1
|
Clark JW. Assembling the picture of stomatal evolution. THE NEW PHYTOLOGIST 2025; 245:6-8. [PMID: 39370534 DOI: 10.1111/nph.20179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
This article is a Commentary on Fortin & Friedman (2024), 245: 40–48.
Collapse
Affiliation(s)
- James W Clark
- Department of Life Sciences, Milner Centre for Evolution, University of Bath, Bath, UK
| |
Collapse
|
2
|
Fortin JP, Friedman WE. A stomate by any other name? The open question of hornwort gametophytic pores, their homology, and implications for the evolution of stomates. THE NEW PHYTOLOGIST 2025; 245:40-48. [PMID: 39256934 DOI: 10.1111/nph.20094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/14/2024] [Indexed: 09/12/2024]
Abstract
Advances in bryophyte genomics and the phylogenetic recovery of hornworts, mosses, and liverworts as a clade have spurred considerable recent interest in character evolution among early embryophytes. Discussion of stomatal evolution, however, has been incomplete; the result of the neglect of certain potential stomate homologues, namely the two-celled epidermal gametophytic pores of hornworts (typically referred to as 'mucilage clefts'). Confusion over the potential homology of these structures is the consequence of a relatively recent consensus that hornwort gametophytic pores ('HGPs' - our term) are not homologous to stomates. We explore the occurrence and diverse functions of stomates throughout the evolutionary history and diversity of extinct and extant embryophytes. We then address arguments for and against homology between known sporophyte- and gametophyte-borne stomates and HGPs and conclude that there is little to no evidence that contradicts the hypothesis of homology. We propose that 'intergenerational heterotopy' might well account for the novel expression of stomates in gametophytes of hornworts, if stomates first evolved in the sporophyte generation of embryophytes. We then explore phylogenetically based hypotheses for the evolution of stomates in both the gametophyte and sporophyte generations of early lineages of embryophytes.
Collapse
Affiliation(s)
- James Paul Fortin
- The Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA, 02131, USA
| | - William E Friedman
- The Arnold Arboretum of Harvard University, 1300 Centre Street, Boston, MA, 02131, USA
- Department of Organismic and Evolutionary Biology, Harvard University, 26 Oxford Street, Cambridge, MA, 02138, USA
| |
Collapse
|
3
|
Pankasem N, Hsu PK, Lopez BNK, Franks PJ, Schroeder JI. Warming triggers stomatal opening by enhancement of photosynthesis and ensuing guard cell CO 2 sensing, whereas higher temperatures induce a photosynthesis-uncoupled response. THE NEW PHYTOLOGIST 2024; 244:1847-1863. [PMID: 39353606 DOI: 10.1111/nph.20121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/29/2024] [Indexed: 10/04/2024]
Abstract
Plants integrate environmental stimuli to optimize photosynthesis vs water loss by controlling stomatal apertures. However, stomatal responses to temperature elevation and the underlying molecular genetic mechanisms remain less studied. We developed an approach for clamping leaf-to-air vapor pressure difference (VPDleaf) to fixed values, and recorded robust reversible warming-induced stomatal opening in intact plants. We analyzed stomatal temperature responses of mutants impaired in guard cell signaling pathways for blue light, abscisic acid (ABA), CO2, and the temperature-sensitive proteins, Phytochrome B (phyB) and EARLY-FLOWERING-3 (ELF3). We confirmed that phot1-5/phot2-1 leaves lacking blue-light photoreceptors showed partially reduced warming-induced stomatal opening. Furthermore, ABA-biosynthesis, phyB, and ELF3 were not essential for the stomatal warming response. Strikingly, Arabidopsis (dicot) and Brachypodium distachyon (monocot) mutants lacking guard cell CO2 sensors and signaling mechanisms, including ht1, mpk12/mpk4-gc, and cbc1/cbc2 abolished the stomatal warming response, suggesting a conserved mechanism across diverse plant lineages. Moreover, warming rapidly stimulated photosynthesis, resulting in a reduction in intercellular (CO2). Interestingly, further enhancing heat stress caused stomatal opening uncoupled from photosynthesis. We provide genetic and physiological evidence that the stomatal warming response is triggered by increased CO2 assimilation and stomatal CO2 sensing. Additionally, increasing heat stress functions via a distinct photosynthesis-uncoupled stomatal opening pathway.
Collapse
Affiliation(s)
- Nattiwong Pankasem
- Cell and Developmental Biology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093-0116, USA
| | - Po-Kai Hsu
- Cell and Developmental Biology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093-0116, USA
| | - Bryn N K Lopez
- Cell and Developmental Biology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093-0116, USA
| | - Peter J Franks
- School of Life and Environmental Sciences, The University of Sydney, Sydney, NSW, 2006, Australia
| | - Julian I Schroeder
- Cell and Developmental Biology Department, School of Biological Sciences, University of California San Diego, La Jolla, CA, 92093-0116, USA
| |
Collapse
|
4
|
Sussmilch FC, Maierhofer T, Herrmann J, Voss LJ, Lind C, Messerer M, Müller HM, Bünner MS, Ache P, Mayer KFX, Becker D, Roelfsema MRG, Geiger D, Schultz J, Hedrich R. Gaining or cutting SLAC: the evolution of plant guard cell signalling pathways. THE NEW PHYTOLOGIST 2024; 244:2295-2310. [PMID: 39370767 PMCID: PMC11579433 DOI: 10.1111/nph.20172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Accepted: 09/08/2024] [Indexed: 10/08/2024]
Abstract
The evolution of adjustable stomatal pores, enabling CO2 acquisition, was one of the most significant events in the development of life on land. Here, we investigate how the guard cell signalling pathways that regulate stomatal movements evolved. We compare fern and angiosperm guard cell transcriptomes and physiological responses, and examine the functionality of ion channels from diverse plant species. We find that, despite conserved expression in guard cells, fern anion channels from the SLAC/SLAH family are not activated by the same abscisic acid (ABA) pathways that provoke stomatal closure in angiosperms. Accordingly, we find an insensitivity of fern stomata to ABA. Moreover, our analysis points to a complex evolutionary history, featuring multiple gains and/or losses of SLAC activation mechanisms, as these channels were recruited to a role in stomatal closure. Our results show that the guard cells of flowering and nonflowering plants share similar core features, with lineage-specific and ecological niche-related adaptations, likely underlying differences in behaviour.
Collapse
Affiliation(s)
- Frances C. Sussmilch
- Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius‐von‐Sachs Platz 2WürzburgD‐97082Germany
- School of Natural SciencesUniversity of TasmaniaPrivate Bag 55Hobart7001TASAustralia
| | - Tobias Maierhofer
- Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius‐von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Johannes Herrmann
- Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius‐von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Lena J. Voss
- Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius‐von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Christof Lind
- Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius‐von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Maxim Messerer
- Plant Genome and Systems BiologyHelmholtz Center MunichIngolstädter Landstraße 1Neuherberg85764Germany
| | - Heike M. Müller
- Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius‐von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Maria S. Bünner
- Department of Bioinformatics, BiozentrumUniversity of Würzburg, Am HublandKlara‐Oppenheimer‐Weg 32, Campus Hubland NordWürzburgD‐97074Germany
- Center for Computational and Theoretical BiologyUniversity of WürzburgKlara‐Oppenheimer‐Weg 32, Campus Hubland NordWürzburgD‐97074Germany
| | - Peter Ache
- Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius‐von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Klaus F. X. Mayer
- Plant Genome and Systems BiologyHelmholtz Center MunichIngolstädter Landstraße 1Neuherberg85764Germany
- School of Life Sciences WeihenstephanTechnical University of MunichAlte Akademie 8Freising85354Germany
| | - Dirk Becker
- Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius‐von‐Sachs Platz 2WürzburgD‐97082Germany
| | - M. Rob G. Roelfsema
- Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius‐von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Dietmar Geiger
- Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius‐von‐Sachs Platz 2WürzburgD‐97082Germany
| | - Jörg Schultz
- Department of Bioinformatics, BiozentrumUniversity of Würzburg, Am HublandKlara‐Oppenheimer‐Weg 32, Campus Hubland NordWürzburgD‐97074Germany
- Center for Computational and Theoretical BiologyUniversity of WürzburgKlara‐Oppenheimer‐Weg 32, Campus Hubland NordWürzburgD‐97074Germany
| | - Rainer Hedrich
- Molecular Plant Physiology and BiophysicsUniversity of WürzburgJulius‐von‐Sachs Platz 2WürzburgD‐97082Germany
- College of ScienceKing Saud UniversityPO Box 2455Riyadh11451Saudi Arabia
| |
Collapse
|
5
|
Wang L, Chang C. Interplays of Cuticle Biosynthesis and Stomatal Development: From Epidermal Adaptation to Crop Improvement. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:25449-25461. [PMID: 39513411 DOI: 10.1021/acs.jafc.4c06750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Crop production is limited by environmental stresses such as a water deficit, salinity, and extreme temperature. Lipophilic cuticle and stomatal pore govern plant transpirational water loss and photosynthetic gas exchange and contribute to plant adaptation to stressful environments. Intricate interplays between cuticle biosynthesis and stomatal development are supported by increasing evidence from phenotypic observations. Several mutants, initially identified as being deficient in cuticle development, have exhibited altered phenotypes in terms of stomatal ridges, numbers, patterns, and shapes. Similarly, mutants with abnormal stomatal patterning have shown defective cuticle formation. Recently, signaling components and transcription factors orchestrating cuticle biosynthesis and stomatal formation have been characterized in both model and crop plants. In this review, we summarize the genetic interplay between cuticle biosynthesis and stomata formation. Current strategies and future perspectives on exploiting the intertwined cuticle biosynthesis and stomatal development for crop stress resistance improvement are discussed.
Collapse
Affiliation(s)
- Lu Wang
- College of Life Sciences, Qingdao University, Qingdao, Shandong 266071, P.R. China
| | - Cheng Chang
- College of Life Sciences, Qingdao University, Qingdao, Shandong 266071, P.R. China
| |
Collapse
|
6
|
Hasan MM, Liu XD, Yao GQ, Liu J, Fang XW. Ethylene-mediated stomatal responses to dehydration and rehydration in seed plants. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:6719-6732. [PMID: 38367013 DOI: 10.1093/jxb/erae060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 02/16/2024] [Indexed: 02/19/2024]
Abstract
Ethylene, a plant hormone that significantly influences both plant growth and response to stress, plays a well-established role in stress signaling. However, its impact on stomatal opening and closure during dehydration and rehydration remains relatively unexplored and is still debated. Exogenous ethylene has been proven to induce stomatal closure through a series of signaling pathways, including the accumulation of reactive oxygen species, subsequent synthesis of nitric oxide and hydrogen sulfide, and SLOW ANION CHANNEL-ASSOCIATED 1 activation. Thus, it has been suggested that ethylene might function to induce stomatal closure synergistically with abscisic acid (ABA). Furthermore, it has also been shown that increased ethylene can inhibit ABA- and jasmonic acid-induced stomatal closure, thus hindering drought-induced closure during dehydration. Simultaneously, other stresses, such as chilling, ozone pollution, and K+ deficiency, inhibit drought- and ABA-induced stomatal closure in an ethylene synthesis-dependent manner. However, ethylene has been shown to take on an opposing role during rehydration, preventing stomatal opening in the absence of ABA through its own signaling pathway. These findings offer novel insights into the function of ethylene in stomatal regulation during dehydration and rehydration, giving a better understanding of the mechanisms underlying ethylene-induced stomatal movement in seed plants.
Collapse
Affiliation(s)
- Md Mahadi Hasan
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xu-Dong Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Guang-Qian Yao
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Jianquan Liu
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| | - Xiang-Wen Fang
- State Key Laboratory of Herbage Improvement and Grassland Agro-Ecosystems, College of Ecology, Lanzhou University, Lanzhou, Gansu 730000, China
| |
Collapse
|
7
|
Ma M, Gu J, Wang ZY. An optimization method for measuring the stomata in cassava ( Manihot esculenta Crantz) under multiple abiotic stresses. Open Life Sci 2024; 19:20220993. [PMID: 39533984 PMCID: PMC11554558 DOI: 10.1515/biol-2022-0993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/02/2024] [Accepted: 10/06/2024] [Indexed: 11/16/2024] Open
Abstract
As a gateway for gas exchange, pores regulate the transport of air and water in carbon assimilation, respiration, and transpiration to quickly adapt to environmental changes. Therefore, the study of stomatal movement characteristics of plants is helpful to strengthen the understanding of the mechanism of plant response to multi-environmental stress, and can improve the function of plant resistance to stresses. The stomatal movement of Arabidopsis leaves was observed by staining the stomata with rhodamine 6G, but this method has not been reported in other plant leaf stomata studies. Taking cassava as an example, the correlation between cassava stomatal movement and cassava response to stress was observed by using and improving the staining method. Rhodamine 6G is a biological stain widely used in cell biology and molecular biology. It was found that 1 μM rhodamine 6G could stain the stomata of cassava without affecting stomatal movement (n = 109, p < 0.05). In addition, we proposed that stomata fixed with 4% concentration of formaldehyde after staining were closest to the stomatal morphology of cassava epidermis, so as to observe stomatal movement under different environmental stresses more accurately. Previous methods of measuring stomatal pore size by autofluorescence of cell wall needs to fix the cells for 6 h, but Rhodamine staining can only be observed in 2 min, which greatly improves the experimental efficiency. Compared with the traditional exfoliation method (e.g., Arabidopsis), this method can reduce the damage of the leaves and observe the stomata of the whole leaves more completely, so that the experimental results are more complete. In addition, the method enables continuous leaf processing and observation. Using this method, we further compared four different cassava varieties (i.e., KU50, SC16, SC8, and SC205) and found that there are differences in stomatal density (SD) among cassava varieties, and the difference in the SD directly affects the stress resistance of cassava (n = 107, p < 0.001). This finding has important implications for studying the mechanism of plant response to environmental stress through stomata.
Collapse
Affiliation(s)
- Muqing Ma
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, Hainan, China
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, No. 10 Middle Jianghai Avenue, Haizhu District, Guangzhou, Guangdong, 510316, China
| | - Jinbao Gu
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, No. 10 Middle Jianghai Avenue, Haizhu District, Guangzhou, Guangdong, 510316, China
| | - Zhen-Yu Wang
- Institute of Nanfan & Seed Industry, Guangdong Academy of Sciences, No. 10 Middle Jianghai Avenue, Haizhu District, Guangzhou, Guangdong, 510316, China
| |
Collapse
|
8
|
Cisse EHM, Pascual LS, Gajanayake KB, Yang F. Tree species and drought: Two mysterious long-standing counterparts. PHYSIOLOGIA PLANTARUM 2024; 176:e14586. [PMID: 39468381 DOI: 10.1111/ppl.14586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 09/25/2024] [Indexed: 10/30/2024]
Abstract
Around 252 million years ago (Late Permian), Earth experienced one of its most significant drought periods, coinciding with a global climate crisis, resulting in a devastating loss of forest trees with no hope of recovery. In the current epoch (Anthropocene), the worsening of drought stress is expected to significantly affect forest communities. Despite extensive efforts, there is significantly less research at the molecular level on forest trees than on annual crop species. Would it not be wise to allocate equal efforts to woody species, regardless of their importance in providing essential furniture and sustaining most terrestrial ecosystems? For instance, the poplar genome is roughly quadruple the size of the Arabidopsis genome and has 1.6 times the number of genes. Thus, a massive effort in genomic studies focusing on forest trees has become inevitable to understand their adaptation to harsh conditions. Nevertheless, with the emerging role and development of high-throughput DNA sequencing systems, there is a growing body of literature about the responses of trees under drought at the molecular and eco-physiological levels. Therefore, synthesizing these findings through contextualizing drought history and concepts is essential to understanding how woody species adapt to water-limited conditions. Comprehensive genomic research on trees is critical for preserving biodiversity and ecosystem function. Integrating molecular insights with eco-physiological analysis will enhance forest management under climate change.
Collapse
Affiliation(s)
- El Hadji Malick Cisse
- United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, Maryland, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Lidia S Pascual
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Castellón, Spain
| | - K Bandara Gajanayake
- United States Department of Agriculture, Beltsville Agricultural Research Center, Beltsville, Maryland, USA
- Oak Ridge Institute for Science and Education, Oak Ridge, TN, USA
| | - Fan Yang
- Center for Eco-Environment Restoration Engineering of Hainan Province, School of Ecology, Hainan University, Haikou, China
| |
Collapse
|
9
|
Wei K, Sharifova S, Zhao X, Sinha N, Nakayama H, Tellier A, Silva-Arias GA. Evolution of gene networks underlying adaptation to drought stress in the wild tomato Solanum chilense. Mol Ecol 2024; 33:e17536. [PMID: 39360493 DOI: 10.1111/mec.17536] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 10/04/2024]
Abstract
Drought stress is a key limitation for plant growth and colonization of arid habitats. We study the evolution of gene expression response to drought stress in a wild tomato, Solanum chilense, naturally occurring in dry habitats in South America. We conduct a transcriptome analysis under standard and drought experimental conditions to identify drought-responsive gene networks and estimate the age of the involved genes. We identify two main regulatory networks corresponding to two typical drought-responsive strategies: cell cycle and fundamental metabolic processes. The metabolic network exhibits a more recent evolutionary origin and a more variable transcriptome response than the cell cycle network (with ancestral origin and higher conservation of the transcriptional response). We also integrate population genomics analyses to reveal positive selection signals acting at the genes of both networks, revealing that genes exhibiting selective sweeps of older age also exhibit greater connectivity in the networks. These findings suggest that adaptive changes first occur at core genes of drought response networks, driving significant network re-wiring, which likely underpins species divergence and further spread into drier habitats. Combining transcriptomics and population genomics approaches, we decipher the timing of gene network evolution for drought stress response in arid habitats.
Collapse
Affiliation(s)
- Kai Wei
- Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Saida Sharifova
- Department of Life Sciences, Graduate School of Science, Arts and Technology, Khazar University, Baku, Azerbaijan
| | - Xiaoyun Zhao
- Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Neelima Sinha
- Department of Plant Biology, University of California Davis, Davis, California, USA
| | - Hokuto Nakayama
- Department of Biological Sciences, The University of Tokyo, Tokyo, Japan
| | - Aurélien Tellier
- Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Gustavo A Silva-Arias
- Department of Life Science Systems, School of Life Sciences, Technical University of Munich, Freising, Germany
- Instituto de Ciencias Naturales, Facultad de Ciencias, Universidad Nacional de Colombia, Bogotá, Colombia
| |
Collapse
|
10
|
Yu L, Guan X, Meng F, Mo F, Lv R, Ding Z, Wang P, Chen X, Cheng M, Wang A. Genome-wide identification and expression analysis of SlKFB gene family (Solanum lycopersicum) and the molecular mechanism of SlKFB16 and SlKFB34 under drought. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 216:109192. [PMID: 39406005 DOI: 10.1016/j.plaphy.2024.109192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/23/2024] [Accepted: 10/10/2024] [Indexed: 11/08/2024]
Abstract
Environmental stress significantly affects plant growth and productivity. The effects of drought stress on plants are reflected primarily in enzyme activity, membrane systems, and cell-water loss. Here, the Kelch repeat F-box (KFB) protein family in tomato was systematically identified and analysed. Using bioinformatics, we identified 37 SlKFB family members in the tomato genome and analysed their protein structure, phylogenetic relationships, chromosome distribution, and expression under drought or biotic-stress conditions. Transcriptome data revealed that SlKFB members exhibit differential responses to drought stress, with significant differences in SlKFB16 and SlKFB34 expression. Functional analysis revealed that SlKFB16 functions in the cytoplasm and SlKFB34 in the nucleus and cytoplasm. Under drought stress, SlKFB16 and SlKFB34-silencing significantly reduced reactive oxygen species scavenging and resistance to drought stress. These findings provide a reference for further studies of the mechanisms of SlKFB16 and SlKFB34 in drought stress in tomato as well as a foundation for enhancing their resistance to drought stress.
Collapse
Affiliation(s)
- Lei Yu
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, China.
| | - Xiaoyu Guan
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, China.
| | - Fanyue Meng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, China.
| | - Fulei Mo
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, China.
| | - Rui Lv
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, China.
| | - Zhen Ding
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, China.
| | - Peiwen Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, China.
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, China.
| | - Mozhen Cheng
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, China.
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, China; Key Laboratory of Biology and Genetic Improvement of Horticultural Crops (Northeast Region), Ministry of Agriculture and Rural Affairs, Northeast Agricultural University, China.
| |
Collapse
|
11
|
Shen C, Li H, Shu L, Huang WZ, Zhu RL. Ancient large-scale gene duplications and diversification in bryophytes illuminate the plant terrestrialization. THE NEW PHYTOLOGIST 2024. [PMID: 39449253 DOI: 10.1111/nph.20221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 10/04/2024] [Indexed: 10/26/2024]
Abstract
Large-scale gene duplications (LSGDs) are crucial for evolutionary adaptation and recurrent in vascular plants. However, the role of ancient LSGDs in the terrestrialization and diversification of bryophytes, the second most species-rich group of land plants, remains largely elusive due to limited sampling in bryophytes. Employing the most extensive nuclear gene dataset in bryophytes to date, we reconstructed a time-calibrated phylogenetic tree from 209 species, covering virtually all key bryophyte lineages, for phylogenomic analyses of LSGDs and diversification. We newly identified two ancient LSGDs: one in the most recent common ancestor (MRCA) of extant bryophytes and another in the MRCA of the majority of Jungermanniales s. lato. Duplicated genes from these two LSGDs show significant enrichment in photosynthesis-related processes and structures. Rhizoid-responsive ROOTHAIR DEFECTIVE SIX-LIKE (RSL) genes from ancient LSGDs are present in rhizoidless bryophytes, challenging assumptions about rhizoid absence mechanisms. We highlighted four major diversification rate upshifts, two of which slightly postdated LSGDs, potentially linked to the flourishing of gymnosperms and angiosperms and explaining over 80% of bryophyte diversity. Our findings, supported by extensive bryophyte sampling, highlight the significance of LSGDs in the early terrestrialization and diversification of bryophytes, offering new insights into land plant evolution.
Collapse
Affiliation(s)
- Chao Shen
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Hao Li
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Eco-Chongming (SIEC), Shanghai, 200062, China
| | - Lei Shu
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Eco-Chongming (SIEC), Shanghai, 200062, China
| | - Wen-Zhuan Huang
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Rui-Liang Zhu
- Bryology Laboratory, School of Life Sciences, East China Normal University, Shanghai, 200241, China
- Shanghai Institute of Eco-Chongming (SIEC), Shanghai, 200062, China
| |
Collapse
|
12
|
Spiegelhalder RP, Berg LS, Nunes TDG, Dörr M, Jesenofsky B, Lindner H, Raissig MT. Dual role of BdMUTE during stomatal development in the model grass Brachypodium distachyon. Development 2024; 151:dev203011. [PMID: 39166983 PMCID: PMC11449446 DOI: 10.1242/dev.203011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Accepted: 08/12/2024] [Indexed: 08/23/2024]
Abstract
Grasses form morphologically derived, four-celled stomata, where two dumbbell-shaped guard cells (GCs) are flanked by two lateral subsidiary cells (SCs). This innovative form enables rapid opening and closing kinetics and efficient plant-atmosphere gas exchange. The mobile bHLH transcription factor MUTE is required for SC formation in grasses. Yet whether and how MUTE also regulates GC development and whether MUTE mobility is required for SC recruitment is unclear. Here, we transgenically impaired BdMUTE mobility from GC to SC precursors in the emerging model grass Brachypodium distachyon. Our data indicate that reduced BdMUTE mobility severely affected the spatiotemporal coordination of GC and SC development. Furthermore, although BdMUTE has a cell-autonomous role in GC division orientation, complete dumbbell morphogenesis of GCs required SC recruitment. Finally, leaf-level gas exchange measurements showed that dosage-dependent complementation of the four-celled grass morphology was mirrored in a gradual physiological complementation of stomatal kinetics. Together, our work revealed a dual role of grass MUTE in regulating GC division orientation and SC recruitment, which in turn is required for GC morphogenesis and the rapid kinetics of grass stomata.
Collapse
Affiliation(s)
- Roxane P Spiegelhalder
- Institute of Plant Sciences (IPS), University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Lea S Berg
- Institute of Plant Sciences (IPS), University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
| | - Tiago D G Nunes
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Melanie Dörr
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Barbara Jesenofsky
- Centre for Organismal Studies (COS), Heidelberg University, Im Neuenheimer Feld 230, 69120 Heidelberg, Germany
| | - Heike Lindner
- Institute of Plant Sciences (IPS), University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
- Oeschger Centre for Climate Change Research (OCCR), University of Bern, Hochschulstrasse 4, 3012 Bern, Switzerland
| | - Michael T Raissig
- Institute of Plant Sciences (IPS), University of Bern, Altenbergrain 21, 3013 Bern, Switzerland
- Oeschger Centre for Climate Change Research (OCCR), University of Bern, Hochschulstrasse 4, 3012 Bern, Switzerland
| |
Collapse
|
13
|
Duckett JG. Plant biology: Mapping meristem morphogenesis in Marchantia. Curr Biol 2024; 34:R909-R910. [PMID: 39378852 DOI: 10.1016/j.cub.2024.08.051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
The use of state-of-the-art imaging, underpinned by molecular data, for the first time provides a clear understanding of two fundamental processes in liverworts - the establishment of dorsoventrality and origin of apical meristems. This work opens the door to exploring many new facets of plant morphogenesis.
Collapse
Affiliation(s)
- Jeffrey G Duckett
- Life Sciences, Natural History Museum, Cromwell Road, London SW7 5BD, UK.
| |
Collapse
|
14
|
Yang Y, Xu L, Hao C, Wan M, Tao Y, Zhuang Y, Su Y, Li L. The microRNA408-plantacyanin module balances plant growth and drought resistance by regulating reactive oxygen species homeostasis in guard cells. THE PLANT CELL 2024; 36:4338-4355. [PMID: 38723161 PMCID: PMC11448907 DOI: 10.1093/plcell/koae144] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/20/2024] [Indexed: 10/05/2024]
Abstract
The conserved microRNA (miRNA) miR408 enhances photosynthesis and compromises stress tolerance in multiple plants, but the cellular mechanism underlying its function remains largely unclear. Here, we show that in Arabidopsis (Arabidopsis thaliana), the transcript encoding the blue copper protein PLANTACYANIN (PCY) is the primary target for miR408 in vegetative tissues. PCY is preferentially expressed in the guard cells, and PCY is associated with the endomembrane surrounding individual chloroplasts. We found that the MIR408 promoter is suppressed by multiple abscisic acid (ABA)-responsive transcription factors, thus allowing PCY to accumulate under stress conditions. Genetic analysis revealed that PCY elevates reactive oxygen species (ROS) levels in the guard cells, promotes stomatal closure, reduces photosynthetic gas exchange, and enhances drought resistance. Moreover, the miR408-PCY module is sufficient to rescue the growth and drought tolerance phenotypes caused by gain- and loss-of-function of MYB44, an established positive regulator of ABA responses, indicating that the miR408-PCY module relays ABA signaling for regulating ROS homeostasis and drought resistance. These results demonstrate that miR408 regulates stomatal movement to balance growth and drought resistance, providing a mechanistic understanding of why miR408 is selected during land plant evolution and insights into the long-pursued quest of breeding drought-tolerant and high-yielding crops.
Collapse
Affiliation(s)
- Yanzhi Yang
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong 261000, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Lei Xu
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Chen Hao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Miaomiao Wan
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Yihan Tao
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Yan Zhuang
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Yanning Su
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
| | - Lei Li
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agricultural Sciences at Weifang, Shandong 261000, China
- State Key Laboratory of Protein and Plant Gene Research, School of Advanced Agricultural Sciences and School of Life Sciences, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
15
|
Chen G, Qin Y, Wang J, Li S, Zeng F, Deng F, Chater C, Xu S, Chen ZH. Stomatal evolution and plant adaptation to future climate. PLANT, CELL & ENVIRONMENT 2024; 47:3299-3315. [PMID: 38757448 DOI: 10.1111/pce.14953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 03/18/2024] [Accepted: 05/03/2024] [Indexed: 05/18/2024]
Abstract
Global climate change is affecting plant photosynthesis and transpiration processes, as well as increasing weather extremes impacting socio-political and environmental events and decisions for decades to come. One major research challenge in plant biology and ecology is the interaction of photosynthesis with the environment. Stomata control plant gas exchange and their evolution was a crucial innovation that facilitated the earliest land plants to colonize terrestrial environments. Stomata couple homoiohydry, together with cuticles, intercellular gas space, with the endohydric water-conducting system, enabling plants to adapt and diversify across the planet. Plants control stomatal movement in response to environmental change through regulating guard cell turgor mediated by membrane transporters and signaling transduction. However, the origin, evolution, and active control of stomata remain controversial topics. We first review stomatal evolution and diversity, providing fossil and phylogenetic evidence of their origins. We summarize functional evolution of guard cell membrane transporters in the context of climate changes and environmental stresses. Our analyses show that the core signaling elements of stomatal movement are more ancient than stomata, while genes involved in stomatal development co-evolved de novo with the earliest stomata. These results suggest that novel stomatal development-specific genes were acquired during plant evolution, whereas genes regulating stomatal movement, especially cell signaling pathways, were inherited ancestrally and co-opted by dynamic functional differentiation. These two processes reflect the different adaptation strategies during land plant evolution.
Collapse
Affiliation(s)
- Guang Chen
- Central Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Yuan Qin
- College of Agriculture, Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, China
| | - Jian Wang
- Central Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Sujuan Li
- Central Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
| | - Fanrong Zeng
- College of Agriculture, Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, China
| | - Fenglin Deng
- College of Agriculture, Collaborative Innovation Centre for Grain Industry, Yangtze University, Jingzhou, China
| | - Caspar Chater
- Royal Botanic Gardens, Kew, Richmond, UK
- Plants, Photosynthesis, and Soil, School of Biosciences, University of Sheffield, Sheffield, UK
| | - Shengchun Xu
- Central Laboratory, Zhejiang Academy of Agricultural Sciences, Hangzhou, China
- Xianghu Laboratory, Hangzhou, China
| | - Zhong-Hua Chen
- School of Science, Western Sydney University, Penrith, Australia
- Hawkesbury Institute for the Environment, Western Sydney University, Penrith, Australia
| |
Collapse
|
16
|
Nguyen TH, Blatt MR. Surrounded by luxury: The necessities of subsidiary cells. PLANT, CELL & ENVIRONMENT 2024; 47:3316-3329. [PMID: 38436128 DOI: 10.1111/pce.14872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/12/2024] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
The evolution of stomata marks one of the key advances that enabled plants to colonise dry land while allowing gas exchange for photosynthesis. In large measure, stomata retain a common design across species that incorporates paired guard cells with little variation in structure. By contrast, the cells of the stomatal complex immediately surrounding the guard cells vary widely in shape, size and count. Their origins in development are similarly diverse. Thus, the surrounding cells are likely a luxury that the necessity of stomatal control cannot do without (with apologies to Oscar Wilde). Surrounding cells are thought to support stomatal movements as solute reservoirs and to shape stomatal kinetics through backpressure on the guard cells. Their variety may also reflect a substantial diversity in function. Certainly modelling, kinetic analysis and the few electrophysiological studies to date give hints of much more complex contributions in stomatal physiology. Even so, our knowledge of the cells surrounding the guard cells in the stomatal complex is far from complete.
Collapse
Affiliation(s)
- Thanh-Hao Nguyen
- Laboratory of Plant Physiology and Biophysics, School of Molecular Biosciences, Bower Building, University of Glasgow, Glasgow, UK
| | - Michael R Blatt
- Laboratory of Plant Physiology and Biophysics, School of Molecular Biosciences, Bower Building, University of Glasgow, Glasgow, UK
| |
Collapse
|
17
|
Teng Z, Chen C, He Y, Pan S, Liu D, Zhu L, Liang K, Li Y, Huang L. Melatonin confers thermotolerance and antioxidant capacity in Chinese cabbage. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 212:108736. [PMID: 38797006 DOI: 10.1016/j.plaphy.2024.108736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 05/15/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
Due to the damaging effect of high temperatures on plant development, global warming is predicted to increase agricultural risks. Chinese cabbage holds considerable importance as a leafy vegetable that is extensively consumed and cultivated worldwide. Its year-round production also encounters severe challenges in the face of high temperatures. In this study, melatonin (MT), a pivotal multifunctional signaling molecule that coordinates responses to diverse environmental stressors was used to mitigate the harmful effects of high temperatures on Chinese cabbage. Through the utilization of growth indices, cytological morphology, physiological and biochemical responses, and RNA-Seq analysis, alongside an examination of the influence of crucial enzymes in the endogenous MT synthesis pathway on the thermotolerance of Chinese cabbage, we revealed that MT pretreatment enhanced photosynthetic activity, maintained signaling pathways associated with endoplasmic reticulum protein processing, and preserved circadian rhythm in Chinese cabbage under high temperatures. Furthermore, pretreatment with MT resulted in increased levels of soluble sugar, vitamin C, proteins, and antioxidant enzyme activity, along with decreased levels of malondialdehyde, nitrate, flavonoids, and bitter glucosinolates, ultimately enhancing the capacity of the organism to mitigate oxidative stress. The knockdown of the tryptophan decarboxylase gene, which encodes a key enzyme responsible for MT biosynthesis, resulted in a significant decline in the ability of transgenic Chinese cabbage to alleviate oxidative damage under high temperatures, further indicating an important role of MT in establishing the thermotolerance. Taken together, these results provide a mechanism for MT to improve the antioxidant capacity of Chinese cabbage under high temperatures and suggest beneficial implications for the management of other plants subjected to global warming.
Collapse
Affiliation(s)
- Zhiyan Teng
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Caizhi Chen
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China; Hainan Institute of Zhejiang University, Sanya, 572024, China
| | - Yuanrong He
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China; Hainan Institute of Zhejiang University, Sanya, 572024, China
| | - Shihui Pan
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Dandan Liu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China; Hainan Institute of Zhejiang University, Sanya, 572024, China
| | - Luyu Zhu
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Kexin Liang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Yufei Li
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China
| | - Li Huang
- Laboratory of Cell & Molecular Biology, Institute of Vegetable Science, Zhejiang University, Hangzhou, 310058, China; Key Laboratory of Horticultural Plant Growth, Development and Quality Improvement, Ministry of Agriculture, Hangzhou, 310058, China; Hainan Institute of Zhejiang University, Sanya, 572024, China.
| |
Collapse
|
18
|
Meigas E, Uusküla B, Merilo E. Abscisic acid induces stomatal closure in horsetails. THE NEW PHYTOLOGIST 2024; 243:513-518. [PMID: 38263706 DOI: 10.1111/nph.19542] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Accepted: 01/04/2024] [Indexed: 01/25/2024]
Abstract
See also the Commentary on this article by Chater, 243: 503–505.
Collapse
Affiliation(s)
- Egon Meigas
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Benelote Uusküla
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| | - Ebe Merilo
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| |
Collapse
|
19
|
Chater CCC. A tail of two horses? Guard cell abscisic acid and carbon dioxide signalling in the Equisetum ferns. THE NEW PHYTOLOGIST 2024; 243:503-505. [PMID: 38453694 DOI: 10.1111/nph.19659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/09/2024]
Abstract
This article is a Commentary on Meigas et al. (2024), 243: 513–518.
Collapse
Affiliation(s)
- Caspar C C Chater
- Royal Botanic Gardens, Kew, Richmond, TW9 3AE, UK
- Plants, Photosynthesis, Soil, School of Bioscience, University of Sheffield, Western Bank, Sheffield, S10 2TN, UK
| |
Collapse
|
20
|
Shi W, Liu Y, Zhao N, Yao L, Li J, Fan M, Zhong B, Bai MY, Han C. Hydrogen peroxide is required for light-induced stomatal opening across different plant species. Nat Commun 2024; 15:5081. [PMID: 38876991 PMCID: PMC11178795 DOI: 10.1038/s41467-024-49377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 06/03/2024] [Indexed: 06/16/2024] Open
Abstract
Stomatal movement is vital for plants to exchange gases and adaption to terrestrial habitats, which is regulated by environmental and phytohormonal signals. Here, we demonstrate that hydrogen peroxide (H2O2) is required for light-induced stomatal opening. H2O2 accumulates specifically in guard cells even when plants are under unstressed conditions. Reducing H2O2 content through chemical treatments or genetic manipulations results in impaired stomatal opening in response to light. This phenomenon is observed across different plant species, including lycopodium, fern, and monocotyledonous wheat. Additionally, we show that H2O2 induces the nuclear localization of KIN10 protein, the catalytic subunit of plant energy sensor SnRK1. The nuclear-localized KIN10 interacts with and phosphorylates the bZIP transcription factor bZIP30, leading to the formation of a heterodimer between bZIP30 and BRASSINAZOLE-RESISTANT1 (BZR1), the master regulator of brassinosteroid signaling. This heterodimer complex activates the expression of amylase, which enables guard cell starch degradation and promotes stomatal opening. Overall, these findings suggest that H2O2 plays a critical role in light-induced stomatal opening across different plant species.
Collapse
Affiliation(s)
- Wen Shi
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Yue Liu
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
- School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Na Zhao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Lianmei Yao
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Jinge Li
- Shandong Provincial Key Laboratory of Plant Stress, College of Life Sciences, Shandong Normal University, Jinan, 250358, Shandong, China
| | - Min Fan
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Bojian Zhong
- College of Life Sciences, Nanjing Normal University, Nanjing, 210023, China
| | - Ming-Yi Bai
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China
| | - Chao Han
- The Key Laboratory of Plant Development and Environmental Adaptation Biology, Ministry of Education, School of Life Sciences, Shandong University, Qingdao, 266237, China.
| |
Collapse
|
21
|
Doll Y, Koga H, Tsukaya H. Beyond stomatal development: SMF transcription factors as versatile toolkits for land plant evolution. QUANTITATIVE PLANT BIOLOGY 2024; 5:e6. [PMID: 39220371 PMCID: PMC11363000 DOI: 10.1017/qpb.2024.6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/18/2024] [Accepted: 04/30/2024] [Indexed: 09/04/2024]
Abstract
As master transcription factors of stomatal development, SPEECHLESS, MUTE, and FAMA, collectively termed SMFs, are primary targets of molecular genetic analyses in the model plant Arabidopsis thaliana. Studies in other model systems identified SMF orthologs as key players in evolutionary developmental biology studies on stomata. However, recent studies on the astomatous liverwort Marchantia polymorpha revealed that the functions of these genes are not limited to the stomatal development, but extend to other types of tissues, namely sporophytic setal and gametophytic epidermal tissues. These studies provide insightful examples of gene-regulatory network co-opting, and highlight SMFs and related transcription factors as general toolkits for novel trait evolution in land plant lineages. Here, we critically review recent literature on the SMF-like gene in M. polymorpha and discuss their implications for plant evolutionary biology.
Collapse
Affiliation(s)
- Yuki Doll
- Division of Biological Sciences, Graduate School of Science and Technology, Nara Institute of Science and Technology, Nara, Japan
| | - Hiroyuki Koga
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| | - Hirokazu Tsukaya
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
22
|
Peláez-Vico MÁ, Zandalinas SI, Devireddy AR, Sinha R, Mittler R. Systemic stomatal responses in plants: Coordinating development, stress, and pathogen defense under a changing climate. PLANT, CELL & ENVIRONMENT 2024; 47:1171-1184. [PMID: 38164061 DOI: 10.1111/pce.14797] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Revised: 11/30/2023] [Accepted: 12/15/2023] [Indexed: 01/03/2024]
Abstract
To successfully survive, develop, grow and reproduce, multicellular organisms must coordinate their molecular, physiological, developmental and metabolic responses among their different cells and tissues. This process is mediated by cell-to-cell, vascular and/or volatile communication, and involves electric, chemical and/or hydraulic signals. Within this context, stomata serve a dual role by coordinating their responses to the environment with their neighbouring cells at the epidermis, but also with other stomata present on other parts of the plant. As stomata represent one of the most important conduits between the plant and its above-ground environment, as well as directly affect photosynthesis, respiration and the hydraulic status of the plant by controlling its gas and vapour exchange with the atmosphere, coordinating the overall response of stomata within and between different leaves and tissues plays a cardinal role in plant growth, development and reproduction. Here, we discuss different examples of local and systemic stomatal coordination, the different signalling pathways that mediate them, and the importance of systemic stomatal coordination to our food supply, ecosystems and weather patterns, under our changing climate. We further discuss the potential biotechnological implications of regulating systemic stomatal responses for enhancing agricultural productivity in a warmer and CO2 -rich environment.
Collapse
Affiliation(s)
- María Ángeles Peláez-Vico
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Sara I Zandalinas
- Department of Biology, Biochemistry and Environmental Sciences, University Jaume I, Castelló de la Plana, Spain
| | - Amith R Devireddy
- Center for Bioenergy Innovation and Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA
| | - Ranjita Sinha
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| | - Ron Mittler
- Division of Plant Sciences and Technology, College of Agriculture Food and Natural Resources and Interdisciplinary Plant Group, University of Missouri, Columbia, Missouri, USA
| |
Collapse
|
23
|
D'Ario M, Lane B, Fioratti Junod M, Leslie A, Mosca G, Smith RS. Hidden functional complexity in the flora of an early land ecosystem. THE NEW PHYTOLOGIST 2024; 241:937-949. [PMID: 37644727 PMCID: PMC10952896 DOI: 10.1111/nph.19228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 08/04/2023] [Indexed: 08/31/2023]
Abstract
The first land ecosystems were composed of organisms considered simple in nature, yet the morphological diversity of their flora was extraordinary. The biological significance of this diversity remains a mystery largely due to the absence of feasible study approaches. To study the functional biology of Early Devonian flora, we have reconstructed extinct plants from fossilised remains in silico. We explored the morphological diversity of sporangia in relation to their mechanical properties using finite element method. Our approach highlights the impact of sporangia morphology on spore dispersal and adaptation. We discovered previously unidentified innovations among early land plants, discussing how different species might have opted for different spore dispersal strategies. We present examples of convergent evolution for turgor pressure resistance, achieved by homogenisation of stress in spherical sporangia and by torquing force in Tortilicaulis-like specimens. In addition, we show a potential mechanism for stress-assisted sporangium rupture. Our study reveals the deceptive complexity of this seemingly simple group of organisms. We leveraged the quantitative nature of our approach and constructed a fitness landscape to understand the different ecological niches present in the Early Devonian Welsh Borderland flora. By connecting morphology to functional biology, these findings facilitate a deeper understanding of the diversity of early land plants and their place within their ecosystem.
Collapse
Affiliation(s)
| | | | | | | | - Gabriella Mosca
- Technical University of Munich80333MunichGermany
- Center for Plant Molecular Biology‐ZMBPUniversity of Tübingen72076TübingenGermany
| | | |
Collapse
|
24
|
Hou S, Rodrigues O, Liu Z, Shan L, He P. Small holes, big impact: Stomata in plant-pathogen-climate epic trifecta. MOLECULAR PLANT 2024; 17:26-49. [PMID: 38041402 PMCID: PMC10872522 DOI: 10.1016/j.molp.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 11/09/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
The regulation of stomatal aperture opening and closure represents an evolutionary battle between plants and pathogens, characterized by adaptive strategies that influence both plant resistance and pathogen virulence. The ongoing climate change introduces further complexity, affecting pathogen invasion and host immunity. This review delves into recent advances on our understanding of the mechanisms governing immunity-related stomatal movement and patterning with an emphasis on the regulation of stomatal opening and closure dynamics by pathogen patterns and host phytocytokines. In addition, the review explores how climate changes impact plant-pathogen interactions by modulating stomatal behavior. In light of the pressing challenges associated with food security and the unpredictable nature of climate changes, future research in this field, which includes the investigation of spatiotemporal regulation and engineering of stomatal immunity, emerges as a promising avenue for enhancing crop resilience and contributing to climate control strategies.
Collapse
Affiliation(s)
- Shuguo Hou
- Peking University Institute of Advanced Agricultural Sciences, Shandong Laboratory of Advanced Agriculture Sciences in Weifang, Weifang, Shandong 261325, China; School of Municipal & Environmental Engineering, Shandong Jianzhu University, Jinan, Shandong 250101, China.
| | - Olivier Rodrigues
- Unité de Recherche Physiologie, Pathologie et Génétique Végétales, Université de Toulouse Midi-Pyrénées, INP-PURPAN, 31076 Toulouse, France
| | - Zunyong Liu
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Libo Shan
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Ping He
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
25
|
Clark JW. Genome evolution in plants and the origins of innovation. THE NEW PHYTOLOGIST 2023; 240:2204-2209. [PMID: 37658677 DOI: 10.1111/nph.19242] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 08/03/2023] [Indexed: 09/03/2023]
Abstract
Plant evolution has been characterised by a series of major novelties in their vegetative and reproductive traits that have led to greater complexity. Underpinning this diversification has been the evolution of the genome. When viewed at the scale of the plant kingdom, plant genome evolution has been punctuated by conspicuous instances of gene and whole-genome duplication, horizontal gene transfer and extensive gene loss. The periods of dynamic genome evolution often coincide with the evolution of key traits, demonstrating the coevolution of plant genomes and phenotypes at a macroevolutionary scale. Conventionally, plant complexity and diversity have been considered through the lens of gene duplication and the role of gene loss in plant evolution remains comparatively unexplored. However, in light of reductive evolution across multiple plant lineages, the association between gene loss and plant phenotypic diversity warrants greater attention.
Collapse
Affiliation(s)
- James W Clark
- School of Biological Sciences, University of Bristol, Tyndall Ave, Bristol, BS8 1TQ, UK
| |
Collapse
|
26
|
Wuyun T, Niinemets Ü, Hõrak H. Species-specific stomatal ABA responses in juvenile ferns grown from spores. THE NEW PHYTOLOGIST 2023; 240:1722-1728. [PMID: 37635267 DOI: 10.1111/nph.19215] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023]
Affiliation(s)
- Tana Wuyun
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Ülo Niinemets
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
| | - Hanna Hõrak
- Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, Kreutzwaldi 1, 51006, Tartu, Estonia
- Institute of Technology, University of Tartu, Nooruse 1, 50411, Tartu, Estonia
| |
Collapse
|
27
|
Yao PQ, Chen JH, Ma PF, Xie LH, Cheng SP. Stomata variation in the process of polyploidization in Chinese chive (Allium tuberosum). BMC PLANT BIOLOGY 2023; 23:595. [PMID: 38017401 PMCID: PMC10683207 DOI: 10.1186/s12870-023-04615-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 11/16/2023] [Indexed: 11/30/2023]
Abstract
BACKGROUND Stomatal variation, including guard cell (GC) density, size and chloroplast number, is often used to differentiate polyploids from diploids. However, few works have focused on stomatal variation with respect to polyploidization, especially for consecutively different ploidy levels within a plant species. For example, Allium tuberosum, which is mainly a tetraploid (2n = 4x = 32), is also found at other ploidy levels which have not been widely studied yet. RESULTS We recently found cultivars with different ploidy levels, including those that are diploid (2n = 2x = 16), triploid (2n = 3x = 24), pseudopentaploid (2n = 34-42, mostly 40) and pseudohexaploid (2n = 44-50, mostly 48). GCs were evaluated for their density, size (length and width) and chloroplast number. There was no correspondence between ploidy level and stomatal density, in which anisopolyploids (approximately 57 and 53 stomata/mm2 in triploid and pseudopentaploid, respectively) had a higher stomatal density than isopolyploids (approximately 36, 43, and 44 stomata/mm2 in diploid, tetraploid and pseudohexaploid, respectively). There was a positive relationship between ploidy level and GC chloroplast number (approximately 44, 45, 51, 72 and 90 in diploid to pseudohexaploid, respectively). GC length and width also increased with ploidy level. However, the length increased approximately 1.22 times faster than the width during polyploidization. CONCLUSIONS This study shows that GC size increased with increasing DNA content, but the rate of increase differed between length and width. In the process of polyploidization, plants evolved longer and narrower stomata with more chloroplasts in the GCs.
Collapse
Affiliation(s)
- Peng-Qiang Yao
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Pingdingshan University, Pingdingshan, 467000, China
| | - Jian-Hua Chen
- Pingdingshan Academy of Agricultural Sciences/Henan Chinese Chive Engineering Technology Research Center, Pingdingshan, 467001, China
| | - Pei-Fang Ma
- Pingdingshan Academy of Agricultural Sciences/Henan Chinese Chive Engineering Technology Research Center, Pingdingshan, 467001, China
| | - Li-Hua Xie
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Pingdingshan University, Pingdingshan, 467000, China
| | - Shi-Ping Cheng
- Henan Key Laboratory of Germplasm Innovation and Utilization of Eco-Economic Woody Plant, Pingdingshan University, Pingdingshan, 467000, China.
| |
Collapse
|
28
|
Doll Y, Koga H, Tsukaya H. Experimental validation of the mechanism of stomatal development diversification. JOURNAL OF EXPERIMENTAL BOTANY 2023; 74:5667-5681. [PMID: 37555400 PMCID: PMC10540739 DOI: 10.1093/jxb/erad279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/18/2023] [Indexed: 08/10/2023]
Abstract
Stomata are the structures responsible for gas exchange in plants. The established framework for stomatal development is based on the model plant Arabidopsis, but diverse patterns of stomatal development have been observed in other plant lineages and species. The molecular mechanisms behind these diversified patterns are still poorly understood. We recently proposed a model for the molecular mechanisms of the diversification of stomatal development based on the genus Callitriche (Plantaginaceae), according to which a temporal shift in the expression of key stomatal transcription factors SPEECHLESS and MUTE leads to changes in the behavior of meristemoids (stomatal precursor cells). In the present study, we genetically manipulated Arabidopsis to test this model. By altering the timing of MUTE expression, we successfully generated Arabidopsis plants with early differentiation or prolonged divisions of meristemoids, as predicted by the model. The epidermal morphology of the generated lines resembled that of species with prolonged or no meristemoid divisions. Thus, the evolutionary process can be reproduced by varying the SPEECHLESS to MUTE transition. We also observed unexpected phenotypes, which indicated the participation of additional factors in the evolution of the patterns observed in nature. This study provides novel experimental insights into the diversification of meristemoid behaviors.
Collapse
Affiliation(s)
- Yuki Doll
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hiroyuki Koga
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Hirokazu Tsukaya
- Graduate School of Science, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| |
Collapse
|
29
|
Tulva I, Välbe M, Merilo E. Plants lacking OST1 show conditional stomatal closure and wildtype-like growth sensitivity at high VPD. PHYSIOLOGIA PLANTARUM 2023; 175:e14030. [PMID: 37882302 DOI: 10.1111/ppl.14030] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/24/2023] [Accepted: 09/06/2023] [Indexed: 10/27/2023]
Abstract
Climate change-associated rise in VPD (atmospheric vapor pressure deficit) results in increased plant transpiration and reduced stomatal conductance, photosynthesis, biomass, and yield. High VPD-induced stomatal closure of Arabidopsis is an active process regulated via the kinase SnRK2.6 (OPEN STOMATA 1, OST1). Here, we performed gas exchange, leaf water potential and rosette growth measurements to study, whether (1) high VPD-induced stomatal closure is detected in plants carrying loss-of-function mutations in OST1 (ost1-3) when they are grown at reduced soil water content or measured at increased air temperature; (2) ost1-3 plants expressing OST1 construct with no ABA-activation domain, but intact ABA-independent activation, show stronger stomatal VPD response compared with ost1-3 plants; and (3) rosette area and biomass of ost1-3 are more affected by growth at high VPD compared with Col-0. The stomata of well-watered ost1-3 plants were insensitive to high VPD regardless of air temperature, but in deficit-irrigated ost1-3, leaf water potential decreased the most and stomata closed at high VPD. Differences between VPD-induced stomatal closures of ost1-3 plants and ost1-3 plants expressing OST1 with no ABA-activation domain point at gradual VPD-induced ABA-independent activation of OST1. High VPD conditions led to similar reductions in rosette area and specific leaf area of well-watered Col-0 and ost1-3 plants. Rosette dry mass was unaffected by high VPD. Our results show that OST1 loss-of-function plants display conditional stomatal closure and no extra sensitivity of rosette area growth compared with Col-0 wildtype under high VPD conditions.
Collapse
Affiliation(s)
- Ingmar Tulva
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Mikk Välbe
- Institute of Technology, University of Tartu, Tartu, Estonia
| | - Ebe Merilo
- Institute of Technology, University of Tartu, Tartu, Estonia
| |
Collapse
|
30
|
Hu R, Li X, Hu Y, Zhang R, Lv Q, Zhang M, Sheng X, Zhao F, Chen Z, Ding Y, Yuan H, Wu X, Xing S, Yan X, Bao F, Wan P, Xiao L, Wang X, Xiao W, Decker EL, van Gessel N, Renault H, Wiedemann G, Horst NA, Haas FB, Wilhelmsson PKI, Ullrich KK, Neumann E, Lv B, Liang C, Du H, Lu H, Gao Q, Cheng Z, You H, Xin P, Chu J, Huang CH, Liu Y, Dong S, Zhang L, Chen F, Deng L, Duan F, Zhao W, Li K, Li Z, Li X, Cui H, Zhang YE, Ma C, Zhu R, Jia Y, Wang M, Hasebe M, Fu J, Goffinet B, Ma H, Rensing SA, Reski R, He Y. Adaptive evolution of the enigmatic Takakia now facing climate change in Tibet. Cell 2023; 186:3558-3576.e17. [PMID: 37562403 DOI: 10.1016/j.cell.2023.07.003] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 03/23/2023] [Accepted: 07/03/2023] [Indexed: 08/12/2023]
Abstract
The most extreme environments are the most vulnerable to transformation under a rapidly changing climate. These ecosystems harbor some of the most specialized species, which will likely suffer the highest extinction rates. We document the steepest temperature increase (2010-2021) on record at altitudes of above 4,000 m, triggering a decline of the relictual and highly adapted moss Takakia lepidozioides. Its de-novo-sequenced genome with 27,467 protein-coding genes includes distinct adaptations to abiotic stresses and comprises the largest number of fast-evolving genes under positive selection. The uplift of the study site in the last 65 million years has resulted in life-threatening UV-B radiation and drastically reduced temperatures, and we detected several of the molecular adaptations of Takakia to these environmental changes. Surprisingly, specific morphological features likely occurred earlier than 165 mya in much warmer environments. Following nearly 400 million years of evolution and resilience, this species is now facing extinction.
Collapse
Affiliation(s)
- Ruoyang Hu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China; State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Xuedong Li
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Yong Hu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Runjie Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Qiang Lv
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Min Zhang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xianyong Sheng
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Feng Zhao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Zhijia Chen
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Yuhan Ding
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Huan Yuan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xiaofeng Wu
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Shuang Xing
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Xiaoyu Yan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Fang Bao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Ping Wan
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Lihong Xiao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China; State Key Laboratory of Subtropical Silviculture, Zhejiang A&F University, Hangzhou, Zhejiang 311300, China
| | - Xiaoqin Wang
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Wei Xiao
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
| | - Hugues Renault
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Institut de Biologie Moléculaire des Plantes (IBMP), CNRS, University of Strasbourg, 67084 Strasbourg, France
| | - Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Inselspital, University of Bern, 3010 Bern, Switzerland
| | - Nelly A Horst
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; MetaSystems Hard & Software GmbH, 68804 Altlussheim, Germany
| | - Fabian B Haas
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | | | - Kristian K Ullrich
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Department of Evolutionary Genetics, Max Planck Institute for Evolutionary Biology, 24306 Plön, Germany
| | - Eva Neumann
- Department of Biology, University of Marburg, 35043 Marburg, Germany
| | - Bin Lv
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada; Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan 610041, China
| | - Chengzhi Liang
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Huilong Du
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei 071002, China
| | - Hongwei Lu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Department of Biology, School of Life Sciences, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China
| | - Qiang Gao
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Zhukuan Cheng
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Hanli You
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Key Laboratory of Plant Functional Genomics of the Ministry of Education, Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, Jiangsu 225009, China
| | - Peiyong Xin
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Jinfang Chu
- National Centre for Plant Gene Research (Beijing), Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chien-Hsun Huang
- State Key Laboratory of Genetic Engineering and Collaborative Innovation Center of Genetics and Development, Ministry of Education Key Laboratory of Biodiversity and Ecological Engineering, School of Life Sciences, Fudan University, Shanghai 200433, China; Key Laboratory of Forage and Endemic Crop Biology, Ministry of Education, School of Life Sciences, Inner Mongolia University, Hohhot 010031, China
| | - Yang Liu
- Department of Ecology and Evolutionary Biology, University of Connecticut, Unit 3043, Storrs, CT 06269, USA; Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong 518004, China; State Key Laboratory of Agricultural Genomics, BGI-Shenzhen, Shenzhen, Guangdong 518085, China
| | - Shanshan Dong
- Key Laboratory of Southern Subtropical Plant Diversity, Fairy Lake Botanical Garden, Shenzhen & Chinese Academy of Sciences, Shenzhen, Guangdong 518004, China
| | - Liangsheng Zhang
- Genomics and Genetic Engineering Laboratory of Ornamental Plants, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou, Zhejiang 310058, China
| | - Fei Chen
- Sanya Nanfan Research Institute from Hainan University, Hainan Yazhou Bay Seed Laboratory, Sanya, Hainan 572025, China
| | - Lei Deng
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Fuzhou Duan
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Wenji Zhao
- College of Resource Environment and Tourism, CNU, Beijing 100048, China
| | - Kai Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Zhongfeng Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Xingru Li
- Department of Chemistry, CNU, Beijing 100048, China
| | - Hengjian Cui
- School of Mathematical Sciences, CNU, Beijing 100048, China
| | - Yong E Zhang
- Key Laboratory of Zoological Systematics and Evolution, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China
| | - Chuan Ma
- State Key Laboratory of Resource Insects, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | - Ruiliang Zhu
- Department of Biology, School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yu Jia
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Meizhi Wang
- State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
| | - Mitsuyasu Hasebe
- Division of Evolutionary Biology, National Institute for Basic Biology, Okazaki, Aichi 444-8585, Japan; Department of Basic Biology, The Graduate School for Advanced Studies (SOKENDAI), Okazaki 444-8585, Japan
| | - Jinzhong Fu
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Bernard Goffinet
- Department of Ecology and Evolutionary Biology, University of Connecticut, Unit 3043, Storrs, CT 06269, USA
| | - Hong Ma
- Department of Biology, Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA 16802, USA
| | - Stefan A Rensing
- Department of Biology, University of Marburg, 35043 Marburg, Germany; Faculty of Chemistry and Pharmacy, University of Freiburg, 79104 Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, University of Freiburg, 79104 Freiburg, Germany.
| | - Yikun He
- Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, College of Life Sciences, Capital Normal University (CNU), Beijing 100048, China.
| |
Collapse
|
31
|
Waller M, Frangedakis E, Marron AO, Sauret‐Güeto S, Rever J, Sabbagh CRR, Hibberd JM, Haseloff J, Renzaglia KS, Szövényi P. An optimized transformation protocol for Anthoceros agrestis and three more hornwort species. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 114:699-718. [PMID: 36811359 PMCID: PMC10952725 DOI: 10.1111/tpj.16161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 02/03/2023] [Accepted: 02/17/2023] [Indexed: 05/10/2023]
Abstract
Land plants comprise two large monophyletic lineages, the vascular plants and the bryophytes, which diverged from their most recent common ancestor approximately 480 million years ago. Of the three lineages of bryophytes, only the mosses and the liverworts are systematically investigated, while the hornworts are understudied. Despite their importance for understanding fundamental questions of land plant evolution, they only recently became amenable to experimental investigation, with Anthoceros agrestis being developed as a hornwort model system. Availability of a high-quality genome assembly and a recently developed genetic transformation technique makes A. agrestis an attractive model species for hornworts. Here we describe an updated and optimized transformation protocol for A. agrestis, which can be successfully used to genetically modify one more strain of A. agrestis and three more hornwort species, Anthoceros punctatus, Leiosporoceros dussii, and Phaeoceros carolinianus. The new transformation method is less laborious, faster, and results in the generation of greatly increased numbers of transformants compared with the previous method. We have also developed a new selection marker for transformation. Finally, we report the development of a set of different cellular localization signal peptides for hornworts providing new tools to better understand the hornwort cell biology.
Collapse
Affiliation(s)
- Manuel Waller
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
- Zurich‐Basel Plant Science CenterZurichSwitzerland
| | | | - Alan O. Marron
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Susanna Sauret‐Güeto
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
- Present address:
Crop Science CentreUniversity of Cambridge93 Lawrence Weaver RoadCambridgeCB3 0LEUK
| | - Jenna Rever
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Cyrus Raja Rubenstein Sabbagh
- Department of Microbiology and Molecular Genetics, College of Biological SciencesUniversity of CaliforniaDavisCalifornia95616USA
| | - Julian M. Hibberd
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Jim Haseloff
- Department of Plant SciencesUniversity of CambridgeDowning StreetCambridgeCB2 3EAUK
| | - Karen S. Renzaglia
- Department of Plant BiologySouthern Illinois UniversityCarbondaleIllinois62901USA
| | - Péter Szövényi
- Department of Systematic and Evolutionary BotanyUniversity of ZurichZurichSwitzerland
- Zurich‐Basel Plant Science CenterZurichSwitzerland
| |
Collapse
|
32
|
McCourt RM, Lewis LA, Strother PK, Delwiche CF, Wickett NJ, de Vries J, Bowman JL. Green land: Multiple perspectives on green algal evolution and the earliest land plants. AMERICAN JOURNAL OF BOTANY 2023; 110:e16175. [PMID: 37247371 DOI: 10.1002/ajb2.16175] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 03/10/2023] [Accepted: 03/10/2023] [Indexed: 05/31/2023]
Abstract
Green plants, broadly defined as green algae and the land plants (together, Viridiplantae), constitute the primary eukaryotic lineage that successfully colonized Earth's emergent landscape. Members of various clades of green plants have independently made the transition from fully aquatic to subaerial habitats many times throughout Earth's history. The transition, from unicells or simple filaments to complex multicellular plant bodies with functionally differentiated tissues and organs, was accompanied by innovations built upon a genetic and phenotypic toolkit that have served aquatic green phototrophs successfully for at least a billion years. These innovations opened an enormous array of new, drier places to live on the planet and resulted in a huge diversity of land plants that have dominated terrestrial ecosystems over the past 500 million years. This review examines the greening of the land from several perspectives, from paleontology to phylogenomics, to water stress responses and the genetic toolkit shared by green algae and plants, to the genomic evolution of the sporophyte generation. We summarize advances on disparate fronts in elucidating this important event in the evolution of the biosphere and the lacunae in our understanding of it. We present the process not as a step-by-step advancement from primitive green cells to an inevitable success of embryophytes, but rather as a process of adaptations and exaptations that allowed multiple clades of green plants, with various combinations of morphological and physiological terrestrialized traits, to become diverse and successful inhabitants of the land habitats of Earth.
Collapse
Affiliation(s)
- Richard M McCourt
- Department of Biodiversity, Earth, and Environmental Sciences, Drexel University, Philadelphia, PA, 19118, USA
| | - Louise A Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT, 06269, USA
| | - Paul K Strother
- Department of Earth and Environmental Sciences, Boston College Weston Observatory, 381 Concord Road, Weston, MA, 02493, USA
| | - Charles F Delwiche
- Department of Cell Biology and Molecular Genetics, University of Maryland, College Park, MD, 20742, USA
| | - Norman J Wickett
- Department of Biological Sciences, Clemson University, 132 Long Hall, Clemson, SC, 29634, USA
| | - Jan de Vries
- Göttingen Center for Molecular Biosciences, Department of Applied Bioinformatics, University of Göttingen Goldschmidtstr. 1, Göttingen, 37077, Germany
| | - John L Bowman
- School of Biological Sciences, Monash University, Clayton Campus, Melbourne, Victoria, 3800, Australia
| |
Collapse
|
33
|
Frangedakis E, Marron AO, Waller M, Neubauer A, Tse SW, Yue Y, Ruaud S, Waser L, Sakakibara K, Szövényi P. What can hornworts teach us? FRONTIERS IN PLANT SCIENCE 2023; 14:1108027. [PMID: 36968370 PMCID: PMC10030945 DOI: 10.3389/fpls.2023.1108027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
The hornworts are a small group of land plants, consisting of only 11 families and approximately 220 species. Despite their small size as a group, their phylogenetic position and unique biology are of great importance. Hornworts, together with mosses and liverworts, form the monophyletic group of bryophytes that is sister to all other land plants (Tracheophytes). It is only recently that hornworts became amenable to experimental investigation with the establishment of Anthoceros agrestis as a model system. In this perspective, we summarize the recent advances in the development of A. agrestis as an experimental system and compare it with other plant model systems. We also discuss how A. agrestis can help to further research in comparative developmental studies across land plants and to solve key questions of plant biology associated with the colonization of the terrestrial environment. Finally, we explore the significance of A. agrestis in crop improvement and synthetic biology applications in general.
Collapse
Affiliation(s)
| | - Alan O. Marron
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Manuel Waller
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Anna Neubauer
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Sze Wai Tse
- Department of Plant Sciences, University of Cambridge, Cambridge, United Kingdom
| | - Yuling Yue
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Stephanie Ruaud
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| | - Lucas Waser
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
- Department of Plant and Microbial Biology, University of Zürich, Zurich, Switzerland
| | | | - Péter Szövényi
- Department of Systematic and Evolutionary Botany, University of Zurich, Zurich, Switzerland
- Zurich-Basel Plant Science Center, Zurich, Switzerland
| |
Collapse
|
34
|
Meristem dormancy in Marchantia polymorpha is regulated by a liverwort-specific miRNA and a clade III SPL gene. Curr Biol 2023; 33:660-674.e4. [PMID: 36696899 DOI: 10.1016/j.cub.2022.12.062] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/30/2022] [Accepted: 12/22/2022] [Indexed: 01/26/2023]
Abstract
The shape of modular organisms depends on the branching architecture, which in plants is determined by the fates of generative centers called meristems. The branches of the liverwort Marchantia polymorpha are derived from two adjacent meristems that develop at thallus apices. These meristems may be active and develop branches or may be dormant and do not form branches. The relative number and position of active and dormant meristems define the overall shape and form of the thallus. We show that the clade III SQUAMOSA PROMOTER BINDING PROTEIN-LIKE (SPL) transcription factor MpSPL1 is required for meristem dormancy. The activity of MpSPL1 is regulated by the liverwort-specific Mpo-MR13 miRNA, which, in turn, is regulated by PIF-mediated signaling. An unrelated PIF-regulated miRNA, MIR156, represses a different SPL gene (belonging to clade IV) that inhibits branching during the shade avoidance response in Arabidopsis thaliana. This suggests that a conserved light signaling mechanism modulates branching architecture in liverworts and angiosperms and therefore is likely operated in the last common ancestor. However, PIF-mediated signaling represses the expression of different miRNA genes with different SPL targets during dichotomous, apical branching in liverworts and during lateral, subapical branching in angiosperms. We speculate that the mechanism that acts downstream of light and regulates meristem dormancy evolved independently in liverworts and angiosperms.
Collapse
|
35
|
Saridis P, Georgiadou X, Shtein I, Pouris J, Panteris E, Rhizopoulou S, Constantinidis T, Giannoutsou E, Adamakis IDS. Stomata in Close Contact: The Case of Pancratium maritimum L. (Amaryllidaceae). PLANTS (BASEL, SWITZERLAND) 2022; 11:3377. [PMID: 36501416 PMCID: PMC9740904 DOI: 10.3390/plants11233377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/29/2022] [Accepted: 12/01/2022] [Indexed: 06/17/2023]
Abstract
A special feature found in Amaryllidaceae is that some guard cells of the neighboring stomata form a "connection strand" between their dorsal cell walls. In the present work, this strand was studied in terms of both its composition and its effect on the morphology and function of the stomata in Pancratium maritimum L. leaves. The structure of stomata and their connection strand were studied by light and transmission electron microscopy. FM 4-64 and aniline blue staining and application of tannic acid were performed to detect cell membranes, callose, and pectins, respectively. A plasmolysis experiment was also performed. The composition of the connection strand was analyzed by fluorescence microscopy after immunostaining with several cell-wall-related antibodies, while pectinase treatment was applied to confirm the presence of pectins in the connection strand. To examine the effect of this connection on stomatal function, several morphological characteristics (width, length, size, pore aperture, stomatal distance, and cell size of the intermediate pavement cell) were studied. It is suggested that the connecting strand consists of cell wall material laid through the middle of the intermediate pavement cell adjoining the two stomata. These cell wall strands are mainly comprised of pectins, and crystalline cellulose and extensins were also present. Connected stomata do not open like the single stomata do, indicating that the connection strand could also affect stomatal function. This trait is common to other Amaryllidaceae representatives.
Collapse
Affiliation(s)
- Pavlos Saridis
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Xenia Georgiadou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
- Section of Ecology and Systematics, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Ilana Shtein
- Eastern Region Resarch and Development Center, Milken Campus, Ariel 40700, Israel
| | - John Pouris
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Emmanuel Panteris
- Department of Botany, School of Biology, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece
| | - Sophia Rhizopoulou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Theophanis Constantinidis
- Section of Ecology and Systematics, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | - Eleni Giannoutsou
- Section of Botany, Department of Biology, National and Kapodistrian University of Athens, 15784 Athens, Greece
| | | |
Collapse
|
36
|
Bowman JL. The origin of a land flora. NATURE PLANTS 2022; 8:1352-1369. [PMID: 36550365 DOI: 10.1038/s41477-022-01283-y] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 10/19/2022] [Indexed: 05/12/2023]
Abstract
The origin of a land flora fundamentally shifted the course of evolution of life on earth, facilitating terrestrialization of other eukaryotic lineages and altering the planet's geology, from changing atmospheric and hydrological cycles to transforming continental erosion processes. Despite algal lineages inhabiting the terrestrial environment for a considerable preceding period, they failed to evolve complex multicellularity necessary to conquer the land. About 470 million years ago, one lineage of charophycean alga evolved complex multicellularity via developmental innovations in both haploid and diploid generations and became land plants (embryophytes), which rapidly diversified to dominate most terrestrial habitats. Genome sequences have provided unprecedented insights into the genetic and genomic bases for embryophyte origins, with some embryophyte-specific genes being associated with the evolution of key developmental or physiological attributes, such as meristems, rhizoids and the ability to form mycorrhizal associations. However, based on the fossil record, the evolution of the defining feature of embryophytes, the embryo, and consequently the sporangium that provided a reproductive advantage, may have been most critical in their rise to dominance. The long timeframe and singularity of a land flora were perhaps due to the stepwise assembly of a large constellation of genetic innovations required to conquer the terrestrial environment.
Collapse
Affiliation(s)
- John L Bowman
- School of Biological Sciences, Monash University, Melbourne, Victoria, Australia.
- ARC Centre of Excellence for Plant Success in Nature and Agriculture, Monash University, Melbourne, Victoria, Australia.
| |
Collapse
|
37
|
The evolution of plant proton pump regulation via the R domain may have facilitated plant terrestrialization. Commun Biol 2022; 5:1312. [PMID: 36446861 PMCID: PMC9708826 DOI: 10.1038/s42003-022-04291-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Accepted: 11/23/2022] [Indexed: 11/30/2022] Open
Abstract
Plasma membrane (PM) H+-ATPases are the electrogenic proton pumps that export H+ from plant and fungal cells to acidify the surroundings and generate a membrane potential. Plant PM H+-ATPases are equipped with a C‑terminal autoinhibitory regulatory (R) domain of about 100 amino acid residues, which could not be identified in the PM H+-ATPases of green algae but appeared fully developed in immediate streptophyte algal predecessors of land plants. To explore the physiological significance of this domain, we created in vivo C-terminal truncations of autoinhibited PM H+‑ATPase2 (AHA2), one of the two major isoforms in the land plant Arabidopsis thaliana. As more residues were deleted, the mutant plants became progressively more efficient in proton extrusion, concomitant with increased expansion growth and nutrient uptake. However, as the hyperactivated AHA2 also contributed to stomatal pore opening, which provides an exit pathway for water and an entrance pathway for pests, the mutant plants were more susceptible to biotic and abiotic stresses, pathogen invasion and water loss, respectively. Taken together, our results demonstrate that pump regulation through the R domain is crucial for land plant fitness and by controlling growth and nutrient uptake might have been necessary already for the successful water-to-land transition of plants.
Collapse
|
38
|
Harris BJ, Clark JW, Schrempf D, Szöllősi GJ, Donoghue PCJ, Hetherington AM, Williams TA. Divergent evolutionary trajectories of bryophytes and tracheophytes from a complex common ancestor of land plants. Nat Ecol Evol 2022; 6:1634-1643. [PMID: 36175544 PMCID: PMC9630106 DOI: 10.1038/s41559-022-01885-x] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 08/12/2022] [Indexed: 11/16/2022]
Abstract
The origin of plants and their colonization of land fundamentally transformed the terrestrial environment. Here we elucidate the basis of this formative episode in Earth history through patterns of lineage, gene and genome evolution. We use new fossil calibrations, a relative clade age calibration (informed by horizontal gene transfer) and new phylogenomic methods for mapping gene family origins. Distinct rooting strategies resolve tracheophytes (vascular plants) and bryophytes (non-vascular plants) as monophyletic sister groups that diverged during the Cambrian, 515-494 million years ago. The embryophyte stem is characterized by a burst of gene innovation, while bryophytes subsequently experienced an equally dramatic episode of reductive genome evolution in which they lost genes associated with the elaboration of vasculature and the stomatal complex. Overall, our analyses reveal that extant tracheophytes and bryophytes are both highly derived from a more complex ancestral land plant. Understanding the origin of land plants requires tracing character evolution across a diversity of modern lineages.
Collapse
Affiliation(s)
- Brogan J Harris
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - James W Clark
- School of Biological Sciences, University of Bristol, Bristol, UK
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Dominik Schrempf
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
| | - Gergely J Szöllősi
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE 'Lendület' Evolutionary Genomics Research Group, Budapest, Hungary
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | | | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK.
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
| |
Collapse
|
39
|
Ge S, Zhang RX, Wang YF, Sun P, Chu J, Li J, Sun P, Wang J, Hetherington AM, Liang YK. The Arabidopsis Rab protein RABC1 affects stomatal development by regulating lipid droplet dynamics. THE PLANT CELL 2022; 34:4274-4292. [PMID: 35929087 PMCID: PMC9614440 DOI: 10.1093/plcell/koac239] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/13/2022] [Indexed: 05/13/2023]
Abstract
Lipid droplets (LDs) are evolutionarily conserved organelles that serve as hubs of cellular lipid and energy metabolism in virtually all organisms. Mobilization of LDs is important in light-induced stomatal opening. However, whether and how LDs are involved in stomatal development remains unknown. We show here that Arabidopsis thaliana LIPID DROPLETS AND STOMATA 1 (LDS1)/RABC1 (At1g43890) encodes a member of the Rab GTPase family that is involved in regulating LD dynamics and stomatal morphogenesis. The expression of RABC1 is coordinated with the different phases of stomatal development. RABC1 targets to the surface of LDs in response to oleic acid application in a RABC1GEF1-dependent manner. RABC1 physically interacts with SEIPIN2/3, two orthologues of mammalian seipin, which function in the formation of LDs. Disruption of RABC1, RABC1GEF1, or SEIPIN2/3 resulted in aberrantly large LDs, severe defects in guard cell vacuole morphology, and stomatal function. In conclusion, these findings reveal an aspect of LD function and uncover a role for lipid metabolism in stomatal development in plants.
Collapse
Affiliation(s)
| | | | - Yi-Fei Wang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Pengyue Sun
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| | - Jiaheng Chu
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jiao Li
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Peng Sun
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Jianbo Wang
- State Key Laboratory of Hybrid Rice, Department of Plant Sciences, College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Alistair M Hetherington
- School of Biological Sciences, Life Sciences Building, University of Bristol, 24 Tyndall Avenue, Bristol, BS8 1TQ, UK
| | | |
Collapse
|
40
|
Conserved signalling components coordinate epidermal patterning and cuticle deposition in barley. Nat Commun 2022; 13:6050. [PMID: 36229435 PMCID: PMC9561702 DOI: 10.1038/s41467-022-33300-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 09/12/2022] [Indexed: 12/24/2022] Open
Abstract
Faced with terrestrial threats, land plants seal their aerial surfaces with a lipid-rich cuticle. To breathe, plants interrupt their cuticles with adjustable epidermal pores, called stomata, that regulate gas exchange, and develop other specialised epidermal cells such as defensive hairs. Mechanisms coordinating epidermal features remain poorly understood. Addressing this, we studied two loci whose allelic variation causes both cuticular wax-deficiency and misarranged stomata in barley, identifying the underlying genes, Cer-g/ HvYDA1, encoding a YODA-like (YDA) MAPKKK, and Cer-s/ HvBRX-Solo, encoding a single BREVIS-RADIX (BRX) domain protein. Both genes control cuticular integrity, the spacing and identity of epidermal cells, and barley's distinctive epicuticular wax blooms, as well as stomatal patterning in elevated CO2 conditions. Genetic analyses revealed epistatic and modifying relationships between HvYDA1 and HvBRX-Solo, intimating that their products participate in interacting pathway(s) linking epidermal patterning with cuticular properties in barley. This may represent a mechanism for coordinating multiple adaptive features of the land plant epidermis in a cultivated cereal.
Collapse
|
41
|
Woudenberg S, Renema J, Tomescu AMF, De Rybel B, Weijers D. Deep origin and gradual evolution of transporting tissues: Perspectives from across the land plants. PLANT PHYSIOLOGY 2022; 190:85-99. [PMID: 35904762 PMCID: PMC9434249 DOI: 10.1093/plphys/kiac304] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 06/08/2022] [Indexed: 05/31/2023]
Abstract
The evolution of transporting tissues was an important innovation in terrestrial plants that allowed them to adapt to almost all nonaquatic environments. These tissues consist of water-conducting cells and food-conducting cells and bridge plant-soil and plant-air interfaces over long distances. The largest group of land plants, representing about 95% of all known plant species, is associated with morphologically complex transporting tissue in plants with a range of additional traits. Therefore, this entire clade was named tracheophytes, or vascular plants. However, some nonvascular plants possess conductive tissues that closely resemble vascular tissue in their organization, structure, and function. Recent molecular studies also point to a highly conserved toolbox of molecular regulators for transporting tissues. Here, we reflect on the distinguishing features of conductive and vascular tissues and their evolutionary history. Rather than sudden emergence of complex, vascular tissues, plant transporting tissues likely evolved gradually, building on pre-existing developmental mechanisms and genetic components. Improved knowledge of the intimate structure and developmental regulation of transporting tissues across the entire taxonomic breadth of extant plant lineages, combined with more comprehensive documentation of the fossil record of transporting tissues, is required for a full understanding of the evolutionary trajectory of transporting tissues.
Collapse
Affiliation(s)
| | | | - Alexandru M F Tomescu
- Department of Biological Sciences, California State Polytechnic University–Humboldt, Arcata, California 95521, USA
| | | | | |
Collapse
|