1
|
Girotti M, Bulin SE, Carreno FR. Effects of chronic stress on cognitive function - From neurobiology to intervention. Neurobiol Stress 2024; 33:100670. [PMID: 39295772 PMCID: PMC11407068 DOI: 10.1016/j.ynstr.2024.100670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 08/30/2024] [Accepted: 09/01/2024] [Indexed: 09/21/2024] Open
Abstract
Exposure to chronic stress contributes considerably to the development of cognitive impairments in psychiatric disorders such as depression, generalized anxiety disorder (GAD), obsessive-compulsive disorder (OCD), post-traumatic stress disorder (PTSD), and addictive behavior. Unfortunately, unlike mood-related symptoms, cognitive impairments are not effectively treated by available therapies, a situation in part resulting from a still incomplete knowledge of the neurobiological substrates that underly cognitive domains and the difficulty in generating interventions that are both efficacious and safe. In this review, we will present an overview of the cognitive domains affected by stress with a specific focus on cognitive flexibility, behavioral inhibition, and working memory. We will then consider the effects of stress on neuronal correlates of cognitive function and the factors which may modulate the interaction of stress and cognition. Finally, we will discuss intervention strategies for treatment of stress-related disorders and gaps in knowledge with emerging new treatments under development. Understanding how cognitive impairment occurs during exposure to chronic stress is crucial to make progress towards the development of new and effective therapeutic approaches.
Collapse
Affiliation(s)
| | - Sarah E. Bulin
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| | - Flavia R. Carreno
- Department of Pharmacology and Center for Biomedical Neuroscience, UT Health San Antonio, 7703 Floyd Curl Dr., San Antonio, TX, 78229, USA
| |
Collapse
|
2
|
Spring MG, Nautiyal KM. Striatal Serotonin Release Signals Reward Value. J Neurosci 2024; 44:e0602242024. [PMID: 39117457 PMCID: PMC11466065 DOI: 10.1523/jneurosci.0602-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 07/02/2024] [Accepted: 07/30/2024] [Indexed: 08/10/2024] Open
Abstract
Serotonin modulates diverse phenotypes and functions including depressive, aggressive, impulsive, and feeding behaviors, all of which have reward-related components. To date, research has focused on understanding these effects by measuring and manipulating dorsal raphe serotonin neurons and using single-receptor approaches. These studies have led to a better understanding of the heterogeneity of serotonin actions on behavior; however, they leave open many questions about the timing and location of serotonin's actions modulating the neural circuits that drive these behaviors. Recent advances in genetically encoded fluorescent biosensors, including the GPCR activation-based sensor for serotonin (GRAB-5-HT), enable the measurement of serotonin release in mice on a timescale compatible with a single rewarding event without corelease confounds. Given substantial evidence from slice electrophysiology experiments showing that serotonin influences neural activity of the striatal circuitry, and the known role of the dorsal medial striatal (DMS) in reward-directed behavior, we focused on understanding the parameters and timing that govern serotonin release in the DMS in the context of reward consumption, external reward value, internal state, and cued reward. Overall, we found that serotonin release is associated with each of these and encodes reward anticipation, value, approach, and consumption in the DMS.
Collapse
Affiliation(s)
- Mitchell G Spring
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| | - Katherine M Nautiyal
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, New Hampshire 03755
| |
Collapse
|
3
|
Taira M, Miyazaki KW, Miyazaki K, Chen J, Okitsu-Sakurayama S, Chaudhary A, Nishio M, Miyake T, Yamanaka A, Tanaka KF, Doya K. The differential effect of optogenetic serotonergic manipulation on sustained motor actions and waiting for future rewards in mice. Front Neurosci 2024; 18:1433061. [PMID: 39385850 PMCID: PMC11461476 DOI: 10.3389/fnins.2024.1433061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 08/30/2024] [Indexed: 10/12/2024] Open
Abstract
Serotonin is an essential neuromodulator that affects behavioral and cognitive functions. Previous studies have shown that activation of serotonergic neurons in the dorsal raphe nucleus (DRN) promotes patience to wait for future rewards. However, it is still unclear whether serotonergic neurons also regulate persistence to act for future rewards. Here we used optogenetic activation and inhibition of DRN serotonergic neurons to examine their effects on sustained motor actions for future rewards. We trained mice to perform waiting and repeated lever-pressing tasks with variable reward delays and tested effects of optogenetic activation and inhibition of DRN serotonergic neurons on task performance. Interestingly, in the lever-pressing task, mice tolerated longer delays as they repeatedly pressed a lever than in the waiting task, suggesting that lever-pressing actions may not simply be costly, but may also be subjectively rewarding. Optogenetic activation of DRN serotonergic neurons prolonged waiting duration in the waiting task, consistent with previous studies. However, its effect on lever presses was nuanced, and was detected only by focusing on the period before premature reward check and by subtracting the trends within and across sessions using generalized linear model. While optogenetic inhibition decreased waiting, it did not affect lever pressing time or numbers. These results revealed that the necessity of motor actions may increase motivation for delayed rewards and that DRN serotonergic neurons more significantly promote waiting rather than persistent motor actions for future rewards.
Collapse
Affiliation(s)
- Masakazu Taira
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Department of Psychology, University of Sydney, Camperdown, NSW, Australia
| | - Kayoko W. Miyazaki
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Katsuhiko Miyazaki
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Jianning Chen
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Shiho Okitsu-Sakurayama
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Anupama Chaudhary
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Mika Nishio
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- School of Medicine, Tohoku University, Sendai, Japan
| | - Tsukasa Miyake
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- School of Medicine, University of the Ryukyus, Okinawa, Japan
| | | | - Kenji F. Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Doya
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
4
|
Kazmierska-Grebowska P, Żakowski W, Myślińska D, Sahu R, Jankowski MM. Revisiting serotonin's role in spatial memory: A call for sensitive analytical approaches. Int J Biochem Cell Biol 2024; 176:106663. [PMID: 39321568 DOI: 10.1016/j.biocel.2024.106663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 09/17/2024] [Accepted: 09/17/2024] [Indexed: 09/27/2024]
Abstract
The serotonergic system is involved in various psychiatric and neurological conditions, with serotonergic drugs often used in treatment. These conditions frequently affect spatial memory, which can serve as a model of declarative memory due to well-known cellular components and advanced methods that track neural activity and behavior with high temporal resolution. However, most findings on serotonin's effects on spatial learning and memory come from studies lacking refined analytical techniques and modern approaches needed to uncover the underlying neuronal mechanisms. This In Focus review critically investigates available studies to identify areas for further exploration. It finds that well-established behavioral models could yield more insights with modern tracking and data analysis approaches, while the cellular aspects of spatial memory remain underexplored. The review highlights the complex role of serotonin in spatial memory, which holds the potential for better understanding and treating memory-related disorders.
Collapse
Affiliation(s)
| | - Witold Żakowski
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Dorota Myślińska
- Department of Animal and Human Physiology, Faculty of Biology, University of Gdansk, Gdansk, Poland
| | - Ravindra Sahu
- BioTechMed Center, Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland
| | - Maciej M Jankowski
- BioTechMed Center, Multimedia Systems Department, Faculty of Electronics, Telecommunications and Informatics, Gdansk University of Technology, Gdansk, Poland.
| |
Collapse
|
5
|
Li C, McCloskey NS, Inan S, Kirby LG. Role of serotonin neurons in the dorsal raphe nucleus in heroin self-administration and punishment. Neuropsychopharmacology 2024:10.1038/s41386-024-01993-1. [PMID: 39300273 DOI: 10.1038/s41386-024-01993-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/05/2024] [Accepted: 09/09/2024] [Indexed: 09/22/2024]
Abstract
One hallmark of substance use disorder is continued drug use despite negative consequences. When drug-taking behavior is punished with aversive stimuli, i.e. footshock, rats can also be categorized into punishment-resistant or compulsive vs. punishment-sensitive or non-compulsive phenotypes. The serotonin (5-hydroxytryptamine, 5-HT) system modulates responses to both reward and punishment. The goal of the current study was to examine punishment phenotypes in heroin self-administration and to determine the role of dorsal raphe nucleus (DRN) 5-HT neurons in both basal and punished heroin self-administration. First, rats were exposed to punished heroin self-administration and neuronal excitability of DRN 5-HT neurons was compared between punishment-resistant and punishment-sensitive phenotypes using ex vivo electrophysiology. Second, DRN 5-HT neuronal activity was manipulated in vivo during basal and punished heroin self-administration using chemogenetic tools in a Tph2-iCre rat line. While rats separated into punishment-resistant and punishment-sensitive phenotypes for punished heroin self-administration, DRN 5-HT neuronal excitability did not differ between the phenotypes. While chemogenetic inhibition of DRN 5-HT neurons was without effect, chemogenetic activation of DRN 5-HT neurons increased both basal and punished heroin self-administration selectively in punishment-resistant animals. Additionally, the responsiveness to chemogenetic activation of DRN 5-HT neurons in basal self-administration and motivation for heroin in progressive ratio each predicted resistance to punishment. Therefore, our data support the role for the DRN 5-HT system in compulsive heroin self-administration.
Collapse
Affiliation(s)
- Chen Li
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Nicholas S McCloskey
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Saadet Inan
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA
| | - Lynn G Kirby
- Center for Substance Abuse Research, Lewis Katz School of Medicine at Temple University, Philadelphia, USA.
| |
Collapse
|
6
|
Park I, Choi M, Kim J, Jang S, Kim D, Kim J, Choe Y, Geum D, Yu SW, Choi JW, Moon C, Choe HK, Son GH, Kim K. Role of the circadian nuclear receptor REV-ERBα in dorsal raphe serotonin synthesis in mood regulation. Commun Biol 2024; 7:998. [PMID: 39147805 PMCID: PMC11327353 DOI: 10.1038/s42003-024-06647-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Accepted: 07/29/2024] [Indexed: 08/17/2024] Open
Abstract
Affective disorders are frequently associated with disrupted circadian rhythms. The existence of rhythmic secretion of central serotonin (5-hydroxytryptamine, 5-HT) pattern has been reported; however, the functional mechanism underlying the circadian control of 5-HTergic mood regulation remains largely unknown. Here, we investigate the role of the circadian nuclear receptor REV-ERBα in regulating tryptophan hydroxylase 2 (Tph2), the rate-limiting enzyme of 5-HT synthesis. We demonstrate that the REV-ERBα expressed in dorsal raphe (DR) 5-HTergic neurons functionally competes with PET-1-a nuclear activator crucial for 5-HTergic neuron development. In mice, genetic ablation of DR 5-HTergic REV-ERBα increases Tph2 expression, leading to elevated DR 5-HT levels and reduced depression-like behaviors at dusk. Further, pharmacological manipulation of the mice DR REV-ERBα activity increases DR 5-HT levels and affects despair-related behaviors. Our findings provide valuable insights into the molecular and cellular link between the circadian rhythm and the mood-controlling DR 5-HTergic systems.
Collapse
Affiliation(s)
- Inah Park
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Mijung Choi
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Jeongah Kim
- Department of Anatomy, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Sangwon Jang
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Doyeon Kim
- Program in Neurosciences & Mental Health, The Hospital for Sick Children, Toronto, ON, M5G 1X8, Canada
| | - Jihoon Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Youngshik Choe
- Korea Brain Research Institute (KBRI), Daegu, 41062, Republic of Korea
| | - Dongho Geum
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Seong-Woon Yu
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Ji-Woong Choi
- Department of Electrical Engineering and Computer Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Cheil Moon
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Han Kyoung Choe
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea
| | - Gi Hoon Son
- Department of Biomedical Sciences, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
- Department of Legal Medicine, College of Medicine, Korea University, Seoul, 02841, Republic of Korea
| | - Kyungjin Kim
- Department of Brain Sciences, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
- Convergence Research Advanced Centre for Olfaction, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, 42988, Republic of Korea.
| |
Collapse
|
7
|
Xu Y, Lin Y, Yu M, Zhou K. The nucleus accumbens in reward and aversion processing: insights and implications. Front Behav Neurosci 2024; 18:1420028. [PMID: 39184934 PMCID: PMC11341389 DOI: 10.3389/fnbeh.2024.1420028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 07/26/2024] [Indexed: 08/27/2024] Open
Abstract
The nucleus accumbens (NAc), a central component of the brain's reward circuitry, has been implicated in a wide range of behaviors and emotional states. Emerging evidence, primarily drawing from recent rodent studies, suggests that the function of the NAc in reward and aversion processing is multifaceted. Prolonged stress or drug use induces maladaptive neuronal function in the NAc circuitry, which results in pathological conditions. This review aims to provide comprehensive and up-to-date insights on the role of the NAc in motivated behavior regulation and highlights areas that demand further in-depth analysis. It synthesizes the latest findings on how distinct NAc neuronal populations and pathways contribute to the processing of opposite valences. The review examines how a range of neuromodulators, especially monoamines, influence the NAc's control over various motivational states. Furthermore, it delves into the complex underlying mechanisms of psychiatric disorders such as addiction and depression and evaluates prospective interventions to restore NAc functionality.
Collapse
Affiliation(s)
| | | | | | - Kuikui Zhou
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China
| |
Collapse
|
8
|
Feng YY, Bromberg-Martin ES, Monosov IE. Dorsal raphe neurons integrate the values of reward amount, delay, and uncertainty in multi-attribute decision-making. Cell Rep 2024; 43:114341. [PMID: 38878290 DOI: 10.1016/j.celrep.2024.114341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 03/27/2024] [Accepted: 05/23/2024] [Indexed: 06/25/2024] Open
Abstract
The dorsal raphe nucleus (DRN) is implicated in psychiatric disorders that feature impaired sensitivity to reward amount, impulsivity when facing reward delays, and risk-seeking when confronting reward uncertainty. However, it has been unclear whether and how DRN neurons signal reward amount, reward delay, and reward uncertainty during multi-attribute value-based decision-making, where subjects consider these attributes to make a choice. We recorded DRN neurons as monkeys chose between offers whose attributes, namely expected reward amount, reward delay, and reward uncertainty, varied independently. Many DRN neurons signaled offer attributes, and this population tended to integrate the attributes in a manner that reflected monkeys' preferences for amount, delay, and uncertainty. After decision-making, in response to post-decision feedback, these same neurons signaled signed reward prediction errors, suggesting a broader role in tracking value across task epochs and behavioral contexts. Our data illustrate how the DRN participates in value computations, guiding theories about the role of the DRN in decision-making and psychiatric disease.
Collapse
Affiliation(s)
- Yang-Yang Feng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA
| | | | - Ilya E Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, MO, USA; Department of Biomedical Engineering, Washington University, St. Louis, MO, USA; Washington University Pain Center, Washington University, St. Louis, MO, USA; Department of Neurosurgery, Washington University, St. Louis, MO, USA; Department of Electrical Engineering, Washington University, St. Louis, MO, USA.
| |
Collapse
|
9
|
Hamada HT, Abe Y, Takata N, Taira M, Tanaka KF, Doya K. Optogenetic activation of dorsal raphe serotonin neurons induces brain-wide activation. Nat Commun 2024; 15:4152. [PMID: 38755120 PMCID: PMC11099070 DOI: 10.1038/s41467-024-48489-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
Serotonin is a neuromodulator that affects multiple behavioral and cognitive functions. Nonetheless, how serotonin causes such a variety of effects via brain-wide projections and various receptors remains unclear. Here we measured brain-wide responses to optogenetic stimulation of serotonin neurons in the dorsal raphe nucleus (DRN) of the male mouse brain using functional MRI with an 11.7 T scanner and a cryoprobe. Transient activation of DRN serotonin neurons caused brain-wide activation, including the medial prefrontal cortex, the striatum, and the ventral tegmental area. The same stimulation under anesthesia with isoflurane decreased brain-wide activation, including the hippocampal complex. These brain-wide response patterns can be explained by DRN serotonergic projection topography and serotonin receptor expression profiles, with enhanced weights on 5-HT1 receptors. Together, these results provide insight into the DR serotonergic system, which is consistent with recent discoveries of its functions in adaptive behaviors.
Collapse
Affiliation(s)
- Hiro Taiyo Hamada
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
- Research & Development Department, Araya Inc, Tokyo, Japan.
| | - Yoshifumi Abe
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Norio Takata
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Masakazu Taira
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Kenji F Tanaka
- Division of Brain Sciences, Institute for Advanced Medical Research, Keio University School of Medicine, Tokyo, Japan
| | - Kenji Doya
- Neural Computation Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan.
| |
Collapse
|
10
|
Mitsui K, Takahashi A. Aggression modulator: Understanding the multifaceted role of the dorsal raphe nucleus. Bioessays 2024; 46:e2300213. [PMID: 38314963 DOI: 10.1002/bies.202300213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/07/2024]
Abstract
Aggressive behavior is instinctively driven behavior that helps animals to survive and reproduce and is closely related to multiple behavioral and physiological processes. The dorsal raphe nucleus (DRN) is an evolutionarily conserved midbrain structure that regulates aggressive behavior by integrating diverse brain inputs. The DRN consists predominantly of serotonergic (5-HT:5-hydroxytryptamine) neurons and decreased 5-HT activity was classically thought to increase aggression. However, recent studies challenge this 5-HT deficiency model, revealing a more complex role for the DRN 5-HT system in aggression. Furthermore, emerging evidence has shown that non-5-HT populations in the DRN and specific neural circuits contribute to the escalation of aggressive behavior. This review argues that the DRN serves as a multifaceted modulator of aggression, acting not only via 5-HT but also via other neurotransmitters and neural pathways, as well as different subsets of 5-HT neurons. In addition, we discuss the contribution of DRN neurons in the behavioral and physiological aspects implicated in aggressive behavior, such as arousal, reward, and impulsivity, to further our understanding of DRN-mediated aggression modulation.
Collapse
Affiliation(s)
- Koshiro Mitsui
- Laboratory of Behavioral Neurobiology, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Graduate School of Comprehensive Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| | - Aki Takahashi
- Laboratory of Behavioral Neurobiology, University of Tsukuba, Tsukuba, Ibaraki, Japan
- Institute of Human Sciences, University of Tsukuba, Tsukuba, Ibaraki, Japan
| |
Collapse
|
11
|
Gutierrez-Castellanos N, Sarra D, Godinho BS, Mainen ZF. Maturation of cortical input to dorsal raphe nucleus increases behavioral persistence in mice. eLife 2024; 13:e93485. [PMID: 38477558 PMCID: PMC10994666 DOI: 10.7554/elife.93485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Accepted: 02/28/2024] [Indexed: 03/14/2024] Open
Abstract
The ability to persist toward a desired objective is a fundamental aspect of behavioral control whose impairment is implicated in several behavioral disorders. One of the prominent features of behavioral persistence is that its maturation occurs relatively late in development. This is presumed to echo the developmental time course of a corresponding circuit within late-maturing parts of the brain, such as the prefrontal cortex, but the specific identity of the responsible circuits is unknown. Here, we used a genetic approach to describe the maturation of the projection from layer 5 neurons of the neocortex to the dorsal raphe nucleus in mice. Using optogenetic-assisted circuit mapping, we show that this projection undergoes a dramatic increase in synaptic potency between postnatal weeks 3 and 8, corresponding to the transition from juvenile to adult. We then show that this period corresponds to an increase in the behavioral persistence that mice exhibit in a foraging task. Finally, we used a genetic targeting strategy that primarily affected neurons in the medial prefrontal cortex, to selectively ablate this pathway in adulthood and show that mice revert to a behavioral phenotype similar to juveniles. These results suggest that frontal cortical to dorsal raphe input is a critical anatomical and functional substrate of the development and manifestation of behavioral persistence.
Collapse
Affiliation(s)
| | - Dario Sarra
- Champalimaud Research, Champalimaud FoundationLisbonPortugal
- Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | - Beatriz S Godinho
- Champalimaud Research, Champalimaud FoundationLisbonPortugal
- Nuffield Department of Clinical Neurosciences, University of OxfordOxfordUnited Kingdom
| | | |
Collapse
|
12
|
De Filippo R, Schmitz D. Synthetic surprise as the foundation of the psychedelic experience. Neurosci Biobehav Rev 2024; 157:105538. [PMID: 38220035 PMCID: PMC10839673 DOI: 10.1016/j.neubiorev.2024.105538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/03/2024] [Accepted: 01/05/2024] [Indexed: 01/16/2024]
Abstract
Psychedelic agents, such as LSD and psilocybin, induce marked alterations in consciousness via activation of the 5-HT2A receptor (5-HT2ARs). We hypothesize that psychedelics enforce a state of synthetic surprise through the biased activation of the 5-HTRs system. This idea is informed by recent insights into the role of 5-HT in signaling surprise. The effects on consciousness, explained by the cognitive penetrability of perception, can be described within the predictive coding framework where surprise corresponds to prediction error, the mismatch between predictions and actual sensory input. Crucially, the precision afforded to the prediction error determines its effect on priors, enabling a dynamic interaction between top-down expectations and incoming sensory data. By integrating recent findings on predictive coding circuitry and 5-HT2ARs transcriptomic data, we propose a biological implementation with emphasis on the role of inhibitory interneurons. Implications arise for the clinical use of psychedelics, which may rely primarily on their inherent capacity to induce surprise in order to disrupt maladaptive patterns.
Collapse
Affiliation(s)
- Roberto De Filippo
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany.
| | - Dietmar Schmitz
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany; German Center for Neurodegenerative Diseases (DZNE) Berlin, 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, Einstein Center for Neuroscience, 10117 Berlin, Germany; Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität Berlin, and Berlin Institute of Health, NeuroCure Cluster of Excellence, 10117 Berlin, Germany; Humboldt-Universität zu Berlin, Bernstein Center for Computational Neuroscience, Philippstr. 13, 10115 Berlin, Germany
| |
Collapse
|
13
|
White E, Dalley JW. Brain mechanisms of temporal processing in impulsivity: Relevance to attention-deficit hyperactivity disorder. Brain Neurosci Adv 2024; 8:23982128241272234. [PMID: 39148691 PMCID: PMC11325328 DOI: 10.1177/23982128241272234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 06/25/2024] [Indexed: 08/17/2024] Open
Abstract
In this article, we critique the hypothesis that different varieties of impulsivity, including impulsiveness present in attention-deficit hyperactivity disorder, encompass an accelerated perception of time. This conceptualisation provides insights into how individuals with attention-deficit hyperactivity disorder have the capacity to maximise cognitive capabilities by more closely aligning themselves with appropriate environmental contexts (e.g. fast paced tasks that prevent boredom). We discuss the evidence for altered time perception in attention-deficit hyperactivity disorder alongside putative underlying neurobiological substrates, including a distributed brain network mediating time perception over multiple timescales. In particular, we explore the importance of temporal representations across the brain for time perception and symptom manifestation in attention-deficit hyperactivity disorder, including a prominent role of the hippocampus and other temporal lobe regions. We also reflect on how abnormalities in the perception of time may be relevant for understanding the aetiology of attention-deficit hyperactivity disorder and mechanism of action of existing medications.
Collapse
Affiliation(s)
- Eleanor White
- Department of Psychology, University of Cambridge, Cambridge, UK
| | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Cambridge, UK
- Department of Psychiatry, Herschel Smith Building for Brain and Mind Sciences, Cambridge, UK
| |
Collapse
|
14
|
Troconis EL, Seo C, Guru A, Warden MR. Serotonin neurons in mating female mice are activated by male ejaculation. Curr Biol 2023; 33:4926-4936.e4. [PMID: 37865094 PMCID: PMC10901455 DOI: 10.1016/j.cub.2023.09.071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/31/2023] [Accepted: 09/28/2023] [Indexed: 10/23/2023]
Abstract
Sexual stimulation triggers changes in female physiology and behavior, including sexual satiety and preparing the uterus for pregnancy. Serotonin (5-HT) is an important regulator of reproductive physiology and sexual receptivity, but the relationship between sexual stimulation and 5-HT neural activity in females is poorly understood. Here, we investigated dorsal raphe 5-HT neural activity in female mice during sexual behavior. We found that 5-HT neural activity in mating females peaked specifically upon male ejaculation and remained elevated above baseline until disengagement. Artificial intravaginal mechanical stimulation was sufficient to elicit increased 5-HT neural activity but the delivery of ejaculatory fluids was not. Distal penis expansion ("penile cupping") at ejaculation and forceful expulsion of ejaculatory fluid each provided sufficient mechanical stimulation to elicit 5-HT neuron activation. Our study identifies a female ejaculation-specific signal in a major neuromodulatory system and shows that intravaginal mechanosensory stimulation is necessary and sufficient to drive this signal.
Collapse
Affiliation(s)
- Eileen L Troconis
- Biological and Biomedical Sciences Program, Cornell University, Ithaca, NY 14853, USA
| | - Changwoo Seo
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA
| | - Akash Guru
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA
| | - Melissa R Warden
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA; Cornell Neurotech, Cornell University, Ithaca, NY 14853, USA.
| |
Collapse
|
15
|
Feng YY, Bromberg-Martin ES, Monosov IE. Dorsal raphe neurons signal integrated value during multi-attribute decision-making. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.17.553745. [PMID: 37662243 PMCID: PMC10473596 DOI: 10.1101/2023.08.17.553745] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
The dorsal raphe nucleus (DRN) is implicated in psychiatric disorders that feature impaired sensitivity to reward amount, impulsivity when facing reward delays, and risk-seeking when grappling with reward uncertainty. However, whether and how DRN neurons signal reward amount, reward delay, and reward uncertainty during multi-attribute value-based decision-making, where subjects consider all these attributes to make a choice, is unclear. We recorded DRN neurons as monkeys chose between offers whose attributes, namely expected reward amount, reward delay, and reward uncertainty, varied independently. Many DRN neurons signaled offer attributes. Remarkably, these neurons commonly integrated offer attributes in a manner that reflected monkeys' overall preferences for amount, delay, and uncertainty. After decision-making, in response to post-decision feedback, these same neurons signaled signed reward prediction errors, suggesting a broader role in tracking value across task epochs and behavioral contexts. Our data illustrate how DRN participates in integrated value computations, guiding theories of DRN in decision-making and psychiatric disease.
Collapse
Affiliation(s)
- Yang-Yang Feng
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
| | | | - Ilya E. Monosov
- Department of Neuroscience, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, USA
- Washington University Pain Center, Washington University, St. Louis, Missouri, USA
- Department of Neurosurgery, Washington University, St. Louis, Missouri, USA
- Department of Electrical Engineering, Washington University, St. Louis, Missouri, USA
| |
Collapse
|
16
|
Troconis EL, Seo C, Guru A, Warden MR. Serotonin neurons in mating female mice are activated by male ejaculation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.14.540716. [PMID: 37645786 PMCID: PMC10461921 DOI: 10.1101/2023.05.14.540716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
Sexual stimulation triggers changes in female physiology and behavior, including sexual satiety and preparing the uterus for pregnancy. Serotonin is an important regulator of reproductive physiology and sexual receptivity, but the relationship between sexual stimulation and serotonin neural activity in females is poorly understood. Here, we investigated dorsal raphe serotonin neural activity in females during sexual behavior. We found that serotonin neural activity in mating females peaked specifically upon male ejaculation, and remained elevated above baseline until disengagement. Artificial intravaginal mechanical stimulation was sufficient to elicit increased 5-HT neural activity but the delivery of ejaculatory fluids was not. Distal penis erectile enlargement ("penile cupping") at ejaculation and forceful expulsion of ejaculatory fluid each provided sufficient mechanical stimulation to elicit serotonin neuron activation. Our study identifies a female ejaculation-specific signal in a major neuromodulatory system and shows that intravaginal mechanosensory stimulation is necessary and sufficient to drive this signal.
Collapse
Affiliation(s)
- Eileen L. Troconis
- Department of Biological and Biomedical Sciences, Cornell University, Ithaca, NY 14853 USA
| | - Changwoo Seo
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853 USA
- Cornell Neurotech, Cornell University, Ithaca, NY 14853 USA
| | - Akash Guru
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853 USA
- Cornell Neurotech, Cornell University, Ithaca, NY 14853 USA
| | - Melissa R. Warden
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853 USA
- Cornell Neurotech, Cornell University, Ithaca, NY 14853 USA
- Lead Contact
| |
Collapse
|
17
|
Michely J, Martin IM, Dolan RJ, Hauser TU. Boosting Serotonin Increases Information Gathering by Reducing Subjective Cognitive Costs. J Neurosci 2023; 43:5848-5855. [PMID: 37524494 PMCID: PMC10423044 DOI: 10.1523/jneurosci.1416-22.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 06/01/2023] [Accepted: 06/06/2023] [Indexed: 08/02/2023] Open
Abstract
Serotonin is implicated in the valuation of aversive costs, such as delay or physical effort. However, its role in governing sensitivity to cognitive effort, for example, deliberation costs during information gathering, is unclear. We show that treatment with a serotonergic antidepressant in healthy human individuals of either sex enhances a willingness to gather information when trying to maximize reward. Using computational modeling, we show this arises from a diminished sensitivity to subjective deliberation costs during the sampling process. This result is consistent with the notion that serotonin alleviates sensitivity to aversive costs in a domain-general fashion, with implications for its potential contribution to a positive impact on motivational deficits in psychiatric disorders.SIGNIFICANCE STATEMENT Gathering information about the world is essential for successfully navigating it. However, sampling information is costly, and we need to balance between gathering too little and too much information. The neurocomputational mechanisms underlying this arbitration between a putative gain, such as reward, and the associated costs, such as allocation of cognitive resources, remain unclear. In this study, we show that week-long daily treatment with a serotonergic antidepressant enhances a willingness to gather information when trying to maximize reward. Computational modeling indicates this arises from a reduced perception of aversive costs, rendering information gathering less cognitively effortful. This finding points to a candidate mechanism by which serotonergic treatment might help alleviate motivational deficits in a range of mental illnesses.
Collapse
Affiliation(s)
- Jochen Michely
- Department of Psychiatry and Neurosciences, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, 10117 Germany
- Berlin Institute of Health at Charité-Universitätsmedizin Berlin, BIH Charité Clinician Scientist Program, Berlin, 10117 Germany
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, WC1B 5EH, United Kingdom
- Wellcome Centre for Human Neuroimaging, University College London, London, WC1N 3BG, United Kingdom
| | - Ingrid M Martin
- Wellcome Centre for Human Neuroimaging, University College London, London, WC1N 3BG, United Kingdom
- Institute of Cognitive Neuroscience, University College London, London, WC1N 3AZ, United Kingdom
| | - Raymond J Dolan
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, WC1B 5EH, United Kingdom
- Wellcome Centre for Human Neuroimaging, University College London, London, WC1N 3BG, United Kingdom
| | - Tobias U Hauser
- Max Planck UCL Centre for Computational Psychiatry and Ageing Research, University College London, London, WC1B 5EH, United Kingdom
- Wellcome Centre for Human Neuroimaging, University College London, London, WC1N 3BG, United Kingdom
- Department of Psychiatry and Psychotherapy, Medical School and University Hospital, Eberhard Karls University of Tübingen, 72076 Tübingen, Germany
- German Center for Mental Health (DZPG)
| |
Collapse
|
18
|
Vogt K. Neuroscience: Merging multisensory memories. Curr Biol 2023; 33:R817-R819. [PMID: 37552950 DOI: 10.1016/j.cub.2023.06.052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/10/2023]
Abstract
How animals form and retain memories across multiple sensory modalities and how multisensory learning can enhance memory is largely unknown. A recent study sheds light on the neural mechanism underlying multisensory memory convergence in the Drosophila melanogaster brain.
Collapse
Affiliation(s)
- Katrin Vogt
- Department of Biology, University of Konstanz, Konstanz, Germany; Centre for the Advanced Study of Collective Behaviour, University of Konstanz, Konstanz, Germany.
| |
Collapse
|
19
|
Zeng J, Li X, Zhang R, Lv M, Wang Y, Tan K, Xia X, Wan J, Jing M, Zhang X, Li Y, Yang Y, Wang L, Chu J, Li Y, Li Y. Local 5-HT signaling bi-directionally regulates the coincidence time window for associative learning. Neuron 2023; 111:1118-1135.e5. [PMID: 36706757 PMCID: PMC11152601 DOI: 10.1016/j.neuron.2022.12.034] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 10/03/2022] [Accepted: 12/30/2022] [Indexed: 01/27/2023]
Abstract
The coincidence between conditioned stimulus (CS) and unconditioned stimulus (US) is essential for associative learning; however, the mechanism regulating the duration of this temporal window remains unclear. Here, we found that serotonin (5-HT) bi-directionally regulates the coincidence time window of olfactory learning in Drosophila and affects synaptic plasticity of Kenyon cells (KCs) in the mushroom body (MB). Utilizing GPCR-activation-based (GRAB) neurotransmitter sensors, we found that KC-released acetylcholine (ACh) activates a serotonergic dorsal paired medial (DPM) neuron, which in turn provides inhibitory feedback to KCs. Physiological stimuli induce spatially heterogeneous 5-HT signals, which proportionally gate the intrinsic coincidence time windows of different MB compartments. Artificially reducing or increasing the DPM neuron-released 5-HT shortens or prolongs the coincidence window, respectively. In a sequential trace conditioning paradigm, this serotonergic neuromodulation helps to bridge the CS-US temporal gap. Altogether, we report a model circuitry for perceiving the temporal coincidence and determining the causal relationship between environmental events.
Collapse
Affiliation(s)
- Jianzhi Zeng
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China; Hefei National Laboratory for Physical Sciences at the Microscale, CAS Key Laboratory of Brain Function and Disease, School of Life Sciences, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei 230026, Anhui, China.
| | - Xuelin Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Renzimo Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China; Yuanpei College, Peking University, Beijing 100871, China
| | - Mingyue Lv
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Yipan Wang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Ke Tan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Xiju Xia
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China; PKU-THU-NIBS Joint Graduate Program, Beijing 100871, China
| | - Jinxia Wan
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Miao Jing
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Xiuning Zhang
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China
| | - Yu Li
- School of Medicine, The Chinese University of Hong Kong, Shenzhen 518172, China
| | - Yang Yang
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Liang Wang
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Jun Chu
- Guangdong Provincial Key Laboratory of Biomedical Optical Imaging Technology & Center for Biomedical Optics and Molecular Imaging & CAS Key Laboratory of Health Informatics, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, China
| | - Yan Li
- Institute of Biophysics, State Key Laboratory of Brain and Cognitive Science, Center for Excellence in Biomacromolecules, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Peking University, Beijing 100871, China; Institute of Molecular Physiology, Shenzhen Bay Laboratory, Shenzhen 518132, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; National Biomedical Imaging Center, Peking University, Beijing 100871, China; Yuanpei College, Peking University, Beijing 100871, China; PKU-THU-NIBS Joint Graduate Program, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
20
|
Morgan AA, Alves ND, Stevens GS, Yeasmin TT, Mackay A, Power S, Sargin D, Hanna C, Adib AL, Ziolkowski-Blake A, Lambe EK, Ansorge MS. Medial Prefrontal Cortex Serotonin Input Regulates Cognitive Flexibility in Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.30.534775. [PMID: 37034804 PMCID: PMC10081203 DOI: 10.1101/2023.03.30.534775] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The medial prefrontal cortex (mPFC) regulates cognitive flexibility and emotional behavior. Neurons that release serotonin project to the mPFC, and serotonergic drugs influence emotion and cognition. Yet, the specific roles of endogenous serotonin release in the mPFC on neurophysiology and behavior are unknown. We show that axonal serotonin release in the mPFC directly inhibits the major mPFC output neurons. In serotonergic neurons projecting from the dorsal raphe to the mPFC, we find endogenous activity signatures pre-reward retrieval and at reward retrieval during a cognitive flexibility task. In vivo optogenetic activation of this pathway during pre-reward retrieval selectively improved extradimensional rule shift performance while inhibition impaired it, demonstrating sufficiency and necessity for mPFC serotonin release in cognitive flexibility. Locomotor activity and anxiety-like behavior were not affected by either optogenetic manipulation. Collectively, our data reveal a powerful and specific modulatory role of endogenous serotonin release from dorsal raphe-to-mPFC projecting neurons in cognitive flexibility.
Collapse
|
21
|
Abstract
It has been over 50 years since the original serotonin hypothesis was proposed by the British Psychiatrist Alec Coppen. Recently, some authors have questioned the validity of the hypothesis. In this narrative review, we summarise the evidence for the serotonin hypothesis of depression, focusing on psychopharmacology and molecular imaging, as well as systems-level neuroscience.
Collapse
Affiliation(s)
- Sameer Jauhar
- Department of Psychological Medicine, IoPPN, King's College, London, UK
| | - Philip J Cowen
- Department of Psychiatry, University of Oxford, Warneford Hospital Oxford, Oxon, UK
| | - Michael Browning
- Department of Psychiatry, University of Oxford, Warneford Hospital Oxford, Oxon, UK
| |
Collapse
|
22
|
Roberts BF, Zylko AL, Waters CE, Crowder JD, Gibbons WJ, Sen AK, Jones JA, McMurray MS. Effect of psilocybin on decision-making and motivation in the healthy rat. Behav Brain Res 2023; 440:114262. [PMID: 36529299 DOI: 10.1016/j.bbr.2022.114262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/02/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Psilocybin and its active metabolite psilocin are hallucinogenic serotonergic agonists with high affinity for several serotonin receptors. In addition to underlying the hallucinogenic effects of these compounds, serotonin receptor activation also has important effects on decision-making and goal-directed behaviors. The impact of psilocybin and psilocin on these cognitive systems, however, remains unclear. This study investigated the effects of psilocybin treatment on decision-making and motivation in healthy male and female rats. We compared probability and delay discounting performance of psilocybin treated (1 mg/kg) to vehicle rats (n = 10/sex/group), and further assessed motivation in each group using a progressive ratio task. We also confirmed drug action by assessing head twitch responses after psilocybin treatment (1 mg/kg). Results from this study demonstrated that exposure to 1 mg/kg psilocybin did not affect decision-making in the probability and delay discounting tasks and did not reduce response rates in the progressive ratio task. However, psilocybin treatment did cause the expected increase in head twitch responses in both male and female rats, demonstrating that the drug was delivered at a pharmacologically relevant dosage. Combined, these results suggest that psilocybin may not impair or improve decision-making and motivation. Considering recent interest in psilocybin as a potential fast-acting therapeutic for a variety of mental health disorders, our findings also suggest the therapeutic effects of this drug may not be mediated by changes to the brain systems underlying reward and decision-making. Finally, these results may have important implications regarding the relative safety of this compound, suggesting that widespread cognitive impairments may not be seen in subjects, even after chronic treatment.
Collapse
Affiliation(s)
| | - Alexia L Zylko
- Miami University, Department of Psychology, Oxford, OH 45056, USA
| | | | | | - William J Gibbons
- Miami University, Department of Chemical, Paper, and Biomedical Engineering, Oxford, OH 45056, USA
| | - Abhishek K Sen
- Miami University, Department of Chemical, Paper, and Biomedical Engineering, Oxford, OH 45056, USA
| | - J Andrew Jones
- Miami University, Department of Chemical, Paper, and Biomedical Engineering, Oxford, OH 45056, USA; PsyBio Therapeutics, Inc., Oxford, OH 45056, USA
| | | |
Collapse
|
23
|
Harkin EF, Lynn MB, Payeur A, Boucher JF, Caya-Bissonnette L, Cyr D, Stewart C, Longtin A, Naud R, Béïque JC. Temporal derivative computation in the dorsal raphe network revealed by an experimentally driven augmented integrate-and-fire modeling framework. eLife 2023; 12:72951. [PMID: 36655738 PMCID: PMC9977298 DOI: 10.7554/elife.72951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/19/2022] [Indexed: 01/20/2023] Open
Abstract
By means of an expansive innervation, the serotonin (5-HT) neurons of the dorsal raphe nucleus (DRN) are positioned to enact coordinated modulation of circuits distributed across the entire brain in order to adaptively regulate behavior. Yet the network computations that emerge from the excitability and connectivity features of the DRN are still poorly understood. To gain insight into these computations, we began by carrying out a detailed electrophysiological characterization of genetically identified mouse 5-HT and somatostatin (SOM) neurons. We next developed a single-neuron modeling framework that combines the realism of Hodgkin-Huxley models with the simplicity and predictive power of generalized integrate-and-fire models. We found that feedforward inhibition of 5-HT neurons by heterogeneous SOM neurons implemented divisive inhibition, while endocannabinoid-mediated modulation of excitatory drive to the DRN increased the gain of 5-HT output. Our most striking finding was that the output of the DRN encodes a mixture of the intensity and temporal derivative of its input, and that the temporal derivative component dominates this mixture precisely when the input is increasing rapidly. This network computation primarily emerged from prominent adaptation mechanisms found in 5-HT neurons, including a previously undescribed dynamic threshold. By applying a bottom-up neural network modeling approach, our results suggest that the DRN is particularly apt to encode input changes over short timescales, reflecting one of the salient emerging computations that dominate its output to regulate behavior.
Collapse
Affiliation(s)
- Emerson F Harkin
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Michael B Lynn
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Alexandre Payeur
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
- Department of Physics, University of OttawaOttawaCanada
| | - Jean-François Boucher
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Léa Caya-Bissonnette
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Dominic Cyr
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - Chloe Stewart
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| | - André Longtin
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
- Department of Physics, University of OttawaOttawaCanada
| | - Richard Naud
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
- Department of Physics, University of OttawaOttawaCanada
| | - Jean-Claude Béïque
- Brain and Mind Research Institute, Centre for Neural Dynamics, Department of Cellular and Molecular Medicine, University of OttawaOttawaCanada
| |
Collapse
|
24
|
Janet R, Ligneul R, Losecaat-Vermeer AB, Philippe R, Bellucci G, Derrington E, Park SQ, Dreher JC. Regulation of social hierarchy learning by serotonin transporter availability. Neuropsychopharmacology 2022; 47:2205-2212. [PMID: 35945275 PMCID: PMC9630526 DOI: 10.1038/s41386-022-01378-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/03/2022] [Accepted: 06/30/2022] [Indexed: 11/18/2022]
Abstract
Learning one's status in a group is a fundamental process in building social hierarchies. Although animal studies suggest that serotonin (5-HT) signaling modulates learning social hierarchies, direct evidence in humans is lacking. Here we determined the relationship between serotonin transporter (SERT) availability and brain systems engaged in learning social ranks combining computational approaches with simultaneous PET-fMRI acquisition in healthy males. We also investigated the link between SERT availability and brain activity in a non-social control condition involving learning the payoffs of slot machines. Learning social ranks was modulated by the dorsal raphe nucleus (DRN) 5-HT function. BOLD ventral striatal response, tracking the rank of opponents, decreased with DRN SERT levels. Moreover, this link was specific to the social learning task. These findings demonstrate that 5-HT plays an influence on the computations required to learn social ranks.
Collapse
Affiliation(s)
- Remi Janet
- CNRS-Institut de Sciences Cognitives Marc Jeannerod, UMR5229, Neuroeconomics, reward, and decision making laboratory, Bron, France
| | - Romain Ligneul
- grid.421010.60000 0004 0453 9636Champalimaud Neuroscience Program, Champalimaud Center for the Unknown, Lisbon, Portugal
| | - Annabel B. Losecaat-Vermeer
- grid.10420.370000 0001 2286 1424Neuropsychopharmacology and Biopsychology Unit, Department of Cognition, Emotion, and Methods in Psychology, Faculty of Psychology, University of Vienna, Vienna, Austria ,grid.7468.d0000 0001 2248 7639Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany
| | - Remi Philippe
- CNRS-Institut de Sciences Cognitives Marc Jeannerod, UMR5229, Neuroeconomics, reward, and decision making laboratory, Bron, France
| | - Gabriele Bellucci
- grid.419501.80000 0001 2183 0052Department of Computational Neuroscience, Max Planck Institute for Biological Cybernetics, Tübingen, Germany
| | - Edmund Derrington
- CNRS-Institut de Sciences Cognitives Marc Jeannerod, UMR5229, Neuroeconomics, reward, and decision making laboratory, Bron, France
| | - Soyoung Q. Park
- grid.7468.d0000 0001 2248 7639Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Neuroscience Research Center, 10117 Berlin, Germany ,grid.418213.d0000 0004 0390 0098Department of Decision Neuroscience and Nutrition, German Institute of Human Nutrition (DIfE), Potsdam-Rehbrücke, Nuthetal, Germany
| | - Jean-Claude Dreher
- CNRS-Institut de Sciences Cognitives Marc Jeannerod, UMR5229, Neuroeconomics, reward, and decision making laboratory, Bron, France.
| |
Collapse
|
25
|
Shine JM, O’Callaghan C, Walpola IC, Wainstein G, Taylor N, Aru J, Huebner B, John YJ. Understanding the effects of serotonin in the brain through its role in the gastrointestinal tract. Brain 2022; 145:2967-2981. [DOI: 10.1093/brain/awac256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 06/12/2022] [Accepted: 06/14/2022] [Indexed: 11/12/2022] Open
Abstract
Abstract
The neuromodulatory arousal system imbues the nervous system with the flexibility and robustness required to facilitate adaptive behaviour. While there are well-understood mechanisms linking dopamine, noradrenaline and acetylcholine to distinct behavioural states, similar conclusions have not been as readily available for serotonin. Fascinatingly, despite clear links between serotonergic function and cognitive capacities as diverse as reward processing, exploration, and the psychedelic experience, over 95% of the serotonin in the body is released in the gastrointestinal tract, where it controls digestive muscle contractions (peristalsis). Here, we argue that framing neural serotonin as a rostral extension of the gastrointestinal serotonergic system dissolves much of the mystery associated with the central serotonergic system. Specifically, we outline that central serotonin activity mimics the effects of a digestion/satiety circuit mediated by hypothalamic control over descending serotonergic nuclei in the brainstem. We review commonalities and differences between these two circuits, with a focus on the heterogeneous expression of different classes of serotonin receptors in the brain. Much in the way that serotonin-induced peristalsis facilitates the work of digestion, serotonergic influences over cognition can be reframed as performing the work of cognition. Extending this analogy, we argue that the central serotonergic system allows the brain to arbitrate between different cognitive modes as a function of serotonergic tone: low activity facilitates cognitive automaticity, whereas higher activity helps to identify flexible solutions to problems, particularly if and when the initial responses fail. This perspective sheds light on otherwise disparate capacities mediated by serotonin, and also helps to understand why there are such pervasive links between serotonergic pathology and the symptoms of psychiatric disorders.
Collapse
Affiliation(s)
| | | | - Ishan C Walpola
- Prince of Wales Hospital , Randwick, New South Wales , Australia
| | | | | | - Jaan Aru
- University of Tartu , Tartu , Estonia
| | | | | |
Collapse
|
26
|
Aomine Y, Sakurai K, Macpherson T, Ozawa T, Miyamoto Y, Yoneda Y, Oka M, Hikida T. Importin α3 (KPNA3) Deficiency Augments Effortful Reward-Seeking Behavior in Mice. Front Neurosci 2022; 16:905991. [PMID: 35844217 PMCID: PMC9279672 DOI: 10.3389/fnins.2022.905991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 05/17/2022] [Indexed: 11/13/2022] Open
Abstract
Importin α3 (Gene: Kpna3, the ortholog of human Importin α4) is a member of the importin α family and participates in nucleocytoplasmic transport by forming trimeric complexes between cargo proteins and importin β1. Evidence from human studies has indicated that single nucleotide polymorphisms (SNP) in the KPNA3 gene are associated with the occurrence of several psychiatric disorders accompanied by abnormal reward-related behavior, including schizophrenia, major depression, and substance addiction. However, the precise roles of importin α3 in controlling reward processing and motivation are still unclear. In this study, we evaluated the behavioral effects of Kpna3 knockout (KO) in mice on performance in touchscreen operant chamber-based tasks evaluating simple (fixed-ratio) and effortful (progressive-ratio) reward-seeking behaviors. While Kpna3 KO mice showed no significant differences in operant reward learning on a fixed-ratio schedule, they demonstrated significantly increased motivation (increased break point) to instrumentally respond for sucrose on a progressive-ratio schedule. We additionally measured the number of c-Fos-positive cells, a marker of neural activity, in 20 regions of the brain and identified a network of brain regions based on their interregional correlation coefficients. Network and graph-theoretic analyses suggested that Kpna3 deficiency enhanced overall interregional functional connectivity. These findings suggest the importance of Kpna3 in motivational control and indicate that Kpna3 KO mice may be an attractive line for modeling motivational abnormalities associated with several psychiatric disorders.
Collapse
Affiliation(s)
- Yoshiatsu Aomine
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Koki Sakurai
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Tom Macpherson
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Takaaki Ozawa
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
| | - Yoichi Miyamoto
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Yoshihiro Yoneda
- National Institutes for Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Masahiro Oka
- Laboratory of Nuclear Transport Dynamics, National Institutes of Biomedical Innovation, Health and Nutrition (NIBIOHN), Osaka, Japan
| | - Takatoshi Hikida
- Laboratory for Advanced Brain Functions, Institute for Protein Research, Osaka University, Osaka, Japan
- Department of Biological Sciences, Graduate School of Science, Osaka University, Osaka, Japan
- *Correspondence: Takatoshi Hikida,
| |
Collapse
|
27
|
Freezing revisited: coordinated autonomic and central optimization of threat coping. Nat Rev Neurosci 2022; 23:568-580. [PMID: 35760906 DOI: 10.1038/s41583-022-00608-2] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/20/2022] [Indexed: 12/16/2022]
Abstract
Animals have sophisticated mechanisms for coping with danger. Freezing is a unique state that, upon threat detection, allows evidence to be gathered, response possibilities to be previsioned and preparations to be made for worst-case fight or flight. We propose that - rather than reflecting a passive fear state - the particular somatic and cognitive characteristics of freezing help to conceal overt responses, while optimizing sensory processing and action preparation. Critical for these functions are the neurotransmitters noradrenaline and acetylcholine, which modulate neural information processing and also control the sympathetic and parasympathetic branches of the autonomic nervous system. However, the interactions between autonomic systems and the brain during freezing, and the way in which they jointly coordinate responses, remain incompletely explored. We review the joint actions of these systems and offer a novel computational framework to describe their temporally harmonized integration. This reconceptualization of freezing has implications for its role in decision-making under threat and for psychopathology.
Collapse
|
28
|
Abstract
Behavioral states naturally alternate between wakefulness and the sleep phases rapid eye movement and nonrapid eye movement sleep. Waking and sleep states are complex processes that are elegantly orchestrated by spatially fine-tuned neurochemical changes of neurotransmitters and neuromodulators including glutamate, acetylcholine, γ-aminobutyric acid, norepinephrine, dopamine, serotonin, histamine, hypocretin, melanin concentrating hormone, adenosine, and melatonin. However, as highlighted in this brief overview, no single neurotransmitter or neuromodulator, but rather their complex interactions within organized neuronal ensembles, regulate waking and sleep states. The neurochemical pathways presented here are aimed to provide a conceptual framework for the understanding of the effects of currently used sleep medications.
Collapse
Affiliation(s)
- Sebastian C Holst
- Neuroscience and Rare Diseases Discovery and Translational Area, Roche Pharmaceutical Research and Early Development, Roche Innovation Center Basel, Grenzacherstrasse 124, Basel 4070, Switzerland.
| | - Hans-Peter Landolt
- Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, Zürich 8057, Switzerland; Zürich Center for Interdisciplinary Sleep Research (ZiS), University of Zürich, Zürich, Switzerland
| |
Collapse
|
29
|
Morris L, O'Callaghan C, Le Heron C. Disordered Decision Making: A Cognitive Framework for Apathy and Impulsivity in Huntington's Disease. Mov Disord 2022; 37:1149-1163. [PMID: 35491758 PMCID: PMC9322688 DOI: 10.1002/mds.29013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 02/17/2022] [Accepted: 03/15/2022] [Indexed: 01/12/2023] Open
Abstract
A caregiver's all‐too‐familiar narrative ‐ “He doesn't think through what he does, but mostly he does nothing.” Apathy and impulsivity, debilitating and poorly understood, commonly co‐occur in Huntington's disease (HD). HD is a neurodegenerative disease with manifestations bridging clinical neurology and psychiatry. In addition to movement and cognitive symptoms, neurobehavioral disturbances, particularly apathy and impulsivity, are prevalent features of HD, occurring early in the disease course, often worsening with disease progression, and substantially reducing quality of life. Treatments remain limited, in part because of limited mechanistic understanding of these behavioral disturbances. However, emerging work within the field of decision‐making neuroscience and beyond points to common neurobiological mechanisms underpinning these seemingly disparate problems. These insights bridge the gap between underlying disease pathology and clinical phenotype, offering new treatment strategies, novel behavioral and physiological biomarkers of HD, and deeper understanding of human behavior. In this review, we apply the neurobiological framework of cost‐benefit decision making to the problems of apathy and impulsivity in HD. Through this decision‐making lens, we develop a mechanistic model that elucidates the occurrence of these behavioral disturbances and points to potential treatment strategies and crucial research priorities. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Lee‐Anne Morris
- Department of Medicine University of Otago Christchurch New Zealand
- New Zealand Brain Research Institute Christchurch New Zealand
| | - Claire O'Callaghan
- Brain and Mind Centre and School of Medical Sciences, Faculty of Medicine and Health University of Sydney Sydney New South Wales Australia
| | - Campbell Le Heron
- Department of Medicine University of Otago Christchurch New Zealand
- New Zealand Brain Research Institute Christchurch New Zealand
- Department of Neurology Canterbury District Health Board Christchurch New Zealand
| |
Collapse
|
30
|
Affiliation(s)
- Kristin Kaduk
- Decision and Awareness Group, Cognitive Neuroscience Laboratory, German Primate Center, Göttingen, Germany
| | - Fadila Hadj-Bouziane
- INSERM U1028, CNRS UMR5292, Neuroscience Research Center (CRNL), Impact Team, Lyon, France
- University of Lyon, Lyon, France
- * E-mail:
| |
Collapse
|
31
|
Desrochers SS, Spring MG, Nautiyal KM. A Role for Serotonin in Modulating Opposing Drive and Brake Circuits of Impulsivity. Front Behav Neurosci 2022; 16:791749. [PMID: 35250501 PMCID: PMC8892181 DOI: 10.3389/fnbeh.2022.791749] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Accepted: 01/11/2022] [Indexed: 12/15/2022] Open
Abstract
Impulsivity generally refers to a deficit in inhibition, with a focus on understanding the neural circuits which constitute the "brake" on actions and gratification. It is likely that increased impulsivity can arise not only from reduced inhibition, but also from a heightened or exaggerated excitatory "drive." For example, an action which has more vigor, or is fueled by either increased incentive salience or a stronger action-outcome association, may be harder to inhibit. From this perspective, this review focuses on impulse control as a competition over behavioral output between an initially learned response-reward outcome association, and a subsequently acquired opposing inhibitory association. Our goal is to present a synthesis of research from humans and animal models that supports this dual-systems approach to understanding the behavioral and neural substrates that contribute to impulsivity, with a focus on the neuromodulatory role of serotonin. We review evidence for the role of serotonin signaling in mediating the balance of the "drive" and "brake" circuits. Additionally, we consider parallels of these competing instrumental systems in impulsivity within classical conditioning processes (e.g., extinction) in order to point us to potential behavioral and neural mechanisms that may modulate the competing instrumental associations. Finally, we consider how the balance of these competing associations might contribute to, or be extracted from, our experimental assessments of impulsivity. A careful understanding of the underlying behavioral and circuit level contributions to impulsivity is important for understanding the pathogenesis of increased impulsivity present in a number of psychiatric disorders. Pathological levels of impulsivity in such disorders are likely subserved by deficits in the balance of motivational and inhibitory processes.
Collapse
Affiliation(s)
| | | | - Katherine M. Nautiyal
- Department of Psychological and Brain Sciences, Dartmouth College, Hanover, NH, United States
| |
Collapse
|
32
|
Pomrenze MB, Paliarin F, Maiya R. Friend of the Devil: Negative Social Influences Driving Substance Use Disorders. Front Behav Neurosci 2022; 16:836996. [PMID: 35221948 PMCID: PMC8866771 DOI: 10.3389/fnbeh.2022.836996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 01/13/2022] [Indexed: 11/20/2022] Open
Abstract
Substance use disorders in humans have significant social influences, both positive and negative. While prosocial behaviors promote group cooperation and are naturally rewarding, distressing social encounters, such as aggression exhibited by a conspecific, are aversive and can enhance the sensitivity to rewarding substances, promote the acquisition of drug-taking, and reinstate drug-seeking. On the other hand, withdrawal and prolonged abstinence from drugs of abuse can promote social avoidance and suppress social motivation, accentuating drug cravings and facilitating relapse. Understanding how complex social states and experiences modulate drug-seeking behaviors as well as the underlying circuit dynamics, such as those interacting with mesolimbic reward systems, will greatly facilitate progress on understanding triggers of drug use, drug relapse and the chronicity of substance use disorders. Here we discuss some of the common circuit mechanisms underlying social and addictive behaviors that may underlie their antagonistic functions. We also highlight key neurochemicals involved in social influences over addiction that are frequently identified in comorbid psychiatric conditions. Finally, we integrate these data with recent findings on (±)3,4-methylenedioxymethamphetamine (MDMA) that suggest functional segregation and convergence of social and reward circuits that may be relevant to substance use disorder treatment through the competitive nature of these two types of reward. More studies focused on the relationship between social behavior and addictive behavior we hope will spur the development of treatment strategies aimed at breaking vicious addiction cycles.
Collapse
Affiliation(s)
- Matthew B. Pomrenze
- Department of Psychiatry and Behavioral Sciences, Stanford University, Stanford, CA, United States
- *Correspondence: Matthew B. Pomrenze Rajani Maiya
| | - Franciely Paliarin
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
| | - Rajani Maiya
- Department of Physiology, Louisiana State University Health Sciences Center, New Orleans, LA, United States
- *Correspondence: Matthew B. Pomrenze Rajani Maiya
| |
Collapse
|
33
|
Khalighinejad N, Manohar S, Husain M, Rushworth MFS. Complementary roles of serotonergic and cholinergic systems in decisions about when to act. Curr Biol 2022; 32:1150-1162.e7. [PMID: 35150603 PMCID: PMC8926843 DOI: 10.1016/j.cub.2022.01.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 11/23/2022]
Abstract
Decision-making not only involves deciding about which action to choose but when and whether to initiate an action in the first place. Macaque monkeys tracked number of dots on a screen and could choose when to make a response. The longer the animals waited before responding, the more dots appeared on the screen and the higher the probability of reward. Monkeys waited longer before making a response when a trial’s value was less than the environment’s average value. Recordings of brain activity with fMRI revealed that activity in dorsal raphe nucleus (DRN)—a key source of serotonin (5-HT)—tracked average value of the environment. By contrast, activity in the basal forebrain (BF)—an important source of acetylcholine (ACh)—was related to decision time to act as a function of immediate and recent past context. Interactions between DRN and BF and the anterior cingulate cortex (ACC), another region with action initiation-related activity, occurred as a function of the decision time to act. Next, we performed two psychopharmacological studies. Manipulating systemic 5-HT by citalopram prolonged the time macaques waited to respond for a given opportunity. This effect was more evident during blocks with long inter-trial intervals (ITIs) where good opportunities were sparse. Manipulating systemic acetylcholine (ACh) by rivastigmine reduced the time macaques waited to respond given the immediate and recent past context, a pattern opposite to the effect observed with 5-HT. These findings suggest complementary roles for serotonin/DRN and acetylcholine/BF in decisions about when to initiate an action. Both immediate context and wider environment influence decisions about when to act DRN and 5-HT mediate the influence of wider environment BF and ACh mediate the influence of immediate context
Collapse
Affiliation(s)
- Nima Khalighinejad
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK.
| | - Sanjay Manohar
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Masud Husain
- Department of Experimental Psychology, University of Oxford, Oxford, UK; Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Matthew F S Rushworth
- Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, UK
| |
Collapse
|
34
|
Grossman CD, Bari BA, Cohen JY. Serotonin neurons modulate learning rate through uncertainty. Curr Biol 2022; 32:586-599.e7. [PMID: 34936883 PMCID: PMC8825708 DOI: 10.1016/j.cub.2021.12.006] [Citation(s) in RCA: 46] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 10/11/2021] [Accepted: 12/03/2021] [Indexed: 12/20/2022]
Abstract
Regulating how fast to learn is critical for flexible behavior. Learning about the consequences of actions should be slow in stable environments, but accelerate when that environment changes. Recognizing stability and detecting change are difficult in environments with noisy relationships between actions and outcomes. Under these conditions, theories propose that uncertainty can be used to modulate learning rates ("meta-learning"). We show that mice behaving in a dynamic foraging task exhibit choice behavior that varied as a function of two forms of uncertainty estimated from a meta-learning model. The activity of dorsal raphe serotonin neurons tracked both types of uncertainty in the foraging task as well as in a dynamic Pavlovian task. Reversible inhibition of serotonin neurons in the foraging task reproduced changes in learning predicted by a simulated lesion of meta-learning in the model. We thus provide a quantitative link between serotonin neuron activity, learning, and decision making.
Collapse
Affiliation(s)
- Cooper D Grossman
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Bilal A Bari
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA
| | - Jeremiah Y Cohen
- The Solomon H. Snyder Department of Neuroscience, Brain Science Institute, Kavli Neuroscience Discovery Institute, The Johns Hopkins University School of Medicine, 725 N. Wolfe Street, Baltimore, MD 21205, USA.
| |
Collapse
|
35
|
Birnie MT, Levis SC, Mahler SV, Baram TZ. Developmental Trajectories of Anhedonia in Preclinical Models. Curr Top Behav Neurosci 2022; 58:23-41. [PMID: 35156184 DOI: 10.1007/7854_2021_299] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
This chapter discusses how the complex concept of anhedonia can be operationalized and studied in preclinical models. It provides information about the development of anhedonia in the context of early-life adversity, and the power of preclinical models to tease out the diverse molecular, epigenetic, and network mechanisms that are responsible for anhedonia-like behaviors.Specifically, we first discuss the term anhedonia, reviewing the conceptual components underlying reward-related behaviors and distinguish anhedonia pertaining to deficits in motivational versus consummatory behaviors. We then describe the repertoire of experimental approaches employed to study anhedonia-like behaviors in preclinical models, and the progressive refinement over the past decade of both experimental instruments (e.g., chemogenetics, optogenetics) and conceptual constructs (salience, valence, conflict). We follow with an overview of the state of current knowledge of brain circuits, nodes, and projections that execute distinct aspects of hedonic-like behaviors, as well as neurotransmitters, modulators, and receptors involved in the generation of anhedonia-like behaviors. Finally, we discuss the special case of anhedonia that arises following early-life adversity as an eloquent example enabling the study of causality, mechanisms, and sex dependence of anhedonia.Together, this chapter highlights the power, potential, and limitations of using preclinical models to advance our understanding of the origin and mechanisms of anhedonia and to discover potential targets for its prevention and mitigation.
Collapse
Affiliation(s)
- Matthew T Birnie
- Departments of Anatomy/Neurobiology and Pediatrics, University of California-Irvine, Irvine, CA, USA
| | - Sophia C Levis
- Departments of Anatomy/Neurobiology and Neurobiology/Behavior, University of California-Irvine, Irvine, CA, USA
| | - Stephen V Mahler
- Department of Neurobiology and Behavior, University of California-Irvine, Irvine, CA, USA
| | - Tallie Z Baram
- Departments of Anatomy/Neurobiology and Pediatrics, University of California-Irvine, Irvine, CA, USA.
| |
Collapse
|
36
|
Plassmann H, Schelski DS, Simon M, Koban L. How we decide what to eat: Toward an interdisciplinary model of gut-brain interactions. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2022; 13:e1562. [PMID: 33977675 PMCID: PMC9286667 DOI: 10.1002/wcs.1562] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2020] [Revised: 04/07/2021] [Accepted: 04/08/2021] [Indexed: 11/12/2022]
Abstract
Everyday dietary decisions have important short-term and long-term consequences for health and well-being. How do we decide what to eat, and what physiological and neurobiological systems are involved in those decisions? Here, we integrate findings from thus-far separate literatures: (a) the cognitive neuroscience of dietary decision-making, and (b) growing evidence of gut-brain interactions and especially influences of the gut microbiome on diet and health outcomes. We review findings that suggest that dietary decisions and food consumption influence nutrient sensing, homeostatic signaling in the gut, and the composition of the gut microbiome. In turn, the microbiome can influence host health and behavior. Through reward signaling pathways, the microbiome could potentially affect food and drink decisions. Such bidirectional links between gut microbiome and the brain systems underlying dietary decision-making may lead to self-reinforcing feedback loops that determine long-term dietary patterns, body mass, and health outcomes. This article is categorized under: Economics > Individual Decision-Making Psychology > Brain Function and Dysfunction Psychology > Reasoning and Decision Making.
Collapse
Affiliation(s)
- Hilke Plassmann
- Marketing AreaINSEADFontainebleauFrance
- Paris Brain Institute (ICM)INSERM U 1127, CNRS UMR 7225, Sorbonne UniversitéParisFrance
| | - Daniela Stephanie Schelski
- Center for Economics and NeuroscienceUniversity of BonnBonnGermany
- Institute of Experimental Epileptology and Cognition Research, University of Bonn Medical CenterBonnGermany
| | - Marie‐Christine Simon
- Institute of Nutrition and Food Science (IEL), Nutrition and Microbiota, University of BonnBonnGermany
| | - Leonie Koban
- Marketing AreaINSEADFontainebleauFrance
- Paris Brain Institute (ICM)INSERM U 1127, CNRS UMR 7225, Sorbonne UniversitéParisFrance
| |
Collapse
|
37
|
Bhave VM, Nectow AR. The dorsal raphe nucleus in the control of energy balance. Trends Neurosci 2021; 44:946-960. [PMID: 34663507 DOI: 10.1016/j.tins.2021.09.004] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/04/2021] [Accepted: 09/23/2021] [Indexed: 01/07/2023]
Abstract
Energy balance is orchestrated by an extended network of highly interconnected nuclei across the central nervous system. While much is known about the hypothalamic circuits regulating energy homeostasis, the 'extra-hypothalamic' circuits involved are relatively poorly understood. In this review, we focus on the brainstem's dorsal raphe nucleus (DRN), integrating decades of research linking this structure to the physiologic and behavioral responses that maintain proper energy stores. DRN neurons sense and respond to interoceptive and exteroceptive cues related to energy imbalance and in turn induce appropriate alterations in energy intake and expenditure. The DRN is also molecularly differentiable, with different populations playing distinct and often opposing roles in controlling energy balance. These populations are integrated into the extended circuit known to regulate energy balance. Overall, this review summarizes the key evidence demonstrating an important role for the DRN in regulating energy balance.
Collapse
Affiliation(s)
- Varun M Bhave
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA; Harvard Medical School, Boston, MA 02115, USA
| | - Alexander R Nectow
- Department of Medicine, Columbia University College of Physicians and Surgeons, New York, NY 10032, USA.
| |
Collapse
|
38
|
Pomrenze MB, Walker LC, Giardino WJ. Gray areas: Neuropeptide circuits linking the Edinger-Westphal and Dorsal Raphe nuclei in addiction. Neuropharmacology 2021; 198:108769. [PMID: 34481834 PMCID: PMC8484048 DOI: 10.1016/j.neuropharm.2021.108769] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 01/16/2023]
Abstract
The circuitry of addiction comprises several neural networks including the midbrain - an expansive region critically involved in the control of motivated behaviors. Midbrain nuclei like the Edinger-Westphal (EW) and dorsal raphe (DR) contain unique populations of neurons that synthesize many understudied neuroactive molecules and are encircled by the periaqueductal gray (PAG). Despite the proximity of these special neuron classes to the ventral midbrain complex and surrounding PAG, functions of the EW and DR remain substantially underinvestigated by comparison. Spanning approximately -3.0 to -5.2 mm posterior from bregma in the mouse, these various cell groups form a continuum of neurons that we refer to collectively as the subaqueductal paramedian zone. Defining how these pathways modulate affective behavioral states presents a difficult, yet conquerable challenge for today's technological advances in neuroscience. In this review, we cover the known contributions of different neuronal subtypes of the subaqueductal paramedian zone. We catalogue these cell types based on their spatial, molecular, connectivity, and functional properties and integrate this information with the existing data on the EW and DR in addiction. We next discuss evidence that links the EW and DR anatomically and functionally, highlighting the potential contributions of an EW-DR circuit to addiction-related behaviors. Overall, we aim to derive an integrated framework that emphasizes the contributions of EW and DR nuclei to addictive states and describes how these cell groups function in individuals suffering from substance use disorders. This article is part of the special Issue on 'Neurocircuitry Modulating Drug and Alcohol Abuse'.
Collapse
Affiliation(s)
- Matthew B Pomrenze
- Dept. of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA
| | - Leigh C Walker
- Florey Institute of Neuroscience and Mental Health, University of Melbourne, Parkville, VIC, 3052, Australia
| | - William J Giardino
- Dept. of Psychiatry and Behavioral Sciences, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA; Wu Tsai Neurosciences Institute, Stanford University School of Medicine, Stanford, CA, 94305-5453, USA.
| |
Collapse
|
39
|
Courtiol E, Menezes EC, Teixeira CM. Serotonergic regulation of the dopaminergic system: Implications for reward-related functions. Neurosci Biobehav Rev 2021; 128:282-293. [PMID: 34139249 PMCID: PMC8335358 DOI: 10.1016/j.neubiorev.2021.06.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Revised: 05/11/2021] [Accepted: 06/10/2021] [Indexed: 12/17/2022]
Abstract
Serotonin is a critical neuromodulator involved in development and behavior. Its role in reward is however still debated. Here, we first review classical studies involving electrical stimulation protocols and pharmacological approaches. Contradictory results on the serotonergic' involvement in reward emerge from these studies. These differences might be ascribable to either the diversity of cellular types within the raphe nuclei or/and the specific projection pathways of serotonergic neurons. We continue to review more recent work, using optogenetic approaches to activate serotonergic cells in the Raphe to VTA pathway. From these studies, it appears that activation of this pathway can lead to reinforcement learning mediated through the excitation of dopaminergic neurons by serotonergic neurons co-transmitting glutamate. Finally, given the importance of serotonin during development on adult emotion, the effect of abnormal early-life levels of serotonin on the dopaminergic system will also be discussed. Understanding the interaction between the serotonergic and dopaminergic systems during development and adulthood is critical to gain insight into the specific facets of neuropsychiatric disorders.
Collapse
Affiliation(s)
- Emmanuelle Courtiol
- Lyon Neuroscience Research Center, UMR 5292- INSERM U1028- Université Lyon 1, 69675 Bron Cedex, France
| | - Edenia C Menezes
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States
| | - Catia M Teixeira
- Emotional Brain Institute, Nathan Kline Institute for Psychiatric Research, Orangeburg, NY 10962, United States; Department of Child and Adolescent Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, United States.
| |
Collapse
|
40
|
Over-representation of fundamental decision variables in the prefrontal cortex underlies decision bias. Neurosci Res 2021; 173:1-13. [PMID: 34274406 DOI: 10.1016/j.neures.2021.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 06/15/2021] [Accepted: 07/13/2021] [Indexed: 11/24/2022]
Abstract
The brain is organized into anatomically distinct structures consisting of a variety of projection neurons. While such evolutionarily conserved neural circuit organization underlies the innate ability of animals to swiftly adapt to environments, they can cause biased cognition and behavior. Although recent studies have begun to address the causal importance of projection-neuron types as distinct computational units, it remains unclear how projection types are functionally organized in encoding variables during cognitive tasks. This review focuses on the neural computation of decision making in the prefrontal cortex and discusses what decision variables are encoded by single neurons, neuronal populations, and projection type, alongside how specific projection types constrain decision making. We focus particularly on "over-representations" of distinct decision variables in the prefrontal cortex that reflect the biological and subjective significance of the variables for the decision makers. We suggest that task-specific over-representation in the prefrontal cortex involves the refinement of the given decision making, while generalized over-representation of fundamental decision variables is associated with suboptimal decision biases, including pathological ones such as those in patients with psychiatric disorders. Such over-representation of the fundamental decision variables in the prefrontal cortex appear to be tightly constrained by afferent and efferent connections that can be optogenetically intervened on. These ideas may provide critical insights into potential therapeutic targets for psychiatric disorders, including addiction and depression.
Collapse
|
41
|
Nakamura T, Nakajima K, Kobayashi Y, Itohara S, Kasahara T, Tsuboi T, Kato T. Functional and behavioral effects of de novo mutations in calcium-related genes in patients with bipolar disorder. Hum Mol Genet 2021; 30:1851-1862. [PMID: 34100076 PMCID: PMC8444452 DOI: 10.1093/hmg/ddab152] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 05/30/2021] [Accepted: 05/31/2021] [Indexed: 11/13/2022] Open
Abstract
Bipolar disorder is a common mental illness occurring in approximately 1% of individuals and exhibits lifetime prevalence. Although genetic factors are known to contribute to this disorder, the genetic architecture has not yet been completely clarified. Our initial trio-based exome sequencing study of bipolar disorder showed enrichment of de novo, loss-of-function (LOF) or protein-altering mutations in a combined group with bipolar I and schizoaffective disorders, and the identified de novo mutations were enriched in calcium-related genes. These findings suggested a role for de novo mutations in bipolar disorder. The validity of these statistical associations can be demonstrated if the functional impact of the mutations on cellular function and behavior are identified. In this study, we focused on two de novo LOF mutations in calcium-related genes, EHD1 and MACF1, found in patients with bipolar disorder. We first showed that the EHD1 mutation resulted in a truncated protein with diminished effect on neurite outgrowth and inhibited endocytosis. Next, we used CRISPR/Cas9 to establish two knock-in mouse lines to model the in vivo effects of these mutations. We performed behavioral screening using IntelliCage and long-term wheel running analysis. Ehd1 mutant mice showed higher activity in the light phase. Macf1 mutant mice showed diminished attention and persistence to rewards. These behavioral alterations were similar to the phenotypes in previously proposed animal models of bipolar disorder. These findings endorse the possible role of de novo mutations as a component of the genetic architecture of bipolar disorder which was suggested by the statistical evidence.
Collapse
Affiliation(s)
- Takumi Nakamura
- Department of Psychiatry & Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Kazuo Nakajima
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Yuki Kobayashi
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Saitama, Japan
| | - Shigeyoshi Itohara
- Laboratory for Behavioral Genetics, RIKEN Center for Brain Science, Saitama, Japan
| | - Takaoki Kasahara
- Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan
| | - Takashi Tsuboi
- Department of Life Sciences, Graduate School of Arts and Sciences, The University of Tokyo, Tokyo, Japan
| | - Tadafumi Kato
- Department of Psychiatry & Behavioral Science, Juntendo University Graduate School of Medicine, Tokyo, Japan.,Laboratory for Molecular Dynamics of Mental Disorders, RIKEN Center for Brain Science, Saitama, Japan
| |
Collapse
|
42
|
Jones JA, Zuhlsdorff K, Dalley JW. Neurochemical substrates linked to impulsive and compulsive phenotypes in addiction: A preclinical perspective. J Neurochem 2021; 157:1525-1546. [PMID: 33931861 DOI: 10.1111/jnc.15380] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Revised: 04/24/2021] [Accepted: 04/25/2021] [Indexed: 01/18/2023]
Abstract
Drug compulsion manifests in some but not all individuals and implicates multifaceted processes including failures in top-down cognitive control as drivers for the hazardous pursuit of drug use in some individuals. As a closely related construct, impulsivity encompasses rash or risky behaviour without foresight and underlies most forms of drug taking behaviour, including drug use during adverse emotional states (i.e., negative urgency). While impulsive behavioural dimensions emerge from drug-induced brain plasticity, burgeoning evidence suggests that impulsivity also predates the emergence of compulsive drug use. Although the neural substrates underlying the apparently causal relationship between trait impulsivity and drug compulsion are poorly understood, significant advances have come from the interrogation of defined limbic cortico-striatal circuits involved in motivated behaviour and response inhibition, together with chemical neuromodulatory influences from the ascending neurotransmitter systems. We review what is presently known about the neurochemical mediation of impulsivity, in its various forms, and ask whether commonalities exist in the neurochemistry of compulsive drug-motivated behaviours that might explain individual risk for addiction.
Collapse
Affiliation(s)
- Jolyon A Jones
- Department of Psychology, University of Cambridge, Cambridge, UK
| | | | - Jeffrey W Dalley
- Department of Psychology, University of Cambridge, Cambridge, UK.,Department of Psychiatry, Hershel Smith Building for Brain and Mind Sciences, Cambridge, UK
| |
Collapse
|
43
|
Lewis CA, Mueller K, Zsido RG, Reinelt J, Regenthal R, Okon-Singer H, Forbes EE, Villringer A, Sacher J. A single dose of escitalopram blunts the neural response in the thalamus and caudate during monetary loss. J Psychiatry Neurosci 2021; 46:E319-E327. [PMID: 33904667 PMCID: PMC8327975 DOI: 10.1503/jpn.200121] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/01/2022] Open
Abstract
BACKGROUND Selective serotonin reuptake inhibitors (SSRIs) show acute effects on the neural processes associated with negative affective bias in healthy people and people with depression. However, whether and how SSRIs also affect reward and punishment processing on a similarly rapid time scale remains unclear. METHODS We investigated the effects of an acute and clinically relevant dose (20 mg) of the SSRI escitalopram on brain response during reward and punishment processing in 19 healthy participants. In a doubleblind, placebo-controlled study using functional MRI, participants performed a well-established monetary reward task at 3 time points: at baseline; after receiving placebo or escitalopram; and after receiving placebo or escitalopram following an 8-week washout period. RESULTS Acute escitalopram administration reduced blood-oxygen-level-dependent (BOLD) response during punishment feedback in the right thalamus (family-wise error corrected [FWE] p = 0.013 at peak level) and the right caudate head (pFWE = 0.011 at peak level) compared to placebo. We did not detect any significant BOLD changes during reward feedback. LIMITATIONS We included only healthy participants, so interpretation of findings are limited to the healthy human brain and require future testing in patient populations. The paradigm we used was based on monetary stimuli, and results may not be generalizable to other forms of reward. CONCLUSION Our findings extend theories of rapid SSRI action on the neural processing of rewarding and aversive stimuli and suggest a specific and acute effect of escitalopram in the punishment neurocircuitry.
Collapse
Affiliation(s)
- Carolin A Lewis
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| | - Karsten Mueller
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| | - Rachel G Zsido
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| | - Janis Reinelt
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| | - Ralf Regenthal
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| | - Hadas Okon-Singer
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| | - Erika E Forbes
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| | - Arno Villringer
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| | - Julia Sacher
- From the Emotion Neuroimaging Lab, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Lewis, Zsido, Sacher); the International Max Planck Research School on Neuroscience of Communication: Function, Structure, and Plasticity, Leipzig, Germany (Lewis, Zsido); the Department of Psychiatry and Psychotherapy, Medical School, University of Tuebingen, Germany (Lewis); the Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany (Mueller, Reinelt, Villringer); the Max Planck School of Cognition, Leipzig, Germany (Zsido); the Division of Clinical Pharmacology, Rudolf-Boehm-Institute of Pharmacology and Toxicology, University of Leipzig, Leipzig, Germany (Regenthal); the Department of Psychology, School of Psychological Sciences, University of Haifa, Haifa, Israel (Okon-Singer); the Integrated Brain and Behavior Research Center (IBBR), University of Haifa, Haifa, Israel (Okon-Singer); the Department of Psychiatry, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA (Forbes); and the Clinic for Cognitive Neurology, University of Leipzig, Leipzig, Germany (Villringer, Sacher)
| |
Collapse
|
44
|
McDevitt RA, Marino RAM, Tejeda HA, Bonci A. Serotonergic inhibition of responding for conditioned but not primary reinforcers. Pharmacol Biochem Behav 2021; 205:173186. [PMID: 33836219 DOI: 10.1016/j.pbb.2021.173186] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 02/19/2021] [Accepted: 03/29/2021] [Indexed: 10/21/2022]
Abstract
Serotonin is widely implicated as a modulator of brain reward function. However, laboratory studies have not yielded a consensus on which specific reward-related processes are influenced by serotonin and in what manner. Here we explored the role of serotonin in cue-reward learning in mice. In a first series of experiments, we found that acute administration of the serotonin reuptake inhibitors citalopram, fluoxetine, or duloxetine all reduced lever pressing reinforced on an FR1 schedule with presentation of a cue that had been previously paired with delivery of food. However, citalopram had no effect on responding that was reinforced with both cue and food on an FR1 schedule. Furthermore, citalopram did not affect nose poke responses that produced no auditory, visual, or proprioceptive cues but were reinforced with food pellets on a progressive ratio schedule. We next performed region-specific knock out of tryptophan hydroxylase-2 (Tph2), the rate-limiting enzyme in serotonin synthesis. Viral delivery of Cre recombinase was targeted to dorsal or median raphe nuclei (DRN, MRN), the major sources of ascending serotonergic projections. MRN but not DRN knockouts were impaired in development of cue-elicited approach during Pavlovian conditioning; both groups were subsequently hyper-responsive when lever pressing for cue presentation. The inhibitory effect of citalopram was attenuated in DRN but not MRN knockouts. Our findings are in agreement with prior studies showing serotonin to suppress responding for conditioned reinforcers. Furthermore, these results suggest an inhibitory role of MRN serotonin neurons in the initial attribution of motivational properties to a reward-predictive cue, but not in its subsequent maintenance. In contrast, the DRN appears to promote the reduction of motivational value attached to a cue when it is presented repeatedly in the absence of primary reward.
Collapse
Affiliation(s)
- Ross A McDevitt
- Synaptic Plasticity Section, National Institute on Drug Abuse, Baltimore, MD, United States of America; Comparative Medicine Section, National Institute on Aging, Baltimore, MD, United States of America.
| | - Rosa Anna M Marino
- Synaptic Plasticity Section, National Institute on Drug Abuse, Baltimore, MD, United States of America; Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, MD, United States of America
| | - Hugo A Tejeda
- Synaptic Plasticity Section, National Institute on Drug Abuse, Baltimore, MD, United States of America; Neuromodulation and Synaptic Integration Unit, National Institute on Mental Health, Bethesda, MD, United States of America
| | - Antonello Bonci
- Global Institutes on Addictions, Miami, FL, United States of America
| |
Collapse
|
45
|
Abstract
This paper introduces a new construct, the 'pivotal mental state', which is defined as a hyper-plastic state aiding rapid and deep learning that can mediate psychological transformation. We believe this new construct bears relevance to a broad range of psychological and psychiatric phenomena. We argue that pivotal mental states serve an important evolutionary function, that is, to aid psychological transformation when actual or perceived environmental pressures demand this. We cite evidence that chronic stress and neurotic traits are primers for a pivotal mental state, whereas acute stress can be a trigger. Inspired by research with serotonin 2A receptor agonist psychedelics, we highlight how activity at this particular receptor can robustly and reliably induce pivotal mental states, but we argue that the capacity for pivotal mental states is an inherent property of the human brain itself. Moreover, we hypothesize that serotonergic psychedelics hijack a system that has evolved to mediate rapid and deep learning when its need is sensed. We cite a breadth of evidences linking stress via a variety of inducers, with an upregulated serotonin 2A receptor system (e.g. upregulated availability of and/or binding to the receptor) and acute stress with 5-HT release, which we argue can activate this primed system to induce a pivotal mental state. The pivotal mental state model is multi-level, linking a specific molecular gateway (increased serotonin 2A receptor signaling) with the inception of a hyper-plastic brain and mind state, enhanced rate of associative learning and the potential mediation of a psychological transformation.
Collapse
Affiliation(s)
- Ari Brouwer
- Centre for Psychedelic Research, Imperial College London, London, United Kingdom
| | | |
Collapse
|
46
|
|
47
|
Peters KZ, Cheer JF, Tonini R. Modulating the Neuromodulators: Dopamine, Serotonin, and the Endocannabinoid System. Trends Neurosci 2021; 44:464-477. [PMID: 33674134 DOI: 10.1016/j.tins.2021.02.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 12/04/2020] [Accepted: 02/01/2021] [Indexed: 12/23/2022]
Abstract
Dopamine (DA), serotonin (5-hydroxytryptamine, 5-HT), and endocannabinoids (ECs) are key neuromodulators involved in many aspects of motivated behavior, including reward processing, reinforcement learning, and behavioral flexibility. Among the longstanding views about possible relationships between these neuromodulators is the idea of DA and 5-HT acting as opponents. This view has been challenged by emerging evidence that 5-HT supports reward seeking via activation of DA neurons in the ventral tegmental area. Adding an extra layer of complexity to these interactions, the endocannabinoid system is uniquely placed to influence dopaminergic and serotonergic neurotransmission. In this review we discuss how these three neuromodulatory systems interact at the cellular and circuit levels. Technological advances that facilitate precise identification and control of genetically targeted neuronal populations will help to achieve a better understanding of the complex relationship between these essential systems, and the potential relevance for motivated behavior.
Collapse
Affiliation(s)
- Kate Z Peters
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD, USA.
| | - Joseph F Cheer
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 20 Penn Street, Baltimore, MD, USA; Department of Psychiatry, University of Maryland School of Medicine, Baltimore, MD, USA; Program in Neuroscience, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Raffaella Tonini
- Neuromodulation of Cortical and Subcortical Circuits Laboratory, Fondazione Istituto Italiano di Tecnologia, via Morego 30, Genova, Italy.
| |
Collapse
|
48
|
Mapping Large-Scale Networks Associated with Action, Behavioral Inhibition and Impulsivity. eNeuro 2021; 8:ENEURO.0406-20.2021. [PMID: 33509949 PMCID: PMC7920541 DOI: 10.1523/eneuro.0406-20.2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2020] [Revised: 01/06/2021] [Accepted: 01/08/2021] [Indexed: 02/06/2023] Open
Abstract
A key aspect of behavioral inhibition is the ability to wait before acting. Failures in this form of inhibition result in impulsivity and are commonly observed in various neuropsychiatric disorders. Prior evidence has implicated medial frontal cortex, motor cortex, orbitofrontal cortex (OFC), and ventral striatum in various aspects of inhibition. Here, using distributed recordings of brain activity [with local-field potentials (LFPs)] in rodents, we identified oscillatory patterns of activity linked with action and inhibition. Low-frequency (δ) activity within motor and premotor circuits was observed in two distinct networks, the first involved in cued, sensory-based responses and the second more generally in both cued and delayed actions. By contrast, θ activity within prefrontal and premotor regions (medial frontal cortex, OFC, ventral striatum, and premotor cortex) was linked with inhibition. Connectivity at θ frequencies was observed within this network of brain regions. Interestingly, greater connectivity between primary motor cortex (M1) and other motor regions was linked with greater impulsivity, whereas greater connectivity between M1 and inhibitory brain regions (OFC, ventral striatum) was linked with improved inhibition and diminished impulsivity. We observed similar patterns of activity on a parallel task in humans: low-frequency activity in sensorimotor cortex linked with action, θ activity in OFC/ventral prefrontal cortex (PFC) linked with inhibition. Thus, we show that δ and θ oscillations form distinct large-scale networks associated with action and inhibition, respectively.
Collapse
|
49
|
Sakurai K, Li H, Inamura N, Masuoka N, Hisatsune T. Relationship between elevated impulsivity and cognitive declines in elderly community-dwelling individuals. Sci Rep 2020; 10:21032. [PMID: 33273585 PMCID: PMC7713053 DOI: 10.1038/s41598-020-78124-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 11/20/2020] [Indexed: 12/16/2022] Open
Abstract
Impulse control disorders are recognized as one of the behavioral and psychological symptoms of dementia (BPSD). Majority of studies on the treatment of BPSD related to impulsivity have rather focused on the aggression and agitation. In particular, it has not been investigated how cognitive declines are associated with impulsivity in community-dwelling elderly people. Here, we have measured the cognitive and memory functions and impulsivity of 212 elderly community-dwelling people using a psychometric test battery and analyzed the correlation between their level of impulsivity and cognitive functions by multiple regression analysis. We found an elevation of impulsivity, which was evaluated by the Barratt Impulsiveness Scale-11, closely related to decline of cognitive functions, which were evaluated by the Montreal Cognitive Assessment and the Mini-Mental State Examination, and Logical Memory function, which were evaluated by the Wechsler Memory Scale-Delayed Recall. Then we have divided them into groups based on the severity of cognitive decline and conducted an analysis of each group, the result of which showed that as this tendency was particularly noticeable in the suspected dementia group. Therefore, we have concluded that heightened impulsivity is negatively associated with cognitive and memory functions in community-dwelling elderly people.
Collapse
Affiliation(s)
- Keisuke Sakurai
- Department of Integrated Biosciences, The University of Tokyo, Kashiwanoha 5-1-5, Biosciences Bldg., Room 402, Kashiwa, Chiba, 277-8562, Japan
| | - Haowei Li
- Department of Integrated Biosciences, The University of Tokyo, Kashiwanoha 5-1-5, Biosciences Bldg., Room 402, Kashiwa, Chiba, 277-8562, Japan
| | - Noriko Inamura
- Community Hearth Promotion Laboratory, Mitsui Fudosan, Co., Ltd, Kashiwa, Japan.,Urban Design Center Kashiwanoha (UDCK), Kashiwa, Japan
| | - Nobutaka Masuoka
- Department of Integrated Biosciences, The University of Tokyo, Kashiwanoha 5-1-5, Biosciences Bldg., Room 402, Kashiwa, Chiba, 277-8562, Japan
| | - Tatsuhiro Hisatsune
- Department of Integrated Biosciences, The University of Tokyo, Kashiwanoha 5-1-5, Biosciences Bldg., Room 402, Kashiwa, Chiba, 277-8562, Japan.
| |
Collapse
|
50
|
Abstract
Why do we run toward people we love, but only walk toward others? Why do people in New York seem to walk faster than other cities? Why do our eyes linger longer on things we value more? There is a link between how the brain assigns value to things, and how it controls our movements. This link is an ancient one, developed through shared neural circuits that on one hand teach us how to value things, and on the other hand control the vigor with which we move. As a result, when there is damage to systems that signal reward, like dopamine and serotonin, that damage not only affects our mood and patterns of decision making, but how we move. In this book, we first ask why in principle evolution should have developed a shared system of control between valuation and vigor. We then focus on the neural basis of vigor, synthesizing results from experiments that have measured activity in various brain structures and neuromodulators, during tasks in which animals decide how patiently they should wait for reward, and how vigorously they should move to acquire it. Thus, the way we move unmasks one of our well-guarded secrets: how much we value the thing we are moving toward.
Collapse
|