1
|
Xu C, Gamil AAA, Wang X, Munang’andu HM, Evensen Ø. MAVS disruption impairs downstream signaling and results in higher virus replication levels of salmonid alphavirus subtype 3 but not infectious pancreatic necrosis virus in vitro. Front Immunol 2024; 15:1401086. [PMID: 38903507 PMCID: PMC11187282 DOI: 10.3389/fimmu.2024.1401086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 05/13/2024] [Indexed: 06/22/2024] Open
Abstract
The mitochondrial anti-viral signaling (MAVS) protein is an intermediary adaptor protein of retinoic acid-inducible gene-1 (RIG-I) like receptor (RLR) signaling, which activates the transcription factor interferon (IFN) regulatory factor 3 (IRF3) and NF-kB to produce type I IFNs. MAVS expression has been reported in different fish species, but few studies have shown its functional role in anti-viral responses to fish viruses. In this study, we used the transcription activator-like effector nuclease (TALEN) as a gene editing tool to disrupt the function of MAVS in Chinook salmon (Oncorhynchus tshawytscha) embryonic cells (CHSE) to understand its role in induction of interferon I responses to infections with the (+) RNA virus salmonid alphavirus subtype 3 (SAV-3), and the dsRNA virus infectious pancreatic necrosis virus (IPNV) infection. A MAVS-disrupted CHSE clone with a 7-aa polypeptide (GVFVSRV) deletion mutation at the N-terminal of the CARD domain infected with SAV-3 resulted in significantly lower expression of IRF3, IFNa, and ISGs and increased viral titer (1.5 log10) compared to wild-type. In contrast, the IPNV titer in MAVS-disrupted cells was not different from the wild-type. Furthermore, overexpression of salmon MAVS in MAVS-disrupted CHSE cells rescued the impaired type I IFN-mediated anti-viral effect against SAV-3.
Collapse
Affiliation(s)
- Cheng Xu
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | - Amr A. A. Gamil
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| | | | | | - Øystein Evensen
- Department of Paraclinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, Ås, Norway
| |
Collapse
|
2
|
Kembou-Ringert JE, Steinhagen D, Thompson KD, Daly JM, Adamek M. Immune responses to Tilapia lake virus infection: what we know and what we don't know. Front Immunol 2023; 14:1240094. [PMID: 37622112 PMCID: PMC10445761 DOI: 10.3389/fimmu.2023.1240094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 07/20/2023] [Indexed: 08/26/2023] Open
Abstract
Tilapia lake virus (TiLV) is a novel contagious pathogen associated with a lethal disease affecting and decimating tilapia populations on several continents across the globe. Fish viral diseases, such as Tilapia lake virus disease (TiLVD), represent a serious threat to tilapia aquaculture. Therefore, a better understanding of the innate immune responses involved in establishing an antiviral state can help shed light on TiLV disease pathogenesis. Moreover, understanding the adaptive immune mechanisms involved in mounting protection against TiLV could greatly assist in the development of vaccination strategies aimed at controlling TiLVD. This review summarizes the current state of knowledge on the immune responses following TiLV infection. After describing the main pathological findings associated with TiLVD, both the innate and adaptive immune responses and mechanisms to TiLV infection are discussed, in both disease infection models and in vitro studies. In addition, our work, highlights research questions, knowledge gaps and research areas in the immunology of TiLV infection where further studies are needed to better understand how disease protection against TiLV is established.
Collapse
Affiliation(s)
- Japhette E. Kembou-Ringert
- Department of Infection, Immunity and Inflammation, Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| | - Dieter Steinhagen
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| | - Kim D. Thompson
- Moredun Research Institute, Pentlands Science Park, Penicuik, United Kingdom
| | - Janet M. Daly
- School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, United Kingdom
| | - Mikolaj Adamek
- Fish Disease Research Unit, Institute for Parasitology, University of Veterinary Medicine Hannover, Hannover, Germany
| |
Collapse
|
3
|
van der Wal YA, Nordli H, Akandwanaho A, Greiner-Tollersrud L, Kool J, Jørgensen JB. CRISPR-Cas- induced IRF3 and MAVS knockouts in a salmonid cell line disrupt PRR signaling and affect viral replication. Front Immunol 2023; 14:1214912. [PMID: 37588594 PMCID: PMC10425769 DOI: 10.3389/fimmu.2023.1214912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 06/26/2023] [Indexed: 08/18/2023] Open
Abstract
Background Interferon (IFN) responses are critical in the resolution of viral infections and are actively targeted by many viruses. They also play a role in inducing protective responses after vaccination and have been successfully tested as vaccine adjuvants. IFN responses are well conserved and function very similar in teleosts and mammals. Like in mammals, IFN responses in piscine cells are initiated by intracellular detection of the viral infection by different pattern recognition receptors. Upon the recognition of viral components, IFN responses are rapidly induced to combat the infection. However, many viruses may still replicate and be able to inhibit or circumvent the IFN response by different means. Methods By employing CRISPR Cas9 technology, we have disrupted proteins that are central for IFN signaling in the salmonid cell line CHSE-214. We successfully generated KO clones for the mitochondrial antiviral signaling protein MAVS, the transcription factors IRF3 and IRF7-1, as well as a double KO for IRF7-1/3 using an optimized protocol for delivery of CRISPR-Cas ribonucleoproteins through nucleofection. Results We found that MAVS and IRF3 KOs inhibited IFN and IFN-stimulated gene induction after intracellular poly I:C stimulation as determined through gene expression and promoter activation assays. In contrast, the IRF7-1 KO had no clear effect. This shows that MAVS and IRF3 are essential for initiation of intracellular RNA-induced IFN responses in CHSE-214 cells. To elucidate viral interference with IFN induction pathways, the KOs were infected with Salmon alphavirus 3 (SAV3) and infectious pancreatic necrosis virus (IPNV). SAV3 infection in control and IRF7-1 KO cells yielded similar titers and no cytopathic effect, while IRF3 and MAVS KOs presented with severe cytopathic effect and increased titers 6 days after SAV 3 infection. In contrast, IPNV yields were reduced in IRF3 and MAVS KOs, suggesting a dependency on interactions between viral proteins and pattern recognition receptor signaling components during viral replication. Conclusion Aside from more insight in this signaling in salmonids, our results indicate a possible method to increase viral titers in salmonid cells.
Collapse
Affiliation(s)
- Yorick A. van der Wal
- Vaxxinova Research & Development GmbH, Münster, Germany
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Henriette Nordli
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | | | - Linn Greiner-Tollersrud
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT The Arctic University of Norway, Tromsø, Norway
| | - Jaap Kool
- Vaxxinova Research & Development GmbH, Münster, Germany
| | - Jorunn B. Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
4
|
Zhao T, Zou Y, Yan H, Chang Y, Zhan Y. Non-coding RNAs targeting NF-κB pathways in aquatic animals: A review. Front Immunol 2023; 14:1091607. [PMID: 36825023 PMCID: PMC9941745 DOI: 10.3389/fimmu.2023.1091607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/20/2023] [Indexed: 02/10/2023] Open
Abstract
Nuclear factor-kappa B (NF-κB) pathways have a close relationship with many diseases, especially in terms of the regulation of inflammation and the immune response. Non-coding RNAs (ncRNAs) are a heterogeneous subset of endogenous RNAs that directly affect cellular function in the absence of proteins or peptide products; these include microRNAs (miRNAs), long noncoding RNAs (lncRNAs), circular RNAs (circRNAs), etc. Studies on the roles of ncRNAs in targeting the NF-κB pathways in aquatic animals are scarce. A few research studies have confirmed detailed regulatory mechanisms among ncRNAs and the NF-κB pathways in aquatic animals. This comprehensive review is presented concerning ncRNAs targeting the NF-κB pathway in aquatic animals and provides new insights into NF-κB pathways regulatory mechanisms of aquatic animals. The review discusses new possibilities for developing non-coding-RNA-based antiviral applications in fisheries.
Collapse
Affiliation(s)
- Tanjun Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.,College of Life Science, Liaoning Normal University, Dalian, China
| | - Yang Zou
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Hanyu Yan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| | - Yaqing Chang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China.,College of Life Science, Liaoning Normal University, Dalian, China
| | - Yaoyao Zhan
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture and Rural Affairs, Dalian Ocean University, Dalian, China
| |
Collapse
|
5
|
Benavides A, Gutiérrez D, Epuyao N, Modak B, Imarai M, Valenzuela B. Alpinone: A positive regulator molecule of immune antiviral response in Atlantic salmon kidney cells. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104262. [PMID: 34543663 DOI: 10.1016/j.dci.2021.104262] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/14/2021] [Accepted: 09/14/2021] [Indexed: 06/13/2023]
Abstract
Alpinone is a flavonoid obtained from the resinous exudate of Heliotropium huascoense. This flavonoid shows antiviral activity against the infectious salmon anemia virus (ISAV), which causes severe disease in farmed Atlantic salmon. Here, we aim to elucidate mechanisms underlying the antiviral effects of the flavonoid. In this regard, we evaluated whether Alpinone can act upregulating the pattern-recognition receptor genes, i.e., the RIG-I-like, TLR3, and TLR9 genes, and the genes of the downstream signaling pathways. Transcriptional expression of the genes was analyzed using real-time PCR after 8, 24, and 48 h treatment of salmon kidney adherent cells with 15 μg/mL of Alpinone. First, we showed that Alpinone induced IFNa expression in the kidney adherent cells, indicating that this type of salmon cells is in part responsible for the effects previously reported in vivo. Upregulation of the IFN-induced myxovirus resistance (Mx) gene was also observed in the head kidney cells in response to the treatment. Overexpression reached a maximum level at 24 h post-treatment. Interestingly, Alpinone also induced upregulation of the cytosolic receptors of ssRNA, named Retinoic acid-inducible gene I (RIG-I) and Melanoma Differentiation-Associated protein 5 (MDA5), but there were no effects on the transcriptional expression of the TLR3 and TLR9 endosomal receptors. In addition, Alpinone upregulated the expression of genes encoding the main components of the RIG-I/MDA5 signaling pathways, such as the mitochondrial antiviral-signaling protein (MAVS), TNF Receptor Associated Factor 3 (TRAF3), TANK-binding kinase 1 (TBK1), I-kappaB kinase ε (IKKε), the transcription factors IRF-3, and IRF7. The increased expression of all these genes is consistent with the upregulation of IFNa and Mx mRNAs. Because BX795 completely prevents Alpinone-dependent upregulation of IFNa and IRF3, the flavonoid targets seem to be upstream of the kinases TBK1 and IKKε. Altogether, this study contributes to elucidating the mechanisms involved in Alpinone antiviral activity in fish. Alpinone can be used to counteract virus mechanisms of evasion where the onset of interferon-mediated response is prevented or delayed.
Collapse
Affiliation(s)
- Almendra Benavides
- Natural Product Chemistry Laboratory, Aquatic Biotechnology Center, Chemistry and Biology Faculty, Environmental Sciences Department, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile.
| | - Daniela Gutiérrez
- Natural Product Chemistry Laboratory, Aquatic Biotechnology Center, Chemistry and Biology Faculty, Environmental Sciences Department, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile.
| | - Nadia Epuyao
- Natural Product Chemistry Laboratory, Aquatic Biotechnology Center, Chemistry and Biology Faculty, Environmental Sciences Department, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile.
| | - Brenda Modak
- Natural Product Chemistry Laboratory, Aquatic Biotechnology Center, Chemistry and Biology Faculty, Environmental Sciences Department, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile.
| | - Mónica Imarai
- Immunology Laboratory, Aquatic Biotechnology Center, Biology Department, Chemistry and Biology Faculty, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile.
| | - Beatriz Valenzuela
- Natural Product Chemistry Laboratory, Aquatic Biotechnology Center, Chemistry and Biology Faculty, Environmental Sciences Department, University of Santiago of Chile, Av. Bernardo O'Higgins, 3363, Santiago, Chile.
| |
Collapse
|
6
|
Chu Q, Han J, Sun L, Cui J, Xu T. Characterization of MDA5 and microRNA-203 negatively regulates the RLR signaling pathway via targeting MDA5 in miiuy croaker. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2022; 126:104259. [PMID: 34536468 DOI: 10.1016/j.dci.2021.104259] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 09/13/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
MDA5 is a member of retinoic acid-inducible gene I (RIG-I)-like receptors (RLR receptors), which may play a crucial role in the immune regulation process. Recently, microRNAs (miRNAs) have been shown to act as an important regulator in the RLRs signaling pathway. Additionally, the MDA5 gene, as a significant cytosolic pathogen recognition receptor (PRR), its characteristics and functions have been extensively investigated, while less research has been done on the mechanisms of MDA5-miRNA mediated gene regulation. In this study, the evolution and functional characterization of MDA5 from miiuy croaker (mmiMDA5) were characterized. Comparative genomic analysis demonstrated that the ascidiacea and superclass do not have the MDA5 gene in the process of evolution. MDA5 contains four structural domains: CARD, ResIII, Helicase C, and RIG-I C-RD. The MDA5 was ubiquitously expressed in all tested miiuy croaker tissues. Moreover, the expressions were significantly up-regulated after stimulation with poly (I: C), which indicated that MDA5 might be involved in the antiviral immune response. The bioinformatics predicted programs have indicated that miR-203 has a direct negative regulatory effect on MDA5 in miiuy croaker. Furthermore, the dual-luciferase reporter assay have showed that miR-203 was the direct negative regulator of MDA5 in miiuy croaker. This study is the first to demonstrate that miRNA can suppress cytokines by regulating the RLR signaling pathway in teleost fish, providing some new ideas for studying miRNA-mediated regulation of immune responses in mammals.
Collapse
Affiliation(s)
- Qing Chu
- School of Agriculture, Ludong University, Yantai, China.
| | - Jingjing Han
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Lingping Sun
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Junxia Cui
- Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China
| | - Tianjun Xu
- Laboratory of Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; Laboratory of Fish Molecular Immunology, College of Fisheries and Life Science, Shanghai Ocean University, Shanghai, China.
| |
Collapse
|
7
|
Zou PF, Tang JC, Li Y, Feng JJ, Zhang ZP, Wang YL. MAVS splicing variants associated with TRAF3 and TRAF6 in NF-κB and IRF3 signaling pathway in large yellow croaker Larimichthys crocea. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2021; 121:104076. [PMID: 33766586 DOI: 10.1016/j.dci.2021.104076] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2021] [Revised: 03/19/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Mitochondrial antiviral signaling protein (MAVS) acts as an essential adaptor in host RIG-I-like receptors (RLRs) mediated antiviral signaling pathway. In the present study, two MAVS transcript variants, the typical form and a splicing variant, namely Lc-MAVS_tv1 and Lc-MAVS_tv2 were characterized in large yellow croaker (Larimichthys crocea). The putative Lc-MAVS_tv1 protein contains 512 aa, with an N-terminal CARD domain, a central proline-rich region, and a C-terminal transmembrane (TM) domain, whereas Lc-MAVS_tv2 contains 302 aa and lacks the C-terminal TM domain due to a premature stop in the 102 bp intron fragment insertion. Lc-MAVS_tv1 was identified as a mitochondrion localized protein whereas Lc-MAVS_tv2 exhibited an entire cytosolic distribution. Quantitative real-time PCR revealed that Lc-MAVS_tv1 mRNA was broadly expressed in examined organs/tissues and showed extremely higher level than that of Lc-MAVS_tv2, and both of them could be up-regulated under poly I:C, LPS, PGN, and Pseudomonas plecoglossicida stimulation in vivo. Interestingly, overexpression of Lc-MAVS_tv2 could induce the activation of NF-κB but not IRF3, and Lc-MAVS_tv2 co-transfected with Lc-MAVS_tv1 induced a significantly higher level of NF-κB and IRF3 promoter activity. In addition, Lc-MAVS_tv2 overexpression could enhance TRAF3 and TRAF6 mediated NF-κB activation, but suppress TRAF3 and TRAF6 mediated IRF3 activation, implying that the splicing variant Lc-MAVS_tv2 may function as an important regulator in MAVS mediated signaling pathway.
Collapse
Affiliation(s)
- Peng Fei Zou
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China.
| | - Jun Chun Tang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Ying Li
- Key Laboratory of Estuarine Ecological Security and Environmental Health, Tan Kah Kee College, Xiamen University, Zhangzhou, Fujian Province, 363105, China
| | - Jian Jun Feng
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China
| | - Zi Ping Zhang
- College of Animal Science, Fujian Agriculture and Forestry University, Fuzhou, Fujian Province, 350002, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, Fujian Province, 352103, China
| | - Yi Lei Wang
- Key Laboratory of Healthy Mariculture for the East China Sea, Ministry of Agriculture and Rural Affairs, Fisheries College, Jimei University, Xiamen, Fujian Province, 361021, China; State Key Laboratory of Large Yellow Croaker Breeding, Ningde Fufa Fisheries Company Limited, Ningde, Fujian Province, 352103, China.
| |
Collapse
|
8
|
Jami R, Mérour E, Lamoureux A, Bernard J, Millet JK, Biacchesi S. Deciphering the Fine-Tuning of the Retinoic Acid-Inducible Gene-I Pathway in Teleost Fish and Beyond. Front Immunol 2021; 12:679242. [PMID: 33995423 PMCID: PMC8113963 DOI: 10.3389/fimmu.2021.679242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 04/07/2021] [Indexed: 11/13/2022] Open
Abstract
Interferons are the first lines of defense against viral pathogen invasion during the early stages of infection. Their synthesis is tightly regulated to prevent excessive immune responses and possible deleterious effects on the host organism itself. The RIG-I-like receptor signaling cascade is one of the major pathways leading to the production of interferons. This pathway amplifies danger signals and mounts an appropriate innate response but also needs to be finely regulated to allow a rapid return to immune homeostasis. Recent advances have characterized different cellular factors involved in the control of the RIG-I pathway. This has been most extensively studied in mammalian species; however, some inconsistencies remain to be resolved. The IFN system is remarkably well conserved in vertebrates and teleost fish possess all functional orthologs of mammalian RIG-I-like receptors as well as most downstream signaling molecules. Orthologs of almost all mammalian regulatory components described to date exist in teleost fish, such as the widely used zebrafish, making fish attractive and powerful models to study in detail the regulation and evolution of the RIG-I pathway.
Collapse
Affiliation(s)
- Raphaël Jami
- University Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Emilie Mérour
- University Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Annie Lamoureux
- University Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Julie Bernard
- University Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | - Jean K Millet
- University Paris-Saclay, INRAE, UVSQ, VIM, Jouy-en-Josas, France
| | | |
Collapse
|
9
|
Lu LF, Li ZC, Zhang C, Zhou XY, Zhou Y, Jiang JY, Chen DD, Li S, Zhang YA. Grass Carp Reovirus (GCRV) Giving Its All to Suppress IFN Production by Countering MAVS Signaling Transduction. Front Immunol 2020; 11:545302. [PMID: 33193312 PMCID: PMC7649419 DOI: 10.3389/fimmu.2020.545302] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 10/06/2020] [Indexed: 01/05/2023] Open
Abstract
Viruses typically target host RIG-I-like receptors (RLRs), a group of key factors involved in interferon (IFN) production, to enhance viral infection. To date, though immune evasion methods to contradict IFN production have been characterized for a series of terrestrial viruses, the strategies employed by fish viruses remain unclear. Here, we report that all grass carp reovirus (GCRV) proteins encoded by segments S1 to S11 suppress mitochondrial antiviral signaling protein (MAVS)-mediated IFN expression. First, the GCRV viral proteins blunted the MAVS-induced expression of IFN, and impair MAVS antiviral capacity significantly. Interestingly, subsequent co-immunoprecipitation experiments demonstrated that all GCRV viral proteins interacted with several RLR cascades, especially with TANK-binding kinase 1 (TBK1) which was the downstream factor of MAVS. To further illustrate the mechanisms of these interactions between GCRV viral proteins and host RLRs, two of the viral proteins, NS79 (S4) and VP3 (S3), were selected as representative proteins for two distinguished mechanisms. The obtained data demonstrated that NS79 was phosphorylated by gcTBK1, leading to the reduction of host substrate gcIRF3/7 phosphorylation. On the other hand, VP3 degraded gcMAVS and the degradation was significantly reversed by 3-MA. The biological effects of both NS79 and VP3 were consistently found to be related to the suppression of IFN expression and the promotion of viral evasion. Our findings shed light on the special evasion mechanism utilized by fish virus through IFN regulation, which might differ between fish and mammals.
Collapse
Affiliation(s)
- Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Zhuo-Cong Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Can Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xiao-Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries and Life Science, Dalian Ocean University, Dalian, China
| | - Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Jing-Yu Jiang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China.,College of Fisheries, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
10
|
Cytosolic Sensors for Pathogenic Viral and Bacterial Nucleic Acids in Fish. Int J Mol Sci 2020; 21:ijms21197289. [PMID: 33023222 PMCID: PMC7582293 DOI: 10.3390/ijms21197289] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 09/29/2020] [Indexed: 12/11/2022] Open
Abstract
Recognition of the non-self signature of invading pathogens is a crucial step for the initiation of the innate immune mechanisms of the host. The host response to viral and bacterial infection involves sets of pattern recognition receptors (PRRs), which bind evolutionarily conserved pathogen structures, known as pathogen-associated molecular patterns (PAMPs). Recent advances in the identification of different types of PRRs in teleost fish revealed a number of cytosolic sensors for recognition of viral and bacterial nucleic acids. These are DExD/H-box RNA helicases including a group of well-characterized retinoic acid inducible gene I (RIG-I)-like receptors (RLRs) and non-RLR DExD/H-box RNA helicases (e.g., DDX1, DDX3, DHX9, DDX21, DHX36 and DDX41) both involved in recognition of viral RNAs. Another group of PRRs includes cytosolic DNA sensors (CDSs), such as cGAS and LSm14A involved in recognition of viral and intracellular bacterial dsDNAs. Moreover, dsRNA-sensing protein kinase R (PKR), which has a role in antiviral immune responses in higher vertebrates, has been identified in fish. Additionally, fish possess a novel PKR-like protein kinase containing Z-DNA binding domain, known as PKZ. Here, we review the current knowledge concerning cytosolic sensors for recognition of viral and bacterial nucleic acids in teleosts.
Collapse
|
11
|
Chen B, Li C, Yao J, Shi L, Liu W, Wang F, Huo S, Zhang Y, Lu Y, Ashraf U, Ye J, Liu X. Zebrafish NIK Mediates IFN Induction by Regulating Activation of IRF3 and NF-κB. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2020; 204:1881-1891. [PMID: 32066597 DOI: 10.4049/jimmunol.1900561] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Accepted: 01/09/2020] [Indexed: 01/19/2023]
Abstract
Type I IFN mediates the innate immune system to provide defense against viral infections. NF-κB-inducing kinase (NIK) potentiates the basal activation of endogenous STING, which facilitates the recruitment of TBK1 with the ectopically expressed IRF3 to induce IFN production. Moreover, NIK phosphorylates IKKα and confers its ability to phosphorylate p100 (also known as NF-κB2) in mammals. Our study demonstrated that NIK plays a critical role in IFN production in teleost fish. It was found that NIK interacts with IKKα in the cytoplasm and that IKKα phosphorylates the NIK at the residue Thr432, which is different from the mammals. Overexpression of NIK caused the activation of IRF3 and NF-κB, which in turn led to the production of IFN and IFN-stimulated genes (ISGs). Furthermore, the ectopic expression of NIK was observed to be associated with a reduced replication of the fish virus, whereas silencing of endogenous NIK had an opposite effect in vitro. Furthermore, NIK knockdown significantly reduced the expression of IFN and key ISGs in zebrafish larvae after spring viremia of carp virus infection. Additionally, the replication of spring viremia of carp virus was enhanced in NIK knockdown zebrafish larvae, leading to a lower survival rate. In summary, our findings revealed a previously undescribed function of NIK in activating IFN and ISGs as a host antiviral response. These findings may facilitate the establishment of antiviral therapy to combat fish viruses.
Collapse
Affiliation(s)
- Bo Chen
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Chen Li
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Jian Yao
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Lin Shi
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Wanmeng Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Fang Wang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Shitian Huo
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Yongan Zhang
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| | - Yuanan Lu
- Department of Public Health Sciences, University of Hawaii at Manoa, Honolulu, Hawaii 96822; and
| | - Usama Ashraf
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Jing Ye
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan 430070, Hubei, China
| | - Xueqin Liu
- College of Fisheries, Huazhong Agricultural University, Wuhan 430070, Hubei, China;
- Hubei Engineering Technology Research Center for Aquatic Animal Diseases Control and Prevention, Wuhan 430070, Hubei, China
| |
Collapse
|
12
|
Zhao X, Xiao T, Jin S, Wang J, Wang J, Luo H, Li R, Sun T, Zou J, Li Y. Characterization and immune function of the interferon-β promoter stimulator-1 in the barbel chub, Squaliobarbus curriculus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 104:103571. [PMID: 31837379 DOI: 10.1016/j.dci.2019.103571] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/29/2019] [Accepted: 12/10/2019] [Indexed: 06/10/2023]
Abstract
To elucidate the immunity-protecting role of the interferon-β promoter stimulator-1 (ScIPS-1) in barbel chub Squaliobarbus curriculus, the full-length cDNA of ScIPS-1 was cloned and expression levels in response to stimulation were investigated. In addition, the function of ScIPS-1 and its domains were analyzed. The full-length cDNA of ScIPS-1 is 2524 bp and encodes 601 aa. The N-terminal caspase activation and recruitment domain, central proline-rich domain, C-terminal transmembrane domain, C2HC-zinc finger, and Cwf21 domains were identified. The mRNA level of ScIPS-1 was the highest in the kidney, whereas the highest protein level was observed in the liver. The ScIPS-1 expressions were significantly up-regulated after lipopolysaccharide and poly I:C treatment. The ScIPS-1 protein level was up-regulated at 12 h in the head kidney and was up-regulated at 12 h and then down-regulated from 12 to 48 h in the liver after grass carp reovirus (GCRV) infection. The CiIFN and CiMx transcription levels were significantly enhanced in pEGFP-C1-IPS-1 and pcDNA3.1-ΔCwf21 overexpressing cells after GCRV infection. The results indicate that ScIPS-1 may function in the immune response against pathogens and provide a basis for achieving resistance to diseases in fish breeding.
Collapse
Affiliation(s)
- Xin Zhao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Tiaoyi Xiao
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Shengzhen Jin
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Jing'an Wang
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Junya Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Hong Luo
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Rui Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Tong Sun
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China
| | - Jun Zou
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China; Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources, Ministry of Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Yaoguo Li
- Hunan Engineering Technology Research Center of Featured Aquatic Resources Utilization, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
13
|
Wang ZX, Zhou Y, Lu LF, Lu XB, Ni B, Liu MX, Guan HX, Li S, Zhang YA, Ouyang S. Infectious hematopoietic necrosis virus N protein suppresses fish IFN1 production by targeting the MITA. FISH & SHELLFISH IMMUNOLOGY 2020; 97:523-530. [PMID: 31881328 DOI: 10.1016/j.fsi.2019.12.075] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 12/20/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Interferon (IFN) is a vital antiviral factor in host in the early stages after the viral invasion. Meanwhile, viruses have to survive by taking advantage of the cellular machinery and complete their replication. As a result, viruses evolved several immune escape mechanisms to inhibit host IFN expression. However, the mechanisms used to escape the host's IFN system are still unclear for infectious hematopoietic necrosis virus (IHNV). In this study, we report that the N protein of IHNV inhibits IFN1 production in rainbow trout by degrading the MITA. Firstly, the upregulation of IFN1 promoter activity stimulated by poly I:C was suppressed by IHNV infection. Consistent with this result, the overexpression of the N protein of IHNV blocked the IFN1 transcription that was activated by poly I:C and MITA. Secondly, MITA was remarkably decreased by the overexpression of N protein at the protein level. Further analysis demonstrated that the N protein targeted MITA and promoted the ubiquitination of MITA. Taken together, these data suggested that the production of rainbow trout IFN1 could be suppressed by the N protein of IHNV via degrading MITA.
Collapse
Affiliation(s)
- Zhao-Xi Wang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; University of Chinese Academy of Science, Beijing, China
| | - Yu Zhou
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; University of Chinese Academy of Science, Beijing, China
| | - Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Xiao-Bing Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Bo Ni
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China
| | - Meng-Xi Liu
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization, Fujian Normal University, Fuzhou, 350117, China
| | - Hong-Xin Guan
- Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization, Fujian Normal University, Fuzhou, 350117, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, China; Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 266337, China; State Key Laboratory of Aquaculture Microbiology, College of Fisheries, Huazhong Agricultural University, Wuhan, China.
| | - Songying Ouyang
- Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology (Qingdao), 266337, China; Provincial University Key Laboratory of Cellular Stress Response and Metabolic Regulation, The Key Laboratory of Innate Immune Biology of Fujian Province, Biomedical Research Center of South China, Key Laboratory of OptoElectronic Science and Technology for Medicine of the Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; The Public Service Platform for Industrialization Development Technology of Marine Biological Medicine and Product of State Oceanic Administration, College of Life Sciences, Fujian Normal University, Fuzhou, 350117, China; Fujian Key Laboratory of Special Marine Bio-resources Sustainable Utilization, Fujian Normal University, Fuzhou, 350117, China
| |
Collapse
|
14
|
Dahle MK, Jørgensen JB. Antiviral defense in salmonids - Mission made possible? FISH & SHELLFISH IMMUNOLOGY 2019; 87:421-437. [PMID: 30708056 DOI: 10.1016/j.fsi.2019.01.043] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 01/24/2019] [Accepted: 01/27/2019] [Indexed: 06/09/2023]
Abstract
Viral diseases represent one of the major threats for salmonid aquaculture. Survival from viral infections are highly dependent on host innate antiviral immune defense, where interferons are of crucial importance. Neutralizing antibodies and T cell effector mechanisms mediate long-term antiviral protection. Despite an immune cell repertoire comparable to higher vertebrates, farmed fish often fail to mount optimal antiviral protection. In the quest to multiply and spread, viruses utilize a variety of strategies to evade or escape the host immune system. Understanding the specific interplay between viruses and host immunity at depth is crucial for developing successful vaccination and treatment strategies in mammals. However, this knowledge base is still limited for pathogenic fish viruses. Here, we have focused on five RNA viruses with major impact on salmonid aquaculture: Salmonid alphavirus, Infectious salmon anemia virus, Infectious pancreatic necrosis virus, Piscine orthoreovirus and Piscine myocarditis virus. This review explore the protective immune responses that salmonids mount to these viruses and the existing knowledge on how the viruses counteract and/or bypass the immune response, including their IFN antagonizing effects and their mechanisms to establish persisting infections.
Collapse
Affiliation(s)
- Maria K Dahle
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø, The Arctic University of Norway, Norway; Department of Fish Health, Norwegian Veterinary Institute, Oslo, Norway
| | - Jorunn B Jørgensen
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries & Economics, University of Tromsø, The Arctic University of Norway, Norway.
| |
Collapse
|
15
|
Langevin C, Boudinot P, Collet B. IFN Signaling in Inflammation and Viral Infections: New Insights from Fish Models. Viruses 2019; 11:v11030302. [PMID: 30917538 PMCID: PMC6466407 DOI: 10.3390/v11030302] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 12/20/2022] Open
Abstract
The overarching structure of the type I interferon (IFN) system is conserved across vertebrates. However, the variable numbers of whole genome duplication events during fish evolution offer opportunities for the expansion, diversification, and new functionalization of the genes that are involved in antiviral immunity. In this review, we examine how fish models provide new insights about the implication of virus-driven inflammation in immunity and hematopoiesis. Mechanisms that have been discovered in fish, such as the strong adjuvant effect of type I IFN that is used with DNA vaccination, constitute good models to understand how virus-induced inflammatory mechanisms can interfere with adaptive responses. We also comment on new discoveries regarding the role of pathogen-induced inflammation in the development and guidance of hematopoietic stem cells in zebrafish. These findings raise issues about the potential interferences of viral infections with the establishment of the immune system. Finally, the recent development of genome editing provides new opportunities to dissect the roles of the key players involved in the antiviral response in fish, hence enhancing the power of comparative approaches.
Collapse
Affiliation(s)
- Christelle Langevin
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| | - Pierre Boudinot
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| | - Bertrand Collet
- INRA, Virologie et Immunologie Moléculaires, Université Paris-Saclay, 78352 Jouy-en-Josas, France.
| |
Collapse
|
16
|
Rout AK, Udgata SR, Dehury B, Pradhan SP, Swain HS, Behera BK, Das BK. Structural bioinformatics insights into the CARD‐CARD interaction mediated by the mitochondrial antiviral‐signaling protein of black carp. J Cell Biochem 2019; 120:12534-12543. [PMID: 30912187 DOI: 10.1002/jcb.28519] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Revised: 01/08/2019] [Accepted: 01/14/2019] [Indexed: 12/18/2022]
Affiliation(s)
- Ajaya K. Rout
- Biotechnology Laboratory ICAR—Central Inland Fisheries Research Institute Kolkata West Bengal India
| | - Sheela R. Udgata
- Department of Bioinformatics Orissa University of Agriculture and Technology Bhubaneswar Odisha India
| | - Budheswar Dehury
- Biomedical Informatics Centre ICMR—Regional Medical Research Centre Bhubaneswar Odisha India
- Department of Chemistry Technical University of Denmark Kongens Lyngby Denmark
| | - Smruti P. Pradhan
- Department of Bioinformatics Orissa University of Agriculture and Technology Bhubaneswar Odisha India
| | - Himanshu S. Swain
- Biotechnology Laboratory ICAR—Central Inland Fisheries Research Institute Kolkata West Bengal India
| | - Bijay K. Behera
- Biotechnology Laboratory ICAR—Central Inland Fisheries Research Institute Kolkata West Bengal India
| | - Basanta K. Das
- Biotechnology Laboratory ICAR—Central Inland Fisheries Research Institute Kolkata West Bengal India
| |
Collapse
|
17
|
Guo CJ, He J, He JG. The immune evasion strategies of fish viruses. FISH & SHELLFISH IMMUNOLOGY 2019; 86:772-784. [PMID: 30543936 DOI: 10.1016/j.fsi.2018.12.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 12/07/2018] [Accepted: 12/09/2018] [Indexed: 06/09/2023]
Abstract
Viral infection of a host rapidly triggers intracellular signaling events that induce interferon production and a cellular antiviral state. Viral diseases are important concerns in fish aquaculture. The major mechanisms of the fish antiviral immune response are suggested to be similar to those of mammals, although the specific details of the process require further studies. Throughout the process of pathogen-host coevolution, fish viruses have developed a battery of distinct strategies to overcome the biochemical and immunological defenses of the host. Such strategies include signaling interference, effector modulation, and manipulation of host apoptosis. This review provide an overview of the different mechanisms that fish viruses use to evade host immune responses. The basic mechanisms of immune evasion of fish virus are discussed, and some examples are provided to illustrate particular points.
Collapse
Affiliation(s)
- C J Guo
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering / State Key Laboratory for Biocontrol, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - J He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering / State Key Laboratory for Biocontrol, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China
| | - J G He
- Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering / State Key Laboratory for Biocontrol, School of Marine, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China; Institute of Aquatic Economic Animals and Guangdong Province Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang Road West, Guangzhou 510275, PR China.
| |
Collapse
|
18
|
Huang B, Wang ZX, Liang Y, Zhai SW, Huang WS, Nie P. Identification of four type I IFNs from Japanese eel with differential expression properties and Mx promoter inducibility. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2019; 91:62-71. [PMID: 30240715 DOI: 10.1016/j.dci.2018.09.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2018] [Revised: 09/17/2018] [Accepted: 09/17/2018] [Indexed: 06/08/2023]
Abstract
Type I IFNs are a family of cytokines with antiviral, anti-proliferative and immune-modulatory functions. In this study, four type I IFNs (termed AjIFN1-4) have been cloned from the Japanese eel, Anguilla japonica. The open reading frames of AjIFN1-4 are 552, 534, 546 and 561 bp in length, encoding 183, 177, 181, and 186 amino acids (aa), respectively. Sequence comparison and phylogenetic analysis results revealed that AjIFN1 and AjIFN2 belong to group one (2C-containing) IFNs, while AjIFN3 and AjIFN4 belong to group two (4C-containing) IFNs. Syntenic comparison showed that chromosome block duplication and rearrangement events might have occurred at IFN loci in different teleost lineages. Expression analysis revealed the rapid induction of AjIFNl and AjIFN2 in response to poly I:C stimulation, while AjIFN3 and AjIFN4 were predominantly expressed at later time points. Two Mx promoter reporter assays were conducted to assess the Mx-inducing capability of AjIFN1-4. It is shown that the overexpression of AjIFN1-4 all promoted the luciferase activity of MxB reporter, but the activity of MxC reporter increased only in cells transfected with AjIFN1. Collectively, it is suggested that teleost IFNs were evolved independently in different lineages of fish and may function differently in teleost antiviral immunity.
Collapse
Affiliation(s)
- B Huang
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Z X Wang
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - Y Liang
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - S W Zhai
- Fisheries College, Jimei University, Xiamen, 361021, China
| | - W S Huang
- Fisheries College, Jimei University, Xiamen, 361021, China; Fujian Collaborative Innovation Center for Development and Utilization of Marine Biological Resources, Xiamen, 361005, China.
| | - P Nie
- Key Laboratory of Aquaculture Disease Control, Ministry of Agriculture, Wuhan, Hubei Province, 430072, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China; College of Marine Science and Engineering, Qingdao Agricultural University, Qingdao, Shandong Province, 266109, China.
| |
Collapse
|
19
|
Wang C, Peng J, Zhou M, Liao G, Yang X, Wu H, Xiao J, Feng H. TAK1 of black carp positively regulates IRF7-mediated antiviral signaling in innate immune activation. FISH & SHELLFISH IMMUNOLOGY 2019; 84:83-90. [PMID: 30273651 DOI: 10.1016/j.fsi.2018.09.075] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2018] [Revised: 09/24/2018] [Accepted: 09/27/2018] [Indexed: 06/08/2023]
Abstract
Transforming growth factor β-activated kinase 1 (TAK1) plays a vital role in IL-1-mediated NF-κB, JNK, and p38 activation in human and mammals. However, the function of TAK1 in teleost fish still remains largely unknown. To explore the role of TAK1 during the antiviral innate immune response of teleost fish, TAK1 of black carp (Mylopharyngodon piceus) was cloned and characterized in this paper. The open reading frame (ORF) of black carp TAK1 (bcTAK1) consists of 1626 nucleotides and the predicted bcTAK1 protein contains 541 amino acids, which includes a N-terminal Serine/Threonine protein kinases (S/TKc) and a C-terminal coiled-coil region. bcTAK1 migrated around 75 kDa in immunoblotting assay and was identified as a cytosolic protein by immunofluorescence staining. bcTAK1 transcription in Mylopharyngodon piceus kidney (MPK) cells varied in response to the stimulation of poly (I:C), LPS, grass carp reovirus (GCRV), and spring viremia of carp virus (SVCV). bcTAK1 showed deficient IFN-inducing ability in reporter assay and feeble antiviral activity against GCRV and SVCV in plaque assay. However, when co-expressed with bcIRF7 in EPC cells, bcTAK1 obviously enhanced bcIRF7-mediated IFN promoter induction in reporter assay. Accordingly, the data of plaque assay demonstrated that the antiviral activity of bcIRF7 against both GCRV and SVCV was unregulated by bcTAK1. Thus, the data generated in this study support the conclusion that bcTAK1 up-regulates bcIRF7-mediated antiviral signaling during host innate immune activation, which is reported for the first time in vertebrates.
Collapse
Affiliation(s)
- Chanyuan Wang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Peng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Minyu Zhou
- College of Bioscience and Biology, Hunan Agricultural University, Changsha, 410128, China
| | - Guancheng Liao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Xiao Yang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hui Wu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Xiao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hao Feng
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Science, Hunan Normal University, Changsha, 410081, China.
| |
Collapse
|
20
|
Gao FY, Lu MX, Wang M, Liu ZG, Ke XL, Zhang DF, Cao JM. Molecular characterization and function analysis of three RIG-I-like receptor signaling pathway genes (MDA5, LGP2 and MAVS) in Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2018; 82:101-114. [PMID: 30099139 DOI: 10.1016/j.fsi.2018.08.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Revised: 07/26/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
The recognition of microbial pathogens, which is mediated by pattern recognition receptors (PRRs), is critical to the initiation of innate immune responses. In the present study, we isolated the full-length cDNA and genomic DNA sequences of the MDA5, LGP2 and MAVS genes in Nile tilapia, termed OnMDA5, OnLGP2 and OnMAVS. The OnMDA5 gene encodes 974 amino acids and contains two caspase-associated recruitment domains (CARDs), a DExDc domain (DExD/H box-containing domain), a HELICc (helicase superfamily C-terminal) domain and a C-terminal regulatory domain (RD). The OnLGP2 gene encodes 679 amino acids and contains a DExDc, a HELICc and an RD. The OnMAVS gene encodes 556 amino acids and contains a CARD, a proline-rich domain, a transmembrane helix domain and a putative TRAF2-binding motif (269PVQDT273). Phylogenetic analyses showed that all three genes from Nile tilapia were clustered together with their counterparts from other teleost fishes. Real-time PCR analyses showed that all three genes were constitutively expressed in all examined tissues in Nile tilapia. OnMDA5 presented the highest expression level in the blood and the lowest expression level in the liver, while OnMAVS presented the highest expression level in the kidney. The highest expression level of OnLGP2 was detected in the liver. An examination of the expression patterns of these RIG-I-like receptors (RLRs) during embryonic development showed that the highest expression levels of OnMDA5 occurred at 2 days postfertilization (dpf), and the expression significantly decreased from 3 to 8 dpf. The expression levels of OnLGP2 significantly increased from 4 to 8 dpf. The expression levels of OnMAVS mRNA were stable from 2 to 8 dpf. Upon stimulation by intraperitoneal injection of Streptococcus agalactiae, the expression levels of OnMDA5 were first downregulated and then upregulated in the blood, gill and spleen. In the intestine and kidney, the expression of OnMDA5 was first upregulated, then downregulated, and then upregulated again. The expression of OnLGP2 was upregulated in the kidney and intestine, and the expression of OnMAVS was upregulated in the spleen. Overexpression of OnMAVS increased NF-κB activation in 293 T cells (p < 0.05), and after cotransfection with OnMDA5, the OnMAVS-dependent NF-κB activation was slightly increased (p > 0.05), after cotransfection with OnLGP2, the OnMAVS-dependent NF-κB activation was significantly decreased (p < 0.05). These findings suggest that, although the deduced protein structure of OnMDA5 is evolutionarily conserved with the structures of other RLR members, its signal transduction function is markedly different. The results also suggest that OnLGP2 has a negative regulatory effect on the OnMAVS gene. OnMDA5 and OnMAVS were uniformly distributed throughout the cytoplasm in 293 T cells, whereas OnLGP2 was distributed throughout the cytoplasm and nucleus. These results are helpful for clarifying the innate immune response against bacterial infection in Nile tilapia.
Collapse
Affiliation(s)
- Feng-Ying Gao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China; College of Fisheries and Life Science, Shanghai Ocean University Shanghai, 201306, PR China
| | - Mai-Xin Lu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China.
| | - Miao Wang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China
| | - Zhi-Gang Liu
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China
| | - Xiao-Li Ke
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China
| | - De-Feng Zhang
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China
| | - Jian-Meng Cao
- Pearl River Fisheries Research Institute, Chinese Academy of Fishery Science, Guangzhou, 510380, PR China; Key Laboratory of Tropical & Subtropical Fishery Resource Application & Cultivation, Ministry of Agriculture, PR China
| |
Collapse
|
21
|
Zhang L, Gao Z, Yu L, Zhang B, Wang J, Zhou J. Nucleotide-binding and oligomerization domain (NOD)-like receptors in teleost fish: Current knowledge and future perspectives. JOURNAL OF FISH DISEASES 2018; 41:1317-1330. [PMID: 29956838 DOI: 10.1111/jfd.12841] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 05/20/2018] [Accepted: 05/22/2018] [Indexed: 06/08/2023]
Abstract
Nucleotide-binding and oligomerization domain (NOD)-like receptors (NLRs) are a group of intracellular pathogen recognition receptors (PRRs) that play key roles in pathogen recognition and subsequent activation of innate immune signalling pathways. Expressions of several NLR subfamily members, including NOD1, NOD2, NLR-C3, NLR-C5 and NLR-X1 have been reported in many different teleost fish species. These receptors are activated by a variety of ligands, including lipopolysaccharides (LPS), peptidoglycans (PGN) and polyinosinic-polycytidylic acid [Poly(I:C)]. Synthetic dsRNA and bacterial or viral infections are known to stimulate these receptors both in vitro and in vivo. In this review, we focus on the identification, expression and function of teleost NLRs in response to bacterial or viral pathogens. Additionally, NLR ligand specificity and signalling pathways involved in the recognition of bacterial or viral stimuli are also summarized. This review focuses on current knowledge in this area and provides future perspectives regarding topics in need of additional investigation. Understanding the response of innate immune system to bacterial or viral infections in diverse species could inform the development of more effective therapies and vaccines.
Collapse
Affiliation(s)
- Liang Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Zhuying Gao
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
- Medical research institute of Wuhan University, Wuhan, China
| | - Li Yu
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Bo Zhang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jing Wang
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| | - Jun Zhou
- Shandong Provincial Key Laboratory of Animal Resistance Biology, Institute of Biomedical Sciences, College of Life Sciences, Shandong Normal University, Jinan, China
| |
Collapse
|
22
|
Krishnan R, K J, Mushtaq Z, Shyam KU, Kurcheti PP. Antiviral activity of transiently expressed mitochondrial antiviral signaling adapter, MAVS orthologue from Asian seabass. FISH & SHELLFISH IMMUNOLOGY 2018; 76:183-186. [PMID: 29510252 DOI: 10.1016/j.fsi.2018.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/09/2018] [Accepted: 03/01/2018] [Indexed: 06/08/2023]
Abstract
The innate immune signaling adapter, Mitochondrial antiviral signaling protein (MAVS) coordinates the signals received from two independent RLRs (RIG-1 and MDA5) to induce IFN & interferon stimulatory genes (ISGs). In the present study, we report identification of an orthologue of MAVS from Lates calcarifer (LcMAVS) and its functional role in piscine RLR signaling. The LcMAVS-cDNA was cloned into pcDNA and transfected into SISS cells. LcMAVS was detected to be a 61KDa protein in western blot. Confocal microscopy demonstrated the mitochondrial localization of LcMAVS. In addition, pcDNA-MAVS transfected cells were protected against Nervous Necrosis Virus (NNV) infection as manifested by the delayed appearance of cytopathic effect (CPE) and decreased viral transcript levels. Ectopic expression of LcMAVS resulted in activation of an ISRE-containing promoter (52 folds over control cells) as well as transcriptional expression of IRF-3, IFN-1 and IFN-inducible genes including Mx and ISG15 (p<0.05). These results suggest that LcMAVS is involved in the antiviral immunity as one of the adaptors in fish IFN-activation pathway.
Collapse
Affiliation(s)
- Rahul Krishnan
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, India
| | - Jeena K
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, India
| | - Zahoor Mushtaq
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, India
| | - K U Shyam
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, India
| | - Pani Prasad Kurcheti
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, India.
| |
Collapse
|
23
|
Robertsen B. The role of type I interferons in innate and adaptive immunity against viruses in Atlantic salmon. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 80:41-52. [PMID: 28196779 DOI: 10.1016/j.dci.2017.02.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2016] [Revised: 02/08/2017] [Accepted: 02/09/2017] [Indexed: 05/27/2023]
Abstract
Type I IFNs (IFN-I) are cytokines, which play a crucial role in innate and adaptive immunity against viruses of vertebrates. In essence, IFN-I are induced and secreted upon host cell recognition of viral nucleic acids and protect other cells against infection by inducing antiviral proteins. Atlantic salmon possesses an extraordinary repertoire of IFN-I genes encompassing at least six different classes (IFNa, IFNb, IFNc, IFNd, IFNe and IFNf) most of which are encoded by several genes. This review describes recent research on the functions of salmon IFNa, IFNb, IFNc and IFNd. As in mammals, expression of different salmon IFN-I in response to virus infection is dependent on their promoters, properties of the virus and the cell's expression of nucleic acid receptors and interferon regulatory factors (IRFs). While IFNa mainly display local antiviral activity, IFNb and IFNc show systemic antiviral activity. In addition, salmon appears to possess several IFN-I receptors, which show selectivity in binding different IFN-I. This complexity in IFN-I and receptors allows for a large variation in functions of the salmon IFN-I. Studies with intramuscular injection of IFN expression plasmids have recently provided surprising results, which may be of relevance for application of IFN-I in prophylaxis against virus infection. Firstly, injection of IFNc plasmid protected salmon presmolts against virus infection for at least 10 weeks. Secondly, IFN plasmids showed potent adjuvant activity when injected together with a DNA vaccine against infectious salmon anemia virus (ISAV).
Collapse
Affiliation(s)
- Børre Robertsen
- Norwegian College of Fishery Science, UiT-The Arctic University of Norway, 9037 Tromsø, Norway.
| |
Collapse
|
24
|
Krishnan R, Girish Babu P, Jeena K, Tripathi G, Pani Prasad K. Molecular characterization, ontogeny and expression profiling of mitochondrial antiviral signaling adapter, MAVS from Asian seabass Lates calcarifer, Bloch (1790). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2018; 79:175-185. [PMID: 29100916 DOI: 10.1016/j.dci.2017.10.019] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Revised: 10/27/2017] [Accepted: 10/27/2017] [Indexed: 06/07/2023]
Abstract
Mitochondrial antiviral signaling protein (MAVS), an innate immune signaling adapter coordinates the signals received from two independent cytosolic pathogen recognition receptors (RIG-1 and MDA5) to induce antiviral genes. In the present study the MAVS gene of Lates calcarifer (LcMAVS) was cloned and characterized. The complete cDNA sequence of LcMAVS was 3160 bp and encodes a poly peptide of 577 amino acids. Structural analysis of LcMAVS revealed an N-terminal CARD-like domain, central proline-rich domain and a C-terminal transmembrane domain. Phylogenetic analysis indicated that LcMAVS exhibited the closest relationship to P. olivaceous MAVS. LcMAVS was ubiquitously expressed in all tested tissues of healthy fish viz., brain, gill, heart, liver, spleen, kidney and intestine, with highest transcript level in spleen. The mRNA transcript level of LcMAVS in different developmental stages showed constitutive expression in all the stages tested suggesting the maternal transfer of the gene. Significant up regulation in MAVS expression was observed post nervous necrosis virus (NNV) challenge in vivo in all the selected tissues. Further, time course analysis showed that LcMAVS transcripts significantly increased in the brain and spleen tissues after NNV infection. These findings provide useful information for further elucidating the function of LcMAVS in antiviral innate immune response against NNV in Asian seabass.
Collapse
Affiliation(s)
- Rahul Krishnan
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, India
| | - P Girish Babu
- Fish Genetics and Biotechnology Division, ICAR- Central Institute of Fisheries Education, Mumbai, India
| | - K Jeena
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, India
| | - Gayathri Tripathi
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, India
| | - Kurcheti Pani Prasad
- Aquatic Environment and Health Management Division, ICAR- Central Institute of Fisheries Education, Mumbai, India.
| |
Collapse
|
25
|
Chang CJ, Gu J, Robertsen B. Protective effect and antibody response of DNA vaccine against salmonid alphavirus 3 (SAV3) in Atlantic salmon. JOURNAL OF FISH DISEASES 2017; 40:1775-1781. [PMID: 28493514 DOI: 10.1111/jfd.12644] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Revised: 03/10/2017] [Accepted: 03/14/2017] [Indexed: 05/13/2023]
Abstract
This work reports the effect of two DNA vaccines against salmonid alphavirus 3 (SAV3) in Atlantic salmon. Presmolts were vaccinated by intramuscular injection of plasmids encoding the SAV3 structural polyprotein C-E3-E2-6K-E2 (pCSP), E2 only (pE2), or plasmid without insert (pcDNA3.3). E2 is expressed at the surface of cells transfected with pCSP and internally in cells transfected with pE2. A commercial vaccine based on inactivated SAV (NCPD) was used for comparison. At 10 weeks post-vaccination, only fish vaccinated with pCSP showed antibody against E2 and virus-neutralizing activity. Vaccinated fish were infected with SAV3 to determine protection by virus quantitation in serum after 7 days and scoring of pathological changes after 21 days. Fish vaccinated with both pCSP and NCPD vaccines showed significant virus reduction in serum, while fish vaccinated with pE2 did not. All fish vaccinated with pcDNA3.3 and pE2 showed pathological changes in organs typical of PD, 60% of fish vaccinated with NCPD showed PD pathology, while fish vaccinated with pCSP did not show PD pathology. Taken together, DNA vaccination with pCSP provided strong protection for salmon against SAV3 infection, which in part may be due to production of virus-neutralizing antibodies.
Collapse
Affiliation(s)
- C J Chang
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| | - J Gu
- Norwegian Veterinary Institute, Trondheim, Norway
| | - B Robertsen
- Norwegian College of Fishery Science, UiT The Arctic University of Norway, Tromsø, Norway
| |
Collapse
|
26
|
Xu X, Li M, Wu Z, Wang H, Wang L, Huang K, Liu X, Hou Q, Lin G, Hu C. Endoplasmic Reticulum Transmembrane Proteins ZDHHC1 and STING Both Act as Direct Adaptors for IRF3 Activation in Teleost. THE JOURNAL OF IMMUNOLOGY 2017; 199:3623-3633. [PMID: 29046345 DOI: 10.4049/jimmunol.1700750] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 09/15/2017] [Indexed: 12/12/2022]
Abstract
IFN regulatory factor (IRF)3 is a central regulator for IFN-β expression in different types of pathogenic infections. Mammals have various pathogenic sensors that are involved in monitoring pathogen intrusions. These sensors can trigger IRF3-mediated antiviral responses through different pathways. Endoplasmic reticulum-associated proteins stimulator of IFN gene (STING) and zinc finger DHHC-type containing 1 (ZDHHC1) are critical mediators of IRF3 activation in response to viral DNA infections. In this study, grass carp STING and ZDHHC1 were found to have some similar molecular features and subcellular localization, and both were upregulated upon stimulation with polyinosinic:polycytidylic acid, B-DNA, or Z-DNA. Based on these results, we suggest that grass carp STING and ZDHHC1 might possess some properties similar to their mammalian counterparts. Overexpression of ZDHHC1 and STING in Ctenopharyngodon idella kidney cells upregulated IFN expression, whereas knockdown of IRF3 inhibited IFN activation. In addition, coimmunoprecipitation and GST pull-down assays demonstrated that STING and ZDHHC1 can interact separately with IRF3 and promote the dimerization and nuclear translocation of IRF3. Furthermore, we also found that small interfering RNA-mediated knockdown of STING could inhibit the expression of IFN and ZDHHC1 in fish cells. Similarly, knockdown of STING resulted in inhibition of the IFN promoter. In contrast, ZDHHC1 knockdown also inhibited IFN expression but had no apparent effect on STING, which indicates that STING is necessary for IFN activation through ZDHHC1. In conclusion, STING and ZDHHC1 in fish can respond to viral DNA or RNA molecules in cytoplasm, as well as activate IRF3 and, eventually, trigger IFN expression.
Collapse
Affiliation(s)
- Xiaowen Xu
- Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, College of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Meifeng Li
- Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, College of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Zhen Wu
- Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, College of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Haizhou Wang
- Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, College of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Liqiang Wang
- Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, College of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Keyi Huang
- Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, College of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Xiancheng Liu
- Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, College of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Qunhao Hou
- Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, College of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Gang Lin
- Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, College of Life Sciences, Nanchang University, Nanchang 330031, China
| | - Chengyu Hu
- Key Laboratory of Aquatic Resources and Utilization of Jiangxi Province, College of Life Sciences, Nanchang University, Nanchang 330031, China
| |
Collapse
|
27
|
Hu Y, Yoshikawa T, Chung S, Hirono I, Kondo H. Identification of 2 novel type I IFN genes in Japanese flounder, Paralichthys olivaceus. FISH & SHELLFISH IMMUNOLOGY 2017; 67:7-10. [PMID: 28546019 DOI: 10.1016/j.fsi.2017.05.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2017] [Revised: 05/17/2017] [Accepted: 05/20/2017] [Indexed: 06/07/2023]
Abstract
Two novel type I interferon genes (JfIFN3 and JfIFN4) have been identified in Japanese flounder Paralichthys olivaceus. Open reading frames of JfIFN3 and JfIFN4 were 555bp and 528bp, encoding 184aa and 175aa, respectively. The genomic structures of JfIFN3 and JfIFN4 are composed of 5 exons and 4 introns. JfIFN4 has 2 conserved cysteine residues, while JfIFN3 has 4. JfIFN3 and JfIFN4 showed the highest amino acid sequence identities to turbot IFN1 (74%) and IFN2 (62%), respectively. Interestingly, JfIFN3 and JfIFN4 were clustered in distinct branches with JfIFN1 and JfIFN2, which have reported so far. The mRNA levels of JfIFN4 were apparently increased in the kidney and spleen at 3 h after ployI:C injection, while JfIFN1-3 were not detected by RT-PCR.
Collapse
Affiliation(s)
- Yiwen Hu
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan; National Engineering Research Center of Marine Facilities Aquaculture, College of Marine Science and Technology, Zhejiang Ocean University, No. 1 of Haida Street, Zhoushan, Zhejiang 316022, China
| | - Takaki Yoshikawa
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Seangmin Chung
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan
| | - Hidehiro Kondo
- Laboratory of Genome Science, Graduate School of Tokyo University of Marine Science and Technology, Minato-ku, Tokyo, Japan.
| |
Collapse
|
28
|
Chen SN, Zou PF, Nie P. Retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs) in fish: current knowledge and future perspectives. Immunology 2017; 151:16-25. [PMID: 28109007 DOI: 10.1111/imm.12714] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Revised: 12/20/2016] [Accepted: 01/12/2017] [Indexed: 12/24/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) -like receptors (RLRs) are found conservatively present in teleost fish. All three members, RIG-I, MDA5 and LGP2, together with the downstream molecules such as MITA, TRAF3 and TBK1, have been identified in a range of fish species. However, it is unexpected that RIG-I has not been reported in fish of Acanthopterygii, and it would be important to clarify the presence and role of the RIG-I gene in a broad range of taxa in Teleostei. RLRs in fish can be induced in vivo and in vitro by viral pathogens as well as synthetic dsRNA, poly(I:C), leading to the production of type I interferons (IFNs) and the expression of IFN-stimulated genes (ISGs). Bacterial pathogens, such as Edwardsiella tarda, and their components, such as lipopolysaccharide are also found to induce the expression of RLRs, and whether such induction was mediated through the direct recognition by RLRs or through crosstalk with other pattern recognition receptors recognizing directly bacterial pathogen-associated molecular patterns awaits to be investigated. On the other hand, RLR-activated type I IFN production can be negatively regulated in fish by molecules, such as TBK-1-like protein and IRF10, which are found to negatively regulate RIG-I and MAVS-activated type I IFN production, and to block MITA or bind ISRE motifs, respectively. It is considered that the evolutionary occurrence of RLRs in fish, and their recognized ligands, especially those from their fish pathogens, as well as the mechanisms involved in the RLR signalling pathways, are of significant interest for further investigation.
Collapse
Affiliation(s)
- Shan Nan Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Peng Fei Zou
- College of Fisheries, Jimei University, Xiamen, Fujian, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, China
| |
Collapse
|
29
|
Wan Q, Yang C, Rao Y, Liao Z, Su J. MDA5 Induces a Stronger Interferon Response than RIG-I to GCRV Infection through a Mechanism Involving the Phosphorylation and Dimerization of IRF3 and IRF7 in CIK Cells. Front Immunol 2017; 8:189. [PMID: 28286505 PMCID: PMC5323377 DOI: 10.3389/fimmu.2017.00189] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 02/09/2017] [Indexed: 12/22/2022] Open
Abstract
Retinoic acid-inducible gene I (RIG-I) and melanoma differentiation-associated gene 5 (MDA5) are critical cytosolic sensors that trigger the production of interferons (IFNs). Though their recognition functions are well identified, their unique roles in the downstream signal transduction remain to be elucidated. Herein, we report the differential effect between grass carp (Ctenopharyngodon idella) MDA5 (CiMDA5) and CiRIG-I on the production of various IFNs upon grass carp reovirus (GCRV) infection in C. idella kidney (CIK) cell line. In CIK cells, grass carp IFN1 (CiIFN1) and CiIFN3 are relatively highly expressed while CiIFN2 and CiIFN4 are relatively slightly expressed. Following GCRV infection, CiMDA5 induces a more extensive type I IFN response than CiRIG-I. Further investigation reveals that both CiMDA5 and CiRIG-I facilitate the expression and total phosphorylation levels of grass carp IFN regulatory factor (IRF) 3 (CiIRF3) and CiIRF7 upon GCRV infection or poly(I:C) stimulation. However, the difference is that CiRIG-I decreases the threonine phosphorylation level of CiIRF7. As a consequence, CiMDA5 enhances the heterodimerization of CiIRF3 and CiIRF7 and homodimerization of CiIRF7, whereas CiRIG-I facilitates the heterodimerization but attenuates homodimerization of CiIRF7. Moreover, the present study suggests that CiIRF3 and CiIRF7 heterodimers and CiIRF7 homodimers are able to induce more extensive IFN-I responses than CiIRF3 homodimers under GCRV infection. Additionally, CiMDA5 induces a stronger type II IFN (IFN-II) response against GCRV infection than CiRIG-I. Collectively, these results demonstrate that CiMDA5 plays a more potent role than CiRIG-I in IFN response to GCRV infection through differentially regulating the phosphorylation and dimerization of CiIRF3 and CiIRF7.
Collapse
Affiliation(s)
- Quanyuan Wan
- College of Fisheries, Huazhong Agricultural University , Wuhan , China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University , Wuhan , China
| | - Youliang Rao
- College of Fisheries, Huazhong Agricultural University , Wuhan , China
| | - Zhiwei Liao
- College of Fisheries, Huazhong Agricultural University , Wuhan , China
| | - Jianguo Su
- College of Fisheries, Huazhong Agricultural University , Wuhan , China
| |
Collapse
|
30
|
Han J, Wang Y, Chu Q, Xu T. The evolution and functional characterization of miiuy croaker cytosolic gene LGP2 involved in immune response. FISH & SHELLFISH IMMUNOLOGY 2016; 58:193-202. [PMID: 27637730 DOI: 10.1016/j.fsi.2016.09.025] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2016] [Revised: 09/05/2016] [Accepted: 09/12/2016] [Indexed: 06/06/2023]
Abstract
The laboratory of genetics and physiology 2 (LGP2) is a member of retinoic acid-inducible gene I (RIG-I)-like receptors (RLR receptors), which may participate in the immune regulation process. The role of LGP2 on modulating signaling was ambiguous, some researchers suggested that the regulation mechanism of LGP2 to melanoma differentiation-associated gene 5 (MDA5) and retinoic acid inducible gene-I (RIG-I) were different. In this study, the bioinformatics and functions of LGP2 from miiuy croaker (mmLGP2) were characterized. Comparative genomic analysis showed that the evolution of LGP2 in mammals was more conserved than it in fish. LGP2 contains three structural domains: ResIII, HelicaseC and RD, and ResIII structural domain of LGP2 was extremely conservative. The mmLGP2 was ubiquitously expressed in the tested miiuy croaker tissues and the expressions were significantly upregulated after stimulation with poly(I:C), indicating that LGP2 might participate in the immune response, especially antiviral immunity. Furthermore, immunofluorescence of miiuy croaker LGP2 presents in the cytoplasm in Hela cells. The overexpression of mmLGP2 can activate ISRE, but cannot activate NF-κB luciferase reporter, implying that mmLGP2 might act as a positive regulator in immune responses through activating ISRE to induce the expression of IFN. The research of mmLGP2 will enrich the information of fish LGP2, and the functional experiments will be helpful for the future research about fish immune systems.
Collapse
Affiliation(s)
- Jingjing Han
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Yanjin Wang
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Qing Chu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China
| | - Tianjun Xu
- Laboratory of Fish Biogenetics & Immune Evolution, College of Marine Science, Zhejiang Ocean University, Zhoushan, 316022, China.
| |
Collapse
|
31
|
Li N, Hong T, Li R, Wang Y, Guo M, Cao Z, Cai Y, Liu S, Chai T, Wei L. Cherry Valley Ducks Mitochondrial Antiviral-Signaling Protein-Mediated Signaling Pathway and Antiviral Activity Research. Front Immunol 2016; 7:377. [PMID: 27708647 PMCID: PMC5030477 DOI: 10.3389/fimmu.2016.00377] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 09/08/2016] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial antiviral-signaling protein (MAVS), an adaptor protein of retinoic acid-inducible gene I (RIG-I)-like receptors (RLRs)-mediated signal pathway, is involved in innate immunity. In this study, Cherry Valley duck MAVS (duMAVS) was cloned from the spleen and analyzed. duMAVS was determined to have a caspase activation and recruitment domain at N-terminal, followed by a proline-rich domain and a transmembrane domain at C-terminal. Quantitative real-time PCR indicated that duMAVS was expressed in all tissues tested across a broad expression spectrum. The expression of duMAVS was significantly upregulated after infection with duck Tembusu virus (DTMUV). Overexpression of duMAVS could drive the activation of interferon (IFN)-β, nuclear factor-κB, interferon regulatory factor 7, and many downstream factors (such as Mx, PKR, OAS, and IL-8) in duck embryo fibroblast cells. What is more, RNA interference further confirmed that duMAVS was an important adaptor for IFN-β activation. The antiviral assay showed that duMAVS could suppress the various viral replications (DTMUV, novel reovirus, and duck plague virus) at early stages of infection. Overall, these results showed that the main signal pathway mediated by duMAVS and it had a broad-spectrum antiviral ability. This research will be helpful to better understanding the innate immune system of ducks.
Collapse
Affiliation(s)
- Ning Li
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, China; Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical College, Tai'an City, China
| | - Tianqi Hong
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, College of Veterinary Medicine, Shandong Agricultural University , Tai'an City , China
| | - Rong Li
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, College of Veterinary Medicine, Shandong Agricultural University , Tai'an City , China
| | - Yao Wang
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, College of Veterinary Medicine, Shandong Agricultural University , Tai'an City , China
| | - Mengjiao Guo
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, College of Veterinary Medicine, Shandong Agricultural University , Tai'an City , China
| | - Zongxi Cao
- Hainan Provincial Key Laboratory of Tropical Animal Reproduction and Breeding and Veterinary Medicine, Institute of Animal Husbandry and Veterinary Medicine, Hainan Academy of Agricultural Sciences , Haikou , China
| | - Yumei Cai
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, College of Veterinary Medicine, Shandong Agricultural University , Tai'an City , China
| | - Sidang Liu
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, College of Veterinary Medicine, Shandong Agricultural University , Tai'an City , China
| | - Tongjie Chai
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, China; Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical College, Tai'an City, China
| | - Liangmeng Wei
- Sino-German Cooperative Research Centre for Zoonosis of Animal Origin of Shandong Province, College of Veterinary Medicine, Shandong Agricultural University, Tai'an City, China; Collaborative Innovation Centre for the Origin and Control of Emerging Infectious Diseases of Taishan Medical College, Tai'an City, China
| |
Collapse
|
32
|
Ashraf U, Lu Y, Lin L, Yuan J, Wang M, Liu X. Spring viraemia of carp virus: recent advances. J Gen Virol 2016; 97:1037-1051. [DOI: 10.1099/jgv.0.000436] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Usama Ashraf
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PRChina
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PRChina
- State Key Laboratory of Agricultural Microbiology, Huazhong Agricultural University, Wuhan, Hubei 430070, PRChina
| | - Yuanan Lu
- Department of Public Health Sciences, University of Hawaii, Manoa, HI 96822, USA
| | - Li Lin
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PRChina
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PRChina
| | - Junfa Yuan
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PRChina
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PRChina
| | - Min Wang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PRChina
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PRChina
| | - Xueqin Liu
- Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, PRChina
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan, Hubei 430070, PRChina
| |
Collapse
|
33
|
Li C, Greiner-Tollersrud L, Robertsen B. Infectious salmon anemia virus segment 7 ORF1 and segment 8 ORF2 proteins inhibit IRF mediated activation of the Atlantic salmon IFNa1 promoter. FISH & SHELLFISH IMMUNOLOGY 2016; 52:258-262. [PMID: 27012395 DOI: 10.1016/j.fsi.2016.03.038] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2015] [Revised: 03/14/2016] [Accepted: 03/18/2016] [Indexed: 06/05/2023]
Abstract
Infectious salmon anemia virus (ISAV) is an orthomyxovirus, which may cause multisystemic disease and high mortality of Atlantic salmon (Salmo salar L). This suggests that ISAV encodes proteins that antagonize the type I interferon (IFN-I) system, which is of crucial importance in innate antiviral immunity. To find out how ISAV might inhibit IFN-I synthesis, we have here studied whether the two ISAV proteins s7ORF1 and s8ORF2 might interfere with activation of the IFNa1 promoter mediated by overexpression of interferon regulatory factors (IRFs) or by the IFN promoter activation protein IPS-1. The IRF tested were IRF1, IRF3, IRF7A and IRF7B. Promoter activation was measured using a luciferase reporter assay where Atlantic salmon TO cells were co-transfected with the IFNa1 promoter reporter plasmid together with an IRF plasmid and the s7ORF1 or the s8ORF2 construct or a control plasmid. The results showed that s7ORF1 significantly inhibited IRF3 and IRF7B induced IFN promoter activity, while s8ORF2 significantly inhibited IRF1 and IRF3 induced promoter activity. Neither s7ORF1 nor s8ORF2 inhibited IPS-1 mediated promoter activation. Immunoprecipitation data suggest that both s7ORF1 and s8ORF2 can bind to all four IRFs. Taken together, this study thus shows that the ISAV proteins s7ORF1 and s8ORF2 antagonizes IFN-I transcription activation mediated by the IRFs. As such this work provides further insight into the pathogenic properties of ISAV.
Collapse
Affiliation(s)
- Chun Li
- Norwegian College of Fishery Science, University of Tromsø, The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Linn Greiner-Tollersrud
- Norwegian College of Fishery Science, University of Tromsø, The Arctic University of Norway, N-9037, Tromsø, Norway
| | - Børre Robertsen
- Norwegian College of Fishery Science, University of Tromsø, The Arctic University of Norway, N-9037, Tromsø, Norway.
| |
Collapse
|
34
|
Lu LF, Li S, Lu XB, LaPatra SE, Zhang N, Zhang XJ, Chen DD, Nie P, Zhang YA. Spring Viremia of Carp Virus N Protein Suppresses Fish IFNφ1 Production by Targeting the Mitochondrial Antiviral Signaling Protein. THE JOURNAL OF IMMUNOLOGY 2016; 196:3744-53. [PMID: 26994222 DOI: 10.4049/jimmunol.1502038] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 02/18/2016] [Indexed: 02/06/2023]
Abstract
For a virus to replicate efficiently, it must try and inhibit host IFN expression because IFN is an important host defense at early stages after viral infection. For aquatic viruses, the mechanisms used to escape the hosts IFN system are still unclear. In this study, we show that the N protein of spring viremia of carp virus (SVCV) inhibits zebrafish IFNφ1 production by degrading the mitochondrial antiviral signaling protein (MAVS). First, the upregulation of IFNφ1 promoter activity stimulated by polyinosinic:polycytidylic acid, retinoic acid-inducible gene I (RIG-I) or MAVS was suppressed by the SVCV infection. However, the upregulation by the downstream factor of the RIG-I-like receptor signaling pathway, TANK-binding kinase 1, was not affected. Notably, at the protein level, MAVS decreased remarkably when cells were infected with SVCV. Second, consistent with the result of the SVCV infection, overexpression of the N protein of SVCV blocked the IFNφ1 transcription activated by MAVS and downregulated MAVS expression at the protein level but not at the mRNA level. Further analysis demonstrated that the N protein targeted MAVS for K48-linked ubiquitination, which promoted the degradation of MAVS. These data indicated that fish MAVS could be degraded by the N protein of SVCV through the ubiquitin-proteasome pathway. To our knowledge, this is the first article of a fish RIG-I-like receptor pathway interfered by an aquatic virus in an ubiquitin-proteasome manner, suggesting that immune evasion of a virus also exists in lower vertebrates.
Collapse
Affiliation(s)
- Long-Feng Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shun Li
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiao-Bing Lu
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Scott E LaPatra
- Research Division, Clear Spring Foods, Inc., Buhl, ID 83316; and
| | - Nu Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xu-Jie Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China; College of Fisheries and Life Science, Shanghai Ocean University, Shanghai 201306, China
| | - Dan-Dan Chen
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Pin Nie
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yong-An Zhang
- Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China;
| |
Collapse
|
35
|
Jia P, Jin Y, Chen L, Zhang J, Jia K, Yi M. Molecular characterization and expression analysis of mitochondrial antiviral signaling protein gene in sea perch, Lateolabrax japonicus. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 55:188-93. [PMID: 26493015 DOI: 10.1016/j.dci.2015.10.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Revised: 10/15/2015] [Accepted: 10/15/2015] [Indexed: 05/07/2023]
Abstract
The mitochondrial antiviral signaling protein (MAVS) is vital for host defenses against viral infection by inducing expression of type I interferon. Here, the MAVS of sea perch (Lateolabrax japonicus) (LjMAVS) was cloned and analyzed. The complete cDNA sequence of LjMAVS was 3207 bp and encoded a polypeptide of 601 amino acids. LjMAVS contains an N-terminal CARD-like domain, a central proline-rich domain and a C-terminal transmembrane domain. Phylogenetic analysis indicated that LjMAVS exhibited the closest relationship to O. fasciatus MAVS. LjMAVS was ubiquitously expressed in all tested tissues of healthy fish. The expression of LjMAVS was significantly increased post nervous necrosis virus (NNV) infection in vivo in all the selected tissues. Furthermore, time course analysis showed that LjMAVS transcripts significantly increased in the brain, spleen and kidney tissues after NNV infection. LjMAVS mRNA expression was significantly up-regulated in vitro after poly I:C stimulation. The viral gene transcription of RGNNV was significantly decreased in LjMAVS over-expressing LJB cells. These findings provide useful information for further elucidating the function ofLjMAVS in antiviral innate immune against NNV in sea perch.
Collapse
Affiliation(s)
- Peng Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Yilin Jin
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Limin Chen
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Jing Zhang
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Kuntong Jia
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| | - Meisheng Yi
- School of Marine Sciences, Sun Yat-sen University, Guangzhou 510275, China; South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center, Sun Yat-sen University, Guangzhou 510275, China; Guangdong Provincial Key Laboratory of Marine Resources and Coastal Engineering, Sun Yat-sen University, Guangzhou 510275, China.
| |
Collapse
|
36
|
Feng X, Zhang Y, Yang C, Liao L, Wang Y, Su J. Functional characterizations of IPS-1 in CIK cells: Potential roles in regulating IFN-I response dependent on IRF7 but not IRF3. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 53:23-32. [PMID: 26111995 DOI: 10.1016/j.dci.2015.06.005] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Revised: 04/27/2015] [Accepted: 06/06/2015] [Indexed: 06/04/2023]
Abstract
IPS-1, as the sole adaptor of RIG-I and MDA5, plays a central role in innate antiviral immunity. In this study, we investigated potential roles of IPS-1 in innate immunity and the domain-requirement of IPS-1 for its signaling in grass carp (Ctenopharyngodon idella). Overexpression experiment showed that CiIPS-1 mediated IFN-I signal possibly dependent on CiIRF7 but not CiIRF3. Post GCRV challenge, CiIPS-1 could enhance antiviral immune responses. CARD and TM domains were crucial for antiviral function of CiIPS-1, and TRAF motif played an assistant role. PRO domain seemed as a negative regulator but was pivotal for the initiation of CiIFN-I and CiMx1. Post viral/bacterial PAMPs stimulation, CiIPS-1-mediated signaling was tightly controlled. CARD domain of CiIPS-1 could significantly elicit poly I:C/LPS/PGN-mediated signaling. PRO domain negatively regulated CiIRF7 and CiIFN-I but was indispensable for inductions of CiMx1 and CiIL-1β. TRAF motif and TM domain regulated the signaling presumably in a cooperative fashion. Post poly I:C stimulation, TRAF motif negatively regulated CiIRF7, CiIFN-I and CiIL-1β at a relative early time while TM domain functioned at a relative late time. TRAF motif was indispensable for the production of CiMx1, while TM domain slightly negatively regulated the expression. Post LPS and PGN stimulation, TRAF motif excited an assistant and persistent negative role on CiIFN-I, CiIRF7 and CiIL-1β induction, but was crucial for induction of CiMx1. TM domain slightly negatively regulated LPS- and PGN-triggered signaling. Taken together, CiIPS-1 not only exerted important functions in antiviral immune response but also participated in viral/bacterial PAMPs-triggered immune response which was tightly controlled to prevent harmful effects resulting from excessive activation. This study provided novel insights into the pivotal role of IPS-1 in innate immunity.
Collapse
Affiliation(s)
- Xiaoli Feng
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Yixuan Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Lanjie Liao
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yaping Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China
| | - Jianguo Su
- College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; Freshwater Aquaculture Collaborative Innovation Center of Hubei Province, Wuhan 430070, China.
| |
Collapse
|
37
|
Disparate developmental patterns of immune responses to bacterial and viral infections in fish. Sci Rep 2015; 5:15458. [PMID: 26487553 PMCID: PMC4614352 DOI: 10.1038/srep15458] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2015] [Accepted: 09/24/2015] [Indexed: 12/26/2022] Open
Abstract
During early stages of development vertebrates rely on an immature immune system to fight pathogens, but in non mammalian species few studies have taken an in-depth analysis of the transition from reliance on innate immune mechanisms to the appearance of adaptive immunity. Using rainbow trout as a model we characterized responses to two natural pathogens of this species, the Gram negative bacterium Aeromonas salmonicida and the virus VHSV, using microarray analysis at four early life history stages; eyed egg, post hatch, first feeding and three weeks post first feeding when adaptive immunity starts to be effective. All stages responded to both infections, but the complexity of the response increased with developmental stage. The response to virus showed a clear interferon response only from first feeding. In contrast, bacterial infection induced a marked response from early stages, with modulation of inflammatory, antimicrobial peptide and complement genes across all developmental stages. Whilst the viral and bacterial responses were distinct, there were modulated genes in common, mainly of general inflammatory molecules. This work provides a first platform to explore the development of fish immunity to infection, and to compare the age-dependent changes (from embryo to adults) across vertebrates.
Collapse
|
38
|
Sensors of Infection: Viral Nucleic Acid PRRs in Fish. BIOLOGY 2015; 4:460-93. [PMID: 26184332 PMCID: PMC4588145 DOI: 10.3390/biology4030460] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2015] [Revised: 06/19/2015] [Accepted: 06/19/2015] [Indexed: 12/25/2022]
Abstract
Viruses produce nucleic acids during their replication, either during genomic replication or transcription. These nucleic acids are present in the cytoplasm or endosome of an infected cell, or in the extracellular space to be sensed by neighboring cells during lytic infections. Cells have mechanisms of sensing virus-generated nucleic acids; these nucleic acids act as flags to the cell, indicating an infection requiring defense mechanisms. The viral nucleic acids are called pathogen-associated molecular patterns (PAMPs) and the sensors that bind them are called pattern recognition receptors (PRRs). This review article focuses on the most recent findings regarding nucleic acids PRRs in fish, including: Toll-like receptors (TLRs), RIG-I-like receptors (RLRs), cytoplasmic DNA sensors (CDSs) and class A scavenger receptors (SR-As). It also discusses what is currently known of the downstream signaling molecules for each PRR family and the resulting antiviral response, either type I interferons (IFNs) or pro-inflammatory cytokine production. The review highlights what is known but also defines what still requires elucidation in this economically important animal. Understanding innate immune systems to virus infections will aid in the development of better antiviral therapies and vaccines for the future.
Collapse
|
39
|
Zhou W, Zhou J, Lv Y, Qu Y, Chi M, Li J, Feng H. Identification and characterization of MAVS from black carp Mylopharyngodon piceus. FISH & SHELLFISH IMMUNOLOGY 2015; 43:460-468. [PMID: 25655327 DOI: 10.1016/j.fsi.2015.01.016] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2014] [Revised: 01/14/2015] [Accepted: 01/22/2015] [Indexed: 06/04/2023]
Abstract
MAVS (mitochondria antiviral signaling protein) plays an important role in the host cellular innate immune response against microbial pathogens. In this study, MAVS has been cloned and characterized from black carp (Mylopharyngodon piceus). The full-length cDNA of black carp MAVS (bcMAVS) consists of 2352 nucleotides and the predicted bcMAVS protein contains 579 amino acids. Structural analysis showed that bcMAVS is composed of functional domains including an N-terminal CARD, a central proline-rich domain, a putative TRAF2-binding motif and a C-terminal TM domain, which is similar to mammalian MAVS. bcMAVS is constitutively transcribed in all the selected tissues including gill, kidney, heart, intestine, liver, muscle, skin and spleen; bcMAVS mRNA level in intestine, liver, muscle increased but decreased in spleen right after GCRV or SVCV infection. Multiple bands of bcMAVS were detected in western blot when it was expressed in tissue culture, which is similar to mammalian MAVS. Immunofluorescence assay determined that bcMAVS is a mitochondria protein and luciferase reporter assay demonstrated that bcMAVS could induce zebrafish IFN and EPC IFN expression in tissue culture. Data generated in this manuscript has built a solid foundation for further elucidating the function of bcMAVS in the innate immune system of black carp.
Collapse
Affiliation(s)
- Wei Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jujun Zhou
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Ying Lv
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Yixiao Qu
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Mengdie Chi
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Jun Li
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha, 410081, China
| | - Hao Feng
- Key Laboratory of Protein Chemistry and Developmental Biology of Ministry of Education of China, College of Life Science, Hunan Normal University, Changsha, 410081, China; State Key Laboratory of Freshwater Ecology and Biotechnology, Wuhan, 430072, China.
| |
Collapse
|
40
|
Abortive infection of snakehead fish vesiculovirus in ZF4 cells was associated with the RLRs pathway activation by viral replicative intermediates. Int J Mol Sci 2015; 16:6235-50. [PMID: 25794284 PMCID: PMC4394529 DOI: 10.3390/ijms16036235] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2015] [Revised: 03/07/2015] [Accepted: 03/10/2015] [Indexed: 01/04/2023] Open
Abstract
Snakehead fish vesiculovirus (SHVV) is a negative strand RNA virus which can cause great economic losses in fish culture. To facilitate the study of SHVV-host interactions, the susceptibility of zebrafish embryonic fibroblast cell line (ZF4) to the SHVV was investigated in this report. The results showed that high amount of viral mRNAs and cRNAs were detected at the 3 h post-infection. However, the expressions of the viral mRNAs and cRNA were decreased dramatically after 6 h post-infection. In addition, the expressions of interferon (IFN) and interferon-induced GTP-binding protein Mx were all up regulated significantly at the late stage of the infection. Meanwhile, the expressions of Retinoic acid-inducible gene I (RIG-I) and Melanoma differentiation-associated gene 5 (MDA5) were also all up-regulated significantly during the infection. Two isoforms of DrLGP2 from zebrafish were also cloned and analyzed. Interestingly, the expression of DrLGP2a but not DrLGP2b was significantly up-regulated at both mRNA and protein levels, indicating that the two DrLGP2 isoforms might play different roles during the SHVV infection. Transfection experiment showed that viral replicative intermediates were required for the activation of IFN-α expression. Taken together, the abortive infection of SHVV in ZF4 cells was associated with the activation of RLRs pathway, which was activated by viral replicative intermediates.
Collapse
|
41
|
Zhou ZX, Sun L. Immune effects of R848: evidences that suggest an essential role of TLR7/8-induced, Myd88- and NF-κB-dependent signaling in the antiviral immunity of Japanese flounder (Paralichthys olivaceus). DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:113-20. [PMID: 25475963 DOI: 10.1016/j.dci.2014.11.018] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 11/26/2014] [Accepted: 11/26/2014] [Indexed: 06/04/2023]
Abstract
The imidazoquinoline compound R848 is a specific agonist of toll-like receptor (TLR) 7/TLR8 that has been used as an immunostimulant in humans against viral diseases. Although R848-induced immune response has been reported in teleost fish, the relevant mechanism is not clear. In this study, we investigated the antiviral potential and the signaling pathway of R848 in a model of Japanese flounder (Paralichthys olivaceus). We found that R848 was able to inhibit the replication of megalocytivirus, stimulated the proliferation of peripheral blood leukocytes (PBL), enhanced the expression of immune genes, and reduced apoptosis of PBL. When endosomal acidification was blocked by chloroquine (CQ), R848-mediated antiviral activity and immune response were significantly reduced. Likewise, inhibition of Myd88 activation markedly impaired the pro-proliferation and anti-apoptosis effect of R848. Cellular study showed that cultured founder cells treated with R848 exhibited augmented NF-κB activity, which, however, was dramatically reduced in the presence of CQ and Myd88 inhibitor. Furthermore, when NF-κB was inactivated, the effect of R848 on cell proliferation and apoptosis was significantly decreased. Taken together, these results indicate that R848 is an immunostimulant with antiviral property in a teleost species, and that the immune response of R848 is mediated by, most likely, TLR7/TLR8 signaling pathway, in which Myd88 and NK-κB play an essential role.
Collapse
Affiliation(s)
- Zhi-Xia Zhou
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China
| | - Li Sun
- Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Chinese Academy of Sciences, 7 Nanhai Road, Qingdao 266071, China.
| |
Collapse
|
42
|
Chen WQ, Hu YW, Zou PF, Ren SS, Nie P, Chang MX. MAVS splicing variants contribute to the induction of interferon and interferon-stimulated genes mediated by RIG-I-like receptors. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 49:19-30. [PMID: 25445907 DOI: 10.1016/j.dci.2014.10.017] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2014] [Revised: 10/11/2014] [Accepted: 10/31/2014] [Indexed: 06/04/2023]
Abstract
The mitochondrial antiviral signaling protein (MAVS) plays a key role in the signal transduction of RIG-I-like receptors (RLRs)-mediated antiviral response. In the present study, zebrafish MAVS transcript variants, namely MAVS_tv1 and MAVS_tv2, were cloned from zebrafish embryos. The putative MAVS_tv1 protein (full length form) contains an N-terminal CARD domain, a central proline region, and a C-terminal transmembrane domain (TM). MAVS_tv2 is generated by a 190 bp intron fragment insertion. The putative MAVS_tv2 protein lacked TM domain due to a frame shift, with the N-terminal 303 aa residues identical to MAVS_tv1, and no sequence homology for the C-terminal 41 aa residues. Real-time PCR showed that the expression of MAVS_tv1 in ZF4 cells was higher than that of MAVS_tv2, and MAVS variants were induced by Edwardsiella tarda and SVCV infection during the early time points of infection, whereas MAVS_tv1 unchanged or MAVS_tv2 decreased at a later time point after the infection, respectively. Overexpression of MAVS_tv1 and MAVS_tv2 in fish cells conferred antiviral resistance, and activated zebrafish IFN1 and IFN3 promoters. MAVS_tv1 overexpression induced a slow (48 hpf) increased expression of IFN1, mxa, mxb, mxe and RSAD2. In contrast, MAVS_tv2 overexpression increased rapidly and transiently the expression of IFN1, IFN2, IFN3, mxc and rsad2 at 6 or 24 hpf. The simultaneous overexpression of MAVS variants and RIG-I in zebrafish embryos led to an accumulative induction of IFNs and IFN-stimulated genes including IFN1, IFN4, mxc, mxe and rsad. Furthermore, MAVS_tv1 cooperated with RIG-I in the accumulation of RIG-I transcript in a positive feedback loop; MAVS_tv2 synergized with MDA5 in the accumulation of MAVS_tv2 transcript. Collectively, these data suggest the molecular mechanisms of fish MAVS variants in antiviral immunity.
Collapse
Affiliation(s)
- Wen Qin Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; Hubei Vocational College of Bio-Technology, Wuhan, Hubei Province 430070, China
| | - Yi Wei Hu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Peng Fei Zou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Shi Si Ren
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China; Graduate University of Chinese Academy of Sciences, Beijing 100039, China
| | - Pin Nie
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China
| | - Ming Xian Chang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei Province 430072, China.
| |
Collapse
|
43
|
Insights into the antiviral immunity against grass carp (Ctenopharyngodon idella) reovirus (GCRV) in grass carp. J Immunol Res 2015; 2015:670437. [PMID: 25759845 PMCID: PMC4337036 DOI: 10.1155/2015/670437] [Citation(s) in RCA: 134] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 12/12/2014] [Indexed: 12/13/2022] Open
Abstract
Global fish production from aquaculture has rapidly grown over the past decades, and grass carp shares the largest portion. However, hemorrhagic disease caused by grass carp reovirus (GCRV) results in tremendous loss of grass carp (Ctenopharyngodon idella) industry. During the past years, development of molecular biology and cellular biology technologies has promoted significant advances in the understanding of the pathogen and the immune system. Immunoprophylaxis based on stimulation of the immune system of fish has also got some achievements. In this review, authors summarize the recent progresses in basic researches on GCRV; viral nucleic acid sensors, high-mobility group box proteins (HMGBs); pattern recognition receptors (PRRs), Toll-like receptors (TLRs) and retinoic acid inducible gene I- (RIG-I-) like receptors (RLRs); antiviral immune responses induced by PRRs-mediated signaling cascades of type I interferon (IFN-I) and IFN-stimulated genes (ISGs) activation. The present review also notices the potential applications of molecule genetic markers. Additionally, authors discuss the current preventive and therapeutic strategies (vaccines, RNAi, and prevention medicine) and highlight the importance of innate immunity in long term control for grass carp hemorrhagic disease.
Collapse
|
44
|
Nie L, Zhang YS, Dong WR, Xiang LX, Shao JZ. Involvement of zebrafish RIG-I in NF-κB and IFN signaling pathways: insights into functional conservation of RIG-I in antiviral innate immunity. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2015; 48:95-101. [PMID: 25265425 DOI: 10.1016/j.dci.2014.09.008] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2014] [Revised: 09/22/2014] [Accepted: 09/23/2014] [Indexed: 06/03/2023]
Abstract
The retinoic acid-inducible gene I (RIG-I) is a critical sensor for host recognition of RNA virus infection and initiation of antiviral signaling pathways in mammals. However, data on the occurrence and functions of this molecule in lower vertebrates are limited. In this study, we characterized an RIG-I homolog (DrRIG-I) from zebrafish. Structurally, this DrRIG-I shares a number of conserved functional domains/motifs with its mammalian counterparts, namely, caspase activation and recruitment domain, DExD/H box, a helicase domain, and a C-terminal domain. Functionally, stimulation with DrRIG-I CARD in zebrafish embryos significantly activated the NF-κB and IFN signaling pathways, leading to the expression of TNF-α, IL-8 and IFN-induced Mx, ISG15, and viperin. However, knockdown of TRIM25 (a pivotal activator for RIG-I receptors) significantly suppressed the induced activation of IFN signaling. Results suggested the functional conservation of RIG-I receptors in the NF-κB and IFN signaling pathways between teleosts and mammals, providing a perspective into the evolutionary history of RIG-I-mediated antiviral innate immunity.
Collapse
Affiliation(s)
- Li Nie
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Ying-sheng Zhang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Wei-ren Dong
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China
| | - Li-xin Xiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China.
| | - Jian-zhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, China.
| |
Collapse
|
45
|
Zhang J, Zhang YB, Wu M, Wang B, Chen C, Gui JF. Fish MAVS is involved in RLR pathway-mediated IFN response. FISH & SHELLFISH IMMUNOLOGY 2014; 41:222-230. [PMID: 25219369 DOI: 10.1016/j.fsi.2014.09.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2014] [Revised: 09/01/2014] [Accepted: 09/01/2014] [Indexed: 06/03/2023]
Abstract
Mammalian mitochondrial antiviral signaling protein (MAVS) is an essential adapter involved in retinoic acid-inducible gene-I (RIG-I)-like receptor (RLR)-triggered interferon (IFN) antiviral immunity. Fish MAVS homologues have been identified in several fish species; however, the signaling pathway involving fish MAVS-mediated IFN response remains to be investigated. In the present study, we report identification of a fish MAVS orthologue from crucian carp Carassius auratus blastulae embryonic (CAB) cells and its function role in fish RLR signaling. Crucian carp MAVS is constitutively expressed in CAB cells and is not transcriptionally induced by cytosolic poly (I:C) and IFN. Overexpression of crucian carp MAVS results in activation of fish IFN promoter and ISRE-containing promoter as well as transcriptional expression of IFN and ISGs including PKR and Mx1, which is impaired by functional blockade of signaling molecules TBK1 and IRF3/7. Either cytosolic poly (I:C)-induced or RIG-I-induced IFN response is attenuated by functional blockade of crucian carp MAVS. These results together indicate that fish MAVS contributes to IFN antiviral immunity downstream of cytosolic poly (I:C) and RIG-I and upstream of TBK1 and IRF3/7. Moreover, we provide evidence that apart from crucian carp MAVS, crucian carp MITA is also involved in cytosolic poly (I:C)- and RIG-I-induced IFN response.
Collapse
Affiliation(s)
- Jun Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Yi-Bing Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China.
| | - Min Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Bing Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Chen Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China
| | - Jian-Fang Gui
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Wuhan 430072, China.
| |
Collapse
|
46
|
Lauksund S, Greiner-Tollersrud L, Chang CJ, Robertsen B. Infectious pancreatic necrosis virus proteins VP2, VP3, VP4 and VP5 antagonize IFNa1 promoter activation while VP1 induces IFNa1. Virus Res 2014; 196:113-21. [PMID: 25445351 PMCID: PMC7114410 DOI: 10.1016/j.virusres.2014.11.018] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Revised: 11/11/2014] [Accepted: 11/13/2014] [Indexed: 12/25/2022]
Abstract
IPNV genes preVP2, VP3, VP4 and VP5 inhibited activation of the IFNa1 promoter. The viral protease VP4 was the most potent inhibitor of IFN induction. IFN antagonism by VP4 is independent of its protease activity. The RNA polymerase VP1 activated the IFNa1 promoter.
Infectious pancreatic necrosis virus (IPNV) is one of the major viral pathogens causing disease in farmed Atlantic salmon worldwide. In the present work we show that several of the IPN proteins have powerful antagonistic properties against type I IFN induction in Atlantic salmon. Each of the five IPNV genes cloned into an expression vector were tested for the ability to influence activation of the Atlantic salmon IFNa1 promoter by the interferon promoter inducing protein one (IPS-1) or interferon regulatory factors (IRF). This showed that preVP2, VP3 and VP5 inhibited activation of both promoters, while VP4 only antagonized activation of the IFNa1 promoter. The viral protease VP4 was the most potent inhibitor of IFN induction, apparently targeting the IRF1 and IRF3 branch of the signaling cascade. VP4 antagonism is independent of its protease activity since the catalytically dead mutant VP4K674A inhibited activation of the IFNa1 promoter to a similar extent as wild type VP4. In contrast to the other IPNV proteins, the RNA-dependent RNA polymerase VP1 activated the IFNa1 promoter. The ability to activate the IFN response was disrupted in the mutant VP1S163A, which has lost the ability to produce dsRNA. VP1 also exhibited synergistic effects with IRF1 and IRF3 in inducing an IFNa1-dependent antiviral state in cells. Taken together these results suggest that IPNV has developed multiple IFN antagonistic properties to prevent IFN-induction by VP1 and its dsRNA genome.
Collapse
Affiliation(s)
- Silje Lauksund
- Norwegian College of Fishery Science, University of Tromsø, 9037 Tromsø, Norway
| | | | - Chia-Jung Chang
- Norwegian College of Fishery Science, University of Tromsø, 9037 Tromsø, Norway
| | - Børre Robertsen
- Norwegian College of Fishery Science, University of Tromsø, 9037 Tromsø, Norway.
| |
Collapse
|
47
|
Kasthuri SR, Wan Q, Whang I, Lim BS, Yeo SY, Choi CY, Lee J. Functional characterization of the evolutionarily preserved mitochondrial antiviral signaling protein (MAVS) from rock bream, Oplegnathus fasciatus. FISH & SHELLFISH IMMUNOLOGY 2014; 40:399-406. [PMID: 25107693 DOI: 10.1016/j.fsi.2014.07.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2014] [Revised: 07/15/2014] [Accepted: 07/25/2014] [Indexed: 06/03/2023]
Abstract
Antimicrobial immune defense is evolutionarily preserved in all organisms. Mammals have developed robust, protein-based antiviral defenses, which are under constant investigation. Studies have provided evidences for the various fish immune factors sharing similarity with those of mammals. In this study, we have identified an ortholog of mitochondrial antiviral signaling protein from rock bream, Oplegnathus fasciatus. RbMAVS cDNA possesses an open reading frame (ORF) of 1758 bp coding for a protein of 586 amino acids with molecular mass of approximately 62 kDa and isoelectric point of 4.6. In silico analysis of RbMAVS protein revealed a caspase recruitment domain (CARD), a proline rich domain and a transmembrane domain. RbMAVS protein also contains a putative TRAF2 binding motif, (319)PVQDT(323). Primary sequence comparison of RbMAVS with other orthologues revealed heterogeneity towards the C-terminus after the CARD region. RbMAVS transcripts were evident in all the examined tissues. RbMAVS expression was induced in vivo after poly I:C challenge in peripheral blood cells, liver, head kidney and spleen tissues. Over-expression of RbMAVS potently inhibited marine birnavirus (MABV) infection in rock bream heart cells and induced various cytokines and signaling molecules in vitro. Thus, RbMAVS is an antiviral protein and potentially involved in the recognition and signaling of antiviral defense mechanism in rock bream.
Collapse
Affiliation(s)
- Saranya Revathy Kasthuri
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea
| | - Qiang Wan
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Ilson Whang
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Bong-Soo Lim
- Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea
| | - Sang-Yeob Yeo
- Department of Biotechnology, Division of Applied Chemistry & Biotechnology, Hanbat National University, Daejeon 305-719, Republic of Korea
| | - Cheol Young Choi
- Division of Marine Environment and Bioscience, Korea Maritime University, Busan 606-791, Republic of Korea
| | - Jehee Lee
- Department of Marine Life Sciences, School of Marine Biomedical Sciences, Jeju National University, Jeju Self-Governing Province 690-756, Republic of Korea; Fish Vaccine Research Center, Jeju National University, Jeju Special Self-Governing Province 690-756, Republic of Korea.
| |
Collapse
|
48
|
Collet B. Innate immune responses of salmonid fish to viral infections. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:160-73. [PMID: 23981327 DOI: 10.1016/j.dci.2013.08.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 08/19/2013] [Accepted: 08/19/2013] [Indexed: 05/07/2023]
Abstract
Viruses are the most serious pathogenic threat to the production of the main aquacultured salmonid species the rainbow trout Oncorhynchus mykiss and the Atlantic salmon Salmo salar. The viral diseases Infectious Pancreatic Necrosis (IPN), Pancreatic Disease (PD), Infectious Haemorrhagic Necrosis (IHN), Viral Haemorrhagic Septicaemia (VHS), and Infectious Salmon Anaemia (ISA) cause massive economic losses to the global salmonid aquaculture industry every year. To date, no solution exists to treat livestock affected by a viral disease and only a small number of efficient vaccines are available to prevent infection. As a consequence, understanding the host immune response against viruses in these fish species is critical to develop prophylactic and preventive control measures. The innate immune response represents an important part of the host defence mechanism preventing viral replication after infection. It is a fast acting response designed to inhibit virus propagation immediately within the host, allowing for the adaptive specific immunity to develop. It has cellular and humoral components which act in synergy. This review will cover inflammation responses, the cell types involved, apoptosis, antimicrobial peptides. Particular attention will be given to the type I interferon system as the major player in the innate antiviral defence mechanism of salmonids. Viral evasion strategies will also be discussed.
Collapse
|
49
|
Briolat V, Jouneau L, Carvalho R, Palha N, Langevin C, Herbomel P, Schwartz O, Spaink HP, Levraud JP, Boudinot P. Contrasted innate responses to two viruses in zebrafish: insights into the ancestral repertoire of vertebrate IFN-stimulated genes. THE JOURNAL OF IMMUNOLOGY 2014; 192:4328-41. [PMID: 24683187 DOI: 10.4049/jimmunol.1302611] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Ease of imaging and abundance of genetic tools make the zebrafish an attractive model host to understand host-pathogen interactions. However, basic knowledge regarding the identity of genes involved in antiviral immune responses is still lagging in this species. We conducted a microarray analysis of the larval zebrafish response to two models of RNA virus infections with very different outcomes. Chikungunya virus (CHIKV) induces a rapid and protective IFN response. Infection with infectious hematopoietic necrosis virus is lethal and is associated with a delayed and inefficient IFN response. A typical signature of IFN-stimulated genes (ISGs) was observed with both viruses, but was stronger for CHIKV. We further compared the zebrafish and human ISG repertoires and made a genomic and phylogenic characterization of the main gene families. We describe a core set of well-induced ISGs conserved across vertebrates, as well as multigenic families diversified independently in each taxon. The conservation of ISGs involved in antiviral signaling indicates conservation of the main feedback loops in these pathways. Whole-mount in situ hybridization of selected transcripts in infected larvae revealed a typical pattern of expression for ISGs in the liver, gut, and blood vessels with both viruses. We further show that some inflammatory genes were additionally induced through IFN-independent pathways by infectious hematopoietic necrosis virus and not by CHIKV. This study provides a useful reference set for the analysis of host-virus interactions in zebrafish and highlights the differences between protective and nonprotective antiviral innate responses.
Collapse
Affiliation(s)
- Valérie Briolat
- Macrophages et Développement de l'Immunité, Institut Pasteur, 75015 Paris, France
| | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Nie L, Xiong R, Zhang YS, Zhu LY, Shao JZ, Xiang LX. Conserved inhibitory role of teleost SOCS-1s in IFN signaling pathways. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2014; 43:23-29. [PMID: 24183820 DOI: 10.1016/j.dci.2013.10.007] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2013] [Revised: 10/22/2013] [Accepted: 10/22/2013] [Indexed: 06/02/2023]
Abstract
The suppressor of cytokine signaling 1 (SOCS-1) protein is a critical regulator in the immune systems of humans and mammals, which functions classically as an inhibitor of the IFN signaling pathways. However, data on functional characterisation of SOCS-1 in ancient vertebrates are limited. In this study, we report the function of teleost SOCS-1s in IFN signaling in fish models (zebrafish and Tetraodon) and human cells. Structurally, teleost SOCS-1s share conserved functional domains with their mammalian counterparts. Functionally, teleost SOCS-1s could be significantly induced upon stimulation with IFN stimulants and zebrafish IFNφ1. Overexpression of teleost SOCS-1s could dramatically suppress IFNφ1-induced Mx, Viperin and PKZ activation in zebrafish, and IFN-induced ISG15 activation in HeLa cells. Furthermore, a SOCS-1 variant that lacks the KIR domain was also characterised. This study demonstrates the conserved negative regulatory role of teleost SOCS-1s in IFN signaling pathways, providing perspective into the functional conservation of SOCS-1 proteins during evolution.
Collapse
Affiliation(s)
- Li Nie
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; Key Laboratory of Animal Virology of Ministry of Agriculture, Hangzhou 310058, People's Republic of China
| | - Ran Xiong
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; Key Laboratory of Animal Virology of Ministry of Agriculture, Hangzhou 310058, People's Republic of China
| | - Ying-Sheng Zhang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; Key Laboratory of Animal Virology of Ministry of Agriculture, Hangzhou 310058, People's Republic of China
| | - Lv-yun Zhu
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; Key Laboratory of Animal Virology of Ministry of Agriculture, Hangzhou 310058, People's Republic of China
| | - Jian-Zhong Shao
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; Key Laboratory of Animal Virology of Ministry of Agriculture, Hangzhou 310058, People's Republic of China.
| | - Li-Xin Xiang
- College of Life Sciences, Zhejiang University, Hangzhou 310058, People's Republic of China; Key Laboratory for Cell and Gene Engineering of Zhejiang Province, Hangzhou 310058, People's Republic of China; Key Laboratory of Animal Virology of Ministry of Agriculture, Hangzhou 310058, People's Republic of China.
| |
Collapse
|