1
|
Granados-Galvan IA, Provencher JF, Mallory ML, De Silva A, Muir DCG, Kirk JL, Wang X, Letcher RJ, Loseto LL, Hamilton BM, Lu Z. Ultraviolet absorbents and industrial antioxidants in seabirds, mammals, and fish from the Canadian Arctic. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175693. [PMID: 39179045 DOI: 10.1016/j.scitotenv.2024.175693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
Ultraviolet (UV) absorbents and industrial antioxidants are two groups of plastic-derived contaminants of emerging environmental concern. However, their distribution and fate are poorly understood in Arctic wildlife. In the present study, 16 UV absorbents (10 benzotriazole UV stabilizers (BZT-UVs) and 6 organic UV filters (UVFs)) and 7 industrial antioxidants (6 aromatic secondary amines (Ar-SAs) and 2,6-di-tert-butylphenol (26DTBP)) were analyzed in the livers of thick-billed murre (Uria lomvia; n = 28), northern fulmar (Fulmarus glacialis; n = 4), black guillemot (Cepphus grylle; n = 11), polar bear (Ursus maritimus; n = 18), beluga whale (Delphinapterus leucas; n = 10), landlocked (n = 25) and sea-run (n = 10) Arctic char (Salvelinus alpinus) from the Canadian Arctic collected between 2017 and 2021. Compared to industrial antioxidants (median range: ΣAr-SAs: not calculated due to detection frequency < 30 % (NA)-4.06 ng/g, wet weight (ww); 26DTBP: NA-1.91 ng/g ww), UV absorbents (median range: ΣBZT-UVs: NA-8.71 ng/g ww; ΣUVFs: NA-48.3 ng/g ww) generally showed greater concentrations in the liver of these species. Seabirds accumulated higher levels of these contaminants (median range: ΣBZT-UVs: 3.38-8.71 ng/g ww; ΣUVFs: NA-48.3 ng/g ww; ΣAr-SAs: 0.07-4.06 ng/g ww; 26DTBP: NA-1.14 ng/g ww)) than the other groups (median range: ΣBZT-UVs: NA-1.31 ng/g ww; ΣUVFs: NA-4.22 ng/g ww; ΣAr-SAs: NA; 26DTBP: NA-1.91 ng/g ww), suggesting that seabirds may be useful indicator species for future long-term monitoring. The livers of Arctic char in the Canadian Arctic generally contain lower levels of these contaminants than those of freshwater fish in temperate regions. Spatial variations were found in the liver of black guillemots, Hudson Bay polar bears, and landlocked char for some target contaminants, indicating differences in the levels of these contaminants in their surrounding environment or diet. Consumption of liver tissues from these species may expose humans to varying levels of UV absorbents and industrial antioxidants. This study establishes a baseline for future research of the spatial and temporal trends of these contaminants in Arctic species. It provides the basis for elucidating the fate of these contaminants and assessing their adverse effects at environmental-relevant concentrations in the Arctic. Factors influencing the accumulation patterns of these contaminants in Arctic biota and their potential health risks require further investigation.
Collapse
Affiliation(s)
| | - Jennifer F Provencher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Carleton University, Ottawa, Ontario K1A 0H3, Canada
| | - Mark L Mallory
- Department of Biology, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Amila De Silva
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Derek C G Muir
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Jane L Kirk
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Xiaowa Wang
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario L7S 1A1, Canada
| | - Robert J Letcher
- Ecotoxicology and Wildlife Health Division, Environment and Climate Change Canada, Carleton University, Ottawa, Ontario K1A 0H3, Canada
| | - Lisa L Loseto
- Arctic Aquatic Research Division, Fisheries and Oceans Canada, Winnipeg, Manitoba R3T 2N6, Canada
| | - Bonnie M Hamilton
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, Ontario M5S 3B2, Canada
| | - Zhe Lu
- Institut des Sciences de la Mer, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada.
| |
Collapse
|
2
|
Bridson JH, Masterton H, Knight B, Paris CF, Abbel R, Northcott GL, Gaw S. Quantification of additives in beached plastic debris from Aotearoa New Zealand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175251. [PMID: 39098406 DOI: 10.1016/j.scitotenv.2024.175251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 07/18/2024] [Accepted: 08/01/2024] [Indexed: 08/06/2024]
Abstract
Plastics have become an essential part of modern society. Their properties can be easily manipulated by incorporating additives to impart desirable attributes, such as colour, flexibility, or stability. However, many additives are classified as hazardous substances. To better understand the risk of plastic pollution within marine ecosystems, the type and concentration of additives in plastic debris needs to be established. We report the quantification of thirty-one common plastic additives (including plasticisers, antioxidants, and UV stabilisers) in beached plastic debris collected across Aotearoa New Zealand. Additives were isolated from the plastic debris by solvent extraction and quantified using high-resolution liquid chromatography-mass spectrometry. Twenty-five of the target additives were detected across 200 items of debris, with plasticisers detected at the highest frequency (99 % detection frequency). Additives were detected in all samples, with a median of four additives per debris item. A significantly higher number of additives were detected per debris item for polyvinyl chloride (median = 7) than polyethylene or polypropylene (median = 4). The additives bis(2-ethylhexyl) phthalate, diisononyl phthalate, diisodecyl phthalate, and antioxidant 702 were detected at the highest concentrations (up to 196,930 μg/g). The sum concentration of additives per debris item (up to 320,325 μg/g) was significantly higher in polyvinyl chloride plastics (median 94,716 μg/g) compared to other plastic types, primarily due to the presence of phthalate plasticisers. Non-target analysis was consistent with the targeted analysis, indicating a higher number and concentration of additives in polyvinyl chloride debris items compared to all other polymer types. Feature identification indicated the presence of more additives than previously detected in the targeted analysis, including plasticisers (phthalate and non-phthalate), processing aids, and nucleating agents. This study highlights phthalates and polyvinyl chloride as key targets for consideration in ecotoxicology and risk assessments, and the development of policies to reduce the impacts of plastic pollution.
Collapse
Affiliation(s)
- James H Bridson
- Scion, Titokorangi Drive, Rotorua 3046, New Zealand; School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand.
| | - Hayden Masterton
- Institute of Environmental Science and Research, Christchurch 8041, New Zealand; School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand
| | - Ben Knight
- Sustainable Coastlines, Wynyard Quarter, Auckland 1010, New Zealand
| | | | - Robert Abbel
- Scion, Titokorangi Drive, Rotorua 3046, New Zealand
| | - Grant L Northcott
- Northcott Research Consultants Limited, 20 River Oaks Place, Hamilton 3200, New Zealand
| | - Sally Gaw
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand
| |
Collapse
|
3
|
Gallo L, Serafini PP, Vanstreels RET, Tamini LL, Kolesnikovas CKM, Pereira A, Neves T, Nascimento GD, Rodriguez Pirani LS, Picone AL, Romano RM, Alvarez CK, Rodriguez Heredia SA, Chavez LN, Dellacasa RF, Uhart MM. High frequency of plastic ingestion in procellariiform seabirds (albatrosses, petrels and shearwaters) in the Southwest Atlantic Ocean. MARINE POLLUTION BULLETIN 2024; 209:117094. [PMID: 39486193 DOI: 10.1016/j.marpolbul.2024.117094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 09/17/2024] [Accepted: 10/02/2024] [Indexed: 11/04/2024]
Abstract
Ocean pollution by plastics is a growing concern for marine wildlife conservation, and seabirds are particularly prone to ingest plastics. We report baseline information on plastic ingestion in 17 procellariiform species along the coast of Brazil and Argentina. Through a collaborative regional effort we found plastic items in 30.2 % of seabird carcasses examined (n = 192), comprised predominantly by mesoplastics (5-25 mm), user plastics, polypropylene, polystyrene and polyethylene. Considering the most representative source-site cohorts, the frequency of occurrence of plastic items varied significantly between sampling site and source of carcasses. Ingestion was highest in petrels and shearwaters. Immature birds ingested the largest number (and total mass) of plastic items followed by chicks and adults. Long-term programs applying standardized sampling protocols are needed to detect spatiotemporal patterns of plastic ingestion across species, and assess the potential effectiveness of remediation actions. Further studies are necessary to assess currently unrecognized health effects of plastic ingestion.
Collapse
Affiliation(s)
- Luciana Gallo
- Instituto de Biología de Organismos Marinos, Consejo Nacional de Investigaciones Científicas y Técnicas, Puerto Madryn, Chubut, Argentina; Coordinación Regional de Inocuidad y Calidad Agroalimentaria, Regional Patagonia Sur, Servicio Nacional de Sanidad y Calidad Agroalimentaria, Puerto Madryn, Chubut, Argentina.
| | - Patricia P Serafini
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil; Centro Nacional de Pesquisa e Conservação de Aves Silvestres, Instituto Chico Mendes de Conservação da Biodiversidade, Florianópolis, Santa Catarina, Brazil
| | - Ralph E T Vanstreels
- Instituto de Pesquisa e Reabilitação de Animais Marinhos, Cariacica, Epirito Santo, Brazil; Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, USA
| | - Leandro L Tamini
- Programa Marino, Aves Argentinas and BirdLife International, Buenos Aires, Argentina
| | | | | | | | - Gabriel D Nascimento
- Laboratório de Biomarcadores de Contaminação Aquática e Imunoquímica, Universidade Federal de Santa Catarina, Florianópolis, Santa Catarina, Brazil
| | - Lucas S Rodriguez Pirani
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - A Lorena Picone
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | - Rosana M Romano
- CEQUINOR (UNLP, CCT-CONICET La Plata, associated with CIC), Departamento de Química, Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata, Argentina
| | | | | | - Leandro N Chavez
- Programa Marino, Aves Argentinas and BirdLife International, Buenos Aires, Argentina
| | - Ruben F Dellacasa
- Programa Marino, Aves Argentinas and BirdLife International, Buenos Aires, Argentina
| | - Marcela M Uhart
- Karen C. Drayer Wildlife Health Center, School of Veterinary Medicine, University of California, Davis, USA
| |
Collapse
|
4
|
Menger F, Römerscheid M, Lips S, Klein O, Nabi D, Gandrass J, Joerss H, Wendt-Potthoff K, Bedulina D, Zimmermann T, Schmitt-Jansen M, Huber C, Böhme A, Ulrich N, Beck AJ, Pröfrock D, Achterberg EP, Jahnke A, Hildebrandt L. Screening the release of chemicals and microplastic particles from diverse plastic consumer products into water under accelerated UV weathering conditions. JOURNAL OF HAZARDOUS MATERIALS 2024; 477:135256. [PMID: 39106725 DOI: 10.1016/j.jhazmat.2024.135256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 07/15/2024] [Accepted: 07/17/2024] [Indexed: 08/09/2024]
Abstract
Photodegradation of plastic consumer products is known to accelerate weathering and facilitate the release of chemicals and plastic particles into the aquatic environment. However, these processes are complex. In our presented pilot study, eight plastic consumer products were leached in distilled water under strong ultraviolet (UV) light simulating eight months of Central European climate and compared to their respective dark controls (DCs). The leachates and formed plastic particles were exploratorily characterized using a range of chemical analytical tools to describe degradation and leaching processes. These techniques covered (a) microplastic analysis, showing substantial liberation of plastic particles further increased under UV exposure, (b) non-targeted mass spectrometric characterization of the leachates, revealing several hundreds of chemical features with typically only minor agreement between the UV exposure and the corresponding DCs, (c) target analysis of 71 organic analytes, of which 15 could be detected in at least one sample, and (d) metal(loid) analysis, which revealed substantial release of toxic metal(loid)s further enhanced under UV exposure. A data comparison with the US-EPA's ToxVal and ToxCast databases showed that the detected metals and organic additives might pose substantial health and environmental concerns, requiring further study and comprehensive impact assessments.
Collapse
Affiliation(s)
- Frank Menger
- Department of Organic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck Straße 1, 21502 Geesthacht, Germany
| | - Mara Römerscheid
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Stefan Lips
- Department of Ecotoxicology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Ole Klein
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Deedar Nabi
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
| | - Jürgen Gandrass
- Department of Organic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck Straße 1, 21502 Geesthacht, Germany
| | - Hanna Joerss
- Department of Organic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck Straße 1, 21502 Geesthacht, Germany
| | - Katrin Wendt-Potthoff
- Department of Lake Research, Helmholtz-Centre for Environmental Research - UFZ, Brueckstr. 3 a, 39114 Magdeburg, Germany
| | - Daria Bedulina
- Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research (AWI), Am Handelshafen 12, 27570 Bremerhaven, Germany
| | - Tristan Zimmermann
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Mechthild Schmitt-Jansen
- Department of Ecotoxicology, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Carolin Huber
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Alexander Böhme
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Nadin Ulrich
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany
| | - Aaron J Beck
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
| | - Daniel Pröfrock
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany
| | - Eric P Achterberg
- GEOMAR Helmholtz Centre for Ocean Research Kiel, Wischhofstr. 1-3, 24148 Kiel, Germany
| | - Annika Jahnke
- Department of Exposure Science, Helmholtz-Centre for Environmental Research - UFZ, Permoserstr. 15, 04318 Leipzig, Germany; Institute for Environmental Research, RWTH Aachen University, 52047 Aachen, Germany.
| | - Lars Hildebrandt
- Department for Inorganic Environmental Chemistry, Helmholtz-Zentrum Hereon, Max-Planck-Str. 1, 21502 Geesthacht, Germany.
| |
Collapse
|
5
|
Takano T, Sakurai R, Ota M, Nakaoka M, Kinjo A, Inoue K, Takada H, Mizukawa K. Dietary exposure experiments on the migration of chemical pollutants from microplastics to bivalves. MARINE POLLUTION BULLETIN 2024; 206:116740. [PMID: 39059217 DOI: 10.1016/j.marpolbul.2024.116740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Plastics can contain two types of organic contaminants; absorbed from ambient water, and already contained as additives. To investigate the bioaccumulation of these substances, we conducted two types of exposure experiments using mussels and polyethylene microplastics with absorbed PCBs and containing four types of additives (BDE209, DBDPE, UV327 and UV234). After dietary exposure for 15 days, significantly higher concentrations of total PCBs, UV327 and UV234 were detected in the gonad of exposed groups than in the control groups, respectively. However, no significant differences in BDE209 or DBDPE levels were observed between the control and exposure groups. Although a higher transfer ratio was shown for PCB congeners with octanol-water partition coefficients (logKow) below 7, the ratio was lower for higher-hydrophobic PCBs with logKow above 7. This suggests that higher hydrophobic compounds (not only highly chlorinated PCBs, but also BDE209 and DBDPE) tend not to desorb or leach from plastics.
Collapse
Affiliation(s)
- Taichi Takano
- Laboratory of Organic Geochemistry, Tokyo University of Agriculture and Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Rei Sakurai
- Laboratory of Organic Geochemistry, Tokyo University of Agriculture and Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Mone Ota
- Akkeshi Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Akkeshi, Hokkaido 088-1113, Japan
| | - Masahiro Nakaoka
- Akkeshi Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Akkeshi, Hokkaido 088-1113, Japan
| | - Azusa Kinjo
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Koji Inoue
- Atmosphere and Ocean Research Institute, The University of Tokyo, 5-1-5 Kashiwanoha, Kashiwa, Chiba 277-8564, Japan
| | - Hideshige Takada
- Laboratory of Organic Geochemistry, Tokyo University of Agriculture and Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Kaoruko Mizukawa
- Laboratory of Organic Geochemistry, Tokyo University of Agriculture and Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
6
|
Fukuoka T, Mizukawa K, Kondo S, Kitayama C, Kobayashi S, Watanabe G, Takada H. Detection of benzotriazole-type ultraviolet stabilizers in sea turtles breeding in the Northwest Pacific Ocean. MARINE POLLUTION BULLETIN 2024; 206:116753. [PMID: 39089205 DOI: 10.1016/j.marpolbul.2024.116753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/16/2024] [Accepted: 07/17/2024] [Indexed: 08/03/2024]
Abstract
Benzotriazole-type ultraviolet stabilizers (BUVSs) are emerging contaminants whose exposure to wildlife is of concern. In this study, we investigated the contamination status of BUVSs in green turtles (Chelonia mydas) breeding at Ogasawara Islands, Japan, through chemical analysis of 10 BUVSs and 26 congeners of polychlorinated biphenyls (PCBs) in adipose tissue (n = 21) and blood plasma (n = 9). BUVSs were detected significant levels in adipose tissue (19 of 21 turtles), and UV-327 (not detected - 14.8 ng/g-lipid, detection frequency: 76 %), UV-326 (not detected - 24.1 ng/g-lipid, 29 %), and UV-328 (not detected - 5.8 ng/g-lipid, 24 %) were frequently detected. Turtles exhibiting sporadically high concentrations of BUVSs (>10 ng/g-lipid) did not necessarily correspond to individuals with high total PCB concentrations (1.03-70.2 ng/g-lipid). The sporadic occurrence pattern of BUVSs suggested that these contaminants in sea turtles cannot be explained solely by diet but are likely derived from plastic debris.
Collapse
Affiliation(s)
- Takuya Fukuoka
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan; Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Chiba 277-8564, Japan
| | - Kaoruko Mizukawa
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-0054, Japan.
| | - Satomi Kondo
- Everlasting Nature of Asia (ELNA), Ogasawara Marine Center, Ogasawara, Tokyo 100-2101, Japan
| | - Chiyo Kitayama
- Everlasting Nature of Asia (ELNA), Ogasawara Marine Center, Ogasawara, Tokyo 100-2101, Japan; Everlasting Nature of Asia (ELNA), Yokohama, Kanagawa 221-0822, Japan
| | - Shohei Kobayashi
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-0054, Japan
| | - Gen Watanabe
- Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-0054, Japan; Laboratory of Veterinary Physiology, Institute of Agriculture, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-0054, Japan
| | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan; Institute of Global Innovation Research, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-0054, Japan
| |
Collapse
|
7
|
Sondermann NC, Momin AA, Arold ST, Haarmann-Stemmann T. Benzotriazole UV stabilizers disrupt epidermal growth factor receptor signaling in human cells. ENVIRONMENT INTERNATIONAL 2024; 190:108886. [PMID: 39024829 DOI: 10.1016/j.envint.2024.108886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/20/2024]
Abstract
Phenolic benzotriazole UV stabilizers (BUV) are commonly used additives in synthetic polymeric products, which constantly leak into the environment. They are persistent and bioaccumulative, and have been detected not only in fish, birds, and sea mammals, but also in humans, including breast milk samples. Several authorities including the European Chemical Agency already consider some BUVs as Substances of Very High Concern in need of further information, e.g. mechanistical studies and biomonitoring. In this study, we are addressing this need by investigating the effect of several BUVs on the activity of the human epidermal growth factor receptor (EGFR), an important regulator of cellular processes that has recently been identified as a cell-surface receptor for environmental organic chemicals. By combining in silico docking, mutant analyses, receptor binding and internalization assays, we demonstrate that BUVs, particularly the chlorinated variants, bind to the extracellular domain of EGFR and thereby prevent the binding of growth factors. Accordingly, BUVs can inhibit EGFR downstream events, such as ERK1/2 phosphorylation and DNA synthesis, in human keratinocytes. Our data establish EGFR as a plasma membrane receptor for BUVs, offering novel mechanistic insights into the biological effects induced by these widespread and persistent chemicals. The findings of this study may not only improve hazard assessment for BUVs, but also contribute to the development of novel EGFR-targeting drugs.
Collapse
Affiliation(s)
- Natalie C Sondermann
- IUF - Leibniz-Research Institute for Environmental Medicine, 40225 Düsseldorf, Germany
| | - Afaque A Momin
- Biological and Environmental Science and Engineering Division, Center of Excellence on Smart Health, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Stefan T Arold
- Biological and Environmental Science and Engineering Division, Center of Excellence on Smart Health, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | | |
Collapse
|
8
|
Yamahara S, Viyakarn V, Chavanich S, Bureekul S, Isobe A, Nakata H. Open dumping site as a point source of microplastics and plastic additives: A case study in Thailand. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 948:174827. [PMID: 39047819 DOI: 10.1016/j.scitotenv.2024.174827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/27/2024]
Abstract
Microplastics (MPs) and plastic additive chemicals are emerging pollutants of great concerns around the world. Open dumping sites can be important sources of those pollutants in emerging countries, but little is known about their occurrence, distribution, transport pathway, and remediation approach. This study aimed to obtain the comprehensive dataset on plastic pollution in an open dumping site in Thailand, including (1) the polymer types and organic/inorganic plastic additives in plastic garbage, (2) horizontal distribution of MPs and plastic additives in the surface soil, (3) the effects of soil-capping treatment, and (4) the vertical transport. First, thirty-two plastic garbage collected from the dumping site were analyzed, and a total of 40 organic chemicals (mean: 1400,000 ng/g dw) and 7 heavy metals (mean: 2,030,000 ng/g dw) were identified. The burdens stored in the dumping site were estimated to reach to 3.3-18 tons for organic additives and 4.9-26 tons for heavy metals. In the surface soil analysis, 13 types of polymers in MPs, 20 elements, and 37 organic plastic additives were detected. The pollution levels were significantly higher near the dumping site than at control sites, indicating that the open dumping site is a point source of MPs and plastic additives. Interestingly, a significantly positive correlation was found between the concentrations of MPs and organic additives in soil. This suggests that MPs act as carriers of plastic-derived chemicals. Soil-capping treatment (including removal of some trash) drastically mitigated the contaminant levels in the surface soil, indicating this treatment is one of the effective approaches to control the horizontal distribution of MPs and plastic additives. However, soil core analyzes implied that the vertical transport is still continued even after soil-capping treatment. Our findings provided the comprehensive dataset to support for understanding plastic pollution in the open dumping site.
Collapse
Affiliation(s)
- Shinnosuke Yamahara
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Voranop Viyakarn
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Aquatic Resources Research Institute, Chulalongkorn University, 254, Institute Building No. 3, 9th floor, Wang Mai Sub District Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Suchana Chavanich
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand; Aquatic Resources Research Institute, Chulalongkorn University, 254, Institute Building No. 3, 9th floor, Wang Mai Sub District Phayathai Road, Patumwan, Bangkok 10330, Thailand
| | - Sujaree Bureekul
- Department of Marine Science, Faculty of Science, Chulalongkorn University, Phayathai Road, Pathumwan, Bangkok 10330, Thailand
| | - Atsuhiko Isobe
- Research Institute for Applied Mechanics, Kyushu University, 6-1 Kasuga-Koen, Kasuga 816-8580, Japan; Center for Ocean Plastic Studies, Kyushu University, CU Research Building, Bangkok 10330, Thailand
| | - Haruhiko Nakata
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-Ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
9
|
Yamahara S, Kubota R, Tun TZ, Nakata H. Source traceability of microplastics in road dust using organic/inorganic plastic additives as chemical indicators. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172808. [PMID: 38719051 DOI: 10.1016/j.scitotenv.2024.172808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2024] [Revised: 04/22/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024]
Abstract
Microplastics (MPs) are environmental pollutants of great concern around the world. The source of MPs in road dust need to be identified to develop strategies to control and reduce MPs emissions by stormwater runoff, one of the main sources of MPs to the aquatic environment. However, little information on the sources of MPs in road dust is available due to lack of their suitable indicators. In this study organic/inorganic plastic additives were used as chemical indicators to understand the source of MPs in road dust. The polymers, organic additives, and heavy metals in 142 commercial plastic products suspected of being source of MPs in road dust were determined. As the results, 147 organic additives and 17 heavy metals were identified, and different additive profiles were found for different polymer types and use application of plastic products. Further, 17 road dust samples were collected from an urban area in Kumamoto City, Japan. and analyzed the MPs (1-5 mm diameter) and their additive chemicals. Polymethyl methacrylate (PMMA) was the dominant polymer accounting for 86 % in the samples, followed by ethylene vinyl acetate (EVA) and polyvinyl chloride (PVC). In total, 48 organic additives and 14 heavy metals were identified in the MPs samples. The organic/inorganic additive profiles of plastic products and MPs in road dust were compared, and several road dust-associated MPs had similar additive profiles to road paints, braille blocks, road marking sheets, and reflectors. This suggested that the MPs were originated from these plastics on the road surface. Road paint was the most important contributor of MPs in road dust (60 % of the MPs), followed by braille block (23 %), road marking sheet (8.3 %), and reflector (2.4 %). These results indicated that organic/inorganic plastic additives in plastic products can be used as chemical indicators to trace the sources of MPs in road dust.
Collapse
Affiliation(s)
- Shinnosuke Yamahara
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Reiji Kubota
- Division of Environmental Chemistry, National Institute of Health Science, 3-25-26 Tonomochi, Kawasaki-ku, Kanagawa 210-9501, Japan
| | - Thant Zin Tun
- Graduate School of Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan
| | - Haruhiko Nakata
- Faculty of Advanced Science and Technology, Kumamoto University, 2-39-1 Kurokami, Chuo-ku, Kumamoto 860-8555, Japan.
| |
Collapse
|
10
|
Yu J, Chen J, Li Q, Ren P, Tang Y, Huang R, Lu Y, Chen K. Toxicity and fate of cadmium in hydroponically cultivated lettuce (Lactuca sativa L.) influenced by microplastics. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 278:116422. [PMID: 38705040 DOI: 10.1016/j.ecoenv.2024.116422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/02/2024] [Accepted: 04/30/2024] [Indexed: 05/07/2024]
Abstract
Although more attention has been paid to microplastics (MPs) pollution in environment, research on the synthetic influence of microplastic and heavy metals remains limited. To help fill this information gap, we investigated the adsorption behavior of virgin polyvinyl chloride microplastics (PVCMPs) (≤450 µm white spherical powder) on cadmium (II). The effects on seed germination, seedling growth, photosynthetic system, oxidative stress indicators of lettuce, and changes in Cd bioavailability were evaluated under Cd2+ (25 μmol/L), PVCMPs (200 mg/L), and PVCMP-Cd combined (200 mg/L + 25 μmol/L) exposures in hydroponic system. The results demonstrated that the PVCMPs effectively adsorbed Cd ions, which validated by the pseudo-second-order kinetic and the Langmuir isotherm models, indicating the sorption of Cd2+ on the PVCMPs was primary chemisorption and approximates monomolecular layer sorption. Compared to MPs, Cd significantly inhibits plant seed germination and seedling growth and development. However, Surprising improvement in seed germination under PVCMPs-Cd exposure was observed. Moreover, Cd2+ and MPs alone or combined stress caused oxidative stress with reactive oxygen species (ROS) including H2O2, O2- and Malondialdehyde (MDA) accumulation in plants, and substantially damaged to photosynthesis. With the addition of PVCMPs, the content of Cd in the leaves significantly (P<0.01) decreased by 1.76-fold, and the translocation factor and Cd2+removal rate in the water substantially (P<0.01) decreased by 6.73-fold and 1.67-fold, respectively in contrast to Cd2+ stress alone. Therefore, it is concluded the PVCMP was capable of reducing Cd contents in leaves, alleviating Cd toxicity in lettuce. Notably, this study provides a scientific foundation and reference for comprehending the toxicological interactions between microplastics and heavy metals in the environment.
Collapse
Affiliation(s)
- Jiadie Yu
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Juelin Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Qiong Li
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Peng Ren
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Yunlai Tang
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China
| | - Renhua Huang
- College of Biological Engineering, Jingchu University of Technology, Jingmen, Hubei 448000, PR China
| | - Yunmei Lu
- College of Biological Engineering, Jingchu University of Technology, Jingmen, Hubei 448000, PR China.
| | - Ke Chen
- School of Life Science and Engineering, Southwest University of Science and Technology, Mianyang, Sichuan 621010, PR China.
| |
Collapse
|
11
|
Wei L, Li J, Wang Z, Wu J, Wang S, Cai Z, Lu Y, Su C. Evaluating effects of tetrabromobisphenol A and microplastics on anaerobic granular sludge: Physicochemical properties, microbial metabolism, and underlying mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 359:121077. [PMID: 38718604 DOI: 10.1016/j.jenvman.2024.121077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 04/07/2024] [Accepted: 04/30/2024] [Indexed: 05/22/2024]
Abstract
Tetrabromobisphenol A (TBBPA) and microplastics are emerging contaminants of widespread concern. However, little is known about the effects of combined exposure to TBBPA and microplastics on the physicochemical properties and microbial metabolism of anaerobic granular sludge. This study investigated the effects of TBBPA, polystyrene microplastics (PS MP) and polybutylene succinate microplastics (PBS MP) on the physicochemical properties, microbial communities and microbial metabolic levels of anaerobic granular sludge. The results showed that chemical oxygen demand (COD) removal of sludge was lowest in the presence of TBBPA alone and PS MP alone with 33.21% and 30.06%, respectively. The microorganisms promoted the secretion of humic substances under the influence of TBBPA, PS MP and PBS MP. The lowest proportion of genes controlling glycolytic metabolism in sludge was 1.52% when both TBBPA and PS MP were added. Microbial reactive oxygen species were increased in anaerobic granular sludge exposed to MPS. In addition, TBBPA treatment decreased electron transfer of the anaerobic granular sludge and disrupted the pathway of anaerobic microorganisms in acquiring adenosine triphosphate, and MPs attenuated the negative effects of TBBPA on the acetate methanogenesis process of the anaerobic granular sludge. This study provides a reference for evaluating the impact of multiple pollutants on anaerobic granular sludge.
Collapse
Affiliation(s)
- Lixin Wei
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Junjian Li
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Zi Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Jinyan Wu
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Shuying Wang
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Zhexiang Cai
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China
| | - Yuxiang Lu
- Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China
| | - Chengyuan Su
- Guangxi Key Laboratory of Environmental Processes and Remediation in Ecologically Fragile Regions, Guangxi Normal University, 15 Yucai Road, Guilin, 541004, PR China; Key Laboratory of Ecology of Rare and Endangered Species and Environmental Protection (Guangxi Normal University), Ministry of Education, 15 Yucai Road, Guilin, 541004, PR China.
| |
Collapse
|
12
|
Collard F, Tulatz F, Harju M, Herzke D, Bourgeon S, Gabrielsen GW. Can plastic related chemicals be indicators of plastic ingestion in an Arctic seabird? CHEMOSPHERE 2024; 355:141721. [PMID: 38522675 DOI: 10.1016/j.chemosphere.2024.141721] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 03/12/2024] [Accepted: 03/13/2024] [Indexed: 03/26/2024]
Abstract
For decades, the northern fulmar (Fulmarus glacialis) has been found to ingest and accumulate high loads of plastic due to its feeding ecology and digestive tract morphology. Plastic ingestion can lead to both physical and toxicological effects as ingested plastics can be a pathway for hazardous chemicals into seabirds' tissues. Many of these contaminants are ubiquitous in the environment and the contribution of plastic ingestion to the uptake of those contaminants in seabirds' tissues is poorly known. In this study we aimed at quantifying several plastic-related chemicals (PRCs) -PBDE209, several dechloranes and several phthalate metabolites- and assessing their relationship with plastic burdens (both mass and number) to further investigate their potential use as proxies for plastic ingestion. Blood samples from fulmar fledglings and liver samples from both fledgling and non-fledgling fulmars were collected for PRC quantification. PBDE209 and dechloranes were quantified in 39 and 33 livers, respectively while phthalates were quantified in plasma. Plastic ingestion in these birds has been investigated previously and showed a higher prevalence in fledglings. PBDE209 was detected in 28.2 % of the liver samples. Dechlorane 602 was detected in all samples while Dechloranes 601 and 604 were not detected in any sample. Dechlorane 603 was detected in 11 individuals (33%). Phthalates were detected in one third of the analysed blood samples. Overall, no significant positive correlation was found between plastic burdens and PRC concentrations. However, a significant positive relationship between PBDE209 and plastic number was found in fledglings, although likely driven by one outlier. Our study shows the complexity of PRC exposure, the timeline of plastic ingestion and subsequent uptake of PRCs into the tissues in birds, the additional exposure of these chemicals via their prey, even in a species ingesting high loads of plastic.
Collapse
Affiliation(s)
- France Collard
- Norwegian Polar Institute (NPI), Fram Centre, N-9296, Tromsø, Norway; Norwegian Institute for Water Research (NIVA), Fram Centre, N-9296, Tromsø, Norway.
| | - Felix Tulatz
- Norwegian Polar Institute (NPI), Fram Centre, N-9296, Tromsø, Norway
| | - Mikael Harju
- The Climate and Environmental Research Institute (NILU), Fram Centre, N-9296, Tromsø, Norway
| | - Dorte Herzke
- The Climate and Environmental Research Institute (NILU), Fram Centre, N-9296, Tromsø, Norway
| | - Sophie Bourgeon
- Department of Arctic and Marine Biology, The Arctic University of Norway (UiT), N-9037, Tromsø, Norway
| | - Geir W Gabrielsen
- Norwegian Polar Institute (NPI), Fram Centre, N-9296, Tromsø, Norway
| |
Collapse
|
13
|
Lyu Y, He Y, Li Y, Tang Z. Tissue-specific distributions of organic ultraviolet absorbents in free-range chickens and domestic pigeons from Guangzhou, China. ENVIRONMENTAL RESEARCH 2024; 246:118108. [PMID: 38184061 DOI: 10.1016/j.envres.2024.118108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 01/02/2024] [Accepted: 01/03/2024] [Indexed: 01/08/2024]
Abstract
The ecological risks of organic ultraviolet absorbents (UVAs) have been of increasing concern. Studies have found that these chemicals could be accumulated in terrestrial animals and pose toxicities. However, tissue distribution of UVAs in terrestrial species was far from well understood. In this study, free-range chickens and domestic pigeons were selected to investigate the occurrence and tissue distribution of UVAs. Total concentrations of eleven UVAs in muscles ranged from 778 to 2874 (mean 1413 ± 666) ng/g lipid weight, which were higher than those in aquatic species worldwide. Since low UVA concentrations in local environment were previously reported, the results implied the strong accumulation of UVAs in studied species. Brain, stomach and kidney were main target organs for studied UVAs, differentiating from the strong liver sequestration in aquatic species. The mean tissue-to-muscle ratios of 1.02-4.23 further indicated the preferential accumulation of target UVAs in these tissues. The tissue-to-blood ratios of benzophenone (BP), 2-ethylhexyl salicylate (EHS) and homosalate (HMS) in brain were 370, 1207 and 52.0, respectively, implying their preferential accumulation in brain. More research is needed to characterize the toxicokinetics and tissue distribution of UVAs in terrestrial wild species, in order to further understand their potential risks.
Collapse
Affiliation(s)
- Yang Lyu
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, PR China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, PR China; Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, PR China.
| | - Ying He
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, PR China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, PR China.
| | - Yonghong Li
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, PR China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, PR China.
| | - Zhenwu Tang
- Key Laboratory of Ecology and Environment in Minority Areas (Minzu University of China), National Ethnic Affairs Commission, Beijing, 100081, PR China; College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, PR China.
| |
Collapse
|
14
|
Veríssimo SN, Cunha SC, Fernandes JO, Casero M, Ramos JA, Norte AC, Paiva VH. Dynamics and effects of plastic contaminants' assimilation in gulls. MARINE ENVIRONMENTAL RESEARCH 2024; 196:106396. [PMID: 38341982 DOI: 10.1016/j.marenvres.2024.106396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/15/2024] [Accepted: 02/05/2024] [Indexed: 02/13/2024]
Abstract
Polybrominated diphenyl ethers are persistent disrupters assimilated by organisms, yet little is known about their link to plastic ingestion and health effects. In an experiment, two groups of yellow-legged/lesser black-backed gulls (Larus michahellis/Larus fuscus) were fed plastics with BDE99 to assess leaching into brain, preen oil, liver and fat tissues and evaluate effects on health and stress parameters. Although most plastic was regurgitated, we observed a clear relation between plastic ingestion and chemical leaching. BDE99 exhibited higher levels in brain tissue of gulls from the plastic groups. Also, only values of cholinesterases measured in plasma were significantly reduced in the 'plastic' groups. Cholinesterase activity in the brain also tended to decrease, suggesting a negative effect in gulls' neurofunction. Results indicate that chemical leaching occurs, even when plastics stay in the stomach for a short period of time and showed that this can affect gulls' health.
Collapse
Affiliation(s)
- Sara N Veríssimo
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal.
| | - Sara C Cunha
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - José O Fernandes
- LAQV-REQUIMTE, Laboratory of Bromatology and Hydrology, Faculty of Pharmacy, University of Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - María Casero
- Wildlife Rehabilitation and Investigation Center (RIAS) - Associação ALDEIA, Ria Formosa Natural Park, Olhão, Portugal
| | - Jaime A Ramos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Ana C Norte
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| | - Vitor H Paiva
- University of Coimbra, MARE - Marine and Environmental Sciences Centre / ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456, Coimbra, Portugal
| |
Collapse
|
15
|
Puskic PS, Slocombe R, Ploeg R, Roman L, Lea MA, Hutton I, Bridle AR. Exploring the pathology of liver, kidney, muscle, and stomach of fledgling seabirds associated with plastic ingestion. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133306. [PMID: 38147759 DOI: 10.1016/j.jhazmat.2023.133306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/12/2023] [Accepted: 12/15/2023] [Indexed: 12/28/2023]
Abstract
There remain significant gaps in knowledge about 'sub-lethal' impacts of plastic ingestion, particularly chronic impacts on cells, tissues, or organs. Few studies have applied traditional animal health tools, such as histopathology, to assess physiological damage to wildlife, with fewer still providing information on the dosage or exposure to plastics needed to elicit negative effects. Our study seeks to investigate a common hypothesis in plastic pollution research; that an increasing plastics burden will have an impact on an animal's health, examining two wild species with high levels of environmental exposure to plastic through their diet. Here we assess the histopathology of the muscle, upper digestive tract, liver and kidney of two seabird species that are known to be commonly exposed to plastic, comparing exposed and non-exposed individuals. Fledgling seabirds showed histopathological evidence of cumulative pressures such as starvation, disease, and endoparasite burden. However, we observed no evidence of chronic harm that could be explicitly linked to the plastics. We found one case of haemorrhage, reaffirming that large/sharp plastic foreign bodies may cause acute physical damage. Given the numerous interacting pressures on the health of fledging seabirds, including exposure to plastic, this study highlights the need to scrutinise plastic-animal interactions and research though a One Health lens.
Collapse
Affiliation(s)
- Peter S Puskic
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia; Centre for Marine Sociology, University of Tasmania, Hobart, Tasmania, Australia.
| | - Ron Slocombe
- Faculty of Veterinary and Agricultural Sciences, The University Melbourne, Werribee, Victoria, Australia
| | - Richard Ploeg
- Faculty of Veterinary and Agricultural Sciences, The University Melbourne, Werribee, Victoria, Australia
| | - Lauren Roman
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia; CSIRO Environment, Hobart, Tasmania, Australia
| | - Mary-Anne Lea
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia; Centre for Marine Sociology, University of Tasmania, Hobart, Tasmania, Australia
| | - Ian Hutton
- Lord Howe Island Museum, Lord Howe Island, Australia
| | - Andrew R Bridle
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| |
Collapse
|
16
|
Matos DM, Ramos JA, Brandão ALC, Baeta A, Rodrigues I, Dos Santos I, Coentro J, Fernandes JO, Batista de Carvalho LAE, Marques MPM, Cunha SC, Santos SH, Antunes S, Silva V, Paiva VH. Microplastics ingestion and endocrine disrupting chemicals (EDCs) by breeding seabirds in the east tropical Atlantic: Associations with trophic and foraging proxies (δ 15N and δ 13C). THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:168664. [PMID: 37996016 DOI: 10.1016/j.scitotenv.2023.168664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 11/25/2023]
Abstract
In this study we found that endocrine disrupting chemicals (EDCs) were omnipresent in a tropical seabird community comprising diverse ecological guilds and distinct foraging and trophic preferences. Because EDCs tend to bioaccumulate within the food web and microplastics can absorb and release harmful chemical compounds, our findings draw attention to the potential threats to wildlife. Thus, the goal of this study was to investigate the role of plastic ingestion, trophic and foraging patterns (δ15N and δ13C) of five tropical seabird species breeding in sympatry, on the exposure to EDCs, namely Polybrominated diphenyl ethers (PBDEs), methoxylated polybrominated diphenyl ethers (MeO-PBDEs) and personal care products (PCPs, e.g., musk fragrances and UV-filters). Results indicated that microplastics occurrence and EDCs detection frequency varied among species. Microplastics occurrence was higher in species with dual and coastal foraging strategies. Preen oil had higher levels of MeO-PBDEs and PCPs, while serum had higher levels of PBDEs. In brown boobies, the correlation between microplastics and ∑PBDEs levels was significant, suggesting that microplastics ingestion is a key PBDEs route. Trophic position (δ15N) plays a key role in PBDEs accumulation, particularly in Bulwer's petrel, which occupies a high trophic position and had more specialized feeding ecology than the other species. MeO-PBDEs were linked to foraging habitat (δ13C), although the link to foraging locations deserves further investigation. Overall, our findings not only fill key gaps in our understanding of seabirds' exposure to microplastics and EDCs, but also provide an essential baseline for future research and monitoring efforts. These findings have broader implications for the marine wildlife conservation and pollution management in sensitive environments, such as the tropical regions off West Africa.
Collapse
Affiliation(s)
- Diana M Matos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal.
| | - J A Ramos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - A L C Brandão
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - Alexandra Baeta
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Isabel Rodrigues
- Biosfera Cabo Verde, Sul do Cemitério, Rua 5 - Caixa Postal 233, São Vicente, Cabo Verde
| | - I Dos Santos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - João Coentro
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - J O Fernandes
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - L A E Batista de Carvalho
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal
| | - M P M Marques
- University of Coimbra, Molecular Physical-Chemistry R&D Unit, Department of Chemistry, 3004-535 Coimbra, Portugal; University of Coimbra, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - S C Cunha
- LAQV/REQUIMTE, Laboratório de Bromatologia e Hidrologia, Faculdade de Farmácia, Universidade do Porto, Rua de Jorge Viterbo Ferreira 228, 4050-313 Porto, Portugal
| | - S H Santos
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - Stefan Antunes
- Biosfera Cabo Verde, Sul do Cemitério, Rua 5 - Caixa Postal 233, São Vicente, Cabo Verde
| | - Vítor Silva
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| | - V H Paiva
- University of Coimbra, MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Department of Life Sciences, Calçada Martim de Freitas, 3000-456 Coimbra, Portugal
| |
Collapse
|
17
|
Miralha A, Contins M, Carpenter LBT, Pinto RL, Marques Calderari MRC, Neves RAF. Leachates of weathering plastics from an urban sandy beach: Toxicity to sea urchin fertilization and early development. MARINE POLLUTION BULLETIN 2024; 199:115980. [PMID: 38171163 DOI: 10.1016/j.marpolbul.2023.115980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 12/16/2023] [Accepted: 12/23/2023] [Indexed: 01/05/2024]
Abstract
Plastic leachates have chemical and biological implications for marine environments. This study experimentally evaluated acute effects of weathering plastic leachates (0, 25, 50, 75 and 100 %) on fertilization and early development of the sea urchin Lytechinus variegatus. Fertilization, embryonic and larval development were drastically inhibited (~75 %) when gametes were exposed to intermediate and high leachate concentrations or delayed when exposed to the lowest concentration. Fertilization and first cleavage stages were highly affected by exposure to intermediate and high leachate concentrations. None of the cells incubated at concentrations from 50 % reached blastula stage, suggesting that embryonic development was the most sensitive stage. Abnormalities in embryos and larvae were observed in all leachate treatments. Chemical analysis detected high concentration of bisphenol A, which may induce these observed effects. Our results highlight the potential threats of plastic pollution to sea urchin populations, which may severely affect the structure and functioning of coastal ecosystems.
Collapse
Affiliation(s)
- Agatha Miralha
- Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Brazil; Research Group of Experimental and Applied Aquatic Ecology, Department of Ecology and Marine Resources, Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Brazil
| | - Mariana Contins
- Science and Culture Forum, Federal University of Rio de Janeiro (UFRJ), Brazil
| | - Letícia B T Carpenter
- Centre of Analysis Fernanda Coutinho, State University of Rio de Janeiro (UERJ), Brazil
| | - Rafael L Pinto
- Centre of Analysis Fernanda Coutinho, State University of Rio de Janeiro (UERJ), Brazil
| | | | - Raquel A F Neves
- Graduate Program in Neotropical Biodiversity (PPGBIO), Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Brazil; Research Group of Experimental and Applied Aquatic Ecology, Department of Ecology and Marine Resources, Institute of Biosciences (IBIO), Federal University of the State of Rio de Janeiro (UNIRIO), Brazil.
| |
Collapse
|
18
|
Khare A, Jadhao P, Vaidya AN, Kumar AR. Benzotriazole UV stabilizers (BUVs) as an emerging contaminant of concern: a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:121370-121392. [PMID: 37996596 DOI: 10.1007/s11356-023-30567-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 10/16/2023] [Indexed: 11/25/2023]
Abstract
Benzotriazole UV stabilizers (BUVs) are a group of industrial chemicals used in various consumer products and industrial applications. Due to its large-scale production and use, BUVs have been detected in all environmental matrices. Humans are exposed to BUVs from environmental media, food, personal care products (PCPs), and consumer products. As a result, BUVs are detected in human breast milk, attracting researchers and regulatory bodies worldwide. BUVs such as UV-328 exhibit the characteristics of persistent organic pollutants (POPs); hence, it has been recently listed under Stockholm Convention POP list. The current review focuses on the occurrence of BUVs in the environment with emphasis on persistency, bioaccumulation, and toxicity (PBT). Scarcity of scientific data on BUVs' properties, environmental occurrence, exposure levels, and effects on organisms poses significant challenges to the policymakers and regulatory bodies in adopting management strategies. The need for a science-based integrated framework for risk assessment and management of BUVs is recommended. Considering the potential threat of BUVs to human health and the environment, it is recommended that BUVs should be taken as a subject of priority research. Studies on the degradation and transformation route of BUVs need to be explored for the sound management of BUVs.
Collapse
Affiliation(s)
- Ankur Khare
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Pradip Jadhao
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Atul Narayan Vaidya
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Asirvatham Ramesh Kumar
- Chemical and Hazardous Waste Management Division, CSIR-National Environmental Engineering Research Institute, Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
19
|
Collard F, Strøm H, Fayet MO, Guðmundsson FÞ, Herzke D, Hotvedt Å, Løchen A, Malherbe C, Eppe G, Gabrielsen GW. Evaluation of meso- and microplastic ingestion by the northern fulmar through a non-lethal sampling method. MARINE POLLUTION BULLETIN 2023; 196:115646. [PMID: 37832498 DOI: 10.1016/j.marpolbul.2023.115646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 08/22/2023] [Accepted: 10/06/2023] [Indexed: 10/15/2023]
Abstract
An increasing number of organisms from the polar regions are reported contaminated by plastic. Rarely a non-killing sampling method is used. In this study we wanted to assess plastic levels using stomach flushing and evaluate the method suitability for further research and monitoring. The stomach of 22 fulmars from Bjørnøya, Svalbard, were flushed with water in the field. On return to the laboratory, the regurgitated content was digested using potassium hydroxide. The extracted plastics were visually characterised and analysed with spectroscopy. Only three birds had plastics in their stomach, totaling 36 particles, most of them microplastics (< 5 mm). The plastic burdens are much lower than previously reported in Svalbard. The stomach flushing is assumed not to allow the collection of the gizzard content. This is a major limitation as most of the plastics accumulate in the fulmar's gizzard. However, the method is still useful for studies investigating plastic ingestion dynamics, allowing to sample the same individuals over time.
Collapse
Affiliation(s)
- France Collard
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway; Norwegian Institute for Water Research (NIVA), Fram Centre, 9296 Tromsø, Norway.
| | - Hallvard Strøm
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
| | - Marie-Océane Fayet
- Norwegian Institute for Air Research (NILU), Fram Centre, 9296 Tromsø, Norway
| | | | - Dorte Herzke
- Norwegian Institute for Air Research (NILU), Fram Centre, 9296 Tromsø, Norway; Department of Arctic and Marine Biology, The Arctic University of Norway (UiT), Hansine Hansens veg 18, Tromsø N-9037, Norway
| | - Ådne Hotvedt
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
| | - Arja Løchen
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
| | - Cédric Malherbe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Allée de la Chimie 3, B6c Sart-Tilman, B-4000, Liege, Belgium
| | - Gauthier Eppe
- Mass Spectrometry Laboratory, MolSys Research Unit, University of Liege, Allée de la Chimie 3, B6c Sart-Tilman, B-4000, Liege, Belgium
| | | |
Collapse
|
20
|
Qiu SQ, Huang GY, Li XP, Lei DQ, Wang CS, Ying GG. Endocrine disruptor responses in the embryos of marine medaka (Oryzias melastigma) after exposure to aged plastic leachates. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 261:106635. [PMID: 37478585 DOI: 10.1016/j.aquatox.2023.106635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/19/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
The issue of the additives leached from plastics has attracted widespread attention. More crucially, endocrine disruptor status for several leached additives has been established. However, little is known about the overall endocrine disrupting effects of aged plastic leachates. Therefore, the transcriptional responses of endocrine-related genes were assessed in the embryos of marine medaka (Oryzias melastigma), which were exposed to the leachates from aged plastics that were immersed into the simulated seawater (SW) or fish digest (FD). The results revealed that there was a great difference between the SW and FD leachates in the transcripts of endocrine-related genes. With the exception of cyp1a, all target genes had their transcripts potentially down-regulated by the FD leachates. Chgl (a biomarker for estrogens), pparβ (related to lipid metabolism), and cyp19a (related to sexual differentiation and reproduction) transcripts tended to be repressed by the SW leachates, while pparα, pparγ and cyp1a (mediating metabolism of xenobiotics) transcripts were stimulated. In addition, a redundancy analysis was carried out to determine the relationship between the leached additives and the transcriptional changes. However, the additives only partially explained the variation in the transcripts of endocrine-related genes (24.8%), indicating that other leached additives may have an impact on target gene transcription. This study provided molecular evidence of the aged plastic leachates' endocrine disrupting effects. Exploring the primary factors that affect the transcriptional alterations would require more research.
Collapse
Affiliation(s)
- Shu-Qing Qiu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, University Town, South China Normal University, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, University Town, South China Normal University, Guangzhou 510006, China.
| | - Xiao-Pei Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, University Town, South China Normal University, Guangzhou 510006, China
| | - Dong-Qiao Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, University Town, South China Normal University, Guangzhou 510006, China
| | - Chen-Si Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, University Town, South China Normal University, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, University Town, South China Normal University, Guangzhou 510006, China
| |
Collapse
|
21
|
Zhang L, Shen L, Huang Y, Cui S, Zhao Q, Zhang C, Zhuang S, Jiang G. Embryonic Exposure to UV-328 Impairs the Cell Cycle in Zebrafish ( Danio rerio) by Inhibiting the p38 MAPK/p53/Gadd45a Signaling Pathway. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023. [PMID: 37384941 DOI: 10.1021/acs.est.3c02842] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/01/2023]
Abstract
The benzotriazole UV stabilizer UV-328 is well known for its potent antioxidative properties; however, there are concerns about how it may affect signaling nodes and lead to negative consequences. This study identified the key signaling cascades involved in oxidative stress in zebrafish (Danio rerio) larvae and evaluated the cell cycle arrests and associated developmental alternations. Exposure to UV-328 at 0.25, 0.50, 1.00, 2.00, and 4.00 μg/L downregulated gene expression associated with oxidative stress (cat, gpx, gst, and sod) and apoptosis (caspase-3, caspase-6, caspase-8, and caspase-9) at 3 days postfertilization (dpf). The transcriptome aberration in zebrafish with disrupted p38 mitogen-activated protein kinase (MAPK) cascades was validated based on decreased mRNA expressions of p38 MAPK (0.36-fold), p53 (0.33-fold), and growth arrest and DNA damage-inducible protein 45 α (Gadd45a) (0.52-fold) after a 3- and 14-day exposure alongside a correspondingly decreased protein expression. The percentage of cells in the Gap 1 (G1) phase increased from 69.60% to a maximum of 77.07% (p < 0.05) in the 3 dpf embryos. UV-328 inhibited the p38 MAPK/p53/Gadd45a regulatory circuit but promoted G1 phase cell cycle arrest, abnormally accelerating the embryo hatching and heart rate. This study provided mechanistic insights that enrich the risk profiles of UV-328.
Collapse
Affiliation(s)
- Liang Zhang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Lilai Shen
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Yizhou Huang
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Shixuan Cui
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Qiming Zhao
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
| | - Chunlong Zhang
- Department of Environmental Sciences, University of Houston-Clear Lake, 2700 Bay Area Boulevard, Houston, Texas 77058, United States
| | - Shulin Zhuang
- Key Laboratory of Environment Remediation and Ecological Health, Ministry of Education, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China
- Women's Hospital, School of Medicine, Zhejiang University, Hangzhou 310006, China
| | - Guibin Jiang
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| |
Collapse
|
22
|
Tanaka N, Takada N, Takahashi M, Yeo BG, Oya Y, Watanabe I, Fujita Y, Takada H, Mizukawa K. Bioaccumulation and metabolism of polybrominated diphenyl ethers (PBDEs) in coenobitid hermit crabs from marine litter-polluted beaches in remote islands. MARINE POLLUTION BULLETIN 2023; 190:114812. [PMID: 36933356 DOI: 10.1016/j.marpolbul.2023.114812] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 02/15/2023] [Accepted: 03/03/2023] [Indexed: 06/18/2023]
Abstract
Plastic litter containing additives is potentially a major source of chemical contamination in remote areas. We investigated polybrominated diphenyl ethers (PBDEs) and microplastics in crustaceans and sand from beaches with high and low litter volumes on remote islands that were relatively free of other anthropogenic contaminants. Significant numbers of microplastics in the digestive tracts, and sporadically higher concentrations of rare congeners of PBDEs in the hepatopancreases were observed in coenobitid hermit crabs from the polluted beaches than in those from the control beaches. PBDEs and microplastics were detected in high amounts in one contaminated beach sand sample, but not in other beaches. Using BDE209 exposure experiments, similar debrominated products of BDE209 in field samples were detected in the hermit crabs. The results showed that when hermit crabs ingest microplastics containing BDE209, BDE209 leaches out and migrates to other tissues where it is metabolized.
Collapse
Affiliation(s)
- Nana Tanaka
- Laboratory of Organic Geochemistry, Tokyo University of Agriculture and Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Naohiko Takada
- Laboratory of Organic Geochemistry, Tokyo University of Agriculture and Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Mami Takahashi
- Laboratory of Organic Geochemistry, Tokyo University of Agriculture and Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Bee Geok Yeo
- Laboratory of Organic Geochemistry, Tokyo University of Agriculture and Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Yuki Oya
- Laboratory of Environmental Toxicology, Tokyo University of Agriculture and Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Izumi Watanabe
- Laboratory of Environmental Toxicology, Tokyo University of Agriculture and Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Yoshihisa Fujita
- Okinawa Prefectural University of Arts, 1-4, Shuri-Tounokura, Naha, Okinawa 903-8602, Japan
| | - Hideshige Takada
- Laboratory of Organic Geochemistry, Tokyo University of Agriculture and Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo 183-8509, Japan
| | - Kaoruko Mizukawa
- Laboratory of Organic Geochemistry, Tokyo University of Agriculture and Technology, 3-5-8, Saiwaicho, Fuchu, Tokyo 183-8509, Japan.
| |
Collapse
|
23
|
Horn S, Mölsä KM, Sorvari J, Tuovila H, Heikkilä P. Environmental sustainability assessment of a polyester T-shirt - Comparison of circularity strategies. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 884:163821. [PMID: 37137359 DOI: 10.1016/j.scitotenv.2023.163821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 04/11/2023] [Accepted: 04/25/2023] [Indexed: 05/05/2023]
Abstract
The considerable environmental burden of textiles is currently globally recognized. This burden can be mitigated by applying circular economy (CE) strategies to the commonly linear, short garment life cycles that end with incineration or landfill disposal. Even though all CE strategies strive to promote environmental sustainability, they might not be equally beneficial. Environmental data on different textile products is insufficiently available, which leads to complications when assessing and deciding on different CE strategies to be implemented. This paper studies the environmental impacts of a polyester T-shirt's linear life cycle through life cycle assessment (LCA) and evaluates the benefits attainable by adopting different CE strategies, and their order of priority, while noting uncertainty arising from poor data quality or unavailability. The LCA is complemented by assessing health and environmental risks related to the different options. Most of the linear life cycle's LCA-based impacts arise from use-phase washing. Hence, it is possible to reduce the environmental impact notably (37 %) by reducing the washing frequency. Adopting a CE strategy in which the shirt is reused by a second consumer, to double the number of uses, enables an 18 % impact reduction. Repurposing recycled materials to produce the T-shirt and recycling the T-shirt material itself emerged as the least impactful CE strategies. From the risk perspective, reusing the garment is the most efficient way to reduce environmental and health risks while washing frequency has a very limited effect. Combining different CE strategies offers the greatest potential for reducing both environmental impacts as well as risks. Data gaps and assumptions related to the use phase cause the highest uncertainty in the LCA results. To gain the maximum environmental benefits of utilizing CE strategies on polyester garments, consumer actions, design solutions, and transparent data sharing are needed.
Collapse
Affiliation(s)
- Susanna Horn
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland.
| | - Kiia M Mölsä
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Jaana Sorvari
- Finnish Environment Institute, Latokartanonkaari 11, 00790 Helsinki, Finland
| | - Hannamaija Tuovila
- VTT Technical Research Centre of Finland Ltd, Visiokatu 4, 33103 Tampere, Finland
| | - Pirjo Heikkilä
- VTT Technical Research Centre of Finland Ltd, Visiokatu 4, 33103 Tampere, Finland
| |
Collapse
|
24
|
Landrigan PJ, Raps H, Cropper M, Bald C, Brunner M, Canonizado EM, Charles D, Chiles TC, Donohue MJ, Enck J, Fenichel P, Fleming LE, Ferrier-Pages C, Fordham R, Gozt A, Griffin C, Hahn ME, Haryanto B, Hixson R, Ianelli H, James BD, Kumar P, Laborde A, Law KL, Martin K, Mu J, Mulders Y, Mustapha A, Niu J, Pahl S, Park Y, Pedrotti ML, Pitt JA, Ruchirawat M, Seewoo BJ, Spring M, Stegeman JJ, Suk W, Symeonides C, Takada H, Thompson RC, Vicini A, Wang Z, Whitman E, Wirth D, Wolff M, Yousuf AK, Dunlop S. The Minderoo-Monaco Commission on Plastics and Human Health. Ann Glob Health 2023; 89:23. [PMID: 36969097 PMCID: PMC10038118 DOI: 10.5334/aogh.4056] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 02/14/2023] [Indexed: 03/29/2023] Open
Abstract
Background Plastics have conveyed great benefits to humanity and made possible some of the most significant advances of modern civilization in fields as diverse as medicine, electronics, aerospace, construction, food packaging, and sports. It is now clear, however, that plastics are also responsible for significant harms to human health, the economy, and the earth's environment. These harms occur at every stage of the plastic life cycle, from extraction of the coal, oil, and gas that are its main feedstocks through to ultimate disposal into the environment. The extent of these harms not been systematically assessed, their magnitude not fully quantified, and their economic costs not comprehensively counted. Goals The goals of this Minderoo-Monaco Commission on Plastics and Human Health are to comprehensively examine plastics' impacts across their life cycle on: (1) human health and well-being; (2) the global environment, especially the ocean; (3) the economy; and (4) vulnerable populations-the poor, minorities, and the world's children. On the basis of this examination, the Commission offers science-based recommendations designed to support development of a Global Plastics Treaty, protect human health, and save lives. Report Structure This Commission report contains seven Sections. Following an Introduction, Section 2 presents a narrative review of the processes involved in plastic production, use, and disposal and notes the hazards to human health and the environment associated with each of these stages. Section 3 describes plastics' impacts on the ocean and notes the potential for plastic in the ocean to enter the marine food web and result in human exposure. Section 4 details plastics' impacts on human health. Section 5 presents a first-order estimate of plastics' health-related economic costs. Section 6 examines the intersection between plastic, social inequity, and environmental injustice. Section 7 presents the Commission's findings and recommendations. Plastics Plastics are complex, highly heterogeneous, synthetic chemical materials. Over 98% of plastics are produced from fossil carbon- coal, oil and gas. Plastics are comprised of a carbon-based polymer backbone and thousands of additional chemicals that are incorporated into polymers to convey specific properties such as color, flexibility, stability, water repellence, flame retardation, and ultraviolet resistance. Many of these added chemicals are highly toxic. They include carcinogens, neurotoxicants and endocrine disruptors such as phthalates, bisphenols, per- and poly-fluoroalkyl substances (PFAS), brominated flame retardants, and organophosphate flame retardants. They are integral components of plastic and are responsible for many of plastics' harms to human health and the environment.Global plastic production has increased almost exponentially since World War II, and in this time more than 8,300 megatons (Mt) of plastic have been manufactured. Annual production volume has grown from under 2 Mt in 1950 to 460 Mt in 2019, a 230-fold increase, and is on track to triple by 2060. More than half of all plastic ever made has been produced since 2002. Single-use plastics account for 35-40% of current plastic production and represent the most rapidly growing segment of plastic manufacture.Explosive recent growth in plastics production reflects a deliberate pivot by the integrated multinational fossil-carbon corporations that produce coal, oil and gas and that also manufacture plastics. These corporations are reducing their production of fossil fuels and increasing plastics manufacture. The two principal factors responsible for this pivot are decreasing global demand for carbon-based fuels due to increases in 'green' energy, and massive expansion of oil and gas production due to fracking.Plastic manufacture is energy-intensive and contributes significantly to climate change. At present, plastic production is responsible for an estimated 3.7% of global greenhouse gas emissions, more than the contribution of Brazil. This fraction is projected to increase to 4.5% by 2060 if current trends continue unchecked. Plastic Life Cycle The plastic life cycle has three phases: production, use, and disposal. In production, carbon feedstocks-coal, gas, and oil-are transformed through energy-intensive, catalytic processes into a vast array of products. Plastic use occurs in every aspect of modern life and results in widespread human exposure to the chemicals contained in plastic. Single-use plastics constitute the largest portion of current use, followed by synthetic fibers and construction.Plastic disposal is highly inefficient, with recovery and recycling rates below 10% globally. The result is that an estimated 22 Mt of plastic waste enters the environment each year, much of it single-use plastic and are added to the more than 6 gigatons of plastic waste that have accumulated since 1950. Strategies for disposal of plastic waste include controlled and uncontrolled landfilling, open burning, thermal conversion, and export. Vast quantities of plastic waste are exported each year from high-income to low-income countries, where it accumulates in landfills, pollutes air and water, degrades vital ecosystems, befouls beaches and estuaries, and harms human health-environmental injustice on a global scale. Plastic-laden e-waste is particularly problematic. Environmental Findings Plastics and plastic-associated chemicals are responsible for widespread pollution. They contaminate aquatic (marine and freshwater), terrestrial, and atmospheric environments globally. The ocean is the ultimate destination for much plastic, and plastics are found throughout the ocean, including coastal regions, the sea surface, the deep sea, and polar sea ice. Many plastics appear to resist breakdown in the ocean and could persist in the global environment for decades. Macro- and micro-plastic particles have been identified in hundreds of marine species in all major taxa, including species consumed by humans. Trophic transfer of microplastic particles and the chemicals within them has been demonstrated. Although microplastic particles themselves (>10 µm) appear not to undergo biomagnification, hydrophobic plastic-associated chemicals bioaccumulate in marine animals and biomagnify in marine food webs. The amounts and fates of smaller microplastic and nanoplastic particles (MNPs <10 µm) in aquatic environments are poorly understood, but the potential for harm is worrying given their mobility in biological systems. Adverse environmental impacts of plastic pollution occur at multiple levels from molecular and biochemical to population and ecosystem. MNP contamination of seafood results in direct, though not well quantified, human exposure to plastics and plastic-associated chemicals. Marine plastic pollution endangers the ocean ecosystems upon which all humanity depends for food, oxygen, livelihood, and well-being. Human Health Findings Coal miners, oil workers and gas field workers who extract fossil carbon feedstocks for plastic production suffer increased mortality from traumatic injury, coal workers' pneumoconiosis, silicosis, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer. Plastic production workers are at increased risk of leukemia, lymphoma, hepatic angiosarcoma, brain cancer, breast cancer, mesothelioma, neurotoxic injury, and decreased fertility. Workers producing plastic textiles die of bladder cancer, lung cancer, mesothelioma, and interstitial lung disease at increased rates. Plastic recycling workers have increased rates of cardiovascular disease, toxic metal poisoning, neuropathy, and lung cancer. Residents of "fenceline" communities adjacent to plastic production and waste disposal sites experience increased risks of premature birth, low birth weight, asthma, childhood leukemia, cardiovascular disease, chronic obstructive pulmonary disease, and lung cancer.During use and also in disposal, plastics release toxic chemicals including additives and residual monomers into the environment and into people. National biomonitoring surveys in the USA document population-wide exposures to these chemicals. Plastic additives disrupt endocrine function and increase risk for premature births, neurodevelopmental disorders, male reproductive birth defects, infertility, obesity, cardiovascular disease, renal disease, and cancers. Chemical-laden MNPs formed through the environmental degradation of plastic waste can enter living organisms, including humans. Emerging, albeit still incomplete evidence indicates that MNPs may cause toxicity due to their physical and toxicological effects as well as by acting as vectors that transport toxic chemicals and bacterial pathogens into tissues and cells.Infants in the womb and young children are two populations at particularly high risk of plastic-related health effects. Because of the exquisite sensitivity of early development to hazardous chemicals and children's unique patterns of exposure, plastic-associated exposures are linked to increased risks of prematurity, stillbirth, low birth weight, birth defects of the reproductive organs, neurodevelopmental impairment, impaired lung growth, and childhood cancer. Early-life exposures to plastic-associated chemicals also increase the risk of multiple non-communicable diseases later in life. Economic Findings Plastic's harms to human health result in significant economic costs. We estimate that in 2015 the health-related costs of plastic production exceeded $250 billion (2015 Int$) globally, and that in the USA alone the health costs of disease and disability caused by the plastic-associated chemicals PBDE, BPA and DEHP exceeded $920 billion (2015 Int$). Plastic production results in greenhouse gas (GHG) emissions equivalent to 1.96 gigatons of carbon dioxide (CO2e) annually. Using the US Environmental Protection Agency's (EPA) social cost of carbon metric, we estimate the annual costs of these GHG emissions to be $341 billion (2015 Int$).These costs, large as they are, almost certainly underestimate the full economic losses resulting from plastics' negative impacts on human health and the global environment. All of plastics' economic costs-and also its social costs-are externalized by the petrochemical and plastic manufacturing industry and are borne by citizens, taxpayers, and governments in countries around the world without compensation. Social Justice Findings The adverse effects of plastics and plastic pollution on human health, the economy and the environment are not evenly distributed. They disproportionately affect poor, disempowered, and marginalized populations such as workers, racial and ethnic minorities, "fenceline" communities, Indigenous groups, women, and children, all of whom had little to do with creating the current plastics crisis and lack the political influence or the resources to address it. Plastics' harmful impacts across its life cycle are most keenly felt in the Global South, in small island states, and in disenfranchised areas in the Global North. Social and environmental justice (SEJ) principles require reversal of these inequitable burdens to ensure that no group bears a disproportionate share of plastics' negative impacts and that those who benefit economically from plastic bear their fair share of its currently externalized costs. Conclusions It is now clear that current patterns of plastic production, use, and disposal are not sustainable and are responsible for significant harms to human health, the environment, and the economy as well as for deep societal injustices.The main driver of these worsening harms is an almost exponential and still accelerating increase in global plastic production. Plastics' harms are further magnified by low rates of recovery and recycling and by the long persistence of plastic waste in the environment.The thousands of chemicals in plastics-monomers, additives, processing agents, and non-intentionally added substances-include amongst their number known human carcinogens, endocrine disruptors, neurotoxicants, and persistent organic pollutants. These chemicals are responsible for many of plastics' known harms to human and planetary health. The chemicals leach out of plastics, enter the environment, cause pollution, and result in human exposure and disease. All efforts to reduce plastics' hazards must address the hazards of plastic-associated chemicals. Recommendations To protect human and planetary health, especially the health of vulnerable and at-risk populations, and put the world on track to end plastic pollution by 2040, this Commission supports urgent adoption by the world's nations of a strong and comprehensive Global Plastics Treaty in accord with the mandate set forth in the March 2022 resolution of the United Nations Environment Assembly (UNEA).International measures such as a Global Plastics Treaty are needed to curb plastic production and pollution, because the harms to human health and the environment caused by plastics, plastic-associated chemicals and plastic waste transcend national boundaries, are planetary in their scale, and have disproportionate impacts on the health and well-being of people in the world's poorest nations. Effective implementation of the Global Plastics Treaty will require that international action be coordinated and complemented by interventions at the national, regional, and local levels.This Commission urges that a cap on global plastic production with targets, timetables, and national contributions be a central provision of the Global Plastics Treaty. We recommend inclusion of the following additional provisions:The Treaty needs to extend beyond microplastics and marine litter to include all of the many thousands of chemicals incorporated into plastics.The Treaty needs to include a provision banning or severely restricting manufacture and use of unnecessary, avoidable, and problematic plastic items, especially single-use items such as manufactured plastic microbeads.The Treaty needs to include requirements on extended producer responsibility (EPR) that make fossil carbon producers, plastic producers, and the manufacturers of plastic products legally and financially responsible for the safety and end-of-life management of all the materials they produce and sell.The Treaty needs to mandate reductions in the chemical complexity of plastic products; health-protective standards for plastics and plastic additives; a requirement for use of sustainable non-toxic materials; full disclosure of all components; and traceability of components. International cooperation will be essential to implementing and enforcing these standards.The Treaty needs to include SEJ remedies at each stage of the plastic life cycle designed to fill gaps in community knowledge and advance both distributional and procedural equity.This Commission encourages inclusion in the Global Plastic Treaty of a provision calling for exploration of listing at least some plastic polymers as persistent organic pollutants (POPs) under the Stockholm Convention.This Commission encourages a strong interface between the Global Plastics Treaty and the Basel and London Conventions to enhance management of hazardous plastic waste and slow current massive exports of plastic waste into the world's least-developed countries.This Commission recommends the creation of a Permanent Science Policy Advisory Body to guide the Treaty's implementation. The main priorities of this Body would be to guide Member States and other stakeholders in evaluating which solutions are most effective in reducing plastic consumption, enhancing plastic waste recovery and recycling, and curbing the generation of plastic waste. This Body could also assess trade-offs among these solutions and evaluate safer alternatives to current plastics. It could monitor the transnational export of plastic waste. It could coordinate robust oceanic-, land-, and air-based MNP monitoring programs.This Commission recommends urgent investment by national governments in research into solutions to the global plastic crisis. This research will need to determine which solutions are most effective and cost-effective in the context of particular countries and assess the risks and benefits of proposed solutions. Oceanographic and environmental research is needed to better measure concentrations and impacts of plastics <10 µm and understand their distribution and fate in the global environment. Biomedical research is needed to elucidate the human health impacts of plastics, especially MNPs. Summary This Commission finds that plastics are both a boon to humanity and a stealth threat to human and planetary health. Plastics convey enormous benefits, but current linear patterns of plastic production, use, and disposal that pay little attention to sustainable design or safe materials and a near absence of recovery, reuse, and recycling are responsible for grave harms to health, widespread environmental damage, great economic costs, and deep societal injustices. These harms are rapidly worsening.While there remain gaps in knowledge about plastics' harms and uncertainties about their full magnitude, the evidence available today demonstrates unequivocally that these impacts are great and that they will increase in severity in the absence of urgent and effective intervention at global scale. Manufacture and use of essential plastics may continue. However, reckless increases in plastic production, and especially increases in the manufacture of an ever-increasing array of unnecessary single-use plastic products, need to be curbed.Global intervention against the plastic crisis is needed now because the costs of failure to act will be immense.
Collapse
Affiliation(s)
- Philip J. Landrigan
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Hervé Raps
- Centre Scientifique de Monaco, Medical Biology Department, MC
| | - Maureen Cropper
- Economics Department, University of Maryland, College Park, US
| | - Caroline Bald
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | | | | | | | | | - Patrick Fenichel
- Université Côte d’Azur
- Centre Hospitalier, Universitaire de Nice, FR
| | - Lora E. Fleming
- European Centre for Environment and Human Health, University of Exeter Medical School, UK
| | | | | | | | - Carly Griffin
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Mark E. Hahn
- Biology Department, Woods Hole Oceanographic Institution, US
- Woods Hole Center for Oceans and Human Health, US
| | - Budi Haryanto
- Department of Environmental Health, Universitas Indonesia, ID
- Research Center for Climate Change, Universitas Indonesia, ID
| | - Richard Hixson
- College of Medicine and Health, University of Exeter, UK
| | - Hannah Ianelli
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Bryan D. James
- Department of Marine Chemistry and Geochemistry, Woods Hole Oceanographic Institution
- Department of Biology, Woods Hole Oceanographic Institution, US
| | | | - Amalia Laborde
- Department of Toxicology, School of Medicine, University of the Republic, UY
| | | | - Keith Martin
- Consortium of Universities for Global Health, US
| | - Jenna Mu
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | - Adetoun Mustapha
- Nigerian Institute of Medical Research, Lagos, Nigeria
- Lead City University, NG
| | - Jia Niu
- Department of Chemistry, Boston College, US
| | - Sabine Pahl
- University of Vienna, Austria
- University of Plymouth, UK
| | | | - Maria-Luiza Pedrotti
- Laboratoire d’Océanographie de Villefranche sur mer (LOV), Sorbonne Université, FR
| | | | | | - Bhedita Jaya Seewoo
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| | | | - John J. Stegeman
- Biology Department and Woods Hole Center for Oceans and Human Health, Woods Hole Oceanographic Institution, US
| | - William Suk
- Superfund Research Program, National Institutes of Health, National Institute of Environmental Health Sciences, US
| | | | - Hideshige Takada
- Laboratory of Organic Geochemistry (LOG), Tokyo University of Agriculture and Technology, JP
| | | | | | - Zhanyun Wang
- Technology and Society Laboratory, WEmpa-Swiss Federal Laboratories for Materials and Technology, CH
| | - Ella Whitman
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | | | | | - Aroub K. Yousuf
- Global Observatory on Planetary Health, Boston College, Chestnut Hill, MA, US
| | - Sarah Dunlop
- Minderoo Foundation, AU
- School of Biological Sciences, The University of Western Australia, AU
| |
Collapse
|
25
|
Qiu SQ, Huang GY, Li XP, Lei DQ, Wang CS, Ying GG. A comparative study on endocrine disrupting effects of leachates from virgin and aged plastics under simulated media in marine medaka larvae (Oryzias melastigma). JOURNAL OF HAZARDOUS MATERIALS 2023; 446:130700. [PMID: 36592560 DOI: 10.1016/j.jhazmat.2022.130700] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/18/2022] [Accepted: 12/28/2022] [Indexed: 06/17/2023]
Abstract
Marine plastic pollution has garnered substantial attention, but the potential endocrine disrupting effects of plastic leachates in marine organisms remain unclear. In this study, the larvae of marine medaka (Oryzias melastigma) were exposed to the leachates from virgin and aged plastics soaked in simulated seawater and fish digest for 3 days. The concentrations of vitellogenin (VTG), estradiol (E2), and 11-ketotestosterone (11-KT), as well as the transcripts of endocrine-related genes were measured in the larvae. The results revealed that endogenous E2 was more sensitive to plastic leachates than VTG and 11-KT, which was significantly affected by 26.7 % of all plastic leachates. Among all genes, estrogen receptor α was impacted mostly, being up-regulated by 53.3 % of leachates from aged plastics. The comparative results demonstrated that the leachates from plastics with different statuses caused a greater difference than those from plastics in different simulated media, and the leachates from aged plastics resulted in higher endocrine disrupting effects than those from virgin plastics. In addition, seven leached additives (plasticizers and flame retardants) could explain 25.6 % of the hormonal effects using redundancy analysis, indicating that other additives in the plastic leachates can also play important roles in regulating the endocrine system of O. melastigma larvae.
Collapse
Affiliation(s)
- Shu-Qing Qiu
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guo-Yong Huang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China.
| | - Xiao-Pei Li
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Dong-Qiao Lei
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Chen-Si Wang
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| | - Guang-Guo Ying
- SCNU Environmental Research Institute, Guangdong Provincial Key Laboratory of Chemical Pollution and Environmental Safety & MOE Key Laboratory of Theoretical Chemistry of Environment, South China Normal University, Guangzhou 510006, China; School of Environment, South China Normal University, University Town, Guangzhou 510006, China
| |
Collapse
|
26
|
Tulatz F, Gabrielsen GW, Bourgeon S, Herzke D, Krapp R, Langset M, Neumann S, Lippold A, Collard F. Implications of Regurgitative Feeding on Plastic Loads in Northern Fulmars ( Fulmarus glacialis): A Study from Svalbard. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2023; 57:3562-3570. [PMID: 36812008 PMCID: PMC9996815 DOI: 10.1021/acs.est.2c05617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 02/10/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
Procellariiform seabirds like northern fulmars (Fulmarus glacialis) are prone to ingest and accumulate floating plastic pieces. In the North Sea region, there is a long tradition to use beached fulmars as biomonitors for marine plastic pollution. Monitoring data revealed consistently lower plastic burdens in adult fulmars compared to younger age classes. Those findings were hypothesized to partly result from parental transfer of plastic to chicks. However, no prior study has examined this mechanism in fulmars by comparing plastic burdens in fledglings and older fulmars shortly after the chick-rearing period. Therefore, we investigated plastic ingestion in 39 fulmars from Kongsfjorden (Svalbard), including 21 fledglings and 18 older fulmars (adults/older immatures). We found that fledglings (50-60 days old) had significantly more plastic than older fulmars. While plastic was found in all fledglings, two older fulmars contained no and several older individuals barely any plastic. These findings supported that fulmar chicks from Svalbard get fed high quantities of plastic by their parents. Adverse effects of plastic on fulmars were indicated by one fragment that perforated the stomach and possibly one thread perforating the intestine. Negative correlations between plastic mass and body fat in fledglings and older fulmars were not significant.
Collapse
Affiliation(s)
- Felix Tulatz
- Department
of Arctic and Marine Biology, UiT—The
Arctic University of Norway, N-9037 Tromsø, Norway
- Fram
Centre, Norwegian Polar Institute, N-9296 Tromsø, Norway
| | | | - Sophie Bourgeon
- Department
of Arctic and Marine Biology, UiT—The
Arctic University of Norway, N-9037 Tromsø, Norway
| | - Dorte Herzke
- Department
of Arctic and Marine Biology, UiT—The
Arctic University of Norway, N-9037 Tromsø, Norway
- Fram
Centre for Climate and the Environment, Fram Centre, Norwegian Institute for Air Research, N-9296 Tromsø, Norway
| | - Rupert Krapp
- Fram
Centre, Norwegian Polar Institute, N-9296 Tromsø, Norway
| | - Magdalene Langset
- Norwegian
Institute for Nature Research, Høgskoleringen, Trondheim 97034, Norway
| | - Svenja Neumann
- Fram
Centre, Norwegian Polar Institute, N-9296 Tromsø, Norway
| | - Anna Lippold
- Fram
Centre, Norwegian Polar Institute, N-9296 Tromsø, Norway
| | - France Collard
- Fram
Centre, Norwegian Polar Institute, N-9296 Tromsø, Norway
| |
Collapse
|
27
|
Markic A, Bridson JH, Morton P, Hersey L, Budiša A, Maes T, Bowen M. Microplastic pollution in the intertidal and subtidal sediments of Vava'u, Tonga. MARINE POLLUTION BULLETIN 2023; 186:114451. [PMID: 36529018 DOI: 10.1016/j.marpolbul.2022.114451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 11/24/2022] [Accepted: 11/26/2022] [Indexed: 06/17/2023]
Abstract
Plastic pollution research on a global scale intensified considerably in the current decade; however, research efforts in the South Pacific are still lagging. Here, we report on microplastic contamination of intertidal and subtidal sediments in the Vava'u archipelago, Tonga. While providing the first baseline data of its type in Tonga, the study also advances methods and adjusts them for low-budget research. The methods were based on density separation of microplastics from the sediment using CaCl2, a high-density salt which due to its high solubility, low cost and availability. Once separated, microplastics were quantified by microscopic analysis and polymers characterized via FTIR spectroscopy. Microplastics in intertidal and subtidal sediments were found in concentrations of 23.5 ± 1.9 and 15.0 ± 1.9 particles L-1 of sediment, respectively. The dominant type of microplastics in both intertidal (85 %) and subtidal sediments (62 %) were fibres.
Collapse
Affiliation(s)
- Ana Markic
- Blue Spark, Put za Marleru 20, 52204 Ližnjan, Croatia.
| | - James H Bridson
- Scion, Titokorangi Drive, Private Bag 3020, Rotorua 3046, New Zealand
| | - Peta Morton
- University of Sydney, Camperdown, NSW 2006, Australia
| | - Lucy Hersey
- Monash University, Wellington Road, Clayton 3800, Victoria, Australia
| | - Andrea Budiša
- Center for Marine Research, Ruđer Bošković Institute, G. Paliaga 5, 52210 Rovinj, Croatia
| | - Thomas Maes
- Grid-Arendal, Teaterplassen 3, 4836 Arendal, Norway
| | - Melissa Bowen
- School of Environment, University of Auckland, Auckland 1010, New Zealand
| |
Collapse
|
28
|
Navarro A, Luzardo OP, Gómez M, Acosta-Dacal A, Martínez I, Felipe de la Rosa J, Macías-Montes A, Suárez-Pérez A, Herrera A. Microplastics ingestion and chemical pollutants in seabirds of Gran Canaria (Canary Islands, Spain). MARINE POLLUTION BULLETIN 2023; 186:114434. [PMID: 36495613 DOI: 10.1016/j.marpolbul.2022.114434] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/13/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Plastic pollution constitutes an environmental problem in the Canary Islands nowadays. Nevertheless, studies evaluating the impact of plastics on its avifauna are still scarce. Gastrointestinal tracts of 88 birds belonging to 14 species were studied for the presence of plastics. Moreover, their livers were analyzed for the determination of bromodiphenyl ethers (BDEs), polychlorinated biphenyls (PCBs), polycyclic aromatic hydrocarbons (PAHs) and organochlorine pesticides (OCPs). Among Cory's shearwaters (n = 45), the frequency of occurrence of plastic ingestion was considerably high (88.89 %). This species had the highest mean value of items (7.22 ± 5.66) and most of them were compatible with lines derived from fishing gear. PCBs and PAHs were detected in all of the samples and OCPs in the great majority of them (98.86 %). Our results highlight the problems that plastic debris (mainly for seabirds) and organic pollutants pose to these species.
Collapse
Affiliation(s)
- Alberto Navarro
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain.
| | - Octavio Pérez Luzardo
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - May Gómez
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Andrea Acosta-Dacal
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Ico Martínez
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | - Jorge Felipe de la Rosa
- Facultad de Veterinaria, Universidad de Las Palmas de Gran Canaria, Arucas, Las Palmas, Spain
| | - Ana Macías-Montes
- Toxicology Unit, Research Institute of Biomedical and Health Sciences (IUIBS), Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| | | | - Alicia Herrera
- Marine Ecophysiology Group (EOMAR), IU-ECOAQUA, Universidad de Las Palmas de Gran Canaria, Canary Islands, Spain
| |
Collapse
|
29
|
Daudt NW, Bugoni L, Nunes GT. Plastics and waterbirds in Brazil: A review of ingestion, nest materials and entanglement reveals substantial knowledge gaps and opportunities for research. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120615. [PMID: 36356888 DOI: 10.1016/j.envpol.2022.120615] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 10/05/2022] [Accepted: 11/05/2022] [Indexed: 06/16/2023]
Abstract
Plastic pollution is an increasing global problem, especially in aquatic environments. From invertebrates to vertebrates, many aquatic species have been affected by plastic pollution worldwide. Waterbirds also interact with plastics, mainly by ingesting them or using them as nest material. Brazil has one of the largest aquatic environment areas, including the most extensive wetland (the Pantanal) and biggest river (the Amazon), and a ∼7500 km long coastline, which hosts a remarkable waterbird diversity with more than 200 species from 28 bird families. Here, we synthesise published and grey literature to assess where, how, and which waterbirds (marine and continental) interact with plastics in Brazil. We found 96 documents reporting interaction between waterbirds and plastics. Only 32% of the occurring species in the country had at least one individual analysed. Plastic ingestion was reported in 67% of the studies, and seabirds were the study subject in 79% of them. We found no reports in continental aquatic environments, unveiling entire regions without any information regarding interactions. Consequently, this geographic bias drew a considerable taxonomic bias, with whole families and orders without information. Additionally, most studies did not aim to search for plastic interactions, which had a twofold effect. First, studies did not report their findings using the proposed standard metrics, hampering thus advances in understanding trends or defining robust baselines. Second, as it was not their main objective, plastics were not mentioned in titles, abstracts, and keywords, making it difficult to find these studies. We propose means for achieving a better understanding of waterbird-plastic interactions in space and time, and recommend searching for sentinel species and for allocating research grants.
Collapse
Affiliation(s)
- Nicholas Winterle Daudt
- Waterbirds and Sea Turtles Laboratory, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil; Department of Marine Science, University of Otago, Dunedin, Aotearoa, New Zealand.
| | - Leandro Bugoni
- Waterbirds and Sea Turtles Laboratory, Instituto de Ciências Biológicas, Universidade Federal do Rio Grande - FURG, Rio Grande, RS, Brazil
| | - Guilherme Tavares Nunes
- Centro de Estudos Costeiros, Limnológicos e Marinhos, Universidade Federal do Rio Grande do Sul, Imbé, RS, Brazil
| |
Collapse
|
30
|
Khan FR, Catarino AI, Clark NJ. The ecotoxicological consequences of microplastics and co-contaminants in aquatic organisms: a mini-review. Emerg Top Life Sci 2022; 6:339-348. [PMID: 35972188 PMCID: PMC9788381 DOI: 10.1042/etls20220014] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 01/09/2023]
Abstract
Microplastics (MPs, <5 mm in size) are a grave environmental concern. They are a ubiquitous persistent pollutant group that has reached into all parts of the environment - from the highest mountain tops to the depths of the ocean. During their production, plastics have added to them numerous chemicals in the form of plasticizers, colorants, fillers and stabilizers, some of which have known toxicity to biota. When released into the environments, MPs are also likely to encounter chemical contaminants, including hydrophobic organic contaminants, trace metals and pharmaceuticals, which can sorb to plastic surfaces. Additionally, MPs have been shown to be ingested by a wide range of organisms and it is this combination of ingestion and chemical association that gives weight to the notion that MPs may impact the bioavailability and toxicity of both endogenous and exogenous co-contaminants. In this mini-review, we set the recent literature within what has been previously published about MPs as chemical carriers to biota, with particular focus on aquatic invertebrates and fish. We then present a critical viewpoint on the validity of laboratory-to-field extrapolations in this area. Lastly, we highlight the expanding 'microplastic universe' with the addition of anthropogenic particles that have gained recent attention, namely, tire wear particles, nanoplastics and, bio-based or biodegradable MPs, and highlight the need for future research in their potential roles as vehicles of co-contaminant transfer.
Collapse
Affiliation(s)
- Farhan R Khan
- Department of Climate & Environment, Norwegian Research Center (NORCE), Nygårdsporten 112, NO-5008 Bergen, Norway
| | - Ana I Catarino
- Vlaams Instituut voor de Zee, Flanders Marine Institute InnovOcean site, Wandelaarkaai 7, 8400 Oostende, Belgium
| | - Nathaniel J Clark
- School of Biological and Marine Sciences, University of Plymouth, Plymouth PL4 8AA, U.K
- School of Health Professionals, University of Plymouth, Plymouth PL4 8AA, U.K
| |
Collapse
|
31
|
Hasegawa T, Mizukawa K, Yeo BG, Sekioka T, Takada H, Nakaoka M. The significance of trophic transfer of microplastics in the accumulation of plastic additives in fish: An experimental study using brominated flame retardants and UV stabilizers. MARINE POLLUTION BULLETIN 2022; 185:114343. [PMID: 36410196 DOI: 10.1016/j.marpolbul.2022.114343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 10/31/2022] [Accepted: 11/03/2022] [Indexed: 06/16/2023]
Abstract
Marine organisms ingest microplastics directly from water and indirectly from food sources. Ingesting microplastics can lead to the accumulation of plastic-derived chemicals. However, the relative contributions of the two exposure routes to the accumulation of plastic-derived chemicals in organisms are unknown. Using microplastics containing two brominated flame retardants (BFRs; BDE209 and DBDPE) and three UV stabilizers (UVSs; UV-234, UV-327, and BP-12), we performed exposure experiments to compare chemical accumulation patterns in fish (Myoxocephalus brandti) between exposure from water and prey (Neomysis spp.). We found significantly higher concentrations of BFRs in fish fed microplastic-contaminated prey than fish exposed to microplastics in the water. However, we observed similar concentrations of UVSs in fish exposed to both sources. As BFRs are more hydrophobic than UVSs, the differences may reflect the hydrophobic nature of the additives. Our findings indicate that both exposure routes are crucial to understanding the accumulation of plastic additives in fish.
Collapse
Affiliation(s)
- Takaaki Hasegawa
- Graduate School of Environmental Science, Hokkaido University, Akkeshi, Hokkaido 088-1113, Japan
| | - Kaoruko Mizukawa
- Laboratory of Organic Geochemistry, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Bee Geok Yeo
- Laboratory of Organic Geochemistry, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Tomonori Sekioka
- Faculty of Fisheries Sciences, Hokkaido University, Hakodate, Hokkaido 041-8611, Japan
| | - Hideshige Takada
- Laboratory of Organic Geochemistry, Tokyo University of Agriculture and Technology, Fuchu, Tokyo 183-8509, Japan
| | - Masahiro Nakaoka
- Akkeshi Marine Station, Field Science Center for Northern Biosphere, Hokkaido University, Akkeshi, Hokkaido 088-1113, Japan.
| |
Collapse
|
32
|
Monclús L, McCann Smith E, Ciesielski TM, Wagner M, Jaspers VL. Microplastic Ingestion Induces Size-Specific Effects in Japanese Quail. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:15902-15911. [PMID: 36302260 PMCID: PMC9671045 DOI: 10.1021/acs.est.2c03878] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/22/2022] [Accepted: 10/10/2022] [Indexed: 05/19/2023]
Abstract
Plastic pollution can pose a threat to birds. Yet, little is known about the sublethal effects of ingested microplastics (MP), and the effects of MP < 1 mm in birds remain unknown. This study therefore aimed at evaluating the toxicity of environmentally relevant polypropylene and polyethylene particles collected in the Norwegian coast in growing Japanese quail (Coturnix japonica). Birds were orally exposed to 600 mg MP over 5 weeks, covering small (<125 μm) and large (3 mm) MP, both separately and in a mixture. We evaluated multiple sublethal endpoints in quail, including oxidative stress, cytokine levels, blood-biochemical parameters, and reproductive hormones in blood, as well as body mass. Exposure to small MP significantly induced the activities of the antioxidant enzymes catalase, glutathione-S-transferase, and glutathione peroxidase. Exposure to large MP increased the levels of aspartate aminotransferase (liver parameter) and decreased 17β-estradiol levels in females. Body mass was not directly affected by MP ingestion; however, quail exposed to small MP and a mixture of large and small MP had a different growth rate compared to control quail. Our study used similar levels of MP as ingested by wild birds and demonstrated size-dependent effects of MP that can result in sublethal effects in avifauna.
Collapse
|
33
|
Provencher J, Malaisé F, Mallory ML, Braune BM, Pirie-Dominix L, Lu Z. 44-Year Retrospective Analysis of Ultraviolet Absorbents and Industrial Antioxidants in Seabird Eggs from the Canadian Arctic (1975 to 2019). ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:14562-14573. [PMID: 36198135 PMCID: PMC9583603 DOI: 10.1021/acs.est.2c05940] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/22/2022] [Accepted: 09/22/2022] [Indexed: 06/16/2023]
Abstract
Ultraviolet (UV) absorbents and industrial antioxidants are contaminants of emerging concern (CECs), but little is known about their distribution in Arctic wildlife, as well as how these contaminants vary over time, across regions, and between species. We used archived egg samples to examine the temporal patterns of 26 UV absorbents and industrial antioxidants in three seabird species (black-legged kittiwakes Rissa tridactyla, thick-billed murres Uria lomvia, northern fulmars Fulmarus glacialis) sampled in Arctic Canada between 1975 and 2019. Various synthetic phenolic antioxidants, aromatic secondary amines, benzotriazole UV stabilizers, and organic UV filters were detected in the seabird eggs. Overall, kittiwakes had higher levels of several UV absorbents and industrial antioxidants. Most target contaminants reached their peak concentrations at different points during the 44-year study period or did not vary significantly over time. None of these contaminant concentrations have increased in recent years. The antioxidant 2-6-di-tert-butyl-4-methylphenol (BHT) was the most frequently detected contaminant in seabird eggs, and its level significantly declined over the course of the study period in kittiwake eggs but did not change in the eggs of murres and fulmars. Future research should examine the effects of these CECs on the health of avian species, the sources, and exposure pathways of these contaminants.
Collapse
Affiliation(s)
- Jennifer
F. Provencher
- Ecotoxicology
and Wildlife Health Division, Environment
and Climate Change Canada, Ottawa, Ontario K1A 0H3, Canada
| | - Florentine Malaisé
- Institut
des Sciences de la Mer de Rimouski, Université
du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Mark L. Mallory
- Department
of Biology, Acadia University, Wolfville, Nova Scotia B4P 2R6, Canada
| | - Birgit M. Braune
- Ecotoxicology
and Wildlife Health Division, Environment
and Climate Change Canada, Ottawa, Ontario K1A 0H3, Canada
| | - Lisa Pirie-Dominix
- Canadian
Wildlife Service, Environment and Climate
Change Canada, Iqaluit, Nunavut X0A 0H0, Canada
| | - Zhe Lu
- Institut
des Sciences de la Mer de Rimouski, Université
du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada
| |
Collapse
|
34
|
Blouin K, Malaisé F, Verreault J, Lair S, Lu Z. Occurrence and temporal trends of industrial antioxidants and UV absorbents in the endangered St. Lawrence Estuary beluga whale (Delphinapterus leucas). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 842:156635. [PMID: 35697212 DOI: 10.1016/j.scitotenv.2022.156635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 06/01/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Elevated contaminant exposure has been identified as a stressor that has negative impacts on the health and recovery of the endangered St. Lawrence Estuary (SLE) beluga (Delphinapterus leucas) population. However, the accumulation of many groups of contaminants of emerging concern is still unknown in the SLE beluga. The objective of this study was to investigate the occurrence and temporal trends (2000-2017) of synthetic phenolic antioxidants (SPAs), secondary aromatic amines (Ar-SAs), benzotriazole UV stabilizers (BZT-UVs), and organic UV filters (UVFs) in the blubber (n = 69) and liver (n = 80) of SLE beluga carcasses recovered in the SLE. The SPA 2,6-di-tert-butyl-1,4-benzoquinone (BHTQ) was the most prevalent contaminant in the blubber (detection frequency: 86 %; median: 71.1 ng/g wet weight (ww)) and liver (50 %; 12.2 ng/g ww) of SLE belugas. In the blubber, 2-hydroxy-4-methoxybenzophenone (BP3) (36 %; 3.15 ng/g ww) and 2-(2H-benzotriazol-2-yl)-4-(1,1,3,3-tetramethyl butyl)phenol (UV329) (49 %; 6.84 ng/g ww) were the most frequently detected UVFs and BZT-UVs, respectively. Ar-SAs were not detected in most of the blubber and liver samples. Blubber accumulated higher levels of BHTQ and UV329 than liver, whereas the levels of BP3 were greater in the liver. Male SLE beluga accumulated greater concentrations of UV329 in blubber compared to females. These results indicated that the accumulation of BHTQ, UV329 and BP3 in SLE belugas is tissue- and sex-specific. BHTQ showed a decreasing trend in the blubber (2000-2017) of male SLE beluga, whereas no significant trend of this contaminant was found in females. UV329 showed no discernible temporal trend. This study established a baseline for the future monitoring of SPAs, Ar-SAs, BZT-UVs and UVFs in belugas and other marine mammals.
Collapse
Affiliation(s)
- Karine Blouin
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Florentine Malaisé
- Département de Biologie, Chimie et Géographie, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada
| | - Jonathan Verreault
- Centre de recherche en toxicologie de l'environnement (TOXEN), Département des sciences biologiques, Université du Québec à Montréal, C.P. 8888, Succursale Centre-ville, Montréal, Québec H3C 3P8, Canada
| | - Stéphane Lair
- Centre québécois sur la santé des animaux sauvages/Canadian Wildlife Health Cooperative, Département de sciences cliniques, Faculté de médecine vétérinaire, Université de Montréal, St. Hyacinthe, Québec J2S 7C6, Canada
| | - Zhe Lu
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec G5L 3A1, Canada.
| |
Collapse
|
35
|
Sühring R, Baak JE, Letcher RJ, Braune BM, de Silva A, Dey C, Fernie K, Lu Z, Mallory ML, Avery-Gomm S, Provencher JF. Co-contaminants of microplastics in two seabird species from the Canadian Arctic. ENVIRONMENTAL SCIENCE AND ECOTECHNOLOGY 2022; 12:100189. [PMID: 36157344 PMCID: PMC9500368 DOI: 10.1016/j.ese.2022.100189] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 05/25/2022] [Accepted: 05/25/2022] [Indexed: 05/05/2023]
Abstract
Through ingestion and subsequent egestion, Arctic seabirds can bioaccumulate microplastics at and around their colony breeding sites. While microplastics in Arctic seabirds have been well documented, it is not yet understood to what extent these particles can act as transport vehicles for plastic-associated contaminants, including legacy persistent organic pollutants (POPs), trace metals, and organic additives. We investigated the occurrence and pattern of organic and inorganic co-contaminants of microplastics in two seabird species from the Canadian Arctic - northern fulmar (Fulmarus glacialis) and black-legged kittiwake (Rissa tridactyla). We found that fulmars had higher levels of plastic contamination and emerging organic compounds (known to be plastic additives) than kittiwakes, whereas higher concentrations of legacy POPs were found in kittiwakes than the fulmars. Furthermore, fulmars, the species with the much larger foraging range (∼200 km), had higher plastic pollution and overall contaminant burdens, indicating that birds may be acting as long-range transport vectors for plastic-associated pollution. Our results suggest a potential connection between plastic additive contamination and plastic pollution burdens in the bird stomachs, highlighting the importance of treating plastic particles and plastic-associated organic additives as co-contaminants rather than separate pollution issues.
Collapse
Affiliation(s)
- Roxana Sühring
- Department of Chemistry and Biology, Toronto Metropolitan University (formerly known as Ryerson University), 350 Victoria St, Toronto, ON, M5B 2K3, Canada
| | - Julia E. Baak
- Department of Natural Resource Science, McGill University, Sainte Anne de Bellevue, Québec, H9X 3V9, Canada
| | - Robert J. Letcher
- Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa, Ontario, K1A 0H3, Canada
| | - Birgit M. Braune
- Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa, Ontario, K1A 0H3, Canada
| | - Amila de Silva
- Aquatic Contaminants Research Division, Environment and Climate Change Canada, Burlington, Ontario, L7S 1A1, Canada
| | - Cody Dey
- Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa, Ontario, K1A 0H3, Canada
| | - Kim Fernie
- Ecotoxicology & Wildlife Health Division, Environment and Climate Change Canada, Burlington, Ontario, L7S 1A1, Canada
| | - Zhe Lu
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, Québec, G5L 3A1, Canada
| | - Mark L. Mallory
- Department of Biology, Acadia University, Wolfville, Nova Scotia, B4P 2R6, Canada
| | - Stephanie Avery-Gomm
- Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa, Ontario, K1A 0H3, Canada
| | - Jennifer F. Provencher
- Environment and Climate Change Canada, National Wildlife Research Centre, Carleton University, Raven Road, Ottawa, Ontario, K1A 0H3, Canada
| |
Collapse
|
36
|
Plastic and other anthropogenic debris in Arctic fox (Vulpes lagopus) faeces from Iceland. Polar Biol 2022. [DOI: 10.1007/s00300-022-03075-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Abstract
AbstractAnthropogenic debris, including plastic pollution, is a growing concern in the Arctic and negatively impacts both marine and coastal organisms. The aim of this study was to investigate the potential for using Arctic fox (Vulpes lagopus) faeces as a monitoring tool for plastic pollution in the Arctic environment. Arctic fox faeces were collected in different regions of Iceland and analysed for anthropogenic debris presence larger than 300 µm, and diet composition. In total, 235 faecal samples from 1999, 2017, 2018 and 2020 were analysed. The overall frequency of occurrence of plastic and other anthropogenic material was 5.11% and was found in samples across all regions and years. There were no statistical differences in anthropogenic debris ingested, depending on year or region. There were no obvious differences in diet composition between samples that contained anthropogenic debris and samples without. The suitability of Arctic fox faeces as a method to monitor plastic and anthropogenic debris levels in the Arctic environment remains debatable: Whilst the vast distribution range of the Arctic fox and the non-invasive collection methodology of faecal samples could be utilised as a good monitoring tool, the overall low uptake and unclear source of plastic and anthropogenic debris (marine or terrestrial) makes the interpretation of the data difficult. Nevertheless, debris ingestion by Arctic foxes remains a concern and warrants further studies.
Collapse
|
37
|
Benjaminsen SC, Bourgeon S, Herzke D, Ask A, Collard F, Gabrielsen GW. First documentation of plastic ingestion in the arctic glaucous gull (Larus hyperboreus). THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 834:155340. [PMID: 35460786 DOI: 10.1016/j.scitotenv.2022.155340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 04/12/2022] [Accepted: 04/13/2022] [Indexed: 06/14/2023]
Abstract
Arctic wildlife is facing multiple stressors, including increasing plastic pollution. Seabirds are intrinsic to marine ecosystems, but most seabird populations are declining. We lack knowledge on plastic ingestion in many arctic seabird species, and there is an urgent need for more information to enable risk assessment and monitoring. Our study aimed to investigate the occurrence of plastics in glaucous gulls (Larus hyperboreus) breeding on Svalbard. The glaucous gull is a sentinel species for the health of the arctic marine ecosystem, but there have been no studies investigating plastic occurrence in this species since 1994. As a surface feeder and generalist living in an area with high human activity on Svalbard, we expected to find plastic in its stomach. We investigated for plastic >1 mm and documented plastic ingestion for the first time in glaucous gulls, with a frequency of occurrence of 14.3% (n = 21). The plastics were all identified as user plastics and consisted of polypropylene (PP) and polystyrene (PS). Our study provides new quantitative and qualitative data on plastic burden and polymer type reported in a standardized manner establishing a reference point for future research and monitoring of arctic gulls on national and international levels.
Collapse
Affiliation(s)
| | - Sophie Bourgeon
- UiT - The Arctic University of Norway, Department of Arctic and Marine Biology, Hansine Hansens veg 18, 9019 Tromsø, Norway
| | - Dorte Herzke
- Norwegian Institute for Air Research (NILU), Framsenteret, Hjalmar Johansens Gate 14, 9296 Tromsø, Norway
| | - Amalie Ask
- Department of Biology, FI-20014, University of Turku, Finland
| | - France Collard
- Norwegian Polar Institute, Fram Centre, 9296 Tromsø, Norway
| | | |
Collapse
|
38
|
Abstract
Microplastic debris is a persistent, ubiquitous global pollutant in oceans, estuaries, and freshwater systems. Some of the highest reported concentrations of microplastics, globally, are in the Gulf of Mexico (GoM), which is home to the majority of plastic manufacturers in the United States. A comprehensive understanding of the risk microplastics pose to wildlife is critical to the development of scientifically sound mitigation and policy initiatives. In this review, we synthesize existing knowledge of microplastic debris in the Gulf of Mexico and its effects on birds and make recommendations for further research. The current state of knowledge suggests that microplastics are widespread in the marine environment, come from known sources, and have the potential to be a major ecotoxicological concern for wild birds, especially in areas of high concentration such as the GoM. However, data for GoM birds are currently lacking regarding typical microplastic ingestion rates uptake of chemicals associated with plastics by avian tissues; and physiological, behavioral, and fitness consequences of microplastic ingestion. Filling these knowledge gaps is essential to understand the hazard microplastics pose to wild birds, and to the creation of effective policy actions and widespread mitigation measures to curb this emerging threat to wildlife.
Collapse
|
39
|
Suzuki G, Uchida N, Tuyen LH, Tanaka K, Matsukami H, Kunisue T, Takahashi S, Viet PH, Kuramochi H, Osako M. Mechanical recycling of plastic waste as a point source of microplastic pollution. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 303:119114. [PMID: 35276247 DOI: 10.1016/j.envpol.2022.119114] [Citation(s) in RCA: 37] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 03/03/2022] [Accepted: 03/04/2022] [Indexed: 06/14/2023]
Abstract
Plastic pollution has become one of the most pressing environmental issues. Recycling is a potential means of reducing plastic pollution in the environment. However, plastic fragments are still likely released to the aquatic environment during mechanical recycling processes. Here, we examined the plastic inputs and effluent outputs of three mechanical recycling facilities in Vietnam dealing with electronic, bottle, and household plastic waste, and we found that large quantities of microplastics (plastics <5 mm in length) are generated and released to the aquatic environment during mechanical recycling without proper treatment. Comparisons with literature data for microplastics in wastewater treatment plant effluents and surface water indicated that mechanical recycling of plastic waste is likely a major point source of microplastics pollution. Although there is a mismatch between the size of the microplastics examined in the present study and the predicted no-effect concentration reported, it is still possible that microplastics generated at facilities pose risks to the aquatic environment because there might be many plastic particulates smaller than 315 μm, as suggested by our obtained size distributions. With mechanical recycling likely to increase as we move to a circular plastics economy, greater microplastics emissions can be expected. It is therefore an urgent need to fully understand not only the scale of microplastic generation and release from plastic mechanical recycling but also the environmental risk posed by microplastics in the aquatic environment.
Collapse
Affiliation(s)
- Go Suzuki
- Material Cycles Division, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan.
| | - Natsuyo Uchida
- Material Cycles Division, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Le Huu Tuyen
- VNU Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, 11400, Viet Nam; Centre for Environmental Technology and Sustainable Development (CETASD), VNU University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Kosuke Tanaka
- Material Cycles Division, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Hidenori Matsukami
- Material Cycles Division, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Tatsuya Kunisue
- Center for Marine Environmental Studies, Ehime University, 2-5 Bunkyo-cho, Matsuyama, 790-8577, Japan
| | - Shin Takahashi
- Center of Advanced Technology for the Environment, Faculty of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama, 790-8566, Japan
| | - Pham Hung Viet
- VNU Key Laboratory of Analytical Technology for Environmental Quality and Food Safety Control (KLATEFOS), VNU University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, 11400, Viet Nam; Centre for Environmental Technology and Sustainable Development (CETASD), VNU University of Science, Vietnam National University, 334 Nguyen Trai, Hanoi, 11400, Viet Nam
| | - Hidetoshi Kuramochi
- Material Cycles Division, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| | - Masahiro Osako
- Material Cycles Division, National Institute for Environmental Studies, Tsukuba, 305-8506, Japan
| |
Collapse
|
40
|
Shin S, Sim E, Lee W, Paik HJ, Yu Y, Ahn D. Synthesis and reactivity of novel cinnamonitrile derivatives as reactive UV stabilizers for enhanced light protection and performance of coatings. Polym Degrad Stab 2022. [DOI: 10.1016/j.polymdegradstab.2022.109969] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
41
|
Li Y, Lu Z, Abrahamsson DP, Song W, Yang C, Huang Q, Wang J. Non-targeted analysis for organic components of microplastic leachates. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 816:151598. [PMID: 34774944 DOI: 10.1016/j.scitotenv.2021.151598] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 11/05/2021] [Accepted: 11/07/2021] [Indexed: 06/13/2023]
Abstract
Organic components of microplastic leachates were investigated in an integrated non-targeted analysis study that included statistical analysis on leachates generated under different leaching scenarios. Leaching experiments were undertaken with simulated gastric fluid (SGF), river water, and seawater with common polymer types, including polyethylene, polypropylene, polyvinyl chloride, polyethylene terephthalate, and polyester fabrics comprising both raw and recycled materials. Totals of 111.0 ± 26.7, 98.5 ± 20.3, and 53.5 ± 4.7 different features were tentatively identified as compounds in SGF, freshwater, and seawater leachates, respectively, of which 5 compounds were confirmed by reference standards. The leaching capacities of the media were compared, and the clusters of structurally related features leached in the same medium were studied. For leachates generated from raw and recycled plastics, volcano plots and Pearson's Chi-squared tests were used to identify characteristic features. More characteristic features (3-20) had an average intensity across all recycled plastics that were significantly higher (p < 0.05) than that (1-3) of raw plastics under different conditions. The results indicate that gastric solution is more likely to leach components from microplastics, and there exists the difference of leachate's organic composition between raw and recycled materials, providing new insights into understanding microplastic environmental effects.
Collapse
Affiliation(s)
- Yubo Li
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, PR China
| | - Zhibo Lu
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, PR China.
| | - Dimitri Panagopoulos Abrahamsson
- Program on Reproductive Health and the Environment, Department of Obstetrics and Gynecology, University of California, San Francisco, CA 94158, USA
| | - Weihua Song
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200438, PR China
| | - Chao Yang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, PR China
| | - Qinghui Huang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, PR China
| | - Juan Wang
- College of Environmental Science and Engineering, Tongji University, Shanghai 200092, PR China; State Key Laboratory of Pollution Control and Resource Reuse, Shanghai 200092, PR China
| |
Collapse
|
42
|
Caldwell A, Brander S, Wiedenmann J, Clucas G, Craig E. Incidence of microplastic fiber ingestion by Common Terns (Sterna hirundo) and Roseate Terns (S. dougallii) breeding in the Northwestern Atlantic. MARINE POLLUTION BULLETIN 2022; 177:113560. [PMID: 35314396 DOI: 10.1016/j.marpolbul.2022.113560] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2021] [Revised: 03/10/2022] [Accepted: 03/11/2022] [Indexed: 06/14/2023]
Abstract
Ingestion of microplastics has been documented across marine species, but exposure remains sparsely described in many seabird species. We assess microplastic (between 0.2 and 5.0 mm) ingestion in two Northwestern Atantic - breeding species for which exposure to microplastics is entirely or largely undescribed: Common Terns (Sterna hirundo) and Roseate Terns (S. dougallii). Common Tern microplastic load did not vary between life stages (p = 0.590); microplastic load did differ in Common Tern adults breeding at two of three colonies explored (p = 0.002), with no other regional differences observed. Roseate Terns ingested significantly more microplastics than Common Terns (p = 0.007). Our results show that microplastic ingestion by terns varies regionally and interspecifically, but not by life stage, trends potentially explained by dietary differences. We provide the first quantification of microplastic fiber ingestion by terns in the Northwestern Atlantic and identify trophic dynamics related to microplastic ingestion, representing an important step toward understanding the risk of the pollutant to terns across regions, as well as toward the use of terns as potential bioindicators of microplastics.
Collapse
Affiliation(s)
- Aliya Caldwell
- University of New Hampshire, 38 Academic Way, Durham, NH, United States of America.
| | - Susanne Brander
- Oregon State University, 2820 SW Campus Way, Corvallis, OR 97331, United States of America.
| | - John Wiedenmann
- Rutgers University-New Brunswick, 14 College Farm Rd., New Brunswick, NJ, United States of America
| | - Gemma Clucas
- Cornell Lab of Ornithology, 159 Sapsucker Woods Road, Ithaca, NY, United States of America.
| | - Elizabeth Craig
- Shoals Marine Laboratory, 8 College Rd., Durham, NH, United States of America.
| |
Collapse
|
43
|
Li M, Chen Q, Ma C, Gao Z, Yu H, Xu L, Shi H. Effects of microplastics and food particles on organic pollutants bioaccumulation in equi-fugacity and above-fugacity scenarios. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 812:152548. [PMID: 34952063 DOI: 10.1016/j.scitotenv.2021.152548] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 12/13/2021] [Accepted: 12/15/2021] [Indexed: 06/14/2023]
Abstract
Microplastics (MPs), as emerging contaminants, sorb organic pollutants from the environment or leach out additives, thereby altering the fate of co-existing pollutants to organisms. We chose equi-fugacity and above-fugacity concentrations of polychlorinated biphenyls (PCBs) as background contamination and plastic additive concentrations, respectively, to investigate the effects of MPs on PCB bioaccumulation; we compared the effects of MPs with those of food-borne particles (FBPs). Co-exposure to MPs and FBPs at both the equi-fugacity and above-fugacity PCB concentrations had no obvious toxic effects (ROS generation and cyp1a expression) on zebrafish. When the zebrafish were exposed to the equi-fugacity PCB concentrations, the PCB concentrations reached 177.7-400.5 ng/g after a 7-d uptake; the presence of MPs did not significantly enhance PCB bioaccumulation. The remaining PCB concentrations in the fish after a 4-d depuration were 58.4-125.1 ng/g; the effects of MPs were the same as those during the uptake period. However, at the above-fugacity PCB concentrations, the MPs markedly increased the PCB bioaccumulation (by 1.8-fold) to 712.9 ng/g. This is because at above-fugacity concentrations, PCBs on MPs migrate to organisms as there were high fugacity gradients. The FBPs enhanced PCB bioaccumulation in zebrafish more effectively than the MPs, even after depuration. In the presence of FBPs, PCB bioaccumulation increased by 2.8- and 4.2- fold after uptake in the equi-fugacity and above-fugacity scenarios, respectively, both of which were significantly higher than that observed for the MPs. This is probably because FBPs are easily assimilated by fish, making the associated PCBs more bioavailable. Finally, during the co-existence of MPs and FBPs, MPs facilitate the depuration of PCBs accumulated via FBP vectors; conversely, FBPs did not affect PCB accumulation via MP vectors. Thus, this study elucidated the effects of MPs and FBPs on the bioaccumulation of pollutants at equi-fugacity or above-fugacity concentrations in aquatic environments.
Collapse
Affiliation(s)
- Mingyuan Li
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Qiqing Chen
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| | - Cuizhu Ma
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Zhuo Gao
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Hairui Yu
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China
| | - Li Xu
- Institute of Quality Standard and Testing Technology for Agro-Products of CAAS, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100089, China.
| | - Huahong Shi
- State Key Laboratory of Estuarine and Coastal Research, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
44
|
Deng Y, Jiang X, Zhao H, Yang S, Gao J, Wu Y, Diao Q, Hou C. Microplastic Polystyrene Ingestion Promotes the Susceptibility of Honeybee to Viral Infection. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11680-11692. [PMID: 34374532 DOI: 10.1021/acs.est.1c01619] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Microplastics (MPs) are an emerging threat to ecological conservation and biodiversity; however, little is known of the types and possible impacts of MPs in pollinators. To examine whether MPs were present in honeybees, we analyzed the honeybee samples collected in fields from six provinces in China. Four types MPs were identified in honeybee including polystyrene (PS) by Raman spectroscopic analysis, and these plastic polymers were detected in 66.7% bee samples. Then, we assessed the physical and biological impacts of PS of three sizes (0.5, 5, and 50 μm) on bees for 21 days. Next, we measured how the presence of PS affected the Israeli acute paralysis virus proliferation, a small RNA virus associated with bee colony decline. Experimental evidence showed that a large mass of PS was ingested and accumulated within the midgut and enhanced the susceptibility of bees to viral infection. Not only histological analysis showed that PS, especially 0.5 μm PS, damaged the midgut tissue and was subsequently transferred to the hemolymph, trachea, and Malpighian tubules, but also qPCR and transcriptomic results indicated that genes correlated with membrane lipid metabolism, immune response, detoxification, and the respiratory system were significantly regulated after PS ingestion. Our results highlight neglected MP contamination to the bees, a pollination ecosystem stressed by the anthropogenic pollution, and have implications for human health via ingestion of bee products.
Collapse
Affiliation(s)
- Yanchun Deng
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China
- Graduate School of Chinese Academy of Agricultural Sciences, Beijing 100081, People's Republic of China
| | - Xuejian Jiang
- Guangxi Zhuang Autonomous Region Forestry Research Institute, Nanning 530002, People's Republic of China
| | - Hongxia Zhao
- Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Institute of Zoology, Guangdong Academy of Sciences, Guangzhou 510260, People's Republic of China
| | - Sa Yang
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China
| | - Jing Gao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China
| | - Yanyan Wu
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China
| | - Qingyun Diao
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China
| | - Chunsheng Hou
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, People's Republic of China
- Key Laboratory of Pollinating Insect Biology, Ministry of Agriculture and Rural Affairs, Beijing 100193, People's Republic of China
| |
Collapse
|
45
|
Sala B, Balasch A, Eljarrat E, Cardona L. First study on the presence of plastic additives in loggerhead sea turtles (Caretta caretta) from the Mediterranean Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2021; 283:117108. [PMID: 33866215 DOI: 10.1016/j.envpol.2021.117108] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 03/22/2021] [Accepted: 04/06/2021] [Indexed: 06/12/2023]
Abstract
Loggerhead turtles (Caretta caretta) voluntarily ingest floating plastic debris and hence are chronically exposed to plastic additives, but very little is known about the levels of these compounds in their tissues. This work studied the presence of organophosphate esters (OPEs) on sea turtles collected from two different areas in the western Mediterranean, some of their prey and some floating plastic debris. OPEs were detected in all the samples analysed and ∑OPEs ranged from 12.5 to 384 ng/g wet weight (ww) in the turtles from the Catalan coasts, with a mean value of 21.6 ng/g ww, and from 6.08 to 100 ng/g ww in the turtles the Balearic Islands, with a mean value of 37.9 ng/g ww. Differences in ∑OPEs were statistically significant, but turtles from the two regions did not differ in their OPE profiles. As per turtle's prey, ∑OPEs ranged from 4.55 to 90.5 ng/g ww. Finally, marine plastic litter showed ∑OPEs concentrations between 10.9 and 868 ng/g. Although most compounds were present in both potential sources of contamination, prey and plastic debris, the OPE profiles in loggerhead turtles and these sources were different. Some OPEs, such as tris(2-isopropylphenyl) phosphate (T2IPPP), tripropyl phosphate (TPP) and tris(2-butoxyethyl) phosphate (TBOEP), were detected in plastic debris and turtle muscle but not in their prey, thus suggesting that ingestion of plastic debris was their main source. Contrarily, the levels of triethyl phosphate (TEP), diphenyl cresyl phosphate (DCP), 2-isopropylphenyl diphenyl phosphate (2IPPDPP) and 4-isopropylphenyl diphenyl phosphate (4IPPDPP) in turtle muscle were much higher than in jellyfish, their main prey, thus indicating a biomagnification potential. Regular ingestion of plastic debris and contamination from their prey may explain why ∑OPEs in loggerhead turtles is much higher than the values reported previously for teleost fishes and marine mammals from the western Mediterranean.
Collapse
Affiliation(s)
- Berta Sala
- Water, Environment and Food Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Aleix Balasch
- Water, Environment and Food Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain
| | - Ethel Eljarrat
- Water, Environment and Food Chemistry, Institute of Environmental Assessment and Water Research (IDAEA-CSIC), Jordi Girona 18-26, 08034, Barcelona, Spain.
| | - Luis Cardona
- Institute of Biodiversity Research (IRBio) and Department of Evolutionary Biology, Ecology and Environmental Sciences, Faculty of Biology, University of Barcelona, Av. Diagonal 643, Barcelona, Spain
| |
Collapse
|
46
|
Connan M, Perold V, Dilley BJ, Barbraud C, Cherel Y, Ryan PG. The Indian Ocean 'garbage patch': Empirical evidence from floating macro-litter. MARINE POLLUTION BULLETIN 2021; 169:112559. [PMID: 34116371 DOI: 10.1016/j.marpolbul.2021.112559] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 05/24/2021] [Accepted: 05/25/2021] [Indexed: 06/12/2023]
Abstract
Marine litter has become a global issue with 'garbage patches' documented in all ocean gyres. The Pacific and Atlantic garbage patches have been well described, but there are few empirical data for the Indian Ocean. In the austral summer 2019-2020, we conducted an at-sea survey of macro-litter in the rarely investigated south-west Indian Ocean. Over 24 days, 1623 man-made items were observed including plastic fragments, packaging and fishing-related items during 216 h of observations covering 5464 km. More than 99% of the litter items were plastics of which almost 60% were white. Floating litter was patchily distributed with only five items (0.2%) recorded south of 40°S (0.1 items·km-2). Half of the items were encountered over a two-day period south-east of Madagascar (30°S; 59-67°E; 75.2 items·km-2). Our survey detected an accumulation of litter in the southern Indian Ocean and demonstrated that this area warrants more research.
Collapse
Affiliation(s)
- Maëlle Connan
- Marine Apex Predator Research Unit, Institute for Coastal and Marine Research, Department of Zoology, Nelson Mandela University, Port Elizabeth, South Africa.
| | - Vonica Perold
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Rondebosch, South Africa
| | - Ben J Dilley
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Rondebosch, South Africa
| | - Christophe Barbraud
- Centre d'Etudes Biologiques de Chizé, UMR 7372 du CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Yves Cherel
- Centre d'Etudes Biologiques de Chizé, UMR 7372 du CNRS-La Rochelle Université, 79360 Villiers-en-Bois, France
| | - Peter G Ryan
- FitzPatrick Institute of African Ornithology, DSI-NRF Centre of Excellence, University of Cape Town, Rondebosch, South Africa
| |
Collapse
|
47
|
Neumann S, Harju M, Herzke D, Anker-Nilssen T, Christensen-Dalsgaard S, Langset M, Gabrielsen GW. Ingested plastics in northern fulmars (Fulmarus glacialis): A pathway for polybrominated diphenyl ether (PBDE) exposure? THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 778:146313. [PMID: 33721646 DOI: 10.1016/j.scitotenv.2021.146313] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 02/26/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Although it has been suggested that plastic may act as a vector for pollutants into the tissue of seabirds, the bioaccumulation of harmful contaminants, such as polybrominated diphenyl ethers (PBDEs), released from ingested plastics is poorly understood. Plastic ingestion by the procellariiform species northern fulmar (Fulmarus glacialis) is well documented. In this study, we measured PBDEs levels in liver tissue of northern fulmars without and with (0.13-0.43 g per individual) stomach plastics. PBDE concentrations in the plastic sampled from the same birds were also quantified. Birds were either found dead on beaches in southern Norway or incidentally caught in longline fisheries in northern Norway. PBDEs were detected in all birds but high concentrations were only found in liver samples from beached birds, peaking at 2900 ng/g lipid weight. We found that body condition was a significant factor explaining the elevated concentration levels in livers of beached birds. BDE209 was found in ingested plastic particles and liver tissue of birds with ingested plastics but was absent in the livers of birds without ingested plastics. This strongly suggests a plastic-derived transfer and accumulation of BDE209 to the tissue of fulmars, levels of which might prove useful as a general indicator of plastic ingestion in seabirds.
Collapse
Affiliation(s)
- Svenja Neumann
- NPI - Norwegian Polar Institute, FRAM - High North Research Centre on Climate and the Environment, P.O. Box 6606, Langnes, 9296 Tromsø, Norway.
| | - Mikael Harju
- NILU - Norwegian Institute for Air Research, FRAM - High North Research Centre on Climate and the Environment, P.O. Box 6606, Langnes, 9296 Tromsø, Norway
| | - Dorte Herzke
- NILU - Norwegian Institute for Air Research, FRAM - High North Research Centre on Climate and the Environment, P.O. Box 6606, Langnes, 9296 Tromsø, Norway
| | - Tycho Anker-Nilssen
- NINA - Norwegian Institute for Nature Research, P.O. Box 5685, Torgarden, 7485 Trondheim, Norway
| | | | - Magdalene Langset
- NINA - Norwegian Institute for Nature Research, P.O. Box 5685, Torgarden, 7485 Trondheim, Norway
| | - Geir Wing Gabrielsen
- NPI - Norwegian Polar Institute, FRAM - High North Research Centre on Climate and the Environment, P.O. Box 6606, Langnes, 9296 Tromsø, Norway
| |
Collapse
|
48
|
Bridson JH, Gaugler EC, Smith DA, Northcott GL, Gaw S. Leaching and extraction of additives from plastic pollution to inform environmental risk: A multidisciplinary review of analytical approaches. JOURNAL OF HAZARDOUS MATERIALS 2021; 414:125571. [PMID: 34030416 DOI: 10.1016/j.jhazmat.2021.125571] [Citation(s) in RCA: 99] [Impact Index Per Article: 33.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 02/21/2021] [Accepted: 03/01/2021] [Indexed: 06/12/2023]
Abstract
Plastic pollution is prevalent worldwide and has been highlighted as an issue of global concern due to its harmful impacts on wildlife. The extent and mechanism by which plastic pollution effects organisms is poorly understood, especially for microplastics. One proposed mechanism by which plastics may exert a harmful effect is through the leaching of additives. To determine the risk to wildlife, the chemical identity and exposure to additives must be established. However, there are few reports with disparate experimental approaches. In contrast, a breadth of knowledge on additive release from plastics is held within the food, pharmaceutical and medical, construction, and waste management industries. This includes standardised methods to perform migration, extraction, and leaching studies. This review provides an overview of the approaches and methods used to characterise additives and their leaching behaviour from plastic pollution. The limitations of these methods are highlighted and compared with industry standardised approaches. Furthermore, an overview of the analytical strategies for the identification and quantification of additives is presented. This work provides a basis for refining current leaching approaches and analytical methods with a view towards understanding the risk of plastic pollution.
Collapse
Affiliation(s)
- James H Bridson
- Scion, 49 Sala Street, Rotorua 3010, New Zealand; School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand.
| | | | - Dawn A Smith
- Scion, 49 Sala Street, Rotorua 3010, New Zealand
| | - Grant L Northcott
- Northcott Research Consultants Limited, 20 River Oaks Place, Hamilton 3200, New Zealand
| | - Sally Gaw
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch 8041, New Zealand
| |
Collapse
|
49
|
Human metabolism and kinetics of the UV absorber 2-(2H-benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV 328) after oral administration. Arch Toxicol 2021; 95:2677-2690. [PMID: 34180011 PMCID: PMC8298232 DOI: 10.1007/s00204-021-03093-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 06/15/2021] [Indexed: 02/06/2023]
Abstract
2-(2H-Benzotriazol-2-yl)-4,6-di-tert-pentylphenol (UV 328; CAS: 25973-55-1) is an ultraviolet light (UV) absorber which belongs to the class of hydroxy phenol benzotriazoles. Therefore, UV 328 is added to plastics and other polymers due to its photostability to prevent discoloration and prolong product stability which may result in an exposure of consumers. However, information about the toxic effects on humans and the human metabolism are still lacking. In the present study, human metabolism pathways of UV 328 and its elimination kinetics were explored. For that purpose, three healthy volunteers were orally exposed to a single dose of 0.3 mg UV 328/kg bodyweight. UV 328 and its metabolites were investigated in blood and urine samples collected until 48 and 72 h after exposure, respectively. Thereby, previously published analytical procedures were applied for the sample analysis using dispersive liquid–liquid microextraction and subsequent measurement via gas chromatography coupled to tandem mass spectrometry with advanced electron ionization. UV 328 was found to be oxidized at its alkyl side chains leading to the formation of hydroxy and/or oxo function with maximum blood concentrations at 8–10 h after exposure for UV 328-6/3-OH, UV 328-4/3-OH and UV 328-4/3-CO. In contrast, a plateau for UV 328-4/3-CO-6/3-OH levels was reached around 10 h post-dosage. The highest blood levels were found for native UV 328 at 8 h after ingestion. Furthermore, biphasic elimination kinetics in blood were revealed for almost all detected metabolites. UV 328 and its metabolites did not occur in blood as conjugates. The renal elimination kinetics were very similar with the kinetics in blood. However, the prominence of the metabolites in urine was somewhat different compared to blood. In contrast, mostly conjugated metabolites occurred for renal elimination. In urine, UV 328-4/3-CO-6/3-OH was found to be the most dominant urinary biomarker followed by UV 328-6/3-OH and UV 328-4/3-OH. In total, approximately 0.1% of the orally administered dose was recovered in urine within 72 h. Although high levels of UV 328 in blood proved good resorption and high systemic availability of the substance in the human body, the urine results revealed a rather low quantitative metabolism and urinary excretion rate. Consequently, biliary excretion as part of the enterohepatic cycle and elimination via feces are assumed to be the preferred pathways instead of renal elimination.
Collapse
|
50
|
Mapping marine debris encountered by albatrosses tracked over oceanic waters. Sci Rep 2021; 11:10944. [PMID: 34035426 PMCID: PMC8149674 DOI: 10.1038/s41598-021-90417-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Accepted: 05/11/2021] [Indexed: 12/17/2022] Open
Abstract
Anthropogenic marine debris is a threat to marine organisms. Understanding how this debris spatially distributes at sea and may become associated with marine wildlife are key steps to tackle this current issue. Using bird-borne GPS- and video-loggers on 13 black-footed albatrosses Phoebastria nigripes breeding in Torishima, Japan, we examined the distribution of large floating debris in the Kuroshio Current area, western North Pacific. A total of 16 floating debris, including styrofoam (n = 4), plastic pieces (n = 3), plastic sheet (n = 1), fishery-related items (rope or netting, n = 4), and unidentified debris (n = 4), were recorded across the 9003 km covered by nine birds. The debris was concentrated in the southern area of the Kuroshio Current, where the surface current was weak, and the albatrosses were foraging. The albatrosses displayed changes in flight direction towards the debris when at a mean distance of 4.9 km, similarly to when approaching prey, and one bird was observed pecking at a plastic sheet; indicating that albatrosses actively interacted with the debris. This paper shows the usefulness of studying wide-ranging marine predators through the use of combined biologging tools, and highlights areas with increased risk of debris exposure and behavioral responses to debris items.
Collapse
|