1
|
Omar O, Rydén L, Wamied AR, Al-Otain I, Alhawaj H, Abuohashish H, Al-Qarni F, Emanuelsson L, Johansson A, Palmquist A, Thomsen P. Molecular mechanisms of poor osseointegration in irradiated bone: In vivo study in a rat tibia model. J Clin Periodontol 2024; 51:1236-1251. [PMID: 38798064 DOI: 10.1111/jcpe.14021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 04/30/2024] [Accepted: 05/15/2024] [Indexed: 05/29/2024]
Abstract
AIM Radiotherapy is associated with cell depletion and loss of blood supply, which are linked to compromised bone healing. However, the molecular events underlying these effects at the tissue-implant interface have not been fully elucidated. This study aimed to determine the major molecular mediators associated with compromised osseointegration due to previous exposure to radiation. MATERIALS AND METHODS Titanium implants were placed in rat tibiae with or without pre-exposure to 20 Gy irradiation. Histomorphometric, biomechanical, quantitative polymerase chain reaction (qPCR) and enzyme-linked immunosorbent assay analyses were performed at 1 and 4 weeks after implantation. RESULTS The detrimental effects of irradiation were characterized by reduced bone-implant contact and removal torque. Furthermore, pre-exposure to radiation induced different molecular dysfunctions such as (i) increased expression of pro-inflammatory (Tnf) and osteoclastic (Ctsk) genes and decreased expression of the bone formation (Alpl) gene in implant-adherent cells; (ii) increased expression of bone formation (Alpl and Bglap) genes in peri-implant bone; and (iii) increased expression of pro-inflammatory (Tnf) and pro-fibrotic (Tgfb1) genes in peri-implant soft tissue. The serum levels of pro-inflammatory, bone formation and bone resorption proteins were greater in the irradiated rats. CONCLUSIONS Irradiation causes the dysregulation of multiple biological activities, among which perturbed inflammation seems to play a common role in hindering osseointegration.
Collapse
Affiliation(s)
- Omar Omar
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Louise Rydén
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | | | - Ibrahim Al-Otain
- Radiation Oncology, King Fahad Specialist Hospital, Dammam, Saudi Arabia
| | - Hussain Alhawaj
- Department of Environmental Health Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Hatem Abuohashish
- Department of Biomedical Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Faisal Al-Qarni
- Department of Substitutive Dental Sciences, College of Dentistry, Imam Abdulrahman Bin Faisal University, Dammam, Saudi Arabia
| | - Lena Emanuelsson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Johansson
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anders Palmquist
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Peter Thomsen
- Department of Biomaterials, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
2
|
Ronca R, Supuran CT. Carbonic anhydrase IX: An atypical target for innovative therapies in cancer. Biochim Biophys Acta Rev Cancer 2024; 1879:189120. [PMID: 38801961 DOI: 10.1016/j.bbcan.2024.189120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 05/14/2024] [Accepted: 05/19/2024] [Indexed: 05/29/2024]
Abstract
Carbonic anhydrases (CAs), are metallo-enzymes implicated in several pathophysiological processes where tissue pH regulation is required. CA IX is a tumor-associated CA isoform induced by hypoxia and involved in the adaptation of tumor cells to acidosis. Indeed, several tumor-driving pathways can induce CA IX expression, and this in turn has been associated to cancer cells invasion and metastatic features as well as to induction of stem-like features, drug resistance and recurrence. After its functional and structural characterization CA IX targeting approaches have been developed to inhibit its activity in neoplastic tissues, and to date this field has seen an incredible acceleration in terms of therapeutic options and biological readouts. Small molecules inhibitors, hybrid/dual targeting drugs, targeting antibodies and adoptive (CAR-T based) cell therapy have been developed at preclinical level, whereas a sulfonamide CA IX inhibitor and an antibody entered Phase Ib/II clinical trials for the treatment and imaging of different solid tumors. Here recent advances on CA IX biology and pharmacology in cancer, and its therapeutic targeting will be discussed.
Collapse
Affiliation(s)
- Roberto Ronca
- Department of Molecular and Translational Medicine, University of Brescia, Viale Europa 11, 25123 Brescia, Italy; Consorzio Interuniversitario per le Biotecnologie (CIB), Italy.
| | - Claudiu T Supuran
- NEUROFARBA Department, Sezione di Scienze Farmaceutiche e Nutraceutiche, University of Florence, Florence 50019, Italy.
| |
Collapse
|
3
|
Valeriote FA, Brown SL, Media J, Li P, Maheshwari M, Shaw J. Novel Small Molecule, UTS-1401, as a Radioprotector for Total-Body Irradiation. Radiat Res 2024; 202:16-25. [PMID: 38802104 DOI: 10.1667/rade-22-00030.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 04/23/2024] [Indexed: 05/29/2024]
Abstract
We report on a new radioprotector, UTS-1401, a small molecule that was synthesized (by one of us, JS) and evaluated here for its radioprotective effect against total-body irradiation (TBI). Female and male NIH Swiss mice were subjected to TBI at doses of 6.5, 7.5 and 8.5 Gy either with or without a 24 h pretreatment of UTS-1401 given ip and observed for 30 days. Survival rates were significantly increased when mice were treated with UTS-1401 compared to those not treated. The radioprotective effect of UTS-1401 was drug-dose dependent for male mice exposed to 8.5 Gy TBI with 150 mg/kg of UTS-1401 as the optimal dose. The radioprotective effect of UTS-1401 on female mice exposed to 8.5 Gy TBI was observed at 50, 100, and 150 mg/kg, with no dose response relationship noted. Female mice were more radioresistant than male mice with LD50/30 values of 7.8 Gy vs. 6.8 Gy, respectively. Weight changes after UTS-1401 alone showed a significant body weight increase at 150 mg/kg. Both the ip and iv route for UTS-1401 were similarly effective for male mice exposed to 8 Gy TBI. Further analysis using an endogenous spleen colony assay demonstrated that pretreatment of UTS-1401 for up to 72h prior to TBI protected both spleen weight and hematopoietic stem cells with a treated/untreated ratio between 2.0 and 3.2 for the latter for times between 0.5 h and 72 h. A separate in vivo study showed that pretreatment of UTS-1401 protected bone marrow CFU-GM for mice exposed to TBI. In summary, UTS-1401 is a promising small-molecule radioprotective agent as demonstrated by whole animal, hematopoietic stem cell and bone marrow myeloid progenitor cell survival.
Collapse
Affiliation(s)
| | - Stephen L Brown
- Department of Radiation Oncology, Henry Ford Health, Detroit, Michigan, 48202
| | - Joseph Media
- Department of Internal Medicine, Henry Ford Health, Detroit, Michigan, 48202
| | - Pin Li
- Department of Public Health Sciences, Henry Ford Health, Detroit, Michigan, 48202
| | - Mani Maheshwari
- Department of Internal Medicine, Henry Ford Health, Detroit, Michigan, 48202
| | - Jiajiu Shaw
- 21st Century Therapeutics, Inc., Detroit, Michigan 48202
| |
Collapse
|
4
|
Singh VK, Seed TM. The potential value of 5-androstenediol in countering acute radiation syndrome. Drug Discov Today 2024; 29:103856. [PMID: 38097137 DOI: 10.1016/j.drudis.2023.103856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/29/2023] [Accepted: 12/08/2023] [Indexed: 12/23/2023]
Abstract
Moderate-to-high doses of ionizing irradiation can lead to potentially life-threatening morbidities and increase mortality risk. In preclinical testing, 5-androstenediol has been shown to be effective in protecting against hematopoietic acute radiation syndrome. This agent is important for innate immunity, serves to modulate cell cycle progression, reduces radiation-induced apoptosis, and regulates DNA repair. The drug has been evaluated clinically for its pharmacokinetics and safety. The United States Food and Drug Administration granted investigational new drug status to its injectable depot formulation (NEUMUNE). Its safety and efficacy profiles make it an attractive candidate for further development as a radiation countermeasure.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA; Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA.
| | - Thomas M Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD 20814, USA
| |
Collapse
|
5
|
Singh VK, Srivastava M, Seed TM. Protein biomarkers for radiation injury and testing of medical countermeasure efficacy: promises, pitfalls, and future directions. Expert Rev Proteomics 2023; 20:221-246. [PMID: 37752078 DOI: 10.1080/14789450.2023.2263652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/11/2023] [Indexed: 09/28/2023]
Abstract
INTRODUCTION Radiological/nuclear accidents, hostile military activity, or terrorist strikes have the potential to expose a large number of civilians and military personnel to high doses of radiation resulting in the development of acute radiation syndrome and delayed effects of exposure. Thus, there is an urgent need for sensitive and specific assays to assess the levels of radiation exposure to individuals. Such radiation exposures are expected to alter primary cellular proteomic processes, resulting in multifaceted biological responses. AREAS COVERED This article covers the application of proteomics, a promising and fast developing technology based on quantitative and qualitative measurements of protein molecules for possible rapid measurement of radiation exposure levels. Recent advancements in high-resolution chromatography, mass spectrometry, high-throughput, and bioinformatics have resulted in comprehensive (relative quantitation) and precise (absolute quantitation) approaches for the discovery and accuracy of key protein biomarkers of radiation exposure. Such proteome biomarkers might prove useful for assessing radiation exposure levels as well as for extrapolating the pharmaceutical dose of countermeasures for humans based on efficacy data generated using animal models. EXPERT OPINION The field of proteomics promises to be a valuable asset in evaluating levels of radiation exposure and characterizing radiation injury biomarkers.
Collapse
Affiliation(s)
- Vijay K Singh
- Division of Radioprotectants, Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Meera Srivastava
- Department of Anatomy, Physiology and Genetics, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | |
Collapse
|
6
|
Tatara Y, Monzen S. Proteomics and secreted lipidomics of mouse-derived bone marrow cells exposed to a lethal level of ionizing radiation. Sci Rep 2023; 13:8802. [PMID: 37258593 DOI: 10.1038/s41598-023-35924-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Accepted: 05/25/2023] [Indexed: 06/02/2023] Open
Abstract
High doses of ionizing radiation (IR) exposure can lead to the development of severe acute radiation syndrome with bone marrow failure. Defining risk factors that predict adverse events is a critical mission to guide patient selection for personalized treatment protocols. Since non-hematopoietic stem cells act as feeder cells in the niche and their secreted lipids may regulate hematopoietic stem cells, we focused on non-hematopoietic stem cells and aimed to discover biomarkers that can assess radiation exposure from their secreted lipids. Bone marrow stromal cells (BMSCs) and osteoblast differentiation-inducing cells (ODICs) isolated from mouse femurs were exposed to lethal doses of IR and the proteomic differences between BMSC and ODIC cell layers were compared. We observed an increased Nrf2-mediated oxidative stress response and IL6 expression in ODICs and decreased expression of mitochondrial proteins in BMSCs. To elucidate secreted factors, lipidomics of the cultures were profiled; the relevant lipids distinguishing IR-exposed and control groups of BMSC were acyl-acyl phosphatidylcholine (PC aa C34:1 and PC aa C34:4), lysophosphatidylcholine (lyso-PC a C18:0 and lyso PC a C17:0) and sphingomyelin (SM C20:2). These analyses suggest that certain lipids are candidate markers for the toxic effects of IR.
Collapse
Affiliation(s)
- Yota Tatara
- Department of Stress Response Science, Center for Advanced Medical Research, Graduate School of Medicine, Hirosaki University, 5 Zaifu-Cho, Hirosaki, Aomori, 036-8562, Japan
| | - Satoru Monzen
- Department of Radiation Science, Graduate School of Health Sciences, Hirosaki University, 66-1 Hon-Cho, Hirosaki, Aomori, 036-8564, Japan.
| |
Collapse
|
7
|
Bahrami Asl F, Islami-seginsara M, Ebrahimi Kalan M, Hemmatjo R, Hesam M, Shafiei-Irannejad V. Exposure to ionizing radiations and changes in blood cells and interleukin-6 in radiation workers. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:35757-35768. [PMID: 36538225 PMCID: PMC9764314 DOI: 10.1007/s11356-022-24652-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Long-term exposure to ionizing radiation (IR) can cause dire health consequences even less than the dose limits. Previous biomonitoring studies have focused more on complete blood counts (CBCs), with non-coherent results. In this study, we aimed to investigate the association between exposure to IR and cytokine interleukin-6 (IL-6) along with hematological parameters in Tabriz megacity's radiation workers. In this hospital-based study, blood samples were taken from 33 radiation workers (exposed group) and 34 non-radiation workers (control group) in 4 hospitals. Absorbed radiation dose was measured by a personal film badge dosimeter in radiation workers. The studied biomarkers and all of the selected covariates were measured and analyzed using adjusted multiple linear regression models. The exposed doses for all radiation workers were under the dose limits (overall mean = 1.18 mSv/year). However, there was a significant association between exposure to ionizing radiation and IL-6 (49.78 vs 36.17; t = 2.4; p = 0.02) and eosinophils (0.17 vs 0.14; t = 2.02; p = 0.049). The difference between the mean of the other biomarkers in radiation workers was not statistically significant compared to the control group. This study demonstrated that long-term exposure to ionizing radiation, even under the dose limits, is related to a significantly increased level of some blood biomarkers (Il-6 and eosinophil) that, in turn, can cause subsequent health effects such as cancer.
Collapse
Affiliation(s)
- Farshad Bahrami Asl
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Mahdi Islami-seginsara
- Department of Environmental Health Engineering, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Mohammad Ebrahimi Kalan
- Department of Health Behavior, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC USA
| | - Rasoul Hemmatjo
- Department of Occupational Health, School of Public Health, Urmia University of Medical Sciences, Urmia, Iran
| | - Mousa Hesam
- Radiation Health Unit, Department of Environmental Health Engineering, Health Vice-Chancellor, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahid Shafiei-Irannejad
- Cellular and Molecular Research Center, Cellular and Molecular Medicine Institute, Urmia University of Medical Sciences, Urmia, Iran
| |
Collapse
|
8
|
Cui W, Hull L, Zizzo A, Wang L, Lin B, Zhai M, Xiao M. Pharmacokinetic Study of rhIL-18BP and Its Effect on Radiation-Induced Cytokine Changes in Mouse Serum and Intestine. TOXICS 2022; 11:toxics11010035. [PMID: 36668761 PMCID: PMC9863660 DOI: 10.3390/toxics11010035] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/23/2022] [Accepted: 12/28/2022] [Indexed: 05/14/2023]
Abstract
Administration of recombinant human IL-18 binding protein (rhIL-18BP), a natural antagonist of IL-18, significantly increased mouse survival after lethal doses of irradiation. To further understand the roles of IL-18BP in radiation mitigation, we studied the pharmacokinetic (PK) parameters of rhIL-18BP, and the serum and intestinal cytokine changes in CD2F1 mice treated with vehicle or rhIL-18BP after 9.0 Gy total body irradiation (TBI). For the PK study, non-compartmental pharmacokinetic analysis was performed using PKsolver. Serum and intestine specimens were collected to measure 44-cytokine levels. Principal component analysis showed a clear separation of the non-irradiated samples from the irradiated samples; and partial separation with or without rhIL-18BP treatment. Cytokine clusters that were significantly correlated in the serum or intestine, respectively were identified. On the individual cytokine levels, serum and intestinal cytokines that were significantly changed by irradiation and rhIL-18BP treatment were identified. Finally, cytokines that were significantly correlated between their serum and intestinal levels were identified. The current study established the PK parameters of rhIL-18BP in mice, identified significantly changed cytokines in mouse serum and intestine after radiation exposure and rhIL-18BP treatment. Current data provide critical insights into IL-18BP's mechanism of action as a radiation mitigator.
Collapse
Affiliation(s)
- Wanchang Cui
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Correspondence: (W.C.); (M.X.); Tel.: +1-301-295-0695 (W.C.); +1-301-295-2597 (M.X.)
| | - Lisa Hull
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Alex Zizzo
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
| | - Li Wang
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Bin Lin
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Min Zhai
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD 20817, USA
| | - Mang Xiao
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA
- Correspondence: (W.C.); (M.X.); Tel.: +1-301-295-0695 (W.C.); +1-301-295-2597 (M.X.)
| |
Collapse
|
9
|
Transcriptomes of Wet Skin Biopsies Predict Outcomes after Ionizing Radiation Exposure with Potential Dosimetric Applications in a Mouse Model. Curr Issues Mol Biol 2022; 44:3711-3734. [PMID: 36005150 PMCID: PMC9406351 DOI: 10.3390/cimb44080254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 11/18/2022] Open
Abstract
Countermeasures for radiation diagnosis, prognosis, and treatment are trailing behind the proliferation of nuclear energy and weaponry. Radiation injury mechanisms at the systems biology level are not fully understood. Here, mice skin biopsies at h2, d4, d7, d21, and d28 after exposure to 1, 3, 6, or 20 Gy whole-body ionizing radiation were evaluated for the potential application of transcriptional alterations in radiation diagnosis and prognosis. Exposure to 20 Gy was lethal by d7, while mice who received 1, 3, or 6 Gy survived the 28-day time course. A Sammon plot separated samples based on survival and time points (TPs) within lethal (20 Gy) and sublethal doses. The differences in the numbers, regulation mode, and fold change of significantly differentially transcribed genes (SDTGs, p < 0.05 and FC > 2) were identified between lethal and sublethal doses, and down and upregulation dominated transcriptomes during the first post-exposure week, respectively. The numbers of SDTGs and the percentages of upregulated ones revealed stationary downregulation post-lethal dose in contrast to responses to sublethal doses which were dynamic and largely upregulated. Longitudinal up/downregulated SDTGs ratios suggested delayed and extended responses with increasing IR doses in the sublethal range and lethal-like responses in late TPs. This was supported by the distributions of common and unique genes across TPs within each dose. Several genes with potential dosimetric marker applications were identified. Immune, fibrosis, detoxification, hematological, neurological, gastric, cell survival, migration, and proliferation radiation response pathways were identified, with the majority predicted to be activated after sublethal and inactivated after lethal exposures, particularly during the first post-exposure week.
Collapse
|
10
|
Maurya DK, Bandekar M, Sandur SK. Soluble factors secreted by human Wharton’s jelly mesenchymal stromal/stem cells exhibit therapeutic radioprotection: A mechanistic study with integrating network biology. World J Stem Cells 2022; 14:347-361. [PMID: 35722198 PMCID: PMC9157603 DOI: 10.4252/wjsc.v14.i5.347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 03/25/2022] [Accepted: 05/08/2022] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Human Wharton’s jelly-derived mesenchymal stromal/stem cells (hWJ-MSCs) have gained considerable attention in their applications in cell-based therapy due to several advantages offered by them. Recently, we reported that hWJ-MSCs and their conditioned medium have significant therapeutic radioprotective potential. This finding raised an obvious question to identify unique features of hWJ-MSCs over other sources of stem cells for a better understanding of its radioprotective mechanism.
AIM To understand the radioprotective mechanism of soluble factors secreted by hWJ-MSCs and identification of their unique genes.
METHODS Propidium iodide staining, endogenous spleen colony-forming assay, and survival study were carried out for radioprotection studies. Homeostasis-driven proliferation assay was performed for in vivo lymphocyte proliferation. Analysis of RNAseq data was performed to find the unique genes of WJ-MSCs by comparing them with bone marrow mesenchymal stem cells, embryonic stem cells, and human fibroblasts. Gene enrichment analysis and protein-protein interaction network were used for pathway analysis.
RESULTS Co-culture of irradiated murine splenic lymphocytes with WJ-MSCs offered significant radioprotection to lymphocytes. WJ-MSC transplantation increased the homeostasis-driven proliferation of the lymphocytes. Neutralization of WJ-MSC conditioned medium with granulocyte-colony stimulating factor antibody abolished therapeutic radioprotection. Transcriptome analysis showed that WJ-MSCs share several common genes with bone marrow MSCs and embryonic stem cells and express high levels of unique genes such as interleukin (IL)1-α, IL1-β, IL-6, CXCL3, CXCL5, CXCL8, CXCL2, CCL2, FLT-1, and IL-33. It was also observed that WJ-MSCs preferentially modulate several cellular pathways and processes that handle the repair and regeneration of damaged tissues compared to stem cells from other sources. Cytokine-based network analysis showed that most of the radiosensitive tissues have a more complex network for the elevated cytokines.
CONCLUSION Systemic infusion of WJ-MSC conditioned media will have significant potential for treating accidental radiation exposed victims.
Collapse
Affiliation(s)
- Dharmendra Kumar Maurya
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| | - Mayuri Bandekar
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
- University of Mumbai, Kalina, Mumbai 400098, India
| | - Santosh Kumar Sandur
- Radiation Biology and Health Sciences Division, Bhabha Atomic Research Centre, Mumbai 400085, Maharashtra, India
- Homi Bhabha National Institute, Anushaktinagar, Mumbai 400094, India
| |
Collapse
|
11
|
Montesinos CA, Khalid R, Cristea O, Greenberger JS, Epperly MW, Lemon JA, Boreham DR, Popov D, Gorthi G, Ramkumar N, Jones JA. Space Radiation Protection Countermeasures in Microgravity and Planetary Exploration. Life (Basel) 2021; 11:life11080829. [PMID: 34440577 PMCID: PMC8398261 DOI: 10.3390/life11080829] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 08/03/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Space radiation is one of the principal environmental factors limiting the human tolerance for space travel, and therefore a primary risk in need of mitigation strategies to enable crewed exploration of the solar system. METHODS We summarize the current state of knowledge regarding potential means to reduce the biological effects of space radiation. New countermeasure strategies for exploration-class missions are proposed, based on recent advances in nutrition, pharmacologic, and immune science. RESULTS Radiation protection can be categorized into (1) exposure-limiting: shielding and mission duration; (2) countermeasures: radioprotectors, radiomodulators, radiomitigators, and immune-modulation, and; (3) treatment and supportive care for the effects of radiation. Vehicle and mission design can augment the overall exposure. Testing in terrestrial laboratories and earth-based exposure facilities, as well as on the International Space Station (ISS), has demonstrated that dietary and pharmacologic countermeasures can be safe and effective. Immune system modulators are less robustly tested but show promise. Therapies for radiation prodromal syndrome may include pharmacologic agents; and autologous marrow for acute radiation syndrome (ARS). CONCLUSIONS Current radiation protection technology is not yet optimized, but nevertheless offers substantial protection to crews based on Lunar or Mars design reference missions. With additional research and human testing, the space radiation risk can be further mitigated to allow for long-duration exploration of the solar system.
Collapse
Affiliation(s)
| | - Radina Khalid
- School of Engineering, Rice University, Houston, TX 77005, USA;
| | - Octav Cristea
- Department of Surgery, Emory University School of Medicine, Atlanta, GA 30322, USA;
| | - Joel S. Greenberger
- Department of Radiation Oncology, University of Pittsburg Medical Center, Pittsburgh, PA 15213, USA; (J.S.G.); (M.W.E.)
| | - Michael W. Epperly
- Department of Radiation Oncology, University of Pittsburg Medical Center, Pittsburgh, PA 15213, USA; (J.S.G.); (M.W.E.)
| | - Jennifer A. Lemon
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; (J.A.L.); (D.R.B.)
| | - Douglas R. Boreham
- Medical Sciences Division, Northern Ontario School of Medicine, Sudbury, ON P3E 2C6, Canada; (J.A.L.); (D.R.B.)
| | - Dmitri Popov
- Advanced Medical Technologies and Systems Inc., Richmond Hill, ON L4B 1N1, Canada;
| | | | - Nandita Ramkumar
- Center for Space Medicine, Baylor College of Medicine, Houston, TX 77030, USA;
| | - Jeffrey A. Jones
- Center for Space Medicine, Department of Urology, Baylor College of Medicine, Houston, TX 77030, USA
- Correspondence:
| |
Collapse
|
12
|
Effect of Flattening Filter and Flattening Filter Free beams on radiotherapy-induced peripheral blood cell damage. Radiat Phys Chem Oxf Engl 1993 2021. [DOI: 10.1016/j.radphyschem.2021.109383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
13
|
Vasin MV, Ushakov IB. Potential Ways to Increase Body Resistance to Damaging Action of Ionizing Radiation with Radiomitigators. ACTA ACUST UNITED AC 2020. [DOI: 10.1134/s2079086419060082] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
14
|
Bone Marrow Endothelial Cells Influence Function and Phenotype of Hematopoietic Stem and Progenitor Cells after Mixed Neutron/Gamma Radiation. Int J Mol Sci 2019; 20:ijms20071795. [PMID: 30978983 PMCID: PMC6480930 DOI: 10.3390/ijms20071795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Revised: 04/05/2019] [Accepted: 04/09/2019] [Indexed: 12/25/2022] Open
Abstract
The bone marrow (BM) microenvironment plays a crucial role in the maintenance and regeneration of hematopoietic stem (HSC) and progenitor cells (HSPC). In particular, the vascular niche is responsible for regulating HSC maintenance, differentiation, and migration of cells in and out of the BM. Damage to this niche upon exposure to ionizing radiation, whether accidental or as a result of therapy, can contribute to delays in HSC recovery and/or function. The ability of BM derived-endothelial cells (BMEC) to alter and/or protect HSPC after exposure to ionizing radiation was investigated. Our data show that exposure of BMEC to ionizing radiation resulted in alterations in Akt signaling, increased expression of PARP-1, IL6, and MCP-1, and decreased expression of MMP1 and MMP9. In addition, global analysis of gene expression of HSC and BMEC in response to mixed neutron/gamma field (MF) radiation identified 60 genes whose expression was altered after radiation in both cell types, suggesting that a subset of genes is commonly affected by this type of radiation. Focused gene analysis by RT-PCR revealed two categories of BMEC alterations: (a) a subset of genes whose expression was altered in response to radiation, with no additional effect observed during coculture with HSPC, and (b) a subset of genes upregulated in response to radiation, and altered when cocultured with HSPC. Coculture of BMEC with CD34+ HSPC induced HSPC proliferation, and improved BM function after MF radiation. Nonirradiated HSPC exhibited reduced CD34 expression over time, but when irradiated, they maintained higher CD34 expression. Nonirradiated HSPC cocultured with nonirradiated BMEC expressed lower levels of CD34 expression compared to nonirradiated alone. These data characterize the role of each cell type in response to MF radiation and demonstrate the interdependence of each cell’s response to ionizing radiation. The identified genes modulated by radiation and coculture provide guidance for future experiments to test hypotheses concerning specific factors mediating the beneficial effects of BMEC on HSPC. This information will prove useful in the search for medical countermeasures to radiation-induced hematopoietic injury.
Collapse
|
15
|
Carbonic Anhydrase IX (CAIX), Cancer, and Radiation Responsiveness. Metabolites 2018; 8:metabo8010013. [PMID: 29439394 PMCID: PMC5874614 DOI: 10.3390/metabo8010013] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2018] [Revised: 02/06/2018] [Accepted: 02/07/2018] [Indexed: 12/23/2022] Open
Abstract
Carbonic anhydrase IX has been under intensive investigation as a therapeutic target in cancer. Studies demonstrate that this enzyme has a key role in pH regulation in cancer cells, allowing these cells to adapt to the adverse conditions of the tumour microenviroment. Novel CAIX inhibitors have shown efficacy in both in vitro and in vivo pre-clinical cancer models, adversely affecting cell viability, tumour formation, migration, invasion, and metastatic growth when used alone. In co-treatments, CAIX inhibitors may enhance the effects of anti-angiogenic drugs or chemotherapy agents. Research suggests that these inhibitors may also increase the response of tumours to radiotherapy. Although many of the anti-tumour effects of CAIX inhibition may be dependent on its role in pH regulation, recent work has shown that CAIX interacts with several of the signalling pathways involved in the cellular response to radiation, suggesting that pH-independent mechanisms may also be an important basis of its role in tumour progression. Here, we discuss these pH-independent interactions in the context of the ability of CAIX to modulate the responsiveness of cancer to radiation.
Collapse
|
16
|
Zhang W, Li J, Qi G, Tu G, Yang C, Xu M. Myeloid-derived suppressor cells in transplantation: the dawn of cell therapy. J Transl Med 2018; 16:19. [PMID: 29378596 PMCID: PMC5789705 DOI: 10.1186/s12967-018-1395-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2017] [Accepted: 01/22/2018] [Indexed: 02/07/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are a series of innate cells that play a significant role in inhibiting T cell-related responses. This heterogeneous population of immature cells is involved in tumor immunity. Recently, the function and importance of MDSCs in transplantation have garnered the attention of scientists and have become an important focus of transplantation immunology research because MDSCs play a key role in establishing immune tolerance in transplantation. In this review, we summarize recent studies of MDSCs in different types of transplantation. We also focus on the influence of immunosuppressive drugs on MDSCs as well as future obstacles and research directions in this field.
Collapse
Affiliation(s)
- Weitao Zhang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032 China
| | - Jiawei Li
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032 China
| | - Guisheng Qi
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032 China
| | - Guowei Tu
- Department of Intensive Care Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Cheng Yang
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032 China
| | - Ming Xu
- Department of Urology, Zhongshan Hospital, Fudan University, Shanghai Key Laboratory of Organ Transplantation, 180 Fenglin Road, Shanghai, 200032 China
| |
Collapse
|
17
|
Chiba M, Monzen S, Iwaya C, Kashiwagi Y, Yamada S, Hosokawa Y, Mariya Y, Nakamura T, Wojcik A. Serum miR-375-3p increase in mice exposed to a high dose of ionizing radiation. Sci Rep 2018; 8:1302. [PMID: 29358747 PMCID: PMC5778023 DOI: 10.1038/s41598-018-19763-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Accepted: 01/09/2018] [Indexed: 12/14/2022] Open
Abstract
Exposure to high-doses of ionizing radiation (IR) leads to development of a strong acute radiation syndrome (ARS) in mammals. ARS manifests after a latency period and it is important to develop fast prognostic biomarkers for its early detection and assessment. Analysis of chromosomal aberrations in peripheral blood lymphocytes is the gold standard of biological dosimetry, but it fails after high doses of IR. Therefore, it is important to establish novel biomarkers of exposure that are fast and reliable also in the high dose range. Here, we investigated the applicability of miRNA levels in mouse serum. We found significantly increased levels of miR-375-3p following whole body exposure to 7 Gy of X-rays. In addition, we analyzed their levels in various organs of control mice and found them to be especially abundant in the pancreas and the intestine. Following a dose of 7 Gy, extensive cell death occurred in these tissues and this correlated negatively with the levels of miR-375-3p in the organs. We conclude that high expressing tissues of miR-375-3p may secrete this miRNA in serum following exposure to 7 Gy. Therefore, elevated miR-375-3p in serum may be a predictor of tissue damage induced by exposure to a high radiation dose.
Collapse
Affiliation(s)
- Mitsuru Chiba
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, Hirosaki, Aomori, 036-8564, Japan.
| | - Satoru Monzen
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Chihiro Iwaya
- Department of Medical Technology, Hirosaki University School of Health Sciences, 66-1, Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Yuri Kashiwagi
- Department of Medical Technology, Hirosaki University School of Health Sciences, 66-1, Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Sunao Yamada
- Department of Medical Technology, Hirosaki University School of Health Sciences, 66-1, Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Yoichiro Hosokawa
- Department of Radiation Sciences, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Yasushi Mariya
- Department of Radiology and Radiation Oncology, Mutsu General Hospital, 1-2-8, Kogawa-machi, Mutsu, Aomori, 035-0071, Japan
| | - Toshiya Nakamura
- Department of Bioscience and Laboratory Medicine, Graduate School of Health Sciences, Hirosaki University, 66-1, Hon-cho, Hirosaki, Aomori, 036-8564, Japan
| | - Andrzej Wojcik
- Department of Molecular Biosciences, The Wenner Gren Instititute, Stockholm University, Svante Arrhenius väg 20 C, 10691, Stockholm, Sweden.,Department of Radiobiology and Immunology, Institute of Biology, Jan Kochanowski University, ul. Swietokrzyska 15, 25-406, Kielce, Poland
| |
Collapse
|
18
|
Kiang JG, Zhai M, Bolduc DL, Smith JT, Anderson MN, Ho C, Lin B, Jiang S. Combined Therapy of Pegylated G-CSF and Alxn4100TPO Improves Survival and Mitigates Acute Radiation Syndrome after Whole-Body Ionizing Irradiation Alone and Followed by Wound Trauma. Radiat Res 2017; 188:476-490. [PMID: 28850300 PMCID: PMC5743055 DOI: 10.1667/rr14647.1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Exposure to ionizing radiation alone or combined with traumatic tissue injury is a crucial life-threatening factor in nuclear and radiological incidents. Radiation injuries occur at the molecular, cellular, tissue and systemic levels; their mechanisms, however, remain largely unclear. Exposure to radiation combined with skin wounding, bacterial infection or burns results in greater mortality than radiation exposure alone in dogs, pigs, rats, guinea pigs and mice. In the current study we observed that B6D2F1/J female mice exposed to 60Co gamma-photon radiation followed by 15% total-body-surface-area skin wounds experienced an increment of 25% higher mortality over a 30-day observation period compared to those subjected to radiation alone. Radiation exposure delayed wound healing by approximately 14 days. On day 30 post-injury, bone marrow and ileum in animals from both groups (radiation alone or combined injury) still displayed low cellularity and structural damage. White blood cell counts, e.g., neutrophils, lymphocytes, monocytes, eosinophils, basophils and platelets, still remained very low in surviving irradiated alone animals, whereas only the lymphocyte count was low in surviving combined injury animals. Likewise, in surviving animals from radiation alone and combined injury groups, the RBCs, hemoglobin, hematocrit and platelets remained low. We observed, that animals treated with both pegylated G-CSF (a cytokine for neutrophil maturation and mobilization) and Alxn4100TPO (a thrombopoietin receptor agonist) at 4 h postirradiation, a 95% survival (vehicle: 60%) over the 30-day period, along with mitigated body-weight loss and significantly reduced acute radiation syndrome. In animals that received combined treatment of radiation and injury that received pegylated G-CSF and Alxn4100TPO, survival was increased from 35% to 55%, but did not accelerate wound healing. Hematopoiesis and ileum showed significant improvement in animals from both groups (irradiation alone and combined injury) when treated with pegylated G-CSF and Alxn4100TPO. Treatment with pegylated G-CSF alone increased survival after irradiation alone and combined injury by 33% and 15%, respectively, and further delayed wound healing, but increased WBC, RBC and platelet counts after irradiation alone, and only RBCs and platelets after combined injury. Treatment with Alxn4100TPO alone increased survival after both irradiation alone and combined injury by 4 and 23%, respectively, and delayed wound healing after combined injury, but increased RBCs, hemoglobin concentrations, hematocrit values and platelets after irradiation alone and only platelets after combined injury. Taken together, the results suggest that combined treatment with pegylated G-CSF and Alxn4100TPO is effective for mitigating effects of both radiation alone and in combination with injury.
Collapse
Affiliation(s)
- Juliann G. Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
- Department of Pharmacology and Molecular Pharmacology, Uniformed Services University of the Health Sciences, Bethesda, Maryland
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, Maryland
| | - Min Zhai
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - David L. Bolduc
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Joan T. Smith
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Marsha N. Anderson
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Connie Ho
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
- College of Letters and Science, University of California, Berkeley, Berkeley, California, 94720
| | - Bin Lin
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| | - Suping Jiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, Maryland
| |
Collapse
|
19
|
Salehnia M, Fayazi M, Ehsani S. Leukemia inhibitory factor increases the proliferation of human endometrial stromal cells and expression of genes related to pluripotency. Int J Reprod Biomed 2017. [DOI: 10.29252/ijrm.15.4.209] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
20
|
Singh VK, Olabisi AO. Nonhuman primates as models for the discovery and development of radiation countermeasures. Expert Opin Drug Discov 2017; 12:695-709. [PMID: 28441902 DOI: 10.1080/17460441.2017.1323863] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
INTRODUCTION Despite significant scientific advances over the past six decades toward the development of safe and effective radiation countermeasures for humans using animal models, only two pharmaceutical agents have been approved by United States Food and Drug Administration (US FDA) for hematopoietic acute radiation syndrome (H-ARS). Additional research efforts are needed to further develop large animal models for improving the prediction of clinical safety and effectiveness of radiation countermeasures for ARS and delayed effects of acute radiation exposure (DEARE) in humans. Area covered: The authors review the suitability of animal models for the development of radiation countermeasures for ARS following the FDA Animal Rule with a special focus on nonhuman primate (NHP) models of ARS. There are seven centers in the United States currently conducting studies with irradiated NHPs, with the majority of studies being conducted with rhesus monkeys. Expert opinion: The NHP model is considered the gold standard animal model for drug development and approval by the FDA. The lack of suitable substitutes for NHP models for predicting response in humans serves as a bottleneck for the development of radiation countermeasures. Additional large animal models need to be characterized to support the development and FDA-approval of new radiation countermeasures.
Collapse
Affiliation(s)
- Vijay K Singh
- a Department of Pharmacology and Molecular Therapeutics , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Ayodele O Olabisi
- b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| |
Collapse
|
21
|
Kast RE, Hill QA, Wion D, Mellstedt H, Focosi D, Karpel-Massler G, Heiland T, Halatsch ME. Glioblastoma-synthesized G-CSF and GM-CSF contribute to growth and immunosuppression: Potential therapeutic benefit from dapsone, fenofibrate, and ribavirin. Tumour Biol 2017; 39:1010428317699797. [DOI: 10.1177/1010428317699797] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Increased ratio of circulating neutrophils to lymphocytes is a common finding in glioblastoma and other cancers. Data reviewed establish that any damage to brain tissue tends to cause an increase in G-CSF and/or GM-CSF (G(M)-CSF) synthesized by the brain. Glioblastoma cells themselves also synthesize G(M)-CSF. G(M)-CSF synthesized by brain due to damage by a growing tumor and by the tumor itself stimulates bone marrow to shift hematopoiesis toward granulocytic lineages away from lymphocytic lineages. This shift is immunosuppressive and generates the relative lymphopenia characteristic of glioblastoma. Any trauma to brain—be it blunt, sharp, ischemic, infectious, cytotoxic, tumor encroachment, or radiation—increases brain synthesis of G(M)-CSF. G(M)-CSF are growth and motility enhancing factors for glioblastomas. High levels of G(M)-CSF contribute to the characteristic neutrophilia and lymphopenia of glioblastoma. Hematopoietic bone marrow becomes entrained with, directed by, and contributes to glioblastoma pathology. The antibiotic dapsone, the lipid-lowering agent fenofibrate, and the antiviral drug ribavirin are Food and Drug Administration– and European Medicines Agency–approved medicines that have potential to lower synthesis or effects of G(M)-CSF and thus deprive a glioblastoma of some of the growth promoting contributions of bone marrow and G(M)-CSF.
Collapse
Affiliation(s)
| | - Quentin A Hill
- Department of Haematology, St James’s University Hospital, Leeds Teaching Hospitals, Leeds, UK
| | - Didier Wion
- INSERM U1205, Centre de Recherche Biomédicale Edmond J. Safra, Grenoble, France
| | - Håkan Mellstedt
- Department of Oncology, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Daniele Focosi
- North-Western Tuscany Blood Bank, Pisa University Hospital, Pisa, Italy
| | | | - Tim Heiland
- Department of Neurosurgery, University of Ulm, Ulm, Germany
| | | |
Collapse
|
22
|
Li ZT, Wang LM, Yi LR, Jia C, Bai F, Peng RJ, Yu ZY, Xiong GL, Xing S, Shan YJ, Yang RF, Dong JX, Cong YW. Succinate ester derivative of δ-tocopherol enhances the protective effects against 60Co γ-ray-induced hematopoietic injury through granulocyte colony-stimulating factor induction in mice. Sci Rep 2017; 7:40380. [PMID: 28145432 PMCID: PMC5286428 DOI: 10.1038/srep40380] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 12/06/2016] [Indexed: 12/20/2022] Open
Abstract
α-tocopherol succinate (α-TOS), γ-tocotrienol (GT3) and δ-tocotrienol (DT3) have drawn large attention due to their efficacy as radioprotective agents. α-TOS has been shown to act superior to α-tocopherol (α-TOH) in mice by reducing lethality following total body irradiation (TBI). Because α-TOS has been shown to act superior to α-tocopherol (α-TOH) in mice by reducing lethality following total body irradiation (TBI), we hypothesized succinate may be contribute to the radioprotection of α-TOS. To study the contributions of succinate and to identify stronger radioprotective agents, we synthesized α-, γ- and δ-TOS. Then, we evaluated their radioprotective effects and researched further mechanism of δ-TOS on hematological recovery post-irradiation. Our results demonstrated that the chemical group of succinate enhanced the effects of α-, γ- and δ-TOS upon radioprotection and granulocyte colony-stimulating factor (G-CSF) induction, and found δ-TOS a higher radioprotective efficacy at a lower dosage. We further found that treatment with δ-TOS ameliorated radiation-induced pancytopenia, augmenting cellular recovery in bone marrow and the colony forming ability of bone marrow cells in sublethal irradiated mice, thus promoting hematopoietic stem and progenitor cell recovery following irradiation exposure. δ-TOS appears to be an attractive radiation countermeasure without known toxicity, but further exploratory efficacy studies are still required.
Collapse
Affiliation(s)
- Zhong-Tang Li
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Li-Mei Wang
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Li-Rong Yi
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Chao Jia
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Fan Bai
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ren-Jun Peng
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Zu-Yin Yu
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Guo-Lin Xiong
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Shuang Xing
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ya-Jun Shan
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| | - Ri-Fang Yang
- Department of Medicinal Chemistry, Beijing Institute of Pharmacology and Toxicology, Beijing, China
| | - Jun-Xing Dong
- Department of Pharmaceutical Sciences, Beijing Key Laboratory for Radiobiology (BKLRB), Beijing Institute of Radiation Medicine, Beijing, China
| | - Yu-Wen Cong
- Department of Pathophysiology, Beijing Institute of Radiation Medicine, Beijing, China
| |
Collapse
|
23
|
Singh VK, Fatanmi OO, Wise SY, Newman VL, Romaine PLP, Seed TM. THE POTENTIATION OF THE RADIOPROTECTIVE EFFICACY OF TWO MEDICAL COUNTERMEASURES, GAMMA-TOCOTRIENOL AND AMIFOSTINE, BY A COMBINATION PROPHYLACTIC MODALITY. RADIATION PROTECTION DOSIMETRY 2016; 172:302-310. [PMID: 27542813 PMCID: PMC5444681 DOI: 10.1093/rpd/ncw223] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
This study was designed to evaluate the possible potentiation of survival protection afforded by relatively low-dose amifostine prophylaxis against total body irradiation in combination with a protective, less toxic agent, gamma-tocotrienol (GT3). Mice were administered amifostine and/or GT3, then exposed to 9.2 Gy 60Co γ-irradiation and monitored for survival for 30 days. To investigate cytokine stimulation, mice were administered amifostine or GT3; serum samples were collected and analyzed for cytokines. Survival studies show single treatments of GT3 or amifostine significantly improved survival, compared to the vehicle, and combination treatments resulted in significantly higher survival compared to single treatments. In vivo studies with GT3 confirmed prior work indicating GT3 induces granulocyte colony-stimulating factor (G-CSF). This approach, the prophylactic combination of amifostine and GT3, which act through different mechanisms, shows promise and should be investigated further as a potential countermeasure for acute radiation syndrome.
Collapse
Affiliation(s)
- Vijay K Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine 'America's Medical School', Services University of the Health Sciences , Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences , Bethesda, MD, USA
| | - Oluseyi O Fatanmi
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine 'America's Medical School', Services University of the Health Sciences , Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences , Bethesda, MD, USA
| | - Stephen Y Wise
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine 'America's Medical School', Services University of the Health Sciences , Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences , Bethesda, MD, USA
| | - Victoria L Newman
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine 'America's Medical School', Services University of the Health Sciences , Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences , Bethesda, MD, USA
| | - Patricia L P Romaine
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine 'America's Medical School', Services University of the Health Sciences , Bethesda, MD, USA
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences , Bethesda, MD, USA
| | | |
Collapse
|
24
|
Port M, Herodin F, Valente M, Drouet M, Ullmann R, Doucha-Senf S, Lamkowski A, Majewski M, Abend M. MicroRNA Expression for Early Prediction of Late Occurring Hematologic Acute Radiation Syndrome in Baboons. PLoS One 2016; 11:e0165307. [PMID: 27846229 PMCID: PMC5113049 DOI: 10.1371/journal.pone.0165307] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2016] [Accepted: 10/03/2016] [Indexed: 12/03/2022] Open
Abstract
For effective medical management of radiation-exposed persons after a radiological/nuclear event, blood-based screening measures in the first few days that could predict hematologic acute radiation syndrome (HARS) are needed. For HARS severity prediction, we used microRNA (miRNA) expression changes measured on days one and two after irradiation in a baboon model. Eighteen baboons underwent different patterns of partial or total body irradiation, corresponding to an equivalent dose of 2.5 or 5 Gy. According to changes in blood cell counts (BCC) the surviving baboons (n = 17) exhibited mild (H1-2, n = 4) or more severe (H2-3, n = 13) HARS. In a two Stage study design we screened 667 miRNAs using a quantitative real-time polymerase chain reaction (qRT-PCR) platform. In Stage II we validated candidates where miRNAs had to show a similar regulation (up- or down-regulated) and a significant 2-fold miRNA expression difference over H0. Seventy-two candidate miRNAs (42 for H1-2 and 30 for H2-3) were forwarded for validation. Forty-two of the H1-2 miRNA candidates from the screening phase entered the validation step and 20 of them showed a statistically significant 2–4 fold up-regulation relative to the unexposed reference (H0). Fifteen of the 30 H2-3 miRNAs were validated in Stage II. All miRNAs appeared 2–3 fold down-regulated over H0 and allowed an almost complete separation of HARS categories; the strongest candidate, miR-342-3p, showed a sustained and 10-fold down-regulation on both days 1 and 2. In summary, our data support the medical decision making of the HARS even within the first two days after exposure where diagnostic tools for early medical decision are required but so far missing. The miRNA species identified and in particular miR-342-3p add to the previously identified mRNAs and complete the portfolio of identified mRNA and miRNA transcripts for HARS prediction and medical management.
Collapse
Affiliation(s)
- Matthias Port
- Bundeswehr Institute of Radiobiology, Munich, Germany
| | - Francis Herodin
- Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, France
| | - Marco Valente
- Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, France
| | - Michel Drouet
- Institut de Recherche Biomedicale des Armees, Bretigny-sur-Orge, France
| | | | | | | | | | - Michael Abend
- Bundeswehr Institute of Radiobiology, Munich, Germany
- * E-mail:
| |
Collapse
|
25
|
Fayazi M, Salehnia M, Ziaei S. The effect of stem cell factor on proliferation of human endometrial CD146+ cells. Int J Reprod Biomed 2016. [DOI: 10.29252/ijrm.14.7.1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
|
26
|
Singh VK, Hauer-Jensen M. γ-Tocotrienol as a Promising Countermeasure for Acute Radiation Syndrome: Current Status. Int J Mol Sci 2016; 17:E663. [PMID: 27153057 PMCID: PMC4881489 DOI: 10.3390/ijms17050663] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 04/03/2016] [Accepted: 04/25/2016] [Indexed: 01/13/2023] Open
Abstract
The hazard of ionizing radiation exposure due to nuclear accidents or terrorist attacks is ever increasing. Despite decades of research, still, there is a shortage of non-toxic, safe and effective medical countermeasures for radiological and nuclear emergency. To date, the U.S. Food and Drug Administration (U.S. FDA) has approved only two growth factors, Neupogen (granulocyte colony-stimulating factor (G-CSF), filgrastim) and Neulasta (PEGylated G-CSF, pegfilgrastim) for the treatment of hematopoietic acute radiation syndrome (H-ARS) following the Animal Efficacy Rule. Promising radioprotective efficacy results of γ-tocotrienol (GT3; a member of the vitamin E family) in the mouse model encouraged its further evaluation in the nonhuman primate (NHP) model. These studies demonstrated that GT3 significantly aided the recovery of radiation-induced neutropenia and thrombocytopenia compared to the vehicle controls; these results particularly significant after exposure to 5.8 or 6.5 Gray (Gy) whole body γ-irradiation. The stimulatory effect of GT3 on neutrophils and thrombocytes (platelets) was directly and positively correlated with dose; a 75 mg/kg dose was more effective compared to 37.5 mg/kg. GT3 was also effective against 6.5 Gy whole body γ-irradiation for improving neutrophils and thrombocytes. Moreover, a single administration of GT3 without any supportive care was equivalent, in terms of improving hematopoietic recovery, to multiple doses of Neupogen and two doses of Neulasta with full supportive care (including blood products) in the NHP model. GT3 may serve as an ultimate radioprotector for use in humans, particularly for military personnel and first responders. In brief, GT3 is a promising radiation countermeasure that ought to be further developed for U.S. FDA approval for the ARS indication.
Collapse
Affiliation(s)
- Vijay K Singh
- Department of Pharmacology and Molecular Therapeutics, F. Edward Hébert School of Medicine, Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, Bethesda, MD 20889, USA.
| | - Martin Hauer-Jensen
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare Systems, Little Rock, AR 72205, USA.
| |
Collapse
|
27
|
Mishra S, Patel DD, Bansal DD, Kumar R. Semiquinone glucoside derivative provides protection against γ-radiation by modulation of immune response in murine model. ENVIRONMENTAL TOXICOLOGY 2016; 31:478-488. [PMID: 25361477 DOI: 10.1002/tox.22061] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 09/23/2014] [Accepted: 10/01/2014] [Indexed: 06/04/2023]
Abstract
Present study was undertaken to evaluate radioprotective and immunomodulatory activities of a novel semiquinone glucoside derivative (SQGD) isolated from Bacillus sp. INM-1 in C57 BL/6 mice. Whole body survival study was performed to evaluate in vivo radioprotective efficacy of SQGD. To observe effect of SQGD on immunostimulation, Circulatory cytokine (i.e., interleukin-2 (IL-2), IFN-γ, IL-10, granulocyte colony stimulating factor (G-CSF), granulocyte macrophage colony stimulating factor (GM-CSF), and macrophage colony stimulating factor (M-CSF) expression was analyzed in serum of irradiated and SQGD treated mice at different time intervals using ELISA assay. Results of the present investigation indicated that SQGD pre-treatment (-2 h) to lethally irradiated mice provide ∼ 83% whole body survival compared with irradiated mice where no survival was observed at 30(th) post irradiation day. Significant (p < 0.05) induction in IL-2 and IFN-γ expression was observed at all tested time intervals with SQGD pre-treated irradiated mice as compared with irradiated mice alone. However, sharp increase in IL-10 expression was observed in irradiated mice which were found to be subsidized in irradiated mice pre-treated with SQGD. Similarly, significant (p < 0.05%) induction in G-CSF, M-CSF and GM-CSF expression was observed in irradiated mice treated with SQGD as compared with irradiated control mice at tested time intervals. In conclusion, SQGD pre-treatment to irradiated mice enhanced expression of IL-12 and IFN-γ while down-regulated IL-10 expression and thus modulates cytoprotective pro-inflammatory TH1 type immune response in irradiated mice. Further, SQGD pre-treatment to irradiated mice accelerate G-CSF, GM-CSF and M-CSF expression suggesting improved haematopoiesis and enhanced cellular immune response in immuno-compromised irradiated mice that may contribute to in vivo radiation protection.
Collapse
Affiliation(s)
- S Mishra
- Department of Radiation Biosciences, Radiation Biotechnology laboratory, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - D D Patel
- Department of Radiation Biosciences, Radiation Biotechnology laboratory, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - D D Bansal
- Department of Radiation Biosciences, Radiation Biotechnology laboratory, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| | - R Kumar
- Department of Radiation Biosciences, Radiation Biotechnology laboratory, Institute of Nuclear Medicine and Allied Sciences, Delhi, 110054, India
| |
Collapse
|
28
|
Colony-stimulating factors for the treatment of the hematopoietic component of the acute radiation syndrome (H-ARS): a review. Cytokine 2016; 71:22-37. [PMID: 25215458 DOI: 10.1016/j.cyto.2014.08.003] [Citation(s) in RCA: 93] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Revised: 08/15/2014] [Accepted: 08/19/2014] [Indexed: 01/03/2023]
Abstract
One of the greatest national security threats to the United States is the detonation of an improvised nuclear device or a radiological dispersal device in a heavily populated area. As such, this type of security threat is considered to be of relatively low risk, but one that would have an extraordinary high impact on health and well-being of the US citizenry. Psychological counseling and medical assessments would be necessary for all those significantly impacted by the nuclear/radiological event. Direct medical interventions would be necessary for all those individuals who had received substantial radiation exposures (e.g., >1 Gy). Although no drugs or products have yet been specifically approved by the United States Food and Drug Administration (US FDA) to treat the effects of acute radiation syndrome (ARS), granulocyte colony-stimulating factor (G-CSF), granulocyte macrophage colony-stimulating factor (GM-CSF), and pegylated G-CSF have been used off label for treating radiation accident victims. Recent threats of terrorist attacks using nuclear or radiologic devices makes it imperative that the medical community have up-to-date information and a clear understanding of treatment protocols using therapeutically effective recombinant growth factors and cytokines such as G-CSF and GM-CSF for patients exposed to injurious doses of ionizing radiation. Based on limited human studies with underlying biology, we see that the recombinants, G-CSF and GM-CSF appear to have modest, but significant medicinal value in treating radiation accident victims. In the near future, the US FDA may approve G-CSF and GM-CSF as ‘Emergency Use Authorization’ (EUA) for managing radiation-induced aplasia, an ARS-related pathology. In this article, we review the status of growth factors for the treatment of radiological/nuclear accident victims.
Collapse
|
29
|
Singh VK, Newman VL, Romaine PL, Hauer-Jensen M, Pollard HB. Use of biomarkers for assessing radiation injury and efficacy of countermeasures. Expert Rev Mol Diagn 2015; 16:65-81. [PMID: 26568096 PMCID: PMC4732464 DOI: 10.1586/14737159.2016.1121102] [Citation(s) in RCA: 73] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Several candidate drugs for acute radiation syndrome (ARS) have been identified that have low toxicity and significant radioprotective and radiomitigative efficacy. Inasmuch as exposing healthy human volunteers to injurious levels of radiation is unethical, development and approval of new radiation countermeasures for ARS are therefore presently based on animal studies and Phase I safety study in healthy volunteers. The Animal Efficacy Rule, which underlies the Food and Drug Administration approval pathway, requires a sound understanding of the mechanisms of injury, drug efficacy, and efficacy biomarkers. In this context, it is important to identify biomarkers for radiation injury and drug efficacy that can extrapolate animal efficacy results, and can be used to convert drug doses deduced from animal studies to those that can be efficacious when used in humans. Here, we summarize the progress of studies to identify candidate biomarkers for the extent of radiation injury and for evaluation of countermeasure efficacy.
Collapse
Affiliation(s)
- Vijay K Singh
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Victoria L Newman
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Patricia Lp Romaine
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,b Armed Forces Radiobiology Research Institute , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Martin Hauer-Jensen
- c Departments of Pharmaceutical Sciences, Surgery, and Pathology , University of Arkansas for Medical Sciences and Central Arkansas Veterans Healthcare Systems , Little Rock , AR , USA
| | - Harvey B Pollard
- a F. Edward Hébert School of Medicine 'America's Medical School' , Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| |
Collapse
|
30
|
Vitamin E Analogs as Radiation Response Modifiers. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2015; 2015:741301. [PMID: 26366184 PMCID: PMC4558447 DOI: 10.1155/2015/741301] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2015] [Revised: 05/06/2015] [Accepted: 07/22/2015] [Indexed: 02/07/2023]
Abstract
The potentially life-threatening effects of total body ionizing radiation exposure have been known for more than a century. Despite considerable advances in our understanding of the effects of radiation over the past six decades, efforts to identify effective radiation countermeasures for use in case of a radiological/nuclear emergency have been largely unsuccessful. Vitamin E is known to have antioxidant properties capable of scavenging free radicals, which have critical roles in radiation injuries. Tocopherols and tocotrienols, vitamin E analogs together known as tocols, have shown promise as radioprotectors. Although the pivotal mechanisms of action of tocols have long been thought to be their antioxidant properties and free radical scavenging activities, other alternative mechanisms have been proposed to drive their activity as radioprotectors. Here we provide a brief overview of the effects of ionizing radiation, the mechanistic mediators of radiation-induced damage, and the need for radiation countermeasures. We further outline the role for, efficacy of, and mechanisms of action of tocols as radioprotectors, and we compare and contrast their efficacy and mode of action with that of another well-studied chemical radioprotector, amifostine.
Collapse
|
31
|
Elliott TB, Bolduc DL, Ledney GD, Kiang JG, Fatanmi OO, Wise SY, Romaine PLP, Newman VL, Singh VK. Combined immunomodulator and antimicrobial therapy eliminates polymicrobial sepsis and modulates cytokine production in combined injured mice. Int J Radiat Biol 2015; 91:690-702. [PMID: 25994812 PMCID: PMC4673550 DOI: 10.3109/09553002.2015.1054526] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Purpose: A combination therapy for combined injury (CI) using a non-specific immunomodulator, synthetic trehalose dicorynomycolate and monophosphoryl lipid A (STDCM-MPL), was evaluated to augment oral antimicrobial agents, levofloxacin (LVX) and amoxicillin (AMX), to eliminate endogenous sepsis and modulate cytokine production. Materials and methods: Female B6D2F1/J mice received 9.75 Gy cobalt-60 gamma-radiation and wound. Bacteria were isolated and identified in three tissues. Incidence of bacteria and cytokines were compared between treatment groups. Results: Results demonstrated that the lethal dose for 50% at 30 days (LD50/30) of B6D2F1/J mice was 9.42 Gy. Antimicrobial therapy increased survival in radiation-injured (RI) mice. Combination therapy increased survival after RI and extended survival time but did not increase survival after CI. Sepsis began five days earlier in CI mice than RI mice with Gram-negative species predominating early and Gram-positive species increasing later. LVX plus AMX eliminated sepsis in CI and RI mice. STDCM-MPL eliminated Gram-positive bacteria in CI and most RI mice but not Gram-negative. Treatments significantly modulated 12 cytokines tested, which pertain to wound healing or elimination of infection. Conclusions: Combination therapy eliminates infection and prolongs survival time but does not assure CI mouse survival, suggesting that additional treatment for proliferative-cell recovery is required.
Collapse
Affiliation(s)
- Thomas B Elliott
- a Armed Forces Radiobiology Research Institute , Bethesda , MD , USA
| | - David L Bolduc
- a Armed Forces Radiobiology Research Institute , Bethesda , MD , USA
| | - G David Ledney
- a Armed Forces Radiobiology Research Institute , Bethesda , MD , USA
| | - Juliann G Kiang
- a Armed Forces Radiobiology Research Institute , Bethesda , MD , USA.,b Department of Radiation Biology , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA.,c Department of Medicine , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| | - Oluseyi O Fatanmi
- a Armed Forces Radiobiology Research Institute , Bethesda , MD , USA
| | - Stephen Y Wise
- a Armed Forces Radiobiology Research Institute , Bethesda , MD , USA
| | | | - Victoria L Newman
- a Armed Forces Radiobiology Research Institute , Bethesda , MD , USA
| | - Vijay K Singh
- a Armed Forces Radiobiology Research Institute , Bethesda , MD , USA.,b Department of Radiation Biology , F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences , Bethesda , MD , USA
| |
Collapse
|
32
|
Singh VK, Romaine PL, Seed TM. Medical Countermeasures for Radiation Exposure and Related Injuries: Characterization of Medicines, FDA-Approval Status and Inclusion into the Strategic National Stockpile. HEALTH PHYSICS 2015; 108:607-630. [PMID: 25905522 PMCID: PMC4418776 DOI: 10.1097/hp.0000000000000279] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 01/05/2015] [Indexed: 05/28/2023]
Abstract
World events over the past decade have highlighted the threat of nuclear terrorism as well as an urgent need to develop radiation countermeasures for acute radiation exposures and subsequent bodily injuries. An increased probability of radiological or nuclear incidents due to detonation of nuclear weapons by terrorists, sabotage of nuclear facilities, dispersal and exposure to radioactive materials, and accidents provides the basis for such enhanced radiation exposure risks for civilian populations. Although the search for suitable radiation countermeasures for radiation-associated injuries was initiated more than half a century ago, no safe and effective radiation countermeasure for the most severe of these injuries, namely acute radiation syndrome (ARS), has been approved by the United States Food and Drug Administration (FDA). The dearth of FDA-approved radiation countermeasures has prompted intensified research for a new generation of radiation countermeasures. In this communication, the authors have listed and reviewed the status of radiation countermeasures that are currently available for use, or those that might be used for exceptional nuclear/radiological contingencies, plus a limited few medicines that show early promise but still remain experimental in nature and unauthorized for human use by the FDA.
Collapse
Affiliation(s)
- Vijay K. Singh
- *Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Bethesda, MD; †Department of Radiation Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; ‡Tech Micro Services, Bethesda, MD
| | - Patricia L.P. Romaine
- *Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Bethesda, MD; †Department of Radiation Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; ‡Tech Micro Services, Bethesda, MD
| | - Thomas M. Seed
- *Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, Bethesda, MD; †Department of Radiation Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD; ‡Tech Micro Services, Bethesda, MD
| |
Collapse
|
33
|
Mager LF, Riether C, Schürch CM, Banz Y, Wasmer MH, Stuber R, Theocharides AP, Li X, Xia Y, Saito H, Nakae S, Baerlocher GM, Manz MG, McCoy KD, Macpherson AJ, Ochsenbein AF, Beutler B, Krebs P. IL-33 signaling contributes to the pathogenesis of myeloproliferative neoplasms. J Clin Invest 2015; 125:2579-91. [PMID: 26011644 DOI: 10.1172/jci77347] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2015] [Accepted: 04/23/2015] [Indexed: 12/16/2022] Open
Abstract
Myeloproliferative neoplasms (MPNs) are characterized by the clonal expansion of one or more myeloid cell lineage. In most cases, proliferation of the malignant clone is ascribed to defined genetic alterations. MPNs are also associated with aberrant expression and activity of multiple cytokines; however, the mechanisms by which these cytokines contribute to disease pathogenesis are poorly understood. Here, we reveal a non-redundant role for steady-state IL-33 in supporting dysregulated myelopoiesis in a murine model of MPN. Genetic ablation of the IL-33 signaling pathway was sufficient and necessary to restore normal hematopoiesis and abrogate MPN-like disease in animals lacking the inositol phosphatase SHIP. Stromal cell-derived IL-33 stimulated the secretion of cytokines and growth factors by myeloid and non-hematopoietic cells of the BM, resulting in myeloproliferation in SHIP-deficient animals. Additionally, in the transgenic JAK2V617F model, the onset of MPN was delayed in animals lacking IL-33 in radio-resistant cells. In human BM, we detected increased numbers of IL-33-expressing cells, specifically in biopsies from MPN patients. Exogenous IL-33 promoted cytokine production and colony formation by primary CD34+ MPN stem/progenitor cells from patients. Moreover, IL-33 improved the survival of JAK2V617F-positive cell lines. Together, these data indicate a central role for IL-33 signaling in the pathogenesis of MPNs.
Collapse
|
34
|
Kim JS, Son Y, Bae MJ, Lee M, Lee CG, Jo WS, Kim SD, Yang K. Administration of granulocyte colony-stimulating factor with radiotherapy promotes tumor growth by stimulating vascularization in tumor-bearing mice. Oncol Rep 2015; 34:147-54. [PMID: 25976379 DOI: 10.3892/or.2015.3977] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Accepted: 04/14/2015] [Indexed: 11/06/2022] Open
Abstract
Although granulocyte-colony stimulating factor (G-CSF) is commonly used to support recovery from radiation-induced side-effects, the precise effects of G-CSF on colon cancer under radiotherapy remain poorly understood. In the present study, to investigate the effects of tumor growth following radiotherapy and G-CSF administration in a murine xenograft model of colon cancer, female BALB/c mice were injected with cells of a colon carcinoma cell line (CT26) with irradiation and G-CSF, alone or in combination. Mice received 2 Gy of focal radiation daily for 5 days and intraperitoneal injection of G-CSF (100 µg/kg/day) after irradiation for 7 days. Changes in the levels of myeloperoxidase (MPO), vascular endothelial growth factor (VEGF), matrix metalloproteinase type 9 (MMP-9) and CD31 were assessed in the mouse cancer induced by injection of colon cancer cells. We observed that G-CSF increased the number of circulating neutrophils, but facilitated tumor growth. However, G-CSF treatment did not affect radiation-induced cytotoxicity and cell viability in CT26 cells in vitro. Increased levels of myeloperoxidase, a neutrophil marker and those of vascular endothelial growth factor were observed in tumors with G-CSF supplementation. In addition, we found that increased levels of CD31 and matrix metalloproteinase-9 were correlated with the enhanced tumor growth after G-CSF treatment. Therefore, these data suggest that G-CSF may contribute to tumor growth and decrease the antitumor effect of radiotherapy, possibly by promoting vascularization in cancer lesions.
Collapse
Affiliation(s)
- Joong Sun Kim
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan 619-953, Republic of Korea
| | - Yeonghoon Son
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan 619-953, Republic of Korea
| | - Min Ji Bae
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan 619-953, Republic of Korea
| | - Minyoung Lee
- College of Pharmacy, Kyungpook National University, Daegu 702-701, Republic of Korea
| | - Chang Geun Lee
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan 619-953, Republic of Korea
| | - Wol Soon Jo
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan 619-953, Republic of Korea
| | - Sung Dae Kim
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan 619-953, Republic of Korea
| | - Kwangmo Yang
- Research Center, Dongnam Institute of Radiological and Medical Sciences (DIRAMS), Busan 619-953, Republic of Korea
| |
Collapse
|
35
|
Ghazy AA, Abu El-Nazar SY, Ghoneim HE, Taha ARM, Abouelella AM. Effect of murine exposure to gamma rays on the interplay between Th1 and Th2 lymphocytes. Front Pharmacol 2015; 6:74. [PMID: 25914644 PMCID: PMC4391034 DOI: 10.3389/fphar.2015.00074] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/18/2015] [Indexed: 11/13/2022] Open
Abstract
Gamma radiation radiotherapy is one of the widely used treatments for cancer. There is an accumulating evidence that adaptive immunity is significantly contributes to the efficacy of radiotherapy. This study is carried out to investigate the effect of gamma rays on the interplay between Th1/Th2 response, splenocyte lymphoproliferative response to polyclonal mitogenic activators and lymphocytic capacity to produce IL-12 and IL-10 in mice. Results showed that exposure of intact spleens to different doses of γ-rays (5, 10, 20 Gy) caused spontaneous and dose-dependent immune stimulation manifested by enhanced cell proliferation and elevated IL-12 production with decreased IL-10 release (i.e., Th1 bias). While exposure of splenocytes suspension to different doses of γ-rays (5, 10, 20 Gy) showed activation in splenocytes stimulated by PWM at 5 Gy then a state of conventional immune suppression that is characterized by being dose-dependent and is manifested by decreased cell proliferation and IL-12 release accompanied by increase in IL-10 production (i.e., Th2 bias). In addition, we investigated the exposure of whole murine bodies to different doses of γ-rays and found that the exposure to low dose γ-rays (0.2 Gy) caused a state of immune stimulation terminated by a remarkable tendency for immune suppression. Exposure to 5 or 10 Gy of γ-rays resulted in a state of immune stimulation (Th1 bias), but exposure to 20 Gy showed a standard state of immune suppression (Th2 bias). The results indicated that apparently we can control the immune response by controlling the dose of γ-rays.
Collapse
Affiliation(s)
- Amany A Ghazy
- Department of Immunology, Medical Research Institute, Alexandria University Alexandria, Egypt
| | - Salma Y Abu El-Nazar
- Department of Immunology, Medical Research Institute, Alexandria University Alexandria, Egypt
| | - Hossam E Ghoneim
- Department of Immunology, Medical Research Institute, Alexandria University Alexandria, Egypt
| | - Abdul-Rahman M Taha
- Department of Medical Biophysics, Medical Research Institute, Alexandria University Alexandria, Egypt
| | - Amira M Abouelella
- Department of Radiation Biology, National Centre for Radiation Research and Technology, Atomic Energy Authority Cairo, Egypt
| |
Collapse
|
36
|
Abo Elnazar SY, Ghazy AA, Ghoneim HE, Taha ARM, Abouelella AM. Effect of ultra violet irradiation on the interplay between Th1 and Th2 lymphocytes. Front Pharmacol 2015; 6:56. [PMID: 25852558 PMCID: PMC4371662 DOI: 10.3389/fphar.2015.00056] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2015] [Accepted: 03/05/2015] [Indexed: 01/25/2023] Open
Abstract
UNLABELLED Although ultraviolet (UV) radiation is used to treat several types of diseases, including rickets, psoriasis, eczema, and jaundice, the prolonged exposure to its radiation may result in acute and chronic health effects particularly on the skin, eyes, and the immune system. AIM This study was carried out to show the effect of UV on both of the lymphoproliferative response and their capacity to produce IL-12 and IL-10 in mice. METHODS Mice were exposed to whole body UVB and tested for the effect of recovery times on lymphocyte proliferation and cytokine production. In addition, direct irradiation of spleens and lymphocyte suspension was carried out. Basal and mitogens-stimulated lymphocyte proliferation was assessed by MTT assay while IL-10 and IL-12 were measured using ELISA. RESULTS There was a significant suppression in lymphocyte proliferation in comparison with control. IL-12 level was significantly reduced while the level of IL-10 was increased. Con A and PWM mitogens had no significant changes in IL-10 while Con A caused a highly significant increase in IL-12 at day 6 of recovery in UVB body irradiation. CONCLUSION Exposure to UVB radiation could cause a state of immune suppression and shifts Th1/Th2 cell response. This effect is closely associated with the reduction of Th1 cytokines' expression and increase in Th2 cytokines' levels.
Collapse
Affiliation(s)
- Salma Y. Abo Elnazar
- Department of Immunology, Medical Research Institute, Alexandria UniversityAlexandria, Egypt
| | - Amany A. Ghazy
- Department of Immunology, Medical Research Institute, Alexandria UniversityAlexandria, Egypt
| | - Hossam E. Ghoneim
- Department of Immunology, Medical Research Institute, Alexandria UniversityAlexandria, Egypt
| | - Abdul-Rahman M. Taha
- Department of Medical Biophysics, Medical Research Institute, Alexandria UniversityAlexandria, Egypt
| | - Amira M. Abouelella
- Radiation Biology Department, National Centre for Radiation Research and Technology, Atomic Energy AuthorityCairo, Egypt
| |
Collapse
|
37
|
Singh VK, Romaine PLP, Newman VL, Seed TM. Tocols induce G-CSF and mobilise progenitors that mitigate radiation injury. RADIATION PROTECTION DOSIMETRY 2014; 162:83-87. [PMID: 24993008 PMCID: PMC4434803 DOI: 10.1093/rpd/ncu223] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Tocols induce high levels of granulocyte-colony-stimulating factor (G-CSF). G-CSF mobilises progenitors that allow mice that have been severely immunocompromised by exposure to acute, high-dose ionising irradiation to recover and to survive. The neutralisation of G-CSF abrogates the radioprotective efficacy of tocols. This article reviews studies in which CD2F1 mice were irradiated with sufficiently high doses to cause acute radiation syndrome symptoms and then administered (iv) progenitor-enriched whole blood or peripheral blood mononuclear cells from tocol- and AMD3100-injected donor mice (AMD3100 is a chemokine receptor antagonist used to improve the yield of mobilised progenitors). In some experiments, G-CSF was neutralised completely. Irradiated recipient mice were observed for 30 d post-irradiation for survival, a primary endpoint used for determining therapeutic effectiveness. Additionally, potential tocol-induced biomarkers (cytokines, chemokines and growth factors) were quantified. The authors suggest that tocols are highly effective agents for mobilising progenitors with significant therapeutic potential.
Collapse
Affiliation(s)
- Vijay K Singh
- Armed Forces Radiobiology Research Institute, Bethesda, MD, USA
| | | | | | | |
Collapse
|
38
|
Wu T, Zhao Y, Zhao Y. The roles of myeloid-derived suppressor cells in transplantation. Expert Rev Clin Immunol 2014; 10:1385-94. [DOI: 10.1586/1744666x.2014.948424] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
39
|
Ossetrova NI, Condliffe DP, Ney PH, Krasnopolsky K, Hieber KP, Rahman A, Sandgren DJ. Early-response biomarkers for assessment of radiation exposure in a mouse total-body irradiation model. HEALTH PHYSICS 2014; 106:772-786. [PMID: 24776912 DOI: 10.1097/hp.0000000000000094] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Nuclear accidents or terrorist attacks could expose large numbers of people to ionizing radiation. Early biomarkers of radiation injury will be critical for triage, treatment, and follow-up of such individuals. The authors evaluated the utility of multiple blood biomarkers for early-response assessment of radiation exposure using a murine (CD2F1, males) total-body irradiation (TBI) model exposed to ⁶⁰Co γ rays (0.6 Gy min⁻¹) over a broad dose range (0-14 Gy) and timepoints (4 h-5 d). Results demonstrate: 1) dose-dependent changes in hematopoietic cytokines: Flt-3 ligand (Flt3L), interleukin 6 (IL-6), granulocyte colony stimulating factor (G-CSF), thrombopoietin (TPO), erythropoietin (EPO), and acute phase protein serum amyloid A (SAA); 2) dose-dependent changes in blood cell counts: lymphocytes, neutrophils, platelets, and ratio of neutrophils to lymphocytes; 3) protein results coupled with peripheral blood cell counts established very successful separation of groups irradiated to different doses; and 4) enhanced separation of dose was observed as the number of biomarkers increased. Results show that the dynamic changes in the levels of SAA, IL-6, G-CSF, and Flt3L reflect the time course and severity of acute radiation syndrome (ARS) and may function as prognostic indicators of ARS outcome. These results also demonstrate proof-in-concept that plasma proteins show promise as a complimentary approach to conventional biodosimetry for early assessment of radiation exposures and, coupled with peripheral blood cell counts, provide early diagnostic information to manage radiation casualty incidents effectively, closing a gap in capabilities to rapidly and effectively assess radiation exposure early, especially needed in case of a mass-casualty radiological incident.
Collapse
Affiliation(s)
- Natalia I Ossetrova
- *Armed Forces Radiobiology Research Institute (AFRRI), Uniformed Services University of the Health Sciences (USUHS), 8901 Wisconsin Avenue, Bethesda, MD 20889-5603
| | | | | | | | | | | | | |
Collapse
|
40
|
Kiang JG, Zhai M, Liao PJ, Bolduc DL, Elliott TB, Gorbunov NV. Pegylated G-CSF inhibits blood cell depletion, increases platelets, blocks splenomegaly, and improves survival after whole-body ionizing irradiation but not after irradiation combined with burn. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2014; 2014:481392. [PMID: 24738019 PMCID: PMC3964894 DOI: 10.1155/2014/481392] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 01/22/2014] [Indexed: 01/12/2023]
Abstract
Exposure to ionizing radiation alone (radiation injury, RI) or combined with traumatic tissue injury (radiation combined injury, CI) is a crucial life-threatening factor in nuclear and radiological accidents. As demonstrated in animal models, CI results in greater mortality than RI. In our laboratory, we found that B6D2F1/J female mice exposed to (60)Co-γ-photon radiation followed by 15% total-body-surface-area skin burns experienced an increment of 18% higher mortality over a 30-day observation period compared to irradiation alone; that was accompanied by severe cytopenia, thrombopenia, erythropenia, and anemia. At the 30th day after injury, neutrophils, lymphocytes, and platelets still remained very low in surviving RI and CI mice. In contrast, their RBC, hemoglobin, and hematocrit were similar to basal levels. Comparing CI and RI mice, only RI induced splenomegaly. Both RI and CI resulted in bone marrow cell depletion. It was observed that only the RI mice treated with pegylated G-CSF after RI resulted in 100% survival over the 30-day period, and pegylated G-CSF mitigated RI-induced body-weight loss and depletion of WBC and platelets. Peg-G-CSF treatment sustained RBC balance, hemoglobin levels, and hematocrits and inhibited splenomegaly after RI. The results suggest that pegylated G-CSF effectively sustained animal survival by mitigating radiation-induced cytopenia, thrombopenia, erythropenia, and anemia.
Collapse
Affiliation(s)
- Juliann G. Kiang
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889, USA
- Department of Radiation Biology, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
- Department of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD 20814, USA
| | - Min Zhai
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889, USA
| | - Pei-Jyun Liao
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889, USA
| | - David L. Bolduc
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889, USA
| | - Thomas B. Elliott
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889, USA
| | - Nikolai V. Gorbunov
- Radiation Combined Injury Program, Armed Forces Radiobiology Research Institute, Bethesda, MD 20889, USA
| |
Collapse
|
41
|
Singh VK, Wise SY, Scott JR, Romaine PL, Newman VL, Fatanmi OO. Radioprotective efficacy of delta-tocotrienol, a vitamin E isoform, is mediated through granulocyte colony-stimulating factor. Life Sci 2014; 98:113-22. [DOI: 10.1016/j.lfs.2014.01.065] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2013] [Revised: 11/29/2013] [Accepted: 01/16/2014] [Indexed: 12/31/2022]
|
42
|
Mishra S, Malhotra P, Gupta AK, Singh PK, Javed S, Kumar R. A semiquinone glucoside derivative isolated from Bacillus sp. INM-1 provides protection against 5-fluorouracil-induced immunotoxicity. J Immunotoxicol 2014; 12:56-63. [PMID: 24512327 DOI: 10.3109/1547691x.2014.882448] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
5-Fluorouracil (5-FU) is a widely used anti-cancer agent; however, it induces immunosuppression in patients undergoing a chemotherapy regime. The mode of action by which 5-FU induces immunosuppression is primarily via inhibition of hematopoietic growth factors. In the present study, immunoprotective effects of a semiquinone glucoside derivative (SQGD), a bacterial metabolite isolated from Bacillus sp. INM-1, were evaluated in a model of 5-FU-induced immunotoxicity in C57Bl/6 male mice. The evaluation was done by analyzing G-CSF, GM-CSF, and M-CSF expression in the serum, spleen, and bone marrow cells of the mice at different timepoints after 5-FU treatment. Mice received a single intraperitoneal injection of either 5-FU (75 mg/kg) alone, SQGD (50 mg/kg) alone, or SQGD 2 h prior to the 5-FU treatment. Control mice received saline vehicle only. The results demonstrated that 5-FU treatment significantly inhibited G-CSF, GM-CSF, and M-CSF expression in all three sites at all timepoints from 6-72 h post 5-FU. In SQGD treated mice, up-regulation of factor expression was observed in each compartment, and significantly so most often after 12 h. SQGD treatment prior to 5-FU administration to the mice significantly increased in all sites evaluated - relative to values in both control mice and 5-FU only-treated mice - G-CSF, M-CSF, and GM-CSF expression at almost every timepoint. The present findings suggest that SQGD provides protection against 5-FU-induced immunotoxicity in mice and could protect bone marrow progenitor cells against the effects of cytotoxic drugs used for treatment of cancer. The findings also suggested to us that SQGD is a potential immunomodulator and could protect hematopoiesis against toxic assault caused by anti-cancer drugs in the clinical setting.
Collapse
Affiliation(s)
- Saurabh Mishra
- Radiation Biotechnology Laboratory, Department of Radiation Biosciences, Institute of Nuclear Medicine and Allied Sciences , Delhi , India and
| | | | | | | | | | | |
Collapse
|
43
|
Singh VK, Wise SY, Fatanmi OO, Beattie LA, Ducey EJ, Seed TM. Alpha-tocopherol succinate- and AMD3100-mobilized progenitors mitigate radiation combined injury in mice. JOURNAL OF RADIATION RESEARCH 2014; 55:41-53. [PMID: 23814114 PMCID: PMC3885121 DOI: 10.1093/jrr/rrt088] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2013] [Revised: 05/23/2013] [Accepted: 05/27/2013] [Indexed: 05/28/2023]
Abstract
The purpose of this study was to elucidate the role of alpha-tocopherol succinate (TS)- and AMD3100-mobilized progenitors in mitigating combined injury associated with acute radiation exposure in combination with secondary physical wounding. CD2F1 mice were exposed to high doses of cobalt-60 gamma-radiation and then transfused intravenously with 5 million peripheral blood mononuclear cells (PBMCs) from TS- and AMD3100-injected mice after irradiation. Within 1 h after irradiation, mice were exposed to secondary wounding. Mice were observed for 30 d after irradiation and cytokine analysis was conducted by multiplex Luminex assay at various time-points after irradiation and wounding. Our results initially demonstrated that transfusion of TS-mobilized progenitors from normal mice enhanced survival of acutely irradiated mice exposed 24 h prior to transfusion to supralethal doses (11.5-12.5 Gy) of (60)Co gamma-radiation. Subsequently, comparable transfusions of TS-mobilized progenitors were shown to significantly mitigate severe combined injuries in acutely irradiated mice. TS administered 24 h before irradiation was able to protect mice against combined injury as well. Cytokine results demonstrated that wounding modulates irradiation-induced cytokines. This study further supports the conclusion that the infusion of TS-mobilized progenitor-containing PBMCs acts as a bridging therapy in radiation-combined-injury mice. We suggest that this novel bridging therapeutic approach involving the infusion of TS-mobilized hematopoietic progenitors following acute radiation exposure or combined injury might be applicable to humans.
Collapse
Affiliation(s)
- Vijay K. Singh
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
- Department of Radiation Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, 4417 Maple Avenue, Bethesda, MD, USA
| | - Stephen Y. Wise
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | - Oluseyi O. Fatanmi
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | - Lindsay A. Beattie
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | - Elizabeth J. Ducey
- Armed Forces Radiobiology Research Institute, Uniformed Services University of the Health Sciences, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | | |
Collapse
|
44
|
Morgan JLL, Ritchie LE, Crucian BE, Theriot C, Wu H, Sams C, Smith SM, Turner ND, Zwart SR. Increased dietary iron and radiation in rats promote oxidative stress, induce localized and systemic immune system responses, and alter colon mucosal environment. FASEB J 2013; 28:1486-98. [DOI: 10.1096/fj.13-239418] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Jennifer L. L. Morgan
- Oak Ridge Associated UniversitiesNational Aeronautics and Space Administration (NASA) Post‐Doctoral Fellowship Program, NASA Lyndon B. Johnson Space CenterHoustonTexasUSA
| | - Lauren E. Ritchie
- Department of Nutrition and Food ScienceTexas A&M UniversityCollege StationTexasUSA
| | - Brian E. Crucian
- Biomedical Research and Environmental Sciences DivisionNASA Lyndon B. Johnson Space CenterHoustonTexasUSA
| | - Corey Theriot
- Department of Preventive Medicine and Community HealthUniversity of Texas Medical BranchGalvestonTexasUSA
| | - Honglu Wu
- Biomedical Research and Environmental Sciences DivisionNASA Lyndon B. Johnson Space CenterHoustonTexasUSA
| | - Clarence Sams
- Space and Clinical Operations Division, Human Health and Performance DirectorateNASA Lyndon B. Johnson Space CenterHoustonTexasUSA
| | - Scott M. Smith
- Biomedical Research and Environmental Sciences DivisionNASA Lyndon B. Johnson Space CenterHoustonTexasUSA
| | - Nancy D. Turner
- Department of Nutrition and Food ScienceTexas A&M UniversityCollege StationTexasUSA
| | - Sara R. Zwart
- Division of Space Life SciencesUniversities Space Research AssociationHoustonTexasUSA
| |
Collapse
|
45
|
Singh VK, Beattie LA, Seed TM. Vitamin E: tocopherols and tocotrienols as potential radiation countermeasures. JOURNAL OF RADIATION RESEARCH 2013; 54:973-88. [PMID: 23658414 PMCID: PMC3823775 DOI: 10.1093/jrr/rrt048] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2023]
Abstract
Despite the potential devastating health consequences of intense total-body irradiation, and the decades of research, there still remains a dearth of safe and effective radiation countermeasures for emergency, radiological/nuclear contingencies that have been fully approved and sanctioned for use by the US FDA. Vitamin E is a well-known antioxidant, effective in scavenging free radicals generated by radiation exposure. Vitamin E analogs, collectively known as tocols, have been subject to active investigation for a long time as radioprotectors in patients undergoing radiotherapy and in the context of possible radiation accidents or terrorism scenarios. Eight major isoforms comprise the tocol group: four tocopherols and four tocotrienols. A number of these agents and their derivatives are being investigated actively as radiation countermeasures using animal models, and several appear promising. Although the tocols are well recognized as potent antioxidants and are generally thought to mediate radioprotection through 'free radical quenching', recent studies have suggested several alternative mechanisms: most notably, an 'indirect effect' of tocols in eliciting specific species of radioprotective growth factors/cytokines such as granulocyte colony-stimulating factor (G-CSF). The radioprotective efficacy of at least two tocols has been abrogated using a neutralizing antibody of G-CSF. Based on encouraging results of radioprotective efficacy, laboratory testing of γ-tocotrienol has moved from a small rodent model to a large nonhuman primate model for preclinical evaluation. In this brief review we identify and discuss selected tocols and their derivatives currently under development as radiation countermeasures, and attempt to describe in some detail their in vivo efficacy.
Collapse
Affiliation(s)
- Vijay K. Singh
- Radiation Countermeasures Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
- Department of Radiation Biology, F. Edward Hébert School of Medicine, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- Corresponding author. Radiation Countermeasures Program, Armed Forces Radiobiology Research Institute, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA. Tel: +1-301-295-2347; Fax: +1-301-295-6503;
| | - Lindsay A. Beattie
- Radiation Countermeasures Program, Scientific Research Department, Armed Forces Radiobiology Research Institute, 8901 Wisconsin Ave, Bethesda, MD 20889-5603, USA
| | - Thomas M. Seed
- Tech Micro Services, 4417 Maple Avenue, Bethesda, MD, USA
| |
Collapse
|
46
|
Baba T, Naka K, Morishita S, Komatsu N, Hirao A, Mukaida N. MIP-1α/CCL3-mediated maintenance of leukemia-initiating cells in the initiation process of chronic myeloid leukemia. ACTA ACUST UNITED AC 2013; 210:2661-73. [PMID: 24166712 PMCID: PMC3832924 DOI: 10.1084/jem.20130112] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BCR-ABL+lineage−c-kit− immature leukemia cells produce inflammatory MIP-1α/CCL3 to maintain leukemia-initiating cells and promote development of chronic myeloid leukemia. In the initiation process of chronic myeloid leukemia (CML), a small number of transformed leukemia-initiating cells (LICs) coexist with a large number of normal hematopoietic cells, gradually increasing thereafter and eventually predominating in the hematopoietic space. However, the interaction between LICs and normal hematopoietic cells at the early phase has not been clearly delineated because of the lack of a suitable experimental model. In this study, we succeeded in causing a marked leukocytosis resembling CML from restricted foci of LICs in the normal hematopoietic system by direct transplantation of BCR-ABL gene–transduced LICs into the bone marrow (BM) cavity of nonirradiated mice. Herein, we observed that BCR-ABL+lineage−c-kit− immature leukemia cells produced high levels of an inflammatory chemokine, MIP-1α/CCL3, which promoted the development of CML. Conversely, ablation of the CCL3 gene in LICs dramatically inhibited the development of CML and concomitantly reduced recurrence after the cessation of a short-term tyrosine kinase inhibitor treatment. Finally, normal hematopoietic stem/progenitor cells can directly impede the maintenance of LICs in BM in the absence of CCL3 signal.
Collapse
Affiliation(s)
- Tomohisa Baba
- Division of Molecular Bioregulation, 2 Exploratory Project on Cancer Stem Cells, and 3 Division of Molecular Genetics, Cancer Research Institute, Kanazawa University, Kanazawa 920-1192, Ishikawa, Japan
| | | | | | | | | | | |
Collapse
|
47
|
Wang D, Yu Y, Haarberg K, Fu J, Kaosaard K, Nagaraj S, Anasetti C, Gabrilovich D, Yu XZ. Dynamic change and impact of myeloid-derived suppressor cells in allogeneic bone marrow transplantation in mice. Biol Blood Marrow Transplant 2013; 19:692-702. [PMID: 23376089 PMCID: PMC4011929 DOI: 10.1016/j.bbmt.2013.01.008] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2012] [Accepted: 01/15/2013] [Indexed: 12/11/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are a group of myeloid cells composed of hematopoietic progenitor cells, immature macrophages, dendritic cells, and granulocytes, which accumulate in inflammatory diseases and various cancers. Here, we investigated the dynamic changes and effects of MDSCs in graft-versus-host disease (GVHD) development and/or tumor relapse after syngeneic and allogeneic bone marrow transplantation (BMT). We found that adding functional MDSCs in donor graft alleviated GVHD, whereas removal of MDSCs in vivo exacerbated GVHD. After T cell-deplete BMT, MDSCs transiently accumulated in the blood and spleen of recipients without GVHD. In contrast, after T cell-replete BMT, the levels of blood MDSCs were constantly elevated in recipients with GVHD. MDSC accumulation positively correlated with the severity of GVHD. Additionally, MDSC accumulation was further increased upon tumor relapse. Although MDSCs isolated from both syngeneic and allogeneic BMT recipients inhibited T cell proliferation in response to alloantigen stimulation ex vivo, MDSCs from the recipients with GVHD showed much higher suppressive potency compared with those from recipients without GVHD. These results indicate that MDSCs can regulate the immune response in acute GVHD, and possibly tumor relapse, subsequent to allogeneic BMT.
Collapse
Affiliation(s)
- Dapeng Wang
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Yu Yu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Kelley Haarberg
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Jianing Fu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Kane Kaosaard
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | - Srinivas Nagaraj
- Department of Pathology and Cell Biology, College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Internal Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Claudio Anasetti
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Pathology and Cell Biology, College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Dmitry Gabrilovich
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Molecular Medicine, College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| | - Xue-Zhong Yu
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Blood and Marrow Transplantation, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
- Department of Pathology and Cell Biology, College of Medicine, University of South Florida, Tampa, FL 33612, USA
- Department of Oncologic Sciences, College of Medicine, University of South Florida, Tampa, FL 33612, USA
| |
Collapse
|
48
|
Granulocyte colony-stimulating factor antibody abrogates radioprotective efficacy of gamma-tocotrienol, a promising radiation countermeasure. Cytokine 2013; 62:278-85. [DOI: 10.1016/j.cyto.2013.03.009] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2012] [Revised: 01/10/2013] [Accepted: 03/08/2013] [Indexed: 12/11/2022]
|