1
|
Schlett K, Oueslati Morales CO, Bencsik N, Hausser A. Getting smart - Deciphering the neuronal functions of protein kinase D. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2024; 1871:119812. [PMID: 39147241 DOI: 10.1016/j.bbamcr.2024.119812] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 08/05/2024] [Indexed: 08/17/2024]
Abstract
Protein kinase D (PKD) is a family of serine/threonine kinases that play important roles in various signalling pathways in cells, including neuronal cells. In the nervous system, PKD has been shown to be involved in learning and memory formation by regulating neurotransmitter release, neurite outgrowth and dendrite development, synapse formation and synaptic plasticity. In addition, PKD has been implicated in pain perception or neuroprotection during oxidative stress. Dysregulation of PKD expression and activity has been linked to several neurological disorders, including autism and epilepsy. In this review, we summarize the current knowledge on the function of the PKD family members in neuronal cells, including the spatial regulation of their downstream signalling pathways. We will further discuss the potential role of PKD in the pathogenesis of neurological disorders.
Collapse
Affiliation(s)
- Katalin Schlett
- Neuronal Cell Biology Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Carlos O Oueslati Morales
- Membrane Trafficking and Signalling Group, Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Norbert Bencsik
- Neuronal Cell Biology Group, Department of Physiology and Neurobiology, Eötvös Loránd University, Budapest, Hungary
| | - Angelika Hausser
- Membrane Trafficking and Signalling Group, Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany; Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany.
| |
Collapse
|
2
|
Thowfeequ S, Fiorentino J, Hu D, Solovey M, Ruane S, Whitehead M, Zhou F, Godwin J, Mateo-Otero Y, Vanhaesebroeck B, Scialdone A, Srinivas S. An integrated approach identifies the molecular underpinnings of murine anterior visceral endoderm migration. Dev Cell 2024; 59:2347-2363.e9. [PMID: 38843837 PMCID: PMC11511681 DOI: 10.1016/j.devcel.2024.05.014] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 11/09/2023] [Accepted: 05/14/2024] [Indexed: 09/12/2024]
Abstract
The anterior visceral endoderm (AVE) differs from the surrounding visceral endoderm (VE) in its migratory behavior and ability to restrict primitive streak formation to the opposite side of the mouse embryo. To characterize the molecular bases for the unique properties of the AVE, we combined single-cell RNA sequencing of the VE prior to and during AVE migration with phosphoproteomics, high-resolution live-imaging, and short-term lineage labeling and intervention. This identified the transient nature of the AVE with attenuation of "anteriorizing" gene expression as cells migrate and the emergence of heterogeneities in transcriptional states relative to the AVE's position. Using cell communication analysis, we identified the requirement of semaphorin signaling for normal AVE migration. Lattice light-sheet microscopy showed that Sema6D mutants have abnormalities in basal projections and migration speed. These findings point to a tight coupling between transcriptional state and position of the AVE and identify molecular controllers of AVE migration.
Collapse
Affiliation(s)
- Shifaan Thowfeequ
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7TY, UK
| | - Jonathan Fiorentino
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich 81377, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany; Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany; Center for Life Nano- & Neuro-Science, Istituto Italiano di Tecnologia, Rome 00161, Italy
| | - Di Hu
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7TY, UK
| | - Maria Solovey
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich 81377, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany; Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany
| | - Sharon Ruane
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7TY, UK
| | - Maria Whitehead
- UCL Cancer Institute, University College London, London WC1E 6DD, UK
| | - Felix Zhou
- University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jonathan Godwin
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7TY, UK
| | - Yentel Mateo-Otero
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7TY, UK; Unit of Cell Biology, Department of Biology, University of Girona, Girona 17004, Spain
| | | | - Antonio Scialdone
- Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich 81377, Germany; Institute of Functional Epigenetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany; Institute of Computational Biology, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg 85764, Germany.
| | - Shankar Srinivas
- Institute for Developmental and Regenerative Medicine, Department of Physiology, Anatomy and Genetics, University of Oxford, Old Road Campus, Roosevelt Drive, Oxford OX3 7TY, UK.
| |
Collapse
|
3
|
Eshaq AM, Flanagan TW, Hassan SY, Al Asheikh SA, Al-Amoudi WA, Santourlidis S, Hassan SL, Alamodi MO, Bendhack ML, Alamodi MO, Haikel Y, Megahed M, Hassan M. Non-Receptor Tyrosine Kinases: Their Structure and Mechanistic Role in Tumor Progression and Resistance. Cancers (Basel) 2024; 16:2754. [PMID: 39123481 PMCID: PMC11311543 DOI: 10.3390/cancers16152754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/12/2024] Open
Abstract
Protein tyrosine kinases (PTKs) function as key molecules in the signaling pathways in addition to their impact as a therapeutic target for the treatment of many human diseases, including cancer. PTKs are characterized by their ability to phosphorylate serine, threonine, or tyrosine residues and can thereby rapidly and reversibly alter the function of their protein substrates in the form of significant changes in protein confirmation and affinity for their interaction with protein partners to drive cellular functions under normal and pathological conditions. PTKs are classified into two groups: one of which represents tyrosine kinases, while the other one includes the members of the serine/threonine kinases. The group of tyrosine kinases is subdivided into subgroups: one of them includes the member of receptor tyrosine kinases (RTKs), while the other subgroup includes the member of non-receptor tyrosine kinases (NRTKs). Both these kinase groups function as an "on" or "off" switch in many cellular functions. NRTKs are enzymes which are overexpressed and activated in many cancer types and regulate variable cellular functions in response to extracellular signaling-dependent mechanisms. NRTK-mediated different cellular functions are regulated by kinase-dependent and kinase-independent mechanisms either in the cytoplasm or in the nucleus. Thus, targeting NRTKs is of great interest to improve the treatment strategy of different tumor types. This review deals with the structure and mechanistic role of NRTKs in tumor progression and resistance and their importance as therapeutic targets in tumor therapy.
Collapse
Affiliation(s)
- Abdulaziz M. Eshaq
- Department of Epidemiology and Biostatistics, Milken Institute School of Public Health, George Washington University, Washington, DC 20052, USA;
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Thomas W. Flanagan
- Department of Pharmacology and Experimental Therapeutics, LSU Health Sciences Center, New Orleans, LA 70112, USA;
| | - Sofie-Yasmin Hassan
- Department of Pharmacy, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sara A. Al Asheikh
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Waleed A. Al-Amoudi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Simeon Santourlidis
- Institute of Cell Therapeutics and Diagnostics, University Medical Center of Duesseldorf, 40225 Duesseldorf, Germany;
| | - Sarah-Lilly Hassan
- Department of Chemistry, Faculty of Science, Heinrich-Heine University Duesseldorf, 40225 Duesseldorf, Germany;
| | - Maryam O. Alamodi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Marcelo L. Bendhack
- Department of Urology, Red Cross University Hospital, Positivo University, Rua Mauá 1111, Curitiba 80030-200, Brazil;
| | - Mohammed O. Alamodi
- College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia; (S.A.A.A.); (W.A.A.-A.); (M.O.A.); (M.O.A.)
| | - Youssef Haikel
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, 67000 Strasbourg, France
- Pôle de Médecine et Chirurgie Bucco-Dentaire, Hôpital Civil, Hôpitaux Universitaire de Strasbourg, 67000 Strasbourg, France
| | - Mossad Megahed
- Clinic of Dermatology, University Hospital of Aachen, 52074 Aachen, Germany;
| | - Mohamed Hassan
- Institut National de la Santé et de la Recherche Médicale, University of Strasbourg, 67000 Strasbourg, France;
- Department of Operative Dentistry and Endodontics, Dental Faculty, 67000 Strasbourg, France
- Research Laboratory of Surgery-Oncology, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
| |
Collapse
|
4
|
Wang X, Wang Y, Cai Q, Zhang M. AIDA-1/ANKS1B Binds to the SynGAP Family RasGAPs with High Affinity and Specificity. J Mol Biol 2024; 436:168608. [PMID: 38759928 DOI: 10.1016/j.jmb.2024.168608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/04/2024] [Accepted: 05/08/2024] [Indexed: 05/19/2024]
Abstract
AIDA-1, encoded by ANKS1B, is an abundant postsynaptic scaffold protein essential for brain development. Mutations of ANKS1B are closely associated with various psychiatric disorders. However, very little is known regarding the molecular mechanisms underlying AIDA-1's involvements under physiological and pathophysiological conditions. Here, we discovered an interaction between AIDA-1 and the SynGAP family Ras-GTPase activating protein (GAP) via affinity purification using AIDA-1d as the bait. Biochemical studies showed that the PTB domain of AIDA-1 binds to an extended NPx[F/Y]-motif of the SynGAP family proteins with high affinities. The high-resolution crystal structure of AIDA-1 PTB domain in complex with the SynGAP NPxF-motif revealed the molecular mechanism governing the specific interaction between AIDA-1 and SynGAP. Our study not only explains why patients with ANKS1B or SYNGAP1 mutations share overlapping clinical phenotypes, but also allows identification of new AIDA-1 binding targets such as Ras and Rab interactors.
Collapse
Affiliation(s)
- Xueqian Wang
- Biomedical Research Institute, Shenzhen Peking University-The Hong Kong University of Science and Technology Medical Center, Shenzhen 518036, China.
| | - Yu Wang
- Division of Life Science, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China
| | - Qixu Cai
- State Key Laboratory of Vaccines for Infectious Diseases, School of Public Health, Xiamen University, Xiamen, Fujian, China
| | - Mingjie Zhang
- Greater Bay Biomedical Innocenter, Shenzhen Bay Laboratory, Shenzhen 518036, China; School of Life Sciences, Southern University of Science and Technology, Shenzhen 518055, China.
| |
Collapse
|
5
|
Osei Saahene R, Barnes P, Yeboah FA, Agbo E, Asante DB, Arhin SK. Expression of RAS and RAB interactor 1 (RIN1) in head and neck tumors at selected hospital in Ghana. PLoS One 2024; 19:e0301295. [PMID: 38635569 PMCID: PMC11025731 DOI: 10.1371/journal.pone.0301295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 03/13/2024] [Indexed: 04/20/2024] Open
Abstract
BACKGROUND Head and neck tumors (HNT) are tumors of the paranasal sinuses, the salivary glands and the upper aerodigestive tract. RIN1 is a Ras effector protein regulating epithelial cell properties and has been implicated in a number of cancers. METHOD The aim of this study was to investigate the expression of RIN1 in head and neck tumors. RIN1 expression was assessed using quantitative real-time PCR (qRT-PCR) and immunohistochemical staining on archival head and neck tissue samples between 2014 and 2020. RESULTS RIN1 expression was low in tissue samples as compared with the normal head and neck tissues. High and low RIN1 levels were compared with ages ≤40, >40 in the head and neck tumors of p-value 0.02. There was a significant difference with p-values of 0.001 when poor and well-moderate malignant tumors were compared. CONCLUSION Our data suggests that RIN1may play an important role in head and neck tumor progression and that its expression may provide baseline data to facilitate identification of new molecular targeted therapeutics.
Collapse
Affiliation(s)
- Roland Osei Saahene
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Precious Barnes
- Department of Physician Assistant Studies, College of Health and Allied Sciences School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| | - F. A. Yeboah
- Department of Molecular Medicine, School of Medicine and Dentistry Sciences, College of Health Sciences, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Elvis Agbo
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Jinggangshan University, Ji’an City, China
| | - Du-Bois Asante
- Department of Forensic Sciences, School of Biological Sciences, College of Agricultural and Natural Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Samuel Kofi Arhin
- Department of Physician Assistant Studies, College of Health and Allied Sciences School of Allied Health Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
6
|
Ferreira-Santos L, Martinez-Lemus LA, Padilla J. Sitting leg vasculopathy: potential adaptations beyond the endothelium. Am J Physiol Heart Circ Physiol 2024; 326:H760-H771. [PMID: 38241008 PMCID: PMC11221807 DOI: 10.1152/ajpheart.00489.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/27/2023] [Accepted: 01/18/2024] [Indexed: 02/29/2024]
Abstract
Increased sitting time, the most common form of sedentary behavior, is an independent risk factor for all-cause and cardiovascular disease mortality; however, the mechanisms linking sitting to cardiovascular risk remain largely elusive. Studies over the last decade have led to the concept that excessive time spent in the sitting position and the ensuing reduction in leg blood flow-induced shear stress cause endothelial dysfunction. This conclusion has been mainly supported by studies using flow-mediated dilation in the lower extremities as the measured outcome. In this review, we summarize evidence from classic studies and more recent ones that collectively support the notion that prolonged sitting-induced leg vascular dysfunction is likely also attributable to changes occurring in vascular smooth muscle cells (VSMCs). Indeed, we provide evidence that prolonged constriction of resistance arteries can lead to modifications in the structural characteristics of the vascular wall, including polymerization of actin filaments in VSMCs and inward remodeling, and that these changes manifest in a time frame that is consistent with the vascular changes observed with prolonged sitting. We expect this review will stimulate future studies with a focus on VSMC cytoskeletal remodeling as a potential target to prevent the detrimental vascular ramifications of too much sitting.
Collapse
Affiliation(s)
| | - Luis A Martinez-Lemus
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri, United States
- Center for Precision Medicine, Department of Medicine, University of Missouri, Columbia, Missouri, United States
| | - Jaume Padilla
- NextGen Precision Health, University of Missouri, Columbia, Missouri, United States
- Department of Nutrition and Exercise Physiology, University of Missouri, Columbia, Missouri, United States
- Harry S. Truman Memorial Veterans' Hospital, Columbia, Missouri, United States
| |
Collapse
|
7
|
Duan D, Lyu W, Chai P, Ma S, Wu K, Wu C, Xiong Y, Sestan N, Zhang K, Koleske AJ. Abl2 repairs microtubules and phase separates with tubulin to promote microtubule nucleation. Curr Biol 2023; 33:4582-4598.e10. [PMID: 37858340 PMCID: PMC10877310 DOI: 10.1016/j.cub.2023.09.018] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2023] [Revised: 07/07/2023] [Accepted: 09/06/2023] [Indexed: 10/21/2023]
Abstract
Abl family kinases are evolutionarily conserved regulators of cell migration and morphogenesis. Genetic experiments in Drosophila suggest that Abl family kinases interact functionally with microtubules to regulate axon guidance and neuronal morphogenesis. Vertebrate Abl2 binds to microtubules and promotes their plus-end elongation, both in vitro and in cells, but the molecular mechanisms by which Abl2 regulates microtubule (MT) dynamics are unclear. We report here that Abl2 regulates MT assembly via condensation and direct interactions with both the MT lattice and tubulin dimers. We find that Abl2 promotes MT nucleation, which is further facilitated by the ability of the Abl2 C-terminal half to undergo liquid-liquid phase separation (LLPS) and form co-condensates with tubulin. Abl2 binds to regions adjacent to MT damage, facilitates MT repair via fresh tubulin recruitment, and increases MT rescue frequency and lifetime. Cryo-EM analyses strongly support a model in which Abl2 engages tubulin C-terminal tails along an extended MT lattice conformation at damage sites to facilitate repair via fresh tubulin recruitment. Abl2Δ688-790, which closely mimics a naturally occurring splice isoform, retains binding to the MT lattice but does not bind tubulin, promote MT nucleation, or increase rescue frequency. In COS-7 cells, MT reassembly after nocodazole treatment is greatly slowed in Abl2 knockout COS-7 cells compared with wild-type cells, and these defects are rescued by re-expression of Abl2, but not Abl2Δ688-790. We propose that Abl2 locally concentrates tubulin to promote MT nucleation and recruits it to defects in the MT lattice to enable repair and rescue.
Collapse
Affiliation(s)
- Daisy Duan
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Wanqing Lyu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Pengxin Chai
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Shaojie Ma
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA
| | - Kuanlin Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Chunxiang Wu
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Yong Xiong
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Nenad Sestan
- Department of Neuroscience, Yale University, New Haven, CT 06510, USA; Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA; Department of Psychiatry, Yale School of Medicine, New Haven, CT 06510, USA; Department of Comparative Medicine, Yale School of Medicine, New Haven, CT 06510, USA; Program in Cellular Neuroscience, Neurodegeneration and Repair, Yale School of Medicine, New Haven, CT 06510, USA; Yale Child Study Center, Yale School of Medicine, New Haven, CT 06510, USA
| | - Kai Zhang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA
| | - Anthony J Koleske
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06510, USA; Department of Neuroscience, Yale University, New Haven, CT 06510, USA.
| |
Collapse
|
8
|
Molaei P, Savari M, Mahdavinezhad A, Najafi R, Afshar S, Esfandiari N, Khorrami R, Hashemi M. Highlighting functions of apoptosis and circular RNAs in colorectal cancer. Pathol Res Pract 2023; 248:154592. [PMID: 37295258 DOI: 10.1016/j.prp.2023.154592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Revised: 06/01/2023] [Accepted: 06/03/2023] [Indexed: 06/12/2023]
Abstract
Colorectal cancer (CRC) is known as one of the global problems that endangers the lives of thousands of people every year. Various treatments have been used to deal with this disease, but in some cases, they are not effective. Circular RNAs, as a novel class of noncoding RNAs, have different expression levels and various functions in cancer cells, such as gene regulation through microRNA sponging. They play an important role in various cellular processes, including differentiation, proliferation, invasion, and apoptosis. Changes in the process of apoptosis are closely related to the progression or inhibition of various malignancies. Induction of apoptosis in cancer cells is a promising target for tumor therapy. In this study, circRNAs were investigated as being central to the induction or inhibition of apoptosis in CRC. It is hoped that through targeted changes in the function of these biomolecules, better outcomes will be achieved in cancer treatment. Perhaps better outcomes for cancer treatment can be achieved by using new methods and modifying the expression of these nucleic acids. However, using this method may come with challenges and limitations.
Collapse
Affiliation(s)
- Pejman Molaei
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Marzieh Savari
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Ali Mahdavinezhad
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Rezvan Najafi
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Saeid Afshar
- Department of Molecular Medicine and Genetics, Research Center for Molecular Medicine, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Negin Esfandiari
- Department of Food Hygiene and Quality Control, Division of Epidemiology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Ramin Khorrami
- Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| |
Collapse
|
9
|
Nauth T, Bazgir F, Voß H, Brandenstein LI, Mosaddeghzadeh N, Rickassel V, Deden S, Gorzelanny C, Schlüter H, Ahmadian MR, Rosenberger G. Cutaneous manifestations in Costello syndrome: HRAS p.Gly12Ser affects RIN1-mediated integrin trafficking in immortalized epidermal keratinocytes. Hum Mol Genet 2023; 32:304-318. [PMID: 35981076 DOI: 10.1093/hmg/ddac188] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/15/2022] [Accepted: 08/07/2022] [Indexed: 01/18/2023] Open
Abstract
Heterozygous germline missense variants in the HRAS gene underlie Costello syndrome (CS). The molecular basis for cutaneous manifestations in CS is largely unknown. We used an immortalized human cell line, HaCaT keratinocytes, stably expressing wild-type or CS-associated (p.Gly12Ser) HRAS and defined RIN1 as quantitatively most prominent, high-affinity effector of active HRAS in these cells. As an exchange factor for RAB5 GTPases, RIN1 is involved in endosomal sorting of cell-adhesion integrins. RIN1-dependent RAB5A activation was strongly increased by HRASGly12Ser, and HRAS-RIN1-ABL1/2 signaling was induced in HRASWT- and HRASGly12Ser-expressing cells. Along with that, HRASGly12Ser expression decreased total integrin levels and enriched β1 integrin in RAB5- and EEA1-positive early endosomes. The intracellular level of active β1 integrin was increased in HRASGly12Ser HaCaT keratinocytes due to impaired recycling, whereas RIN1 disruption raised β1 integrin cell surface distribution. HRASGly12Ser induced co-localization of β1 integrin with SNX17 and RAB7 in early/sorting and late endosomes, respectively. Thus, by retaining β1 integrin in intracellular endosomal compartments, HRAS-RIN1 signaling affects the subcellular availability of β1 integrin. This may interfere with integrin-dependent processes as we detected for HRASGly12Ser cells spreading on fibronectin. We conclude that dysregulation of receptor trafficking and integrin-dependent processes such as cell adhesion are relevant in the pathobiology of CS.
Collapse
Affiliation(s)
- Theresa Nauth
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Farhad Bazgir
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Hannah Voß
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Laura I Brandenstein
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Niloufar Mosaddeghzadeh
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Verena Rickassel
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Sophia Deden
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Gorzelanny
- Department of Dermatology and Venereology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Hartmut Schlüter
- Institute of Clinical Chemistry and Laboratory Medicine, Section Mass Spectrometry and Proteomics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Mohammad R Ahmadian
- Institute of Biochemistry and Molecular Biology II, Medical Faculty and University Hospital Düsseldorf, Heinrich-Heine University, 40225 Düsseldorf, Germany
| | - Georg Rosenberger
- Institute of Human Genetics, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| |
Collapse
|
10
|
Ren H, Li Y, Liu H, Fan J, Li J, Li H, Wei H, Meng L, Cao S. A crucial exosome-related gene pair ( AAMP and ABAT) is associated with inflammatory cells in intervertebral disc degeneration. Front Immunol 2023; 14:1160801. [PMID: 37122729 PMCID: PMC10140513 DOI: 10.3389/fimmu.2023.1160801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Accepted: 03/27/2023] [Indexed: 05/02/2023] Open
Abstract
Identification of exosome-related genes (ERGs) and competing endogenous RNAs (ceRNAs) associated with intervertebral disc degeneration (IDD) may improve its diagnosis and reveal its underlying mechanisms. We downloaded 49 samples from Gene Expression Omnibus and identified candidate ERGs using differentially expressed ERGs (De-ERGs), exosome-related gene pairs (ERGPs), and machine learning algorithms [least absolute shrinkage and selection operator (LASSO) and support vector machine (SVM)]. Immune cell-related ERGs were selected via immune-infiltration analysis, and clinical values were assessed using receiver operating characteristic curves. Based on the De-ERGs, a ceRNA network comprising 1,512 links and 330 nodes was constructed and primarily related to signal transduction pathways, apoptosis-related biological processes, and multiple kinase-related molecular functions. In total, two crucial De-ERGs [angio-associated migratory cell protein (AAMP) and 4-aminobutyrate aminotransferase (ABAT)] were screened from results in De-ERGs, ERGPs, LASSO, and SVM. Increased AAMP expression and decreased ABAT expression were positively and negatively correlated with CD8+ T cell infiltration, respectively. AAMP/ABAT was the only pair differentially expressed in IDD and correlated with CD8+ T cell infiltration. Furthermore, AAMP/ABAT displayed higher accuracy in predicting IDD than individual genes. These results demonstrated the ERGP AAMP/ABAT as a robust signature for identifying IDD and associated with increased CD8+ T cell infiltration, suggesting it as a promising IDD biomarker.
Collapse
Affiliation(s)
- Huiyong Ren
- Department of Orthopedics, Civil Aviation General Hospital, Beijing, China
| | - Yumin Li
- Department of Orthopedics, Civil Aviation General Hospital, Beijing, China
| | - Hao Liu
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi, China
| | - Jiaxin Fan
- Department of Neurology, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Jie Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi, China
| | - Haopeng Li
- Department of Orthopaedics, The Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shanxi, China
| | - Hongyu Wei
- Department of Orthopaedic Surgery, China-Japan Friendship Hospital, Beijing, China
- *Correspondence: Shuai Cao, ; Liesu Meng, ; Hongyu Wei,
| | - Liesu Meng
- Institute of Molecular and Translational Medicine (IMTM), and Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, China
- National Joint Engineering Research Center of Biodiagnostics and Biotherapy, Second Affiliated Hospital, Xi’an Jiaotong University, Xi’an, Shaanxi, China
- *Correspondence: Shuai Cao, ; Liesu Meng, ; Hongyu Wei,
| | - Shuai Cao
- Department of Orthopedics, Civil Aviation General Hospital, Beijing, China
- *Correspondence: Shuai Cao, ; Liesu Meng, ; Hongyu Wei,
| |
Collapse
|
11
|
Baek EJ, Jung HU, Ha TW, Kim DJ, Lim JE, Kim HK, Kang JO, Oh B. Genome-Wide Interaction Study of Late-Onset Asthma With Seven Environmental Factors Using a Structured Linear Mixed Model in Europeans. Front Genet 2022; 13:765502. [PMID: 35432474 PMCID: PMC9005993 DOI: 10.3389/fgene.2022.765502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Accepted: 02/28/2022] [Indexed: 11/30/2022] Open
Abstract
Asthma is among the most common chronic diseases worldwide, creating a substantial healthcare burden. In late-onset asthma, there are wide global differences in asthma prevalence and low genetic heritability. It has been suggested as evidence for genetic susceptibility to asthma triggered by exposure to multiple environmental factors. Very few genome-wide interaction studies have identified gene-environment (G×E) interaction loci for asthma in adults. We evaluated genetic loci for late-onset asthma showing G×E interactions with multiple environmental factors, including alcohol intake, body mass index, insomnia, physical activity, mental status, sedentary behavior, and socioeconomic status. In gene-by-single environment interactions, we found no genome-wide significant single-nucleotide polymorphisms. However, in the gene-by-multi-environment interaction study, we identified three novel and genome-wide significant single-nucleotide polymorphisms: rs117996675, rs345749, and rs17704680. Bayes factor analysis suggested that for rs117996675 and rs17704680, body mass index is the most relevant environmental factor; for rs345749, insomnia and alcohol intake frequency are the most relevant factors in the G×E interactions of late-onset asthma. Functional annotations implicate the role of these three novel loci in regulating the immune system. In addition, the annotation for rs117996675 supports the body mass index as the most relevant environmental factor, as evidenced by the Bayes factor value. Our findings help to understand the role of the immune system in asthma and the role of environmental factors in late-onset asthma through G×E interactions. Ultimately, the enhanced understanding of asthma would contribute to better precision treatment depending on personal genetic and environmental information.
Collapse
Affiliation(s)
- Eun Ju Baek
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Hae Un Jung
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Tae-Woong Ha
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Dong Jun Kim
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea
| | - Ji Eun Lim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Han Kyul Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Ji-One Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| | - Bermseok Oh
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul, Korea.,Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul, Korea
| |
Collapse
|
12
|
Shen R, Murphy CJ, Xu X, Hu M, Ding J, Wu C. Ras and Rab Interactor 3: From Cellular Mechanisms to Human Diseases. Front Cell Dev Biol 2022; 10:824961. [PMID: 35359443 PMCID: PMC8963869 DOI: 10.3389/fcell.2022.824961] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Ras and Rab interactor 3 (RIN3) functions as a Guanine nucleotide Exchange Factor (GEF) for some members of the Rab family of small GTPase. By promoting the activation of Rab5, RIN3 plays an important role in regulating endocytosis and endocytic trafficking. In addition, RIN3 activates Ras, another small GTPase, that controls multiple signaling pathways to regulate cellular function. Increasing evidence suggests that dysregulation of RIN3 activity may contribute to the pathogenesis of several disease conditions ranging from Paget’s Disease of the Bone (PDB), Alzheimer’s Disease (AD), Chronic Obstructive Pulmonary Disease (COPD) and to obesity. Recent genome-wide association studies (GWAS) identified variants in the RIN3 gene to be linked with these disease conditions. Interestingly, some variants appear to be missense mutations in the functional domains of the RIN3 protein while most variants are located in the noncoding regions of the RIN3 gene, potentially altering its gene expression. However, neither the protein structure of RIN3 nor its exact function(s) (except for its GEF activity) has been fully defined. Furthermore, how the polymorphisms/variants contribute to disease pathogenesis remain to be understood. Herein, we examine, and review published studies in an attempt to provide a better understanding of the physiological function of RIN3; More importantly, we construct a framework linking the polymorphisms/variants of RIN3 to altered cell signaling and endocytic traffic, and to potential disease mechanism(s).
Collapse
Affiliation(s)
- Ruinan Shen
- Institute of Neurology, Ruijing Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, United States
| | - Caitlin J Murphy
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, United States
| | - Xiaowen Xu
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, United States
| | - Mingzheng Hu
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, United States
| | - Jianqing Ding
- Institute of Neurology, Ruijing Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, China
| | - Chengbiao Wu
- Department of Neurosciences, University of California San Diego School of Medicine, La Jolla, CA, United States
- *Correspondence: Chengbiao Wu,
| |
Collapse
|
13
|
Schmitt M, Sinnberg T, Bratl K, Zittlau K, Garbe C, Macek B, Nalpas NC. Proteogenomics Reveals Perturbed Signaling Networks in Malignant Melanoma Cells Resistant to BRAF Inhibition. Mol Cell Proteomics 2021; 20:100163. [PMID: 34673281 PMCID: PMC8603206 DOI: 10.1016/j.mcpro.2021.100163] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 08/04/2021] [Accepted: 10/12/2021] [Indexed: 12/12/2022] Open
Abstract
Analysis of nucleotide variants is a cornerstone of cancer medicine. Although only 2% of the genomic sequence is protein coding, mutations occurring in these regions have the potential to influence protein structure or modification status and may have severe impact on disease aetiology. Proteogenomics enables the analysis of sample-specific nonsynonymous nucleotide variants with regard to their effect at the proteome and phosphoproteome levels. Here, we developed a proof-of-concept proteogenomics workflow and applied it to the malignant melanoma cell line A375. Initially, we studied the resistance to serine/threonine-protein kinase B-raf (BRAF) inhibitor (BRAFi) vemurafenib in A375 cells. This allowed identification of several oncogenic nonsynonymous nucleotide variants, including a gain-of-function variant on aurora kinase A (AURKA) at F31I. We also detected significant changes in abundance among (phospho)proteins, which led to reactivation of the MAPK signaling pathway in BRAFi-resistant A375 cells. Upon reconstruction of the multiomic integrated signaling networks, we predicted drug therapies with the potential to disrupt BRAFi resistance mechanism in A375 cells. Notably, we showed that AURKA inhibition is effective and specific against BRAFi-resistant A375 cells. Subsequently, we investigated amino acid variants that interfere with protein posttranslational modification (PTM) status and potentially influence A375 cell signaling irrespective of BRAFi resistance. Mass spectrometry (MS) measurements confirmed variant-driven PTM changes in 12 proteins. Among them was the runt-related transcription factor 1 (RUNX1) displaying a variant on a known phosphorylation site S(Ph)276L. We confirmed the loss of phosphorylation site by MS and demonstrated the impact of this variant on RUNX1 interactome.
Collapse
Affiliation(s)
- Marisa Schmitt
- Quantitative Proteomics, University of Tuebingen, Tuebingen, Germany
| | - Tobias Sinnberg
- Division of Dermatooncology, University of Tuebingen, Tuebingen, Germany; Cluster of Excellence iFIT (EXC 2180), Image-Guided and Functionally Instructed Tumor Therapies, University of Tuebingen, Tuebingen, Germany
| | - Katrin Bratl
- Quantitative Proteomics, University of Tuebingen, Tuebingen, Germany
| | - Katharina Zittlau
- Quantitative Proteomics, University of Tuebingen, Tuebingen, Germany
| | - Claus Garbe
- Division of Dermatooncology, University of Tuebingen, Tuebingen, Germany; Cluster of Excellence iFIT (EXC 2180), Image-Guided and Functionally Instructed Tumor Therapies, University of Tuebingen, Tuebingen, Germany
| | - Boris Macek
- Quantitative Proteomics, University of Tuebingen, Tuebingen, Germany; Cluster of Excellence iFIT (EXC 2180), Image-Guided and Functionally Instructed Tumor Therapies, University of Tuebingen, Tuebingen, Germany.
| | - Nicolas C Nalpas
- Quantitative Proteomics, University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
14
|
Potiris A, Manousopoulou A, Zouridis A, Sarli PM, Pervanidou P, Eliades G, Perrea DN, Deligeoroglou E, Garbis SD, Eleftheriades M. The Effect of Prenatal Food Restriction on Brain Proteome in Appropriately Grown and Growth Restricted Male Wistar Rats. Front Neurosci 2021; 15:665354. [PMID: 33935642 PMCID: PMC8079747 DOI: 10.3389/fnins.2021.665354] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 03/25/2021] [Indexed: 12/13/2022] Open
Abstract
Background Fetal growth restriction (FGR) has been associated with a higher risk of developing adverse perinatal outcomes and distinct neurodevelopmental and neurobehavioral disorders. The aim of the present study was to investigate the impact of prenatal food restriction on the brain proteome in both FGR and appropriately grown rats and to identify potential pathways connecting maternal malnutrition with altered brain development. Methods Ten time-dated pregnant Wistar rats were housed individually at their 12th day of gestation. On the 15th day of gestation, the rats were randomly divided into two groups, namely the food restricted one (n = 6) and the control group (n = 4). From days 15 to 21 the control group had unlimited access to food and the food restricted group was given half the amount of food that was on average consumed by the control group, based on measurements taken place the day before. On the 21st day of gestation, all rats delivered spontaneously and after birth all newborn pups of the food restricted group were weighed and matched as appropriately grown (non-FGR) or growth restricted (FGR) and brain tissues were immediately collected. A multiplex experiment was performed analyzing brain tissues from 4 FGR, 4 non-FGR, and 3 control male offspring. Differentially expressed proteins (DEPs) were subjected to bioinformatics analysis in order to identify over-represented processes. Results Proteomic analysis resulted in the profiling of 3,964 proteins. Gene ontology analysis of the common DEPs using DAVID (https://david.ncifcrf.gov/) showed significant enrichment for terms related to cellular morphology, learning, memory and positive regulation of NF-kappaB signaling. Ingenuity Pathway Analysis showed significant induction of inflammation in FGR pups, whereas significant induction of cell migration and cell spreading were observed in non-FGR pups. Conclusion This study demonstrated that in both FGR and non-FGR neonates, a range of adaptive neurodevelopmental processes takes place, which may result in altered cellular morphology, chronic stress, poor memory and learning outcomes. Furthermore, this study highlighted that not only FGR, but also appropriately grown pups, which have been exposed to prenatal food deprivation may be at increased risk for impaired cognitive and developmental outcomes.
Collapse
Affiliation(s)
- Anastasios Potiris
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Antigoni Manousopoulou
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States
| | - Andreas Zouridis
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Polyxeni-Maria Sarli
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Panagiota Pervanidou
- First Department of Paediatrics, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - George Eliades
- Biomaterials Laboratory, School of Dentistry, National and Kapodistrian University of Athens, Athens, Greece
| | - Despina N Perrea
- Laboratory of Experimental Surgery and Surgical Research "N.S. Christeas", Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Efthymios Deligeoroglou
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Spiros D Garbis
- Beckman Research Institute, City of Hope National Medical Center, Duarte, CA, United States.,Cancer Sciences Unit, Faculty of Medicine, University of Southampton, Southampton, United Kingdom
| | - Makarios Eleftheriades
- Second Department of Obstetrics and Gynaecology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
15
|
Kanazawa T, Michida H, Uchino Y, Ishihara A, Zhang S, Tabata S, Suzuki Y, Imamoto A, Okada M. Cell shape-based chemical screening reveals an epigenetic network mediated by focal adhesions. FEBS J 2021; 288:5613-5628. [PMID: 33768715 DOI: 10.1111/febs.15840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 03/08/2021] [Accepted: 03/24/2021] [Indexed: 11/30/2022]
Abstract
Adapter proteins CRK and CRKL participate in a variety of signaling pathways, including cell adhesion, and fate regulation of mammalian cells. However, the molecular functions of CRK/CRKL in epigenetic regulation remain largely unknown. Here, we developed a pipeline to evaluate cell morphology using high-content image analysis combined with chemical screening of kinase and epigenetic modulators. We found that CRK/CRKL modulates gene regulatory networks associated with cell morphology through epigenetic alteration in mouse embryonic fibroblasts. Integrated epigenome and transcriptome analyses revealed that CRK/CRKL is involved in super-enhancer activity and upregulation of Cdt1, Rin1, and Spp1 expression for the regulation of cell morphology. Screening of a library of 80 epigenetic inhibitors showed that histone H3 modifiers, euchromatic histone methyltransferase 2 and mitogen- and stress-activated kinase 1, may be important for CRK/CRKL-mediated morphological changes. Taken together, our results indicate that CRK/CRKL plays a critical role in gene regulatory networks through epigenetic modification. DATABASES: Chromatin immunoprecipitation sequencing and RNA sequencing data were deposited in the DNA Data Bank of Japan under DRA011080 and DRA011081 accession numbers, respectively.
Collapse
Affiliation(s)
- Tomomi Kanazawa
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Hiroki Michida
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Yuki Uchino
- Graduate School of Medical Life Sciences, Yokohama City University, Japan
| | - Akari Ishihara
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Suxiang Zhang
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Sho Tabata
- Institute for Protein Research, Osaka University, Suita, Japan
| | - Yutaka Suzuki
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Japan
| | - Akira Imamoto
- The Ben May Department for Cancer Research, The University of Chicago, IL, USA
| | - Mariko Okada
- Institute for Protein Research, Osaka University, Suita, Japan.,Graduate School of Medical Life Sciences, Yokohama City University, Japan.,RIKEN Integrative Medical Sciences, Yokohama, Japan.,Center for Drug Design and Research, National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Japan.,Institute for Chemical Research, Kyoto University, Uji, Japan
| |
Collapse
|
16
|
Zhang W, Veisaga ML, Barbieri MA. Role of RIN1 on telomerase activity driven by EGF-Ras mediated signaling in breast cancer. Exp Cell Res 2020; 396:112318. [PMID: 33069695 DOI: 10.1016/j.yexcr.2020.112318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 10/05/2020] [Accepted: 10/07/2020] [Indexed: 11/27/2022]
Abstract
Epidermal growth factor (EGF)-receptor regulates several downstream signaling pathways upon EGF stimulation that involves cell proliferation, migration and invasion. Internalized EGF-receptor is either recycled or degraded, which fate is regulated in part by Ras interference 1 (RIN1). In this study, we tested the hypothesis that RIN1, a Ras effector protein and Rab5 guanine nucleotide exchange factor, controls several signaling molecules leading to the modulation of the telomerase activity; thus, allowing proper cell proliferation. We report that expression of RIN1 completely blocked proliferation of MCF-12 A and MCF-7 cells, while partially inhibited proliferation of MDA-MB-231 cells upon EGF stimulation. Furthermore, expression of the C-terminal region of RIN1 selectively plays a critical role in the inhibition of the proliferation of MDA-MB-231 cells. However, this inhibitory effect was specifically affected by the independent expression of RIN1:Vsp9 and RIN1:RA domains. Additionally, endogenous level of expression of RIN1 was decreased in metastatic MDA-MB-231 cells as compared with non-tumorigenic MCF-12 A cells. We observed that expression of RIN1:R94A mutant blocked the proliferation of MDA-MB-231 cells, while expression of RIN1:Y561F and RIN1:R629A mutants completely reversed the inhibitory effect of RIN1:WT. Consistent with our observations, we found that expression of RIN1:WT in MDA-MB-231 cells diminished both protein kinase B (AKT) and extracellular-signal-regulated kinase 1/2 (ERK1/2) activities while p38 mitogen-activated protein kinases (p38 MAPK) and stress-activated protein kinase (SAPK)/c-Jun N-terminal kinase (JNK) were unaffected, but it produced downregulation of cellular-myelocytomatosis (c-Myc), erythroblast transformation specific (Ets2) and signal transducer and activator of transcription 3 (Stat3) activities. Inversely, expression of high-mobility group box 1 (HMBG1) was inhibited whereas expression of forkhead box transcription factor 1 (FOXO1) was increased in cells expressing RIN1. Interestingly, expression of RIN1 blocked telomerase activity and human telomerase reverse transcriptase (hTERT) expression, which correlated with the downregulations of c-Myc, Ets-2 and Stat3 activation. Taken together these findings indicate that RIN1 is a critical player in the modulation of the telomerase activity as well as hTERT expression in MDA-MB-231 cells upon EGF stimulation.
Collapse
Affiliation(s)
- W Zhang
- Biochemistry PhD Program, Florida International University, 11220 SW 8th Street, Miami, FL, 33199, USA
| | - M L Veisaga
- Biomolecular Sciences Institute, Florida International University, 11220 SW 8th Street, Miami, FL, 33199, USA
| | - M A Barbieri
- Department of Biological Sciences, Florida International University, 11220 SW 8th Street, Miami, FL, 33199, USA; Biomolecular Sciences Institute, Florida International University, 11220 SW 8th Street, Miami, FL, 33199, USA; Fairchild Tropical Botanic Garden, 10901 Old Cutler Road, Coral Gables, FL, 33156, USA; International Center of Tropical Botany, Florida International University, 11220 SW 8th Street, Miami, FL, 33199, USA.
| |
Collapse
|
17
|
Díaz-Valdivia NI, Díaz J, Contreras P, Campos A, Rojas-Celis V, Burgos-Ravanal RA, Lobos-González L, Torres VA, Perez VI, Frei B, Leyton L, Quest AFG. The non-receptor tyrosine phosphatase type 14 blocks caveolin-1-enhanced cancer cell metastasis. Oncogene 2020; 39:3693-3709. [PMID: 32152405 PMCID: PMC7190567 DOI: 10.1038/s41388-020-1242-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 01/20/2020] [Accepted: 02/21/2020] [Indexed: 01/13/2023]
Abstract
Caveolin-1 (CAV1) enhanced migration, invasion, and metastasis of cancer cells is inhibited by co-expression of the glycoprotein E-cadherin. Although the two proteins form a multiprotein complex that includes β-catenin, it remained unclear how this would contribute to blocking the metastasis promoting function of CAV1. Here, we characterized by mass spectrometry the protein composition of CAV1 immunoprecipitates from B16F10 murine melanoma cells expressing or not E-cadherin. The novel protein tyrosine phosphatase PTPN14 was identified by mass spectrometry analysis exclusively in co-immunoprecipitates of CAV1 with E-cadherin. Interestingly, PTPN14 is implicated in controlling metastasis, but only few known PTPN14 substrates exist. We corroborated by western blotting experiments that PTPN14 and CAV1 co-inmunoprecipitated in the presence of E-cadherin in B16F10 melanoma and other cancer cells. Moreover, the CAV1(Y14F) mutant protein was shown to co-immunoprecipitate with PTPN14 even in the absence of E-cadherin, and overexpression of PTPN14 reduced CAV1 phosphorylation on tyrosine-14, as well as suppressed CAV1-enhanced cell migration, invasion and Rac-1 activation in B16F10, metastatic colon [HT29(US)] and breast cancer (MDA-MB-231) cell lines. Finally, PTPN14 overexpression in B16F10 cells reduced the ability of CAV1 to induce metastasis in vivo. In summary, we identify here CAV1 as a novel substrate for PTPN14 and show that overexpression of this phosphatase suffices to reduce CAV1-induced metastasis.
Collapse
Affiliation(s)
- Natalia I Díaz-Valdivia
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Jorge Díaz
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Institute for Research in Dental Science, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Pamela Contreras
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - América Campos
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Victoria Rojas-Celis
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Renato A Burgos-Ravanal
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile
| | - Lorena Lobos-González
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.,Fundación Ciencia & Vida, Santiago, Chile
| | - Vicente A Torres
- Institute for Research in Dental Science, Faculty of Dentistry, Universidad de Chile, Santiago, Chile
| | - Viviana I Perez
- Department of Biochemistry and Biophysics, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Balz Frei
- Department of Biochemistry and Biophysics, Linus Pauling Institute, Oregon State University, Corvallis, OR, USA
| | - Lisette Leyton
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| | - Andrew F G Quest
- Cellular Communication Laboratory, Center for studies on Exercise, Metabolism and Cancer (CEMC), Advanced Center for Chronic Diseases (ACCDiS), Faculty of Medicine, Universidad de Chile, Santiago, Chile.
| |
Collapse
|
18
|
Khan I, Rhett JM, O'Bryan JP. Therapeutic targeting of RAS: New hope for drugging the "undruggable". BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2020; 1867:118570. [PMID: 31678118 PMCID: PMC6937383 DOI: 10.1016/j.bbamcr.2019.118570] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 10/01/2019] [Accepted: 10/14/2019] [Indexed: 12/18/2022]
Abstract
RAS is the most frequently mutated oncogene in cancer and a critical driver of oncogenesis. Therapeutic targeting of RAS has been a goal of cancer research for more than 30 years due to its essential role in tumor formation and maintenance. Yet the quest to inhibit this challenging foe has been elusive. Although once considered "undruggable", the struggle to directly inhibit RAS has seen recent success with the development of pharmacological agents that specifically target the KRAS(G12C) mutant protein, which include the first direct RAS inhibitor to gain entry to clinical trials. However, the limited applicability of these inhibitors to G12C-mutant tumors demands further efforts to identify more broadly efficacious RAS inhibitors. Understanding allosteric influences on RAS may open new avenues to inhibit RAS. Here, we provide a brief overview of RAS biology and biochemistry, discuss the allosteric regulation of RAS, and summarize the various approaches to develop RAS inhibitors.
Collapse
Affiliation(s)
- Imran Khan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States of America; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, United States of America
| | - J Matthew Rhett
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States of America; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, United States of America
| | - John P O'Bryan
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC 29425, United States of America; Ralph H. Johnson VA Medical Center, Charleston, SC 29401, United States of America.
| |
Collapse
|
19
|
Long J, Liao G, Wang Y, Tang DD. Specific protein 1, c-Abl and ERK1/2 form a regulatory loop. J Cell Sci 2019; 132:jcs222380. [PMID: 30559247 PMCID: PMC6340136 DOI: 10.1242/jcs.222380] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Accepted: 11/27/2018] [Indexed: 12/14/2022] Open
Abstract
The tyrosine kinase c-Abl participates in the regulation of various cellular functions including cell proliferation, adhesion, migration, smooth muscle contraction and cancer progression. However, knowledge regarding transcriptional regulation of c-Abl is surprisingly limited. Sp1 is a founding member of the Sp1 transcription factor family that has been implicated in housekeeping gene expression, tumor cell proliferation and differentiation. Here, we show that knockdown and rescue of Sp1 affected growth factor-mediated c-Abl expression in cells. c-Abl promoter activity was also affected by Sp1 knockdown. This is the first evidence to suggest that Sp1 is an important transcription factor to regulate c-Abl expression. In addition, Sp1 phosphorylation at Thr-453 and Thr-739 has been proposed to regulate its activity in Drosophila cells. We unexpectedly found that growth factors did not induce Sp1 phosphorylation at these two residues. In contrast, growth factor stimulation upregulated Sp1 expression. Intriguingly, inhibition of ERK1 and ERK2 (ERK1/2, also known as MAPK3 and MAPK1, respectively) reduced expression of Sp1 and c-Abl. Furthermore, c-Abl knockdown diminished ERK1/2 phosphorylation and Sp1 expression. Taken together, these studies suggest that Sp1 can modulate c-Abl expression at transcription level. Conversely, c-Abl affects ERK1/2 activation and Sp1 expression in cells.
Collapse
Affiliation(s)
- Jiaoyue Long
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12118, USA
| | - Guoning Liao
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12118, USA
| | - Yinna Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12118, USA
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, NY 12118, USA
| |
Collapse
|
20
|
Herman EK, Ali M, Field MC, Dacks JB. Regulation of early endosomes across eukaryotes: Evolution and functional homology of Vps9 proteins. Traffic 2018; 19:546-563. [PMID: 29603841 PMCID: PMC6032885 DOI: 10.1111/tra.12570] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 03/21/2018] [Accepted: 03/27/2018] [Indexed: 12/11/2022]
Abstract
Endocytosis is a crucial process in eukaryotic cells. The GTPases Rab 5, 21 and 22 that mediate endocytosis are ancient eukaryotic features and all available evidence suggests retained conserved function. In animals and fungi, these GTPases are regulated in part by proteins possessing Vps9 domains. However, the diversity, evolution and functions of Vps9 proteins beyond animals or fungi are poorly explored. Here we report a comprehensive analysis of the Vps9 family of GTPase regulators, combining molecular evolutionary data with functional characterization in the non-opisthokont model organism Trypanosoma brucei. At least 3 subfamilies, Alsin, Varp and Rabex5 + GAPVD1, are found across eukaryotes, suggesting that all are ancient features of regulation of endocytic Rab protein function. There are examples of lineage-specific Vps9 subfamily member expansions and novel domain combinations, suggesting diversity in precise regulatory mechanisms between individual lineages. Characterization of the Rabex5 + GAPVD1 and Alsin orthologues in T. brucei demonstrates that both proteins are involved in endocytosis, and that simultaneous knockdown prevents membrane recruitment of Rab5 and Rab21, indicating conservation of function. These data demonstrate that, for the Vps9-domain family at least, modulation of Rab function is mediated by evolutionarily conserved protein-protein interactions.
Collapse
Affiliation(s)
- Emily K. Herman
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonCanada
| | - Moazzam Ali
- School of Life SciencesUniversity of DundeeDundeeUK
| | | | - Joel B. Dacks
- Department of Cell Biology, Faculty of Medicine and DentistryUniversity of AlbertaEdmontonCanada
| |
Collapse
|
21
|
Hsu F, Spannl S, Ferguson C, Hyman AA, Parton RG, Zerial M. Rab5 and Alsin regulate stress-activated cytoprotective signaling on mitochondria. eLife 2018; 7:32282. [PMID: 29469808 PMCID: PMC5847334 DOI: 10.7554/elife.32282] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 02/20/2018] [Indexed: 12/11/2022] Open
Abstract
Mitochondrial stress response is essential for cell survival, and damaged mitochondria are a hallmark of neurodegenerative diseases. Thus, it is fundamental to understand how mitochondria relay information within the cell. Here, by investigating mitochondrial-endosomal contact sites we made the surprising observation that the small GTPase Rab5 translocates from early endosomes to mitochondria upon oxidative stress. This process is reversible and accompanied by an increase in Rab5-positive endosomes in contact with mitochondria. Interestingly, activation of Rab5 on mitochondria depends on the Rab5-GEF ALS2/Alsin, encoded by a gene mutated in amyotrophic lateral sclerosis (ALS). Alsin-deficient human-induced pluripotent stem cell-derived spinal motor neurons are defective in relocating Rab5 to mitochondria and display increased susceptibility to oxidative stress. These findings define a novel pathway whereby Alsin catalyzes the assembly of the Rab5 endocytic machinery on mitochondria. Defects in stress-sensing by endosomes could be crucial for mitochondrial quality control during the onset of ALS. The inside of a human cell is divided into compartments called organelles, which are surrounded by membranes. Each organelle plays a specific role in keeping the cell healthy and also has unique mix of molecular markers on its surface. These markers allow other molecules to identify the different organelles, meaning that specific organelles can communicate with each other and coordinate their activities. One way that organelles can do this is via so-called membrane contact sites, which are small areas where the compartments’ outer membranes come close together. Mitochondria are organelles that release energy inside human cells. These compartments also work to keep the levels of toxic chemicals called reactive oxygen species in the cell within a safe range. This is important because cells can die if these levels become too high – a state known as oxidative stress. Mitochondria also communicate with other organelles called endosomes, which receive materials from the cell surface, sort and direct them to different destinations throughout the cell. In many diseases affecting the nervous system, the mitochondria and endosomes in nerve cells do not work properly. These cells also have higher than normal levels of oxidative stress. Hsu et al. therefore wanted to find out if mitochondria and endosomes worked together to help cells to cope with this kind of stress. Hsu et al. triggered oxidative stress in human cancer cells by exposing them first to a dye that stained the mitochondria and then to intense light. In stressed cells, a subset of endosomes called early endosomes formed many more membrane contact sites with mitochondria than in non-stressed cells. At the same time, the protein Rab5, usually found on early endosomes, relocated to the surface of mitochondria. Human cells previously engineered to produce larger than normal amounts of Rab5 were also more likely to survive oxidative stress. These experiments suggested that early endosomes cooperate with mitochondria, via Rab5, to protect cells from oxidative stress. So, how is Rab5 relocated to mitochondria? Hsu et al. searched for activators of Rab5 and found that Alsin also migrated to mitochondria in stressed cells. The gene for Alsin is also mutated in amyotrophic lateral sclerosis (ALS), a degenerative nerve disorder that remains poorly understood. Next, Hsu et al. deleted the gene for Alsin from human stem cells growing in the laboratory and coaxed these cells into becoming nerve cells. Experiments with these cells showed that the absence of Alsin prevented Rab5 from moving to the mitochondria. Nerve cells lacking Alsin were also more susceptible to oxidative stress than normal cells. Together, these findings show that early endosomes work with mitochondria to sense and ward off oxidative stress. They also reveal an unexpected connection between this process and a gene mutated in ALS. Further experiments are now needed to explore if problems with endosomes or mitochondria, and specifically with molecules like Alsin and Rab5, are responsible for other neurodegenerative disorders, like Parkinson’s disease and Huntington’s disease.
Collapse
Affiliation(s)
- FoSheng Hsu
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Stephanie Spannl
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Charles Ferguson
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Robert G Parton
- Institute for Molecular Bioscience, University of Queensland, Brisbane, Australia.,Centre for Microscopy and Microanalysis, University of Queensland, Brisbane, Australia
| | - Marino Zerial
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
22
|
Zhang X, Cao J, Miller SP, Jing H, Lin H. Comparative Nucleotide-Dependent Interactome Analysis Reveals Shared and Differential Properties of KRas4a and KRas4b. ACS CENTRAL SCIENCE 2018; 4:71-80. [PMID: 29392178 PMCID: PMC5785771 DOI: 10.1021/acscentsci.7b00440] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2017] [Indexed: 05/21/2023]
Abstract
The KRAS gene encodes two isoforms, KRas4a and KRas4b. Differences in the signaling functions of the two KRas proteins are poorly understood. Here we report the comparative and nucleotide-dependent interactomes of KRas4a and KRas4b. Many previously unknown interacting proteins were identified, with some interacting with both isoforms while others prefer only one. For example, v-ATPase a2 and eIF2Bδ interact with only KRas4b. Consistent with the v-ATPase interaction, KRas4b has a significant lysosomal localization. Comparing WT and constitutively active G12D mutant KRas, we examined differences in the effector proteins of the KRas4a and KRas4b. Interestingly, KRas4a binds RAF1 stronger than KRas4b. Correspondingly, KRas4a can better promote ERK phosphorylation and anchorage-independent growth than KRas4b. The interactome data represent a useful resource to understand the differences between KRas4a and KRas4b and to discover new function or regulation for them. A similar proteomic approach would be useful for studying numerous other small GTPases.
Collapse
Affiliation(s)
- Xiaoyu Zhang
- Departmeunt
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Ji Cao
- Departmeunt
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Seth P. Miller
- Departmeunt
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Hui Jing
- Departmeunt
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
| | - Hening Lin
- Departmeunt
of Chemistry and Chemical Biology, Cornell
University, Ithaca, New York 14853, United
States
- Howard
Hughes Medical Institute, Cornell University, Ithaca, New York 14853, United States
- Howard Hughes Medical Institute,
Cornell University, Ithaca, NY 14853. E-mail:
| |
Collapse
|
23
|
Wang Y, Rezey AC, Wang R, Tang DD. Role and regulation of Abelson tyrosine kinase in Crk-associated substrate/profilin-1 interaction and airway smooth muscle contraction. Respir Res 2018; 19:4. [PMID: 29304860 PMCID: PMC5756382 DOI: 10.1186/s12931-017-0709-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2017] [Accepted: 12/21/2017] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Airway smooth muscle contraction is critical for maintenance of appropriate airway tone, and has been implicated in asthma pathogenesis. Smooth muscle contraction requires an "engine" (myosin activation) and a "transmission system" (actin cytoskeletal remodeling). However, the mechanisms that control actin remodeling in smooth muscle are not fully elucidated. The adapter protein Crk-associated substrate (CAS) regulates actin dynamics and the contraction in smooth muscle. In addition, profilin-1 (Pfn-1) and Abelson tyrosine kinase (c-Abl) are also involved in smooth muscle contraction. The interplays among CAS, Pfn-1 and c-Abl in smooth muscle have not been previously investigated. METHODS The association of CAS with Pfn-1 in mouse tracheal rings was evaluated by co-immunoprecipitation. Tracheal rings from c-Abl conditional knockout mice were used to assess the roles of c-Abl in the protein-protein interaction and smooth muscle contraction. Decoy peptides were utilized to evaluate the importance of CAS/Pfn-1 coupling in smooth muscle contraction. RESULTS Stimulation with acetylcholine (ACh) increased the interaction of CAS with Pfn-1 in smooth muscle, which was regulated by CAS tyrosine phosphorylation and c-Abl. The CAS/Pfn-1 coupling was also modified by the phosphorylation of cortactin (a protein implicated in Pfn-1 activation). In addition, ACh activation promoted the spatial redistribution of CAS and Pfn-1 in smooth muscle cells, which was reduced by c-Abl knockdown. Inhibition of CAS/Pfn-1 interaction by a decoy peptide attenuated the ACh-induced actin polymerization and contraction without affecting myosin light chain phosphorylation. Furthermore, treatment with the Src inhibitor PP2 and the actin polymerization inhibitor latrunculin A attenuated the ACh-induced c-Abl tyrosine phosphorylation (an indication of c-Abl activation). CONCLUSIONS Our results suggest a novel activation loop in airway smooth muscle: c-Abl promotes the CAS/Pfn-1 coupling and actin polymerization, which conversely facilitates c-Abl activation. The positive feedback may render c-Abl in active state after contractile stimulation.
Collapse
Affiliation(s)
- Yinna Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA
| | - Alyssa C Rezey
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA
| | - Ruping Wang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA
| | - Dale D Tang
- Department of Molecular and Cellular Physiology, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA.
| |
Collapse
|
24
|
Abstract
Smooth muscle contraction requires both myosin activation and actin cytoskeletal remodeling. Actin cytoskeletal reorganization facilitates smooth muscle contraction by promoting force transmission between the contractile unit and the extracellular matrix (ECM), and by enhancing intercellular mechanical transduction. Myosin may be viewed to serve as an "engine" for smooth muscle contraction whereas the actin cytoskeleton may function as a "transmission system" in smooth muscle. The actin cytoskeleton in smooth muscle also undergoes restructuring upon activation with growth factors or the ECM, which controls smooth muscle cell proliferation and migration. Abnormal smooth muscle contraction, cell proliferation, and motility contribute to the development of vascular and pulmonary diseases. A number of actin-regulatory proteins including protein kinases have been discovered to orchestrate actin dynamics in smooth muscle. In particular, Abelson tyrosine kinase (c-Abl) is an important molecule that controls actin dynamics, contraction, growth, and motility in smooth muscle. Moreover, c-Abl coordinates the regulation of blood pressure and contributes to the pathogenesis of airway hyperresponsiveness and vascular/airway remodeling in vivo. Thus, c-Abl may be a novel pharmacological target for the development of new therapy to treat smooth muscle diseases such as hypertension and asthma.
Collapse
Affiliation(s)
- Dale D Tang
- Albany Medical College, Albany, NY, United States.
| |
Collapse
|
25
|
Feng ZH, Fang Y, Zhao LY, Lu J, Wang YQ, Chen ZH, Huang Y, Wei JH, Liang YP, Cen JJ, Pan YH, Liao B, Chen W, Luo JH. RIN1 promotes renal cell carcinoma malignancy by activating EGFR signaling through Rab25. Cancer Sci 2017; 108:1620-1627. [PMID: 28612496 PMCID: PMC5543468 DOI: 10.1111/cas.13297] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/01/2017] [Accepted: 06/08/2017] [Indexed: 12/30/2022] Open
Abstract
We previously identified the important role of RIN1 expression in the prognosis of clear cell renal cell carcinoma (ccRCC). The role of RIN1 in ccRCC malignancy and underlying molecular mechanisms remain unclear. Here we report that ccRCC cells and tissues expressed more RIN1 than normal controls. Gain‐of‐function and loss‐of‐function studies demonstrated that RIN1 enhanced ccRCC cell growth, migration and invasion abilities in vitro and promoted tumor growth and metastasis in vivo. Mechanistic studies revealed that RIN1 has an activating effect on EGFR signaling in ccRCC. In addition, we unveil Rab25, a critical GTPase in ccRCC malignancy, as a functional RIN1 interacting partner. Knockdown of Rab25 eliminated the augmentation of carcinoma cell proliferation, migration and invasion by ectopic RIN1. We also confirmed that RIN1 and Rab25 expression correlates with the overall‐survival of ccRCC patients from TCGA. These findings suggest that RIN1 plays an important oncogenic role in ccRCC malignancy by activation of EGFR signaling through interacting with Rab25, and RIN1 could be employed as an effective therapeutic target for ccRCC.
Collapse
Affiliation(s)
- Zi-Hao Feng
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yong Fang
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Liang-Yun Zhao
- Department of Urology, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Jun Lu
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yong-Qian Wang
- Department of Musculoskeletal Oncology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Zhen-Hua Chen
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yong Huang
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jin-Huan Wei
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan-Ping Liang
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun-Jie Cen
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yi-Hui Pan
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Bing Liao
- Department of Pathology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Wei Chen
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Jun-Hang Luo
- Department of Urology, Sun Yat-sen University, Guangzhou, Guangdong, China
| |
Collapse
|
26
|
Roy A, Ye J, Deng F, Wang QJ. Protein kinase D signaling in cancer: A friend or foe? Biochim Biophys Acta Rev Cancer 2017; 1868:283-294. [PMID: 28577984 DOI: 10.1016/j.bbcan.2017.05.008] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 05/26/2017] [Accepted: 05/27/2017] [Indexed: 12/18/2022]
Abstract
Protein kinase D is a family of evolutionarily conserved serine/threonine kinases that belongs to the Ca++/Calmodulin-dependent kinase superfamily. Signal transduction pathways mediated by PKD can be triggered by a variety of stimuli including G protein-coupled receptor agonists, growth factors, hormones, and cellular stresses. The regulatory mechanisms and physiological roles of PKD have been well documented including cell proliferation, survival, migration, angiogenesis, regulation of gene expression, and protein/membrane trafficking. However, its precise roles in disease progression, especially in cancer, remain elusive. A plethora of studies documented the cell- and tissue-specific expressions and functions of PKD in various cancer-associated biological processes, while the causes of the differential effects of PKD have not been thoroughly investigated. In this review, we have discussed the structural-functional properties, activation mechanisms, signaling pathways and physiological functions of PKD in the context of human cancer. Additionally, we have provided a comprehensive review of the reported tumor promoting or tumor suppressive functions of PKD in several major cancer types and discussed the discrepancies that have been raised on PKD as a major regulator of malignant transformation.
Collapse
Affiliation(s)
- Adhiraj Roy
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261, USA
| | - Jing Ye
- Department of Anesthesiology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Fan Deng
- Department of Cell Biology, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qiming Jane Wang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 15261, USA.
| |
Collapse
|
27
|
Han F, Jiang J, Ding J, Liu H, Xiao B, Shi Y. Change of Rin1 and Stathmin in the Animal Model of Traumatic Stresses. Front Behav Neurosci 2017; 11:62. [PMID: 28491025 PMCID: PMC5405079 DOI: 10.3389/fnbeh.2017.00062] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Accepted: 03/27/2017] [Indexed: 01/03/2023] Open
Abstract
The molecular mechanism of fear memory is poorly understood. Therefore, the pathogenesis of post-traumatic stress disorder (PTSD), whose symptom presentation can enhance fear memory, remains largely unclear. Recent studies with knockout animals have reported that Rin1 and stathmin regulate fear memory. Rin1 inhibits acquisition and promotes memory extinction, whereas stathmin regulates innate and basal fear. The aim of our study was to examine changes in the expression of Rin1 and stathmin in different animal models of stress, particluarly traumatic stress. We used three animal traumatic stresses: single prolonged stress (SPS, which is a rodent model of PTSD), an immobilization-stress (IM) and a Loud sound stress (LSS), to examine the change and uniqueness in Rin1/stathmin expression. Behavioral tests of SPS rats demonstrated increased anxiety and contextual fear-conditioning. They showed decreased long-term potentiation (LTP), as well as decreased stathmin and increased Rin1 expression in the hippocampus and the amygdala. Expression of the stathmin effector, tubulin, and downstream molecules Rin1, Rab5, and Abl, appeared to increase. Rin1 and EphA4 were endogenously coexpressed in primary neurons after SPS stimulation. IM rats exhibited increased anxiety behavior and enhanced fear-conditioning to contextual and auditory stimuli. Similar changes in expression of Rin1/stathmin were observed in IM rats whereas no changes were observed in rats exposed to a loud sound. These data suggest that changes in expression of the Rin1 and stathmin genes may be involved in rodents with SPS and IM stresses, which provide valuable insight into fear memories under abnormal conditions, particularly in PTSD.
Collapse
Affiliation(s)
- Fang Han
- Post-Traumatic Stress Disorder (PTSD) Laboratory, Department of Histology and Embryology, Basic Medical College, China Medical UniversityShenyang, China
| | - Jingzhi Jiang
- Post-Traumatic Stress Disorder (PTSD) Laboratory, Department of Histology and Embryology, Basic Medical College, China Medical UniversityShenyang, China
| | - Jinlan Ding
- Post-Traumatic Stress Disorder (PTSD) Laboratory, Department of Histology and Embryology, Basic Medical College, China Medical UniversityShenyang, China
| | - Hong Liu
- Post-Traumatic Stress Disorder (PTSD) Laboratory, Department of Histology and Embryology, Basic Medical College, China Medical UniversityShenyang, China
| | - Bing Xiao
- Post-Traumatic Stress Disorder (PTSD) Laboratory, Department of Histology and Embryology, Basic Medical College, China Medical UniversityShenyang, China
| | - Yuxiu Shi
- Post-Traumatic Stress Disorder (PTSD) Laboratory, Department of Histology and Embryology, Basic Medical College, China Medical UniversityShenyang, China
| |
Collapse
|
28
|
Szíber Z, Liliom H, Morales COO, Ignácz A, Rátkai AE, Ellwanger K, Link G, Szűcs A, Hausser A, Schlett K. Ras and Rab interactor 1 controls neuronal plasticity by coordinating dendritic filopodial motility and AMPA receptor turnover. Mol Biol Cell 2017; 28:285-295. [PMID: 27852895 PMCID: PMC5231897 DOI: 10.1091/mbc.e16-07-0526] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2016] [Revised: 10/28/2016] [Accepted: 11/10/2016] [Indexed: 01/13/2023] Open
Abstract
Ras and Rab interactor 1 (RIN1) is predominantly expressed in the nervous system. RIN1-knockout animals have deficits in latent inhibition and fear extinction in the amygdala, suggesting a critical role for RIN1 in preventing the persistence of unpleasant memories. At the molecular level, RIN1 signals through Rab5 GTPases that control endocytosis of cell-surface receptors and Abl nonreceptor tyrosine kinases that participate in actin cytoskeleton remodeling. Here we report that RIN1 controls the plasticity of cultured mouse hippocampal neurons. Our results show that RIN1 affects the morphology of dendritic protrusions and accelerates dendritic filopodial motility through an Abl kinase-dependent pathway. Lack of RIN1 results in enhanced mEPSC amplitudes, indicating an increase in surface AMPA receptor levels compared with wild-type neurons. We further provide evidence that the Rab5 GEF activity of RIN1 regulates surface GluA1 subunit endocytosis. Consequently loss of RIN1 blocks surface AMPA receptor down-regulation evoked by chemically induced long-term depression. Our findings indicate that RIN1 destabilizes synaptic connections and is a key player in postsynaptic AMPA receptor endocytosis, providing multiple ways of negatively regulating memory stabilization during neuronal plasticity.
Collapse
Affiliation(s)
- Zsófia Szíber
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Hanna Liliom
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | | | - Attila Ignácz
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Anikó Erika Rátkai
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
| | - Kornelia Ellwanger
- Institute of Cell Biology and Immunology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Gisela Link
- Institute of Cell Biology and Immunology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Attila Szűcs
- MTA-ELTE-NAP B Neuronal Cell Biology Research Group, H-1117 Budapest, Hungary
| | - Angelika Hausser
- Institute of Cell Biology and Immunology, University of Stuttgart, D-70569 Stuttgart, Germany
- Stuttgart Research Center Systems Biology, University of Stuttgart, D-70569 Stuttgart, Germany
| | - Katalin Schlett
- Department of Physiology and Neurobiology, Eötvös Loránd University, H-1117 Budapest, Hungary
- MTA-ELTE-NAP B Neuronal Cell Biology Research Group, H-1117 Budapest, Hungary
| |
Collapse
|
29
|
Abstract
The Abelson tyrosine kinases were initially identified as drivers of leukemia in mice and humans. The Abl family kinases Abl1 and Abl2 regulate diverse cellular processes during development and normal homeostasis, and their functions are subverted during inflammation, cancer and other pathologies. Abl kinases can be activated by multiple stimuli leading to cytoskeletal reorganization required for cell morphogenesis, motility, adhesion and polarity. Depending on the cellular context, Abl kinases regulate cell survival and proliferation. Emerging data support important roles for Abl kinases in pathologies linked to inflammation. Among these are neurodegenerative diseases and inflammatory pathologies. Unexpectedly, Abl kinases have also been identified as important players in mammalian host cells during microbial pathogenesis. Thus, the use of Abl kinase inhibitors might prove to be effective in the treatment of pathologies beyond leukemia and solid tumors. In this Cell Science at a Glance article and in the accompanying poster, we highlight the emerging roles of Abl kinases in the regulation of cellular processes in normal cells and diverse pathologies ranging from cancer to microbial pathogenesis.
Collapse
Affiliation(s)
- Aaditya Khatri
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Jun Wang
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| | - Ann Marie Pendergast
- Department of Pharmacology & Cancer Biology, Duke University School of Medicine, Durham, NC 27710, USA
| |
Collapse
|
30
|
Matthews JD, Sumagin R, Hinrichs B, Nusrat A, Parkos CA, Neish AS. Redox control of Cas phosphorylation requires Abl kinase in regulation of intestinal epithelial cell spreading and migration. Am J Physiol Gastrointest Liver Physiol 2016; 311:G458-65. [PMID: 27418680 PMCID: PMC5076010 DOI: 10.1152/ajpgi.00189.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 07/07/2016] [Indexed: 01/31/2023]
Abstract
Intestinal wounds often occur during inflammatory and ischemic disorders of the gut. To repair damage, intestinal epithelial cells must rapidly spread and migrate to cover exposed lamina propria, events that involve redox signaling. Wounds are subject to extensive redox alterations, particularly resulting from H2O2 produced in the adjacent tissue by both the epithelium and emigrating leukocytes. The mechanisms governing these processes are not fully understood, particularly at the level of protein signaling. Crk-associated substrate, or Cas, is an important signaling protein known to modulate focal adhesion and actin cytoskeletal dynamics, whose association with Crk is regulated by Abl kinase, a ubiquitously expressed tyrosine kinase. We sought to evaluate the role of Abl regulation of Cas at the level of cell spreading and migration during wound closure. As a model, we used intestinal epithelial cells exposed to H2O2 or scratch wounded to assess the Abl-Cas signaling pathway. We characterized the localization of phosphorylated Cas in mouse colonic epithelium under baseline conditions and after biopsy wounding the mucosa. Analysis of actin and focal adhesion dynamics by microscopy or biochemical analysis after manipulating Abl kinase revealed that Abl controls redox-dependent Cas phosphorylation and localization to influence cell spreading and migration. Collectively, our data shed new light on redox-sensitive protein signaling modules controlling intestinal wound healing.
Collapse
Affiliation(s)
- Jason D. Matthews
- 1Emory University, Department of Experimental Pathology, Atlanta, Georgia;
| | - Ronen Sumagin
- 2Northwestern University, Department of Pathology, Chicago, Illinois;
| | - Benjamin Hinrichs
- 1Emory University, Department of Experimental Pathology, Atlanta, Georgia;
| | - Asma Nusrat
- 3University of Michigan, Department of Pathology, Ann Arbor, Michigan
| | - Charles A. Parkos
- 3University of Michigan, Department of Pathology, Ann Arbor, Michigan
| | - Andrew S. Neish
- 1Emory University, Department of Experimental Pathology, Atlanta, Georgia;
| |
Collapse
|
31
|
Molecular Background of miRNA Role in Asthma and COPD: An Updated Insight. BIOMED RESEARCH INTERNATIONAL 2016; 2016:7802521. [PMID: 27376086 PMCID: PMC4916273 DOI: 10.1155/2016/7802521] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Revised: 04/29/2016] [Accepted: 05/15/2016] [Indexed: 12/14/2022]
Abstract
Inflammatory airway diseases are a significant health problems requiring new approaches to the existing therapies and addressing fundamental issues. Difficulties in developing effective therapeutic strategies might be caused by lack of understanding of their exact molecular mechanism. MicroRNAs (miRNAs) are a class of regulators that already revolutionized the view of gene expression regulation. A cumulating number of investigations show a pivotal role of miRNAs in the pathogenesis of asthma, chronic obstructive pulmonary disease (COPD), or airway remodeling through the regulation of many pathways involved in their pathogenesis. Expression changes of several miRNAs have also been found to play a role in the development and/or improvement in asthma or COPD. Still, relatively little is known about the role of miRNAs in inflammatory disorders. The microRNA profiles may differ depending on the cell type or antigen-presenting cell. Based on the newest literature, this review discusses the current knowledge concerning miRNA contribution and influence on lung inflammation and chosen inflammatory airway diseases: asthma and COPD.
Collapse
|
32
|
Gerarduzzi C, He Q, Zhai B, Antoniou J, Di Battista JA. Prostaglandin E2-Dependent Phosphorylation of RAS Inhibition 1 (RIN1) at Ser 291 and 292 Inhibits Transforming Growth Factor-β-Induced RAS Activation Pathway in Human Synovial Fibroblasts: Role in Cell Migration. J Cell Physiol 2016; 232:202-15. [PMID: 27137893 DOI: 10.1002/jcp.25412] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2016] [Accepted: 04/28/2016] [Indexed: 12/27/2022]
Abstract
Prostaglandin E2 (PGE2 )-stimulated G-protein-coupled receptor (GPCR) activation inhibits pro-fibrotic TGFβ-dependent stimulation of human fibroblast to myofibroblast transition (FMT), though the precise molecular mechanisms are not fully understood. In the present study, we describe the PGE2 -dependent suppression and reversal of TGFβ-induced events such as α-sma expression, stress fiber formation, and Ras/Raf/ERK/MAPK pathway-dependent activation of myofibroblast migration. In order to elucidate post-ligand-receptor signaling pathways, we identified a predominant PKA phosphorylation motif profile in human primary fibroblasts after treatment with exogenous PGE2 (EC50 30 nM, Vmax 100 nM), mimicked by the adenyl cyclase activator forskolin (EC50 5 μM, Vmax 10 μM). We used a global phosphoproteomic approach to identify a 2.5-fold difference in PGE2 -induced phosphorylation of proteins containing the PKA motif. Deducing the signaling pathway of our migration data, we identified Ras inhibitor 1 (RIN1) as a substrate, whereby PGE2 induced its phosphorylation at Ser291 and at Ser292 by a 5.4- and 4.8-fold increase, respectively. In a series of transient and stable over expression studies in HEK293T and HeLa cells using wild-type (wt) and mutant RIN1 (Ser291/292Ala) or Ras constructs and siRNA knock-down experiments, we showed that PGE2 -dependent phosphorylation of RIN1 resulted in the abrogation of TGFβ-induced Ras/Raf signaling activation and subsequent downstream blockade of cellular migration, emphasizing the importance of such phosphosites in PGE2 suppression of wound closure. Overexpression experiments in tandem with pull-down assays indicated that specific Ser291/292 phosphorylation of RIN1 favored binding to activated Ras. In principal, understanding PGE2 -GPCR activated signaling pathways mitigating TGFβ-induced fibrosis may lead to more evidence-based treatments against the disease. J. Cell. Physiol. 232: 202-215, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Casimiro Gerarduzzi
- Renal Division, Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts. .,Departments of Experimental Medicine, McGill University, Montréal, QC, Canada.
| | - QingWen He
- Departments of Medicine and Experimental Medicine, McGill University, Montréal, QC, Canada
| | - Beibei Zhai
- Departments of Experimental Medicine, McGill University, Montréal, QC, Canada
| | - John Antoniou
- Department of Orthopaedic Surgery, Jewish General Hospital, Montréal, QC, Canada
| | - John A Di Battista
- Departments of Medicine and Experimental Medicine, McGill University, Montréal, QC, Canada
| |
Collapse
|
33
|
Inverse regulation of bridging integrator 1 and BCR-ABL1 in chronic myeloid leukemia. Tumour Biol 2016; 37:217-25. [PMID: 26194865 DOI: 10.1007/s13277-015-3772-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Accepted: 07/07/2015] [Indexed: 12/14/2022] Open
Abstract
Endocytosis is the major regulator process of tyrosine kinase receptor (RTK) functional activities. Bridging integrator 1 (BIN1) is a key protein involved in RTK intracellular trafficking. Here, we report, by studying 34 patients with chronic myeloid leukemia (CML) at diagnosis, that BIN1 gene is downregulated in CML as compared to healthy controls, suggesting an altered endocytosis of RTKs. Rab interactor 1 (RIN1), an activator of BIN1, displayed a similar behavior. Treatment of 57 patients by tyrosine kinase inhibitors caused, along with BCR-ABL1 inactivation, an increase of BIN1 and RIN1 expression, potentially restoring endocytosis. There was a significant inverse correlation between BIN1-RIN1 and BCR-ABL1 expression. In vitro experiments on both CML and nontumorigenic cell lines treated with Imatinib confirmed these results. In order to provide another proof in favor of BIN1 and RIN1 endocytosis function in CML, we demonstrated that Imatinib induced, in K562 cell line, BIN1-RIN1 upregulation accompanied by a parallel AXL receptor internalization into cytoplasmic compartment. This study shows a novel deregulated mechanism in CML patients, indicating BIN1 and RIN1 as players in the maintenance of the abnormal RTK signaling in this hematological disease.
Collapse
|
34
|
Tang DD. Critical role of actin-associated proteins in smooth muscle contraction, cell proliferation, airway hyperresponsiveness and airway remodeling. Respir Res 2015; 16:134. [PMID: 26517982 PMCID: PMC4628321 DOI: 10.1186/s12931-015-0296-1] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Accepted: 10/22/2015] [Indexed: 01/16/2023] Open
Abstract
Asthma is characterized by airway hyperresponsiveness and airway remodeling, which are largely attributed to increased airway smooth muscle contractility and cell proliferation. It is known that both chemical and mechanical stimulation regulates smooth muscle contraction. Recent studies suggest that contractile activation and mechanical stretch induce actin cytoskeletal remodeling in smooth muscle. However, the mechanisms that control actin cytoskeletal reorganization are not completely elucidated. This review summarizes our current understanding regarding how actin-associated proteins may regulate remodeling of the actin cytoskeleton in airway smooth muscle. In particular, there is accumulating evidence to suggest that Abelson tyrosine kinase (Abl) plays a critical role in regulating airway smooth muscle contraction and cell proliferation in vitro, and airway hyperresponsiveness and remodeling in vivo. These studies indicate that Abl may be a novel target for the development of new therapy to treat asthma.
Collapse
Affiliation(s)
- Dale D Tang
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue, MC-8, Albany, NY, 12208, USA.
| |
Collapse
|
35
|
Liao G, Panettieri RA, Tang DD. MicroRNA-203 negatively regulates c-Abl, ERK1/2 phosphorylation, and proliferation in smooth muscle cells. Physiol Rep 2015; 3:3/9/e12541. [PMID: 26400984 PMCID: PMC4600385 DOI: 10.14814/phy2.12541] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The nonreceptor tyrosine kinase c-Abl has a role in regulating smooth muscle cell proliferation, which contributes to the development of airway remodeling in chronic asthma. MicroRNAs (miRs) are small noncoding RNA molecules that regulate gene expression by binding to complementary sequences in the 3′ untranslated regions (3′ UTR) of target mRNAs. Previous analysis suggests that miR-203 is able to bind to the 3′ UTR of human c-Abl mRNA. In this report, treatment with miR-203 attenuated the expression of c-Abl mRNA and protein in human airway smooth muscle (HASM) cells. Furthermore, transfection with an miR-203 inhibitor enhanced the expression of c-Abl at mRNA and protein levels in HASM cells. Treatment with platelet-derived growth factor (PDGF) induced the proliferation and ERK1/2 phosphorylation in HASM cells. Exposure to miR-203 attenuated the PDGF-stimulated proliferation and ERK1/2 phosphorylation in HASM cells. The expression of c-Abl at protein and mRNA levels was higher in asthmatic HASM cells, whereas the level of miR-203 was reduced in asthmatic HASM cells as compared to control HASM cells. Taken together, our present results suggest that miR-203 is a negative regulator of c-Abl expression in smooth muscle cells. miR-203 regulates smooth muscle cell proliferation by controlling c-Abl expression, which in turn modulates the activation of ERK1/2.
Collapse
Affiliation(s)
- Guoning Liao
- The Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | | | - Dale D Tang
- The Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| |
Collapse
|
36
|
Ting PY, Johnson CW, Fang C, Cao X, Graeber TG, Mattos C, Colicelli J. Tyrosine phosphorylation of RAS by ABL allosterically enhances effector binding. FASEB J 2015; 29:3750-61. [PMID: 25999467 PMCID: PMC4550377 DOI: 10.1096/fj.15-271510] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Accepted: 05/11/2015] [Indexed: 01/07/2023]
Abstract
RAS proteins are signal transduction gatekeepers that mediate cell growth, survival, and differentiation through interactions with multiple effector proteins. The RAS effector RAS- and RAB-interacting protein 1 (RIN1) activates its own downstream effectors, the small GTPase RAB5 and the tyrosine kinase Abelson tyrosine-protein kinase (ABL), to modulate endocytosis and cytoskeleton remodeling. To identify ABL substrates downstream of RAS-to-RIN1 signaling, we examined human HEK293T cells overexpressing components of this pathway. Proteomic analysis revealed several novel phosphotyrosine peptides, including Harvey rat sarcoma oncogene (HRAS)-pTyr(137). Here we report that ABL phosphorylates tyrosine 137 of H-, K-, and NRAS. Increased RIN1 levels enhanced HRAS-Tyr(137) phosphorylation by nearly 5-fold, suggesting that RAS-stimulated RIN1 can drive ABL-mediated RAS modification in a feedback circuit. Tyr(137) is well conserved among RAS orthologs and is part of a transprotein H-bond network. Crystal structures of HRAS(Y137F) and HRAS(Y137E) revealed conformation changes radiating from the mutated residue. Although consistent with Tyr(137) participation in allosteric control of HRAS function, the mutations did not alter intrinsic GTP hydrolysis rates in vitro. HRAS-Tyr(137) phosphorylation enhanced HRAS signaling capacity in cells, however, as reflected by a 4-fold increase in the association of phosphorylated HRAS(G12V) with its effector protein RAF proto-oncogene serine/threonine protein kinase 1 (RAF1). These data suggest that RAS phosphorylation at Tyr(137) allosterically alters protein conformation and effector binding, providing a mechanism for effector-initiated modulation of RAS signaling.
Collapse
Affiliation(s)
| | | | | | | | | | | | - John Colicelli
- Correspondence: University of California, Los Angeles, Box 951737, 350C BSRB, Los Angeles, CA 90095-1737, USA. E-mail:
| |
Collapse
|
37
|
Noach-Hirsh M, Nevenzal H, Glick Y, Chorni E, Avrahami D, Barbiro-Michaely E, Gerber D, Tzur A. Integrated Microfluidics for Protein Modification Discovery. Mol Cell Proteomics 2015; 14:2824-32. [PMID: 26276765 DOI: 10.1074/mcp.m115.053512] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2015] [Indexed: 12/23/2022] Open
Abstract
Protein post-translational modifications mediate dynamic cellular processes with broad implications in human disease pathogenesis. There is a large demand for high-throughput technologies supporting post-translational modifications research, and both mass spectrometry and protein arrays have been successfully utilized for this purpose. Protein arrays override the major limitation of target protein abundance inherently associated with MS analysis. This technology, however, is typically restricted to pre-purified proteins spotted in a fixed composition on chips with limited life-time and functionality. In addition, the chips are expensive and designed for a single use, making complex experiments cost-prohibitive. Combining microfluidics with in situ protein expression from a cDNA microarray addressed these limitations. Based on this approach, we introduce a modular integrated microfluidic platform for multiple post-translational modifications analysis of freshly synthesized protein arrays (IMPA). The system's potency, specificity and flexibility are demonstrated for tyrosine phosphorylation and ubiquitination in quasicellular environments. Unlimited by design and protein composition, and relying on minute amounts of biological material and cost-effective technology, this unique approach is applicable for a broad range of basic, biomedical and biomarker research.
Collapse
Affiliation(s)
- Meirav Noach-Hirsh
- From the ‡The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Hadas Nevenzal
- From the ‡The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Yair Glick
- From the ‡The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Evelin Chorni
- From the ‡The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Dorit Avrahami
- From the ‡The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Efrat Barbiro-Michaely
- From the ‡The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Doron Gerber
- From the ‡The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Amit Tzur
- From the ‡The Mina and Everard Goodman Faculty of Life Sciences and the Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
38
|
Ting PY, Damoiseaux R, Titz B, Bradley KA, Graeber TG, Fernández-Vega V, Bannister TD, Chase P, Nair R, Scampavia L, Hodder P, Spicer TP, Colicelli J. Identification of small molecules that disrupt signaling between ABL and its positive regulator RIN1. PLoS One 2015; 10:e0121833. [PMID: 25811598 PMCID: PMC4374917 DOI: 10.1371/journal.pone.0121833] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Accepted: 02/04/2015] [Indexed: 12/20/2022] Open
Abstract
Constitutively active BCR-ABL kinase fusions are causative mutations in the pathogenesis of hematopoietic neoplasias including chronic myelogenous leukemia (CML). Although these fusions have been successfully targeted with kinase inhibitors, drug-resistance and relapse continue to limit long-term survival, highlighting the need for continued innovative drug discovery. We developed a time-resolved Förster resonance energy transfer (TR-FRET) -based assay to identify compounds that disrupt stimulation of the ABL kinase by blocking its ability to bind the positive regulator RIN1. This assay was used in a high throughput screen (HTS) of two small molecule libraries totaling 444,743 compounds. 708 confirmed hits were counter-screened to eliminate off-target inhibitors and reanalyzed to prioritize compounds with IC50 values below 10 μM. The CML cell line K562 was then used to identify five compounds that decrease MAPK1/3 phosphorylation, which we determined to be an indicator of RIN1-dependent ABL signaling. One of these compounds is a thiadiazole, and the other four are structurally related acyl piperidine amides. Notably, these five compounds lower cellular BCR-ABL1 kinase activity by blocking a positive regulatory interaction rather than directly inhibiting ABL catalytic function.
Collapse
Affiliation(s)
- Pamela Y. Ting
- Molecular Biology Institute, Jonsson Comprehensive Cancer Center, Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
| | - Robert Damoiseaux
- California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Björn Titz
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, University of California at Los Angeles Metabolomics and Proteomics Center, California NanoSystems Institute and Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - Kenneth A. Bradley
- Department of Microbiology, Immunology and Molecular Genetics, Jonsson Comprehensive Cancer Center, and California NanoSystems Institute, University of California Los Angeles, Los Angeles, California, United States of America
| | - Thomas G. Graeber
- Department of Molecular and Medical Pharmacology, Crump Institute for Molecular Imaging, University of California at Los Angeles Metabolomics and Proteomics Center, California NanoSystems Institute and Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, California, United States of America
| | - Virneliz Fernández-Vega
- The Scripps Research Institute-FL, Lead Identification, Translational Research Institute, Jupiter, Florida, United States of America
| | - Thomas D. Bannister
- The Scripps Research Institute-FL, Department of Chemistry, Translational Research Institute, Jupiter, Florida, United States of America
| | - Peter Chase
- The Scripps Research Institute-FL, Lead Identification, Translational Research Institute, Jupiter, Florida, United States of America
| | - Reji Nair
- The Scripps Research Institute-FL, Department of Chemistry, Translational Research Institute, Jupiter, Florida, United States of America
| | - Louis Scampavia
- The Scripps Research Institute-FL, Lead Identification, Translational Research Institute, Jupiter, Florida, United States of America
| | - Peter Hodder
- The Scripps Research Institute-FL, Lead Identification, Translational Research Institute, Jupiter, Florida, United States of America
| | - Timothy P. Spicer
- The Scripps Research Institute-FL, Lead Identification, Translational Research Institute, Jupiter, Florida, United States of America
| | - John Colicelli
- Molecular Biology Institute, Jonsson Comprehensive Cancer Center, Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
39
|
Vallet M, Soares DC, Wani S, Sophocleous A, Warner J, Salter DM, Ralston SH, Albagha OME. Targeted sequencing of the Paget's disease associated 14q32 locus identifies several missense coding variants in RIN3 that predispose to Paget's disease of bone. Hum Mol Genet 2015; 24:3286-95. [PMID: 25701875 PMCID: PMC4424954 DOI: 10.1093/hmg/ddv068] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 02/16/2015] [Indexed: 11/25/2022] Open
Abstract
Paget's disease of bone (PDB) is a common disorder with a strong genetic component characterized by increased but disorganized bone remodelling. Previous genome-wide association studies identified a locus on chromosome 14q32 tagged by rs10498635 which was significantly associated with susceptibility to PDB in several European populations. Here we conducted fine-mapping and targeted sequencing of the candidate locus to identify possible functional variants. Imputation in 741 PDB patients and 2699 controls confirmed that the association was confined to a 60 kb region in the RIN3 gene and conditional analysis adjusting for rs10498635 identified no new independent signals. Sequencing of the RIN3 gene identified a common missense variant (p.R279C) that was strongly associated with the disease (OR = 0.64; P = 1.4 × 10−9), and was in strong linkage disequilibrium with rs10498635. A further 13 rare missense variants were identified, seven of which were novel and detected only in PDB cases. When combined, these rare variants were over-represented in cases compared with controls (OR = 3.72; P = 8.9 × 10−10). Most rare variants were located in a region that encodes a proline-rich, intrinsically disordered domain of the protein and many were predicted to be pathogenic. RIN3 was expressed in bone tissue and its expression level was ∼10-fold higher in osteoclasts compared with osteoblasts. We conclude that susceptibility to PDB at the 14q32 locus is mediated by a combination of common and rare coding variants in RIN3 and suggest that RIN3 may contribute to PDB susceptibility by affecting osteoclast function.
Collapse
Affiliation(s)
- Mahéva Vallet
- Rheumatology and Bone Disease Section, Centre for Genomic & Experimental Medicine
| | - Dinesh C Soares
- MRC Human Genetics Unit and Centre for Genomic & Experimental Medicine and
| | - Sachin Wani
- Rheumatology and Bone Disease Section, Centre for Genomic & Experimental Medicine
| | - Antonia Sophocleous
- Rheumatology and Bone Disease Section, Centre for Genomic & Experimental Medicine
| | - Jon Warner
- South East Scotland Clinical Genetics Service, Centre for Genomic & Experimental Medicine, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Donald M Salter
- Rheumatology and Bone Disease Section, Centre for Genomic & Experimental Medicine
| | - Stuart H Ralston
- Rheumatology and Bone Disease Section, Centre for Genomic & Experimental Medicine
| | - Omar M E Albagha
- Rheumatology and Bone Disease Section, Centre for Genomic & Experimental Medicine
| |
Collapse
|
40
|
Belle L, Ali N, Lonic A, Li X, Paltridge JL, Roslan S, Herrmann D, Conway JRW, Gehling FK, Bert AG, Crocker LA, Tsykin A, Farshid G, Goodall GJ, Timpson P, Daly RJ, Khew-Goodall Y. The tyrosine phosphatase PTPN14 (Pez) inhibits metastasis by altering protein trafficking. Sci Signal 2015; 8:ra18. [PMID: 25690013 DOI: 10.1126/scisignal.2005547] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Factors secreted by tumor cells shape the local microenvironment to promote invasion and metastasis, as well as condition the premetastatic niche to enable secondary-site colonization and growth. In addition to this secretome, tumor cells have increased abundance of growth-promoting receptors at the cell surface. We found that the tyrosine phosphatase PTPN14 (also called Pez, which is mutated in various cancers) suppressed metastasis by reducing intracellular protein trafficking through the secretory pathway. Knocking down PTPN14 in tumor cells or injecting the peritoneum of mice with conditioned medium from PTPN14-deficient cell cultures promoted the growth and metastasis of breast cancer xenografts. Loss of catalytically functional PTPN14 increased the secretion of growth factors and cytokines, such as IL-8 (interleukin-8), and increased the abundance of EGFR (epidermal growth factor receptor) at the cell surface of breast cancer cells and of FLT4 (vascular endothelial growth factor receptor 3) at the cell surface of primary lymphatic endothelial cells. We identified RIN1 (Ras and Rab interactor 1) and PRKCD (protein kinase C-δ) as binding partners and substrates of PTPN14. Similar to cells overexpressing PTPN14, receptor trafficking to the cell surface was inhibited in cells that lacked PRKCD or RIN1 or expressed a nonphosphorylatable RIN1 mutant, and cytokine secretion was decreased in cells treated with PRKCD inhibitors. Invasive breast cancer tissue had decreased expression of PTPN14, and patient survival was worse when tumors had increased expression of the genes encoding RIN1 or PRKCD. Thus, PTPN14 prevents metastasis by restricting the trafficking of both soluble and membrane-bound proteins.
Collapse
Affiliation(s)
- Leila Belle
- Centre for Cancer Biology, an Alliance between SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia. Discipline of Biochemistry, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Naveid Ali
- Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Ana Lonic
- Centre for Cancer Biology, an Alliance between SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia. Department of Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Xiaochun Li
- Centre for Cancer Biology, an Alliance between SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia
| | - James L Paltridge
- Centre for Cancer Biology, an Alliance between SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia. Discipline of Biochemistry, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Suraya Roslan
- Centre for Cancer Biology, an Alliance between SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia
| | - David Herrmann
- Cancer Research Program, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - James R W Conway
- Cancer Research Program, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Freya K Gehling
- Centre for Cancer Biology, an Alliance between SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia
| | - Andrew G Bert
- Centre for Cancer Biology, an Alliance between SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia
| | - Lesley A Crocker
- Centre for Cancer Biology, an Alliance between SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia
| | - Anna Tsykin
- Centre for Cancer Biology, an Alliance between SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia
| | - Gelareh Farshid
- Division of Tissue Pathology, SA Pathology, Adelaide, South Australia 5000, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, an Alliance between SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia. Department of Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia. School and Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Paul Timpson
- Cancer Research Program, The Kinghorn Cancer Centre, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia
| | - Roger J Daly
- Cancer Research Program, Garvan Institute of Medical Research, Darlinghurst, New South Wales 2010, Australia. Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | - Yeesim Khew-Goodall
- Centre for Cancer Biology, an Alliance between SA Pathology and University of South Australia, Adelaide, South Australia 5000, Australia. Discipline of Biochemistry, School of Molecular and Biomedical Science, The University of Adelaide, Adelaide, South Australia 5005, Australia. Department of Medicine, The University of Adelaide, Adelaide, South Australia 5005, Australia.
| |
Collapse
|
41
|
Wang T, Cleary RA, Wang R, Tang DD. Glia maturation factor-γ phosphorylation at Tyr-104 regulates actin dynamics and contraction in human airway smooth muscle. Am J Respir Cell Mol Biol 2015; 51:652-9. [PMID: 24818551 DOI: 10.1165/rcmb.2014-0125oc] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Actin dynamics plays an essential role in regulating airway smooth muscle contraction. The mechanisms that regulate actin dynamics in smooth muscle are not completely understood. Glia maturation factor (GMF) is a protein that has been reported to inhibit actin nucleation and to induce actin network debranching in vitro. The role of GMF in human smooth muscle cells and tissues has not been investigated. In this study, knockdown of GMF-γ by RNA interference enhanced actin polymerization and contraction in human airway smooth muscle (HASM) cells and tissues without affecting myosin phosphorylation (another important biochemical change during contractile activation). Activation of HASM cells and tissues with acetylcholine induced dissociation of GMF-γ from Arp2 of the Arp2/3 complex. Acetylcholine stimulation also increased GMF-γ phosphorylation at Tyr-104. GMF-γ phosphorylation at this residue was mediated by c-Abl tyrosine kinase. The GMF-γ mutant Y104F (phenylalanine substitution at Tyr-104) had higher association with Arp2 in HASM cells upon contractile activation. Furthermore, expression of mutant Y104F GMF-γ attenuated actin polymerization and contraction in smooth muscle. Thus, we propose a novel mechanism for the regulation of actin dynamics and smooth muscle contraction. In unstimulated smooth muscle, GMF-γ binds to the Arp2/3 complex, which induces actin disassembly and retains lower levels of F-actin. Upon contractile stimulation, phosphorylation at Tyr-104 mediated by c-Abl tyrosine kinase leads to the dissociation of GMF-γ from Arp2/3, by which GMF-γ no longer induces actin disassembly. Reduced actin disassembly renders F-actin in higher level, which facilitates smooth muscle contraction.
Collapse
Affiliation(s)
- Tao Wang
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | | | | | | |
Collapse
|
42
|
Bracken CP, Li X, Wright JA, Lawrence DM, Pillman KA, Salmanidis M, Anderson MA, Dredge BK, Gregory PA, Tsykin A, Neilsen C, Thomson DW, Bert AG, Leerberg JM, Yap AS, Jensen KB, Khew-Goodall Y, Goodall GJ. Genome-wide identification of miR-200 targets reveals a regulatory network controlling cell invasion. EMBO J 2014; 33:2040-56. [PMID: 25069772 PMCID: PMC4195771 DOI: 10.15252/embj.201488641] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 06/06/2014] [Accepted: 06/12/2014] [Indexed: 12/14/2022] Open
Abstract
The microRNAs of the miR-200 family maintain the central characteristics of epithelia and inhibit tumor cell motility and invasiveness. Using the Ago-HITS-CLIP technology for transcriptome-wide identification of direct microRNA targets in living cells, along with extensive validation to verify the reliability of the approach, we have identified hundreds of miR-200a and miR-200b targets, providing insights into general features of miRNA target site selection. Gene ontology analysis revealed a predominant effect of miR-200 targets in widespread coordinate control of actin cytoskeleton dynamics. Functional characterization of the miR-200 targets indicates that they constitute subnetworks that underlie the ability of cancer cells to migrate and invade, including coordinate effects on Rho-ROCK signaling, invadopodia formation, MMP activity, and focal adhesions. Thus, the miR-200 family maintains the central characteristics of the epithelial phenotype by acting on numerous targets at multiple levels, encompassing both cytoskeletal effectors that control actin filament organization and dynamics, and upstream signals that locally regulate the cytoskeleton to maintain cell morphology and prevent cell migration.
Collapse
Affiliation(s)
- Cameron P Bracken
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Xiaochun Li
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Josephine A Wright
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - David M Lawrence
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Katherine A Pillman
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Marika Salmanidis
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Matthew A Anderson
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - B Kate Dredge
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Philip A Gregory
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia
| | - Anna Tsykin
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Corine Neilsen
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Daniel W Thomson
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Andrew G Bert
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia
| | - Joanne M Leerberg
- Division of Molecular Cell Biology, Institute for Molecular Bioscience University of Queensland, St Lucia, Brisbane, Qld, Australia
| | - Alpha S Yap
- Division of Molecular Cell Biology, Institute for Molecular Bioscience University of Queensland, St Lucia, Brisbane, Qld, Australia
| | - Kirk B Jensen
- School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Yeesim Khew-Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| | - Gregory J Goodall
- Centre for Cancer Biology, SA Pathology and University of South Australia, Adelaide, SA, Australia Discipline of Medicine, University of Adelaide, Adelaide, SA, Australia School of Molecular and Biomedical Science, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
43
|
Balaji K, French CT, Miller JF, Colicelli J. The RAB5-GEF function of RIN1 regulates multiple steps during Listeria monocytogenes infection. Traffic 2014; 15:1206-18. [PMID: 25082076 DOI: 10.1111/tra.12204] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2014] [Revised: 07/29/2014] [Accepted: 07/29/2014] [Indexed: 12/15/2022]
Abstract
Listeria monocytogenes is a food-borne pathogenic bacterium that invades intestinal epithelial cells through a phagocytic pathway that relies on the activation of host cell RAB5 GTPases. Listeria monocytogenes must subsequently inhibit RAB5, however, in order to escape lysosome-mediated destruction. Relatively little is known about upstream RAB5 regulators during L. monocytogenes entry and phagosome escape processes in epithelial cells. Here we identify RIN1, a RAS effector and RAB5-directed guanine nucleotide exchange factor (GEF), as a host cell factor in L. monocytogenes infection. RIN1 is rapidly engaged following L. monocytogenes infection and is required for efficient invasion of intestinal epithelial cells. RIN1-mediated RAB5 activation later facilitates the fusion of phagosomes with lysosomes, promoting clearance of bacteria from the host cell. These results suggest that RIN1 is a host cell regulator that performs counterbalancing functions during early and late stages of L. monocytogenes infection, ultimately favoring pathogen clearance.
Collapse
Affiliation(s)
- Kavitha Balaji
- Department of Biological Chemistry, Jonsson Comprehensive Cancer Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | | | | | | |
Collapse
|
44
|
Chen S, Tang DD. c-Abl tyrosine kinase regulates cytokinesis of human airway smooth muscle cells. Am J Respir Cell Mol Biol 2014; 50:1076-83. [PMID: 24392933 DOI: 10.1165/rcmb.2013-0438oc] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Cytokinesis is a critical step of airway smooth muscle cell division that plays an essential role in the development and homeostasis of the respiratory system, as well as the progression of airway remodeling. The mechanisms that regulate smooth muscle cytokinesis are not fully understood. c-Abl (c-Abelson tyrosine kinase) is a nonreceptor protein tyrosine kinase that has a role in regulating actin dynamics and smooth muscle contraction. The role of c-Abl in cytokinesis has not been investigated. Here, c-Abl was found in the contractile ring, as evidenced by immunofluorescent microscopy. In addition, cortactin is a phosphorylatable protein that has been implicated in actin filament assembly. In this report, phosphorylated cortactin was also found in the contractile ring. Knockdown of c-Abl by RNA interference attenuated cortactin phosphorylation in the midzone and contractile ring formation. c-Abl knockdown decreased the number of cells undergoing cytokinesis, but increased the quantity of cells in metaphase/anaphase and the number of multinucleate cells. Treatment with the c-Abl pharmacological inhibitors, imatinib and GNF-5, had similar effects. Furthermore, the expression of a nonphosphorylatable cortactin mutant diminished cytokinesis. Finally, inhibition of actin filament assembly by latrunculin A attenuated c-Abl recruitment to the midzone. Thus, we propose a novel mechanism that regulates smooth muscle cell cytokinesis. c-Abl is recruited to the equator during cytokinesis, which may mediate cortactin phosphorylation. Phosphorylated cortactin may promote actin filament assembly, which facilitates contractile ring formation and cytokinesis. In addition, actin filament polymerization may facilitate the positioning of c-Abl to the contractile ring.
Collapse
Affiliation(s)
- Shu Chen
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | | |
Collapse
|
45
|
Rowshanravan B, Woodcock SA, Botella JA, Kiermayer C, Schneuwly S, Hughes DA. RasGAP mediates neuronal survival in Drosophila through direct regulation of Rab5-dependent endocytosis. J Cell Sci 2014; 127:2849-61. [PMID: 24816559 DOI: 10.1242/jcs.139329] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The GTPase Ras can either promote or inhibit cell survival. Inactivating mutations in Drosophila RasGAP (encoded by vap), a Ras GTPase-activating protein, lead to age-related brain degeneration. Genetic interactions implicate the epidermal growth factor receptor (EGFR)-Ras pathway in promoting neurodegeneration but the mechanism is not known. Here, we show that the Src homology 2 (SH2) domains of RasGAP are essential for its neuroprotective function. By using affinity purification and mass spectrometry, we identify a complex containing RasGAP together with Sprint, which is a Ras effector and putative activator of the endocytic GTPase Rab5. Formation of the RasGAP-Sprint complex requires the SH2 domains of RasGAP and tyrosine phosphorylation of Sprint. RasGAP and Sprint colocalize with Rab5-positive early endosomes but not with Rab7-positive late endosomes. We demonstrate a key role for this interaction in neurodegeneration: mutation of Sprint (or Rab5) suppresses neuronal cell death caused by the loss of RasGAP. These results indicate that the long-term survival of adult neurons in Drosophila is crucially dependent on the activities of two GTPases, Ras and Rab5, regulated by the interplay of RasGAP and Sprint.
Collapse
Affiliation(s)
- Behzad Rowshanravan
- The Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - Simon A Woodcock
- The Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| | - José A Botella
- Lehrstuhl für Entwicklungsbiologie, Universität Regensburg, 93040 Regensburg, Germany
| | - Claudia Kiermayer
- Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health (GmbH), Ingolstaedter Landstrasse 1, 85764 Neuherberg, Germany
| | - Stephan Schneuwly
- Lehrstuhl für Entwicklungsbiologie, Universität Regensburg, 93040 Regensburg, Germany
| | - David A Hughes
- The Faculty of Life Sciences, University of Manchester, Oxford Road, Manchester M13 9PT, UK
| |
Collapse
|
46
|
Wang R, Cleary RA, Wang T, Li J, Tang DD. The association of cortactin with profilin-1 is critical for smooth muscle contraction. J Biol Chem 2014; 289:14157-69. [PMID: 24700464 DOI: 10.1074/jbc.m114.548099] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
Profilin-1 (Pfn-1) is an actin-regulatory protein that has a role in modulating smooth muscle contraction. However, the mechanisms that regulate Pfn-1 in smooth muscle are not fully understood. Here, stimulation with acetylcholine induced an increase in the association of the adapter protein cortactin with Pfn-1 in smooth muscle cells/tissues. Furthermore, disruption of the protein/protein interaction by a cell-permeable peptide (CTTN-I peptide) attenuated actin polymerization and smooth muscle contraction without affecting myosin light chain phosphorylation at Ser-19. Knockdown of cortactin by lentivirus-mediated RNAi also diminished actin polymerization and smooth muscle force development. However, cortactin knockdown did not affect myosin activation. In addition, cortactin phosphorylation has been implicated in nonmuscle cell migration. In this study, acetylcholine stimulation induced cortactin phosphorylation at Tyr-421 in smooth muscle cells. Phenylalanine substitution at this position impaired cortactin/Pfn-1 interaction in response to contractile activation. c-Abl is a tyrosine kinase that is necessary for actin dynamics and contraction in smooth muscle. Here, c-Abl silencing inhibited the agonist-induced cortactin phosphorylation and the association of cortactin with Pfn-1. Finally, treatment with CTTN-I peptide reduced airway resistance and smooth muscle hyperreactivity in a murine model of asthma. These results suggest that the interaction of cortactin with Pfn-1 plays a pivotal role in regulating actin dynamics, smooth muscle contraction, and airway hyperresponsiveness in asthma. The association of cortactin with Pfn-1 is regulated by c-Abl-mediated cortactin phosphorylation.
Collapse
Affiliation(s)
- Ruping Wang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Rachel A Cleary
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Tao Wang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Jia Li
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| | - Dale D Tang
- From the Center for Cardiovascular Sciences, Albany Medical College, Albany, New York 12208
| |
Collapse
|
47
|
Cleary RA, Wang R, Waqar O, Singer HA, Tang DD. Role of c-Abl tyrosine kinase in smooth muscle cell migration. Am J Physiol Cell Physiol 2014; 306:C753-61. [PMID: 24477238 DOI: 10.1152/ajpcell.00327.2013] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
c-Abl is a nonreceptor protein tyrosine kinase that has a role in regulating smooth muscle cell proliferation and contraction. The role of c-Abl in smooth muscle cell migration has not been investigated. In the present study, c-Abl was found in the leading edge of smooth muscle cells. Knockdown of c-Abl by RNA interference attenuated smooth muscle cell motility as evidenced by time-lapse microscopy. Furthermore, the actin-associated proteins cortactin and profilin-1 (Pfn-1) have been implicated in cell migration. In this study, cell adhesion induced cortactin phosphorylation at Tyr-421, an indication of cortactin activation. Phospho-cortactin and Pfn-1 were also found in the cell edge. Pfn-1 directly interacted with cortactin in vitro. Silencing of c-Abl attenuated adhesion-induced cortactin phosphorylation and Pfn-1 localization in the cell edge. To assess the role of cortactin/Pfn-1 coupling, we developed a cell-permeable peptide. Treatment with the peptide inhibited the interaction of cortactin with Pfn-1 without affecting cortactin phosphorylation. Moreover, treatment with the peptide impaired the recruitment of Pfn-1 to the leading edge and cell migration. Finally, β1-integrin was required for the recruitment of c-Abl to the cell edge. Inhibition of actin dynamics impaired the spatial distribution of c-Abl. These results suggest that β1-integrin may recruit c-Abl to the leading cell edge, which may regulate cortactin phosphorylation in response to cell adhesion. Phosphorylated cortactin may facilitate the recruitment of Pfn-1 to the cell edge, which promotes localized actin polymerization, leading edge formation, and cell movement. Conversely, actin dynamics may strengthen the recruitment of c-Abl to the leading edge.
Collapse
Affiliation(s)
- Rachel A Cleary
- Center for Cardiovascular Sciences, Albany Medical College, Albany, New York
| | | | | | | | | |
Collapse
|
48
|
Doi M, Minematsu H, Kubota Y, Nishiwaki K, Miyamoto M. The novel Rac effector RIN-1 regulates neuronal cell migration and axon pathfinding in C. elegans. Development 2013; 140:3435-44. [PMID: 23900541 DOI: 10.1242/dev.089722] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Cell migration and axon guidance require proper regulation of the actin cytoskeleton in response to extracellular guidance cues. Rho/Rac small GTPases are essential regulators of actin remodeling. Caenorhabditis elegans CED-10 is a Rac1 homolog that is required for various cellular morphological changes and migration events and is under the control of several guidance signaling pathways. There is still considerable uncertainty regarding events following the activation of guidance receptors by extracellular signals and the regulation of actin dynamics based on spatiotemporally restricted Rac activity. Here we show that the VPS9 domain protein RIN-1 acts as a novel effector for CED-10 in C. elegans. The orthologous mammalian Rin1 protein has previously been identified as an effector for Ras GTPase and is now known to function as a guanine nucleotide exchange factor for Rab5 GTPase. We found that RIN-1 specifically binds to the GTP-bound form of CED-10 and that mutations in rin-1 cause significant defects in migration and axon guidance of restricted neuronal cell types including AVM and HSN neurons, in contrast to the various defects observed in ced-10 mutants. Our analyses place RIN-1 in the Slit-Robo genetic pathway that regulates repulsive signaling for dorsoventral axon guidance. In rin-1 mutants, actin accumulated on both the ventral and dorsal sides of the developing HSN neuron, in contrast to its ventral accumulation in wild type. These results strongly suggest that RIN-1 acts as an effector for CED-10/Rac1 and regulates actin remodeling in response to restricted guidance cues.
Collapse
Affiliation(s)
- Motomichi Doi
- Biomedical Research Institute, AIST, Tsukuba, Ibaraki 305-8566, Japan.
| | | | | | | | | |
Collapse
|
49
|
Cleary RA, Wang R, Wang T, Tang DD. Role of Abl in airway hyperresponsiveness and airway remodeling. Respir Res 2013; 14:105. [PMID: 24112389 PMCID: PMC3852349 DOI: 10.1186/1465-9921-14-105] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2013] [Accepted: 10/09/2013] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Asthma is a chronic disease that is characterized by airway hyperresponsiveness and airway remodeling. The underlying mechanisms that mediate the pathological processes are not fully understood. Abl is a non-receptor protein tyrosine kinase that has a role in the regulation of smooth muscle contraction and smooth muscle cell proliferation in vitro. The role of Abl in airway hyperresponsiveness and airway remodeling in vivo is largely unknown. METHODS To evaluate the role of Abl in asthma pathology, we assessed the expression of Abl in airway tissues from the ovalbumin sensitized and challenged mouse model, and human asthmatic airway smooth muscle cells. In addition, we generated conditional knockout mice in which Abl expression in smooth muscle was disrupted, and then evaluated the effects of Abl conditional knockout on airway resistance, smooth muscle mass, cell proliferation, IL-13 and CCL2 in the mouse model of asthma. Furthermore, we determined the effects of the Abl pharmacological inhibitors imatinib and GNF-5 on these processes in the animal model of asthma. RESULTS The expression of Abl was upregulated in airway tissues of the animal model of asthma and in airway smooth muscle cells of patients with severe asthma. Conditional knockout of Abl attenuated airway resistance, smooth muscle mass and staining of proliferating cell nuclear antigen in the airway of mice sensitized and challenged with ovalbumin. Interestingly, conditional knockout of Abl did not affect the levels of IL-13 and CCL2 in bronchoalveolar lavage fluid of animals treated with ovalbumin. However, treatment with imatinib and GNF-5 inhibited the ovalbumin-induced increase in IL-13 and CCL2 as well as airway resistance and smooth muscle growth in animals. CONCLUSIONS These results suggest that the altered expression of Abl in airway smooth muscle may play a critical role in the development of airway hyperresponsiveness and airway remodeling in asthma. Our findings support the concept that Abl may be a novel target for the development of new therapy to treat asthma.
Collapse
Affiliation(s)
- Rachel A Cleary
- Center for Cardiovascular Sciences, Albany Medical College, 47 New Scotland Avenue MC-8, Albany, NY 12208, USA.
| | | | | | | |
Collapse
|
50
|
He H, Wu G, Liu H, Cheng Y, Yu Y, Wang Y, Liu Y. Low RIN1 expression in HCC is associated with tumor invasion and unfavorable prognosis. Am J Clin Pathol 2013; 140:73-81. [PMID: 23765536 DOI: 10.1309/ajcpegwydd86wwjk] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
OBJECTIVES To explore the association between the expression of Ras and Rab interactor 1 (RIN1) and the prognosis of hepatocellular carcinoma (HCC). METHODS RIN1 expression was detected in paired HCC tissues by real-time polymerase chain reaction, Western blot analysis, and immunohistochemistry. Transfection was applied to analyze the RIN1 function. RESULTS We found that expression of the RIN1 protein was downregulated in the HCC samples compared with the corresponding normal tissues. Downregulation of RIN1 expression was also associated with invasion and poor overall survival (OS). The results of our multivariate analysis indicated that the RIN1 status is a significant prognostic factor for OS. RIN1 overexpression also inhibited cell invasion in HepG2 cells. The expression between RIN1 and ABL2 may present a positive correlation. CONCLUSIONS Our results demonstrate that RIN1 suppresses tumor invasion in HCC patients and that a poor prognosis for HCC is expected when RIN1 expression is downregulated.
Collapse
Affiliation(s)
- Hui He
- Department of General Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Gang Wu
- Department of General Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Haiyang Liu
- Department of General Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Ying Cheng
- Department of General Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yanqiu Yu
- Department of Pathophysiology, China Medical University, Shenyang, China
| | - Yawei Wang
- Department of General Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| | - Yongfeng Liu
- Department of General Surgery, the First Affiliated Hospital of China Medical University, Shenyang, China
| |
Collapse
|