moons P, Amajoud Z, Vulsteke C, Croes L, Janssens A, Berneman Z, Prenen H, Meuris L, Vanden Berghe W, Smits E, Peeters M. Immunoglobin G/total antibody testing for SARS-CoV-2: A prospective cohort study of ambulatory patients and health care workers in two Belgian oncology units comparing three commercial tests. Eur J Cancer 2021; 148:328-339. [PMID: 33773276 PMCID: PMC7914028 DOI: 10.1016/j.ejca.2021.02.024] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 02/04/2021] [Accepted: 02/11/2021] [Indexed: 01/08/2023]
Abstract
Background Coronavirus disease (COVID-19) is interfering heavily with the screening, diagnosis and treatment of cancer patients. Better knowledge of the seroprevalence and immune response after Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection in this population is important to manage them safely during the pandemic. Methods 922 cancer patients, 100 non-cancer patients and 94 health care workers (HCW) attending the Multidisciplinary Oncology Unit of Antwerp University Hospital from 24th of March 2020 till 31st of May 2020, and the Oncology Unit of AZ Maria Middelares Hospital, Ghent, from 13th of April 2020 till 31st of May 2020 participated in the study. The Alinity® (A; Abbott) and Liaison® (D; DiaSorin) commercially available assays were used to measure SARS-CoV-2 IgG, while total SARS-CoV-2 Ig was measured by Elecsys® (R; Roche). Results In the overall study population IgG/total SARS-CoV-2 antibodies were found in respectively 32/998 (3.2%), 68/1020 (6.7%), 37/1010 (3.7%) and of individuals using the A, D or R test. Forty-six out of 618 (7.4%) persons had a positive SARS-CoV-2 polymerase chain reaction (RT-PCR) test. Seroprevalence in cancer patients (A:2.2%, D:6.2%, R:3.0%), did not significantly differ from that in non-cancer patients (A:1.1%, D:5.6%, R:0.0%), but was lower than the HCW (A:13%, D:12%, R:12%; respectively Fisher’s exact test p = 0.00001, p = 0.046, p = 0.0004). A positive SARS-CoV-2 RT-PCR was found in 6.8% of the cancer patients, 2.3% of the non-cancer patients and 28.1% of the HCW (Fisher’s exact test p = 0.0004). Correlation between absolute values of the different Ig tests was poor in the cancer population. Dichotomising a positive versus negative test result, the A and R test correlated well (kappa 0.82 p McNemar test = 0.344), while A and D and R and D did not (respectively kappa 0.49 and 0.57; result significantly different p McNemar test = <0.0001 for both). The rate of seroconversion (>75%) and median absolute antibody levels (A: 7.0 versus 4.7; D 74.0 versus 26.6, R: 16.34 versus 7.32; all >P Mann Whitney U test = 0.28) in cancer patients and HCW with a positive RT-PCR at least 7 days earlier did not show any differences. However, none (N = 0/4) of the patients with hematological tumours had seroconversion and absolute antibody levels remained much lower compared to patients with solid tumours (R: 0.1 versus 37.6, p 0.003; D 4.1 versus 158, p 0.008) or HCW (all p < 0.0001). Conclusion HCW were at high risk of being infected by SARS-CoV-2 during the first wave of the pandemic. Seroprevalence in cancer patients was low in the study period. Although Ig immune response in cancer patients with solid tumours does not differ from healthy volunteers, patients with hematological tumours have a very poor humoral immune response. This has to be taken into account in future vaccination programmes in this population. SARS-CoV-2 antibody tests have divergent results and seem to have little added value in the management of cancer patients.
Collapse
Affiliation(s)
- Peter van Dam
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Wilrijkstraat 10, Edegem, B-2650, Belgium; Center for Oncological Research (CORE), Integrated Personalised and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, Wilrijk, B-2610, Belgium; Antwerp University, Universiteitsplein 1, Wilrijk B-2610, Belgium.
| | - Manon Huizing
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Wilrijkstraat 10, Edegem, B-2650, Belgium; Biobank, Antwerp University Hospital, Wilrijkstraat 10, Edegem, B-2650, Belgium; Antwerp University, Universiteitsplein 1, Wilrijk B-2610, Belgium
| | - Ella Roelant
- Clinical Trial Center (CTC), CRC Antwerp, Antwerp University Hospital, University of Antwerp, Edegem, B2650, Belgium; StatUa, Center for Statistics, University of Antwerp, Antwerp, B2000, Belgium
| | - An Hotterbeekx
- Molecular Pathology Group, Cell Biology and Histology and Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, Wilrijk, B-2610, Belgium
| | - Fien H R De Winter
- Molecular Pathology Group, Cell Biology and Histology and Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, Wilrijk, B-2610, Belgium
| | - Samir Kumar-Singh
- Molecular Pathology Group, Cell Biology and Histology and Vaccine and Infectious Disease Institute, University of Antwerp, Universiteitsplein 1, Wilrijk, B-2610, Belgium
| | - Pieter Moons
- Biobank, Antwerp University Hospital, Wilrijkstraat 10, Edegem, B-2650, Belgium
| | - Zainab Amajoud
- Center for Oncological Research (CORE), Integrated Personalised and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, Wilrijk, B-2610, Belgium
| | - Christof Vulsteke
- Department of Medical Oncology, AZ Middelares, Ghent, Belgium; Center for Oncological Research (CORE), Integrated Personalised and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, Wilrijk, B-2610, Belgium; Antwerp University, Universiteitsplein 1, Wilrijk B-2610, Belgium
| | - Lieselot Croes
- Center for Oncological Research (CORE), Integrated Personalised and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, Wilrijk, B-2610, Belgium; Department of Medical Oncology, AZ Middelares, Ghent, Belgium
| | - Annelies Janssens
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Wilrijkstraat 10, Edegem, B-2650, Belgium; Center for Oncological Research (CORE), Integrated Personalised and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, Wilrijk, B-2610, Belgium
| | - Zwi Berneman
- Department of Hematology, Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Wilrijkstraat 10, Edegem, B-2650, Belgium
| | - Hans Prenen
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Wilrijkstraat 10, Edegem, B-2650, Belgium; Center for Oncological Research (CORE), Integrated Personalised and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, Wilrijk, B-2610, Belgium
| | - Leander Meuris
- VIB-UGent Center for Medical Biotechnology, Technologiepark, Zwijnaarde 71, B-9052 Ghent, Belgium
| | - Wim Vanden Berghe
- Department Biomedical Sciences, University Antwerp, PPES Lab Protein Chemistry, Proteomics & Epigenetic Signaling, IPPON, Universiteitsplein 1, Wilrijk B-2610, Belgium
| | - Evelien Smits
- Center for Oncological Research (CORE), Integrated Personalised and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, Wilrijk, B-2610, Belgium
| | - Marc Peeters
- Multidisciplinary Oncologic Centre Antwerp (MOCA), Antwerp University Hospital, Wilrijkstraat 10, Edegem, B-2650, Belgium; Center for Oncological Research (CORE), Integrated Personalised and Precision Oncology Network (IPPON), University of Antwerp, Universiteitsplein 1, Wilrijk, B-2610, Belgium
| |
Collapse
|
41
|
Rasschaert M, Vanclooster P, Mertens T, Roelant E, Lesage K, Prenen H, Verlinden A, van Brussel I, Ravelingien J, Janssens A, Van Dam P, Peeters M. The tele-transition of toxicity management in routine oncology care during the severe acute respiratory syndrome (SARS-CoV-2) pandemic. Br J Cancer 2021; 124:1366-1372. [PMID: 33558713 PMCID: PMC8039036 DOI: 10.1038/s41416-020-01235-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Revised: 11/29/2020] [Accepted: 12/08/2020] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Telehealth modalities were introduced during the SARS-CoV-2 pandemic to assure continuation of cancer care and maintain social distance. METHODS This is a retrospective cohort analysis of our telehealth expansion programme. We adapted two existing patient-reported outcome (PRO) telemonitoring tools that register and (self-)manage toxicities to therapy, while screening for SARS-CoV-2-related symptoms. Outpatients from a tertiary cancer centre were enrolled. The adapted PRO interface allowed for uniform registration of SARS-CoV-2-related symptoms and effective triage of patients at home where we also implemented systematic throat washings, when available. RESULTS Three hundred and sixty patients registered to the telemonitoring systems from March 13 to May 15, 2020. Four prespecified SARS-CoV-2 alarms resulted in three patients with positive PCR testing. Other Covid-19 symptoms (fever 5× and cough 2×) led to pretreatment triage resulting in 1 seroconversion after initial negative testing. One of the 477 throat washings proved positive. CONCLUSIONS The rapid adoption of an amended PRO (self-)registrations and toxicity management system was feasible and coordinated screening for Covid-19. Continued clinical cancer care was maintained, with significant decreased waiting time. The systemic screening with throat washings offered no real improvement.
Collapse
Affiliation(s)
- Marika Rasschaert
- Department of Oncology, Antwerp University Hospital Antwerp, Antwerp, Belgium.
| | | | - Tim Mertens
- Department of Oncology, Antwerp University Hospital Antwerp, Antwerp, Belgium
| | - Ella Roelant
- Clinical Trials Center (CTC), CRC Antwerp, Antwerp University Hospital, University of Antwerp, Antwerp, Belgium
| | - Katrien Lesage
- Department of Information and Communication Technology, Antwerp University Hospital, Antwerp, Belgium
| | - Hans Prenen
- Department of Oncology, Antwerp University Hospital Antwerp, Antwerp, Belgium
| | - Anke Verlinden
- Department of Haematology, Antwerp University Hospital, Antwerp, Belgium
| | | | | | - Annelies Janssens
- Department of Thoracic Oncology, Antwerp University Hospital, Antwerp, Belgium
| | - Peter Van Dam
- Unit of Gynecologic Oncology, Department of Obstetrics & Gynecology, Antwerp University Hospital, Antwerp, Belgium
| | - Marc Peeters
- Department of Oncology, Antwerp University Hospital Antwerp, Antwerp, Belgium
| |
Collapse
|
42
|
Epigenetic Evolution of ACE2 and IL-6 Genes: Non-Canonical Interferon-Stimulated Genes Correlate to COVID-19 Susceptibility in Vertebrates. Genes (Basel) 2021; 12:genes12020154. [PMID: 33503821 PMCID: PMC7912275 DOI: 10.3390/genes12020154] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/18/2021] [Accepted: 01/20/2021] [Indexed: 02/08/2023] Open
Abstract
The current novel coronavirus disease (COVID-19) has spread globally within a matter of months. The virus establishes a success in balancing its deadliness and contagiousness, and causes substantial differences in susceptibility and disease progression in people of different ages, genders and pre-existing comorbidities. These host factors are subjected to epigenetic regulation; therefore, relevant analyses on some key genes underlying COVID-19 pathogenesis were performed to longitudinally decipher their epigenetic correlation to COVID-19 susceptibility. The genes of host angiotensin-converting enzyme 2 (ACE2, as the major virus receptor) and interleukin (IL)-6 (a key immuno-pathological factor triggering cytokine storm) were shown to evince active epigenetic evolution via histone modification and cis/trans-factors interaction across different vertebrate species. Extensive analyses revealed that ACE2 ad IL-6 genes are among a subset of non-canonical interferon-stimulated genes (non-ISGs), which have been designated for their unconventional responses to interferons (IFNs) and inflammatory stimuli through an epigenetic cascade. Furthermore, significantly higher positive histone modification markers and position weight matrix (PWM) scores of key cis-elements corresponding to inflammatory and IFN signaling, were discovered in both ACE2 and IL6 gene promoters across representative COVID-19-susceptible species compared to unsusceptible ones. The findings characterize ACE2 and IL-6 genes as non-ISGs that respond differently to inflammatory and IFN signaling from the canonical ISGs. The epigenetic properties ACE2 and IL-6 genes may serve as biomarkers to longitudinally predict COVID-19 susceptibility in vertebrates and partially explain COVID-19 inequality in people of different subgroups.
Collapse
|
43
|
Rasschaert M, Vanclooster P, Depauw L, Mertens T, Roelant E, Coenen E, Anguille S, Janssens A, Van Dam P, Peeters M. Meeting the Challenges in Cancer Care Management During the SARS-Cov-2 Pandemic: A Retrospective Analysis. Cancer Control 2021; 28:10732748211045275. [PMID: 34623943 PMCID: PMC8504214 DOI: 10.1177/10732748211045275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has overwhelmed the capacity of healthcare systems worldwide. Cancer patients, in particular, are vulnerable and oncology departments drastically needed to modify their care systems and established new priorities. We evaluated the impact of SARS-CoV-2 on the activity of a single cancer center. METHODS We performed a retrospective analysis of (i) volumes of oncological activities (2020 vs 2019), (ii) patients' perception rate of the preventive measures, (iii) patients' SARS-CoV-2 infections, clinical signs thereof, and (iv) new diagnoses made during the SARS-CoV-2 pandemic. RESULTS As compared with a similar time frame in 2019, the overall activity in total numbers of outpatient chemotherapy administrations and specialist visits was not statistically different (P = .961 and P = .252), while inpatient admissions decreased for both medical oncology and thoracic oncology (18% (P = .0018) and 44% (P < .0001), respectively). Cancer diagnosis plummeted (-34%), but no stage shift could be demonstrated.Acceptance and adoption of hygienic measures was high, as measured by a targeted questionnaire (>85%). However, only 46.2% of responding patients regarded telemedicine, although widely deployed, as an efficient surrogate to a consultation.Thirty-three patients developed SARS-CoV-2, 27 were hospitalized, and 11 died within this time frame. These infected patients were younger, current smokers, and suffered more comorbidities. CONCLUSIONS This retrospective cohort analysis adds to the evidence that continuation of active cancer therapy and specialist visits is feasible and safe with the implementation of telemedicine. These data further confirm the impact of SARS-CoV-2 on cancer care management, cancer diagnosis, and impact of infection on cancer patients.
Collapse
Affiliation(s)
- Marika Rasschaert
- Department of Oncology, 60202Antwerp University Hospital Antwerp, Antwerp, Belgium
| | | | - Laura Depauw
- Department of Oncology, 60202Antwerp University Hospital Antwerp, Antwerp, Belgium
| | - Tim Mertens
- Department of Oncology, 60202Antwerp University Hospital Antwerp, Antwerp, Belgium
| | - Ella Roelant
- Clinical Trials Center (CTC), CRC Antwerp, 60202Antwerp University Hospital, Antwerp, Belgium
| | - Elke Coenen
- Department of Occupational Medicine, 60202Antwerp University Hospital, Antwerp, Belgium
| | - Sebastien Anguille
- Department of Hematology, 60202Antwerp University Hospital, Antwerp, Belgium
| | - Annelies Janssens
- Department of Thoracic Oncology, 60202Antwerp University Hospital, Antwerp, Belgium
| | - Peter Van Dam
- Unit of Gynecologic Oncology, Department of Obstetrics and Gynecology, 60202Antwerp University Hospital, Antwerp, Belgium
- Center for Oncology Research (CORE), 60202University of Antwerp (UA), Antwerp, Belgium
| | - Marc Peeters
- Department of Oncology, 60202Antwerp University Hospital Antwerp, Antwerp, Belgium
- Center for Oncology Research (CORE), 60202University of Antwerp (UA), Antwerp, Belgium
| |
Collapse
|
44
|
Giuliani J, Bonetti A. COVID-19 and cancer: A clear change not only in daily clinical practice but also in clinical research management. J Med Virol 2020; 93:2564-2565. [PMID: 33215735 DOI: 10.1002/jmv.26680] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/06/2020] [Accepted: 11/16/2020] [Indexed: 12/30/2022]
Affiliation(s)
- Jacopo Giuliani
- Department of Oncology, Mater Salutis Hospital, Legnago (VR), Italy
| | - Andrea Bonetti
- Department of Oncology, Mater Salutis Hospital, Legnago (VR), Italy
| |
Collapse
|
45
|
Zhai M, Zhang S. A Nasopharyngeal Carcinoma Patient With COVID-19 Infection After Immunotherapy: A Case Report and Literature Review. In Vivo 2020; 34:3753-3756. [PMID: 33144494 DOI: 10.21873/invivo.12225] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 08/27/2020] [Accepted: 08/28/2020] [Indexed: 12/19/2022]
Abstract
BACKGROUND/AIM Novel coronavirus infection in a cancer patient treated with immunotherapy, requires high attention. CASE REPORT Clinical and radiological data were obtained from the electronic medical record. Pharynx swab was tested for severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) RNA by reverse transcription-polymerase chain reaction (RT-PCR). The nasopharyngeal carcinoma patient developed fever on the third day after chemotherapy and immunotherapy. Laboratory examination showed lymphocytopenia. On the sixth day, chest computed tomography (CT) images showed bilateral scattered ground-glass opacities and reticulation. Pharynx swab was positive for SARS-CoV-2 nucleic acid and the patient was confirmed as having Coronavirus Disease 2019 (COVID-19). Unfortunately, despite aggressive treatment after the diagnosis of COVID-19, the patient died quickly. CONCLUSION The patient with nasopharyngeal carcinoma in this case developed severe COVID-19 after receiving immunotherapy. For patients treated with immune checkpoint inhibitors (ICIs) in epidemic areas, the safety of ICIs in cancer patients infected with SARS-CoV-2 should be considered.
Collapse
Affiliation(s)
- Menglan Zhai
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| | - Sheng Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, P.R. China
| |
Collapse
|
46
|
Gilligan G, Lazos J, Piemonte E, Criado E, Pánico R. Delays in the diagnosis of oral cancer due to the quarantine of COVID‐19 in Córdoba, Argentina. SPECIAL CARE IN DENTISTRY 2020; 40:618-620. [DOI: 10.1111/scd.12524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 11/28/2022]
Affiliation(s)
- Gerardo Gilligan
- Oral Medicine Department, Facultad de Odontología Universidad Nacional de Córdoba Ciudad Universitaria Córdoba Argentina
| | - Jerónimo Lazos
- Oral Medicine Department, Facultad de Odontología Universidad Nacional de Córdoba Ciudad Universitaria Córdoba Argentina
| | - Eduardo Piemonte
- Oral Medicine Department, Facultad de Odontología Universidad Nacional de Córdoba Ciudad Universitaria Córdoba Argentina
| | - Esteban Criado
- Facultad de Ciencias Médicas Universidad Nacional de Córdoba Córdoba Argentina
| | - René Pánico
- Oral Medicine Department, Facultad de Odontología Universidad Nacional de Córdoba Ciudad Universitaria Córdoba Argentina
| |
Collapse
|
47
|
Atlante S, Mongelli A, Barbi V, Martelli F, Farsetti A, Gaetano C. The epigenetic implication in coronavirus infection and therapy. Clin Epigenetics 2020; 12:156. [PMID: 33087172 PMCID: PMC7576975 DOI: 10.1186/s13148-020-00946-x] [Citation(s) in RCA: 49] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 10/08/2020] [Indexed: 02/06/2023] Open
Abstract
Epigenetics is a relatively new field of science that studies the genetic and non-genetic aspects related to heritable phenotypic changes, frequently caused by environmental and metabolic factors. In the host, the epigenetic machinery can regulate gene expression through a series of reversible epigenetic modifications, such as histone methylation and acetylation, DNA/RNA methylation, chromatin remodeling, and non-coding RNAs. The coronavirus disease 19 (COVID-19) is a highly transmittable and pathogenic viral infection. The Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2), which emerged in Wuhan, China, and spread worldwide, causes it. COVID-19 severity and consequences largely depend on patient age and health status. In this review, we will summarize and comparatively analyze how viruses regulate the host epigenome. Mainly, we will be focusing on highly pathogenic respiratory RNA virus infections such as coronaviruses. In this context, epigenetic alterations might play an essential role in the onset of coronavirus disease complications. Although many therapeutic approaches are under study, more research is urgently needed to identify effective vaccine or safer chemotherapeutic drugs, including epigenetic drugs, to cope with this viral outbreak and to develop pre- and post-exposure prophylaxis against COVID-19.
Collapse
Affiliation(s)
- Sandra Atlante
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
| | - Alessia Mongelli
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
| | - Veronica Barbi
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
| | - Fabio Martelli
- Laboratorio di Cardiologia Molecolare, Policlinico San Donato IRCCS, Milan, Italy
| | - Antonella Farsetti
- Institute for Systems Analysis and Computer Science “A. Ruberti” (IASI), National Research Council (CNR), Rome, Italy
| | - Carlo Gaetano
- Laboratorio di Epigenetica, Istituti Clinici Scientifici Maugeri IRCCS, Via Maugeri 4, 27100 Pavia, Italy
| |
Collapse
|
48
|
Reiss AB, De Leon J, Dapkins IP, Shahin G, Peltier MR, Goldberg ER. A Telemedicine Approach to Covid-19 Assessment and Triage. MEDICINA (KAUNAS, LITHUANIA) 2020; 56:E461. [PMID: 32927589 PMCID: PMC7559216 DOI: 10.3390/medicina56090461] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 08/18/2020] [Accepted: 08/27/2020] [Indexed: 12/31/2022]
Abstract
Covid-19 is a new highly contagious RNA viral disease that has caused a global pandemic. Human-to-human transmission occurs primarily through oral and nasal droplets and possibly through the airborne route. The disease may be asymptomatic or the course may be mild with upper respiratory symptoms, moderate with non-life-threatening pneumonia, or severe with pneumonia and acute respiratory distress syndrome. The severe form is associated with significant morbidity and mortality. While patients who are unstable and in acute distress need immediate in-person attention, many patients can be evaluated at home by telemedicine or videoconferencing. The more benign manifestations of Covid-19 may be managed from home to maintain quarantine, thus avoiding spread to other patients and health care workers. This document provides an overview of the clinical presentation of Covid-19, emphasizing telemedicine strategies for assessment and triage of patients. Advantages of the virtual visit during this time of social distancing are highlighted.
Collapse
Affiliation(s)
- Allison B Reiss
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY 11501, USA
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Joshua De Leon
- Department of Medicine, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Isaac P Dapkins
- Department of Population Health and Department of Internal Medicine, NYU Langone Health, New York, NY 10016, USA
| | - George Shahin
- Department of Internal Medicine, NYU Langone Health, New York, NY 10016, USA
| | - Morgan R Peltier
- Department of Foundations of Medicine, NYU Long Island School of Medicine, Mineola, NY 11501, USA
| | - Eric R Goldberg
- Department of Medicine, NYU Grossman School of Medicine, Mineola, NY 11501, USA
| |
Collapse
|
49
|
High mortality of cancer patients in times of SARS-CoV-2: Do not generalize! Eur J Cancer 2020; 138:225-227. [PMID: 32927375 PMCID: PMC7416784 DOI: 10.1016/j.ejca.2020.07.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/19/2020] [Indexed: 12/19/2022]
|