1
|
Pal S, Melnik R. Nonlocal models in biology and life sciences: Sources, developments, and applications. Phys Life Rev 2025; 53:24-75. [PMID: 40037217 DOI: 10.1016/j.plrev.2025.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 02/25/2025] [Indexed: 03/06/2025]
Abstract
Mathematical modeling is one of the fundamental techniques for understanding biophysical mechanisms in developmental biology. It helps researchers to analyze complex physiological processes and connect like a bridge between theoretical and experimental observations. Various groups of mathematical models have been studied to analyze these processes, and the nonlocal models are one of them. Nonlocality is important in realistic mathematical models of physical and biological systems when local models fail to capture the essential dynamics and interactions that occur over a range of distances (e.g., cell-cell, cell-tissue adhesions, neural networks, the spread of diseases, intra-specific competition, nanobeams, etc.). This review illustrates different nonlocal mathematical models applied to biology and life sciences. The major focus has been given to sources, developments, and applications of such models. Among other things, a systematic discussion has been provided for the conditions of pattern formations in biological systems of population dynamics. Special attention has also been given to nonlocal interactions on networks, network coupling and integration, including brain dynamics models that provide an important tool to understand neurodegenerative diseases better. In addition, we have discussed nonlocal modeling approaches for cancer stem cells and tumor cells that are widely applied in the cell migration processes, growth, and avascular tumors in any organ. Furthermore, the discussed nonlocal continuum models can go sufficiently smaller scales, including nanotechnology, where classical local models often fail to capture the complexities of nanoscale interactions, applied to build biosensors to sense biomaterial and its concentration. Piezoelectric and other smart materials are among them, and these devices are becoming increasingly important in the digital and physical world that is intrinsically interconnected with biological systems. Additionally, we have reviewed a nonlocal theory of peridynamics, which deals with continuous and discrete media and applies to model the relationship between fracture and healing in cortical bone, tissue growth and shrinkage, and other areas increasingly important in biomedical and bioengineering applications. Finally, we provided a comprehensive summary of emerging trends and highlighted future directions in this rapidly expanding field.
Collapse
Affiliation(s)
- Swadesh Pal
- MS2 Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Canada.
| | - Roderick Melnik
- MS2 Discovery Interdisciplinary Research Institute, Wilfrid Laurier University, Waterloo, Canada; BCAM - Basque Center for Applied Mathematics, E-48009, Bilbao, Spain.
| |
Collapse
|
2
|
Brauns F, Claussen NH, Lefebvre MF, Wieschaus EF, Shraiman BI. The geometric basis of epithelial convergent extension. eLife 2024; 13:RP95521. [PMID: 39699945 DOI: 10.7554/elife.95521] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2024] Open
Abstract
Shape changes of epithelia during animal development, such as convergent extension, are achieved through the concerted mechanical activity of individual cells. While much is known about the corresponding large-scale tissue flow and its genetic drivers, fundamental questions regarding local control of contractile activity on the cellular scale and its embryo-scale coordination remain open. To address these questions, we develop a quantitative, model-based analysis framework to relate cell geometry to local tension in recently obtained time-lapse imaging data of gastrulating Drosophila embryos. This analysis systematically decomposes cell shape changes and T1 rearrangements into internally driven, active, and externally driven, passive, contributions. Our analysis provides evidence that germ band extension is driven by active T1 processes that self-organize through positive feedback acting on tensions. More generally, our findings suggest that epithelial convergent extension results from the controlled transformation of internal force balance geometry which combines the effects of bottom-up local self-organization with the top-down, embryo-scale regulation by gene expression.
Collapse
Affiliation(s)
- Fridtjof Brauns
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, United States
| | - Nikolas H Claussen
- Department of Physics, University of California, Santa Barbara, Santa Barbara, United States
| | - Matthew F Lefebvre
- Department of Physics, University of California, Santa Barbara, Santa Barbara, United States
| | - Eric F Wieschaus
- Department of Molecular Biology, Princeton University, Princeton, United States
- The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, United States
| | - Boris I Shraiman
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, Santa Barbara, United States
- Department of Physics, University of California, Santa Barbara, Santa Barbara, United States
| |
Collapse
|
3
|
Bandil P, Vernerey FJ. A morpho-viscoelasticity theory for growth in proliferating aggregates. Biomech Model Mechanobiol 2024; 23:2155-2176. [PMID: 39222162 DOI: 10.1007/s10237-024-01886-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/14/2024] [Indexed: 09/04/2024]
Abstract
Despite significant research efforts in the continuum modeling of biological growth, certain aspects have been overlooked. For instance, numerous investigations have examined the influence of morphogenetic cell behaviors, like division and intercalation, on the mechanical response of passive (non-growing) tissues. Yet, their impact on active growth dynamics remains inadequately explored. A key reason for this inadequacy stems from challenges in the continuum treatment of cell-level processes. While some coarse-grained models have been proposed to address these shortcomings, a focus on cell division and cell expansion has been missing, rendering them unusable when it comes to modeling growth. Moreover, existing studies are limited to two-dimensional tissues and are yet to be formally extended to three-dimensional multicellular systems. To address these limitations, we here present a generalized multiscale model for three-dimensional aggregates that accounts for complex morphogenetic movements that include division, expansion, and intercalation. The proposed continuum theory thus allows for a comprehensive exploration into the growth and dissipation mechanics of proliferating aggregates, such as spheroids and organoids.
Collapse
Affiliation(s)
- Prakhar Bandil
- Department of Mechanical Engineering, University of Colorado, Boulder, USA
| | - Franck J Vernerey
- Department of Mechanical Engineering, University of Colorado, Boulder, USA.
| |
Collapse
|
4
|
Fan X, Ong LJY, Sun AR, Prasadam I. From polarity to pathology: Decoding the role of cell orientation in osteoarthritis. J Orthop Translat 2024; 49:62-73. [PMID: 39430130 PMCID: PMC11488446 DOI: 10.1016/j.jot.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 09/10/2024] [Accepted: 09/14/2024] [Indexed: 10/22/2024] Open
Abstract
Cell polarity refers to the orientation of tissue and organelles within a cell and the direction of its function. It is one of the most critical characteristics of metazoans. The development, growth, and functional tissue distribution are closely related to holistic tissue or organ homeostasis. However, the connection between cell polarity and osteoarthritis (OA) is less well-known. In OA, multiple chondrocyte clusters and tissue disorganisation can be observed in the degraded cartilage tissue. The excessive upregulation of the planar cell polarity (PCP) signalling pathway leads to the loss of cell polarity and organisation in OA progression and aetiology. Recent research has become increasingly aware of the importance of cell polarity and its correlation with OA. Several cell polarity-related treatments have shed light on OA. A thorough understanding of cell polarity and OA would provide more insights for future investigations to treat this worldwide disease. The translational potential of this article Understanding cell polarity, associated signalling pathways, organelle changes, and cell movement in the development of OA could lead to advances in precision medicine and enhanced treatment strategies for OA patients.
Collapse
Affiliation(s)
- Xiwei Fan
- Department of Orthopaedic Surgery, The Second Xiangya Hospital of Central South University, Changsha, China
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Louis Jun Ye Ong
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
- Max Planck Queensland Centre (MPQC) for the Materials Science of Extracellular Matrices, Queensland University of Technology, Brisbane, Australia
| | - Antonia RuJia Sun
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| | - Indira Prasadam
- School of Mechanical, Medical & Process Engineering, Queensland University of Technology, Brisbane, Australia
- Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
5
|
Loyer N, Hogg EKJ, Shaw HG, Pasztor A, Murray DH, Findlay GM, Januschke J. A CDK1 phosphorylation site on Drosophila PAR-3 regulates neuroblast polarisation and sensory organ formation. eLife 2024; 13:e97902. [PMID: 38869055 PMCID: PMC11216751 DOI: 10.7554/elife.97902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 05/08/2024] [Indexed: 06/14/2024] Open
Abstract
The generation of distinct cell fates during development depends on asymmetric cell division of progenitor cells. In the central and peripheral nervous system of Drosophila, progenitor cells respectively called neuroblasts or sensory organ precursors use PAR polarity during mitosis to control cell fate determination in their daughter cells. How polarity and the cell cycle are coupled, and how the cell cycle machinery regulates PAR protein function and cell fate determination is poorly understood. Here, we generate an analog sensitive allele of CDK1 and reveal that its partial inhibition weakens but does not abolish apical polarity in embryonic and larval neuroblasts and leads to defects in polarisation of fate determinants. We describe a novel in vivo phosphorylation of Bazooka, the Drosophila homolog of PAR-3, on Serine180, a consensus CDK phosphorylation site. In some tissular contexts, phosphorylation of Serine180 occurs in asymmetrically dividing cells but not in their symmetrically dividing neighbours. In neuroblasts, Serine180 phosphomutants disrupt the timing of basal polarisation. Serine180 phosphomutants also affect the specification and binary cell fate determination of sensory organ precursors as well as Baz localisation during their asymmetric cell divisions. Finally, we show that CDK1 phosphorylates Serine-S180 and an equivalent Serine on human PAR-3 in vitro.
Collapse
Affiliation(s)
- Nicolas Loyer
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
| | - Elizabeth KJ Hogg
- MRC PPU, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Hayley G Shaw
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
| | - Anna Pasztor
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
- MRC PPU, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - David H Murray
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
| | - Greg M Findlay
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
- MRC PPU, School of Life Sciences, University of DundeeDundeeUnited Kingdom
| | - Jens Januschke
- Molecular, Cell and Developmental Biology, University of DundeeDundeeUnited Kingdom
| |
Collapse
|
6
|
Brauns F, Claussen NH, Lefebvre MF, Wieschaus EF, Shraiman BI. The Geometric Basis of Epithelial Convergent Extension. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.05.30.542935. [PMID: 37398061 PMCID: PMC10312603 DOI: 10.1101/2023.05.30.542935] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Shape changes of epithelia during animal development, such as convergent extension, are achieved through concerted mechanical activity of individual cells. While much is known about the corresponding large scale tissue flow and its genetic drivers, fundamental questions regarding local control of contractile activity on cellular scale and its embryo-scale coordination remain open. To address these questions, we develop a quantitative, model-based analysis framework to relate cell geometry to local tension in recently obtained timelapse imaging data of gastrulating Drosophila embryos. This analysis provides a systematic decomposition of cell shape changes and T1-rearrangements into internally driven, active, and externally driven, passive, contributions. Our analysis provides evidence that germ band extension is driven by active T1 processes that self-organize through positive feedback acting on tensions. More generally, our findings suggest that epithelial convergent extension results from controlled transformation of internal force balance geometry which combines the effects of bottom-up local self-organization with the top-down, embryo-scale regulation by gene expression.
Collapse
Affiliation(s)
- Fridtjof Brauns
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Nikolas H. Claussen
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Matthew F. Lefebvre
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| | - Eric F. Wieschaus
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA; The Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Boris I. Shraiman
- Kavli Institute for Theoretical Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
- Department of Physics, University of California Santa Barbara, Santa Barbara, California 93106, USA
| |
Collapse
|
7
|
Lamb H, Liro M, Myles K, Fernholz M, Anderson H, Rose LS. The Rac1 homolog CED-10 is a component of the MES-1/SRC-1 pathway for asymmetric division of the C. elegans EMS blastomere. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.04.588162. [PMID: 38645195 PMCID: PMC11030239 DOI: 10.1101/2024.04.04.588162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Asymmetric cell division is essential for the creation of cell types with different identities and functions. The EMS blastomere of the four-cell Caenorhabditis elegans embryo undergoes an asymmetric division in response to partially redundant signaling pathways. One pathway involves a Wnt signal emanating from the neighboring P2 cell, while the other pathway is defined by the receptor-like MES-1 protein localized at the EMS/P2 cell contact, and the cytoplasmic kinase SRC-1. In response to these pathways, the EMS nuclear-centrosome complex rotates so that the spindle forms on the anterior-posterior axis; after division, the daughter cell contacting P2 becomes the endodermal precursor cell. Here we identify the Rac1 homolog, CED-10, as a new component of the MES-1/SRC-1 pathway. Loss of CED-10 affects both spindle positioning and endoderm specification. Although MES-1 is still present at the EMS/P2 contact in ced-10 embryos, SRC-1 dependent phosphorylation is reduced. These and other results suggest that CED-10 acts downstream of MES-1 and upstream of, or at the level of, SRC-1 activity. In addition, we find that the branched actin regulator ARX-2 is enriched at the EMS/P2 cell contact site, in a CED-10 dependent manner. Loss of ARX-2 results in spindle positioning defects, suggesting that CED-10 acts through branched actin to promote the asymmetric division of the EMS cell.
Collapse
Affiliation(s)
- Helen Lamb
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - Małgorzata Liro
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - Krista Myles
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - McKenzi Fernholz
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - Holly Anderson
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| | - Lesilee S. Rose
- Department of Molecular and Cellular Biology, University of California, Davis One Shields Ave., Davis, CA 95616
| |
Collapse
|
8
|
Sun K, Yu M, Wang J, Zhao H, Liu H, Feng H, Liu Y, Han D. A Wnt10a-Notch signaling axis controls Hertwig's epithelial root sheath cell behaviors during root furcation patterning. Int J Oral Sci 2024; 16:25. [PMID: 38480698 PMCID: PMC10937922 DOI: 10.1038/s41368-024-00288-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 02/12/2024] [Accepted: 02/17/2024] [Indexed: 03/17/2024] Open
Abstract
Human with bi-allelic WNT10A mutations and epithelial Wnt10a knockout mice present enlarged pulp chamber and apical displacement of the root furcation of multi-rooted teeth, known as taurodontism; thus, indicating the critical role of Wnt10a in tooth root morphogenesis. However, the endogenous mechanism by which epithelial Wnt10a regulates Hertwig's epithelial root sheath (HERS) cellular behaviors and contributes to root furcation patterning remains unclear. In this study, we found that HERS in the presumptive root furcating region failed to elongate at an appropriate horizontal level in K14-Cre;Wnt10afl/fl mice from post-natal day 0.5 (PN0.5) to PN4.5. EdU assays and immunofluorescent staining of cyclin D1 revealed significantly decreased proliferation activity of inner enamel epithelial (IEE) cells of HERS in K14-Cre;Wnt10afl/fl mice at PN2.5 and PN3.5. Immunofluorescent staining of E-Cadherin and acetyl-α-Tubulin demonstrated that the IEE cells of HERS tended to divide perpendicularly to the horizontal plane, which impaired the horizontal extension of HERS in the presumptive root furcating region of K14-Cre;Wnt10afl/fl mice. RNA-seq and immunofluorescence showed that the expressions of Jag1 and Notch2 were downregulated in IEE cells of HERS in K14-Cre;Wnt10afl/fl mice. Furthermore, after activation of Notch signaling in K14-Cre;Wnt10afl/fl molars by Notch2 adenovirus and kidney capsule grafts, the root furcation defect was partially rescued. Taken together, our study demonstrates that an epithelial Wnt10a-Notch signaling axis is crucial for modulating HERS cell proper proliferation and horizontal-oriented division during tooth root furcation morphogenesis.
Collapse
Affiliation(s)
- Kai Sun
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Miao Yu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Jiayu Wang
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Hu Zhao
- Chinese Institute for Brain Research, Beijing, China
| | - Haochen Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Hailan Feng
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China
| | - Yang Liu
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| | - Dong Han
- Department of Prosthodontics, Peking University School and Hospital of Stomatology & National Center for Stomatology & National Clinical Research Center for Oral Diseases & National Engineering Research Center of Oral Biomaterials and Digital Medical Devices, Beijing, China.
| |
Collapse
|
9
|
Drozdov A, Lebedev E, Adonin L. Comparative Analysis of Bivalve and Sea Urchin Genetics and Development: Investigating the Dichotomy in Bilateria. Int J Mol Sci 2023; 24:17163. [PMID: 38138992 PMCID: PMC10742642 DOI: 10.3390/ijms242417163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 11/19/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
This comprehensive review presents a comparative analysis of early embryogenesis in Protostomia and Deuterostomia, the first of which exhibit a mosaic pattern of development, where cells are fated deterministically, while Deuterostomia display a regulatory pattern of development, where the fate of cells is indeterminate. Despite these fundamental differences, there are common transcriptional mechanisms that underline their evolutionary linkages, particularly in the field of functional genomics. By elucidating both conserved and unique regulatory strategies, this review provides essential insights into the comparative embryology and developmental dynamics of these groups. The objective of this review is to clarify the shared and distinctive characteristics of transcriptional regulatory mechanisms. This will contribute to the extensive areas of functional genomics, evolutionary biology and developmental biology, and possibly lay the foundation for future research and discussion on this seminal topic.
Collapse
Affiliation(s)
- Anatoliy Drozdov
- Zhirmunsky National Scientific Center of Marine Biology, Far Eastern Branch of the Russian Academy of Sciences, 690041 Vladivostok, Russia
| | - Egor Lebedev
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia;
| | - Leonid Adonin
- Institute of Environmental and Agricultural Biology (X-BIO), Tyumen State University, 625003 Tyumen, Russia;
- Institute of Biomedical Chemistry, 119121 Moscow, Russia
| |
Collapse
|
10
|
Takemoto F, Uchida-Fukuhara Y, Kamioka H, Okamura H, Ikegame M. Mechanical stretching determines the orientation of osteoblast migration and cell division. Anat Sci Int 2023:10.1007/s12565-023-00716-8. [PMID: 37022568 PMCID: PMC10366257 DOI: 10.1007/s12565-023-00716-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 03/11/2023] [Indexed: 04/07/2023]
Abstract
Osteoblasts alignment and migration are involved in the directional formation of bone matrix and bone remodeling. Many studies have demonstrated that mechanical stretching controls osteoblast morphology and alignment. However, little is known about its effects on osteoblast migration. Here, we investigated changes in the morphology and migration of preosteoblastic MC3T3-E1 cells after the removal of continuous or cyclic stretching. Actin staining and time-lapse recording were performed after stretching removal. The continuous and cyclic groups showed parallel and perpendicular alignment to the stretch direction, respectively. A more elongated cell morphology was observed in the cyclic group than in the continuous group. In both stretch groups, the cells migrated in a direction roughly consistent with the cell alignment. Compared to the other groups, the cells in the cyclic group showed an increased migration velocity and were almost divided in the same direction as the alignment. To summarize, our study showed that mechanical stretching changed cell alignment and morphology in osteoblasts, which affected the direction of migration and cell division, and velocity of migration. These results suggest that mechanical stimulation may modulate the direction of bone tissue formation by inducing the directional migration and cell division of osteoblasts.
Collapse
Affiliation(s)
- Fumiko Takemoto
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Yoko Uchida-Fukuhara
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Hiroshi Kamioka
- Department of Orthodontics, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Hirohiko Okamura
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan
| | - Mika Ikegame
- Department of Oral Morphology, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama, 700-8525, Japan.
| |
Collapse
|
11
|
Boman BM, Dinh TN, Decker K, Emerick B, Modarai S, Opdenaker L, Fields JZ, Raymond C, Schleiniger G. Beyond the Genetic Code: A Tissue Code?. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023. [PMID: 36945600 PMCID: PMC10028806 DOI: 10.1101/2023.03.05.531161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/10/2023]
Abstract
The genetic code determines how the precise amino acid sequence of proteins is specified by genomic information in cells. But what specifies the precise histologic organization of cells in plant and animal tissues is unclear. We now hypothesize that another code, the tissue code , exists at an even higher level of complexity which determines how tissue organization is dynamically maintained. Accordingly, we modeled spatial and temporal asymmetries of cell division and established that five simple mathematical laws ("the tissue code") convey a set of biological rules that maintain the specific organization and continuous self-renewal dynamics of cells in tissues. These laws might even help us understand wound healing, and how tissue disorganization leads to birth defects and tissue pathology like cancer.
Collapse
|
12
|
Yuen WS, Zhang QH, Bourdais A, Adhikari D, Halet G, Carroll J. Polo-like kinase 1 promotes Cdc42-induced actin polymerization for asymmetric division in oocytes. Open Biol 2023; 13:220326. [PMID: 36883283 PMCID: PMC9993042 DOI: 10.1098/rsob.220326] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/09/2023] Open
Abstract
Polo-like kinase I (Plk1) is a highly conserved seronine/threonine kinase essential in meiosis and mitosis for spindle formation and cytokinesis. Here, through temporal application of Plk1 inhibitors, we identify a new role for Plk1 in the establishment of cortical polarity essential for highly asymmetric cell divisions of oocyte meiosis. Application of Plk1 inhibitors in late metaphase I abolishes pPlk1 from spindle poles and prevents the induction of actin polymerization at the cortex through inhibition of local recruitment of Cdc42 and Neuronal Wiskott-Aldrich Syndrome protein (N-WASP). By contrast, an already established polar actin cortex is insensitive to Plk1 inhibitors, but if the polar cortex is first depolymerized, Plk1 inhibitors completely prevent its restoration. Thus, Plk1 is essential for establishment but not maintenance of cortical actin polarity. These findings indicate that Plk1 regulates recruitment of Cdc42 and N-Wasp to coordinate cortical polarity and asymmetric cell division.
Collapse
Affiliation(s)
- Wai Shan Yuen
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Qing Hua Zhang
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Anne Bourdais
- University of Rennes, CNRS, IGDR - UMR 6290, F-35000 Rennes, France
| | - Deepak Adhikari
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| | - Guillaume Halet
- University of Rennes, CNRS, IGDR - UMR 6290, F-35000 Rennes, France
| | - John Carroll
- Department of Anatomy and Developmental Biology and Development and Stem Cells Program, Monash Biomedicine Discovery Institute, Monash University, Clayton, Victoria 3800, Australia
| |
Collapse
|
13
|
Chann AS, Chen Y, Kinwel T, Humbert PO, Russell SM. Scribble and E-cadherin cooperate to control symmetric daughter cell positioning by multiple mechanisms. J Cell Sci 2023; 136:286705. [PMID: 36661138 DOI: 10.1242/jcs.260547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/25/2022] [Indexed: 01/21/2023] Open
Abstract
The fate of the two daughter cells is intimately connected to their positioning, which is in turn regulated by cell junction remodelling and orientation of the mitotic spindle. How multiple cues are integrated to dictate the ultimate positioning of daughters is not clear. Here, we identify novel mechanisms of regulation of daughter positioning in single MCF10A cells. The polarity protein, Scribble cooperates with E-cadherin for sequential roles in daughter positioning. First Scribble stabilises E-cadherin at the mitotic cortex as well as the retraction fibres, to mediate spindle orientation. Second, Scribble re-locates to the junction between the two daughters to allow a new E-cadherin-based-interface to form between them, influencing the width of the nascent daughter-daughter junction and subsequent cell positioning. Thus, E-cadherin and Scribble dynamically relocate to different intracellular sites during cell division to orient the mitotic spindle and control placement of the daughter cells after cell division. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Anchi S Chann
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000Australia
| | - Ye Chen
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000Australia
| | - Tanja Kinwel
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia.,Department of Biochemistry & Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia.,Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Sarah M Russell
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
14
|
Cockerell A, Wright L, Dattani A, Guo G, Smith A, Tsaneva-Atanasova K, Richards DM. Biophysical models of early mammalian embryogenesis. Stem Cell Reports 2023; 18:26-46. [PMID: 36630902 PMCID: PMC9860129 DOI: 10.1016/j.stemcr.2022.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 11/02/2022] [Accepted: 11/24/2022] [Indexed: 01/12/2023] Open
Abstract
Embryo development is a critical and fascinating stage in the life cycle of many organisms. Despite decades of research, the earliest stages of mammalian embryogenesis are still poorly understood, caused by a scarcity of high-resolution spatial and temporal data, the use of only a few model organisms, and a paucity of truly multidisciplinary approaches that combine biological research with biophysical modeling and computational simulation. Here, we explain the theoretical frameworks and biophysical processes that are best suited to modeling the early mammalian embryo, review a comprehensive list of previous models, and discuss the most promising avenues for future work.
Collapse
Affiliation(s)
- Alaina Cockerell
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Liam Wright
- Department of Mathematics, University of Exeter, North Park Road, Exeter EX4 4QF, UK
| | - Anish Dattani
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Ge Guo
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Austin Smith
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
| | - Krasimira Tsaneva-Atanasova
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK; Department of Mathematics, University of Exeter, North Park Road, Exeter EX4 4QF, UK; EPSRC Hub for Quantitative Modelling in Healthcare, University of Exeter, Exeter EX4 4QJ, UK; Department of Bioinformatics and Mathematical Modelling, Institute of Biophysics and Biomedical Engineering, Bulgarian Academy of Sciences, 105 Acad. G. Bonchev Street, 1113 Sofia, Bulgaria
| | - David M Richards
- Living Systems Institute, University of Exeter, Stocker Road, Exeter EX4 4QD, UK; Department of Physics and Astronomy, University of Exeter, North Park Road, Exeter EX4 4QL, UK.
| |
Collapse
|
15
|
De la Cruz G, Nikolaishvili Feinberg N, Williams SE. Automated Immunofluorescence Staining for Analysis of Mitotic Stages and Division Orientation in Brain Sections. Methods Mol Biol 2023; 2583:63-79. [PMID: 36418726 DOI: 10.1007/978-1-0716-2752-5_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Microcephaly often results from mitotic defects in neuronal progenitors, frequently by decreasing proliferation rates or shifting cell fates. During neurogenesis, oriented cell division-the molecular control of mitotic spindle positioning to control the axis of division-represents an important mechanism to balance expansion of the progenitor pool with generating cellular diversity. While mostly studied in the context of cortical development, more recently, spindle orientation has emerged as a key player in the formation of other brain regions such as the cerebellum. Here we describe methods to perform automated dual-color fluorescent immunohistochemistry on murine cerebellar sections using the mitotic markers phospho-Histone H3 and Survivin, and detail analytical and statistical approaches to display and compare division orientation datasets.
Collapse
Affiliation(s)
- Gabriela De la Cruz
- Department of Pathology & Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Pathology Services Core, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Nana Nikolaishvili Feinberg
- Department of Pathology & Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Pathology Services Core, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Scott E Williams
- Department of Pathology & Laboratory Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Biology, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Lineberger Comprehensive Cancer Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
16
|
Laruelle E, Belcram K, Trubuil A, Palauqui JC, Andrey P. Large-scale analysis and computer modeling reveal hidden regularities behind variability of cell division patterns in Arabidopsis thaliana embryogenesis. eLife 2022; 11:79224. [DOI: 10.7554/elife.79224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 11/07/2022] [Indexed: 11/30/2022] Open
Abstract
Noise plays a major role in cellular processes and in the development of tissues and organs. Several studies have examined the origin, the integration or the accommodation of noise in gene expression, cell growth and elaboration of organ shape. By contrast, much less is known about variability in cell division plane positioning, its origin and links with cell geometry, and its impact on tissue organization. Taking advantage of the first-stereotyped-then-variable division patterns in the embryo of the model plant Arabidopsis thaliana, we combined 3D imaging and quantitative cell shape and cell lineage analysis together with mathematical and computer modeling to perform a large-scale, systematic analysis of variability in division plane orientation. Our results reveal that, paradoxically, variability in cell division patterns of Arabidopsis embryos is accompanied by a progressive reduction of heterogeneity in cell shape topology. The paradox is solved by showing that variability operates within a reduced repertoire of possible division plane orientations that is related to cell geometry. We show that in several domains of the embryo, a recently proposed geometrical division rule recapitulates observed variable patterns, suggesting that variable patterns emerge from deterministic principles operating in a variable geometrical context. Our work highlights the importance of emerging patterns in the plant embryo under iterated division principles, but also reveal domains where deviations between rule predictions and experimental observations point to additional regulatory mechanisms.
Collapse
Affiliation(s)
- Elise Laruelle
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin
- Université Paris-Saclay, INRAE, MaIAGE
| | - Katia Belcram
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin
| | | | | | - Philippe Andrey
- Université Paris-Saclay, INRAE, AgroParisTech, Institut Jean-Pierre Bourgin
| |
Collapse
|
17
|
Donà F, Eli S, Mapelli M. Insights Into Mechanisms of Oriented Division From Studies in 3D Cellular Models. Front Cell Dev Biol 2022; 10:847801. [PMID: 35356279 PMCID: PMC8959941 DOI: 10.3389/fcell.2022.847801] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
In multicellular organisms, epithelial cells are key elements of tissue organization. In developing tissues, cellular proliferation and differentiation are under the tight regulation of morphogenetic programs, that ensure the correct organ formation and functioning. In these processes, mitotic rates and division orientation are crucial in regulating the velocity and the timing of the forming tissue. Division orientation, specified by mitotic spindle placement with respect to epithelial apico-basal polarity, controls not only the partitioning of cellular components but also the positioning of the daughter cells within the tissue, and hence the contacts that daughter cells retain with the surrounding microenvironment. Daughter cells positioning is important to determine signal sensing and fate, and therefore the final function of the developing organ. In this review, we will discuss recent discoveries regarding the mechanistics of planar divisions in mammalian epithelial cells, summarizing technologies and model systems used to study oriented cell divisions in vitro such as three-dimensional cysts of immortalized cells and intestinal organoids. We also highlight how misorientation is corrected in vivo and in vitro, and how it might contribute to the onset of pathological conditions.
Collapse
Affiliation(s)
- Federico Donà
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | - Susanna Eli
- IEO, European Institute of Oncology IRCCS, Milan, Italy
| | | |
Collapse
|
18
|
Hirashima T. Mechanical Feedback Control for Multicellular Tissue Size Maintenance: A Minireview. Front Cell Dev Biol 2022; 9:820391. [PMID: 35096843 PMCID: PMC8795865 DOI: 10.3389/fcell.2021.820391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 12/27/2021] [Indexed: 11/13/2022] Open
Abstract
All living tissues and organs have their respective sizes, critical to various biological functions, such as development, growth, and homeostasis. As tissues and organs generally converge to a certain size, intrinsic regulatory mechanisms may be involved in the maintenance of size regulation. In recent years, important findings regarding size regulation have been obtained from diverse disciplines at the molecular and cellular levels. Here, I briefly review the size regulation of biological tissues from the perspective of control systems. This minireview focuses on how feedback systems engage in tissue size maintenance through the mechanical interactions of constituent cell collectives through intracellular signaling. I introduce a general framework of a feedback control system for tissue size regulation, followed by two examples: maintenance of epithelial tissue volume and epithelial tube diameter. The examples deliver the idea of how cellular mechano-response works for maintaining tissue size.
Collapse
Affiliation(s)
- Tsuyoshi Hirashima
- The Hakubi Center, Kyoto University, Kyoto, Japan
- Laboratory of Bioimaging and Cell Signaling, Graduate School of Biostudies, Kyoto University, Kyoto, Japan
- Japan Science and Technology Agency, PRESTO, Kawaguchi, Japan
| |
Collapse
|
19
|
Li Y, Du X, Liu Z, Zhang M, Huang Y, Tian J, Jiang Q, Zhao Y. Two genes related to reproductive development in the juvenile prawn, Macrobrachium nipponense: Molecular characterization and transcriptional response to nanoplastic exposure. CHEMOSPHERE 2021; 281:130827. [PMID: 34015647 DOI: 10.1016/j.chemosphere.2021.130827] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/11/2021] [Accepted: 05/04/2021] [Indexed: 06/12/2023]
Abstract
Plastic pollution in the form of nanoplastics poses a global threat to aquatic ecosystems and the organisms inhabiting them. However, few studies have been conducted on the effects of nanoplastic exposure on reproductive development in crustaceans. In order to address this issue, juvenile oriental river prawns (Macrobrachium nipponense) were exposed to different concentrations of 75-nm polystyrene nanoplastics (0, 5, 10, 20, 40 mg/L) for 28 days. In order to study the regulation of reproduction-related genes in the presence of nanoplastics, the Wee1 protein kinase gene (Wee1) and OTU domain ubiquitin aldehyde binding protein gene (OTUB) were selected. In this study, for the first time, the full-length cDNA of Mn-Wee1 and Mn-OTUB were cloned from M. nipponense. Homologous alignments revealed that Mn-Wee1 had a highly conserved function-critical sequence, and that Mn-OTUB was more closely related to OTUB1 than OTUB2. With increasing concentration of nanoplastics, the expression of both genes increased initially, then decreased. The inhibition of expression of Wee1 and OTUB occurred in 40 mg/L group, respectively. Analysis of the data also indicated that nanoplastic exposure might have differing effects on gene expression in M. nipponense male and female reproductive organs.
Collapse
Affiliation(s)
- Yiming Li
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Xinglin Du
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Zhiquan Liu
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Meng Zhang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Youhui Huang
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Jiangtao Tian
- School of Life Science, East China Normal University, Shanghai, 200241, China
| | - Qichen Jiang
- Freshwater Fisheries Research Institute of Jiangsu Province, Nanjing, 210017, China
| | - Yunlong Zhao
- School of Life Science, East China Normal University, Shanghai, 200241, China; State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai, 200241, China.
| |
Collapse
|
20
|
Abstract
The cytoskeleton - comprising actin filaments, microtubules and intermediate filaments - serves instructive roles in regulating cell function and behaviour during development. However, a key challenge in cell and developmental biology is to dissect how these different structures function and interact in vivo to build complex tissues, with the ultimate aim to understand these processes in a mammalian organism. The preimplantation mouse embryo has emerged as a primary model system for tackling this challenge. Not only does the mouse embryo share many morphological similarities with the human embryo during its initial stages of life, it also permits the combination of genetic manipulations with live-imaging approaches to study cytoskeletal dynamics directly within an intact embryonic system. These advantages have led to the discovery of novel cytoskeletal structures and mechanisms controlling lineage specification, cell-cell communication and the establishment of the first forms of tissue architecture during development. Here we highlight the diverse organization and functions of each of the three cytoskeletal filaments during the key events that shape the early mammalian embryo, and discuss how they work together to perform key developmental tasks, including cell fate specification and morphogenesis of the blastocyst. Collectively, these findings are unveiling a new picture of how cells in the early embryo dynamically remodel their cytoskeleton with unique spatial and temporal precision to drive developmental processes in the rapidly changing in vivo environment.
Collapse
|
21
|
Giammona J, Campàs O. Physical constraints on early blastomere packings. PLoS Comput Biol 2021; 17:e1007994. [PMID: 33497383 PMCID: PMC7864451 DOI: 10.1371/journal.pcbi.1007994] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 02/05/2021] [Accepted: 12/15/2020] [Indexed: 11/24/2022] Open
Abstract
At very early embryonic stages, when embryos are composed of just a few cells, establishing the correct packing arrangements (contacts) between cells is essential for the proper development of the organism. As early as the 4-cell stage, the observed cellular packings in different species are distinct and, in many cases, differ from the equilibrium packings expected for simple adherent and deformable particles. It is unclear what are the specific roles that different physical parameters, such as the forces between blastomeres, their division times, orientation of cell division and embryonic confinement, play in the control of these packing configurations. Here we simulate the non-equilibrium dynamics of cells in early embryos and systematically study how these different parameters affect embryonic packings at the 4-cell stage. In the absence of embryo confinement, we find that cellular packings are not robust, with multiple packing configurations simultaneously possible and very sensitive to parameter changes. Our results indicate that the geometry of the embryo confinement determines the packing configurations at the 4-cell stage, removing degeneracy in the possible packing configurations and overriding division rules in most cases. Overall, these results indicate that physical confinement of the embryo is essential to robustly specify proper cellular arrangements at very early developmental stages. At the initial stages of embryogenesis, the precise arrangement of cells in the embryo is critical to ensure that each cell gets the right chemical and physical signals to guide the formation of the organism. Even when the embryo is made of only four cells, different species feature varying cellular arrangements: cells in mouse embryos arrange as a tetrahedron, in the nematode worm C. elegans cells make a diamond and in sea urchins cells arrange in a square configuration. How do cells in embryos of different species control their arrangements? Using computer simulations, we studied how cell divisions, physical contacts between cells and the confinement of the embryo by an eggshell affect the arrangements of cells when the embryos have only 4 cells. We find that the shape of the confining eggshell plays a key role in controlling the cell arrangements, removing unwanted arrangements and robustly specifying the proper contacts between cells. Our results highlight the important roles of embryonic confinement in establishing the proper cell-cell contacts as the embryo starts to develop.
Collapse
Affiliation(s)
- James Giammona
- California NanoSystems Institute, University of California, Santa Barbara, California, United States of America
- Department of Physics, University of California, Santa Barbara, California, United States of America
| | - Otger Campàs
- California NanoSystems Institute, University of California, Santa Barbara, California, United States of America
- Department of Mechanical Engineering, University of California, Santa Barbara, California, United States of America
- Department of Molecular, Cell and Developmental Biology, University of California, Santa Barbara, California, United States of America
- Center for Bioengineering, University of California, Santa Barbara, California, United States of America
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
- * E-mail:
| |
Collapse
|
22
|
Ling J, Sckaff M, Tiwari M, Chen Y, Li J, Jones J, Sen GL. RAS-mediated suppression of PAR3 and its effects on SCC initiation and tissue architecture occur independently of hyperplasia. J Cell Sci 2020; 133:jcs.249102. [PMID: 33172988 DOI: 10.1242/jcs.249102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Accepted: 10/27/2020] [Indexed: 12/12/2022] Open
Abstract
Proper epithelial development and homeostasis depends on strict control of oriented cell division. Current evidence shows that this process is regulated by intrinsic polarity factors and external spatial cues. Owing to the lack of an appropriate model system that can recapitulate the architecture of the skin, deregulation of spindle orientation in human epithelial carcinoma has never been investigated. Here, using an inducible model of human squamous cell carcinoma (SCC), we demonstrate that RAS-dependent suppression of PAR3 (encoded by PARD3) accelerates epithelial disorganization during early tumorigenesis. Diminished PAR3 led to loss of E-cadherin-mediated cell adhesion, which in turn contributed to misoriented cell division. Pharmacological inhibition of the MAPK pathway downstream of RAS activation reversed the defects in PAR3 expression, E-cadherin-mediated cell adhesion and mitotic spindle orientation. Thus, temporal analysis of human neoplasia provides a powerful approach to study cellular and molecular transformations during early oncogenesis, which allowed identification of PAR3 as a critical regulator of tissue architecture during initial human SCC development.
Collapse
Affiliation(s)
- Ji Ling
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Maria Sckaff
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Manisha Tiwari
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Yifang Chen
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Jingting Li
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - Jackson Jones
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92093-0869, USA
| | - George L Sen
- Department of Dermatology, Department of Cellular and Molecular Medicine, UCSD Stem Cell Program, University of California, San Diego, La Jolla, CA 92093-0869, USA
| |
Collapse
|
23
|
Self-sustained planar intercalations due to mechanosignaling feedbacks lead to robust axis extension during morphogenesis. Sci Rep 2020; 10:10973. [PMID: 32620834 PMCID: PMC7334228 DOI: 10.1038/s41598-020-67413-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 06/04/2020] [Indexed: 12/31/2022] Open
Abstract
Tissue elongation is a necessary process in metazoans to implement their body plans that is not fully understood. Here we propose a mechanism based on the interplay between cellular mechanics and primordia patterning that results in self-sustained planar intercalations. Thus, we show that a location-dependent modulation of the mechanical properties of cells leads to robust axis extension. To illustrate the plausibility of this mechanism, we test it against different patterning models by means of computer simulations of tissues where we implemented mechano-signaling feedbacks. Our results suggest that robust elongation relies on a trade-off between cellular and tissue strains that is orchestrated through the cleavage orientation. In the particular context of axis extension in Turing-patterned tissues, we report that different directional cell activities cooperate synergetically to achieve elongation. Altogether, our findings help to understand how the axis extension phenomenon emerges from the dynamics of individual cells.
Collapse
|
24
|
Wnt-controlled sphingolipids modulate Anthrax Toxin Receptor palmitoylation to regulate oriented mitosis in zebrafish. Nat Commun 2020; 11:3317. [PMID: 32620775 PMCID: PMC7335183 DOI: 10.1038/s41467-020-17196-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 06/17/2020] [Indexed: 11/24/2022] Open
Abstract
Oriented cell division is a fundamental mechanism to control asymmetric stem cell division, neural tube elongation and body axis extension, among other processes. During zebrafish gastrulation, when the body axis extends, dorsal epiblast cells display divisions that are robustly oriented along the animal-vegetal embryonic axis. Here, we use a combination of lipidomics, metabolic tracer analysis and quantitative image analysis to show that sphingolipids mediate spindle positioning during oriented division of epiblast cells. We identify the Wnt signaling as a regulator of sphingolipid synthesis that mediates the activity of serine palmitoyltransferase (SPT), the first and rate-limiting enzyme in sphingolipid production. Sphingolipids determine the palmitoylation state of the Anthrax receptor, which then positions the mitotic spindle of dividing epiblast cells. Our data show how Wnt signaling mediates sphingolipid-dependent oriented division and how sphingolipids determine Anthrax receptor palmitoylation, which ultimately controls the activation of Diaphanous to mediate spindle rotation and oriented mitosis. During development, oriented cell division is important to proper body axis extension. Here, the authors show that sphingolipids are required to direct spindle rotation and oriented mitosis via Anthrax receptor palmitoylation in zebrafish gastrulation.
Collapse
|
25
|
Liu ZY, Li B, Zhao ZL, Xu GK, Feng XQ, Gao H. Mesoscopic dynamic model of epithelial cell division with cell-cell junction effects. Phys Rev E 2020; 102:012405. [PMID: 32794908 DOI: 10.1103/physreve.102.012405] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/10/2020] [Indexed: 06/11/2023]
Abstract
Cell division is central for embryonic development, tissue morphogenesis, and tumor growth. Experiments have evidenced that mitotic cell division is manipulated by the intercellular cues such as cell-cell junctions. However, it still remains unclear how these cortical-associated cues mechanically affect the mitotic spindle machinery, which determines the position and orientation of the cell division. In this paper, a mesoscopic dynamic cell division model is established to explore the integrated regulations of cortical polarity, microtubule pulling forces, cell deformability, and internal osmotic pressure. We show that the distributed pulling forces of astral microtubules play a key role in encoding the instructive cortical cues to orient and position the spindle of a dividing cell. The present model can not only predict the spindle orientation and position, but also capture the morphological evolution of cell rounding. The theoretical results agree well with relevant experiments both qualitatively and quantitatively. This work sheds light on the mechanical linkage between cell cortex and mitotic spindle, and holds potential in regulating cell division and sculpting tissue morphology.
Collapse
Affiliation(s)
- Zong-Yuan Liu
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Bo Li
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Zi-Long Zhao
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Guang-Kui Xu
- International Center for Applied Mechanics, State Key Laboratory for Strength and Vibration of Mechanical Structures, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xi-Qiao Feng
- Institute of Biomechanics and Medical Engineering, AML, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China
| | - Huajian Gao
- School of Mechanical and Aerospace Engineering, Nanyang Technological University, Singapore 639798, Singapore
- Institute of High Performance Computing, A*STAR, Singapore 138632, Singapore
| |
Collapse
|
26
|
Simulations of sea urchin early development delineate the role of oriented cell division in the morula-to-blastula transition. Mech Dev 2020; 162:103606. [PMID: 32165284 DOI: 10.1016/j.mod.2020.103606] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 02/17/2020] [Accepted: 03/02/2020] [Indexed: 11/24/2022]
Abstract
The sea urchin morula to blastula transition has long been thought to require oriented cell divisions and blastomere adherence to the enveloping hyaline layer. In a computer simulation model, cell divisions constrained by a surface plane division rule are adequate to effect morphological transition. The hyaline membrane acts as an enhancer but is not essential. The model is consistent with the orientation of micromere divisions and the open blastulae of direct developing species. The surface plane division rule precedes overt epithelization of surface cells and acts to organize the developing epithelium. It is a universal feature of early metazoan development and simulations of non-echinoid cleavage patterns support its role throughout Metazoa. The surface plane division rule requires only local cues and cells need not reference global positional information or embryonic axes.
Collapse
|
27
|
Guerrero P, Perez-Carrasco R, Zagorski M, Page D, Kicheva A, Briscoe J, Page KM. Neuronal differentiation influences progenitor arrangement in the vertebrate neuroepithelium. Development 2019; 146:dev.176297. [PMID: 31784457 PMCID: PMC6918779 DOI: 10.1242/dev.176297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Accepted: 11/01/2019] [Indexed: 01/04/2023]
Abstract
Cell division, movement and differentiation contribute to pattern formation in developing tissues. This is the case in the vertebrate neural tube, in which neurons differentiate in a characteristic pattern from a highly dynamic proliferating pseudostratified epithelium. To investigate how progenitor proliferation and differentiation affect cell arrangement and growth of the neural tube, we used experimental measurements to develop a mechanical model of the apical surface of the neuroepithelium that incorporates the effect of interkinetic nuclear movement and spatially varying rates of neuronal differentiation. Simulations predict that tissue growth and the shape of lineage-related clones of cells differ with the rate of differentiation. Growth is isotropic in regions of high differentiation, but dorsoventrally biased in regions of low differentiation. This is consistent with experimental observations. The absence of directional signalling in the simulations indicates that global mechanical constraints are sufficient to explain the observed differences in anisotropy. This provides insight into how the tissue growth rate affects cell dynamics and growth anisotropy and opens up possibilities to study the coupling between mechanics, pattern formation and growth in the neural tube. Summary: A mechanical model of the vertebrate neuroepithelium, based on experimental observations, suggests that the rate of neuronal differentiation influences tissue growth and the shape of lineage-related clones.
Collapse
Affiliation(s)
- Pilar Guerrero
- Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK
| | - Ruben Perez-Carrasco
- Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK
| | | | - David Page
- Myrtle Software, Second Floor, 50 St. Andrew's Street, Cambridge CB2 3AH, UK
| | - Anna Kicheva
- IST Austria, Am Campus 1, A - 3400 Klosterneuburg, Austria
| | - James Briscoe
- The Francis Crick Institute, 1 Midland Road, London NW1 1AT, UK
| | - Karen M Page
- Department of Mathematics, University College London, Gower Street, London WC1E 6BT, UK
| |
Collapse
|
28
|
Heikenwalder M, Lorentzen A. The role of polarisation of circulating tumour cells in cancer metastasis. Cell Mol Life Sci 2019; 76:3765-3781. [PMID: 31218452 PMCID: PMC6744547 DOI: 10.1007/s00018-019-03169-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 04/23/2019] [Accepted: 05/29/2019] [Indexed: 02/06/2023]
Abstract
Metastasis is the spread of cancer cells from a primary tumour to a distant site of the body. Metastasising tumour cells have to survive and readjust to different environments, such as heterogeneous solid tissues and liquid phase in lymph- or blood circulation, which they achieve through a high degree of plasticity that renders them adaptable to varying conditions. One defining characteristic of the metastatic process is the transition of tumour cells between different polarised phenotypes, ranging from differentiated epithelial polarity to migratory front-rear polarity. Here, we review the polarisation types adopted by tumour cells during the metastatic process and describe the recently discovered single-cell polarity in liquid phase observed in circulating tumour cells. We propose that single-cell polarity constitutes a mode of polarisation of the cell cortex that is uncoupled from the intracellular polarisation machinery, which distinguishes single-cell polarity from other types of polarity identified so far. We discuss how single-cell polarity can contribute to tumour metastasis and the therapeutic potential of this new discovery.
Collapse
Affiliation(s)
- Mathias Heikenwalder
- Divison of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120, Heidelberg, Germany.
| | - Anna Lorentzen
- Department of Molecular Biology and Genetics, Aarhus University, 8000, Aarhus, Denmark.
| |
Collapse
|
29
|
Noncanonical auxin signaling regulates cell division pattern during lateral root development. Proc Natl Acad Sci U S A 2019; 116:21285-21290. [PMID: 31570617 DOI: 10.1073/pnas.1910916116] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
In both plants and animals, multiple cellular processes must be orchestrated to ensure proper organogenesis. The cell division patterns control the shape of growing organs, yet how they are precisely determined and coordinated is poorly understood. In plants, the distribution of the phytohormone auxin is tightly linked to organogenesis, including lateral root (LR) development. Nevertheless, how auxin regulates cell division pattern during lateral root development remains elusive. Here, we report that auxin activates Mitogen-Activated Protein Kinase (MAPK) signaling via transmembrane kinases (TMKs) to control cell division pattern during lateral root development. Both TMK1/4 and MKK4/5-MPK3/6 pathways are required to properly orient cell divisions, which ultimately determine lateral root development in response to auxin. We show that TMKs directly and specifically interact with and phosphorylate MKK4/5, which is required for auxin to activate MKK4/5-MPK3/6 signaling. Our data suggest that TMK-mediated noncanonical auxin signaling is required to regulate cell division pattern and connect auxin signaling to MAPK signaling, which are both essential for plant development.
Collapse
|
30
|
Doi N, Kunimatsu Y, Fujiura K, Togari H, Minagi K, Nakaoji K, Hamada K, Temme A, Tatsuka M. RhoGDIβ affects HeLa cell spindle orientation following UVC irradiation. J Cell Physiol 2019; 234:15134-15146. [PMID: 30652309 DOI: 10.1002/jcp.28154] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Accepted: 01/02/2019] [Indexed: 01/24/2023]
Abstract
The molecular signals that regulate mitotic spindle orientation to determine the proper division axis play a critical role in the development and maintenance of tissue homeostasis. However, deregulation of signaling events can result in spindle misorientation, which in turn can trigger developmental defects and cancer progression. Little is known about the cellular signaling pathway involved in the misorientation of proliferating cells that evade apoptosis after DNA damage. In this study, we found that perturbations to spindle orientation were induced in ultraviolet C (UVC)-irradiated surviving cells. N-terminal truncated Rho GDP-dissociation inhibitor β (RhoGDIβ), which is produced by UVC irradiation, distorted the spindle orientation of HeLa cells cultured on Matrigel. The short hairpin RNA-mediated knockdown of RhoGDIβ significantly attenuated UVC-induced misorientation. Subsequent expression of wild-type RhoGDIβ, but not a noncleavable mutant, RhoGDIβ (D19A), again led to a relative increase in spindle misorientation in response to UVC. Our findings revealed that RhoGDIβ impacts spindle orientation in response to DNA damage.
Collapse
Affiliation(s)
- Natsumi Doi
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Yuuki Kunimatsu
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Kouhei Fujiura
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Hiro Togari
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Kenji Minagi
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| | - Koichi Nakaoji
- Research & Development Division, Pias Corporation, Kobe, Japan
| | - Kazuhiko Hamada
- Research & Development Division, Pias Corporation, Kobe, Japan
| | - Achim Temme
- Department of Neurosurgery, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Masaaki Tatsuka
- Department of Life Sciences, Faculty of Life and Environmental Sciences, Prefectural University of Hiroshima, Shoubara, Hiroshima, Japan
| |
Collapse
|
31
|
Doerr S, Ragkousi K. Cell polarity oscillations in mitotic epithelia. Curr Opin Genet Dev 2019; 57:47-53. [PMID: 31465986 DOI: 10.1016/j.gde.2019.07.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/15/2019] [Accepted: 07/15/2019] [Indexed: 12/21/2022]
Abstract
Epithelial organization and function depend on coordinated cell polarity. In developing tissues, proliferative epithelia maintain whole tissue polarity as individual cells undergo symmetric divisions. However, recent work has shown that cells in diverse epithelia remodel their polarity in a cell cycle-dependent manner. Here, we discuss the different mechanisms that drive mitotic polarity oscillations and their implications for tissue morphogenesis.
Collapse
Affiliation(s)
- Sophia Doerr
- Department of Biology, Amherst College, Amherst, MA 01002, United States; Program in Biochemistry and Biophysics, Amherst College, Amherst, MA 01002, United States
| | - Katerina Ragkousi
- Department of Biology, Amherst College, Amherst, MA 01002, United States; Program in Biochemistry and Biophysics, Amherst College, Amherst, MA 01002, United States.
| |
Collapse
|
32
|
Fujita S, Kuranaga E, Nakajima YI. Cell proliferation controls body size growth, tentacle morphogenesis, and regeneration in hydrozoan jellyfish Cladonema pacificum. PeerJ 2019; 7:e7579. [PMID: 31523518 PMCID: PMC6714968 DOI: 10.7717/peerj.7579] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 07/29/2019] [Indexed: 12/25/2022] Open
Abstract
Jellyfish have existed on the earth for around 600 million years and have evolved in response to environmental changes. Hydrozoan jellyfish, members of phylum Cnidaria, exist in multiple life stages, including planula larvae, vegetatively-propagating polyps, and sexually-reproducing medusae. Although free-swimming medusae display complex morphology and exhibit increase in body size and regenerative ability, their underlying cellular mechanisms are poorly understood. Here, we investigate the roles of cell proliferation in body-size growth, appendage morphogenesis, and regeneration using Cladonema pacificum as a hydrozoan jellyfish model. By examining the distribution of S phase cells and mitotic cells, we revealed spatially distinct proliferating cell populations in medusae, uniform cell proliferation in the umbrella, and clustered cell proliferation in tentacles. Blocking cell proliferation by hydroxyurea caused inhibition of body size growth and defects in tentacle branching, nematocyte differentiation, and regeneration. Local cell proliferation in tentacle bulbs is observed in medusae of two other hydrozoan species, Cytaeis uchidae and Rathkea octopunctata, indicating that it may be a conserved feature among hydrozoan jellyfish. Altogether, our results suggest that hydrozoan medusae possess actively proliferating cells and provide experimental evidence regarding the role of cell proliferation in body-size control, tentacle morphogenesis, and regeneration.
Collapse
Affiliation(s)
- Sosuke Fujita
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Erina Kuranaga
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Yu-Ichiro Nakajima
- Graduate School of Life Sciences, Tohoku University, Sendai, Japan.,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
33
|
Li J, Cheng L, Jiang H. Cell shape and intercellular adhesion regulate mitotic spindle orientation. Mol Biol Cell 2019; 30:2458-2468. [PMID: 31411941 PMCID: PMC6743358 DOI: 10.1091/mbc.e19-04-0227] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Cell division orientation plays an essential role in tissue morphogenesis and cell fate decision. Recent studies showed that either cell shape or adhesion geometry can regulate the orientation of mitotic spindles and thereby the cell division orientation. However, how they together regulate the spindle orientation remains largely unclear. In this work, we use a general computational model to investigate the competitive mechanism of determining the spindle orientation between cell shape and intercellular adhesion in epithelial cells. We find the spindle orientation is dominated by the intercellular adhesion when the cell shape anisotropy is small, but dominated by the cell shape when the shape anisotropy is large. A strong adhesion and moderate adhesive size can ensure the planar division of epithelial cells with large apico-basal elongation. We also find the spindle orientation could be perpendicular to the adhesive region when only one side of the cell is adhered to an E-cadherin-coated matrix. But after the cell is compressed, the spindle orientation is governed by the cell shape and the spindle will be parallel to the adhesive region when the cell shape anisotropy is large. Finally, we demonstrate the competition between cell shape and tricellular junctions can also effectively regulate the spindle orientation.
Collapse
Affiliation(s)
- Jingchen Li
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Longcan Cheng
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Hongyuan Jiang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Hefei National Laboratory for Physical Science at the Microscale, Department of Modern Mechanics, CAS Center for Excellence in Complex System Mechanics, University of Science and Technology of China, Hefei, Anhui 230026, China
| |
Collapse
|
34
|
Box K, Joyce BW, Devenport D. Epithelial geometry regulates spindle orientation and progenitor fate during formation of the mammalian epidermis. eLife 2019; 8:47102. [PMID: 31187731 PMCID: PMC6592681 DOI: 10.7554/elife.47102] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 06/12/2019] [Indexed: 12/27/2022] Open
Abstract
The control of cell fate through oriented cell division is imperative for proper organ development. Basal epidermal progenitor cells divide parallel or perpendicular to the basement membrane to self-renew or produce differentiated stratified layers, but the mechanisms regulating the choice between division orientations are unknown. Using time-lapse imaging to follow divisions and fates of basal progenitors, we find that mouse embryos defective for the planar cell polarity (PCP) gene, Vangl2, exhibit increased perpendicular divisions and hyperthickened epidermis. Surprisingly, this is not due to defective Vangl2 function in the epidermis, but to changes in cell geometry and packing that arise from the open neural tube characteristic of PCP mutants. Through regional variations in epidermal deformation and physical manipulations, we show that local tissue architecture, rather than cortical PCP cues, regulates the decision between symmetric and stratifying divisions, allowing flexibility for basal cells to adapt to the needs of the developing tissue.
Collapse
Affiliation(s)
- Kimberly Box
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Bradley W Joyce
- Department of Molecular Biology, Princeton University, Princeton, United States
| | - Danelle Devenport
- Department of Molecular Biology, Princeton University, Princeton, United States
| |
Collapse
|
35
|
Nakajima YI, Lee ZT, McKinney SA, Swanson SK, Florens L, Gibson MC. Junctional tumor suppressors interact with 14-3-3 proteins to control planar spindle alignment. J Cell Biol 2019; 218:1824-1838. [PMID: 31088859 PMCID: PMC6548121 DOI: 10.1083/jcb.201803116] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 03/01/2019] [Accepted: 04/25/2019] [Indexed: 12/15/2022] Open
Abstract
Nakajima et al. reveal a novel mechanism of planar spindle alignment through junctional tumor suppressors Scrib/Dlg and 14-3-3 proteins in the Drosophila wing disc epithelium. Their results suggest that 14-3-3 proteins interact with Scrib/Dlg to control planar spindle orientation and maintain epithelial architecture. Proper orientation of the mitotic spindle is essential for cell fate determination, tissue morphogenesis, and homeostasis. During epithelial proliferation, planar spindle alignment ensures the maintenance of polarized tissue architecture, and aberrant spindle orientation can disrupt epithelial integrity. Nevertheless, in vivo mechanisms that restrict the mitotic spindle to the plane of the epithelium remain poorly understood. Here we show that the junction-localized tumor suppressors Scribbled (Scrib) and Discs large (Dlg) control planar spindle orientation via Mud and 14-3-3 proteins in the Drosophila wing disc epithelium. During mitosis, Scrib is required for the junctional localization of Dlg, and both affect mitotic spindle movements. Using coimmunoprecipitation and mass spectrometry, we identify 14-3-3 proteins as Dlg-interacting partners and further report that loss of 14-3-3s causes both abnormal spindle orientation and disruption of epithelial architecture as a consequence of basal cell delamination and apoptosis. Combined, these biochemical and genetic analyses indicate that 14-3-3s function together with Scrib, Dlg, and Mud during planar cell division.
Collapse
Affiliation(s)
- Yu-Ichiro Nakajima
- Stowers Institute for Medical Research, Kansas City, MO .,Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan.,Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Zachary T Lee
- Stowers Institute for Medical Research, Kansas City, MO
| | | | | | | | - Matthew C Gibson
- Stowers Institute for Medical Research, Kansas City, MO.,Department of Anatomy and Cell Biology, University of Kansas School of Medicine, Kansas City, KS
| |
Collapse
|
36
|
Huycke TR, Tabin CJ. Chick midgut morphogenesis. THE INTERNATIONAL JOURNAL OF DEVELOPMENTAL BIOLOGY 2019; 62:109-119. [PMID: 29616718 DOI: 10.1387/ijdb.170325ct] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
The gastrointestinal tract is an essential system of organs required for nutrient absorption. As a simple tube early in development, the primitive gut is patterned along its anterior-posterior axis into discrete compartments with unique morphologies relevant to their functions in the digestive process. These morphologies are acquired gradually through development as the gut is patterned by tissue interactions, both molecular and mechanical in nature, involving all three germ layers. With a focus on midgut morphogenesis, we review work in the chick embryo demonstrating how these molecular signals and mechanical forces sculpt the developing gut tube into its mature form. In particular, we highlight two mechanisms by which the midgut increases its absorptive surface area: looping and villification. Additionally, we review the differentiation and patterning of the intestinal mesoderm into the layers of smooth muscle that mechanically drive peristalsis and the villification process itself. Where relevant, we discuss the mechanisms of chick midgut morphogenesis in the context of experimental data from other model systems.
Collapse
Affiliation(s)
- Tyler R Huycke
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| | | |
Collapse
|
37
|
Abstract
Gastropod shell morphologies are famously diverse but generally share a common geometry, the logarithmic coil. Variations on this morphology have been modeled mathematically and computationally but the developmental biology of shell morphogenesis remains poorly understood. Here we characterize the organization and growth patterns of the shell-secreting epithelium of the larval shell of the basket whelk Tritia (also known as Ilyanassa). Despite the larval shell's relative simplicity, we find a surprisingly complex organization of the shell margin in terms of rows and zones of cells. We examined cell division patterns with EdU incorporation assays and found two growth zones within the shell margin. In the more anterior aperture growth zone, we find that inferred division angles are biased to lie parallel to the shell edge, and these divisions occur more on the margin's left side. In the more posterior mantle epithelium growth zone, inferred divisions are significantly biased to the right, relative to the anterior-posterior axis. These growth zones, and the left-right asymmetries in cleavage patterns they display, can explain the major modes of shell morphogenesis at the level of cellular behavior. In a gastropod with a different coiling geometry, Planorbella sp., we find similar shell margin organization and growth zones as Tritia, but different left-right asymmetries than we observed in the helically coiled shell of Tritia These results indicate that differential growth patterns in the mantle edge epithelium contribute to shell shape in gastropod shells and identify cellular mechanisms that may vary to generate shell diversity in evolution.
Collapse
Affiliation(s)
- Adam B Johnson
- Department of Biology, University of Rochester, Rochester, NY 14627
| | - Nina S Fogel
- Department of Biology, University of Rochester, Rochester, NY 14627
| | - J David Lambert
- Department of Biology, University of Rochester, Rochester, NY 14627
| |
Collapse
|
38
|
Zhou Z, Alégot H, Irvine KD. Oriented Cell Divisions Are Not Required for Drosophila Wing Shape. Curr Biol 2019; 29:856-864.e3. [PMID: 30799243 DOI: 10.1016/j.cub.2019.01.044] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2018] [Revised: 10/21/2018] [Accepted: 01/15/2019] [Indexed: 12/19/2022]
Abstract
Formation of correctly shaped organs is vital for normal function. The Drosophila wing has an elongated shape, which has been attributed in part to a preferential orientation of mitotic spindles along the proximal-distal axis [1, 2]. Orientation of mitotic spindles is believed to be a fundamental morphogenetic mechanism in multicellular organisms [3-6]. A contribution of spindle orientation to wing shape was inferred from observations that mutation of Dachsous-Fat pathway genes results in both rounder wings and loss of the normal proximal-distal bias in spindle orientation [1, 2, 7]. To directly evaluate the potential contribution of spindle orientation to wing morphogenesis, we assessed the consequences of loss of the Drosophila NuMA homolog Mud, which interacts with the dynein complex and has a conserved role in spindle orientation [8, 9]. Loss of Mud randomizes spindle orientation but does not alter wing shape. Analysis of growth and cell dynamics in developing discs and in ex vivo culture suggests that the absence of oriented cell divisions is compensated for by an increased contribution of cell rearrangements to wing shape. Our results indicate that oriented cell divisions are not required for wing morphogenesis, nor are they required for the morphogenesis of other Drosophila appendages. Moreover, our results suggest that normal organ shape is not achieved through locally specifying and then summing up individual cell behaviors, like oriented cell division. Instead, wing shape might be specified through tissue-wide stresses that dictate an overall arrangement of cells without specifying the individual cell behaviors needed to achieve it.
Collapse
Affiliation(s)
- Zhenru Zhou
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Herve Alégot
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA
| | - Kenneth D Irvine
- Waksman Institute and Department of Molecular Biology and Biochemistry, Rutgers University, Piscataway, NJ 08854, USA.
| |
Collapse
|
39
|
Bouvrais H, Chesneau L, Pastezeur S, Fairbrass D, Delattre M, Pécréaux J. Microtubule Feedback and LET-99-Dependent Control of Pulling Forces Ensure Robust Spindle Position. Biophys J 2018; 115:2189-2205. [PMID: 30447992 PMCID: PMC6289040 DOI: 10.1016/j.bpj.2018.10.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 10/03/2018] [Accepted: 10/09/2018] [Indexed: 11/26/2022] Open
Abstract
During asymmetric division of the Caenorhabditis elegans zygote, to properly distribute cell fate determinants, the mitotic spindle is asymmetrically localized by a combination of centering and cortical-pulling microtubule-mediated forces, the dynamics of the latter being regulated by mitotic progression. Here, we show a, to our knowledge, novel and additional regulation of these forces by spindle position itself. For that, we observed the onset of transverse spindle oscillations, which reflects the burst of anaphase pulling forces. After delaying anaphase onset, we found that the position at which the spindle starts to oscillate was unchanged compared to control embryos and uncorrelated to anaphase onset. In mapping the cortical microtubule dynamics, we measured a steep increase in microtubule contact density after the posterior centrosome reached the critical position of 70% of embryo length, strongly suggesting the presence of a positional switch for spindle oscillations. Expanding a previous model based on a force-generator temporal control, we implemented this positional switch and observed that the large increase in microtubule density accounted for the pulling force burst. Thus, we propose that the spindle position influences the cortical availability of microtubules on which the active force generators, controlled by cell cycle progression, can pull. Importantly, we found that this positional control relies on the polarity-dependent LET-99 cortical band, the boundary of which could be probed by microtubules. This dual positional and temporal control well accounted for our observation that the oscillation onset position resists changes in cellular geometry and moderate variations in the active force generator number. Finally, our model suggests that spindle position at mitosis end is more sensitive to the polarity factor LET-99, which restricts the region of active force generators to a posterior-most region, than to microtubule number or force generator number/activity. Overall, we show that robustness in spindle positioning originates in cell mechanics rather than biochemical networks.
Collapse
Affiliation(s)
| | | | | | | | - Marie Delattre
- Univ Lyon, ENS de Lyon, Univ Claude Bernard, Laboratory of Biology and Modelling of the Cell, Lyon University, Lyon, France
| | | |
Collapse
|
40
|
Xin Y, Karunarathna Mudiyanselage CM, Just W. Development of epithelial tissues: How are cleavage planes chosen? PLoS One 2018; 13:e0205834. [PMID: 30403682 PMCID: PMC6221281 DOI: 10.1371/journal.pone.0205834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2018] [Accepted: 10/02/2018] [Indexed: 11/21/2022] Open
Abstract
The cross-section of a cell in a monolayer epithelial tissue can be modeled mathematically as a k-sided polygon. Empirically studied distributions of the proportions of k-sided cells in epithelia show remarkable similarities in a wide range of evolutionarily distant organisms. A variety of mathematical models have been proposed for explaining this phenomenon. The highly parsimonious simulation model of (Patel et al., PLoS Comput. Biol., 2009) that takes into account only the number of sides of a given cell and cell division already achieves a remarkably good fit with empirical distributions from Drosophila, Hydra, Xenopus, Cucumber, and Anagallis. Within the same modeling framework as in that paper, we introduce additional options for the choice of the endpoints of the cleavage plane that appear to be biologically more realistic. By taking the same data sets as our benchmarks, we found that combinations of some of our new options consistently gave better fits with each of these data sets than previously studied ones. Both our algorithm and simulation data are made available as research tools for future investigations.
Collapse
Affiliation(s)
- Ying Xin
- Department of Mathematics, Ohio University, Athens, Ohio, 45701, United States of America
- Department of Mathematical Sciences, Montana State University, Bozeman, Montana, 59717, United States of America
- * E-mail:
| | | | - Winfried Just
- Department of Mathematics, Ohio University, Athens, Ohio, 45701, United States of America
- Quantitative Biology Institute, Ohio University, Athens, Ohio, 45701, United States of America
| |
Collapse
|
41
|
Combinatorial Contact Cues Specify Cell Division Orientation by Directing Cortical Myosin Flows. Dev Cell 2018; 46:257-270.e5. [PMID: 30032990 PMCID: PMC7695482 DOI: 10.1016/j.devcel.2018.06.020] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2017] [Revised: 04/13/2018] [Accepted: 06/22/2018] [Indexed: 12/31/2022]
Abstract
Cell division axes during development are specified in different orientations to establish multicellular assemblies, but the mechanisms that generate division axis diversity remain unclear. We show here that patterns of cell contact provide cues that diversify cell division orientation by modulating cortical non-muscle myosin flow. We reconstituted in vivo contact patterns using beads or isolated cells to show two findings. First, we identified three contact-dependent cues that pattern cell division orientation and myosin flow: physical contact, contact asymmetry, and a Wnt signal. Second, we experimentally demonstrated that myosin flow generates forces that trigger plasma membrane movements and propose that their anisotropy drives cell division orientation. Our data suggest that contact-dependent control of myosin specifies the division axes of Caenorhabditis elegans AB, ABa, EMS cells, and the mouse AB cell. The contact pattern-dependent generation of myosin flows, in concert with known microtubule/dynein pathways, may greatly expand division axis diversity during development.
Collapse
|
42
|
Laminin β2 Chain Regulates Retinal Progenitor Cell Mitotic Spindle Orientation via Dystroglycan. J Neurosci 2018; 38:5996-6010. [PMID: 29853630 DOI: 10.1523/jneurosci.0551-18.2018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2018] [Revised: 05/10/2018] [Accepted: 05/18/2018] [Indexed: 01/27/2023] Open
Abstract
Vertebrate retinal development follows a pattern during which retinal progenitor cells (RPCs) give rise to all retinal cell types in a highly conserved temporal sequence. RPC proliferation and cell cycle exit are tightly coordinated to ensure proper and timely production of each of the retinal cell types. Extracellular matrix (ECM) plays an important role in eye development, influencing RPC proliferation and differentiation. In this study, we demonstrate that laminins, key ECM components, in the inner limiting membrane, control mitotic spindle orientation by providing environmental cues to the RPCs. In vivo deletion of laminin β2 in mice of both sexes results in a loss RPC basal processes and contact with the ECM, leading to a shift of the mitotic spindle pole orientation toward asymmetric cell divisions. This leads to decreased proliferation and premature RPC pool depletion, resulting in overproduction of rod photoreceptors at the expense of bipolar cells and Müller glia. Moreover, we show that deletion of laminin β2 leads to disruption and mislocalization of its receptors: dystroglycan and β1-integrin. Addition of exogenous β2-containing laminins to laminin β2-deficient retinal explants stabilizes the RPC basal processes and directs their mitotic spindle orientation toward symmetric divisions, leading to increased RPC proliferation, as well as restores proper receptor localization at the retinal surface. Finally, functional blocking of dystroglycan in wild-type retinal explants phenocopies laminin β2 ablation. Our data suggest that dystroglycan-mediated signaling between RPCs and the ECM is of key importance in controlling critical developmental events during retinogenesis.SIGNIFICANCE STATEMENT The mechanisms governing retinogenesis are subject to both intrinsic and extrinsic signaling cues. Although the role of intrinsic signaling has been the subject of many studies, our understanding of the role of the microenvironment in retinal development remains unclear. Using a combination of in vivo and ex vivo approaches, we demonstrate that laminins, key extracellular matrix components, provide signaling cues that control retinal progenitor cell attachment to the basement membrane, mitotic axis, proliferation, and fate adoption. Moreover, we identify, for the first time, dystroglycan as the receptor responsible for directing retinal progenitor cell mitotic spindle orientation. Our data suggest a mechanism where dystroglycan-mediated signaling between the cell and the extracellular matrix controls the proliferative potential of progenitors in the developing CNS.
Collapse
|
43
|
He Z, Kannan N, Nemirovsky O, Chen H, Connell M, Taylor B, Jiang J, Pilarski LM, Fleisch MC, Niederacher D, Pujana MA, Eaves CJ, Maxwell CA. BRCA1 controls the cell division axis and governs ploidy and phenotype in human mammary cells. Oncotarget 2018; 8:32461-32475. [PMID: 28427147 PMCID: PMC5464802 DOI: 10.18632/oncotarget.15688] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 02/16/2017] [Indexed: 11/25/2022] Open
Abstract
BRCA1 deficiency may perturb the differentiation hierarchy present in the normal mammary gland and is associated with the genesis of breast cancers that are genomically unstable and typically display a basal-like transcriptome. Oriented cell division is a mechanism known to regulate cell fates and to restrict tumor formation. We now show that the cell division axis is altered following shRNA-mediated BRCA1 depletion in immortalized but non-tumorigenic, or freshly isolated normal human mammary cells with graded consequences in progeny cells that include aneuploidy, perturbation of cell polarity in spheroid cultures, and a selective loss of cells with luminal features. BRCA1 depletion stabilizes HMMR abundance and disrupts cortical asymmetry of NUMA-dynein complexes in dividing cells such that polarity cues provided by cell-matrix adhesions were not able to orient division. We also show that immortalized mammary cells carrying a mutant BRCA1 allele (BRCA1 185delAG/+) reproduce many of these effects but in this model, oriented divisions were maintained through cues provided by CDH1+ cell-cell junctions. These findings reveal a previously unknown effect of BRCA1 suppression on mechanisms that regulate the cell division axis in proliferating, non-transformed human mammary epithelial cells and consequent downstream effects on the mitotic integrity and phenotype control of their progeny.
Collapse
Affiliation(s)
- Zhengcheng He
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Nagarajan Kannan
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.,Department of Laboratory Medicine and Pathology, Division of Experimental Pathology and Laboratory Medicine, Mayo Clinic, Rochester, MN, USA
| | - Oksana Nemirovsky
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Helen Chen
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Marisa Connell
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Brian Taylor
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Jihong Jiang
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Linda M Pilarski
- Department of Oncology, University of Alberta and Cross Cancer Institute, Edmonton, Alberta, Canada
| | - Markus C Fleisch
- Department of Obstetrics and Gynaecology, Landesfrauenklinik, HELIOS University Medical Center, Wuppertal, Germany
| | - Dieter Niederacher
- Department of Gynaecology and Obstetrics, University Hospital Düsseldorf, Heinrich-Heine University Düsseldorf, Germany
| | - Miguel Angel Pujana
- Breast Cancer and Systems Biology Unit, Program Against Cancer Therapeutic Resistance (ProCure), Catalan Institute of Oncology, IDIBELL, L'Hospitalet del Llobregat, Barcelona, Spain
| | - Connie J Eaves
- Terry Fox Laboratory, British Columbia Cancer Agency, Vancouver, British Columbia, Canada.,Department of Medical Genetics, University of British Columbia, Vancouver, British Columbia, Canada
| | - Christopher A Maxwell
- Department of Pediatrics, University of British Columbia, Vancouver, British Columbia, Canada.,Michael Cuccione Childhood Cancer Research Program, BC Children's Hospital, Vancouver, British Columbia, Canada
| |
Collapse
|
44
|
Nekrasova O, Harmon RM, Broussard JA, Koetsier JL, Godsel LM, Fitz GN, Gardel ML, Green KJ. Desmosomal cadherin association with Tctex-1 and cortactin-Arp2/3 drives perijunctional actin polymerization to promote keratinocyte delamination. Nat Commun 2018; 9:1053. [PMID: 29535305 PMCID: PMC5849617 DOI: 10.1038/s41467-018-03414-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 02/09/2018] [Indexed: 12/22/2022] Open
Abstract
The epidermis is a multi-layered epithelium that serves as a barrier against water loss and environmental insults. Its morphogenesis occurs through a tightly regulated program of biochemical and architectural changes during which basal cells commit to differentiate and move towards the skin's surface. Here, we reveal an unexpected role for the vertebrate cadherin desmoglein 1 (Dsg1) in remodeling the actin cytoskeleton to promote the transit of basal cells into the suprabasal layer through a process of delamination, one mechanism of epidermal stratification. Actin remodeling requires the interaction of Dsg1 with the dynein light chain, Tctex-1 and the actin scaffolding protein, cortactin. We demonstrate that Tctex-1 ensures the correct membrane compartmentalization of Dsg1-containing desmosomes, allowing cortactin/Arp2/3-dependent perijunctional actin polymerization and decreasing tension at E-cadherin junctions to promote keratinocyte delamination. Moreover, Dsg1 is sufficient to enable simple epithelial cells to exit a monolayer to form a second layer, highlighting its morphogenetic potential.
Collapse
Affiliation(s)
- Oxana Nekrasova
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - Robert M Harmon
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
- Institute for Biophysical Dynamics, University of Chicago, Chicago, 60637, IL, USA
| | - Joshua A Broussard
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - Jennifer L Koetsier
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - Lisa M Godsel
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - Gillian N Fitz
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA
| | - Margaret L Gardel
- Institute for Biophysical Dynamics, University of Chicago, Chicago, 60637, IL, USA
| | - Kathleen J Green
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA.
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, 60611, IL, USA.
| |
Collapse
|
45
|
Heppert JK, Pani AM, Roberts AM, Dickinson DJ, Goldstein B. A CRISPR Tagging-Based Screen Reveals Localized Players in Wnt-Directed Asymmetric Cell Division. Genetics 2018; 208:1147-1164. [PMID: 29348144 PMCID: PMC5844328 DOI: 10.1534/genetics.117.300487] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Accepted: 01/08/2018] [Indexed: 11/18/2022] Open
Abstract
Oriented cell divisions are critical to establish and maintain cell fates and tissue organization. Diverse extracellular and intracellular cues have been shown to provide spatial information for mitotic spindle positioning; however, the molecular mechanisms by which extracellular signals communicate with cells to direct mitotic spindle positioning are largely unknown. In animal cells, oriented cell divisions are often achieved by the localization of force-generating motor protein complexes to discrete cortical domains. Disrupting either these force-generating complexes or proteins that globally affect microtubule stability results in defects in mitotic positioning, irrespective of whether these proteins function as spatial cues for spindle orientation. This poses a challenge to traditional genetic dissection of this process. Therefore, as an alternative strategy to identify key proteins that act downstream of intercellular signaling, we screened the localization of many candidate proteins by inserting fluorescent tags directly into endogenous gene loci, without overexpressing the proteins. We tagged 23 candidate proteins in Caenorhabditis elegans and examined each protein's localization in a well-characterized, oriented cell division in the four-cell-stage embryo. We used cell manipulations and genetic experiments to determine which cells harbor key localized proteins and which signals direct these localizations in vivo We found that Dishevelled and adenomatous polyposis coli homologs are polarized during this oriented cell division in response to a Wnt signal, but two proteins typically associated with mitotic spindle positioning, homologs of NuMA and Dynein, were not detectably polarized. These results suggest an unexpected mechanism for mitotic spindle positioning in this system, they pinpoint key proteins of interest, and they highlight the utility of a screening approach based on analyzing the localization of endogenously tagged proteins.
Collapse
Affiliation(s)
- Jennifer K Heppert
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Ariel M Pani
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Allyson M Roberts
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Daniel J Dickinson
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599
| | - Bob Goldstein
- Department of Biology, University of North Carolina at Chapel Hill, North Carolina 27599
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599
- Curriculum in Genetics and Molecular Biology, University of North Carolina at Chapel Hill, North Carolina 27599
| |
Collapse
|
46
|
Sandquist JC, Larson ME, Woolner S, Ding Z, Bement WM. An interaction between myosin-10 and the cell cycle regulator Wee1 links spindle dynamics to mitotic progression in epithelia. J Cell Biol 2018; 217:849-859. [PMID: 29321170 PMCID: PMC5839792 DOI: 10.1083/jcb.201708072] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Revised: 11/20/2017] [Accepted: 12/06/2017] [Indexed: 01/02/2023] Open
Abstract
Proper spindle orientation must be achieved before anaphase onset, but whether and how cells link spindle position to anaphase onset is unknown. Sandquist, Larson, et al. identify a novel interaction between the motor protein myosin-10 and the cell cycle regulator wee1 that is proposed to help coordinate preanaphase spindle dynamics and positioning with mitotic exit. Anaphase in epithelia typically does not ensue until after spindles have achieved a characteristic position and orientation, but how or even if cells link spindle position to anaphase onset is unknown. Here, we show that myosin-10 (Myo10), a motor protein involved in epithelial spindle dynamics, binds to Wee1, a conserved regulator of cyclin-dependent kinase 1 (Cdk1). Wee1 inhibition accelerates progression through metaphase and disrupts normal spindle dynamics, whereas perturbing Myo10 function delays anaphase onset in a Wee1-dependent manner. Moreover, Myo10 perturbation increases Wee1-mediated inhibitory phosphorylation on Cdk1, which, unexpectedly, concentrates at cell–cell junctions. Based on these and other results, we propose a model in which the Myo10–Wee1 interaction coordinates attainment of spindle position and orientation with anaphase onset.
Collapse
Affiliation(s)
- Joshua C Sandquist
- Biology Department, Grinnell College, Grinnell, IA .,Department of Zoology, University of Wisconsin-Madison, Madison, WI
| | - Matthew E Larson
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI.,Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI
| | - Sarah Woolner
- Department of Zoology, University of Wisconsin-Madison, Madison, WI.,Wellcome Trust Centre for Cell-Matrix Research, Division of Developmental Biology and Medicine, School of Medical Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, England, UK
| | - Zhiwei Ding
- Biology Department, Grinnell College, Grinnell, IA
| | - William M Bement
- Department of Zoology, University of Wisconsin-Madison, Madison, WI .,Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, WI.,Medical Scientist Training Program, University of Wisconsin-Madison, Madison, WI.,Laboratory of Cell and Molecular Biology, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
47
|
Lejeune E, Linder C. Modeling mechanical inhomogeneities in small populations of proliferating monolayers and spheroids. Biomech Model Mechanobiol 2017; 17:727-743. [PMID: 29197990 DOI: 10.1007/s10237-017-0989-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2017] [Accepted: 11/16/2017] [Indexed: 12/28/2022]
Abstract
Understanding the mechanical behavior of multicellular monolayers and spheroids is fundamental to tissue culture, organism development, and the early stages of tumor growth. Proliferating cells in monolayers and spheroids experience mechanical forces as they grow and divide and local inhomogeneities in the mechanical microenvironment can cause individual cells within the multicellular system to grow and divide at different rates. This differential growth, combined with cell division and reorganization, leads to residual stress. Multiple different modeling approaches have been taken to understand and predict the residual stresses that arise in growing multicellular systems, particularly tumor spheroids. Here, we show that by using a mechanically robust agent-based model constructed with the peridynamic framework, we gain a better understanding of residual stresses in multicellular systems as they grow from a single cell. In particular, we focus on small populations of cells (1-100 s) where population behavior is highly stochastic and prior investigation has been limited. We compare the average strain energy density of cells in monolayers and spheroids using different growth and division rules and find that, on average, cells in spheroids have a higher strain energy density than cells in monolayers. We also find that cells in the interior of a growing spheroid are, on average, in compression. Finally, we demonstrate the importance of accounting for stochastic fluctuations in the mechanical environment, particularly when the cellular response to mechanical cues is nonlinear. The results presented here serve as a starting point for both further investigation with agent-based models, and for the incorporation of major findings from agent-based models into continuum scale models when explicit representation of individual cells is not computationally feasible.
Collapse
Affiliation(s)
- Emma Lejeune
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, 94305, USA
| | - Christian Linder
- Department of Civil and Environmental Engineering, Stanford University, Stanford, CA, 94305, USA.
| |
Collapse
|
48
|
Abstract
Epithelial tubes are crucial to the function of organ systems including the excretory, gastrointestinal, cardiovascular, and pulmonary. Studies in the last two decades using in vitro organotypic systems and a variety of animal models have substantiated a large number of the morphogenetic mechanisms required to form epithelial tubes in development and regeneration. Many of these mechanisms modulate the differentiation and proliferation events necessary for generating the cell movements and changes in cell shape to delineate the wide variety of epithelial tube sizes, lengths, and conformations. For instance, when coupled with oriented cell division, proliferation itself plays a role in changes in tube shape and their directed expansion. Most of these processes are regulated in response to signaling inputs from adjacent cells or soluble factors from the environment. Despite the great deal of recent investigation in this direction, the knowledge we have about the signaling pathways associated with all epithelial tubulogenesis in development and regeneration is still very limited.
Collapse
|
49
|
Howard J, Garzon-Coral C. Physical Limits on the Precision of Mitotic Spindle Positioning by Microtubule Pushing forces: Mechanics of mitotic spindle positioning. Bioessays 2017; 39:10.1002/bies.201700122. [PMID: 28960439 PMCID: PMC5698852 DOI: 10.1002/bies.201700122] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Revised: 08/13/2017] [Indexed: 01/07/2023]
Abstract
Tissues are shaped and patterned by mechanical and chemical processes. A key mechanical process is the positioning of the mitotic spindle, which determines the size and location of the daughter cells within the tissue. Recent force and position-fluctuation measurements indicate that pushing forces, mediated by the polymerization of astral microtubules against- the cell cortex, maintain the mitotic spindle at the cell center in Caenorhabditis elegans embryos. The magnitude of the centering forces suggests that the physical limit on the accuracy and precision of this centering mechanism is determined by the number of pushing microtubules rather than by thermally driven fluctuations. In cells that divide asymmetrically, anti-centering, pulling forces generated by cortically located dyneins, in conjunction with microtubule depolymerization, oppose the pushing forces to drive spindle displacements away from the center. Thus, a balance of centering pushing forces and anti-centering pulling forces localize the mitotic spindles within dividing C. elegans cells.
Collapse
Affiliation(s)
- Jonathon Howard
- Department of Molecular Biophysics & Biochemistry, Yale University, New Haven, CT 06511, USA
| | - Carlos Garzon-Coral
- Shriram Center for Chemical Engineering & Bioengineering, Stanford University, CA 94305, USA
| |
Collapse
|
50
|
Li Y, Li A, Junge J, Bronner M. Planar cell polarity signaling coordinates oriented cell division and cell rearrangement in clonally expanding growth plate cartilage. eLife 2017; 6. [PMID: 28994649 PMCID: PMC5634781 DOI: 10.7554/elife.23279] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Accepted: 09/15/2017] [Indexed: 12/20/2022] Open
Abstract
Both oriented cell divisions and cell rearrangements are critical for proper embryogenesis and organogenesis. However, little is known about how these two cellular events are integrated. Here we examine the linkage between these processes in chick limb cartilage. By combining retroviral-based multicolor clonal analysis with live imaging, the results show that single chondrocyte precursors can generate both single-column and multi-column clones through oriented division followed by cell rearrangements. Focusing on single column formation, we show that this stereotypical tissue architecture is established by a pivot-like process between sister cells. After mediolateral cell division, N-cadherin is enriched in the post-cleavage furrow; then one cell pivots around the other, resulting in stacking into a column. Perturbation analyses demonstrate that planar cell polarity signaling enables cells to pivot in the direction of limb elongation via this N-cadherin-mediated coupling. Our work provides new insights into the mechanisms generating appropriate tissue architecture of limb skeleton.
Collapse
Affiliation(s)
- Yuwei Li
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| | - Ang Li
- Department of Pathology, University of Southern California, Keck School of Medicine, Los Angeles, United States
| | - Jason Junge
- Translational Imaging Center, University of Southern California, Los Angeles, United States
| | - Marianne Bronner
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|