1
|
Mikati MO, Erdmann-Gilmore P, Connors R, Conway SM, Malone J, Woods J, Sprung RW, Townsend RR, Al-Hasani R. Highly sensitive in vivo detection of dynamic changes in enkephalins following acute stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.02.15.528745. [PMID: 36824728 PMCID: PMC9948958 DOI: 10.1101/2023.02.15.528745] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Enkephalins are opioid peptides that modulate analgesia, reward, and stress. In vivo detection of enkephalins remains difficult due to transient and low endogenous concentrations and inherent sequence similarity. To begin to address this we previously developed a system combining in vivo optogenetics with microdialysis and a highly sensitive mass spectrometry-based assay to measure opioid peptide release in freely moving rodents (Al-Hasani, 2018, eLife). Here we show improved detection resolution and stabilization of enkephalin detection, which allowed us to investigate enkephalin release during acute stress. We present an analytical method for real-time, simultaneous detection of Met- and Leu-Enkephalin (Met-Enk & Leu-Enk) in the mouse Nucleus Accumbens shell (NAcSh) after acute stress. We confirm that acute stress activates enkephalinergic neurons in the NAcSh using fiber photometry and that this leads to the release of Met- and Leu-Enk. We also demonstrate the dynamics of Met- and Leu-Enk release as well as how they correlate to one another in the ventral NAc shell, which was previously difficult due to the use of approaches that relied on mRNA transcript levels rather than post-translational products. This approach increases spatiotemporal resolution, optimizes the detection of Met-Enkephalin through methionine oxidation, and provides novel insight into the relationship between Met- and Leu-Enkephalin following stress.
Collapse
|
2
|
Todorov J, Calhoun SE, McCarty GS, Sombers LA. Electrochemical Quantification of Enkephalin Peptides Using Fast-Scan Cyclic Voltammetry. Anal Chem 2024. [PMID: 39138126 DOI: 10.1021/acs.analchem.4c02418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2024]
Abstract
Endogenous opioid neuropeptides serve as important chemical signaling molecules in both the central and peripheral nervous systems, but there are few analytical tools for directly monitoring these molecules in situ. The opioid peptides share the amino acid motif, Tyr-Gly-Gly-Phe-, at the N-terminus. Met-enkephalin is a small opioid peptide comprised of only five amino acids with methionine (Met) incorporated at the C-terminus. Tyrosine (Tyr) and Met are electroactive, and their distinct electrochemical signatures can be utilized for quantitative molecular monitoring. This work encompasses a thorough voltammetric characterization of Tyr and Met redox chemistry as individual amino acids and when incorporated into small peptide fragments containing the shared Tyr-Gly-Gly-Phe- motif. NMR spectroscopy was used to determine the structure and conformation at near-physiological conditions. Voltammetric data demonstrate how the peak oxidation potential and the rate of electron transfer are dependent on the local chemical environment. Both the proximity of the electroactive residue to the C- or N-terminus and the hydrophobicity of the additional nonelectroactive amino acids profoundly affect sensitivity. Finally, the work uses the electrochemical signal for individual amino acids in a "training set", with a combination of principal component analysis and least-squares regression to accurately predict the voltammetric signal for short peptides comprising different combinations of those amino acids. Overall, this study demonstrates how fast-scan cyclic voltammetry can be utilized to discriminate between peptides with small differences in the chemical structure, thus establishing a framework for reliable quantification of small peptides in a complex signal, broadly speaking.
Collapse
|
3
|
García-Domínguez M. Enkephalins and Pain Modulation: Mechanisms of Action and Therapeutic Perspectives. Biomolecules 2024; 14:926. [PMID: 39199314 PMCID: PMC11353043 DOI: 10.3390/biom14080926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 07/28/2024] [Accepted: 07/29/2024] [Indexed: 09/01/2024] Open
Abstract
Enkephalins, a subclass of endogenous opioid peptides, play a pivotal role in pain modulation. Enkephalins primarily exert their effects through opioid receptors located widely throughout both the central and peripheral nervous systems. This review will explore the mechanisms by which enkephalins produce analgesia, emotional regulation, neuroprotection, and other physiological effects. Furthermore, this review will analyze the involvement of enkephalins in the modulation of different pathologies characterized by severe pain. Understanding the complex role of enkephalins in pain processing provides valuable insight into potential therapeutic strategies for managing pain disorders.
Collapse
Affiliation(s)
- Mario García-Domínguez
- Faculty of Education and Psychology, Universidad Francisco de Vitoria, 28223 Pozuelo de Alarcón, Spain
| |
Collapse
|
4
|
Farinella R, Falchi F, Tavanti A, Tuoni C, Di Nino MG, Filippi L, Ciantelli M, Rizzato C, Campa D. The genetic variant SLC2A1 -rs1105297 is associated with the differential analgesic response to a glucose-based treatment in newborns. Pain 2024; 165:657-665. [PMID: 37703430 PMCID: PMC10859852 DOI: 10.1097/j.pain.0000000000003051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 09/15/2023]
Abstract
ABSTRACT Neonatal pain is a critical issue in clinical practice. The oral administration of glucose-based solutions is currently one of the most common and effective nonpharmacologic strategies for neonatal pain relief in daily minor procedures. However, a varying degree of analgesic efficacy has been reported for this treatment. Environmental, maternal, and genetic factors may explain this variability and potentially allow for a personalized analgesic approach, maximizing therapeutic efficacy and preventing side effects. We investigated the exposome (ie, the set of clinical and anthropometric variables potentially affecting the response to the therapy) and the genetic variability of the noradrenaline transporter gene (solute carrier family 6 member 2 [ SLC6A2 ]) and 2 glucose transporter genes (solute carrier family 2 member 1 [ SLC2A1 ] and 2 [ SLC2A2 ]) in relation to the neonatal analgesic efficacy of a 33% glucose solution. The study population consisted in a homogeneous sample of more than 1400 healthy term newborns. No association for the exposome was observed, whereas a statistically significant association between the G allele of SLC2A1 -rs1105297 and a fourfold decreased probability of responding to the therapy was identified after multiple-testing correction (odds ratio of 3.98, 95% confidence interval 1.95-9.17; P = 4.05 × 10 -4 ). This allele decreases the expression of SLC2A1-AS1 , causing the upregulation of SLC2A1 in the dorsal striatum, which has been suggested to be involved in reward-related processes through the binding of opioids to the striatal mu-opioid receptors. Altogether, these results suggest the involvement of SLC2A1 in the analgesic process and highlight the importance of host genetics for defining personalized analgesic treatments.
Collapse
Affiliation(s)
| | - Fabio Falchi
- Department of Biology, University of Pisa, Pisa, Italy
| | | | - Cristina Tuoni
- Division of Neonatology, Santa Chiara Hospital, Pisa, Italy
| | | | - Luca Filippi
- Neonatology and Neonatal Intensive Care Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
| | - Massimiliano Ciantelli
- Neonatology and Neonatal Intensive Care Unit, Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
- Centro Di Formazione e Simulazione Neonatale “NINA”, Azienda Ospedaliero-Universitaria Pisana, Pisa, Italy
| | - Cosmeri Rizzato
- Department of Translational Research and of New Technologies in Medicine and Surgery, University of Pisa, Pisa, Italy
| | - Daniele Campa
- Department of Biology, University of Pisa, Pisa, Italy
| |
Collapse
|
5
|
Gearhardt AN, DiFeliceantonio AG. Highly processed foods can be considered addictive substances based on established scientific criteria. Addiction 2023; 118:589-598. [PMID: 36349900 DOI: 10.1111/add.16065] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 09/15/2022] [Indexed: 11/10/2022]
Abstract
BACKGROUND There is growing evidence that an addictive-eating phenotype may exist. There is significant debate regarding whether highly processed foods (HPFs; foods with refined carbohydrates and/or added fats) are addictive. The lack of scientifically grounded criteria to evaluate the addictive nature of HPFs has hindered the resolution of this debate. ANALYSIS The most recent scientific debate regarding a substance's addictive potential centered around tobacco. In 1988, the Surgeon General issued a report identifying tobacco products as addictive based on three primary scientific criteria: their ability to (1) cause highly controlled or compulsive use, (2) cause psychoactive (i.e. mood-altering) effects via their effect on the brain and (3) reinforce behavior. Scientific advances have now identified the ability of tobacco products to (4) trigger strong urges or craving as another important indicator of addictive potential. Here, we propose that these four criteria provide scientifically valid benchmarks that can be used to evaluate the addictiveness of HPFs. Then, we review the evidence regarding whether HPFs meet each criterion. Finally, we consider the implications of labeling HPFs as addictive. CONCLUSION Highly processed foods (HPFs) can meet the criteria to be labeled as addictive substances using the standards set for tobacco products. The addictive potential of HPFs may be a key factor contributing to the high public health costs associated with a food environment dominated by cheap, accessible and heavily marketed HPFs.
Collapse
Affiliation(s)
| | - Alexandra G DiFeliceantonio
- Fralin Biomedical Research Institute at VTC, Roanoke, VA, USA.,Department of Human Nutrition Foods, and Exercise, Virginia Polytechnic Institute and State University, Blacksburg, VA, USA
| |
Collapse
|
6
|
Margolis EB, Moulton MG, Lambeth PS, O'Meara MJ. The life and times of endogenous opioid peptides: Updated understanding of synthesis, spatiotemporal dynamics, and the clinical impact in alcohol use disorder. Neuropharmacology 2023; 225:109376. [PMID: 36516892 PMCID: PMC10548835 DOI: 10.1016/j.neuropharm.2022.109376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/03/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
The opioid G-protein coupled receptors (GPCRs) strongly modulate many of the central nervous system structures that contribute to neurological and psychiatric disorders including pain, major depressive disorder, and substance use disorders. To better treat these and related diseases, it is essential to understand the signaling of their endogenous ligands. In this review, we focus on what is known and unknown about the regulation of the over two dozen endogenous peptides with high affinity for one or more of the opioid receptors. We briefly describe which peptides are produced, with a particular focus on the recently proposed possible synthesis pathways for the endomorphins. Next, we describe examples of endogenous opioid peptide expression organization in several neural circuits and how they appear to be released from specific neural compartments that vary across brain regions. We discuss current knowledge regarding the strength of neural activity required to drive endogenous opioid peptide release, clues about how far peptides diffuse from release sites, and their extracellular lifetime after release. Finally, as a translational example, we discuss the mechanisms of action of naltrexone (NTX), which is used clinically to treat alcohol use disorder. NTX is a synthetic morphine analog that non-specifically antagonizes the action of most endogenous opioid peptides developed in the 1960s and FDA approved in the 1980s. We review recent studies clarifying the precise endogenous activity that NTX prevents. Together, the works described here highlight the challenges and opportunities the complex opioid system presents as a therapeutic target.
Collapse
Affiliation(s)
- Elyssa B Margolis
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA; Neuroscience Graduate Program, University of California, San Francisco, CA, USA.
| | - Madelyn G Moulton
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Philip S Lambeth
- UCSF Weill Institute for Neurosciences, Department of Neurology, University of California, San Francisco, CA, USA
| | - Matthew J O'Meara
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, MI, 48109, USA
| |
Collapse
|
7
|
Conway SM, Kuo CC, Gardiner W, Wu RN, Thang LV, Gereau GB, Cirrito JR, Yuede CM, McCall JG, Al-Hasani R. An electrochemical approach for rapid, sensitive, and selective detection of dynorphin. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.01.526701. [PMID: 36778492 PMCID: PMC9915597 DOI: 10.1101/2023.02.01.526701] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The endogenous opioid peptide systems are critical for analgesia, reward processing, and affect, but research on their release dynamics and function has been challenging. Here, we have developed microimmunoelectrodes (MIEs) for the electrochemical detection of opioid peptides using square-wave voltammetry. Briefly, a voltage is applied to the electrode to cause oxidation of the tyrosine residue on the opioid peptide of interest, which is detected as current. To provide selectivity to these voltammetric measurements, the carbon fiber surface of the MIE is coated with an antiserum selective to the opioid peptide of interest. To test the sensitivity of the MIEs, electrodes are immersed in solutions containing different concentrations of opioid peptides, and peak oxidative current is measured. We show that dynorphin antiserum-coated electrodes are sensitive to increasing concentrations of dynorphin in the attomolar range. To confirm selectivity, we also measured the oxidative current from exposure to tyrosine and other opioid peptides in solution. Our data show that dynorphin antiserum-coated MIEs are sensitive and selective for dynorphin with little to no oxidative current observed in met-enkephalin and tyrosine solutions. Additionally, we demonstrate the utility of these MIEs in an in vitro brain slice preparation using bath application of dynorphin as well as optogenetic activation of dynorphin release. Future work aims to use MIEs in vivo for real-time, rapid detection of endogenous opioid peptide release in awake, behaving animals.
Collapse
|
8
|
Rysztak LG, Jutkiewicz EM. The role of enkephalinergic systems in substance use disorders. Front Syst Neurosci 2022; 16:932546. [PMID: 35993087 PMCID: PMC9391026 DOI: 10.3389/fnsys.2022.932546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 06/29/2022] [Indexed: 12/13/2022] Open
Abstract
Enkephalin, an endogenous opioid peptide, is highly expressed in the reward pathway and may modulate neurotransmission to regulate reward-related behaviors, such as drug-taking and drug-seeking behaviors. Drugs of abuse also directly increase enkephalin in this pathway, yet it is unknown whether or not changes in the enkephalinergic system after drug administration mediate any specific behaviors. The use of animal models of substance use disorders (SUDs) concurrently with pharmacological, genetic, and molecular tools has allowed researchers to directly investigate the role of enkephalin in promoting these behaviors. In this review, we explore neurochemical mechanisms by which enkephalin levels and enkephalin-mediated signaling are altered by drug administration and interrogate the contribution of enkephalin systems to SUDs. Studies manipulating the receptors that enkephalin targets (e.g., mu and delta opioid receptors mainly) implicate the endogenous opioid peptide in drug-induced neuroadaptations and reward-related behaviors; however, further studies will need to confirm the role of enkephalin directly. Overall, these findings suggest that the enkephalinergic system is involved in multiple aspects of SUDs, such as the primary reinforcing properties of drugs, conditioned reinforcing effects, and sensitization. The idea of dopaminergic-opioidergic interactions in these behaviors remains relatively novel and warrants further research. Continuing work to elucidate the role of enkephalin in mediating neurotransmission in reward circuitry driving behaviors related to SUDs remains crucial.
Collapse
Affiliation(s)
- Lauren G. Rysztak
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
- Neuroscience Graduate Program, University of Michigan, Ann Arbor, MI, United States
| | - Emily M. Jutkiewicz
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, United States
- *Correspondence: Emily M. Jutkiewicz,
| |
Collapse
|
9
|
Casello SM, Flores RJ, Yarur HE, Wang H, Awanyai M, Arenivar MA, Jaime-Lara RB, Bravo-Rivera H, Tejeda HA. Neuropeptide System Regulation of Prefrontal Cortex Circuitry: Implications for Neuropsychiatric Disorders. Front Neural Circuits 2022; 16:796443. [PMID: 35800635 PMCID: PMC9255232 DOI: 10.3389/fncir.2022.796443] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 04/27/2022] [Indexed: 01/08/2023] Open
Abstract
Neuropeptides, a diverse class of signaling molecules in the nervous system, modulate various biological effects including membrane excitability, synaptic transmission and synaptogenesis, gene expression, and glial cell architecture and function. To date, most of what is known about neuropeptide action is limited to subcortical brain structures and tissue outside of the central nervous system. Thus, there is a knowledge gap in our understanding of neuropeptide function within cortical circuits. In this review, we provide a comprehensive overview of various families of neuropeptides and their cognate receptors that are expressed in the prefrontal cortex (PFC). Specifically, we highlight dynorphin, enkephalin, corticotropin-releasing factor, cholecystokinin, somatostatin, neuropeptide Y, and vasoactive intestinal peptide. Further, we review the implication of neuropeptide signaling in prefrontal cortical circuit function and use as potential therapeutic targets. Together, this review summarizes established knowledge and highlights unknowns of neuropeptide modulation of neural function underlying various biological effects while offering insights for future research. An increased emphasis in this area of study is necessary to elucidate basic principles of the diverse signaling molecules used in cortical circuits beyond fast excitatory and inhibitory transmitters as well as consider components of neuropeptide action in the PFC as a potential therapeutic target for neurological disorders. Therefore, this review not only sheds light on the importance of cortical neuropeptide studies, but also provides a comprehensive overview of neuropeptide action in the PFC to serve as a roadmap for future studies in this field.
Collapse
Affiliation(s)
- Sanne M. Casello
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Rodolfo J. Flores
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Hector E. Yarur
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Huikun Wang
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Monique Awanyai
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Miguel A. Arenivar
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Rosario B. Jaime-Lara
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, United States
| | - Hector Bravo-Rivera
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
| | - Hugo A. Tejeda
- Unit on Neuromodulation and Synaptic Integration, National Institute of Mental Health, National Institutes of Health, Bethesda, MD, United States
- *Correspondence: Hugo A. Tejeda,
| |
Collapse
|
10
|
Joshi A, Schott M, la Fleur SE, Barrot M. Role of the striatal dopamine, GABA and opioid systems in mediating feeding and fat intake. Neurosci Biobehav Rev 2022; 139:104726. [PMID: 35691472 DOI: 10.1016/j.neubiorev.2022.104726] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 12/08/2021] [Accepted: 06/05/2022] [Indexed: 10/18/2022]
Abstract
Food intake, which is a highly reinforcing behavior, provides nutrients required for survival in all animals. However, when fat and sugar consumption goes beyond the daily needs, it can favor obesity. The prevalence and severity of this health problem has been increasing with time. Besides covering nutrient and energy needs, food and in particular its highly palatable components, such as fats, also induce feelings of joy and pleasure. Experimental evidence supports a role of the striatal complex and of the mesolimbic dopamine system in both feeding and food-related reward processing, with the nucleus accumbens as a key target for reward or reinforcing-associated signaling during food intake behavior. In this review, we provide insights concerning the impact of feeding, including fat intake, on different types of receptors and neurotransmitters present in the striatal complex. Reciprocally, we also cover the evidence for a modulation of palatable food intake by different neurochemical systems in the striatal complex and in particular the nucleus accumbens, with a focus on dopamine, GABA and the opioid system.
Collapse
Affiliation(s)
- Anil Joshi
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Marion Schott
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Susanne Eva la Fleur
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands.
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
11
|
Abstract
The endogenous opioid peptide system, comprised of enkephalins, endorphins, dynorphins, and nociceptin, is a highly complex neurobiological system. Opioid peptides are derived from four precursor molecules and undergo several processing events yielding over 20 unique opioid peptides. This diversity together with low in vivo concentration and complex processing and release dynamics has challenged research into each peptide's unique function. Despite the subsequent challenges in detecting and quantifying opioid peptides in vivo, researchers have pioneered several techniques to directly or indirectly assay the roles of opioid peptides during behavioral manipulations. In this review, we describe the limitations of the traditional techniques used to study the role of endogenous opioid peptides in food and drug reward and bring focus to the wealth of new techniques to measure endogenous opioid peptides in reward processing.
Collapse
|
12
|
Heal DJ, Smith SL. Prospects for new drugs to treat binge-eating disorder: Insights from psychopathology and neuropharmacology. J Psychopharmacol 2022; 36:680-703. [PMID: 34318734 PMCID: PMC9150143 DOI: 10.1177/02698811211032475] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
BACKGROUND Binge-eating disorder (BED) is a common psychiatric condition with adverse psychological and metabolic consequences. Lisdexamfetamine (LDX) is the only approved BED drug treatment. New drugs to treat BED are urgently needed. METHODS A comprehensive review of published psychopathological, pharmacological and clinical findings. RESULTS The evidence supports the hypothesis that BED is an impulse control disorder with similarities to ADHD, including responsiveness to catecholaminergic drugs, for example LDX and dasotraline. The target product profile (TPP) of the ideal BED drug combines treating the psychopathological drivers of the disorder with an independent weight-loss effect. Drugs with proven efficacy in BED have a common pharmacology; they potentiate central noradrenergic and dopaminergic neurotransmission. Because of the overlap between pharmacotherapy in attention deficit hyperactivity disorder (ADHD) and BED, drug-candidates from diverse pharmacological classes, which have already failed in ADHD would also be predicted to fail if tested in BED. The failure in BED trials of drugs with diverse pharmacological mechanisms indicates many possible avenues for drug discovery can probably be discounted. CONCLUSIONS (1) The efficacy of drugs for BED is dependent on reducing its core psychopathologies of impulsivity, compulsivity and perseveration and by increasing cognitive control of eating. (2) The analysis revealed a large number of pharmacological mechanisms are unlikely to be productive in the search for effective new BED drugs. (3) The most promising areas for new treatments for BED are drugs, which augment noradrenergic and dopaminergic neurotransmission and/or those which are effective in ADHD.
Collapse
Affiliation(s)
- David J Heal
- David J Heal, DevelRx Ltd, BioCity, Nottingham, NG1 1GF, UK.
| | | |
Collapse
|
13
|
Martins JS, Joyner KJ, McCarthy DM, Morris DH, Patrick CJ, Bartholow BD. Differential brain responses to alcohol-related and natural rewards are associated with alcohol use and problems: Evidence for reward dysregulation. Addict Biol 2022; 27:e13118. [PMID: 34877771 PMCID: PMC8891069 DOI: 10.1111/adb.13118] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Revised: 10/15/2021] [Accepted: 11/04/2021] [Indexed: 12/17/2022]
Abstract
Multiple theoretical perspectives posit that drug use leads to biased valuation of drug-related reward, at the expense of naturally occurring rewarding activities (i.e., reward dysregulation). Recent research suggests that the comparative balance of drug-related and nondrug-related reward valuation is a powerful determinant of substance misuse and addiction. We examined differential neurophysiological responses-indexed with the P3 component of the event-related potential (ERP)-elicited by visual alcohol cues and cues depicting natural reward as a neurobiological indicator of problematic drinking. Nondependent, young adult drinkers (N = 143, aged 18-30 years) completed questionnaire measures assessing alcohol use and problems, and viewed alcohol cues (pictures of alcoholic beverages), high-arousing natural reward cues (erotica, adventure scenes), nonalcoholic beverage cues, and neutral scenes (e.g., household items) while ERPs were recorded. When examined separately, associations of P3-ERP reactivity to alcohol cues and natural reward cues with alcohol use and problems were weak. However, differential P3 response to the two types of cues (i.e., reward dysregulation P3) showed consistent and robust associations with all indices of alcohol use and problems and differentiated high-risk from lower-risk drinkers. The current results support the idea that the differential incentive-motivational value of alcohol, relative to naturally rewarding activities, is associated with increased risk for substance misuse and dependence, and highlight a novel neurophysiological indicator-the reward dysregulation P3-of this differential reward valuation.
Collapse
|
14
|
Koekkoek LL, Masís-Vargas A, Kool T, Eggels L, van der Gun LL, Lamuadni K, Slomp M, Diepenbroek C, Kalsbeek A, la Fleur SE. Sucrose drinking mimics effects of nucleus accumbens µ-opioid receptor stimulation on fat intake and brain c-Fos-expression. Nutr Neurosci 2021; 25:2408-2420. [PMID: 34490827 DOI: 10.1080/1028415x.2021.1975365] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Objectives: We have previously shown that the combined consumption of fat and a sucrose solution induces overeating, and there is evidence indicating that sucrose drinking directly stimulates fat intake. One neurochemical pathway by which sucrose may enhance fat intake is through the release of endogenous opioids in the nucleus accumbens (NAC).Methods: To test this hypothesis, we provided rats with a free-choice high-fat diet for two weeks. During the second week, rats had access to an additional bottle of water or a 30% sucrose solution for five minutes per day. After these two weeks, we infused vehicle or the μ-opioid receptor agonist [D-Ala2, N-MePhe4, Gly-ol]-enkephalin (DAMGO) into the NAC 30 min after their daily access to the additional bottle of water or the sucrose solution.Results: Sucrose drinking had two effects, (1) it stimulated fat intake in the absence of DAMGO infusion, (2) it diminished sensitivity to DAMGO, as it prevented the rapid increase in fat intake typically seen upon DAMGO infusion in the nucleus accumbens. In a second experiment, we confirmed that these results are not due to the ingested calories of the sucrose solution. Lastly, we investigated which brain areas are involved in the observed effects on fat intake by assessing c-Fos-expression in brain areas previously linked to DAMGO's effects on food intake. Both intra-NAC DAMGO infusion and sucrose consumption in the absence of DAMGO infusion had no effect on c-Fos-expression in orexin neurons and the central amygdala but increased c-Fos-expression in the NAC as well as the basolateral amygdala.Discussion: In conclusion, we confirm that sucrose drinking stimulates fat intake, likely through the release of endogenous opioids.
Collapse
Affiliation(s)
- L L Koekkoek
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - A Masís-Vargas
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - T Kool
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - L Eggels
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - L L van der Gun
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - K Lamuadni
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - M Slomp
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - C Diepenbroek
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - A Kalsbeek
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| | - S E la Fleur
- Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Amsterdam Neuroscience, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Department of Endocrinology and Metabolism, Amsterdam University Medical Center, Location AMC, University of Amsterdam, Neuroscience Amsterdam, Amsterdam Gastroenterology, Endocrinology and Metabolism, Amsterdam, The Netherlands.,Metabolism and Reward Group, Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Amsterdam, The Netherlands
| |
Collapse
|
15
|
Joshi A, Faivre F, la Fleur SE, Barrot M. Midbrain and Lateral Nucleus Accumbens Dopamine Depletion Affects Free-choice High-fat high-sugar Diet Preference in Male Rats. Neuroscience 2021; 467:171-184. [PMID: 34048800 DOI: 10.1016/j.neuroscience.2021.05.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 04/16/2021] [Accepted: 05/19/2021] [Indexed: 12/25/2022]
Abstract
Dopamine influences food intake behavior. Reciprocally, food intake, especially of palatable dietary items, can modulate dopamine-related brain circuitries. Among these reciprocal impacts, it has been observed that an increased intake of dietary fat results in blunted dopamine signaling and, to compensate this lowered dopamine function, caloric intake may subsequently increase. To determine how dopamine regulates food preference we performed 6-hydroxydopamine (6-OHDA) lesions, depleting dopamine in specific brain regions in male Sprague Dawley rats. Food preference was assessed by providing the rats with free choice access to control diet, fat, 20% sucrose and tap water. Rats with midbrain lesions targeting the substantia nigra (which is also a model of Parkinson's disease) consumed fewer calories, as reflected by a decrease in control diet intake, but they surprisingly displayed an increase in fat intake, without change in the sucrose solution intake compared to sham animals. To determine which of the midbrain dopamine projections may contribute to this effect, we next compared the impact of 6-OHDA lesions of terminal fields, targeting the dorsal striatum, the lateral nucleus accumbens and the medial nucleus accumbens. We found that 6-OHDA lesion of the lateral nucleus accumbens, but not of the dorsal striatum or the medial nucleus accumbens, led to increased fat intake. These findings indicate a role for lateral nucleus accumbens dopamine in regulating food preference, in particular the intake of fat.
Collapse
Affiliation(s)
- Anil Joshi
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France; Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Fanny Faivre
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France
| | - Susanne Eva la Fleur
- Amsterdam UMC, University of Amsterdam, Laboratory of Endocrinology, Department of Clinical Chemistry, Amsterdam Gastroenterology & Metabolism, Amsterdam, the Netherlands; Amsterdam UMC, University of Amsterdam, Department of Endocrinology & Metabolism, Amsterdam Neuroscience, Amsterdam, the Netherlands; Metabolism and Reward Group, Netherlands Institute for Neuroscience, An Institute of the Royal Netherlands Academy of Arts and Sciences (KNAW), Amsterdam, the Netherlands
| | - Michel Barrot
- Centre National de la Recherche Scientifique, Université de Strasbourg, Institut des Neurosciences Cellulaires et Intégratives, Strasbourg, France.
| |
Collapse
|
16
|
Meier IM, Eikemo M, Leknes S. The Role of Mu-Opioids for Reward and Threat Processing in Humans: Bridging the Gap from Preclinical to Clinical Opioid Drug Studies. CURRENT ADDICTION REPORTS 2021; 8:306-318. [PMID: 34722114 PMCID: PMC8550464 DOI: 10.1007/s40429-021-00366-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2021] [Indexed: 12/22/2022]
Abstract
PURPOSE OF REVIEW Opioid receptors are widely expressed in the human brain. A number of features commonly associated with drug use disorder, such as difficulties in emotional learning, emotion regulation and anhedonia, have been linked to endogenous opioid signalling. Whereas chronic substance use and misuse are thought to alter the function of the mu-opioid system, the specific mechanisms are not well understood. We argue that understanding exogenous and endogenous opioid effects in the healthy human brain is an essential foundation for bridging preclinical and clinical findings related to opioid misuse. Here, we will examine psychopharmacological evidence to outline the role of the mu-opioid receptor (MOR) system in the processing of threat and reward, and discuss how disruption of these processes by chronic opioid use might alter emotional learning and reward responsiveness. RECENT FINDINGS In healthy people, studies using opioid antagonist drugs indicate that the brain's endogenous opioids downregulate fear reactivity and upregulate learning from safety. At the same time, endogenous opioids increase the liking of and motivation to engage with high reward value cues. Studies of acute opioid agonist effects indicate that with non-sedative doses, drugs such as morphine and buprenorphine can mimic endogenous opioid effects on liking and wanting. Disruption of endogenous opioid signalling due to prolonged opioid exposure is associated with some degree of anhedonia to non-drug rewards; however, new results leave open the possibility that this is not directly opioid-mediated. SUMMARY The available human psychopharmacological evidence indicates that the healthy mu-opioid system contributes to the regulation of reward and threat processing. Overall, endogenous opioids can subtly increase liking and wanting responses to a wide variety of rewards, from sweet tastes to feelings of being connected to close others. For threat-related processing, human evidence suggests that endogenous opioids inhibit fear conditioning and reduce the sensitivity to aversive stimuli, although inconsistencies remain. The size of effects reported in healthy humans are however modest, clearly indicating that MORs play out their role in close concert with other neurotransmitter systems. Relevant candidate systems for future research include dopamine, serotonin and endocannabinoid signalling. Nevertheless, it is possible that endogenous opioid fine-tuning of reward and threat processing, when unbalanced by e.g. opioid misuse, could over time develop into symptoms associated with opioid use disorder, such as anhedonia and depression/anxiety.
Collapse
Affiliation(s)
- Isabell M. Meier
- Department of Diagnostic Physics, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
| | - Marie Eikemo
- Department of Psychology, University of Oslo, Blindern, 0317 Oslo, Norway
| | - Siri Leknes
- Department of Diagnostic Physics, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Department of Psychology, University of Oslo, Blindern, 0317 Oslo, Norway
| |
Collapse
|
17
|
Adermark L, Gutierrez S, Lagström O, Hammarlund M, Licheri V, Johansson ME. Weight gain and neuroadaptations elicited by high fat diet depend on fatty acid composition. Psychoneuroendocrinology 2021; 126:105143. [PMID: 33493754 DOI: 10.1016/j.psyneuen.2021.105143] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 01/13/2021] [Accepted: 01/15/2021] [Indexed: 11/28/2022]
Abstract
Overconsumption of food is a major health concern in the western world. Palatable food has been shown to alter the activity of neural circuits, and obesity has been linked to alterations in the connectivity between the hypothalamus and cortical regions involved in decision-making and reward processing, putatively modulating the incentive value of food. Outlining neurophysiological adaptations induced by dietary intake of high fat diets (HFD) is thus valuable to establish how the diet by itself may promote overeating. To this end, C57BL/6 mice were fed HFD rich in either saturated fatty acids (HFD-S) or polyunsaturated fatty acids (HFD-P), or a low-fat control diet (LFD) for four weeks. Food and energy intake were monitored and ex vivo electrophysiology was employed to assess neuroadaptations in lateral hypothalamus (LH) and corticostriatal circuits, previously associated with food intake. In addition, the effects of dietary saturated and polyunsaturated fatty acids on the gene expression of NMDA, AMPA and GABAA receptor subunits in the hypothalamus were investigated. Our data shows that mice fed HFD-P had increased daily food and energy intake compared with mice fed HFD-S or LFD. However, this increase in energy intake had no obesogenic effects. Electrophysiological recordings demonstrated that HFD-P had a selective effect on glutamatergic neurotransmission in the LH, which was concomitant with a change in mRNA expression of AMPA receptor subtypes Gria1, Gria3 and Gria4, with no effect on the mRNA expression of NMDA receptor subtypes or GABAA receptor subtypes. Furthermore, while synaptic output from corticostriatal subregions was not significantly modulated by diet, synaptic plasticity in the form of long-term depression (LTD) was impaired in the dorsomedial striatum of mice fed HFD-S. In conclusion, this study suggests that the composition of fatty acids in the diet not only affects weight gain, but may also modulate neuronal function and plasticity in brain regions involved in food intake.
Collapse
Affiliation(s)
- Louise Adermark
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden; Deparment of Pharmacology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden.
| | - Saray Gutierrez
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Oona Lagström
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Maria Hammarlund
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Valentina Licheri
- Department of Psychiatry and Neurochemistry, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| | - Maria E Johansson
- Department of Physiology, Institute of Neuroscience and Physiology, Sahlgrenska Academy, University of Gothenburg, Sweden
| |
Collapse
|
18
|
Tsan L, Décarie-Spain L, Noble EE, Kanoski SE. Western Diet Consumption During Development: Setting the Stage for Neurocognitive Dysfunction. Front Neurosci 2021; 15:632312. [PMID: 33642988 PMCID: PMC7902933 DOI: 10.3389/fnins.2021.632312] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 01/19/2021] [Indexed: 01/18/2023] Open
Abstract
The dietary pattern in industrialized countries has changed substantially over the past century due to technological advances in agriculture, food processing, storage, marketing, and distribution practices. The availability of highly palatable, calorically dense foods that are shelf-stable has facilitated a food environment where overconsumption of foods that have a high percentage of calories derived from fat (particularly saturated fat) and sugar is extremely common in modern Westernized societies. In addition to being a predictor of obesity and metabolic dysfunction, consumption of a Western diet (WD) is related to poorer cognitive performance across the lifespan. In particular, WD consumption during critical early life stages of development has negative consequences on various cognitive abilities later in adulthood. This review highlights rodent model research identifying dietary, metabolic, and neurobiological mechanisms linking consumption of a WD during early life periods of development (gestation, lactation, juvenile and adolescence) with behavioral impairments in multiple cognitive domains, including anxiety-like behavior, learning and memory function, reward-motivated behavior, and social behavior. The literature supports a model in which early life WD consumption leads to long-lasting neurocognitive impairments that are largely dissociable from WD effects on obesity and metabolic dysfunction.
Collapse
Affiliation(s)
- Linda Tsan
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States.,Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, United States
| | - Léa Décarie-Spain
- Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, United States
| | - Emily E Noble
- Department of Foods and Nutrition, University of Georgia, Athens, GA, United States
| | - Scott E Kanoski
- Neuroscience Graduate Program, University of Southern California, Los Angeles, CA, United States.,Department of Biological Sciences, Human and Evolutionary Biology Section, University of Southern California, Los Angeles, CA, United States
| |
Collapse
|
19
|
Inutsuka A, Ino D, Onaka T. Detection of neuropeptides in vivo and open questions for current and upcoming fluorescent sensors for neuropeptides. Peptides 2021; 136:170456. [PMID: 33245950 DOI: 10.1016/j.peptides.2020.170456] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 10/27/2020] [Accepted: 11/10/2020] [Indexed: 12/12/2022]
Abstract
During a stress response, various neuropeptides are secreted in a spatiotemporally coordinated way in the brain. For a precise understanding of peptide functions in a stress response, it is important to investigate when and where they are released, how they diffuse, and how they are broken down in the brain. In the past two decades, genetically encoded fluorescent calcium indicators have greatly advanced our knowledge of the functions of specific neuronal activity in regulation of behavioral changes and physiological responses during stress. In addition, various kinds of structural information on G-protein-coupled receptors (GPCRs) for neuropeptides have been revealed. Recently, genetically encoded fluorescent sensors have been developed for detection of neurotransmitters by making use of conformational changes induced by ligand binding. In this review, we summarize the recent and upcoming advances of techniques for detection of neuropeptides and then present several open questions that will be solved by application of recent or upcoming technical advances in detection of neuropeptides in vivo.
Collapse
Affiliation(s)
- Ayumu Inutsuka
- Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| | - Daisuke Ino
- Department of Histology and Cell Biology, Graduate School of Medical Sciences, Kanazawa University, 13-1 Takaramachi, Kanazawa, Ishikawa 920-8640, Japan
| | - Tatsushi Onaka
- Department of Physiology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi 329-0498, Japan.
| |
Collapse
|
20
|
Morales I, Berridge KC. 'Liking' and 'wanting' in eating and food reward: Brain mechanisms and clinical implications. Physiol Behav 2020; 227:113152. [PMID: 32846152 PMCID: PMC7655589 DOI: 10.1016/j.physbeh.2020.113152] [Citation(s) in RCA: 130] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2020] [Revised: 08/17/2020] [Accepted: 08/21/2020] [Indexed: 01/02/2023]
Abstract
It is becoming clearer how neurobiological mechanisms generate 'liking' and 'wanting' components of food reward. Mesocorticolimbic mechanisms that enhance 'liking' include brain hedonic hotspots, which are specialized subregions that are uniquely able to causally amplify the hedonic impact of palatable tastes. Hedonic hotspots are found in nucleus accumbens medial shell, ventral pallidum, orbitofrontal cortex, insula cortex, and brainstem. In turn, a much larger mesocorticolimbic circuitry generates 'wanting' or incentive motivation to obtain and consume food rewards. Hedonic and motivational circuitry interact together and with hypothalamic homeostatic circuitry, allowing relevant physiological hunger and satiety states to modulate 'liking' and 'wanting' for food rewards. In some conditions such as drug addiction, 'wanting' is known to dramatically detach from 'liking' for the same reward, and this may also occur in over-eating disorders. Via incentive sensitization, 'wanting' selectively becomes higher, especially when triggered by reward cues when encountered in vulnerable states of stress, etc. Emerging evidence suggests that some cases of obesity and binge eating disorders may reflect an incentive-sensitization brain signature of cue hyper-reactivity, causing excessive 'wanting' to eat. Future findings on the neurobiological bases of 'liking' and 'wanting' can continue to improve understanding of both normal food reward and causes of clinical eating disorders.
Collapse
Affiliation(s)
- Ileana Morales
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109-1043, United States.
| | - Kent C Berridge
- Department of Psychology, University of Michigan, Ann Arbor, Michigan 48109-1043, United States
| |
Collapse
|
21
|
Fricker LD, Margolis EB, Gomes I, Devi LA. Five Decades of Research on Opioid Peptides: Current Knowledge and Unanswered Questions. Mol Pharmacol 2020; 98:96-108. [PMID: 32487735 DOI: 10.1124/mol.120.119388] [Citation(s) in RCA: 83] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2020] [Accepted: 05/06/2020] [Indexed: 12/20/2022] Open
Abstract
In the mid-1970s, an intense race to identify endogenous substances that activated the same receptors as opiates resulted in the identification of the first endogenous opioid peptides. Since then, >20 peptides with opioid receptor activity have been discovered, all of which are generated from three precursors, proenkephalin, prodynorphin, and proopiomelanocortin, by sequential proteolytic processing by prohormone convertases and carboxypeptidase E. Each of these peptides binds to all three of the opioid receptor types (μ, δ, or κ), albeit with differing affinities. Peptides derived from proenkephalin and prodynorphin are broadly distributed in the brain, and mRNA encoding all three precursors are highly expressed in some peripheral tissues. Various approaches have been used to explore the functions of the opioid peptides in specific behaviors and brain circuits. These methods include directly administering the peptides ex vivo (i.e., to excised tissue) or in vivo (in animals), using antagonists of opioid receptors to infer endogenous peptide activity, and genetic knockout of opioid peptide precursors. Collectively, these studies add to our current understanding of the function of endogenous opioids, especially when similar results are found using different approaches. We briefly review the history of identification of opioid peptides, highlight the major findings, address several myths that are widely accepted but not supported by recent data, and discuss unanswered questions and future directions for research. SIGNIFICANCE STATEMENT: Activation of the opioid receptors by opiates and synthetic drugs leads to central and peripheral biological effects, including analgesia and respiratory depression, but these may not be the primary functions of the endogenous opioid peptides. Instead, the opioid peptides play complex and overlapping roles in a variety of systems, including reward pathways, and an important direction for research is the delineation of the role of individual peptides.
Collapse
Affiliation(s)
- Lloyd D Fricker
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.); Department of Neurology, UCSF Weill Institute for Neurosciences, San Francisco, California (E.B.M.); and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| | - Elyssa B Margolis
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.); Department of Neurology, UCSF Weill Institute for Neurosciences, San Francisco, California (E.B.M.); and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| | - Ivone Gomes
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.); Department of Neurology, UCSF Weill Institute for Neurosciences, San Francisco, California (E.B.M.); and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| | - Lakshmi A Devi
- Department of Molecular Pharmacology, Albert Einstein College of Medicine, Bronx, New York (L.D.F.); Department of Neurology, UCSF Weill Institute for Neurosciences, San Francisco, California (E.B.M.); and Department of Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, New York (I.G., L.A.D.)
| |
Collapse
|
22
|
Karkhanis AN, Al-Hasani R. Dynorphin and its role in alcohol use disorder. Brain Res 2020; 1735:146742. [PMID: 32114059 DOI: 10.1016/j.brainres.2020.146742] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Revised: 02/04/2020] [Accepted: 02/25/2020] [Indexed: 02/07/2023]
Abstract
The dynorphin / kappa opioid receptor (KOR) system has been implicated in many aspects that influence neuropsychiatric disorders. Namely, this system modulates neural circuits that primarily regulate reward seeking, motivation processing, stress responsivity, and pain sensitivity, thus affecting the development of substance and alcohol use disorder (AUD). The effects of this system are often bidirectional and depend on projection targets. To date, a majority of the studies focusing on this system have examined the KOR function using agonists and antagonists. Indeed, there are studies that have examined prodynorphin and dynorphin levels by measuring mRNA and tissue content levels; however, static levels of the neuropeptide and its precursor do not explain complete and online function of the peptide as would be explained by measuring dynorphin transmission in real time. New and exciting methods using optogenetics, chemogenetics, genetic sensors, fast scan cyclic voltammetry are now being developed to detect various neuropeptides with a focus on opioid peptides, including dynorphin. In this review we discuss studies that examine dynorphin projections in areas involved in AUD, its functional involvement in AUD and vulnerability to develop AUD at various ages. Moreover, we discuss dynorphin's role in promoting AUD by dysregulation motivation circuits and how advancements in opioid peptide detection will further our understanding.
Collapse
Affiliation(s)
- Anushree N Karkhanis
- Department of Psychology, Developmental Exposure Alcohol Research Center, Center for Developmental and Behavioral Neuroscience, Binghamton University - SUNY, 4400 Vestal Parkway East, Binghamton, NY 13902, USA.
| | - Ream Al-Hasani
- Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, Department of Anesthesiology Washington University in St. Louis, Center for Clinical Pharmacology, Washington University School of Medicine & St. Louis College of Pharmacy 660 S.Euclid, Box 8054, St. Louis, MO 63110, USA.
| |
Collapse
|
23
|
Li R, Wang X, Lin F, Song T, Zhu X, Lei H. Mapping accumulative whole-brain activities during environmental enrichment with manganese-enhanced magnetic resonance imaging. Neuroimage 2020; 210:116588. [PMID: 32004718 DOI: 10.1016/j.neuroimage.2020.116588] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/10/2020] [Accepted: 01/24/2020] [Indexed: 11/17/2022] Open
Abstract
An enriched environment (EE) provides multi-dimensional stimuli to the brain. EE exposure for days to months induces functional and structural neuroplasticity. In this study, manganese-enhanced magnetic resonance imaging (MEMRI) was used to map the accumulative whole-brain activities associated with a 7-day EE exposure in freely-moving adult male mice, followed by c-Fos immunochemical assessments. Relative to the mice residing in a standard environment (SE), the mice subjected to EE treatment had significantly enhanced regional MEMRI signal intensities in the prefrontal cortex, somatosensory cortices, basal ganglia, amygdala, motor thalamus, lateral hypothalamus, ventral hippocampus and midbrain dopaminergic areas at the end of the 7-day exposure, likely attributing to enhanced Mn2+ uptake/transport associated with brain activities at both the regional and macroscale network levels. Some of, but not all, the brain regions in the EE-treated mice showing enhanced MEMRI signal intensity had accompanying increases in c-Fos expression. The EE-treated mice were also found to have significantly increased overall amount of food consumption, decreased body weight gain and upregulated tyrosine hydroxylase (TH) expression in the midbrain dopaminergic areas. Taken together, these results demonstrated that the 7-day EE exposure was associated with elevated cumulative activities in the nigrostriatal, mesolimbic and corticostriatal circuits underpinning reward, motivation, cognition, motor control and appetite regulation. Such accumulative activities might have served as the substrate of EE-related neuroplasticity and the beneficial effects of EE treatment on neurological/psychiatric conditions including drug addiction, Parkinson's disease and eating disorder.
Collapse
Affiliation(s)
- Ronghui Li
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Xuxia Wang
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Fuchun Lin
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Tao Song
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China
| | - Xutao Zhu
- Shenzhen Key Lab of Neuropsychiatric Modulation and Collaborative Innovation Center for Brain Science, CAS Center for Excellence in Brain Science and Intelligence Technology, Brain Cognition and Brain Disease Institute, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Hao Lei
- Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, 430074, PR China; National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, 430071, PR China.
| |
Collapse
|
24
|
Ashok AH, Myers J, Reis Marques T, Rabiner EA, Howes OD. Reduced mu opioid receptor availability in schizophrenia revealed with [ 11C]-carfentanil positron emission tomographic Imaging. Nat Commun 2019; 10:4493. [PMID: 31582737 PMCID: PMC6776653 DOI: 10.1038/s41467-019-12366-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022] Open
Abstract
Negative symptoms, such as amotivation and anhedonia, are a major cause of functional impairment in schizophrenia. There are currently no licensed treatments for negative symptoms, highlighting the need to understand the molecular mechanisms underlying them. Mu-opioid receptors (MOR) in the striatum play a key role in hedonic processing and reward function and are reduced post-mortem in schizophrenia. However, it is unknown if mu-opioid receptor availability is altered in-vivo or related to negative symptoms in schizophrenia. Using [11 C]-carfentanil positron emission tomography (PET) scans in 19 schizophrenia patients and 20 age-matched healthy controls, here we show a significantly lower MOR availability in patients with schizophrenia in the striatum (Cohen's d = 0.7), and the hedonic network. In addition, we report a marked global increase in inter-regional covariance of MOR availability in schizophrenia, largely due to increased cortical-subcortical covariance.
Collapse
Affiliation(s)
- Abhishekh H Ashok
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK.,Faculty of Medicine, Psychiatric Imaging Group, Institute of Clinical Sciences (ICS), Imperial College London, London, UK.,Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK.,Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK.,Department of Radiology, University of Cambridge, Cambridge, UK
| | - Jim Myers
- Faculty of Medicine, Imperial College London, London, UK
| | - Tiago Reis Marques
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK.,Faculty of Medicine, Psychiatric Imaging Group, Institute of Clinical Sciences (ICS), Imperial College London, London, UK.,Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Eugenii A Rabiner
- Invicro, London, UK.,Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK
| | - Oliver D Howes
- Psychiatric Imaging Group, MRC London Institute of Medical Sciences, Hammersmith Hospital, Imperial College London, London, UK. .,Faculty of Medicine, Psychiatric Imaging Group, Institute of Clinical Sciences (ICS), Imperial College London, London, UK. .,Institute of Psychiatry, Psychology and Neuroscience, Kings College London, London, UK.
| |
Collapse
|
25
|
Bodnar RJ. Endogenous opioid modulation of food intake and body weight: Implications for opioid influences upon motivation and addiction. Peptides 2019; 116:42-62. [PMID: 31047940 DOI: 10.1016/j.peptides.2019.04.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 03/04/2019] [Accepted: 04/08/2019] [Indexed: 12/12/2022]
Abstract
This review is part of a special issue dedicated to Opioid addiction, and examines the influential role of opioid peptides, opioid receptors and opiate drugs in mediating food intake and body weight control in rodents. This review postulates that opioid mediation of food intake was an example of "positive addictive" properties that provide motivational drives to maintain opioid-seeking behavior and that are not subject to the "negative addictive" properties associated with tolerance, dependence and withdrawal. Data demonstrate that opiate and opioid peptide agonists stimulate food intake through homeostatic activation of sensory, metabolic and energy-related In contrast, general, and particularly mu-selective, opioid receptor antagonists typically block these homeostatically-driven ingestive behaviors. Intake of palatable and hedonic food stimuli is inhibited by general, and particularly mu-selective, opioid receptor antagonists. The selectivity of specific opioid agonists to elicit food intake was confirmed through the use of opioid receptor antagonists and molecular knockdown (antisense) techniques incapacitating specific exons of opioid receptor genes. Further extensive evidence demonstrated that homeostatic and hedonic ingestive situations correspondingly altered the levels and expression of opioid peptides and opioid receptors. Opioid mediation of food intake was controlled by a distributed brain network intimately related to both the appetitive-consummatory sites implicated in food intake as well as sites intimately involved in reward and reinforcement. This emergent system appears to sustain the "positive addictive" properties providing motivational drives to maintain opioid-seeking behavior.
Collapse
Affiliation(s)
- Richard J Bodnar
- Department of Psychology, Queens College, City University of New York, United States; Psychology Doctoral Program and CUNY Neuroscience Collaborative, The Graduate Center of the City University of New York, United States.
| |
Collapse
|
26
|
Castro DC, Bruchas MR. A Motivational and Neuropeptidergic Hub: Anatomical and Functional Diversity within the Nucleus Accumbens Shell. Neuron 2019; 102:529-552. [PMID: 31071288 PMCID: PMC6528838 DOI: 10.1016/j.neuron.2019.03.003] [Citation(s) in RCA: 154] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Revised: 02/22/2019] [Accepted: 03/01/2019] [Indexed: 01/14/2023]
Abstract
The mesocorticolimbic pathway is canonically known as the "reward pathway." Embedded within the center of this circuit is the striatum, a massive and complex network hub that synthesizes motivation, affect, learning, cognition, stress, and sensorimotor information. Although striatal subregions collectively share many anatomical and functional similarities, it has become increasingly clear that it is an extraordinarily heterogeneous region. In particular, the nucleus accumbens (NAc) medial shell has repeatedly demonstrated that the rules dictated by more dorsal aspects of the striatum do not apply or are even reversed in functional logic. These discrepancies are perhaps most easily captured when isolating the functions of various neuromodulatory peptide systems within the striatum. Endogenous peptides are thought to play a critical role in modulating striatal signals to either amplify or dampen evoked behaviors. Here we describe the anatomical-functional backdrop upon which several neuropeptides act within the NAc to modulate behavior, with a specific emphasis on nucleus accumbens medial shell and stress responsivity. Additionally, we propose that, as the field continues to dissect fast neurotransmitter systems within the NAc, we must also provide considerable contextual weight to the roles local peptides play in modulating these circuits to more comprehensively understand how this important subregion gates motivated behaviors.
Collapse
Affiliation(s)
- Daniel C Castro
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA
| | - Michael R Bruchas
- Center for Neurobiology of Addiction, Pain, and Emotion, University of Washington, Seattle, WA 98195, USA; Department of Anesthesiology and Pain Medicine, University of Washington, Seattle, WA 98195, USA; Department of Pharmacology, University of Washington, Seattle, WA 98195, USA.
| |
Collapse
|
27
|
Calhoun SE, Meunier CJ, Lee CA, McCarty GS, Sombers LA. Characterization of a Multiple-Scan-Rate Voltammetric Waveform for Real-Time Detection of Met-Enkephalin. ACS Chem Neurosci 2019; 10:2022-2032. [PMID: 30571911 PMCID: PMC6473485 DOI: 10.1021/acschemneuro.8b00351] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Accepted: 12/20/2018] [Indexed: 02/07/2023] Open
Abstract
Opioid peptides are critically involved in a variety of physiological functions necessary for adaptation and survival, and as such, understanding the precise actions of endogenous opioid peptides will aid in identification of potential therapeutic strategies to treat a variety of disorders. However, few analytical tools are currently available that offer both the sensitivity and spatial resolution required to monitor peptidergic concentration fluctuations in situ on a time scale commensurate with that of neuronal communication. Our group has developed a multiple-scan-rate waveform to enable real-time voltammetric detection of tyrosine containing neuropeptides. Herein, we have evaluated the waveform parameters to increase sensitivity to methionine-enkephalin (M-ENK), an endogenous opioid neuropeptide implicated in pain, stress, and reward circuits. M-ENK dynamics were monitored in adrenal gland tissue, as well as in the dorsal striatum of anesthetized and freely behaving animals. The data reveal cofluctuations of catecholamine and M-ENK in both locations and provide measurements of M-ENK dynamics in the brain with subsecond temporal resolution. Importantly, this work also demonstrates how voltammetric waveforms can be customized to enhance detection of specific target analytes, broadly speaking.
Collapse
Affiliation(s)
- S. E. Calhoun
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - C. J. Meunier
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - C. A. Lee
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - G. S. McCarty
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| | - L. A. Sombers
- Department of Chemistry, North
Carolina State University, Raleigh, North Carolina 27695, United States
| |
Collapse
|
28
|
Miyamoto Y, Katayama S, Shigematsu N, Nishi A, Fukuda T. Striosome-based map of the mouse striatum that is conformable to both cortical afferent topography and uneven distributions of dopamine D1 and D2 receptor-expressing cells. Brain Struct Funct 2018; 223:4275-4291. [PMID: 30203304 PMCID: PMC6267261 DOI: 10.1007/s00429-018-1749-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Accepted: 09/04/2018] [Indexed: 11/03/2022]
Abstract
The striatum is critically involved in execution of appropriate behaviors, but its internal structures remain unmapped due to its unique structural organization, leading to ambiguity when interpreting heterogeneous properties of striatal neurons that differ by location. We focused on site-specific diversity of striosomes/matrix compartmentalization to draw the striatum map. Five types of striosomes were discriminated according to diverse immunoreactivities for the µ-opioid receptor, substance P (SP) and enkephalin, and each type occupied a particular domain inside the striatum. Furthermore, there was an additional domain lacking striosomes. This striosome-free space was located at the dorsolateral region and received afferents preferentially from the primary motor and sensory cortices, whereas the striosome-rich part received afferents from associational/limbic cortices, with topography inside both innervations. The proportion of dopamine D1 receptor-expressing, presumptive striatonigral neurons was approximately 70% in SP-positive striosomes, 40% in SP-deficient striosomes, 30% in the striosome-free space, and 50% in the matrix. In contrast, the proportion of D2 receptor-expressing, presumptive striatopallidal neurons was complementary to that of D1 receptor-expressing cells, indicating a close relationship between the map and the direct and indirect parallel circuitry. Finally, the most caudal part of the striatum lacked compartmentalization and consisted of three lamina characterized by intense and mutually exclusive immunoreactivities for SP and enkephalin. This tri-laminar part also received specific afferents from the cortex. The newly obtained map will facilitate broad fields of research in the basal ganglia with higher resolution of the three-dimensional anatomy of the striatum.
Collapse
Affiliation(s)
- Yuta Miyamoto
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Sachiko Katayama
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Naoki Shigematsu
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan
| | - Akinori Nishi
- Department of Pharmacology, Kurume University, Kurume, 830-0111, Japan
| | - Takaichi Fukuda
- Department of Anatomy and Neurobiology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1 Honjo, Chuo-ku, Kumamoto, 860-8556, Japan.
| |
Collapse
|
29
|
Al-Hasani R, Wong JMT, Mabrouk OS, McCall JG, Schmitz GP, Porter-Stransky KA, Aragona BJ, Kennedy RT, Bruchas MR. In vivo detection of optically-evoked opioid peptide release. eLife 2018; 7:36520. [PMID: 30175957 PMCID: PMC6135606 DOI: 10.7554/elife.36520] [Citation(s) in RCA: 47] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Accepted: 09/02/2018] [Indexed: 12/12/2022] Open
Abstract
Though the last decade has seen accelerated advances in techniques and technologies to perturb neuronal circuitry in the brain, we are still poorly equipped to adequately dissect endogenous peptide release in vivo. To this end we developed a system that combines in vivo optogenetics with microdialysis and a highly sensitive mass spectrometry-based assay to measure opioid peptide release in freely moving rodents.
Collapse
Affiliation(s)
- Ream Al-Hasani
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, United States.,Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, United States.,Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, United States
| | - Jenny-Marie T Wong
- Department of Chemistry, University of Michigan, Ann Arbor, United States
| | - Omar S Mabrouk
- Department of Chemistry, University of Michigan, Ann Arbor, United States.,Department of Pharmacology, University of Michigan, Ann Arbor, United States
| | - Jordan G McCall
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, United States.,Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, United States.,Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, United States.,Washington University Pain Center, Washington University School of Medicine, St. Louis, United States
| | - Gavin P Schmitz
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, United States.,Center for Clinical Pharmacology, Washington University School of Medicine and St. Louis College of Pharmacy, St. Louis, United States
| | | | - Brandon J Aragona
- Department of Psychology, University of Michigan, Ann Arbor, United States
| | - Robert T Kennedy
- Department of Chemistry, University of Michigan, Ann Arbor, United States.,Department of Pharmacology, University of Michigan, Ann Arbor, United States
| | - Michael R Bruchas
- Department of Anesthesiology, Division of Basic Research, Washington University School of Medicine, St. Louis, United States.,Washington University Pain Center, Washington University School of Medicine, St. Louis, United States.,Department of Neuroscience, Washington University School of Medicine, St. Louis, United States.,Department of Anesthesiology and Pain Medicine, Center for the Neurobiology of Addiction, Pain, and Emotion, University of Washington, Washington, United States
| |
Collapse
|
30
|
Supra-Additive Effects of Combining Fat and Carbohydrate on Food Reward. Cell Metab 2018; 28:33-44.e3. [PMID: 29909968 DOI: 10.1016/j.cmet.2018.05.018] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Revised: 03/29/2018] [Accepted: 05/18/2018] [Indexed: 01/19/2023]
Abstract
Post-ingestive signals conveying information about the nutritive properties of food are critical for regulating ingestive behavior. Here, using an auction task concomitant to fMRI scanning, we demonstrate that participants are willing to pay more for fat + carbohydrate compared with equally familiar, liked, and caloric fat or carbohydrate foods and that this potentiated reward is associated with response in areas critical for reward valuation, including the dorsal striatum and mediodorsal thalamus. We also show that individuals are better able to estimate the energy density of fat compared with carbohydrate and fat + carbohydrate foods, an effect associated with functional connectivity between visual (fusiform gyrus) and valuation (ventromedial prefrontal cortex) areas. These results provide the first demonstration that foods high in fat and carbohydrate are, calorie for calorie, valued more than foods containing only fat or carbohydrate and that this effect is associated with greater recruitment of central reward circuits.
Collapse
|
31
|
Cole S, Stone AD, Petrovich GD. The dorsomedial striatum mediates Pavlovian appetitive conditioning and food consumption. Behav Neurosci 2018; 131:447-453. [PMID: 29189017 DOI: 10.1037/bne0000216] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
The dorsomedial striatum (DMS) is an important sensorimotor region mediating the acquisition of goal-directed instrumental reward learning and behavioral flexibility. However, whether the DMS also regulates Pavlovian cue-food learning is less clear. The current study used excitotoxic lesions to determine whether the DMS is critical in Pavlovian appetitive learning and behavior, using discriminative conditioning and reversal paradigms. The results showed that DMS lesions transiently retarded cue-food learning and subsequent reversal of this learning. Rats with DMS lesions selectively attenuated responding to a food cue but not a control cue, early in training, suggesting the DMS is involved when initial associations are formed. Similarly, initial reversal learning was attenuated in rats with DMS lesions, which suggests impaired flexibility to adjust behavior when the cue meaning is reversed. We also examined the effect of DMS lesions on food intake during tests with access to a highly palatable food along with standard chow diet. Rats with DMS lesions showed an altered pattern of intake, with an initial reduction in high-fat diet followed by an increase in chow consumption. These results demonstrate that the DMS has a role in mediating cue-food learning and its subsequent reversal, as well as changes in food intake when a choice is provided. Together, these results demonstrate the DMS is involved in reward associative learning and reward consumption, when behavioral flexibility is needed to adjust responding or consumption to match the current value. (PsycINFO Database Record
Collapse
Affiliation(s)
- Sindy Cole
- Department of Psychology, Boston College
| | | | | |
Collapse
|
32
|
Ping J, Vishnubhotla R, Xi J, Ducos P, Saven JG, Liu R, Johnson ATC. All-Electronic Quantification of Neuropeptide-Receptor Interaction Using a Bias-Free Functionalized Graphene Microelectrode. ACS NANO 2018; 12:4218-4223. [PMID: 29634231 PMCID: PMC6068397 DOI: 10.1021/acsnano.7b07474] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Opioid neuropeptides play a significant role in pain perception, appetite regulation, sleep, memory, and learning. Advances in understanding of opioid peptide physiology are held back by the lack of methodologies for real-time quantification of affinities and kinetics of the opioid neuropeptide-receptor interaction at levels typical of endogenous secretion (<50 pM) in biosolutions with physiological ionic strength. To address this challenge, we developed all-electronic opioid-neuropeptide biosensors based on graphene microelectrodes functionalized with a computationally redesigned water-soluble μ-opioid receptor. We used the functionalized microelectrode in a bias-free charge measurement configuration to measure the binding kinetics and equilibrium binding properties of the engineered receptor with [d-Ala2, N-MePhe4, Gly-ol]-enkephalin and β-endorphin at picomolar levels in real time.
Collapse
Affiliation(s)
- Jinglei Ping
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Ramya Vishnubhotla
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jin Xi
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Pedro Ducos
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Jeffery G. Saven
- Department of Chemistry, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Renyu Liu
- Department of Anesthesiology and Critical Care, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Corresponding Authors ., .
| | - Alan T. Charlie Johnson
- Department of Physics and Astronomy, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Corresponding Authors ., .
| |
Collapse
|
33
|
Hankir MK, Seyfried F, Miras AD, Cowley MA. Brain Feeding Circuits after Roux-en-Y Gastric Bypass. Trends Endocrinol Metab 2018; 29:218-237. [PMID: 29475578 DOI: 10.1016/j.tem.2018.01.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/17/2018] [Accepted: 01/25/2018] [Indexed: 12/12/2022]
Abstract
Metabolic surgical procedures, such as Roux-en-Y gastric bypass (RYGB), uniquely reprogram feeding behavior and body weight in obese subjects. Clinical neuroimaging and animal studies are only now beginning to shed light on some of the underlying central mechanisms. We present here the roles of key brain neurotransmitter/neuromodulator systems in food choice, value, and intake at various stages after RYGB. In doing so, we elaborate on how known signals emanating from the reorganized gut, including peptide hormones and microbiota products, impinge on newly mapped homeostatic and hedonic brain feeding circuits. Continued progress in the rapidly evolving field of metabolic surgery will inform the design of more effective weight-loss compounds.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Department of Experimental Surgery, University Hospital Wuerzburg, Wuerzburg, Bavaria 97080, Germany; German Research Foundation Collaborative Research Center in Obesity Mechanisms, University of Leipzig, Leipzig, Saxony 04103, Germany.
| | - Florian Seyfried
- Department of Experimental Surgery, University Hospital Wuerzburg, Wuerzburg, Bavaria 97080, Germany
| | - Alexander D Miras
- Department of Investigative Science, Imperial College London Academic Healthcare Centre, London W12 0NN, UK
| | - Michael A Cowley
- Metabolic Disease and Obesity Program, Biomedicine Discovery Institute, Monash University, Victoria 3800, Australia; Department of Physiology, Monash University, Victoria 3800, Australia
| |
Collapse
|
34
|
Caref K, Nicola SM. Endogenous opioids in the nucleus accumbens promote approach to high-fat food in the absence of caloric need. eLife 2018; 7:34955. [PMID: 29582754 PMCID: PMC5903865 DOI: 10.7554/elife.34955] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Accepted: 03/20/2018] [Indexed: 12/14/2022] Open
Abstract
When relatively sated, people (and rodents) are still easily tempted to consume calorie-dense foods, particularly those containing fat and sugar. Consumption of such foods while calorically replete likely contributes to obesity. The nucleus accumbens (NAc) opioid system has long been viewed as a critical substrate for this behavior, mainly via contributions to the neural control of consumption and palatability. Here, we test the hypothesis that endogenous NAc opioids also promote appetitive approach to calorie-dense food in states of relatively high satiety. We simultaneously recorded NAc neuronal firing and infused a µ-opioid receptor antagonist into the NAc while rats performed a cued approach task in which appetitive and consummatory phases were well separated. The results reveal elements of a neural mechanism by which NAc opioids promote approach to high-fat food despite the lack of caloric need, demonstrating a potential means by which the brain is biased towards overconsumption of palatable food. Imagine that you have just finished Thanksgiving dinner. You are completely full, having eaten large portions of turkey, green beans and mashed potatoes. Yet, despite feeling full, you still find yourself tempted by a slice of pie for dessert, maybe even with ice cream on top. Why is it that in such a state of fullness, you desire a slice of pie but not, say, another helping of green beans? The answer may lie in the way the brain responds to food when we do not need any more calories. At such times, your brain drives you to continue eating only those foods that are tasty and calorie-dense. This preference for fatty and sweet foods may have been helpful in the past when we could not be certain where our next meal would come from. But in modern times, the widespread availability of food makes this preference potentially harmful. For example, the drive to consume fatty and sweet foods even when not hungry may now be contributing to soaring levels of obesity and type 2 diabetes. What exactly is happening inside the brain to produce this behavior? Previous work has implicated a structure called the nucleus accumbens. When scientists activated proteins called mu opioid receptors within the nucleus accumbens, animals ate more of the foods that they find tasty. However, they were not as interested in eating more of the foods that they are more ambivalent towards. Caref and Nicola now show that preventing opioid binding makes rats unwilling to respond to a cue to obtain cream, an appetizing, high-fat reward. It also abolishes the brain activity that drives the rats to respond the cue. Crucially, however, this effect only occurs in rats that are not hungry. It therefore appears that opioid binding in the nucleus accumbens drives animals to approach and eat high-fat foods, but only when they do not need the calories. That is, it increases fat consumption in animals that are not actually hungry. A drug that selectively blocks mu opioid receptors in the nucleus accumbens may reduce this behavior. Such a drug could potentially help to prevent obesity and the health problems associated with it.
Collapse
Affiliation(s)
- Kevin Caref
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States
| | - Saleem M Nicola
- Department of Neuroscience, Albert Einstein College of Medicine, Bronx, United States.,Department of Psychiatry, Albert Einstein College of Medicine, Bronx, United States
| |
Collapse
|
35
|
Abstract
The striatum controls food-related actions and consumption and is linked to feeding disorders, including obesity and anorexia nervosa. Two populations of neurons project from the striatum: direct pathway medium spiny neurons and indirect pathway medium spiny neurons. The selective contribution of direct pathway medium spiny neurons and indirect pathway medium spiny neurons to food-related actions and consumption remains unknown. Here, we used in vivo electrophysiology and fiber photometry in mice (of both sexes) to record both spiking activity and pathway-specific calcium activity of dorsal striatal neurons during approach to and consumption of food pellets. While electrophysiology revealed complex task-related dynamics across neurons, population calcium was enhanced during approach and inhibited during consumption in both pathways. We also observed ramping changes in activity that preceded both pellet-directed actions and spontaneous movements. These signals were heterogeneous in the spiking units, with neurons exhibiting either increasing or decreasing ramps. In contrast, the population calcium signals were homogeneous, with both pathways having increasing ramps of activity for several seconds before actions were initiated. An analysis comparing population firing rates to population calcium signals also revealed stronger ramping dynamics in the calcium signals than in the spiking data. In a second experiment, we trained the mice to perform an action sequence to evaluate when the ramping signals terminated. We found that the ramping signals terminated at the beginning of the action sequence, suggesting they may reflect upcoming actions and not preconsumption activity. Plasticity of such mechanisms may underlie disorders that alter action selection, such as drug addiction or obesity.SIGNIFICANCE STATEMENT Alterations in striatal function have been linked to pathological consumption in disorders, such as obesity and drug addiction. We recorded spiking and population calcium activity from the dorsal striatum during ad libitum feeding and an operant task that resulted in mice obtaining food pellets. Dorsal striatal neurons exhibited long ramps in activity that preceded actions by several seconds, and may reflect upcoming actions. Understanding how the striatum controls the preparation and generation of actions may lead to improved therapies for disorders, such as drug addiction or obesity.
Collapse
|
36
|
Choi JK, Lim G, Chen YCI, Jenkins BG. Abstinence to chronic methamphetamine switches connectivity between striatal, hippocampal and sensorimotor regions and increases cerebral blood volume response. Neuroimage 2018. [PMID: 29518566 DOI: 10.1016/j.neuroimage.2018.02.059] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2023] Open
Abstract
Methamphetamine (meth), and other psychostimulants such as cocaine, present a persistent problem for society with chronic users being highly prone to relapse. We show, in a chronic methamphetamine administration model, that discontinuation of drug for more than a week produces much larger changes in overall meth-induced brain connectivity and cerebral blood volume (CBV) response than changes that occur immediately following meth administration. Areas showing the largest changes were hippocampal, limbic striatum and sensorimotor cortical regions as well as brain stem areas including the pedunculopontine tegmentum (PPTg) and pontine nuclei - regions known to be important in mediating reinstatement of drug-taking after abstinence. These changes occur concomitantly with behavioral sensitization and appear to be mediated through increases in dopamine D1 and D3 and decreases in D2 receptor protein and mRNA expression. We further identify a novel region of dorsal caudate/putamen, with a low density of calbindin neurons, that has an opposite hemodynamic response to meth than the rest of the caudate/putamen and accumbens and shows very strong correlation with dorsal CA1 and CA3 hippocampus. This correlation switches following meth abstinence from CA1/CA3 to strong connections with ventral hippocampus (ventral subiculum) and nucleus accumbens. These data provide novel evidence for temporal alterations in brain connectivity where chronic meth can subvert hippocampal - striatal interactions from cognitive control regions to regions that mediate drug reinstatement. Our results also demonstrate that the signs and magnitudes of the induced CBV changes following challenge with meth or a D3-preferring agonist are a complementary read out of the relative changes that occur in D1, D2 and D3 receptors using protein or mRNA levels.
Collapse
Affiliation(s)
- Ji-Kyung Choi
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA.
| | - Grewo Lim
- Department of Anesthesiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Yin-Ching Iris Chen
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA
| | - Bruce G Jenkins
- A.A. Martinos Center for Biomedical Imaging, Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, 02129, USA.
| |
Collapse
|
37
|
A High-fat, High-sugar 'Western' Diet Alters Dorsal Striatal Glutamate, Opioid, and Dopamine Transmission in Mice. Neuroscience 2017; 372:1-15. [PMID: 29289718 DOI: 10.1016/j.neuroscience.2017.12.036] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 11/28/2017] [Accepted: 12/20/2017] [Indexed: 12/13/2022]
Abstract
Understanding neuroadaptations involved in obesity is critical for developing new approaches to treatment. Diet-induced neuroadaptations within the dorsal striatum have the capacity to drive excessive food seeking and consumption. Five-week-old C57BL/6J mice consumed a high-fat, high-sugar 'western diet' (WD) or a control 'standard diet' (SD) for 16 weeks. Weight gain, glucose tolerance, and insulin tolerance were measured to confirm an obese-like state. Following these 16 weeks, electrophysiological recordings were made from medium spiny neurons (MSNs) in the medial (DMS) and lateral (DLS) portions of dorsal striatum to evaluate diet effects on neuronal excitability and synaptic plasticity. In addition, fast-scan cyclic voltammetry evaluated dopamine transmission in these areas. WD mice gained significantly more weight and consumed more calories than SD mice and demonstrated impaired glucose tolerance. Electrophysiology data revealed that MSNs from WD mice demonstrated increased AMPA-to-NMDA receptor current ratio and prolonged spontaneous glutamate-mediated currents, specifically in the DLS. Evoked dopamine release was also significantly greater and reuptake slower in both subregions of WD striatum. Finally, dorsal striatal MSNs from WD mice were significantly less likely to demonstrate mu-opioid receptor-mediated synaptic plasticity. Neuronal excitability and GABAergic transmission were unaffected by diet in either striatal subregion. Our results demonstrate that a high-fat, high-sugar diet alters facets of glutamate, dopamine, and opioid signaling within the dorsal striatum, with some subregion specificity. These alterations within a brain area known to play a role in food motivation/consumption and habitual behavior are highly relevant for the clinical condition of obesity and its treatment.
Collapse
|
38
|
Riters LV, Spool JA, Merullo DP, Hahn AH. Song practice as a rewarding form of play in songbirds. Behav Processes 2017; 163:91-98. [PMID: 29031813 DOI: 10.1016/j.beproc.2017.10.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Revised: 09/15/2017] [Accepted: 10/05/2017] [Indexed: 12/14/2022]
Abstract
In adult songbirds, the primary functions of song are mate attraction and territory defense; yet, many songbirds sing at high rates as juveniles and outside these primary contexts as adults. Singing outside primary contexts is critical for song learning and maintenance, and ultimately necessary for breeding success. However, this type of singing (i.e., song "practice") occurs even in the absence of immediate or obvious extrinsic reinforcement; that is, it does not attract mates or repel competitors. Here we review studies that support the hypothesis that song practice is stimulated and maintained by intrinsic reward mechanisms (i.e., that it is associated with a positive affective state). Additionally, we propose that song practice can be considered a rewarding form of play behavior similar to forms of play observed in multiple young animals as they practice sequences of motor events that are used later in primary adult reproductive contexts. This review highlights research suggesting at least partially overlapping roles for neural reward systems in birdsong and mammalian play and evidence that steroid hormones modify these systems to shift animals from periods of intrinsically rewarded motor exploration (i.e., singing in birds and play in mammals) to the use of similar motor patterns in primary reproductive contexts.
Collapse
Affiliation(s)
- Lauren V Riters
- Department of Integrative Biology, University of Wisconsin-Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI 53706, United States.
| | - Jeremy A Spool
- Department of Integrative Biology, University of Wisconsin-Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI 53706, United States.
| | - Devin P Merullo
- Department of Integrative Biology, University of Wisconsin-Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI 53706, United States.
| | - Allison H Hahn
- Department of Integrative Biology, University of Wisconsin-Madison, 428 Birge Hall, 430 Lincoln Drive, Madison, WI 53706, United States.
| |
Collapse
|
39
|
Goldberg LR, Kirkpatrick SL, Yazdani N, Luttik KP, Lacki OA, Babbs RK, Jenkins DF, Johnson WE, Bryant CD. Casein kinase 1-epsilon deletion increases mu opioid receptor-dependent behaviors and binge eating1. GENES, BRAIN, AND BEHAVIOR 2017; 16:725-738. [PMID: 28594147 PMCID: PMC6180211 DOI: 10.1111/gbb.12397] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Revised: 06/01/2017] [Accepted: 06/05/2017] [Indexed: 12/20/2022]
Abstract
Genetic and pharmacological studies indicate that casein kinase 1 epsilon (Csnk1e) contributes to psychostimulant, opioid, and ethanol motivated behaviors. We previously used pharmacological inhibition to demonstrate that Csnk1e negatively regulates the locomotor stimulant properties of opioids and psychostimulants. Here, we tested the hypothesis that Csnk1e negatively regulates opioid and psychostimulant reward using genetic inhibition and the conditioned place preference assay in Csnk1e knockout mice. Similar to pharmacological inhibition, Csnk1e knockout mice showed enhanced opioid-induced locomotor activity with the mu opioid receptor agonist fentanyl (0.2 mg/kg i.p.) as well as enhanced sensitivity to low-dose fentanyl reward (0.05 mg/kg). Interestingly, female knockout mice also showed a markedly greater escalation in consumption of sweetened palatable food - a behavioral pattern consistent with binge eating that also depends on mu opioid receptor activation. No difference was observed in fentanyl analgesia in the 52.5°C hot plate assay (0-0.4 mg/kg), naloxone conditioned place aversion (4 mg/kg), or methamphetamine conditioned place preference (0-4 mg/kg). To identify molecular adaptations associated with increased drug and food behaviors in knockout mice, we completed transcriptome analysis via mRNA sequencing of the striatum. Enrichment analysis identified terms associated with myelination and axon guidance and pathway analysis identified a differentially expressed gene set predicted to be regulated by the Wnt signaling transcription factor, Tcf7l2. To summarize, Csnk1e deletion increased mu opioid receptor-dependent behaviors, supporting previous studies indicating an endogenous negative regulatory role of Csnk1e in opioid behavior.
Collapse
Affiliation(s)
- Lisa R. Goldberg
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
- Graduate Program in Biomolecular Pharmacology, Boston University, Boston, MA USA
| | - Stacey L. Kirkpatrick
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
| | - Neema Yazdani
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
- Graduate Program in Biomolecular Pharmacology, Boston University, Boston, MA USA
- Transformative Training Program in Addiction Science, Boston University, Boston, MA USA
| | - Kimberly P. Luttik
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
| | - Olga A. Lacki
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
| | - R. Keith Babbs
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
| | - David F. Jenkins
- Graduate Program in Bioinformatics, Boston University, Boston, MA USA
- Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - W. Evan Johnson
- Computational Biomedicine, Boston University School of Medicine, Boston, MA, USA
| | - Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University, Boston, MA USA
| |
Collapse
|
40
|
Eikemo M, Biele G, Willoch F, Thomsen L, Leknes S. Opioid Modulation of Value-Based Decision-Making in Healthy Humans. Neuropsychopharmacology 2017; 42:1833-1840. [PMID: 28294136 PMCID: PMC5520785 DOI: 10.1038/npp.2017.58] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 02/20/2017] [Accepted: 03/07/2017] [Indexed: 01/08/2023]
Abstract
Modifying behavior to maximize reward is integral to adaptive decision-making. In rodents, the μ-opioid receptor (MOR) system encodes motivation and preference for high-value rewards. Yet it remains unclear whether and how human MORs contribute to value-based decision-making. We reasoned that if the human MOR system modulates value-based choice, this would be reflected by opposite effects of agonist and antagonist drugs. In a double-blind pharmacological cross-over study, 30 healthy men received morphine (10 mg), placebo, and the opioid antagonist naltrexone (50 mg). They completed a two-alternative decision-making task known to induce a considerable bias towards the most frequently rewarded response option. To quantify MOR involvement in this bias, we fitted accuracy and reaction time data with the drift-diffusion model (DDM) of decision-making. The DDM analysis revealed the expected bidirectional drug effects for two decision subprocesses. MOR stimulation with morphine increased the preference for the stimulus with high-reward probability (shift in starting point). Compared to placebo, morphine also increased, and naltrexone reduced, the efficiency of evidence accumulation. Since neither drug affected motor-coordination, speed-accuracy trade-off, or subjective state (indeed participants were still blinded after the third session), we interpret the MOR effects on evidence accumulation efficiency as a consequence of changes in effort exerted in the task. Together, these findings support a role for the human MOR system in value-based choice by tuning decision-making towards high-value rewards across stimulus domains.
Collapse
Affiliation(s)
- Marie Eikemo
- The Department of Psychology, University of Oslo, Oslo, Norway,Norwegian Center for Addiction Research, Department of Clinical Medicine, University of Oslo, Oslo, Norway,Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway,Norwegian Centre for Addiction Research, University of Oslo, PO BOX 1039 Blindern, Oslo 0315, Norway, Tel: +47 23 36 89 76, Fax: +47 23 36 89 86, E-mail:
| | - Guido Biele
- The Department of Psychology, University of Oslo, Oslo, Norway,Department of Child Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Frode Willoch
- The Department of Basic Medical Sciences, University of Oslo, Oslo, Norway
| | - Lotte Thomsen
- The Department of Psychology, University of Oslo, Oslo, Norway
| | - Siri Leknes
- The Department of Psychology, University of Oslo, Oslo, Norway,The Intervention Centre, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
41
|
Heal DJ, Hallam M, Prow M, Gosden J, Cheetham S, Choi YK, Tarazi F, Hutson P. Dopamine and μ-opioid receptor dysregulation in the brains of binge-eating female rats - possible relevance in the psychopathology and treatment of binge-eating disorder. J Psychopharmacol 2017; 31:770-783. [PMID: 28376679 DOI: 10.1177/0269881117699607] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Adult, female rats given irregular, limited access to chocolate develop binge-eating behaviour with normal bodyweight and compulsive/perseverative and impulsive behaviours similar to those in binge-eating disorder. We investigated whether (a) dysregulated central nervous system dopaminergic and opioidergic systems are part of the psychopathology of binge-eating and (b) these neurotransmitter systems may mediate the actions of drugs ameliorating binge-eating disorder psychopathology. Binge-eating produced a 39% reduction of striatal D1 receptors with 22% and 23% reductions in medial and lateral caudate putamen and a 22% increase of striatal μ-opioid receptors. There was no change in D1 receptor density in nucleus accumbens, medial prefrontal cortex or dorsolateral frontal cortex, striatal D2 receptors and dopamine reuptake transporter sites, or μ-opioid receptors in frontal cortex. There were no changes in ligand affinities. The concentrations of monoamines, metabolites and estimates of dopamine (dopamine/dihydroxyphenylacetic acid ratio) and serotonin/5-hydroxyindolacetic acid ratio turnover rates were unchanged in striatum and frontal cortex. However, turnover of dopamine and serotonin in the hypothalamus was increased ~20% and ~15%, respectively. Striatal transmission via D1 receptors is decreased in binge-eating rats while μ-opioid receptor signalling may be increased. These changes are consistent with the attenuation of binge-eating by lisdexamfetamine, which increases catecholaminergic neurotransmission, and nalmefene, a μ-opioid antagonist.
Collapse
Affiliation(s)
| | | | | | | | | | - Yong K Choi
- 2 Department of Psychiatry and Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Frank Tarazi
- 2 Department of Psychiatry and Neuroscience, Harvard Medical School, Belmont, MA, USA
| | - Peter Hutson
- 3 Shire Development Inc., Lexington, MA, USA.,4 Neurobiology, Teva Pharmaceuticals, West Chester, PA, USA
| |
Collapse
|
42
|
Tandon S, Keefe KA, Taha SA. Mu opioid receptor signaling in the nucleus accumbens shell increases responsiveness of satiety-modulated lateral hypothalamus neurons. Eur J Neurosci 2017; 45:1418-1430. [DOI: 10.1111/ejn.13579] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 03/24/2017] [Accepted: 03/27/2017] [Indexed: 12/17/2022]
Affiliation(s)
- Shashank Tandon
- Department of Pharmacology and Toxicology; University of Utah; 30 South 2000 East Salt Lake City UT 84112-5820 USA
| | - Kristen A. Keefe
- Department of Pharmacology and Toxicology; University of Utah; 30 South 2000 East Salt Lake City UT 84112-5820 USA
| | - Sharif A. Taha
- Department of Pharmacology and Toxicology; University of Utah; 30 South 2000 East Salt Lake City UT 84112-5820 USA
| |
Collapse
|
43
|
Feeding-modulatory effects of mu-opioids in the medial prefrontal cortex: a review of recent findings and comparison to opioid actions in the nucleus accumbens. Psychopharmacology (Berl) 2017; 234:1439-1449. [PMID: 28054099 PMCID: PMC5420483 DOI: 10.1007/s00213-016-4522-4] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2016] [Accepted: 12/20/2016] [Indexed: 12/20/2022]
Abstract
RATIONALE Whereas reward-modulatory opioid actions have been intensively studied in subcortical sites such as the nucleus accumbens (Acb), the role of cortical opioid transmission has received comparatively little attention. OBJECTIVES The objective of this study is to describe recent findings on the motivational actions of opioids in the prefrontal cortex (PFC), emphasizing studies of food motivation and ingestion. PFC-based opioid effects will be compared/contrasted to those elicited from the Acb, to glean possible common functional principles. Finally, the motivational effects of opioids will be placed within a network context involving the PFC, Acb, and hypothalamus. RESULTS Mu-opioid receptor (μ-OR) stimulation in both the Acb and PFC induces eating and enhances food-seeking instrumental behaviors; μ-OR signaling also enhances taste reactivity within a highly circumscribed zone of medial Acb shell. In both the Acb and PFC, opioid-sensitive zones are aligned topographically with the sectors that project to feeding-modulatory zones of the hypothalamus and intact glutamate transmission in the lateral/perifornical (LH-PeF) hypothalamic areas is required for both Acb- and PFC-driven feeding. Conversely, opioid-mediated feeding responses elicited from the PFC are negatively modulated by AMPA signaling in the Acb shell. CONCLUSIONS Opioid signaling in the PFC engages functionally opposed PFC➔hypothalamus and PFC➔Acb circuits, which, respectively, drive and limit non-homeostatic feeding, producing a disorganized and "fragmented" pattern of impulsive food-seeking behaviors and hyperactivity. In addition, opioids act directly in the Acb to facilitate food motivation and taste hedonics. Further study of this cortico-striato-hypothalamic circuit, and incorporation of additional opioid-responsive telencephalic structures, could yield insights with translational relevance for eating disorders and obesity.
Collapse
|
44
|
Kirkpatrick SL, Goldberg LR, Yazdani N, Babbs RK, Wu J, Reed ER, Jenkins DF, Bolgioni A, Landaverde KI, Luttik KP, Mitchell KS, Kumar V, Johnson WE, Mulligan MK, Cottone P, Bryant CD. Cytoplasmic FMR1-Interacting Protein 2 Is a Major Genetic Factor Underlying Binge Eating. Biol Psychiatry 2017; 81:757-769. [PMID: 27914629 PMCID: PMC5386810 DOI: 10.1016/j.biopsych.2016.10.021] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Revised: 09/14/2016] [Accepted: 10/04/2016] [Indexed: 01/11/2023]
Abstract
BACKGROUND Eating disorders are lethal and heritable; however, the underlying genetic factors are unknown. Binge eating is a highly heritable trait associated with eating disorders that is comorbid with mood and substance use disorders. Therefore, understanding its genetic basis will inform therapeutic development that could improve several comorbid neuropsychiatric conditions. METHODS We assessed binge eating in closely related C57BL/6 mouse substrains and in an F2 cross to identify quantitative trait loci associated with binge eating. We used gene targeting to validate candidate genetic factors. Finally, we used transcriptome analysis of the striatum via messenger RNA sequencing to identify the premorbid transcriptome and the binge-induced transcriptome to inform molecular mechanisms mediating binge eating susceptibility and establishment. RESULTS C57BL/6NJ but not C57BL/6J mice showed rapid and robust escalation in palatable food consumption. We mapped a single genome-wide significant quantitative trait locus on chromosome 11 (logarithm of the odds = 7.4) to a missense mutation in cytoplasmic FMR1-interacting protein 2 (Cyfip2). We validated Cyfip2 as a major genetic factor underlying binge eating in heterozygous knockout mice on a C57BL/6N background that showed reduced binge eating toward a wild-type C57BL/6J-like level. Transcriptome analysis of premorbid genetic risk identified the enrichment terms morphine addiction and retrograde endocannabinoid signaling, whereas binge eating resulted in the downregulation of a gene set enriched for decreased myelination, oligodendrocyte differentiation, and expression. CONCLUSIONS We identified Cyfip2 as a major significant genetic factor underlying binge eating and provide a behavioral paradigm for future genome-wide association studies in populations with increased genetic complexity.
Collapse
Affiliation(s)
- Stacey L. Kirkpatrick
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | - Lisa R. Goldberg
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA,Graduate Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA USA
| | - Neema Yazdani
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA,Graduate Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA USA,Transformative Training Program in Addiction Science, Boston University
| | - R. Keith Babbs
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | - Jiayi Wu
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA,Transformative Training Program in Addiction Science, Boston University,Ph.D. Program in Biomedical Sciences, Graduate Program in Genetics and Genomics, Boston University School of Medicine
| | - Eric R. Reed
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA,Ph.D. Program in Bioinformatics, Boston University, Boston, MA USA
| | - David F. Jenkins
- Ph.D. Program in Bioinformatics, Boston University, Boston, MA USA,Computational Biomedicine, Boston University School of Medicine, Boston, MA USA
| | - Amanda Bolgioni
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA,Graduate Program in Biomolecular Pharmacology, Boston University School of Medicine, Boston, MA USA
| | - Kelsey I. Landaverde
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | - Kimberly P. Luttik
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | - Karen S. Mitchell
- Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | | | - W. Evan Johnson
- Computational Biomedicine, Boston University School of Medicine, Boston, MA USA
| | - Megan K. Mulligan
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN USA
| | - Pietro Cottone
- Laboratory of Addictive Disorders, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA
| | - Camron D. Bryant
- Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, Boston University School of Medicine, Boston, MA USA,*Corresponding Author Camron D. Bryant, Ph.D., Laboratory of Addiction Genetics, Department of Pharmacology and Experimental Therapeutics and Department of Psychiatry, 72 E. Concord St., L-606C, Boston, MA 02118 USA, P: (617) 638-4489 F: (617) 638-4329
| |
Collapse
|
45
|
Dunbar RIM. Breaking Bread: the Functions of Social Eating. ADAPTIVE HUMAN BEHAVIOR AND PHYSIOLOGY 2017; 3:198-211. [PMID: 32025474 PMCID: PMC6979515 DOI: 10.1007/s40750-017-0061-4] [Citation(s) in RCA: 91] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2017] [Revised: 02/19/2017] [Accepted: 02/21/2017] [Indexed: 11/30/2022]
Abstract
Communal eating, whether in feasts or everyday meals with family or friends, is a human universal, yet it has attracted surprisingly little evolutionary attention. I use data from a UK national stratified survey to test the hypothesis that eating with others provides both social and individual benefits. I show that those who eat socially more often feel happier and are more satisfied with life, are more trusting of others, are more engaged with their local communities, and have more friends they can depend on for support. Evening meals that result in respondents feeling closer to those with whom they eat involve more people, more laughter and reminiscing, as well as alcohol. A path analysis suggests that the causal direction runs from eating together to bondedness rather than the other way around. I suggest that social eating may have evolved as a mechanism for facilitating social bonding.
Collapse
Affiliation(s)
- R. I. M. Dunbar
- Department of Experimental Psychology, University of Oxford, South Parks Road, Oxford, OX1 3UD UK
| |
Collapse
|
46
|
Hankir MK, Patt M, Patt JTW, Becker GA, Rullmann M, Kranz M, Deuther-Conrad W, Schischke K, Seyfried F, Brust P, Hesse S, Sabri O, Krügel U, Fenske WK. Suppressed Fat Appetite after Roux-en-Y Gastric Bypass Surgery Associates with Reduced Brain μ-opioid Receptor Availability in Diet-Induced Obese Male Rats. Front Neurosci 2017; 10:620. [PMID: 28133443 PMCID: PMC5233681 DOI: 10.3389/fnins.2016.00620] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 12/30/2016] [Indexed: 01/02/2023] Open
Abstract
Brain μ-opioid receptors (MORs) stimulate high-fat (HF) feeding and have been implicated in the distinct long term outcomes on body weight of bariatric surgery and dieting. Whether alterations in fat appetite specifically following these disparate weight loss interventions relate to changes in brain MOR signaling is unknown. To address this issue, diet-induced obese male rats underwent either Roux-en-Y gastric bypass (RYGB) or sham surgeries. Postoperatively, animals were placed on a two-choice diet consisting of low-fat (LF) and HF food and sham-operated rats were further split into ad libitum fed (Sham-LF/HF) and body weight-matched (Sham-BWM) to RYGB groups. An additional set of sham-operated rats always only on a LF diet (Sham-LF) served as lean controls, making four experimental groups in total. Corresponding to a stage of weight loss maintenance for RYGB rats, two-bottle fat preference tests in conjunction with small-animal positron emission tomography (PET) imaging studies with the selective MOR radioligand [11C]carfentanil were performed. Brains were subsequently collected and MOR protein levels in the hypothalamus, striatum, prefrontal cortex and orbitofrontal cortex were analyzed by Western Blot. We found that only the RYGB group presented with intervention-specific changes: having markedly suppressed intake and preference for high concentration fat emulsions, a widespread reduction in [11C]carfentanil binding potential (reflecting MOR availability) in various brain regions, and a downregulation of striatal and prefrontal MOR protein levels compared to the remaining groups. These findings suggest that the suppressed fat appetite caused by RYGB surgery is due to reduced brain MOR signaling, which may contribute to sustained weight loss unlike the case for dieting.
Collapse
Affiliation(s)
- Mohammed K Hankir
- Department of Medicine, Integrated Research and Treatment Centre for Adiposity Diseases, University of Leipzig Leipzig, Germany
| | - Marianne Patt
- Department of Nuclear Medicine, University of Leipzig Leipzig, Germany
| | - Jörg T W Patt
- Department of Nuclear Medicine, University of Leipzig Leipzig, Germany
| | - Georg A Becker
- Department of Nuclear Medicine, University of Leipzig Leipzig, Germany
| | - Michael Rullmann
- Department of Medicine, Integrated Research and Treatment Centre for Adiposity Diseases, University of LeipzigLeipzig, Germany; Department of Nuclear Medicine, University of LeipzigLeipzig, Germany
| | - Mathias Kranz
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig Leipzig, Germany
| | | | - Kristin Schischke
- Department of Medicine, Integrated Research and Treatment Centre for Adiposity Diseases, University of Leipzig Leipzig, Germany
| | - Florian Seyfried
- Department of General and Visceral, Vascular and Paediatric Surgery, University of Würzburg Würzburg, Germany
| | - Peter Brust
- Helmholtz-Zentrum Dresden-Rossendorf, Research Site Leipzig Leipzig, Germany
| | - Swen Hesse
- Department of Medicine, Integrated Research and Treatment Centre for Adiposity Diseases, University of LeipzigLeipzig, Germany; Department of Nuclear Medicine, University of LeipzigLeipzig, Germany
| | - Osama Sabri
- Department of Medicine, Integrated Research and Treatment Centre for Adiposity Diseases, University of LeipzigLeipzig, Germany; Department of Nuclear Medicine, University of LeipzigLeipzig, Germany
| | - Ute Krügel
- Rudolf-Boehm Institute of Pharmacology and Toxicology, University of Leipzig Leipzig, Germany
| | - Wiebke K Fenske
- Department of Medicine, Integrated Research and Treatment Centre for Adiposity Diseases, University of Leipzig Leipzig, Germany
| |
Collapse
|
47
|
Opioid-receptor antagonism increases pain and decreases pleasure in obese and non-obese individuals. Psychopharmacology (Berl) 2016; 233:3869-3879. [PMID: 27659699 DOI: 10.1007/s00213-016-4417-4] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 08/22/2016] [Indexed: 10/21/2022]
Abstract
RATIONALE Endogenous opioids inhibit nociceptive processing and promote the experience of pleasure. It has been proposed that pain and pleasure lie at opposite ends of an affective spectrum, but the relationship between pain and pleasure and the role of opioids in mediating this relationship has not been tested. OBJECTIVES Here, we used obese individuals as a model of a dysfunctional opioid system to assess the role of the endogenous opioid peptide, beta-endorphin, on pain and pleasure sensitivity. METHODS Obese (10M/10F) and age- and gender-matched non-obese (10M/10F) controls were included in the study. Pain sensitivity using threshold, tolerance, and subjective rating assessments and perceived sweet pleasantness using sucrose solutions were assessed in two testing sessions with placebo or the opioid antagonist, naltrexone (0.7 mg/kg body weight). Beta-endorphin levels were assessed in both sessions. RESULTS AND CONCLUSIONS Despite having higher levels of baseline beta-endorphin and altered beta-endorphin-reactivity to naltrexone, obese individuals reported a similar increase in pain and decrease in pleasantness following naltrexone compared to non-obese individuals. Beta-endorphin levels did not correlate with pain or pleasantness in either group, but naltrexone-induced changes in pain and pleasantness were mildly correlated. Moreover, naltrexone-induced changes in pain were related to depression scores, while naltrexone-induced changes in sweet pleasantness were related to anxiety scores, indicating that pain and pleasantness are related, but influenced by different processes.
Collapse
|
48
|
Nicotinic receptor subtypes differentially modulate glutamate release in the dorsal medial striatum. Neurochem Int 2016; 100:30-34. [DOI: 10.1016/j.neuint.2016.08.009] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2016] [Revised: 08/08/2016] [Accepted: 08/23/2016] [Indexed: 11/20/2022]
|
49
|
Sweet taste pleasantness is modulated by morphine and naltrexone. Psychopharmacology (Berl) 2016; 233:3711-3723. [PMID: 27538675 DOI: 10.1007/s00213-016-4403-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Accepted: 08/01/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND Rodent models highlight the key role of μ-opioid receptor (MOR) signaling in palatable food consumption. In humans, however, the effects of MOR stimulation on eating and food liking remain unclear. OBJECTIVES Here, we tested sweet pleasantness experience in humans following MOR drug manipulations. We hypothesized that behaviors regulated by the endogenous MOR system would be enhanced by MOR agonism and decreased by antagonism. In line with rodent findings, we expected the strongest drug effects for the sweetest (high-calorie) sucrose stimuli. As very sweet stimuli are considered aversive by many people (called sweet dislikers), we also assessed whether MOR manipulations affect pleasantness ratings of sucrose-water stimuli differently depending on subjective and objective value. METHODS In a bidirectional psychopharmacological cross-over study, 49 healthy men underwent a sweet taste paradigm following double-blind administration of the MOR agonist morphine, placebo, and the opioid antagonist naltrexone. RESULTS As hypothesized, MOR stimulation with morphine increased pleasantness of the sweetest of five sucrose solutions, without enhancing pleasantness of the lower-sucrose solutions. For opioid antagonism, an opposite pattern was observed for the sweetest drink only. The observed drug effects on pleasantness of the sweetest drink did not differ between sweet likers and dislikers. CONCLUSIONS The bidirectional effect of agonist and antagonist treatment aligns with rodent findings showing that MOR manipulations most strongly affect the highest-calorie foods. We speculate that the MOR system promotes survival in part by increasing concordance between the objective (caloric) and subjective (hedonic) value of food stimuli, so that feeding behavior becomes more focused on the richest food available.
Collapse
|
50
|
Mendez IA, Maidment NT, Murphy NP. Parsing the hedonic and motivational influences of nociceptin on feeding using licking microstructure analysis in mice. Behav Pharmacol 2016; 27:516-27. [PMID: 27100061 PMCID: PMC4965319 DOI: 10.1097/fbp.0000000000000240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Opioid peptides are implicated in processes related to reward and aversion; however, how specific opioid peptides are involved remains unclear. We investigated the role of nociceptin (NOC) in voluntary licking for palatable and aversive tastants by studying the effect of intracerebroventricularly administered NOC on licking microstructure in wild-type and NOC receptor knockout (NOP KO) mice. Compared with the wild-type mice, NOP KO mice emitted fewer bouts of licking when training to lick for a 20% sucrose solution. Correspondingly, intracerebroventricular administration of NOC increased the number of licking bouts for sucrose and sucralose in wild-type, but not in NOP KO mice. The ability of NOC to initiate new bouts of licking for sweet solutions suggests that NOC may drive motivational aspects of feeding behavior. Conversely, adulterating a sucrose solution with the aversive tastant quinine reduced licking bout lengths in wild-type and NOP KOs, suggesting that NOC signaling is not involved in driving voluntary consumption of semiaversive tastants. Interestingly, when consuming sucrose following 20 h of food deprivation, NOP KO mice emitted longer bouts of licking than wild types, suggesting that under hungry conditions, NOC may also contribute toward hedonic aspects of feeding. Together, these results suggest differential roles for NOC in the motivational and hedonic aspects of feeding.
Collapse
Affiliation(s)
- Ian A Mendez
- Department of Psychiatry and Biobehavioral Sciences, Hatos Center, Semel Institute for Neuroscience and Human Behavior, University of California at Los Angeles, Los Angeles, California, USA
| | | | | |
Collapse
|