1
|
Geeraerts Z, Ishigami I, Gao Y, Yeh SR. Heme-based dioxygenases: Structure, function and dynamics. J Inorg Biochem 2024; 261:112707. [PMID: 39217822 DOI: 10.1016/j.jinorgbio.2024.112707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 08/22/2024] [Accepted: 08/26/2024] [Indexed: 09/04/2024]
Abstract
Tryptophan dioxygenase (TDO) and indoleamine 2,3 dioxygenase (IDO) belong to a unique class of heme-based enzymes that insert dioxygen into the essential amino acid, L-tryptophan (Trp), to generate N-formylkynurenine (NFK), a critical metabolite in the kynurenine pathway. Recently, the two dioxygenases were recognized as pivotal cancer immunotherapeutic drug targets, which triggered a great deal of drug discovery targeting them. The advancement of the field is however hampered by the poor understanding of the structural properties of the two enzymes and the mechanisms by which the structures dictate their functions. In this review, we summarize recent findings centered on the structure, function, and dynamics of the human isoforms of the two enzymes.
Collapse
Affiliation(s)
- Zachary Geeraerts
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Izumi Ishigami
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Yuan Gao
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, United States
| | - Syun-Ru Yeh
- Department of Biochemistry, Albert Einstein College of Medicine, Bronx, NY 10461, United States.
| |
Collapse
|
2
|
Wang Z, Qi J, Yang Y, Li C. Insufficient and excessive Ca 2+ intake negatively impact the life history performance and disrupt the hemolymph metabolism of Spodoptera litura. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 284:116921. [PMID: 39182284 DOI: 10.1016/j.ecoenv.2024.116921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 08/17/2024] [Accepted: 08/20/2024] [Indexed: 08/27/2024]
Abstract
Calcium ions (Ca2+), essential as second messengers in all cells, play a pivotal role as micronutrients in insects. However, few studies have explored the effects of both insufficient and excessive Ca2+ intake on life history performance and population parameters. This study examines the impact of varying Ca2+ intake levels-insufficient (0 mg/kg), appropriate (100 mg/kg), and excessive (250 mg/kg)-on the life history performance and population parameters of Spodoptera litura using two-sex life tables. Insufficient and excessive Ca2+ intakes significantly extended the preadult development period and decreased the preadult survival rates of S. litura, compared to those on an appropriate Ca2+ intake. The population parameters (Intrinsic rate of increase (r), Finite rate of increase (λ), and Net reproductive rate (R0)) of S. litura on a 100 mg/kg diet (r = 0.1364, λ = 1.1462, R0 = 390) were significantly higher than those on a 0 mg/kg diet (r = 0.1091, λ = 1.1153, R0 = 130.52). Additionally, untargeted metabolomics analysis revealed that inappropriate Ca2+ levels (either insufficient or excessive) triggered significant up-regulation of 71.1 % and 92.8 % of the metabolites in the hemolymph, respectively, compared to the appropriate Ca2+ intake. Notably, disruptions in metabolite balance affected critical components such as melatonin and melanin within the tryptophan and tyrosine metabolism pathways. These findings underscore that both insufficient and excessive Ca2+ intakes adversely affect the life history performance and disrupt hemolymph metabolic balance in S. litura.
Collapse
Affiliation(s)
- Zailing Wang
- Hubei Engineering Research Center for Pest Forewarning and Management; Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China.
| | - Jingwei Qi
- Hubei Engineering Research Center for Pest Forewarning and Management; Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Yang Yang
- Hubei Engineering Research Center for Pest Forewarning and Management; Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China
| | - Chuanren Li
- Hubei Engineering Research Center for Pest Forewarning and Management; Institute of Entomology, College of Agriculture, Yangtze University, Jingzhou 434025, China.
| |
Collapse
|
3
|
Fu Y, Gu Z, Cao H, Zuo C, Huang Y, Song Y, Jiang Y, Wang F. The role of the gut microbiota in neurodegenerative diseases targeting metabolism. Front Neurosci 2024; 18:1432659. [PMID: 39391755 PMCID: PMC11464490 DOI: 10.3389/fnins.2024.1432659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 09/04/2024] [Indexed: 10/12/2024] Open
Abstract
In recent years, the incidence of neurodegenerative diseases (NDs) has gradually increased over the past decades due to the rapid aging of the global population. Traditional research has had difficulty explaining the relationship between its etiology and unhealthy lifestyle and diets. Emerging evidence had proved that the pathogenesis of neurodegenerative diseases may be related to changes of the gut microbiota's composition. Metabolism of gut microbiota has insidious and far-reaching effects on neurodegenerative diseases and provides new directions for disease intervention. Here, we delineated the basic relationship between gut microbiota and neurodegenerative diseases, highlighting the metabolism of gut microbiota in neurodegenerative diseases and also focusing on treatments for NDs based on gut microbiota. Our review may provide novel insights for neurodegeneration and approach a broadly applicable basis for the clinical therapies for neurodegenerative diseases.
Collapse
Affiliation(s)
- Yufeng Fu
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhongya Gu
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Huan Cao
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Chengchao Zuo
- Department of Rehabilitation, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yaqi Huang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yu Song
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yongsheng Jiang
- Cancer Center of Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Furong Wang
- Department of Neurology, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Key Laboratory of Vascular Aging (HUST), Ministry of Education, Tongji Medical College, Tongji Hospital, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
4
|
Babu HWS, Elangovan A, Iyer M, Kirola L, Muthusamy S, Jeeth P, Muthukumar S, Vanlalpeka H, Gopalakrishnan AV, Kadhirvel S, Kumar NS, Vellingiri B. Association Study Between Kynurenine 3-Monooxygenase (KMO) Gene and Parkinson's Disease Patients. Mol Neurobiol 2024; 61:3867-3881. [PMID: 38040995 DOI: 10.1007/s12035-023-03815-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 11/18/2023] [Indexed: 12/03/2023]
Abstract
The influence of various risk factors such as aging, intricate cellular molecular processes, and lifestyle factors like smoking, alcohol consumption, caffeine intake, and occupational factors has received increased focus in relation to the risk and development of Parkinson's disease (PD). Limited research has been conducted on the assessment of lifestyle impact on kynurenine 3-monooxygenase (KMO) gene in PD. A total of 164 subjects, including 82 PD cases and 82 healthy individuals, were recruited based on specific inclusion and exclusion criteria. The severity of PD and clinical assessment were evaluated using the Unified Parkinson's Disease Rating Scale (UPDRS) and Hoehn and Yahr (HY) scaling. Sanger sequencing was performed to analyse the KMO gene in the recruited subjects, and case-control studies were conducted. The UPDRS assessment revealed significant impairments in smell, tremors, walking, and posture instability in the late-onset PD cohorts. The HY scaling indicated a higher proportion of late-onset cohorts in stage 2. Moreover, both alcoholic and non-alcoholic groups showed significantly increased levels of 3-HK in late-onset PD. Gene analysis identified missense variants at position g.241593373 T > A (rs752312199) and intronic variants at positions g.241592623A > G (rs640718), g.241592800C > A (rs990388262), g.241592802A > C (rs1350160268), g.241592808 T > C (rs1478255936), and g.241592812G > T (rs948928931). The alterations in the KMO gene were found to influence the levels of kynurenic acid (KYNA) and 3-hydroxykynurenine (3-HK). Genomic analysis revealed a high prevalence of missense mutations in the late-onset PD groups, leading to a decline in 3-HK levels in patients. This leads to the reduction of the progression of disease in late-onset groups which shows that this mutation may lead to the protective effect on the PD subjects. This study suggests the use of KYNA and 3-HK as potential biomarkers in analysing the progression of disease. This study is limited by its small sample size. To overcome this limitation, a larger study involving in greater number of participants is needed to thoroughly investigate the KMO gene and KP metabolites, to enhance our understanding of Parkinson's disease progression, and to enhance diagnostic capabilities.
Collapse
Affiliation(s)
- Harysh Winster Suresh Babu
- Human Molecular Cytogenetics and Stem Cell Laboratory, Department of Human Genetics and Molecular Biology, Bharathiar University, Coimbatore, 641 046, Tamil Nadu, India
- Stem Cell and Regenerative Medicine, Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Ajay Elangovan
- Stem Cell and Regenerative Medicine, Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Mahalaxmi Iyer
- Department of Microbiology, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
- Centre for Neuroscience, Department of Biotechnology, Karpagam Academy of Higher Education (Deemed to be University), Coimbatore, India
| | - Laxmi Kirola
- Amity Institute of Biotechnology, Amity University, Noida, 201301, India
- Department of Biotechnology, School of Health Sciences and Technology (SoHST), UPES University, Dehradun, 248007, Uttarakhand, India
| | - Sureshan Muthusamy
- School of Chemical & Biotechnology, SASTRA Deemed University, Thanjavur, 613401, India
| | - Priyanka Jeeth
- Structural and Computational Biology Laboratory, Department of Computational Sciences, Central University of Punjab, 151401, Bathinda, Punjab, India
| | - Sindduja Muthukumar
- Stem Cell and Regenerative Medicine, Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India
| | - Harvey Vanlalpeka
- Department of Obstetrics and Gynaecology, Zoram Medical College, Falkawn, 796005, India
| | - Abilash Valsala Gopalakrishnan
- Department of Biomedical Sciences, School of Biosciences and Technology, Vellore Institute of Technology, Tamil Nadu, Vellore, 632 014, India
| | - Saraboji Kadhirvel
- Structural and Computational Biology Laboratory, Department of Computational Sciences, Central University of Punjab, 151401, Bathinda, Punjab, India
| | | | - Balachandar Vellingiri
- Stem Cell and Regenerative Medicine, Translational Research, Department of Zoology, School of Basic Sciences, Central University of Punjab, Bathinda, 151401, Punjab, India.
| |
Collapse
|
5
|
Gabrawy MM, Westbrook R, King A, Khosravian N, Ochaney N, DeCarvalho T, Wang Q, Yu Y, Huang Q, Said A, Abadir M, Zhang C, Khare P, Fairman JE, Le A, Milne GL, Vonhoff FJ, Walston JD, Abadir PM. Dual treatment with kynurenine pathway inhibitors and NAD + precursors synergistically extends life span in Drosophila. Aging Cell 2024; 23:e14102. [PMID: 38481042 PMCID: PMC11019140 DOI: 10.1111/acel.14102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/19/2024] [Accepted: 01/24/2024] [Indexed: 04/17/2024] Open
Abstract
Tryptophan catabolism is highly conserved and generates important bioactive metabolites, including kynurenines, and in some animals, NAD+. Aging and inflammation are associated with increased levels of kynurenine pathway (KP) metabolites and depleted NAD+, factors which are implicated as contributors to frailty and morbidity. Contrastingly, KP suppression and NAD+ supplementation are associated with increased life span in some animals. Here, we used DGRP_229 Drosophila to elucidate the effects of KP elevation, KP suppression, and NAD+ supplementation on physical performance and survivorship. Flies were chronically fed kynurenines, KP inhibitors, NAD+ precursors, or a combination of KP inhibitors with NAD+ precursors. Flies with elevated kynurenines had reduced climbing speed, endurance, and life span. Treatment with a combination of KP inhibitors and NAD+ precursors preserved physical function and synergistically increased maximum life span. We conclude that KP flux can regulate health span and life span in Drosophila and that targeting KP and NAD+ metabolism can synergistically increase life span.
Collapse
Affiliation(s)
- Mariann M. Gabrawy
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Reyhan Westbrook
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Austin King
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Nick Khosravian
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Neeraj Ochaney
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Tagide DeCarvalho
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Qinchuan Wang
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Yuqiong Yu
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Qiao Huang
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Adam Said
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
- Emory UniversityAtlantaGeorgiaUSA
| | - Michael Abadir
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
- University of Maryland, College ParkCollege ParkMarylandUSA
| | | | | | - Jennifer E. Fairman
- Department of Arts as Applied to MedicineJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Anne Le
- Gigantest Inc.BaltimoreMarylandUSA
| | - Ginger L. Milne
- Vanderbilt UniversityVanderbilt Brain Institute, Neurochemistry CoreNashvilleTennesseeUSA
| | - Fernando J. Vonhoff
- Department of Biological SciencesUniversity of Maryland, Baltimore CountyBaltimoreMarylandUSA
| | - Jeremy D. Walston
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| | - Peter M. Abadir
- School of Medicine, Division of Geriatric Medicine and Gerontology, Biology of Healthy Aging ProgramJohns Hopkins UniversityBaltimoreMarylandUSA
| |
Collapse
|
6
|
Gawel K. A Review on the Role and Function of Cinnabarinic Acid, a "Forgotten" Metabolite of the Kynurenine Pathway. Cells 2024; 13:453. [PMID: 38474418 DOI: 10.3390/cells13050453] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Revised: 03/01/2024] [Accepted: 03/02/2024] [Indexed: 03/14/2024] Open
Abstract
In the human body, the majority of tryptophan is metabolized through the kynurenine pathway. This consists of several metabolites collectively called the kynurenines and includes, among others, kynurenic acid, L-kynurenine, or quinolinic acid. The wealth of metabolites, as well as the associated molecular targets and biological pathways, bring about a situation wherein even a slight imbalance in the kynurenine levels, both in the periphery and central nervous system, have broad consequences regarding general health. Cinnabarinic acid (CA) is the least known trace kynurenine, and its physiological and pathological roles are not widely understood. Some studies, however, indicate that it might be neuroprotective. Information on its hepatoprotective properties have also emerged, although these are pioneering studies and need to be replicated. Therefore, in this review, I aim to present and critically discuss the current knowledge on CA and its role in physiological and pathological settings to guide future studies.
Collapse
Affiliation(s)
- Kinga Gawel
- Department of Experimental and Clinical Pharmacology, Medical University of Lublin, Jaczewskiego 8b Str., 20-090 Lublin, Poland
| |
Collapse
|
7
|
Lautrup S, Hou Y, Fang EF, Bohr VA. Roles of NAD + in Health and Aging. Cold Spring Harb Perspect Med 2024; 14:a041193. [PMID: 37848251 PMCID: PMC10759992 DOI: 10.1101/cshperspect.a041193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2023]
Abstract
NAD+, the essential metabolite involved in multiple reactions such as the regulation of cellular metabolism, energy production, DNA repair, mitophagy and autophagy, inflammation, and neuronal function, has been the subject of intense research in the field of aging and disease over the last decade. NAD+ levels decline with aging and in some age-related diseases, and reduction in NAD+ affects all the hallmarks of aging. Here, we present an overview of the discovery of NAD+, the cellular pathways of producing and consuming NAD+, and discuss how imbalances in the production rate and cellular request of NAD+ likely contribute to aging and age-related diseases including neurodegeneration. Preclinical studies have revealed great potential for NAD+ precursors in promotion of healthy aging and improvement of neurodegeneration. This has led to the initiation of several clinical trials with NAD+ precursors to treat accelerated aging, age-associated dysfunctions, and diseases including Alzheimer's and Parkinson's. NAD supplementation has great future potential clinically, and these studies will also provide insight into the mechanisms of aging.
Collapse
Affiliation(s)
- Sofie Lautrup
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
| | - Yujun Hou
- Institute for Regenerative Medicine, Shanghai East Hospital, Frontier Science Center for Stem Cell Research, Shanghai Key Laboratory of Signaling and Disease Research, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Evandro F Fang
- Department of Clinical Molecular Biology, University of Oslo and Akershus University Hospital, 1478 Lørenskog, Norway
- The Norwegian Centre on Healthy Ageing (NO-Age), Oslo, Norway
| | - Vilhelm A Bohr
- DNA Repair Section, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
- Danish Center for Healthy Aging, University of Copenhagen, 2200 Copenhagen, Denmark
| |
Collapse
|
8
|
Hu Z, Feng L, Jiang Q, Wang W, Tan B, Tang X, Yin Y. Intestinal tryptophan metabolism in disease prevention and swine production. ANIMAL NUTRITION (ZHONGGUO XU MU SHOU YI XUE HUI) 2023; 15:364-374. [PMID: 38058568 PMCID: PMC10695851 DOI: 10.1016/j.aninu.2023.08.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 07/05/2023] [Accepted: 08/11/2023] [Indexed: 12/08/2023]
Abstract
Tryptophan (Trp) is an essential amino acid that cannot be synthesized by animals. It has been characterized into two different isomers, levorotation-Trp (L-Trp) and dextrorotation-Trp (D-Trp), based on their distinct molecule orientation. Intestinal epithelial cells and gut microbiota are involved in metabolizing L-Trp in the gut via the activation of the kynurenine, serotonin, and indole pathways. However, knowledge regarding D-Trp metabolism in the gut remains unclear. In this review, we briefly update the current understanding of intestinal L/D-Trp metabolism and the function of their metabolites in modulating the gut physiology and diseases. Finally, we summarize the effects of Trp nutrition on swine production at different stages, including growth performance in weaned piglets and growing pigs, as well as the reproduction performance in sows.
Collapse
Affiliation(s)
- Zhenguo Hu
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, Hunan 410125, China
| | - Luya Feng
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Qian Jiang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Wenliang Wang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Bi'e Tan
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Xiongzhuo Tang
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
| | - Yulong Yin
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, China
- Animal Nutritional Genome and Germplasm Innovation Research Center, College of Animal Science and Technology, Hunan Agricultural University, Changsha, Hunan 410128, China
- Laboratory of Animal Nutritional Physiology and Metabolic Process, Institute of Subtropical Agriculture, Chinese Academy of Science, Changsha, Hunan 410125, China
| |
Collapse
|
9
|
Campesan S, Del Popolo I, Marcou K, Straatman-Iwanowska A, Repici M, Boytcheva KV, Cotton VE, Allcock N, Rosato E, Kyriacou CP, Giorgini F. Bypassing mitochondrial defects rescues Huntington's phenotypes in Drosophila. Neurobiol Dis 2023; 185:106236. [PMID: 37495179 DOI: 10.1016/j.nbd.2023.106236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/06/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023] Open
Abstract
Huntington's disease (HD) is a fatal neurodegenerative disease with limited treatment options. Human and animal studies have suggested that metabolic and mitochondrial dysfunctions contribute to HD pathogenesis. Here, we use high-resolution respirometry to uncover defective mitochondrial oxidative phosphorylation and electron transfer capacity when a mutant huntingtin fragment is targeted to neurons or muscles in Drosophila and find that enhancing mitochondrial function can ameliorate these defects. In particular, we find that co-expression of parkin, an E3 ubiquitin ligase critical for mitochondrial dynamics and homeostasis, produces significant enhancement of mitochondrial respiration when expressed either in neurons or muscles, resulting in significant rescue of neurodegeneration, viability and longevity in HD model flies. Targeting mutant HTT to muscles results in larger mitochondria and higher mitochondrial mass, while co-expression of parkin increases mitochondrial fission and decreases mass. Furthermore, directly addressing HD-mediated defects in the fly's mitochondrial electron transport system, by rerouting electrons to either bypass mitochondrial complex I or complexes III-IV, significantly increases mitochondrial respiration and results in a striking rescue of all phenotypes arising from neuronal mutant huntingtin expression. These observations suggest that bypassing impaired mitochondrial respiratory complexes in HD may have therapeutic potential for the treatment of this devastating disorder.
Collapse
Affiliation(s)
- Susanna Campesan
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK.
| | - Ivana Del Popolo
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Kyriaki Marcou
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Anna Straatman-Iwanowska
- Electron Microscopy Facility, Core Biotechnology Services, Adrian Building, University of Leicester, University Road, Leicester LE1 7RH, Leicestershire, UK
| | - Mariaelena Repici
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK; School of Life and Health Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Kalina V Boytcheva
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Victoria E Cotton
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Natalie Allcock
- Electron Microscopy Facility, Core Biotechnology Services, Adrian Building, University of Leicester, University Road, Leicester LE1 7RH, Leicestershire, UK
| | - Ezio Rosato
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Charalambos P Kyriacou
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK.
| |
Collapse
|
10
|
Lun J, Li Y, Gao X, Gong Z, Chen X, Zou J, Zhou C, Huang Y, Zhou B, Huang P, Cao H. Kynurenic acid blunts A1 astrocyte activation against neurodegeneration in HIV-associated neurocognitive disorders. J Neuroinflammation 2023; 20:87. [PMID: 36997969 PMCID: PMC10061717 DOI: 10.1186/s12974-023-02771-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 03/23/2023] [Indexed: 04/01/2023] Open
Abstract
Despite extensive astrocyte activation in patients suffering from HIV-associated neurocognitive disorders (HAND), little is known about the contribution of astrocytes to HAND neuropathology. Here, we report that the robust activation of neurotoxic astrocytes (A1 astrocytes) in the CNS promotes neuron damage and cognitive deficits in HIV-1 gp120 transgenic mice. Notably, knockout of α7 nicotinic acetylcholine receptors (α7nAChR) blunted A1 astrocyte responses, ultimately facilitating neuronal and cognitive improvement in the gp120tg mice. Furthermore, we provide evidence that Kynurenic acid (KYNA), a tryptophan metabolite with α7nAChR inhibitory properties, attenuates gp120-induced A1 astrocyte formation through the blockade of α7nAChR/JAK2/STAT3 signaling activation. Meanwhile, compared with gp120tg mice, mice fed with tryptophan showed dramatic improvement in cognitive performance, which was related to the inhibition of A1 astrocyte responses. These initial and determinant findings mark a turning point in our understanding of the role of α7nAChR in gp120-mediated A1 astrocyte activation, opening up new opportunities to control neurotoxic astrocyte generation through KYNA and tryptophan administration.
Collapse
Affiliation(s)
- Jingxian Lun
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Yubin Li
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Xuefeng Gao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Zelong Gong
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Xiaoliang Chen
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Jinhu Zou
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Chengxing Zhou
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Yuanyuan Huang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Bingliang Zhou
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Pengwei Huang
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Hong Cao
- Department of Microbiology, Guangdong Provincial Key Laboratory of Tropical Disease Research, School of Public Health, Southern Medical University, Guangzhou, 510515 Guangdong China
| |
Collapse
|
11
|
Hebbar S, Traikov S, Hälsig C, Knust E. Modulating the Kynurenine pathway or sequestering toxic 3-hydroxykynurenine protects the retina from light-induced damage in Drosophila. PLoS Genet 2023; 19:e1010644. [PMID: 36952572 PMCID: PMC10035932 DOI: 10.1371/journal.pgen.1010644] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Accepted: 01/30/2023] [Indexed: 03/25/2023] Open
Abstract
Tissue health is regulated by a myriad of exogenous or endogenous factors. Here we investigated the role of the conserved Kynurenine pathway (KP) in maintaining retinal homeostasis in the context of light stress in Drosophila melanogaster. cinnabar, cardinal and scarlet are fly genes that encode different steps in the KP. Along with white, these genes are known regulators of brown pigment (ommochrome) biosynthesis. Using white as a sensitized genetic background, we show that mutations in cinnabar, cardinal and scarlet differentially modulate light-induced retinal damage. Mass Spectrometric measurements of KP metabolites in flies with different genetic combinations support the notion that increased levels of 3-hydroxykynurenine (3OH-K) and Xanthurenic acid (XA) enhance retinal damage, whereas Kynurenic Acid (KYNA) and Kynurenine (K) are neuro-protective. This conclusion was corroborated by showing that feeding 3OH-K results in enhanced retinal damage, whereas feeding KYNA protects the retina in sensitized genetic backgrounds. Interestingly, the harmful effects of free 3OH-K are diminished by its sub-cellular compartmentalization. Sequestering of 3OH-K enables the quenching of its toxicity through conversion to brown pigment or conjugation to proteins. This work enabled us to decouple the role of these KP genes in ommochrome formation from their role in retinal homeostasis. Additionally, it puts forward new hypotheses on the importance of the balance of KP metabolites and their compartmentalization in disease alleviation.
Collapse
Affiliation(s)
- Sarita Hebbar
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Sofia Traikov
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Catrin Hälsig
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| | - Elisabeth Knust
- Max-Planck-Institute of Molecular Cell Biology and Genetics, Dresden, Germany
| |
Collapse
|
12
|
D’Egidio F, Castelli V, Cimini A, d’Angelo M. Cell Rearrangement and Oxidant/Antioxidant Imbalance in Huntington's Disease. Antioxidants (Basel) 2023; 12:571. [PMID: 36978821 PMCID: PMC10045781 DOI: 10.3390/antiox12030571] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 02/17/2023] [Accepted: 02/22/2023] [Indexed: 03/02/2023] Open
Abstract
Huntington's Disease (HD) is a hereditary neurodegenerative disorder caused by the expansion of a CAG triplet repeat in the HTT gene, resulting in the production of an aberrant huntingtin (Htt) protein. The mutant protein accumulation is responsible for neuronal dysfunction and cell death. This is due to the involvement of oxidative damage, excitotoxicity, inflammation, and mitochondrial impairment. Neurons naturally adapt to bioenergetic alteration and oxidative stress in physiological conditions. However, this dynamic system is compromised when a neurodegenerative disorder occurs, resulting in changes in metabolism, alteration in calcium signaling, and impaired substrates transport. Thus, the aim of this review is to provide an overview of the cell's answer to the stress induced by HD, focusing on the role of oxidative stress and its balance with the antioxidant system.
Collapse
Affiliation(s)
| | | | | | - Michele d’Angelo
- Department of Life, Health and Environmental Sciences, University of L’Aquila, 67100 L’Aquila, Italy
| |
Collapse
|
13
|
Gao J, Cui Y, Bao W, Hao Y, Piao X, Gu X. Ubiquitylome study reveals the regulatory effect of α-lipoic acid on ubiquitination of key proteins in tryptophan metabolism pathway of pig liver. Int J Biol Macromol 2023; 236:123795. [PMID: 36828089 DOI: 10.1016/j.ijbiomac.2023.123795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/24/2023]
Abstract
The decline in antioxidant defenses make it easily for human and animals to suffer from liver damage and diseases induced by oxidative stress, causing enormous losses to human health and livestock production. As one of the canonical protein post-translational modifications (PTMs), ubiquitination is widely involved in cell proliferation, apoptosis and damage/repair response, and is proven to be involved in the ability of mammals to resist oxidative stress. To explore whether α-lipoic acid (LA), a safe and efficient antioxidant, plays a role in regulating liver antioxidant status by PTMs, proteins in livers of pigs fed with LA were analyzed at the level of proteome and ubiquitylome. Based on proteome-wide enrichment of ubiquitination, a total of 7274 proteins were identified and 5326 were quantified, we also identified 1564 ubiquitination sites in 580 ubiquitinated proteins, among which there were 136 differentially ubiquitinated sites in 103 differentially ubiquitinated proteins upon LA. Further bioinformatics analysis showed that these differential proteins were mainly enriched in tryptophan metabolic pathway, and accompanied by significantly improvement of liver antioxidant capacity. We revealed the regulatory effect of LA on ubiquitination of kynurenine 3-monooxygenase (KMO) and other key proteins in tryptophan metabolism pathway of pig liver for the first time.
Collapse
Affiliation(s)
- Jie Gao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yanjun Cui
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Weiguang Bao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Yue Hao
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xiangshu Piao
- College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | - Xianhong Gu
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China.
| |
Collapse
|
14
|
Zhang S, Cheng Y, Shang H. The updated development of blood-based biomarkers for Huntington's disease. J Neurol 2023; 270:2483-2503. [PMID: 36692635 PMCID: PMC9873222 DOI: 10.1007/s00415-023-11572-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 01/11/2023] [Accepted: 01/12/2023] [Indexed: 01/25/2023]
Abstract
Huntington's disease is a progressive neurodegenerative disease caused by mutation of the huntingtin (HTT) gene. The identification of mutation carriers before symptom onset provides an opportunity to intervene in the early stage of the disease course. Optimal biomarkers are of great value to reflect neuropathological and clinical progression and are sensitive to potential disease-modifying treatments. Blood-based biomarkers have the merits of minimal invasiveness, low cost, easy accessibility and safety. In this review, we summarized the updated development of blood-based biomarkers for HD from six aspects, including neuronal injuries, oxidative stress, endocrine functions, immune reactions, metabolism and differentially expressed miRNAs. The blood-based biomarkers presented and discussed in this review were close to clinical applicability and might facilitate clinical design as surrogate endpoints. Exploration and validation of robust blood-based biomarkers require further standard and systemic study design in the future.
Collapse
Affiliation(s)
- Sirui Zhang
- grid.412901.f0000 0004 1770 1022Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China ,grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041 China ,grid.412901.f0000 0004 1770 1022West China School of Medicine, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Yangfan Cheng
- grid.412901.f0000 0004 1770 1022Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China ,grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041 China
| | - Huifang Shang
- grid.412901.f0000 0004 1770 1022Laboratory of Neurodegenerative Disorders, Department of Neurology, Rare Disease Center, West China Hospital, Sichuan University, Chengdu, 610041 Sichuan China ,grid.412901.f0000 0004 1770 1022National Clinical Research Center for Geriatric, Laboratory of Neurodegenerative Disorders, West China Hospital, Sichuan University, Chengdu, 610041 China
| |
Collapse
|
15
|
Bayne AN, Dong J, Amiri S, Farhan SMK, Trempe JF. MTSviewer: A database to visualize mitochondrial targeting sequences, cleavage sites, and mutations on protein structures. PLoS One 2023; 18:e0284541. [PMID: 37093842 PMCID: PMC10124841 DOI: 10.1371/journal.pone.0284541] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 04/02/2023] [Indexed: 04/25/2023] Open
Abstract
Mitochondrial dysfunction is implicated in a wide array of human diseases ranging from neurodegenerative disorders to cardiovascular defects. The coordinated localization and import of proteins into mitochondria are essential processes that ensure mitochondrial homeostasis. The localization and import of most mitochondrial proteins are driven by N-terminal mitochondrial targeting sequences (MTS's), which interact with import machinery and are removed by the mitochondrial processing peptidase (MPP). The recent discovery of internal MTS's-those which are distributed throughout a protein and act as import regulators or secondary MPP cleavage sites-has expanded the role of both MTS's and MPP beyond conventional N-terminal regulatory pathways. Still, the global mutational landscape of MTS's remains poorly characterized, both from genetic and structural perspectives. To this end, we have integrated a variety of tools into one harmonized R/Shiny database called MTSviewer (https://neurobioinfo.github.io/MTSvieweR/), which combines MTS predictions, cleavage sites, genetic variants, pathogenicity predictions, and N-terminomics data with structural visualization using AlphaFold models of human and yeast mitochondrial proteomes. Using MTSviewer, we profiled all MTS-containing proteins across human and yeast mitochondrial proteomes and provide multiple case studies to highlight the utility of this database.
Collapse
Affiliation(s)
- Andrew N Bayne
- Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - Jing Dong
- Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| | - Saeid Amiri
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
| | - Sali M K Farhan
- Department of Neurology and Neurosurgery, Montreal Neurological Institute, McGill University, Montréal, Quebec, Canada
- Department of Human Genetics, McGill University, Montréal, Quebec, Canada
| | - Jean-François Trempe
- Department of Pharmacology & Therapeutics and Centre de Recherche en Biologie Structurale, McGill University, Montréal, Quebec, Canada
| |
Collapse
|
16
|
Ahamad S, Bhat SA. The Emerging Landscape of Small-Molecule Therapeutics for the Treatment of Huntington's Disease. J Med Chem 2022; 65:15993-16032. [PMID: 36490325 DOI: 10.1021/acs.jmedchem.2c00799] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder caused by a CAG repeat expansion in the huntingtin gene (HTT). The new insights into HD's cellular and molecular pathways have led to the identification of numerous potent small-molecule therapeutics for HD therapy. The field of HD-targeting small-molecule therapeutics is accelerating, and the approval of these therapeutics to combat HD may be expected in the near future. For instance, preclinical candidates such as naphthyridine-azaquinolone, AN1, AN2, CHDI-00484077, PRE084, EVP4593, and LOC14 have shown promise for further optimization to enter into HD clinical trials. This perspective aims to summarize the advent of small-molecule therapeutics at various stages of clinical development for HD therapy, emphasizing their structure and design, therapeutic effects, and specific mechanisms of action. Further, we have highlighted the key drivers involved in HD pathogenesis to provide insights into the basic principle for designing promising anti-HD therapeutic leads.
Collapse
Affiliation(s)
- Shakir Ahamad
- Department of Chemistry, Aligarh Muslim University, Aligarh, Uttar Pradesh202002, India
| | - Shahnawaz A Bhat
- Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh202002, India
| |
Collapse
|
17
|
Zhuravlev AV, Ivanova PN, Makaveeva KA, Zakharov GA, Nikitina EA, Savvateeva-Popova EV. cd1 Mutation in Drosophila Affects Phenoxazinone Synthase Catalytic Site and Impairs Long-Term Memory. Int J Mol Sci 2022; 23:ijms232012356. [PMID: 36293213 PMCID: PMC9604555 DOI: 10.3390/ijms232012356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 10/12/2022] [Accepted: 10/13/2022] [Indexed: 11/16/2022] Open
Abstract
Being involved in development of Huntington's, Parkinson's and Alzheimer's diseases, kynurenine pathway (KP) of tryptophan metabolism plays a significant role in modulation of neuropathology. Accumulation of a prooxidant 3-hydroxykynurenine (3-HOK) leads to oxidative stress and neuronal cell apoptosis. Drosophila mutant cardinal (cd1) with 3-HOK excess shows age-dependent neurodegeneration and short-term memory impairments, thereby presenting a model for senile dementia. Although cd gene for phenoxazinone synthase (PHS) catalyzing 3-HOK dimerization has been presumed to harbor the cd1 mutation, its molecular nature remained obscure. Using next generation sequencing, we have shown that the cd gene in cd1 carries a long deletion leading to PHS active site destruction. Contrary to the wild type Canton-S (CS), cd1 males showed defective long-term memory (LTM) in conditioned courtship suppression paradigm (CCSP) at days 5-29 after eclosion. The number of dopaminergic neurons (DAN) regulating fly locomotor activity showed an age-dependent tendency to decrease in cd1 relative to CS. Thus, in accordance with the concept "from the gene to behavior" proclaimed by S. Benzer, we have shown that the aberrant PHS sequence in cd1 provokes drastic LTM impairments and DAN alterations.
Collapse
Affiliation(s)
- Aleksandr V. Zhuravlev
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
- Correspondence:
| | - Polina N. Ivanova
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
| | - Ksenia A. Makaveeva
- Faculty of Biology, Herzen State Pedagogical University of Russia, 191186 Saint Petersburg, Russia
| | | | - Ekaterina A. Nikitina
- Pavlov Institute of Physiology, Russian Academy of Sciences, 199034 Saint Petersburg, Russia
- Faculty of Biology, Herzen State Pedagogical University of Russia, 191186 Saint Petersburg, Russia
| | | |
Collapse
|
18
|
Zheng H, Teague TK, Yeh FC, Burrows K, Figueroa-Hall LK, Aupperle RL, Khalsa SS, Paulus MP, Savitz J. C-Reactive protein and the kynurenic acid to quinolinic acid ratio are independently associated with white matter integrity in major depressive disorder. Brain Behav Immun 2022; 105:180-189. [PMID: 35853557 PMCID: PMC9983279 DOI: 10.1016/j.bbi.2022.07.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 07/01/2022] [Accepted: 07/14/2022] [Indexed: 02/09/2023] Open
Abstract
Kynurenic acid (KynA) and quinolinic acid (QA) are neuroactive kynurenine pathway (KP) metabolites that have neuroprotective and neurotoxic properties, respectively. At least partly as a result of immune activation, the ratio of KynA to QA in the blood is reduced in major depressive disorder (MDD) and has been reported to be positively correlated with gray matter volume in depression. This study examined whether the inflammatory mediator, C-reactive protein (CRP) and the putative neuroprotective index, KynA/QA, were associated with white matter integrity in MDD, and secondly, whether any such associations were independent of each other or whether the effect of CRP was mediated by KynA/QA. One hundred and sixty-six participants in the Tulsa 1000 study with a DSM-V diagnosis of MDD completed diffusion tensor imaging and provided a serum sample for the quantification of CRP, KynA, and QA. Correlational tractography was performed using DSI Studio to map the specific white matter pathways that correlated with CRP and KynA/QA. CRP was negatively related to KynA/QA (standardized beta coefficient, SBC = -0.35 with standard error, Std.E = 0.13, p < 0.01) after controlling for nine possible confounders, i.e., age, sex, body mass index (BMI), medication status, lifetime alcohol use, severity of depression, severity of anxiety, length of illness, and smoking status. Higher concentrations of CRP were associated with decreased white matter integrity (fractional anisotropy, FA) of the bilateral cingulum and fornix after controlling for the nine potential confounders (SBC = -0.43, Std.E = 0.13, p = 0.002). Greater serum KynA/QA was associated with increased white matter integrity of the bilateral fornix, bilateral superior thalamic radiations, corpus callosum, and bilateral cingulum bundles after controlling for the same possible confounders (SBC = 0.26, Std.E = 0.09, p = 0.005). The relationship between CRP and FA was not mediated by KynA/QA. Exploratory analyses also showed that KynA/QA but not CRP was associated with self-reported positive affect, attentiveness, and fatigue measured with the PANASX (SBCs = 0.17-0.23). Taken together, these results are consistent with the hypothesis that within a subgroup of MDD patients, a higher level of systemic inflammation alters the balance of KP metabolism but also raise the possibility that CRP and neuroactive KP metabolites represent independent molecular mechanisms underlying white matter alterations in MDD.
Collapse
Affiliation(s)
- Haixia Zheng
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA
| | - T Kent Teague
- Department of Surgery, University of Oklahoma School of Community Medicine, Tulsa, OK 74135, USA; Department of Psychiatry, University of Oklahoma School of Community Medicine, Tulsa, OK 74135, USA; Department of Biochemistry and Microbiology, Oklahoma State University Center for Health Sciences, Tulsa, OK 74107, USA
| | - Fang-Cheng Yeh
- Department of Neurological Surgery, School of Medicine, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | | | | | - Robin L Aupperle
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK 74119, USA
| | - Sahib S Khalsa
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK 74119, USA
| | - Martin P Paulus
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK 74119, USA
| | - Jonathan Savitz
- Laureate Institute for Brain Research, Tulsa, OK 74136, USA; Oxley College of Health Sciences, The University of Tulsa, Tulsa, OK 74119, USA.
| |
Collapse
|
19
|
Cristina B, Veronica R, Silvia A, Andrea G, Sara C, Luca P, Nicoletta B, M.C. BJ, Silvio B, Fabio T. Identification and characterization of the kynurenine pathway in the pond snail Lymnaea stagnalis. Sci Rep 2022; 12:15617. [PMID: 36114337 PMCID: PMC9481534 DOI: 10.1038/s41598-022-19652-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 09/01/2022] [Indexed: 11/10/2022] Open
Abstract
Dysregulation of the kynurenine pathway (KP) is implicated in many human diseases and disorders, from immunological, metabolic, neurodegenerative, and neuropsychiatric conditions to cancer, and represents an appealing target for new therapeutic approaches. In this intricate scenario, invertebrates, like Lymnaea stagnalis (LS), provide a flexible tool to unravel the complexity of the KP. Starting from the available LS genome and transcriptome, we identified putative transcripts of all KP enzymes containing an ORF; each predicted protein possessed a high degree of sequence conservation to known orthologues of other invertebrate and vertebrate model organisms. Sequences were confirmed by qualitative PCR and sequencing. At the same time, the qRT-PCR analysis revealed that Lym IDO-like, Lym TDO-like, Lym AFMID-like, Lym KMO-like, Lym AADAT-like, Lym KYAT I/III-like, Lym KYNU-like, Lym HAAO-like, and Lym ACMSD-like showed widespread tissue expression. Then, tryptophan, kynurenine, kynurenic acid, anthranilic acid, 3-hydroxy-kynurenine, xanthurenic acid, picolinic acid, and quinolinic acid were identified in the hemolymph of LS by UHPLC-Q exactive mass spectrometer. Our study provides the most thorough characterization to date of the KP in an invertebrate model, supporting the value of LS for future functional studies of this pathway at the cellular, synaptic, and behavioral levels.
Collapse
|
20
|
Swaih AM, Breda C, Sathyasaikumar KV, Allcock N, Collier MEW, Mason RP, Feasby A, Herrera F, Outeiro TF, Schwarcz R, Repici M, Giorgini F. Kynurenine 3-Monooxygenase Interacts with Huntingtin at the Outer Mitochondrial Membrane. Biomedicines 2022; 10:2294. [PMID: 36140394 PMCID: PMC9496550 DOI: 10.3390/biomedicines10092294] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Accepted: 09/09/2022] [Indexed: 11/17/2022] Open
Abstract
The flavoprotein kynurenine 3-monooxygenase (KMO) is localised to the outer mitochondrial membrane and catalyses the synthesis of 3-hydroxykynurenine from L-kynurenine, a key step in the kynurenine pathway (KP) of tryptophan degradation. Perturbation of KP metabolism due to inflammation has long been associated with the pathogenesis of several neurodegenerative disorders, including Huntington's disease (HD)-which is caused by the expansion of a polyglutamine stretch in the huntingtin (HTT) protein. While HTT is primarily localised to the cytoplasm, it also associates with mitochondria, where it may physically interact with KMO. In order to test this hypothesis, we employed bimolecular fluorescence complementation (BiFC) and found that KMO physically interacts with soluble HTT exon 1 protein fragment in living cells. Notably, expansion of the disease-causing polyglutamine tract in HTT leads to the formation of proteinaceous intracellular inclusions that disrupt this interaction with KMO, markedly decreasing BiFC efficiency. Using confocal microscopy and ultrastructural analysis, we determined KMO and HTT localisation within the cell and found that the KMO-HTT interaction is localized to the outer mitochondrial membrane. These data suggest that KMO may interact with a pool of HTT at the mitochondrial membrane, highlighting a possible physiological role for mitochondrial HTT. The KMO-HTT interaction is abrogated upon polyglutamine expansion, which may indicate a heretofore unrecognized relevance in the pathogenesis of this disorder.
Collapse
Affiliation(s)
- Aisha M. Swaih
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Carlo Breda
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- Leicester School of Allied Health Sciences, Faculty of Health and Life Sciences, De Montfort University, Leicester LE1 9BH, UK
| | - Korrapati V. Sathyasaikumar
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Natalie Allcock
- Core Biotechnology Services, Adrian Building, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - Mary E. W. Collier
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Robert P. Mason
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Adam Feasby
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| | - Federico Herrera
- Cell Structure and Dynamics Laboratory, Department of Chemistry and Biochemistry, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
- BioISI—Biosystems & Integrative Sciences Institute, Faculty of Sciences, University of Lisbon, 1749-016 Lisbon, Portugal
| | - Tiago F. Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, 37073 Göttingen, Germany
- Max Planck Institute for Experimental Medicine, 37075 Göttingen, Germany
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle NE2 4HH, UK
- Scientific Employee with an Honorary Contract at German Center for Neurodegenerative Diseases (DZNE), 37075 Göttingen, Germany
| | - Robert Schwarcz
- Maryland Psychiatric Research Center, Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Mariaelena Repici
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
- College of Health and Life Sciences, Aston University, Aston Triangle, Birmingham B4 7ET, UK
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, Leicester LE1 7RH, UK
| |
Collapse
|
21
|
Chen Y, Zhang J, Yang Y, Xiang K, Li H, Sun D, Chen L. Kynurenine‐3‐monooxygenase (KMO): From its biological functions to therapeutic effect in diseases progression. J Cell Physiol 2022; 237:4339-4355. [DOI: 10.1002/jcp.30876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Revised: 07/21/2022] [Accepted: 09/01/2022] [Indexed: 11/07/2022]
Affiliation(s)
- Yanmei Chen
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
| | - Jiahui Zhang
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
| | - Yueying Yang
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
| | - Ke Xiang
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
| | - Hua Li
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
- College of Pharmacy Fujian University of Traditional Chinese Medicine Fuzhou China
| | - Dejuan Sun
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
| | - Lixia Chen
- Key Laboratory of Structure‐Based Drug Design & Discovery, Wuya College of Innovation, School of Traditional Chinese Materia Medica, Ministry of Education Shenyang Pharmaceutical University Shenyang China
| |
Collapse
|
22
|
Li D, Yu S, Long Y, Shi A, Deng J, Ma Y, Wen J, Li X, Liu S, Zhang Y, Wan J, Li N, Ao R. Tryptophan metabolism: Mechanism-oriented therapy for neurological and psychiatric disorders. Front Immunol 2022; 13:985378. [PMID: 36159806 PMCID: PMC9496178 DOI: 10.3389/fimmu.2022.985378] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2022] [Accepted: 08/11/2022] [Indexed: 12/04/2022] Open
Abstract
Neurological and psychiatric disorders are a category of chronic diseases that are widespread and pose serious mental and physical health problems for patients. The substrates, products, and enzymes of Tryptophan metabolism all contribute to the development of neurological and psychiatric disorders. This paper deals with three metabolic pathways of tryptophan that produce a series of metabolites called tryptophan Catabolics (TRYCATs). These metabolites are involved in pathological processes such as excitotoxicity, neuroinflammation, oxidative stress, and mitochondrial damage and are closely associated with neurological and psychiatric disorders such as Alzheimer's disease and depression. Here, we review the elements that affect how tryptophan metabolism is regulated, including inflammation and stress, exercise, vitamins, minerals, diet and gut microbes, glucocorticoids, and aging, as well as the downstream regulatory effects of tryptophan metabolism, including the regulation of glutamate (Glu), immunity, G-protein coupled receptor 35 (Gpr35), nicotinic acetylcholine receptor (nAChR), aryl hydrocarbon receptor (AhR), and dopamine (DA). In order to advance the general understanding of tryptophan metabolism in neurological and psychiatric disorders, this paper also summarizes the current situation and effective drugs of tryptophan metabolism in the treatment of neurological and psychiatric disorders and considers its future research prospects.
Collapse
Affiliation(s)
- Dan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Shuang Yu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yu Long
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Ai Shi
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jie Deng
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yin Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jing Wen
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Xiaoqiu Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Songyu Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Yulu Zhang
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Jinyan Wan
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Nan Li
- State Key Laboratory of Southwestern Chinese Medicine Resources, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Rui Ao
- Oncology Center, Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
23
|
Souza D, Christensen SA, Wu K, Buss L, Kleckner K, Darrisaw C, Shirk PD, Siegfried BD. RNAi-induced knockdown of white gene in the southern green stink bug (Nezara viridula L.). Sci Rep 2022; 12:10396. [PMID: 35729244 PMCID: PMC9213411 DOI: 10.1038/s41598-022-14620-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 06/09/2022] [Indexed: 12/01/2022] Open
Abstract
The southern green stink bug (SGSB) Nezara viridula L. is one of the most common stink bug species in the United States and can cause significant yield loss in a variety of crops. A suitable marker for the assessment of gene-editing tools in SGSB has yet to be characterized. The white gene, first documented in Drosophila, has been a useful target to assess the efficiency of introduced mutations in many species as it controls pigmentation processes and mutants display readily identifiable phenotypes. In this study we used the RNAi technique to investigate functions and phenotypes associated with the white ortholog in the SGSB and to validate white as a marker for genetic transformation in this species. This study revealed that white may be a suitable marker for germline transformation in the SGSB as white transcript knockdown was not lethal, did not impair embryo development and provided a distinguishable phenotype. Our results demonstrated that the white ortholog in SGSB is involved in the pathway for ommochrome synthesis and suggested additional functions of this gene such as in the integument composition, management of hemolymph compounds and riboflavin mobilization.
Collapse
Affiliation(s)
- Dariane Souza
- Entomology and Nematology Department, University of Florida, Gainesville, 32611, USA. .,Syngenta Crop Protection AG, WST-540.1.17 Schaffhauserstrasse, 4332, Stein, Switzerland.
| | - Shawn A Christensen
- USDA-ARS Center for Medical, Agricultural and Veterinary Entomology, Gainesville, 32608, USA
| | - Ke Wu
- Entomology and Nematology Department, University of Florida, Gainesville, 32611, USA
| | - Lyle Buss
- Entomology and Nematology Department, University of Florida, Gainesville, 32611, USA
| | - Kaylin Kleckner
- Entomology and Nematology Department, University of Florida, Gainesville, 32611, USA
| | - Constance Darrisaw
- Entomology and Nematology Department, University of Florida, Gainesville, 32611, USA
| | - Paul D Shirk
- USDA-ARS Center for Medical, Agricultural and Veterinary Entomology, Gainesville, 32608, USA
| | - Blair D Siegfried
- Entomology and Nematology Department, University of Florida, Gainesville, 32611, USA
| |
Collapse
|
24
|
Costa MD, Maciel P. Modifier pathways in polyglutamine (PolyQ) diseases: from genetic screens to drug targets. Cell Mol Life Sci 2022; 79:274. [PMID: 35503478 PMCID: PMC11071829 DOI: 10.1007/s00018-022-04280-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Revised: 03/14/2022] [Accepted: 03/30/2022] [Indexed: 12/17/2022]
Abstract
Polyglutamine (PolyQ) diseases include a group of inherited neurodegenerative disorders caused by unstable expansions of CAG trinucleotide repeats in the coding region of specific genes. Such genetic alterations produce abnormal proteins containing an unusually long PolyQ tract that renders them more prone to aggregate and cause toxicity. Although research in the field in the last years has contributed significantly to the knowledge of the biological mechanisms implicated in these diseases, effective treatments are still lacking. In this review, we revisit work performed in models of PolyQ diseases, namely the yeast Saccharomyces cerevisiae, the nematode worm Caenorhabditis elegans and the fruit fly Drosophila melanogaster, and provide a critical overview of the high-throughput unbiased genetic screens that have been performed using these systems to identify novel genetic modifiers of PolyQ diseases. These approaches have revealed a wide variety of cellular processes that modulate the toxicity and aggregation of mutant PolyQ proteins, reflecting the complexity of these disorders and demonstrating how challenging the development of therapeutic strategies can be. In addition to the unbiased large-scale genetic screenings in non-vertebrate models, complementary studies in mammalian systems, closer to humans, have contributed with novel genetic modifiers of PolyQ diseases, revealing neuronal function and inflammation as key disease modulators. A pathway enrichment analysis, using the human orthologues of genetic modifiers of PolyQ diseases clustered modifier genes into major themes translatable to the human disease context, such as protein folding and transport as well as transcription regulation. Innovative genetic strategies of genetic manipulation, together with significant advances in genomics and bioinformatics, are taking modifier genetic studies to more realistic disease contexts. The characterization of PolyQ disease modifier pathways is of extreme relevance to reveal novel therapeutic possibilities to delay disease onset and progression in patients.
Collapse
Affiliation(s)
- Marta Daniela Costa
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057, Braga, Portugal
- ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | - Patrícia Maciel
- School of Medicine, Life and Health Sciences Research Institute (ICVS), University of Minho, 4710-057, Braga, Portugal.
- ICVS/3Bs-PT Government Associate Laboratory, Braga/Guimarães, Portugal.
| |
Collapse
|
25
|
Abstract
SignificanceZinc deficiency in the human population, a major public health concern, can also be a consequence of nutritional deficiency in protein uptake. The discovery that tryptophan metabolites 3-hydroxykynurenine and xanthurenic acid are major zinc-binding ligands in insect cells establishes the kynurenine pathway as a regulator of systemic zinc homeostasis. Many biological processes influenced by zinc and the kynurenine pathway, including the regulation of innate and acquired immune responses to viral infections, have not been studied in light of the direct molecular links revealed in this study.
Collapse
|
26
|
Zhao J, Chen J, Wang C, Liu Y, Li M, Li Y, Li R, Han Z, Wang J, Chen L, Shu Y, Cheng G, Sun C. Kynurenine-3-monooxygenase (KMO) broadly inhibits viral infections via triggering NMDAR/Ca2+ influx and CaMKII/ IRF3-mediated IFN-β production. PLoS Pathog 2022; 18:e1010366. [PMID: 35235615 PMCID: PMC8920235 DOI: 10.1371/journal.ppat.1010366] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 03/14/2022] [Accepted: 02/14/2022] [Indexed: 12/24/2022] Open
Abstract
Tryptophan (Trp) metabolism through the kynurenine pathway (KP) is well known to play a critical function in cancer, autoimmune and neurodegenerative diseases. However, its role in host-pathogen interactions has not been characterized yet. Herein, we identified that kynurenine-3-monooxygenase (KMO), a key rate-limiting enzyme in the KP, and quinolinic acid (QUIN), a key enzymatic product of KMO enzyme, exerted a novel antiviral function against a broad range of viruses. Mechanistically, QUIN induced the production of type I interferon (IFN-I) via activating the N-methyl-d-aspartate receptor (NMDAR) and Ca2+ influx to activate Calcium/calmodulin-dependent protein kinase II (CaMKII)/interferon regulatory factor 3 (IRF3). Importantly, QUIN treatment effectively inhibited viral infections and alleviated disease progression in mice. Furthermore, kmo-/- mice were vulnerable to pathogenic viral challenge with severe clinical symptoms. Collectively, our results demonstrated that KMO and its enzymatic product QUIN were potential therapeutics against emerging pathogenic viruses. The outbreaks of emerging infectious diseases have become a severe challenge worldwide, and therefore it is a public health priority to explore novel broad-spectrum antiviral agents with various mechanisms. This study reported that kynurenine-3-monooxygenase (KMO), a key rate-limiting enzyme during tryptophan metabolism, showed promise as a novel broad-spectrum antiviral factor against emerging pathogenic viruses. We further found that quinolinic acid (QUIN), an enzymatic product of KMO, could also act as a novel broad-spectrum antiviral agent. We then systematically studied the underlying mechanisms and broadly antiviral function of KMO and QUIN in vitro and in vivo. Our data highlight the importance of exploring novel antiviral targets from the key enzymes and their metabolites in tryptophan metabolism.
Collapse
Affiliation(s)
- Jin Zhao
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Jiaoshan Chen
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Congcong Wang
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Yajie Liu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Minchao Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Yanjun Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Ruiting Li
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Zirong Han
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Junjian Wang
- Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou, China
| | - Ling Chen
- State Key Laboratory of Respiratory Disease, Guangzhou Institutes of Biomedicine and Health (GIBH), Chinese Academy of Sciences, Guangzhou, China
| | - Yuelong Shu
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
| | - Genhong Cheng
- Department of Microbiology, Immunology and Molecular Genetics, University of California, Los Angeles, California, United States of America
- * E-mail: (GC); (CS)
| | - Caijun Sun
- School of Public Health (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Key Laboratory of Tropical Disease Control (Sun Yat-sen university), Ministry of Education, Guangzhou, China
- * E-mail: (GC); (CS)
| |
Collapse
|
27
|
Bottino-Rojas V, Ferreira-Almeida I, Nunes RD, Feng X, Pham TB, Kelsey A, Carballar-Lejarazú R, Gantz V, Oliveira PL, James AA. Beyond the eye: Kynurenine pathway impairment causes midgut homeostasis dysfunction and survival and reproductive costs in blood-feeding mosquitoes. INSECT BIOCHEMISTRY AND MOLECULAR BIOLOGY 2022; 142:103720. [PMID: 34999199 PMCID: PMC11055609 DOI: 10.1016/j.ibmb.2022.103720] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Revised: 01/03/2022] [Accepted: 01/04/2022] [Indexed: 06/14/2023]
Abstract
Insect ommochrome biosynthesis pathways metabolize tryptophan to generate eye-color pigments and wild-type alleles of pathway genes are useful phenotypic markers in transgenesis studies. Pleiotropic effects of mutations in some genes exert a load on both survival and reproductive success in blood-feeding species. Here, we investigated the challenges imposed on mosquitoes by the increase of tryptophan metabolites resulting from blood meal digestion and the impact of disruptions of the ommochrome biosynthesis pathway. Female mosquitoes with spontaneous and induced mutations in the orthologs of the genes encoding kynurenine hydroxylase in Aedes aegypti, Anopheles stephensi and Culex quinquefasciatus exhibited impaired survival and reproductive phenotypes that varied in type and severity among the species. A compromised midgut permeability barrier function was also observed in An. stephensi. Surprisingly, mutant mosquitoes displayed an increase in microbiota compared to controls that was not accompanied by a general induction of immune genes. Antibiotic treatment rescued some deleterious traits implicating a role for the kynurenine pathway (KP) in midgut homeostasis. Supplemental xanthurenic acid, a KP end-product, rescued lethality and limited microbiota proliferation in Ae. aegypti. These data implicate the KP in the regulation of the host/microbiota interface. These pleiotropic effects on mosquito physiology are important in the development of genetic strategies targeting vector mosquitoes.
Collapse
Affiliation(s)
- Vanessa Bottino-Rojas
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, USA
| | - Igor Ferreira-Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Rodrigo D Nunes
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | - Xuechun Feng
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Thai Binh Pham
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, USA
| | - Adam Kelsey
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, USA
| | | | - Valentino Gantz
- Section of Cell and Developmental Biology, University of California San Diego, La Jolla, CA, USA
| | - Pedro L Oliveira
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil; Instituto Nacional de Ciência e Tecnologia em Entomologia Molecular, Rio de Janeiro, RJ, Brazil.
| | - Anthony A James
- Department of Microbiology & Molecular Genetics, University of California, Irvine, CA, USA; Department of Molecular Biology & Biochemistry, University of California, Irvine, CA, USA.
| |
Collapse
|
28
|
Zhuravlev AV, Shchegolev BF, Zakharov GA, Ivanova PN, Nikitina EA, Savvateeva-Popova EV. 3-Hydroxykynurenine as a Potential Ligand for Hsp70 Proteins and Its Effects on Drosophila Memory After Heat Shock. Mol Neurobiol 2022; 59:1862-1871. [PMID: 35029786 DOI: 10.1007/s12035-021-02704-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 12/15/2021] [Indexed: 12/21/2022]
Abstract
Kynurenine products of tryptophan metabolism are modifiers of the nervous activity and oxidative processes in mammals and invertebrates. 3-Hydroxykynurenine (3HOK) in moderate concentrations is a lipid peroxidation inhibitor. However, its accumulation and oxidative auto-dimerization lead to oxidative stress development manifested in age-related neurodegenerative diseases (NDD) and neurological disorders provoked by acute stress. Different forms of stress, the mostly studied being heat shock response, rely on functioning of heat shock proteins of the Hsp70 superfamily. Since kynurenines are called "kids of stress," we performed computational estimation of affinity of 3HOK and other kynurenines binding to predicted ATP site of Drosophila melanogaster Hsp cognate 71 protein (Dhsp71) using AutoDock Vina. The binding energy of 3HOK dimer is - 9.4 kcal/mol; its orientation within the active site is close to that of ATP. This might be a new mechanism of producing a competitive inhibitor of Hsp70 chaperones that decreases organism ability to adapt to heat shock. We also showed that the Drosophila cardinal (cd1) mutant with 3HOK excess, serving as a model for Huntington's disease (HD), manifests severe defects of short-term memory after heat shock applied either in adults or at the prepupal stage.
Collapse
Affiliation(s)
- Aleksandr V Zhuravlev
- Neurogenetics Laboratory, Pavlov Institute of Physiology RAS, St. Petersburg, Russia.
| | - Boris F Shchegolev
- Neurogenetics Laboratory, Pavlov Institute of Physiology RAS, St. Petersburg, Russia
| | - Gennadii A Zakharov
- Neurogenetics Laboratory, Pavlov Institute of Physiology RAS, St. Petersburg, Russia
| | - Polina N Ivanova
- Neurogenetics Laboratory, Pavlov Institute of Physiology RAS, St. Petersburg, Russia
| | - Ekaterina A Nikitina
- Neurogenetics Laboratory, Pavlov Institute of Physiology RAS, St. Petersburg, Russia
- Department of Human and Animal Anatomy and Physiology, Herzen State Pedagogical University of Russia, St. Petersburg, Russia
| | | |
Collapse
|
29
|
Ostapiuk A, Urbanska EM. Kynurenic acid in neurodegenerative disorders-unique neuroprotection or double-edged sword? CNS Neurosci Ther 2022; 28:19-35. [PMID: 34862742 PMCID: PMC8673711 DOI: 10.1111/cns.13768] [Citation(s) in RCA: 45] [Impact Index Per Article: 22.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/27/2021] [Accepted: 11/02/2021] [Indexed: 12/24/2022] Open
Abstract
AIMS The family of kynurenine pathway (KP) metabolites includes compounds produced along two arms of the path and acting in clearly opposite ways. The equilibrium between neurotoxic kynurenines, such as 3-hydroxykynurenine (3-HK) or quinolinic acid (QUIN), and neuroprotective kynurenic acid (KYNA) profoundly impacts the function and survival of neurons. This comprehensive review summarizes accumulated evidence on the role of KYNA in Alzheimer's, Parkinson's and Huntington's diseases, and discusses future directions of potential pharmacological manipulations aimed to modulate brain KYNA. DISCUSSION The synthesis of specific KP metabolites is tightly regulated and may considerably vary under physiological and pathological conditions. Experimental data consistently imply that shift of the KP to neurotoxic branch producing 3-HK and QUIN formation, with a relative or absolute deficiency of KYNA, is an important factor contributing to neurodegeneration. Targeting specific brain regions to maintain adequate KYNA levels seems vital; however, it requires the development of precise pharmacological tools, allowing to avoid the potential cognitive adverse effects. CONCLUSIONS Boosting KYNA levels, through interference with the KP enzymes or through application of prodrugs/analogs with high bioavailability and potency, is a promising clinical approach. The use of KYNA, alone or in combination with other compounds precisely influencing specific populations of neurons, is awaiting to become a significant therapy for neurodegenerative disorders.
Collapse
Affiliation(s)
- Aleksandra Ostapiuk
- Laboratory of Cellular and Molecular PharmacologyDepartment of Experimental and Clinical PharmacologyMedical University of LublinLublinPoland
- Present address:
Department of Clinical Digestive OncologyKU LeuvenLeuvenBelgium
| | - Ewa M. Urbanska
- Laboratory of Cellular and Molecular PharmacologyDepartment of Experimental and Clinical PharmacologyMedical University of LublinLublinPoland
| |
Collapse
|
30
|
Smith C, Smith H, Roberts L, Coward L, Gorman G, Verma A, Li Q, Buford TW, Carter CS, Jumbo-Lucioni P. Probiotic Releasing Angiotensin (1-7) in a Drosophila Model of Alzheimer's Disease Produces Sex-Specific Effects on Cognitive Function. J Alzheimers Dis 2022; 85:1205-1217. [PMID: 34924372 PMCID: PMC9549527 DOI: 10.3233/jad-210464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND While extensive research on the brain has failed to identify effective therapies, using probiotics to target the gut microbiome has shown therapeutic potential in Alzheimer's disease (AD). Genetically modified probiotics (GMP) are a promising strategy to deliver key therapeutic peptides with high efficacy and tissue specificity. Angiotensin (Ang)-(1-7) levels inversely correlate to AD severity, but its administration is challenging. Our group has successfully established a GMP-based method of Ang-(1-7) delivery. OBJECTIVE Since Drosophila represents an excellent model to study the effect of probiotics on complex disorders in a high throughput manner, we tested whether oral supplementation with Lactobacillus paracasei releasing Ang-(1-7) (LP-A) delays memory loss in a Drosophila AD model. METHODS Flies overexpressing the human amyloid-β protein precursor and its β-site cleaving enzyme in neurons were randomized to receive four 24-h doses of Lactobacillus paracasei alone (LP), LP-A or sucrose over 14 days. Memory was assessed via an aversive phototaxic suppression assay. RESULTS Optimal dilution,1:2, was determined based on palatability. LP-A improved memory in trained AD males but worsened cognition in AD females. LP-supplementation experiments confirmed that Ang-(1-7) conferred additional cognitive benefits in males and was responsible for the deleterious cognitive effects in females. Sex-specific differences in the levels of angiotensin peptides and differential activation of the kynurenine pathway of tryptophan metabolism in response to supplementation may underlie this male-only therapeutic response. CONCLUSION In summary, LP-A ameliorated the memory deficits of a Drosophila AD model, but effects were sex-specific. Dosage optimization may be required to address this differential response.
Collapse
Affiliation(s)
- C.Aaron Smith
- McWhorter School of Pharmacy, Samford University, Birmingham, AL
| | - Haddon Smith
- McWhorter School of Pharmacy, Samford University, Birmingham, AL
| | - Lisa Roberts
- Department of Medicine; Division of Gerontology, Geriatrics, and Palliative Care, University of Alabama at Birmingham, Birmingham, AL
| | - Lori Coward
- Pharmaceutical Sciences Research Institute, Samford University, Birmingham, AL
| | - Gregory Gorman
- McWhorter School of Pharmacy, Samford University, Birmingham, AL,Pharmaceutical Sciences Research Institute, Samford University, Birmingham, AL
| | - Amrisha Verma
- Department of Ophthalmology, College of Medicine, University of Florida Gainesville, FL
| | - Qiuhong Li
- Department of Ophthalmology, College of Medicine, University of Florida Gainesville, FL
| | - Thomas W. Buford
- Department of Medicine; Division of Gerontology, Geriatrics, and Palliative Care, University of Alabama at Birmingham, Birmingham, AL,Geriatric Research Education and Clinical Center, Birmingham VA Medical Center, Birmingham, AL,Corresponding authors: Thomas W. Buford, Phone: (205) 975-9042; ; Patricia Jumbo-Lucioni, Phone: (205) 726-4170;
| | - Christy S. Carter
- Department of Medicine; Division of Gerontology, Geriatrics, and Palliative Care, University of Alabama at Birmingham, Birmingham, AL
| | - Patricia Jumbo-Lucioni
- McWhorter School of Pharmacy, Samford University, Birmingham, AL,Department of Biology, College of Arts and Sciences, University of Alabama at Birmingham, Birmingham, AL.,Corresponding authors: Thomas W. Buford, Phone: (205) 975-9042; ; Patricia Jumbo-Lucioni, Phone: (205) 726-4170;
| |
Collapse
|
31
|
Delfino L, Campesan S, Fedele G, Green EW, Giorgini F, Kyriacou CP, Rosato E. Visualization of Mutant Aggregates from Clock Neurons by Agarose Gel Electrophoresis (AGERA) in Drosophila melanogaster. Methods Mol Biol 2022; 2482:373-383. [PMID: 35610440 DOI: 10.1007/978-1-0716-2249-0_25] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
The clock neurons of the fruit fly Drosophila melanogaster have become a useful model for expressing misfolded protein aggregates that accumulate in several human neurodegenerative diseases. One advantage of such an approach is that the behavioral effects can be readily quantified on circadian locomotor rhythms, sleep or activity levels via automated, highly reliable and objective procedures. Therefore, a rapid assay is required to visualize whether these neurons develop aggregates. Here we describe a modified immunoblot method, agarose gel electrophoresis (AGERA) that has been optimized for resolving aggregates from fly clock neurons.
Collapse
Affiliation(s)
- Laura Delfino
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Susanna Campesan
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Giorgio Fedele
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Edward W Green
- German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Flaviano Giorgini
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | | | - Ezio Rosato
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| |
Collapse
|
32
|
Boros FA, Vécsei L. Tryptophan 2,3-dioxygenase, a novel therapeutic target for Parkinson's disease. Expert Opin Ther Targets 2021; 25:877-888. [PMID: 34720020 DOI: 10.1080/14728222.2021.1999928] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
INTRODUCTION Alterations in the activity of tryptophan 2,3-dioxygenase (TDO) cause imbalances in the levels of serotonin and other neuroactive metabolites which can contribute to motor, psychiatric, gastrointestinal, and other dysfunctions often seen in Parkinson's disease (PD). TDO is a key enzyme of tryptophan metabolism at the entry of the kynurenine pathway (KP) which moderates production of neuroactive compounds primarily outside the central nervous system (CNS). Recent data from experimental models indicate that TDO modulation could have beneficial effects on PD symptoms not targeted by traditional dopamine substitution therapies. AREAS COVERED Based on data available in PubMed and ClinicalTrials databases up until 1 August 2021, we summarize current knowledge of KP alterations in relation to PD. We overview effects of TDO inhibition in preclinical models of neurodegeneration and discuss findings of the impact of enzyme inhibition on motor, memory and gastrointestinal dysfunctions, and neuronal cell loss. EXPERT OPINION TDO inhibition potentially alleviates motor and non-motor dysfunctions of PD. However, data suggesting harmful effects of long-term TDO inhibition raise concerns. To exploit possibilities of TDO inhibitory treatment, development of further selective TDO inhibitor compounds with good bioavailability features and models adequately replicating PD symptoms of systemic origin should be prioritized.
Collapse
Affiliation(s)
- Fanni Annamária Boros
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary
| | - László Vécsei
- Department of Neurology, Faculty of Medicine, Albert Szent-Györgyi Clinical Center, University of Szeged, Szeged, Hungary.,MTA-SZTE, Neuroscience Research Group Szeged Hungary.,Interdisciplinary Excellence Center, Department of Neurology, Szeged, Hungary
| |
Collapse
|
33
|
The effects of high-monosaccharide diets on development and biochemical composition of white-eyed mutant strain of house cricket (Acheta domesticus). Sci Rep 2021; 11:21147. [PMID: 34707140 PMCID: PMC8551166 DOI: 10.1038/s41598-021-00393-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 10/05/2021] [Indexed: 11/22/2022] Open
Abstract
Tryptophan (TRP) is one of the essential amino acids in the animal body. Its exogenicity and low concentrations mean that it can be regarded as one of the key regulatory molecules at the cellular as well as physiological level. It has been shown to have a number of essential functions, such as in the production of other biologically active molecules. The main objective of this project was to investigate the effects of a high monosaccharide diet (HMD) on a hemimetabolic insect-house cricket (Acheta domesticus) and a mutant strain with impaired visual pigment synthesis (closely related to the tryptophan and kynurenine (KYN) metabolic pathway)-white eye. This study was aimed at determining the effects of glucose and fructose on cricket development and biochemical composition. A parallel goal was to compare the response of both cricket strains to HMD. ELISA assays indicated dysfunction of the TRP-KYN pathway in white strain insects and an elevated KYN/TRP ratio. Biochemical analyses demonstrated the effects of HMD mainly on fat and glycogen content. A decrease in food intake was also observed in the groups on HMD. However, no changes in imago body weight and water content were observed. The results of the study indicate a stronger response of the white strain to HMD compared to the wild-type strain. At the same time, a stronger detrimental effect of fructose than of glucose was apparent. Sex was found to be a modulating factor in the response to HMD.
Collapse
|
34
|
Bai MY, Lovejoy DB, Guillemin GJ, Kozak R, Stone TW, Koola MM. Galantamine-Memantine Combination and Kynurenine Pathway Enzyme Inhibitors in the Treatment of Neuropsychiatric Disorders. Complex Psychiatry 2021; 7:19-33. [PMID: 35141700 PMCID: PMC8443947 DOI: 10.1159/000515066] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 02/04/2021] [Indexed: 12/25/2022] Open
Abstract
The kynurenine pathway (KP) is a major route for L-tryptophan (L-TRP) metabolism, yielding a variety of bioactive compounds including kynurenic acid (KYNA), 3-hydroxykynurenine (3-HK), quinolinic acid (QUIN), and picolinic acid (PIC). These tryptophan catabolites are involved in the pathogenesis of many neuropsychiatric disorders, particularly when the KP becomes dysregulated. Accordingly, the enzymes that regulate the KP such as indoleamine 2,3-dioxygenase (IDO)/tryptophan 2,3-dioxygenase, kynurenine aminotransferases (KATs), and kynurenine 3-monooxygenase (KMO) represent potential drug targets as enzymatic inhibition can favorably rebalance KP metabolite concentrations. In addition, the galantamine-memantine combination, through its modulatory effects at the alpha7 nicotinic acetylcholine receptors and N-methyl-D-aspartate receptors, may counteract the effects of KYNA. The aim of this review is to highlight the effectiveness of IDO-1, KAT II, and KMO inhibitors, as well as the galantamine-memantine combination in the modulation of different KP metabolites. KAT II inhibitors are capable of decreasing the KYNA levels in the rat brain by a maximum of 80%. KMO inhibitors effectively reduce the central nervous system (CNS) levels of 3-HK, while markedly boosting the brain concentration of KYNA. Emerging data suggest that the galantamine-memantine combination also lowers L-TRP, kynurenine, KYNA, and PIC levels in humans. Presently, there are only 2 pathophysiological mechanisms (cholinergic and glutamatergic) that are FDA approved for the treatment of cognitive dysfunction for which purpose the galantamine-memantine combination has been designed for clinical use against Alzheimer's disease. The alpha7 nicotinic-NMDA hypothesis targeted by the galantamine-memantine combination has been implicated in the pathophysiology of various CNS diseases. Similarly, KYNA is well capable of modulating the neuropathophysiology of these disorders. This is known as the KYNA-centric hypothesis, which may be implicated in the management of certain neuropsychiatric conditions. In line with this hypothesis, KYNA may be considered as the "conductor of the orchestra" for the major pathophysiological mechanisms underlying CNS disorders. Therefore, there is great opportunity to further explore and compare the biological effects of these therapeutic modalities in animal models with a special focus on their effects on KP metabolites in the CNS and with the ultimate goal of progressing to clinical trials for many neuropsychiatric diseases.
Collapse
Affiliation(s)
- Michael Y. Bai
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - David B. Lovejoy
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Gilles J. Guillemin
- Department of Biomedical Sciences, Neuroinflammation Group, Macquarie University Centre for Motor Neuron Disease Research, Faculty of Medicine, Health and Human Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Rouba Kozak
- Neuroscience Drug Discovery Unit, Takeda Pharmaceuticals International Co, Cambridge, Massachusetts, USA
| | - Trevor W. Stone
- Nuffield Department of Orthopedics, Rheumatology and Musculoskeletal Sciences (NDORMS), University of Oxford, Oxford, United Kingdom
| | - Maju Mathew Koola
- Department of Psychiatry and Behavioral Health, Stony Brook University Renaissance School of Medicine, Stony Brook, Stony Brook, New York, USA
| |
Collapse
|
35
|
Rodrigues FB, Byrne LM, Lowe AJ, Tortelli R, Heins M, Flik G, Johnson EB, De Vita E, Scahill RI, Giorgini F, Wild EJ. Kynurenine pathway metabolites in cerebrospinal fluid and blood as potential biomarkers in Huntington's disease. J Neurochem 2021; 158:539-553. [PMID: 33797782 PMCID: PMC8375100 DOI: 10.1111/jnc.15360] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Revised: 01/18/2021] [Accepted: 03/26/2021] [Indexed: 01/31/2023]
Abstract
Converging lines of evidence from several models, and post-mortem human brain tissue studies, support the involvement of the kynurenine pathway (KP) in Huntington's disease (HD) pathogenesis. Quantifying KP metabolites in HD biofluids is desirable, both to study pathobiology and as a potential source of biomarkers to quantify pathway dysfunction and evaluate the biochemical impact of therapeutic interventions targeting its components. In a prospective single-site controlled cohort study with standardised collection of cerebrospinal fluid (CSF), blood, phenotypic and imaging data, we used high-performance liquid-chromatography to measure the levels of KP metabolites-tryptophan, kynurenine, kynurenic acid, 3-hydroxykynurenine, anthranilic acid and quinolinic acid-in CSF and plasma of 80 participants (20 healthy controls, 20 premanifest HD and 40 manifest HD). We investigated short-term stability, intergroup differences, associations with clinical and imaging measures and derived sample-size calculation for future studies. Overall, KP metabolites in CSF and plasma were stable over 6 weeks, displayed no significant group differences and were not associated with clinical or imaging measures. We conclude that the studied metabolites are readily and reliably quantifiable in both biofluids in controls and HD gene expansion carriers. However, we found little evidence to support a substantial derangement of the KP in HD, at least to the extent that it is reflected by the levels of the metabolites in patient-derived biofluids.
Collapse
Affiliation(s)
- Filipe B. Rodrigues
- UCL Huntington's Disease CentreUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Lauren M. Byrne
- UCL Huntington's Disease CentreUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Alexander J. Lowe
- UCL Huntington's Disease CentreUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Rosanna Tortelli
- UCL Huntington's Disease CentreUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | | | - Gunnar Flik
- Charles River LaboratoriesGroningenThe Netherlands
| | - Eileanoir B. Johnson
- UCL Huntington's Disease CentreUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Enrico De Vita
- Lysholm Department of NeuroradiologyNational Hospital for Neurology & NeurosurgeryLondonUK
- Department of Biomedical EngineeringSchool of Biomedical Engineering and Imaging SciencesKing's College LondonLondonUK
| | - Rachael I. Scahill
- UCL Huntington's Disease CentreUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| | - Flaviano Giorgini
- Department of Genetics and Genome BiologyUniversity of LeicesterLeicesterUK
| | - Edward J. Wild
- UCL Huntington's Disease CentreUCL Queen Square Institute of NeurologyUniversity College LondonLondonUK
| |
Collapse
|
36
|
Kassab SE, Mowafy S. Structural Basis of Selective Human Indoleamine-2,3-dioxygenase 1 (hIDO1) Inhibition. ChemMedChem 2021; 16:3149-3164. [PMID: 34174026 DOI: 10.1002/cmdc.202100253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/23/2021] [Indexed: 11/08/2022]
Abstract
hIDO1 is a heme-dioxygenase overexpressed in the tumor microenvironment and is implicated in the survival of cancer cells. Metabolism of tryptophan to N-formyl-kynurenine by hIDO1 leads to immune suppression to result in cancer cell immune escape. In this article, we discuss the discovery of selective hIDO1 inhibitors for therapeutic intervention that have been promoted to clinical trials and for which crystallographic structural information is available for the respective inhibitor-enzyme complex. The structural insights are based on the complex crystal structures and the relative biological data profiles. The structural basis of selective hIDO1 inhibition, as discussed herein, opens new avenues to the discovery of novel inhibitors with improved activity profiles, selectivity, and distinct structure frameworks.
Collapse
Affiliation(s)
- Shaymaa Emam Kassab
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Damanhour University, Damanhour, El-Buhaira, 22516, Egypt
| | - Samar Mowafy
- Pharmaceutical Chemistry Department, Faculty of Pharmacy, Misr International University, Cairo, 11431, Egypt.,Department of Chemistry, University of Washington, Seattle, Washington, 98195, United States of America
| |
Collapse
|
37
|
Role of Kynurenine Pathway in Oxidative Stress during Neurodegenerative Disorders. Cells 2021; 10:cells10071603. [PMID: 34206739 PMCID: PMC8306609 DOI: 10.3390/cells10071603] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 06/18/2021] [Accepted: 06/24/2021] [Indexed: 12/12/2022] Open
Abstract
Neurodegenerative disorders are chronic and life-threatening conditions negatively affecting the quality of patients’ lives. They often have a genetic background, but oxidative stress and mitochondrial damage seem to be at least partly responsible for their development. Recent reports indicate that the activation of the kynurenine pathway (KP), caused by an activation of proinflammatory factors accompanying neurodegenerative processes, leads to the accumulation of its neuroactive and pro-oxidative metabolites. This leads to an increase in the oxidative stress level, which increases mitochondrial damage, and disrupts the cellular energy metabolism. This significantly reduces viability and impairs the proper functioning of central nervous system cells and may aggravate symptoms of many psychiatric and neurodegenerative disorders. This suggests that the modulation of KP activity could be effective in alleviating these symptoms. Numerous reports indicate that tryptophan supplementation, inhibition of KP enzymes, and administration or analogs of KP metabolites show promising results in the management of neurodegenerative disorders in animal models. This review gathers and systematizes the knowledge concerning the role of metabolites and enzymes of the KP in the development of oxidative damage within brain cells during neurodegenerative disorders and potential strategies that could reduce the severity of this process.
Collapse
|
38
|
Parp mutations protect from mitochondrial toxicity in Alzheimer's disease. Cell Death Dis 2021; 12:651. [PMID: 34172715 PMCID: PMC8233423 DOI: 10.1038/s41419-021-03926-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Revised: 06/11/2021] [Accepted: 06/14/2021] [Indexed: 11/08/2022]
Abstract
Alzheimer's disease is the most common age-related neurodegenerative disorder. Familial forms of Alzheimer's disease associated with the accumulation of a toxic form of amyloid-β (Aβ) peptides are linked to mitochondrial impairment. The coenzyme nicotinamide adenine dinucleotide (NAD+) is essential for both mitochondrial bioenergetics and nuclear DNA repair through NAD+-consuming poly (ADP-ribose) polymerases (PARPs). Here we analysed the metabolomic changes in flies overexpressing Aβ and showed a decrease of metabolites associated with nicotinate and nicotinamide metabolism, which is critical for mitochondrial function in neurons. We show that increasing the bioavailability of NAD+ protects against Aβ toxicity. Pharmacological supplementation using NAM, a form of vitamin B that acts as a precursor for NAD+ or a genetic mutation of PARP rescues mitochondrial defects, protects neurons against degeneration and reduces behavioural impairments in a fly model of Alzheimer's disease. Next, we looked at links between PARP polymorphisms and vitamin B intake in patients with Alzheimer's disease. We show that polymorphisms in the human PARP1 gene or the intake of vitamin B are associated with a decrease in the risk and severity of Alzheimer's disease. We suggest that enhancing the availability of NAD+ by either vitamin B supplements or the inhibition of NAD+-dependent enzymes such as PARPs are potential therapies for Alzheimer's disease.
Collapse
|
39
|
Thomas J, Smith H, Smith CA, Coward L, Gorman G, De Luca M, Jumbo-Lucioni P. The Angiotensin-Converting Enzyme Inhibitor Lisinopril Mitigates Memory and Motor Deficits in a Drosophila Model of Alzheimer's Disease. PATHOPHYSIOLOGY 2021; 28:307-319. [PMID: 35366264 PMCID: PMC8830455 DOI: 10.3390/pathophysiology28020020] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 06/08/2021] [Accepted: 06/14/2021] [Indexed: 02/07/2023] Open
Abstract
The use of angiotensin-converting enzyme inhibitors (ACEis) has been reported to reduce symptoms of cognitive decline in patients with Alzheimer’s disease (AD). Yet, the protective role of ACEis against AD symptoms is still controversial. Here, we aimed at determining whether oral treatment with the ACEi lisinopril has beneficial effects on cognitive and physical functions in a Drosophila melanogaster model of AD that overexpresses the human amyloid precursor protein and the human β-site APP-cleaving enzyme in neurons. We found a significant impairment in learning and memory as well as in climbing ability in young AD flies compared to control flies. After evaluation of the kynurenine pathway of tryptophan metabolism, we also found that AD flies displayed a >30-fold increase in the levels of the neurotoxic 3-hydroxykynurenine (3-HK) in their heads. Furthermore, compared to control flies, AD flies had significantly higher levels of the reactive oxygen species (ROS) hydrogen peroxide in their muscle-enriched thoraces. Lisinopril significantly improved deficits in learning and memory and climbing ability in AD flies. The positive impact of lisinopril on physical function might be, in part, explained by a significant reduction in ROS levels in the thoraces of the lisinopril-fed AD flies. However, lisinopril did not affect the levels of 3-HK. In conclusion, our findings provide novel and relevant insights into the therapeutic potential of ACEis in a preclinical AD model.
Collapse
Affiliation(s)
- Jimiece Thomas
- McWhorter School of Pharmacy, Samford University, Birmingham, AL 35229, USA; (J.T.); (H.S.); (C.A.S.)
| | - Haddon Smith
- McWhorter School of Pharmacy, Samford University, Birmingham, AL 35229, USA; (J.T.); (H.S.); (C.A.S.)
| | - C. Aaron Smith
- McWhorter School of Pharmacy, Samford University, Birmingham, AL 35229, USA; (J.T.); (H.S.); (C.A.S.)
| | - Lori Coward
- Pharmaceutical Sciences Research Institute, McWhorter School of Pharmacy, Samford University, Birmingham, AL 35229, USA; (L.C.); (G.G.)
| | - Gregory Gorman
- Pharmaceutical Sciences Research Institute, McWhorter School of Pharmacy, Samford University, Birmingham, AL 35229, USA; (L.C.); (G.G.)
- Pharmaceutical, Social, and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, AL 35229, USA
| | - Maria De Luca
- Department of Nutrition Sciences, School of Health Professions, University of Alabama, Birmingham, AL 35233, USA;
| | - Patricia Jumbo-Lucioni
- Pharmaceutical, Social, and Administrative Sciences, McWhorter School of Pharmacy, Samford University, Birmingham, AL 35229, USA
- Department of Biology, College of Arts and Sciences, University of Alabama, Birmingham, AL 35233, USA
- Correspondence:
| |
Collapse
|
40
|
Disruption of kynurenine pathway reveals physiological importance of tryptophan catabolism in Henosepilachna vigintioctopunctata. Amino Acids 2021; 53:1091-1104. [PMID: 34089391 DOI: 10.1007/s00726-021-03009-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 05/22/2021] [Indexed: 10/21/2022]
Abstract
Kynurenine pathway is critically important to catabolize tryptophan, to produce eye chromes, and to protect nervous system in insects. However, several issues related to tryptophan degradation remain to be clarified. In the present paper, we identified three genes (karmoisin, vermilion and cardinal) involved in kynurenine pathway in Henosepilachna vigintioctopunctata. The karmoisin and cardinal were highly expressed in the pupae and adults having compound eyes. Consistently, high-performance liquid chromatography result showed that three ommochrome peaks were present in adult heads rather than bodies (thoraces, legs, wings and abdomens). RNA interference (RNAi)-aided knockdown of vermilion caused accumulation of tryptophan in both adult heads and bodies, disappearance of ommochromes in the heads and a complete loss of eye color in both pupae and adults. Depletion of cardinal brought about excess of 3-hydroxykynurenine and insufficient ommochromes in the heads and decolored eyes. RNAi of karmoisin resulted in a decrease in ommochromes in the heads, and a partial loss of eye color. Moreover, a portion of karmoisin-, vermilion- or cardinal-silenced adults exhibited negative phototaxis, whereas control beetles showed positive phototaxis. Furthermore, dysfunctions of tryptophan catabolism impaired climbing ability. Our findings clearly illustrated several issues related to kynurenine pathway and provided a new insight into the physiological importance of tryptophan catabolism in H. vigintioctopunctata.
Collapse
|
41
|
Pathak GA, Barber RC, Phillips NR. Multiomics Investigation of Hypertension and White Matter Hyperintensity as a Source of Vascular Dementia or a Comorbidity to Alzheimer's Disease. Curr Alzheimer Res 2021; 18:171-177. [PMID: 33888050 DOI: 10.2174/1567205018666210422133547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 02/27/2021] [Accepted: 04/06/2021] [Indexed: 11/22/2022]
Abstract
BACKGROUND Age-related comorbidity is common and significantly increases the burden for the healthcare of the elderly. Alzheimer's disease (AD) and hypertension are the two most prevalent age-related conditions and are highly comorbid. While hypertension is a risk factor for vascular dementia (VD), hypertension with AD (ADHyp+) is often characterized as probable vascular dementia. In the absence of imaging and other diagnostic tests, differentiating the two pathological states is difficult. OBJECTIVE Our goals are to (1) identify differences in CSF-based vascular dementia profiles, if any, between individuals who have AD only (ADHyp-), and individuals with ADHyp+ using CSF levels of amyloid β, tau and p-tau, and (2) compare genome-wide DNA profiles of ADHyp- and ADHyp+ with an unaffected control population. METHOD Genotype and clinical data were used to compare healthy controls to AD Hyp- vs. AD Hyp+. We compared the CSF biomarkers followed by evaluating genome wide profiles in three groups, and mapped SNPs to genes based on position and lowest p-value. The significant genes were examined for co-expression and known disease networks. RESULTS We found no differences between Aβ, tau and p-tau levels between ADHyp- and ADHyp+. We found TOMM40 to be associated with ADHyp- as expected but not with ADHyp+. Interestingly, SLC9A3R2 polymorphism was associated with ADHyp+, and significant gene expression changes were observed for neighboring genes. CONCLUSION Through this exploratory study using a novel cohort stratification design, we highlight the genetic differences in clinically similar phenotypes, indicating the utility of genetic profiling in aiding differential diagnosis of ADHyp+ and VD.
Collapse
Affiliation(s)
- Gita A Pathak
- Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center Fort Worth, Texas 76107, United States
| | - Robert C Barber
- Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center Fort Worth, Texas 76107, United States
| | - Nicole R Phillips
- Department of Microbiology, Immunology & Genetics, University of North Texas Health Science Center Fort Worth, Texas 76107, United States
| |
Collapse
|
42
|
Pharmacophore-Based Virtual Screening of Novel Competitive Inhibitors of the Neurodegenerative Disease Target Kynurenine-3-Monooxygenase. Molecules 2021; 26:molecules26113314. [PMID: 34073016 PMCID: PMC8199213 DOI: 10.3390/molecules26113314] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/26/2021] [Accepted: 05/26/2021] [Indexed: 11/27/2022] Open
Abstract
The pathogenesis of several neurodegenerative diseases such as Alzheimer’s or Huntington’s disease has been associated with metabolic dysfunctions caused by imbalances in the brain and cerebral spinal fluid levels of neuroactive metabolites. Kynurenine monooxygenase (KMO) is considered an ideal therapeutic target for the regulation of neuroactive tryptophan metabolites. Despite significant efforts, the known KMO inhibitors lack blood–brain barrier (BBB) permeability and upon the mimicking of the substrate binding mode, are subject to produce reactive oxygen species as a side reaction. The computational drug design is further complicated by the absence of complete crystal structure information for human KMO (hKMO). In the current work, we performed virtual screening of readily available compounds using several protein–ligand complex pharmacophores. Each of the pharmacophores accounts for one of three distinct reported KMO protein-inhibitor binding conformations. As a result, six novel KMO inhibitors were discovered based on an in vitro fluorescence assay. Compounds VS1 and VS6 were predicted to be BBB permeable and avoid the hydrogen peroxide production dilemma, making them valuable, novel hit compounds for further drug property optimization and advancement in the drug design pipeline.
Collapse
|
43
|
Yang Y, Chen T, Zhang X, Wang X. Age-related functional changes of intestinal flora in rats. FEMS Microbiol Lett 2021; 368:6277806. [PMID: 34003293 DOI: 10.1093/femsle/fnab051] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Accepted: 05/14/2021] [Indexed: 12/21/2022] Open
Abstract
Intestinal flora structure and function change with age and have been associated with a variety of aging-related diseases. Until now, how age affects the functions of gut bacteria has not been fully understood. We used 16S-rRNA-sequencing technology and PICRUSt2 analysis to predict the functions encoded by intestinal flora in male Wistar rats across lifespan. We found that the abundance of gut microbiota genes encoding the L-tryptophan, L-histidine, L-leucine, inositol and catechol degradation pathways as well as L-arginine, ectoine, flavin and ubiquinol synthesis pathways increased with age. Differential analysis of the associated genera revealed that Rhodococcus spp. were significantly abundant during middle-old aged stage. This genus contributed greatly to the L-tryptophan, catechol and inositol degradation pathways as well as ectoine and L-arginine biosynthesis pathways. We concluded that gut bacteria-encoded functions such as amino acid metabolism, B vitamin metabolism, aromatic compound metabolism and energy metabolism varied in an age-dependent manner, and Rhodococcus spp. were the most associated functional bacteria in middle-old aged rats. These may be closely associated with the physiological phenotype of the aging process, which offers new insights for evaluating the relationship between intestinal flora and aging.
Collapse
Affiliation(s)
- Yuping Yang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tianlu Chen
- Shanghai Key Laboratory of Diabetes Mellitus and Center for Translational Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Xia Zhang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyan Wang
- Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
44
|
Donley DW, Realing M, Gigley JP, Fox JH. Iron activates microglia and directly stimulates indoleamine-2,3-dioxygenase activity in the N171-82Q mouse model of Huntington's disease. PLoS One 2021; 16:e0250606. [PMID: 33989290 PMCID: PMC8121302 DOI: 10.1371/journal.pone.0250606] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 04/10/2021] [Indexed: 01/05/2023] Open
Abstract
Huntington's disease (HD) is a neurodegenerative disorder caused by a dominant CAG-repeat expansion in the huntingtin gene. Microglial activation is a key feature of HD pathology, and is present before clinical disease onset. The kynurenine pathway (KP) of tryptophan degradation is activated in HD, and is thought to contribute to disease progression. Indoleamine-2,3-dioxygenase (IDO) catalyzes the first step in this pathway; this and other pathway enzymes reside with microglia. While HD brain microglia accumulate iron, the role of iron in promoting microglial activation and KP activity is unclear. Here we utilized the neonatal iron supplementation model to investigate the relationship between iron, microglial activation and neurodegeneration in adult HD mice. We show in the N171-82Q mouse model of HD microglial morphologic changes consistent with immune activation. Neonatal iron supplementation in these mice promoted neurodegeneration and resulted in additional microglial activation in adults as determined by increased soma volume and decreased process length. We further demonstrate that iron activates IDO, both in brain lysates and purified recombinant protein (EC50 = 1.24 nM). Brain IDO activity is increased by HD. Neonatal iron supplementation further promoted IDO activity in cerebral cortex, altered KP metabolite profiles, and promoted HD neurodegeneration as measured by brain weights and striatal volumes. Our results demonstrate that dietary iron is an important activator of microglia and the KP pathway in this HD model, and that this occurs in part through a direct effect on IDO. The findings are relevant to understanding how iron promotes neurodegeneration in HD.
Collapse
Affiliation(s)
- David W. Donley
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, United States of America
- Neuroscience Graduate Program, University of Wyoming, Laramie, WY, United States of America
| | - Marley Realing
- Microbiology Undergraduate Program, University of Wyoming, Laramie, WY, United States of America
| | - Jason P. Gigley
- Department of Molecular Biology, University of Wyoming, Laramie, WY, United States of America
| | - Jonathan H. Fox
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, United States of America
- Neuroscience Graduate Program, University of Wyoming, Laramie, WY, United States of America
| |
Collapse
|
45
|
Subhan I, Siddique YH. Modulation of Huntington's disease in Drosophila. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2021; 20:894-903. [PMID: 33845728 DOI: 10.2174/1871527320666210412155508] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 01/08/2021] [Accepted: 01/11/2021] [Indexed: 11/22/2022]
Abstract
Huntington's disease (HD) is a progressive neurodegenerative disorder which deteriorates the physical and mental abilities of the patients. It is an autosomal dominant disorder and is mainly caused by the expansion of a repeating CAG triplet. A number of animal models ranging from worms, fruit flies, mice and rats to pigs, sheep and monkeys are available which have been helpful in understanding various pathways involved during the progression of the disease. Drosophila is one of the most commonly used model organisms for biomedical science, due to low cost maintenance, short life span and easily implications of genetic tools. The present review provides brief description of HD and the studies carried out for HD to date taking Drosophila as a model.
Collapse
Affiliation(s)
- Iqra Subhan
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh. India
| | - Yasir Hasan Siddique
- Drosophila Transgenic Laboratory, Section of Genetics, Department of Zoology, Faculty of Life Sciences, Aligarh Muslim University, Aligarh-202002, Uttar Pradesh. India
| |
Collapse
|
46
|
Genetic Screen in Adult Drosophila Reveals That dCBP Depletion in Glial Cells Mitigates Huntington Disease Pathology through a Foxo-Dependent Pathway. Int J Mol Sci 2021; 22:ijms22083884. [PMID: 33918672 PMCID: PMC8069648 DOI: 10.3390/ijms22083884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/23/2021] [Accepted: 04/06/2021] [Indexed: 12/14/2022] Open
Abstract
Huntington’s disease (HD) is a progressive and fatal autosomal dominant neurodegenerative disease caused by a CAG repeat expansion in the first exon of the huntingtin gene (HTT). In spite of considerable efforts, there is currently no treatment to stop or delay the disease. Although HTT is expressed ubiquitously, most of our knowledge has been obtained on neurons. More recently, the impact of mutant huntingtin (mHTT) on other cell types, including glial cells, has received growing interest. It is currently unclear whether new pathological pathways could be identified in these cells compared to neurons. To address this question, we performed an in vivo screen for modifiers of mutant huntingtin (HTT-548-128Q) induced pathology in Drosophila adult glial cells and identified several putative therapeutic targets. Among them, we discovered that partial nej/dCBP depletion in these cells was protective, as revealed by strongly increased lifespan and restored locomotor activity. Thus, dCBP promotes the HD pathology in glial cells, in contrast to previous opposite findings in neurons. Further investigations implicated the transcriptional activator Foxo as a critical downstream player in this glial protective pathway. Our data suggest that combinatorial approaches combined to specific tissue targeting may be required to uncover efficient therapies in HD.
Collapse
|
47
|
Matencio A, Caldera F, Rubin Pedrazzo A, Khazaei Monfared Y, K Dhakar N, Trotta F. A physicochemical, thermodynamical, structural and computational evaluation of kynurenic acid/cyclodextrin complexes. Food Chem 2021; 356:129639. [PMID: 33819789 DOI: 10.1016/j.foodchem.2021.129639] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2021] [Revised: 03/03/2021] [Accepted: 03/15/2021] [Indexed: 12/28/2022]
Abstract
In this work, the interaction between Kynurenic acid (KYNA) and several natural and modified cyclodextrins (CDs) is carried out. Among all the CD tested, HPβ-CD showed the strongest complexation constant (KF), with a value of 270.94 ± 29.80 M-1. Between natural (α- and β-) CDs, the complex of KYNA with β-CD was the most efficient. The inclusion complex of KYNA with CDs showed a strong influence of pH and temperature. The KF value decreased at high pH values, when the pKa was passed. Moreover, an increase of the temperature caused a decrease in the KF values. The thermodynamic parameters of the complexation (ΔH°, ΔS° and ΔG°) were studied with negative entropy, enthalpy and spontaneity of the process at 25 °C. Moreover, the inclusion complex was also characterized using FTIR and TGA. Finally, molecular docking calculations provided different interactions and their influence in the complexation constant.
Collapse
Affiliation(s)
- Adrián Matencio
- Dip. Di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy.
| | - Fabrizio Caldera
- Dip. Di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy
| | | | | | - Nilesh K Dhakar
- Dip. Di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy
| | - Francesco Trotta
- Dip. Di Chimica, Università di Torino, via P. Giuria 7, 10125 Torino, Italy
| |
Collapse
|
48
|
Angeles-López QD, García-Lara L, Aguirre-Pineda N, Castañeda-Arellano R, Elizondo-Azuela G, Pérez-Severiano F, Segovia J. The absence of the aryl hydrocarbon receptor in the R6/1 transgenic mouse model of Huntington's disease improves the neurological phenotype. Behav Brain Res 2021; 408:113230. [PMID: 33684424 DOI: 10.1016/j.bbr.2021.113230] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2020] [Revised: 02/16/2021] [Accepted: 03/01/2021] [Indexed: 12/31/2022]
Abstract
Huntington's disease (HD) is an inherited neurodegenerative disorder caused by an abnormal CAG repeat expansion in the huntingtin gene coding for a protein with an elongated polyglutamine sequence. HD patients present choreiform movements, which are caused by the loss of neurons in the striatum and cerebral cortex. Previous reports indicate that the absence of the aryl hydrocarbon receptor (AhR) protects mice from excitotoxic insults and increases the transcription of neurotrophic factors. Based on these data, we evaluated the effects of the lack of the AhR on a mice model of HD, generating a double transgenic mouse, expressing human mutated huntingtin (R6/1 mice) and knockout for the AhR. Our results show that the body weight of 30-week-old double transgenic mice is similar to that of R6/1 mice; however, feet clasping, an indicative of neuronal damage in the R6/1 animals, was not observed. In addition, motor coordination and ambulatory behavior in double transgenic mice did not deteriorate over time as occur in the R6/1 mice. Moreover, the anxiety behavior of double transgenic mice was similar to wild type mice. Interestingly, astrogliosis is also reduced in the double transgenic mice. The present data demonstrate that the complete loss of the AhR reduces the motor and behavioral deterioration observed in R6/1 mice, suggesting that the pharmacological modulation of the AhR could be a therapeutic target in HD.
Collapse
Affiliation(s)
- Quetzalli D Angeles-López
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, 07360, Mexico; Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269, Mexico
| | - Lucia García-Lara
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269, Mexico
| | - Nicolás Aguirre-Pineda
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, 07360, Mexico
| | - Rolando Castañeda-Arellano
- Departamento de Ciencias Biomédicas, Centro Universitario de Tonalá, Universidad de Guadalajara 45425, Jalisco, Mexico
| | - Guillermo Elizondo-Azuela
- Departamento de Biología Celular, Centro de Investigación y de Estudios Avanzados del IPN, 07360, Mexico
| | - Francisca Pérez-Severiano
- Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía Manuel Velasco Suárez, 14269, Mexico
| | - José Segovia
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del IPN, 07360, Mexico.
| |
Collapse
|
49
|
Perez-Pardo P, Grobben Y, Willemsen-Seegers N, Hartog M, Tutone M, Muller M, Adolfs Y, Pasterkamp RJ, Vu-Pham D, van Doornmalen AM, van Cauter F, de Wit J, Gerard Sterrenburg J, Uitdehaag JCM, de Man J, Buijsman RC, Zaman GJR, Kraneveld AD. Pharmacological validation of TDO as a target for Parkinson's disease. FEBS J 2021; 288:4311-4331. [PMID: 33471408 PMCID: PMC8359396 DOI: 10.1111/febs.15721] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 11/24/2020] [Accepted: 12/30/2020] [Indexed: 12/21/2022]
Abstract
Parkinson’s disease patients suffer from both motor and nonmotor impairments. There is currently no cure for Parkinson’s disease, and the most commonly used treatment, levodopa, only functions as a temporary relief of motor symptoms. Inhibition of the expression of the L‐tryptophan‐catabolizing enzyme tryptophan 2,3‐dioxygenase (TDO) has been shown to inhibit aging‐related α‐synuclein toxicity in Caenorhabditis elegans. To evaluate TDO inhibition as a potential therapeutic strategy for Parkinson’s disease, a brain‐penetrable, small molecule TDO inhibitor was developed, referred to as NTRC 3531‐0. This compound potently inhibits human and mouse TDO in biochemical and cell‐based assays and is selective over IDO1, an evolutionary unrelated enzyme that catalyzes the same reaction. In mice, NTRC 3531‐0 increased plasma and brain L‐tryptophan levels after oral administration, demonstrating inhibition of TDO activity in vivo. The effect on Parkinson’s disease symptoms was evaluated in a rotenone‐induced Parkinson’s disease mouse model. A structurally dissimilar TDO inhibitor, LM10, was evaluated in parallel. Both inhibitors had beneficial effects on rotenone‐induced motor and cognitive dysfunction as well as rotenone‐induced dopaminergic cell loss and neuroinflammation in the substantia nigra. Moreover, both inhibitors improved intestinal transit and enhanced colon length, which indicates a reduction of the rotenone‐induced intestinal dysfunction. Consistent with this, mice treated with TDO inhibitor showed decreased expression of rotenone‐induced glial fibrillary acidic protein, which is a marker of enteric glial cells, and decreased α‐synuclein accumulation in the enteric plexus. Our data support TDO inhibition as a potential therapeutic strategy to decrease motor, cognitive, and gastrointestinal symptoms in Parkinson’s disease.
Collapse
Affiliation(s)
- Paula Perez-Pardo
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Yvonne Grobben
- Netherlands Translational Research Center B.V, Oss, The Netherlands
| | | | - Mitch Hartog
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Michaela Tutone
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| | - Michelle Muller
- Netherlands Translational Research Center B.V, Oss, The Netherlands
| | - Youri Adolfs
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Ronald Jeroen Pasterkamp
- Department of Translational Neuroscience, UMC Utrecht Brain Center, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Diep Vu-Pham
- Netherlands Translational Research Center B.V, Oss, The Netherlands
| | | | - Freek van Cauter
- Netherlands Translational Research Center B.V, Oss, The Netherlands
| | - Joeri de Wit
- Netherlands Translational Research Center B.V, Oss, The Netherlands
| | | | | | - Jos de Man
- Netherlands Translational Research Center B.V, Oss, The Netherlands
| | | | - Guido J R Zaman
- Netherlands Translational Research Center B.V, Oss, The Netherlands
| | - Aletta D Kraneveld
- Division of Pharmacology, Faculty of Science, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
50
|
Liu G, Liu W, Zhao R, He J, Dong Z, Chen L, Wan W, Chang Z, Wang W, Li X. Genome-wide identification and gene-editing of pigment transporter genes in the swallowtail butterfly Papilio xuthus. BMC Genomics 2021; 22:120. [PMID: 33596834 PMCID: PMC7891156 DOI: 10.1186/s12864-021-07400-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Accepted: 01/19/2021] [Indexed: 02/03/2023] Open
Abstract
Background Insect body coloration often functions as camouflage to survive from predators or mate selection. Transportation of pigment precursors or related metabolites from cytoplasm to subcellular pigment granules is one of the key steps in insect pigmentation and usually executed via such transporter proteins as the ATP-binding cassette (ABC) transmembrane transporters and small G-proteins (e.g. Rab protein). However, little is known about the copy numbers of pigment transporter genes in the butterfly genomes and about the roles of pigment transporters in the development of swallowtail butterflies. Results Here, we have identified 56 ABC transporters and 58 Rab members in the genome of swallowtail butterfly Papilio xuthus. This is the first case of genome-wide gene copy number identification of ABC transporters in swallowtail butterflies and Rab family in lepidopteran insects. Aiming to investigate the contribution of the five genes which are orthologous to well-studied pigment transporters (ABCG: white, scarlet, brown and ok; Rab: lightoid) of fruit fly or silkworm during the development of swallowtail butterflies, we performed CRISPR/Cas9 gene-editing of these genes using P. xuthus as a model and sequenced the transcriptomes of their morphological mutants. Our results indicate that the disruption of each gene produced mutated phenotypes in the colors of larvae (cuticle, testis) and/or adult eyes in G0 individuals but have no effect on wing color. The transcriptomic data demonstrated that mutations induced by CRISPR/Cas9 can lead to the accumulation of abnormal transcripts and the decrease or dosage compensation of normal transcripts at gene expression level. Comparative transcriptomes revealed 606 ~ 772 differentially expressed genes (DEGs) in the mutants of four ABCG transporters and 1443 DEGs in the mutants of lightoid. GO and KEGG enrichment analysis showed that DEGs in ABCG transporter mutants enriched to the oxidoreductase activity, heme binding, iron ion binding process possibly related to the color display, and DEGs in lightoid mutants are enriched in glycoprotein binding and protein kinases. Conclusions Our data indicated these transporter proteins play an important role in body color of P. xuthus. Our study provides new insights into the function of ABC transporters and small G-proteins in the morphological development of butterflies. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07400-z.
Collapse
Affiliation(s)
- Guichun Liu
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Wei Liu
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.,Kunming College of Life Science, University of Chinese Academy of Sciences, Kunming, 650204, China
| | - Ruoping Zhao
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Jinwu He
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Zhiwei Dong
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Lei Chen
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China
| | - Wenting Wan
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China.,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Zhou Chang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China
| | - Wen Wang
- School of Ecology and Environment, Northwestern Polytechnical University, Xi'an, 710072, Shanxi, China. .,State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China. .,Center for Excellence in Animal Evolution and Genetics, Kunming, 650223, Yunnan, China.
| | - Xueyan Li
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, Yunnan, China.
| |
Collapse
|