1
|
Tilwani S, Gandhi K, Dalal SN. 14-3-3ε conditional knockout mice exhibit defects in the development of the epidermis. FEBS Lett 2024; 598:3005-3020. [PMID: 39511902 DOI: 10.1002/1873-3468.15051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024]
Abstract
The epidermis is a stratified epithelium that functions as the first line of defense against pathogenic invasion and acts as a barrier preventing water loss. In this study, we aimed to decipher the role of 14-3-3ε in the development of the epidermis. We report that loss of 14-3-3ε in the epidermis of juvenile and adult mice reduces cell division in the basal layer and increases the percentage of cells with multiple centrosomes, leading to a reduction in the thickness of the basal and stratified layers. We also demonstrate a decrease in the expression of differentiation markers, although no gross morphological defects in the skin or adverse effects on the survival of the mice were observed. These results suggest that loss of 14-3-3ε in the epidermis may lead to defects in proliferation and differentiation.
Collapse
Affiliation(s)
- Sarika Tilwani
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Karan Gandhi
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Sorab N Dalal
- Cell and Tumor Biology, Advanced Centre for Treatment Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
2
|
Lan S, Liu S, Wang K, Chen W, Zheng D, Zhuang Y, Zhang S. tRNA-derived RNA fragment, tRF-18-8R6546D2, promotes pancreatic adenocarcinoma progression by directly targeting ASCL2. Gene 2024; 927:148739. [PMID: 38955307 DOI: 10.1016/j.gene.2024.148739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 05/11/2024] [Accepted: 06/28/2024] [Indexed: 07/04/2024]
Abstract
Pancreatic adenocarcinoma (PAAD) is a life-threatening cancer. Exploring new diagnosis and treatment targets helps improve its prognosis. tRNA-derived small non-coding RNAs (tsRNAs) are a novel type of gene expression regulators and their dysregulation is closely related to many human cancers. Yet the expression and functions of tsRNAs in PAAD are not well understood. Our study used RNA sequencing to identify tsRNA expression profiles in PAAD cells cultured in no or high glucose media and found tRF-18-8R6546D2 was an uncharacterized tsRNA, which has significantly high expression in PAAD cells and tissues. Clinically, tRF-18-8R6546D2 is linked to poor prognosis in PAAD patients and can be used to distinguish them from healthy populations. Functionally, in vitro and vivo, tRF-18-8R6546D2 over-expression promoted PAAD cell proliferation, migration and invasion, inhibited apoptosis, whereas tRF-18-8R6546D2 knock-down showed opposite effects. Mechanistically, tRF-18-8R6546D2 promoted PAAD malignancy partly by directly silencing ASCL2 and further regulating its downstream genes such as MYC and CASP3. These findings show that tRF-18-8R6546D2 is a novel oncogenic factor and can be a promising diagnostic or prognostic biomarker and therapeutic target for PAAD.
Collapse
Affiliation(s)
- Sihua Lan
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Epigenetics and Gene Regulation of Malignant Tumors, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510000, China
| | - Sixue Liu
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Ke Wang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Wenying Chen
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China
| | - Dandan Zheng
- Doctor of excellence program, First Affiliated Hospital of Jilin University, Changchun 130000, China
| | - Yanyan Zhuang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Epigenetics and Gene Regulation of Malignant Tumors, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510000, China.
| | - Shineng Zhang
- Department of Gastroenterology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510000, China; Guangdong Provincial Key Laboratory of Epigenetics and Gene Regulation of Malignant Tumors, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou 510000, China.
| |
Collapse
|
3
|
Gadre P, Markova P, Ebrahimkutty M, Jiang Y, Bouzada FM, Watt FM. Emergence and properties of adult mammalian epidermal stem cells. Dev Biol 2024; 515:129-138. [PMID: 39059680 DOI: 10.1016/j.ydbio.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Revised: 05/08/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
In this review we discuss how the mammalian interfollicular epidermis forms during development, maintains homeostasis, and is repaired following wounding. Recent studies have provided new insights into the relationship between the stem cell compartment and the differentiating cell layers; the ability of differentiated cells to dedifferentiate into stem cells; and the epigenetic memory of epidermal cells following wounding.
Collapse
Affiliation(s)
- Purna Gadre
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Pavlina Markova
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | | | - Yidan Jiang
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Francisco M Bouzada
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany
| | - Fiona M Watt
- Directors' Unit, EMBL-Heidelberg, Meyerhofstr. 1, 69117, Heidelberg, Germany.
| |
Collapse
|
4
|
Di Girolamo D, Di Iorio E, Missero C. Molecular and Cellular Function of p63 in Skin Development and Genetic Diseases. J Invest Dermatol 2024:S0022-202X(24)02076-1. [PMID: 39340489 DOI: 10.1016/j.jid.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 08/02/2024] [Accepted: 08/16/2024] [Indexed: 09/30/2024]
Abstract
The transcription factor p63 is a master regulator of multiple ectodermal derivatives. During epidermal commitment, p63 interacts with several chromatin remodeling complexes to transactivate epidermal-specific genes and repress transcription of simple epithelial and nonepithelial genes. In the postnatal epidermis, p63 is required to control the proliferative potential of progenitor cells, maintain epidermal integrity, and contribute to epidermal differentiation. Autosomal dominant sequence variant in p63 cause a spectrum of syndromic disorders that affect several tissues, including or derived from stratified epithelia. In this review, we describe the recent studies that have provided novel insights into disease pathogenesis and potential therapeutic targets.
Collapse
Affiliation(s)
- Daniela Di Girolamo
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Biology Department, University of Naples Federico II, Naples, Italy
| | - Enzo Di Iorio
- Clinical Genetics Unit, University Hospital of Padua, Padua, Italy; Department of Molecular Medicine, University of Padua, Padua, Italy
| | - Caterina Missero
- CEINGE Biotecnologie Avanzate Franco Salvatore, Naples, Italy; Biology Department, University of Naples Federico II, Naples, Italy.
| |
Collapse
|
5
|
Lee SS, Sweren E, Dare E, Derr P, Derr K, Wang CC, Hardesty B, Willis AA, Chen J, Vuillier JK, Du J, Wool J, Ruci A, Wang VY, Lee C, Iyengar S, Asami S, Daskam M, Lee C, Lee JC, Cho D, Kim J, Martinez-Peña EG, Lee SM, He X, Wakeman M, Sicilia I, Dobbs DT, van Ee A, Li A, Xue Y, Williams KL, Kirby CS, Kim D, Kim S, Xu L, Wang R, Ferrer M, Chen Y, Kang JU, Kalhor R, Kang S, Garza LA. The use of ectopic volar fibroblasts to modify skin identity. Science 2024; 385:eadi1650. [PMID: 39236183 PMCID: PMC11457755 DOI: 10.1126/science.adi1650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 03/20/2024] [Accepted: 07/11/2024] [Indexed: 09/07/2024]
Abstract
Skin identity is controlled by intrinsic features of the epidermis and dermis and their interactions. Modifying skin identity has clinical potential, such as the conversion of residual limb and stump (nonvolar) skin of amputees to pressure-responsive palmoplantar (volar) skin to enhance prosthesis use and minimize skin breakdown. Greater keratin 9 (KRT9) expression, higher epidermal thickness, keratinocyte cytoplasmic size, collagen length, and elastin are markers of volar skin and likely contribute to volar skin resiliency. Given fibroblasts' capacity to modify keratinocyte differentiation, we hypothesized that volar fibroblasts influence these features. Bioprinted skin constructs confirmed the capacity of volar fibroblasts to induce volar keratinocyte features. A clinical trial of healthy volunteers demonstrated that injecting volar fibroblasts into nonvolar skin increased volar features that lasted up to 5 months, highlighting a potential cellular therapy.
Collapse
Affiliation(s)
- Sam S. Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Evan Sweren
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Erika Dare
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Paige Derr
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Kristy Derr
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Chen Chia Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Brooke Hardesty
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Aiden A. Willis
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Junjie Chen
- Department of Mechanical Engineering, Johns Hopkins University, MD 21210, USA
| | - Jonathan K. Vuillier
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Joseph Du
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Julia Wool
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Amanda Ruci
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Vicky Y. Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Chaewon Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sampada Iyengar
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Soichiro Asami
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Maria Daskam
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Claudia Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Jeremy C. Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Darren Cho
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Joshua Kim
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | | | - So Min Lee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Xu He
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Michael Wakeman
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Iralde Sicilia
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Dalhart T. Dobbs
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Amy van Ee
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ang Li
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Yingchao Xue
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Kaitlin L. Williams
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Charles S. Kirby
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Dongwon Kim
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sooah Kim
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Lillian Xu
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Ruizhi Wang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Marc Ferrer
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD 20850, USA
| | - Yun Chen
- Department of Mechanical Engineering, Johns Hopkins University, MD 21210, USA
| | - Jin U. Kang
- Department of Electrical and Computer Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Reza Kalhor
- Department of Biomedical Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Sewon Kang
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| | - Luis A. Garza
- Department of Dermatology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Cell Biology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
- Department of Oncology, Johns Hopkins University School of Medicine, Baltimore, MD 21231, USA
| |
Collapse
|
6
|
Fu YC, Das A, Wang D, Braun R, Yi R. scHolography: a computational method for single-cell spatial neighborhood reconstruction and analysis. Genome Biol 2024; 25:164. [PMID: 38915088 PMCID: PMC11197379 DOI: 10.1186/s13059-024-03299-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 06/04/2024] [Indexed: 06/26/2024] Open
Abstract
Spatial transcriptomics has transformed our ability to study tissue complexity. However, it remains challenging to accurately dissect tissue organization at single-cell resolution. Here we introduce scHolography, a machine learning-based method designed to reconstruct single-cell spatial neighborhoods and facilitate 3D tissue visualization using spatial and single-cell RNA sequencing data. scHolography employs a high-dimensional transcriptome-to-space projection that infers spatial relationships among cells, defining spatial neighborhoods and enhancing analyses of cell-cell communication. When applied to both human and mouse datasets, scHolography enables quantitative assessments of spatial cell neighborhoods, cell-cell interactions, and tumor-immune microenvironment. Together, scHolography offers a robust computational framework for elucidating 3D tissue organization and analyzing spatial dynamics at the cellular level.
Collapse
Affiliation(s)
- Yuheng C Fu
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Arpan Das
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Dongmei Wang
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA
| | - Rosemary Braun
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Molecular Biosciences, Northwestern University, Evanston, IL, 60208, USA.
- Department of Engineering Sciences and Applied Mathematics, Northwestern University, Evanston, IL, 60208, USA.
- Department of Physics and Astronomy, Northwestern University, Evanston, IL, 60208, USA.
- NSF-Simons Center for Quantitative Biology, Northwestern University, Evanston, IL, 60208, USA.
| | - Rui Yi
- Driskill Graduate Program in Life Sciences, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
- Department of Dermatology, Northwestern University Feinberg School of Medicine, Chicago, IL, 60611, USA.
| |
Collapse
|
7
|
Wang Y, He Q, Has O, Forouzesh K, Eom DS. Cytoneme-mediated intercellular signaling in keratinocytes essential for epidermal remodeling. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.11.08.566303. [PMID: 37986819 PMCID: PMC10659310 DOI: 10.1101/2023.11.08.566303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
The skin, the largest organ, functions as a primary defense mechanism. Epidermal stem cells supply undifferentiated keratinocytes that differentiate as they migrate toward the outermost skin layer. Although such a replenishment process is disrupted in various human skin diseases, its underlying mechanisms remain elusive. With high-resolution live imaging and in vivo manipulations, we revealed that Notch signaling between keratinocytes is mediated by signaling filopodia called cytonemes and is essential for proper keratinocyte differentiation and proliferation. Inhibiting keratinocyte cytonemes reduced Notch expression within undifferentiated keratinocytes, leading to abnormal differentiation and hyperproliferation, resembling human skin disease phenotypes. Overproduction of Interleukin (IL)-17 signal, associated with skin diseases like psoriasis, induces psoriatic phenotypes via cytonemes in zebrafish. Our study suggests that intercellular signaling between keratinocytes through cytonemes is critical for epidermal maintenance, and its misregulation could be an origin of human skin diseases.
Collapse
|
8
|
Choi HY, Zhu Y, Zhao X, Mehta S, Hernandez JC, Lee JJ, Kou Y, Machida R, Giacca M, Del Sal G, Ray R, Eoh H, Tahara SM, Chen L, Tsukamoto H, Machida K. NOTCH localizes to mitochondria through the TBC1D15-FIS1 interaction and is stabilized via blockade of E3 ligase and CDK8 recruitment to reprogram tumor-initiating cells. Exp Mol Med 2024; 56:461-477. [PMID: 38409448 PMCID: PMC10907578 DOI: 10.1038/s12276-024-01174-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Revised: 08/28/2023] [Accepted: 12/06/2023] [Indexed: 02/28/2024] Open
Abstract
The P53-destabilizing TBC1D15-NOTCH protein interaction promotes self-renewal of tumor-initiating stem-like cells (TICs); however, the mechanisms governing the regulation of this pathway have not been fully elucidated. Here, we show that TBC1D15 stabilizes NOTCH and c-JUN through blockade of E3 ligase and CDK8 recruitment to phosphodegron sequences. Chromatin immunoprecipitation (ChIP-seq) analysis was performed to determine whether TBC1D15-dependent NOTCH1 binding occurs in TICs or non-TICs. The TIC population was isolated to evaluate TBC1D15-dependent NOTCH1 stabilization mechanisms. The tumor incidence in hepatocyte-specific triple knockout (Alb::CreERT2;Tbc1d15Flox/Flox;Notch1Flox/Flox;Notch2Flox/Flox;HCV-NS5A) Transgenic (Tg) mice and wild-type mice was compared after being fed an alcohol-containing Western diet (WD) for 12 months. The NOTCH1-TBC1D15-FIS1 interaction resulted in recruitment of mitochondria to the perinuclear region. TBC1D15 bound to full-length NUMB and to NUMB isoform 5, which lacks three Ser phosphorylation sites, and relocalized NUMB5 to mitochondria. TBC1D15 binding to NOTCH1 blocked CDK8- and CDK19-mediated phosphorylation of the NOTCH1 PEST phosphodegron to block FBW7 recruitment to Thr-2512 of NOTCH1. ChIP-seq analysis revealed that TBC1D15 and NOTCH1 regulated the expression of genes involved in mitochondrial metabolism-related pathways required for the maintenance of TICs. TBC1D15 inhibited CDK8-mediated phosphorylation to stabilize NOTCH1 and protect it from degradation The NUMB-binding oncoprotein TBC1D15 rescued NOTCH1 from NUMB-mediated ubiquitin-dependent degradation and recruited NOTCH1 to the mitochondrial outer membrane for the generation and expansion of liver TICs. A NOTCH-TBC1D15 inhibitor was found to inhibit NOTCH-dependent pathways and exhibited potent therapeutic effects in PDX mouse models. This unique targeting of the NOTCH-TBC1D15 interaction not only normalized the perinuclear localization of mitochondria but also promoted potent cytotoxic effects against TICs to eradicate patient-derived xenografts through NOTCH-dependent pathways.
Collapse
Affiliation(s)
- Hye Yeon Choi
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Yicheng Zhu
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Xuyao Zhao
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Simran Mehta
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Juan Carlos Hernandez
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Jae-Jin Lee
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Yi Kou
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Risa Machida
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Giannino Del Sal
- Department of Life Sciences, University of Trieste, 34127, Trieste, Italy
- International Centre for Genetic Engineering and Biotechnology (ICGEB), Area Science Park-Padriciano, Trieste, Italy
- IFOM ETS, The AIRC Institute of Molecular Oncology, Milan, Italy
| | - Ratna Ray
- Saint Louis University, School of Medicine, St Louis, MO, USA
| | - Hyungjin Eoh
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Stanley M Tahara
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA
| | - Lin Chen
- Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA
| | - Hidekazu Tsukamoto
- Department of Pathology, University of Southern California, Los Angeles, CA, USA
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA
| | - Keigo Machida
- Departments of Molecular Microbiology and Immunology, University of Southern California, Los Angeles, CA, USA.
- Southern California Research Center for ALPD and Cirrhosis, Los Angeles, CA, USA.
| |
Collapse
|
9
|
Hamilton M, Mars Z, Sedeuil M, Rolland M, Jean D, Boudreau F, Giroux V. ASCL2 is a key regulator of the proliferation-differentiation equilibrium in the esophageal epithelium. Biol Open 2024; 13:bio059919. [PMID: 38252116 PMCID: PMC10836648 DOI: 10.1242/bio.059919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 09/25/2023] [Indexed: 01/23/2024] Open
Abstract
The esophagus is protected from the hostile environment by a stratified epithelium, which renews rapidly. Homeostasis of this epithelium is ensured by a rare population of stem cells in the basal layer: Keratin 15+ (Krt15+) cells. However, little is known about the molecular mechanisms regulating their distinct features, namely self-renewal, potency and epithelial regeneration. Achaete-scute family BHLH transcription factor 2 (ASCL2) is strongly upregulated in Krt15+ stem cells and is known to contribute to stem cell maintenance in other tissues. Herein, we investigated the role of ASCL2 in maintaining homeostasis under normal and stress conditions in the esophageal epithelium. ASCL2 overexpression severely dysregulated cell differentiation and cell fate. Proliferation was also reduced due potentially to a blockage in the G1 phase of the cell cycle or an induction of quiescence. Mass spectrometry analysis confirmed alterations in several proteins associated with differentiation and the cell cycle. In addition, overexpression of ASCL2 enhanced resistance to radiation and chemotherapeutic drugs. Overall, these results denote the role of ASCL2 as a key regulator of the proliferation-differentiation equilibrium in the esophageal epithelium.
Collapse
Affiliation(s)
- Maude Hamilton
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| | - Zoéline Mars
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
- Université Paris Cité, Magistère Européen de génétique, Paris 75006, France
| | - Molly Sedeuil
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| | - Marjorie Rolland
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| | - Dominique Jean
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| | - François Boudreau
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| | - Véronique Giroux
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke J1E4K8, Canada
- Centre de Recherche du Centre Hospitalier de l'Université de Sherbrooke (CRCHUS), Sherbrooke J1E4K8, Canada
- Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke J1E4K8, Canada
| |
Collapse
|
10
|
Hazrati R, Davaran S, Keyhanvar P, Soltani S, Alizadeh E. A Systematic Review of Stem Cell Differentiation into Keratinocytes for Regenerative Applications. Stem Cell Rev Rep 2024; 20:362-393. [PMID: 37922106 DOI: 10.1007/s12015-023-10636-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2023] [Indexed: 11/05/2023]
Abstract
To improve wound healing or treatment of other skin diseases, and provide model cells for skin biology studies, in vitro differentiation of stem cells into keratinocyte-like cells (KLCs) is very desirable in regenerative medicine. This study examined the most recent advancements in in vitro differentiation of stem cells into KLCs, the effect of biofactors, procedures, and preparation for upcoming clinical cases. A range of stem cells with different origins could be differentiated into KLCs under appropriate conditions. The most effective ways of stem cell differentiation into keratinocytes were found to include the co-culture with primary epithelial cells and keratinocytes, and a cocktail of growth factors, cytokines, and small molecules. KLCs should also be supported by biomaterials for the extracellular matrix (ECM), which replicate the composition and functionality of the in vivo extracellular matrix (ECM) and, thus, support their phenotypic and functional characteristics. The detailed efficient characterization of different factors, and their combinations, could make it possible to find the significant inducers for stem cell differentiation into epidermal lineage. Moreover, it allows the development of chemically known media for directing multi-step differentiation procedures.In conclusion, the differentiation of stem cells to KLCs is feasible and KLCs were used in experimental, preclinical, and clinical trials. However, the translation of KLCs from in vitro investigational system to clinically valuable cells is challenging and extremely slow.
Collapse
Affiliation(s)
- Raheleh Hazrati
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Soodabeh Davaran
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
- Research Center for Pharmaceutical Nanotechnology, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Peyman Keyhanvar
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Somaieh Soltani
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Effat Alizadeh
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
11
|
Wang H, Liang W, Wang X, Zhan Y, Wang W, Yang L, Zhu Y. Notch mediates the glycolytic switch via PI3K/Akt signaling to support embryonic development. Cell Mol Biol Lett 2023; 28:50. [PMID: 37365491 DOI: 10.1186/s11658-023-00459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 05/05/2023] [Indexed: 06/28/2023] Open
Abstract
BACKGROUND Energy metabolism disorder or insufficient energy supply during incubation will affect the development and survival of avian embryos. Especially, β-oxidation could not provide the continuous necessary energy for avian embryonic development due to the increasing energy demand under hypoxic conditions during the mid-late embryonic stages. The role and mechanism of hypoxic glycolysis replacing β-oxidation as the main source of energy supply for avian embryonic development in the mid-late stages is unclear. RESULTS Here, we found that in ovo injection with glycolysis inhibitor or γ-secretase inhibitor both decreased the hepatic glycolysis level and impaired goose embryonic development. Intriguingly, the blockade of Notch signaling is also accompanied by the inhibition of PI3K/Akt signaling in the embryonic primary hepatocytes and embryonic liver. Notably, the decreased glycolysis and impaired embryonic growth induced by the blockade of Notch signaling were restored by activation of PI3K/Akt signaling. CONCLUSIONS Notch signaling regulates a key glycolytic switch in a PI3K/Akt-dependent manner to supply energy for avian embryonic growth. Our study is the first to demonstrate the role of Notch signaling-induced glycolytic switching in embryonic development, and presents new insight into the energy supply patterns in embryogenesis under hypoxic conditions. In addition, it may also provide a natural hypoxia model for developmental biology studies such as immunology, genetics, virology, cancer, etc.
Collapse
Affiliation(s)
- Heng Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000, China
| | - Wenqi Liang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000, China
| | - Xuyang Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000, China
| | - Yuchun Zhan
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000, China
| | - Wence Wang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000, China
| | - Lin Yang
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000, China.
| | - Yongwen Zhu
- Guangdong Provincial Key Laboratory of Animal Nutrition and Regulation, College of Animal Science, South China Agricultural University, Guangzhou, 510000, China.
| |
Collapse
|
12
|
Li W, Li K, He X, Jiang Y, Lan R, Hong Q, Liu Y, Chu M. ALAS1 associated with goat kidding number trait was regulated by the transcription factor ASCL2 to affect granulosa cell proliferation. Anim Genet 2023; 54:189-198. [PMID: 36632647 DOI: 10.1111/age.13287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/08/2022] [Accepted: 12/09/2022] [Indexed: 01/13/2023]
Abstract
ALAS1 is a member of the α-oxoamine synthase family, which is the first rate-limiting enzyme for heme synthesis and is important for maintaining intracellular heme levels. In the ovary, ALAS1 is associated with the regulation of ovulation-related mitochondrial P450 cytochromes, steroid metabolism, and steroid hormone production. However, there are few studies on the relationship between ALAS1 and reproductive traits in goats. In this study, a mutation located in the promoter region of ALAS1 (g.48791372C>A) was found to be significantly (p < 0.05) associated with the kidding number of Yunshang black goats. Specifically, the mean kidding number in the first three litters and the kidding numbers of all three litters were significantly (p < 0.05) higher in individuals with the CA genotype or AA genotype than in those with the CC genotype. To further investigate the regulatory mechanism of ALAS1, the expression of ALAS1 in goat ovarian tissues with different genotypes was verified by real-time quantitative PCR. The results showed that the expression of ALAS1 was significantly higher in the ovaries of individuals with AA genotype than those with AC and CC genotypes (p < 0.01), and the expression trend of transcription factor ASCL2 was consistent with ALAS1. Additionally, the ALAS1 g.48791372C>A mutation created a new binding site for the transcription factor ASCL2. The luciferase activity assay indicated that the mutation increased the promoter activity of ALAS1. Overexpression of the transcription factor ASCL2 induced increased expression of ALAS1 in goat granulosa cells (p < 0.05). The opposite trend was shown for the inhibition of ASCL2 expression. The results of real-time quantitative PCR, EdU and Cell Counting Kit-8 assays indicated that the transcription factor ASCL2 increased the proliferation of goat granulosa cells by mediating the expression of ALAS1. In conclusion, the transcription factor ASCL2 positively regulated the transcriptional activity and expression levels of ALAS1, altering granulosa cell proliferation and the kidding number in goats.
Collapse
Affiliation(s)
- Wentao Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Kunyu Li
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Yanting Jiang
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Rong Lan
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Qionghua Hong
- Yunnan Animal Science and Veterinary Institute, Kunming, China
| | - Yufang Liu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
13
|
Wiedemann J, Billi AC, Bocci F, Kashgari G, Xing E, Tsoi LC, Meller L, Swindell WR, Wasikowski R, Xing X, Ma F, Gharaee-Kermani M, Kahlenberg JM, Harms PW, Maverakis E, Nie Q, Gudjonsson JE, Andersen B. Differential cell composition and split epidermal differentiation in human palm, sole, and hip skin. Cell Rep 2023; 42:111994. [PMID: 36732947 PMCID: PMC9939370 DOI: 10.1016/j.celrep.2023.111994] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 08/31/2022] [Accepted: 01/04/2023] [Indexed: 01/26/2023] Open
Abstract
Palmoplantar skin is structurally and functionally unique, but the transcriptional programs driving this specialization are unclear. Here, we use bulk and single-cell RNA sequencing of human palm, sole, and hip skin to describe the distinguishing characteristics of palmoplantar and non-palmoplantar skin while also uncovering differences between palmar and plantar sites. Our approach reveals an altered immune environment in palmoplantar skin, with downregulation of diverse immunological processes and decreased immune cell populations. Further, we identify specific fibroblast populations that appear to orchestrate key differences in cell-cell communication in palm, sole, and hip. Dedicated keratinocyte analysis highlights major differences in basal cell fraction among the three sites and demonstrates the existence of two spinous keratinocyte populations constituting parallel, site-selective epidermal differentiation trajectories. In summary, this deep characterization of highly adapted palmoplantar skin contributes key insights into the fundamental biology of human skin and provides a valuable data resource for further investigation.
Collapse
Affiliation(s)
- Julie Wiedemann
- Mathematical, Computational and Systems Biology (MCSB) Program, University of California, Irvine, Irvine, CA, USA
| | - Allison C Billi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Federico Bocci
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA
| | - Ghaidaa Kashgari
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Enze Xing
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Lam C Tsoi
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Computational Medicine and Bioinformatics, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Biostatistics, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - Leo Meller
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA
| | - William R Swindell
- Department of Internal Medicine, The Jewish Hospital, Cincinnati, OH, USA
| | - Rachael Wasikowski
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Xianying Xing
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Feiyang Ma
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Mehrnaz Gharaee-Kermani
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - J Michelle Kahlenberg
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA; Division of Rheumatology, Department of Internal Medicine, University of Michigan, Ann Arbor, MI, USA
| | - Paul W Harms
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA; Department of Pathology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Emanual Maverakis
- Department of Dermatology, University of California Davis School of Medicine, Sacramento, CA, USA
| | - Qing Nie
- Department of Mathematics, University of California, Irvine, Irvine, CA, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, USA; Department of Developmental & Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, CA, USA
| | - Johann E Gudjonsson
- Department of Dermatology, University of Michigan Medical School, Ann Arbor, MI, USA.
| | - Bogi Andersen
- Department of Biological Chemistry, School of Medicine, University of California, Irvine, Irvine, CA, USA; Department of Medicine, School of Medicine, University of California, Irvine, Irvine, CA, USA.
| |
Collapse
|
14
|
The Current Treatment Landscape of Cutaneous Squamous Cell Carcinoma. Am J Clin Dermatol 2023; 24:25-40. [PMID: 36512176 DOI: 10.1007/s40257-022-00742-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/09/2022] [Indexed: 12/15/2022]
Abstract
Non-melanoma skin cancers (NMSCs) are the most common form of skin cancer worldwide. The global incidence of cutaneous squamous cell carcinoma (CSCC) is rising, with an estimated 2.4 million cases diagnosed in 2019. Chronic exposure to ultraviolet (UV) radiation is a major risk factor for developing CSCC. Most early-stage CSCCs are treated successfully with surgery or radiotherapy; however, locally advanced or metastatic disease can be associated with significant morbidity or mortality. Recently, the treatment paradigm for advanced CSCC has been revolutionised by the introduction of immunotherapy, which can achieve a response rate of approximately 50% with durable cancer control, and significant improvement in quality of life. With the regulatory approval of programmed death-1 (PD-1)-targeting drugs since 2018, immunotherapy is now recognised as the standard of care for first-line systemic therapy in advanced or metastatic CSCC.
Collapse
|
15
|
Targeting the transcription factor HES1 by L-menthol restores protein phosphatase 6 in keratinocytes in models of psoriasis. Nat Commun 2022; 13:7815. [PMID: 36535970 PMCID: PMC9763329 DOI: 10.1038/s41467-022-35565-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 12/07/2022] [Indexed: 12/23/2022] Open
Abstract
Protein Phosphatase 6 down-regulation in keratinocytes is a pivotal event that amplifies the inflammatory circuits in psoriasis, indicating that restoration of protein phosphatase 6 can be a rational strategy for psoriasis treatment. Through the phenotypic screen, we here identify L-menthol that ameliorates psoriasis-like skin inflammation by increasing protein phosphatase 6 in keratinocytes. Target identification approaches reveal an indispensable role for the transcription factor hairy and enhancer of split 1 in governing the protein phosphatase 6-upregulating function of L-menthol in keratinocytes. The transcription factor hairy and enhancer of split 1 is diminished in the epidermis of psoriasis patients and imiquimod-induced mouse model, while L-menthol upregulates the transcription factor hairy and enhancer of split 1 by preventing its proteasomal degradation. Mechanistically, the transcription factor hairy and enhancer of split 1 transcriptionally activates the expression of immunoglobulin-binding protein 1 which promotes protein phosphatase 6 expression and inhibits its ubiquitination. Collectively, we discover a therapeutic compound, L-menthol, for psoriasis, and uncover the dysfunctional the transcription factor hairy and enhancer of split 1- immunoglobulin-binding protein 1- protein phosphatase 6 axis that contributes to psoriasis pathology by using L-menthol as a probe.
Collapse
|
16
|
A dopamine-methacrylated hyaluronic acid hydrogel as an effective carrier for stem cells in skin regeneration therapy. Cell Death Dis 2022; 13:738. [PMID: 36030275 PMCID: PMC9420120 DOI: 10.1038/s41419-022-05060-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Revised: 05/05/2022] [Accepted: 07/01/2022] [Indexed: 01/21/2023]
Abstract
Adipose-derived stem cells (ADSCs) show potential in skin regeneration research. A previous study reported the failure of full-thickness skin self-repair in an injury area exceeding 4 cm in diameter. Stem cell therapies have shown promise in accelerating skin regeneration; however, the low survival rate of transplanted cells due to the lack of protection during and after transplantation leads to low efficacy. Hence, effective biomaterials for the delivery and retention of ADSCs are urgently needed for skin regeneration purposes. Here, we covalently crosslinked hyaluronic acid with methacrylic anhydride and then covalently crosslinked the product with dopamine to engineer dopamine-methacrylated hyaluronic acid (DA-MeHA). Our experiments suggested that the DA-MeHA hydrogel firmly adhered to the skin wound defect and promoted cell proliferation in vitro and skin defect regeneration in vivo. Mechanistic analyses revealed that the beneficial effect of the DA-MeHA hydrogel combined with ADSCs on skin defect repair may be closely related to the Notch signaling pathway. The ADSCs from the DA-MeHA hydrogel secrete high levels of growth factors and are thus highly efficacious for promoting skin wound healing. This DA-MeHA hydrogel may be used as an effective potential carrier for stem cells as it enhances the efficacy of ADSCs in skin regeneration.
Collapse
|
17
|
Savina A, Jaffredo T, Saldmann F, Faulkes CG, Moguelet P, Leroy C, Marmol DD, Codogno P, Foucher L, Zalc A, Viltard M, Friedlander G, Aractingi S, Fontaine RH. Single-cell transcriptomics reveals age-resistant maintenance of cell identities, stem cell compartments and differentiation trajectories in long-lived naked mole-rats skin. Aging (Albany NY) 2022; 14:3728-3756. [PMID: 35507806 PMCID: PMC9134947 DOI: 10.18632/aging.204054] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 04/25/2022] [Indexed: 11/25/2022]
Abstract
Naked mole-rats (NMR) are subterranean rodents characterized by an unusual longevity coupled with an unexplained resistance to aging. In the present study, we performed extensive in situ analysis and single-cell RNA-sequencing comparing young and older animals. At variance with other species, NMR exhibited a striking stability of skin compartments and cell types, which remained stable over time without aging-associated changes. Remarkably, the number of stem cells was constant throughout aging. We found three classical cellular states defining a unique keratinocyte differentiation trajectory that were not altered after pseudo-temporal reconstruction. Epidermal gene expression did not change with aging either. Langerhans cell clusters were conserved, and only a higher basal stem cell expression of Igfbp3 was found in aged animals. In accordance, NMR skin healing closure was similar in young and older animals. Altogether, these results indicate that NMR skin is characterized by peculiar genetic and cellular features, different from those previously demonstrated for mice and humans. The remarkable stability of the aging NMR skin transcriptome likely reflects unaltered homeostasis and resilience.
Collapse
Affiliation(s)
| | - Thierry Jaffredo
- Institut de Biologie Paris Seine (IBPS), Laboratoire de Biologie du Développement, Sorbonne Université, CNRS, INSERM, Paris, France
| | | | - Chris G. Faulkes
- Queen Mary University of London, School of Biological and Chemical Sciences, London, United Kingdom
| | - Philippe Moguelet
- Service d'Anatomie et Cytologie Pathologiques, Hôpital Tenon, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Christine Leroy
- Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, Paris, France
| | | | - Patrice Codogno
- Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, Paris, France
| | - Lucy Foucher
- Ecole Nationale Vétérinaire d'Alfort, Centre de Recherche Biomédicale, Maisons-Alfort, France
| | - Antoine Zalc
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
| | - Mélanie Viltard
- Fondation pour la Recherche en Physiologie, Brussels, Belgium
| | - Gérard Friedlander
- Université Paris Cité, CNRS, INSERM, Institut Necker-Enfants Malades, Paris, France
| | - Selim Aractingi
- Université Paris Cité, CNRS, INSERM, Institut Cochin, Paris, France
- Service de Dermatologie, Hôpital Cochin, Assistance Publique-Hôpitaux de Paris, France
| | | |
Collapse
|
18
|
Zhu P, Chen C, Wu D, Chen G, Tan R, Ran J. AGEs-induced MMP-9 activation mediated by Notch1 signaling is involved in impaired wound healing in diabetic rats. Diabetes Res Clin Pract 2022; 186:109831. [PMID: 35306046 DOI: 10.1016/j.diabres.2022.109831] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 03/08/2022] [Accepted: 03/12/2022] [Indexed: 11/03/2022]
Abstract
AIMS To elucidate the relationship between advanced glycation end products (AGEs), Notch1 signaling, nuclear factor-kappa B (NF-κB), and matrix metalloproteinase-9 (MMP-9) in diabetic wound healing in vitro and in vivo. METHODS We incubated primary keratinocytes with AGEs alone or AGEs along with γ-secretase inhibitor DAPT, and established diabetic rat wound model by intraperitoneal streptozotocin treatment. The Notch1 signaling components and MMP-9 expression were detected by qPCR, western blotting and gelatin zymography. RESULTS The exposure of primary keratinocytes to AGEs led to a significant increase in Notch intracellular domain (NICD), Delta-like 4 (Dll4), and Hes1; however, Notch1 expression was inhibited by the RAGE siRNA. Furthermore, MMP-9 activation was up-regulated, secondary to AGEs treatment. In contrast, increased MMP-9 expression by AGEs-stimulation was eliminated after treatment with DAPT. NF-κB activation participated in the Notch1-modulated MMP-9 expression. Notably, in the diabetic animal model, inhibition of the Notch signaling pathway with DAPT attenuated NICD and MMP-9 overexpression, improved collagen accumulation, and ultimately accelerated diabetic wound healing. CONCLUSIONS These findings identified that activation of the Notch1/NF-κB/MMP-9 pathway, in part, mediates the repressive effects of AGEs on diabetic wound healing and that targeting this pathway may be a potential strategy to improve impaired diabetic wound healing.
Collapse
Affiliation(s)
- Ping Zhu
- Department of Endocrinology and Metabolism, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, China
| | - Chuping Chen
- Department of Endocrinology and Metabolism, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, China
| | - Daoai Wu
- Department of Endocrinology and Metabolism, The First Affiliated Hospital, Bengbu Medical College, Bengbu 233099, China
| | - Guangshu Chen
- Department of Endocrinology and Metabolism, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, China
| | - Rongshao Tan
- Guangzhou Institute of Disease-Oriented Nutritional Research, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, China
| | - Jianmin Ran
- Department of Endocrinology and Metabolism, Guangzhou Red Cross Hospital, Jinan University, Guangzhou 510220, China.
| |
Collapse
|
19
|
Saunders-Wood T, Egawa N, Zheng K, Giaretta A, Griffin HM, Doorbar J. Role of E6 in Maintaining the Basal Cell Reservoir during Productive Papillomavirus Infection. J Virol 2022; 96:e0118121. [PMID: 35019722 PMCID: PMC8906426 DOI: 10.1128/jvi.01181-21] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 12/28/2021] [Indexed: 11/20/2022] Open
Abstract
Papillomaviruses exclusively infect stratified epithelial tissues and cause chronic infections. To achieve this, infected cells must remain in the epithelial basal layer alongside their uninfected neighbors for years or even decades. To examine how papillomaviruses achieve this, we used the in vivo MmuPV1 (Mus musculus papillomavirus 1) model of lesion formation and persistence. During early lesion formation, an increased cell density in the basal layer, as well as a delay in the infected cells' commitment to differentiation, was apparent in cells expressing MmuPV1 E6/E7 RNA. Using cell culture models, keratinocytes exogenously expressing MmuPV1 E6, but not E7, recapitulated this delay in differentiation postconfluence and also grew to a significantly higher density. Cell competition assays further showed that MmuPV1 E6 expression led to a preferential persistence of the cell in the first layer, with control cells accumulating almost exclusively in the second layer. Interestingly, the disruption of MmuPV1 E6 binding to MAML1 protein abrogated these phenotypes. This suggests that the interaction between MAML1 and E6 is necessary for the lower (basal)-layer persistence of MmuPV1 E6-expressing cells. Our results indicate a role for E6 in lesion establishment by facilitating the persistence of infected cells in the epithelial basal layer, a mechanism that is most likely shared by other papillomavirus types. Interruption of this interaction is predicted to impede persistent papillomavirus infection and consequently provides a novel treatment target. IMPORTANCE Persistent infection with high-risk HPV types can lead to development of HPV-associated cancers, and persistent low-risk HPV infection causes problematic diseases, such as recurrent respiratory papillomatosis. The management and treatment of these conditions pose a considerable economic burden. Maintaining a reservoir of infected cells in the basal layer of the epithelium is critical for the persistence of infection in the host, and our studies using the mouse papillomavirus model suggest that E6 gene expression leads to the preferential persistence of epithelial cells in the lower layers during stratification. The E6 interaction with MAML1, a component of the Notch pathway, is required for this phenotype and is linked to E6 effects on cell density and differentiation. These observations are likely to reflect a common E6 role that is preserved among papillomaviruses and provide us with a novel therapeutic target for the treatment of recalcitrant lesions.
Collapse
Affiliation(s)
| | - Nagayasu Egawa
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Ke Zheng
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - Alberto Giaretta
- Department of Information Engineering, University of Padova, Padua, Italy
| | - Heather M. Griffin
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| | - John Doorbar
- Department of Pathology, University of Cambridge, Cambridge, United Kingdom
| |
Collapse
|
20
|
Michmerhuizen NL, Heenan C, Wang J, Leonard E, Bellile E, Loganathan SK, Wong SY, Lei YL, Brenner JC. Combined Pik3ca-H1047R and loss-of-function Notch1 alleles decrease survival time in a 4-nitroquinoline N-oxide-driven head and neck squamous cell carcinoma model. Oral Oncol 2022; 126:105770. [DOI: 10.1016/j.oraloncology.2022.105770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Accepted: 02/07/2022] [Indexed: 11/27/2022]
|
21
|
García-Foncillas J, Tejera-Vaquerizo A, Sanmartín O, Rojo F, Mestre J, Martín S, Azinovic I, Mesía R. Update on Management Recommendations for Advanced Cutaneous Squamous Cell Carcinoma. Cancers (Basel) 2022; 14:629. [PMID: 35158897 PMCID: PMC8833756 DOI: 10.3390/cancers14030629] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 01/14/2022] [Accepted: 01/21/2022] [Indexed: 02/01/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is the second most common form of skin cancer, the incidence of which has risen over the last years. Although cSCC rarely metastasizes, early detection and treatment of primary tumours are critical to limit progression and local invasion. Several prognostic factors related to patients' clinicopathologic profile and tumour features have been identified as high-risk markers and included in the stratification scales, but their association with regional control or survival is uncertain. Therefore, decision-making on the diagnosis and management of cSCC should be made based on each individual patient's characteristics. Recent advances in non-invasive imaging techniques and molecular testing have enhanced clinical diagnostic accuracy. Surgical excision is the mainstay of local treatment, whereas radiotherapy (RT) is recommended for patients with inoperable disease or in specific circumstances. Novel systemic treatments including immunotherapies and targeted therapies have changed the therapeutic landscape for cSCC. The anti-PD-1 agent cemiplimab is currently the only FDA/EMA-approved first-line therapy for patients with locally advanced or metastatic cSCC who are not candidates for curative surgery or RT. Given the likelihood of recurrence and the increased risk of developing multiple cSCC, close follow-up should be performed during the first years of treatment and continued long-term surveillance is warranted.
Collapse
Affiliation(s)
- Jesús García-Foncillas
- Departamento de Oncología, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (F.R.); (I.A.)
- Department of Medicine, Faculty of Medicine, Universidad Autónoma de Madrid, 28040 Madrid, Spain
| | - Antonio Tejera-Vaquerizo
- Instituto Dermatológico GlobalDerm, Palma del Río, 14700 Cordoba, Spain;
- Unidad de Oncología Cutánea, Hospital San Juan de Dios, 14012 Cordoba, Spain
| | | | - Federico Rojo
- Departamento de Oncología, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (F.R.); (I.A.)
| | - Javier Mestre
- Hospital Universitario Miguel Servet, 50009 Zaragoza, Spain;
| | | | - Ignacio Azinovic
- Departamento de Oncología, Hospital Universitario Fundación Jiménez Díaz, 28040 Madrid, Spain; (F.R.); (I.A.)
| | - Ricard Mesía
- B-ARGO Group, Medical Oncology Department, Institut Català d’Oncologia (ICO), Badalona, 08908 Barcelona, Spain;
| |
Collapse
|
22
|
Delta/Jagged-mediated Notch signaling induces the differentiation of agr2-positive epidermal mucous cells in zebrafish embryos. PLoS Genet 2021; 17:e1009969. [PMID: 34962934 PMCID: PMC8746730 DOI: 10.1371/journal.pgen.1009969] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 01/10/2022] [Accepted: 11/27/2021] [Indexed: 11/25/2022] Open
Abstract
Teleosts live in aquatic habitats, where they encounter ionic and acid-base fluctuations as well as infectious pathogens. To protect from these external challenges, the teleost epidermis is composed of living cells, including keratinocytes and ionocytes that maintain body fluid ionic homeostasis, and mucous cells that secret mucus. While ionocyte progenitors are known to be specified by Delta-Notch-mediated lateral inhibition during late gastrulation and early segmentation, it remains unclear how epidermal mucous cells (EMCs) are differentiated and maintained. Here, we show that Delta/Jagged-mediated activation of Notch signaling induces the differentiation of agr2-positive (agr2+) EMCs in zebrafish embryos during segmentation. We demonstrated that agr2+ EMCs contain cytoplasmic secretory granules and express muc5.1 and muc5.2. Reductions in agr2+ EMC number were observed in mib mutants and notch3 MOs-injected notch1a mutants, while increases in agr2+ cell number were detected in notch1a- and X-Su(H)/ANK-overexpressing embryos. Treatment with γ-secretase inhibitors further revealed that Notch signaling is required during bud to 15 hpf for the differentiation of agr2+ EMCs. Increased agr2+ EMC numbers were also observed in jag1a-, jag1b-, jag2a- and dlc-overexpressing, but not jag2b-overexpressing embryos. Meanwhile, reductions in agr2+ EMC numbers were detected in jag1a morphants, jag1b mutants, jag2a mutants and dlc morphants, but not jag2b mutants. Reduced numbers of pvalb8-positive epidermal cells were also observed in mib or jag2a mutants and jag1a or jag1b morphants, while increased pvalb8-positive epidermal cell numbers were detected in notch1a-overexpressing, but not dlc-overexpressing embryos. BrdU labeling further revealed that the agr2+ EMC population is maintained by proliferation. Cell lineage experiments showed that agr2+ EMCs are derived from the same ectodermal precursors as keratinocytes or ionocytes. Together, our results indicate that specification of agr2+ EMCs in zebrafish embryos is induced by DeltaC/Jagged-dependent activation of Notch1a/3 signaling, and the cell population is maintained by proliferation. As aquatic organisms, fish must tolerate environmental challenges that include acid-base fluctuations and water-borne pathogens. The skin provides a first line of defense against these challenges, and specific cell types in the tissue are responsible for different protective functions. For example, keratinocytes provide body coverage, ionocytes are responsible for maintaining body fluid ionic homeostasis, and epidermal mucous cells generate a protective layer of mucus that covers the entire fish surface. In this study, we uncovered the developmental process in zebrafish that underlies the generation of epidermal mucous cells. First, we characterized epidermal mucous cells according to their expression of a particular gene, agr2. Then, we found that these cells differentiate soon after ionocytes and keratinocytes, and the molecular pathways that guide differentiation of all three cell types involve similar signals. While ionocytes and keratinocytes are known to be specified by Delta-Notch-mediated lateral inhibition, we found that epidermal mucous cells are specified by activation of Notch by Delta and Jagged ligands. Thus, our results suggest that the specification of these major cell types in the epidermis occurs via a streamlined Notch-dependent process. This utilization of temporally distinct signaling events can therefore generate diverse cell types in the fish epidermis.
Collapse
|
23
|
Fane ME, Chhabra Y, Spoerri L, Simmons JL, Ludwig R, Bonvin E, Goding CR, Sturm RA, Boyle GM, Haass NK, Piper M, Smith AG. Reciprocal regulation of BRN2 and NOTCH1/2 signaling synergistically drives melanoma cell migration and invasion. J Invest Dermatol 2021; 142:1845-1857. [PMID: 34958806 DOI: 10.1016/j.jid.2020.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 12/17/2020] [Accepted: 12/30/2020] [Indexed: 11/16/2022]
Abstract
Phenotypic plasticity drives cancer progression, impacts on treatment response and is a major driver of therapeutic resistance. In melanoma, a regulatory axis between the MITF and BRN2 transcription factors has been reported to promote tumor heterogeneity by mediating switching between proliferative and invasive phenotypes respectively. Despite strong evidence that subpopulations of cells that exhibit a BRN2high/MITFlow expression profile switch to a predominantly invasive phenotype, the mechanisms by which this switch is propagated and promotes invasion remain poorly defined. We have found that a reciprocal relationship between BRN2 and NOTCH1/2 signaling exists in melanoma cells in vitro, within patient datasets and in vivo primary and metastatic human tumors that bolsters acquisition of invasiveness. Working through the epigenetic modulator EZH2, the BRN2-NOTCH1/2 axis is potentially a key mechanism by which the invasive phenotype is maintained. Given the emergence of agents targeting both EZH2 and NOTCH, understanding the mechanism through which BRN2 promotes heterogeneity may provide crucial biomarkers to predict treatment response to prevent metastasis.
Collapse
Affiliation(s)
- Mitchell E Fane
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4102, Australia; The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore MD 21231; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore MD 21231
| | - Yash Chhabra
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4102, Australia; Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, 4102, Australia; Department of Biochemistry and Molecular Biology, Johns Hopkins Bloomberg School of Public Health, Baltimore MD 21231; Department of Oncology, Sidney Kimmel Cancer Center, Johns Hopkins School of Medicine, Baltimore MD 21231
| | - Loredana Spoerri
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Jacinta L Simmons
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4102, Australia; The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia; Cancer Drug Mechanisms Group, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Raquelle Ludwig
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4102, Australia
| | - Elise Bonvin
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Headington, Oxford OX3 7DQ, UK
| | - Richard A Sturm
- Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Glen M Boyle
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4102, Australia; The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia; Cancer Drug Mechanisms Group, Department of Cell and Molecular Biology, QIMR Berghofer Medical Research Institute, Herston, QLD, 4006, Australia
| | - Nikolas K Haass
- The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, 4102, Australia
| | - Michael Piper
- The School of Biomedical Sciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Aaron G Smith
- School of Biomedical Sciences, Institute of Health and Biomedical Innovation at the Translational Research Institute, Queensland University of Technology, Brisbane, QLD 4102, Australia; Dermatology Research Centre, The University of Queensland Diamantina Institute, The University of Queensland, Translational Research Institute, Brisbane, QLD, 4102, Australia.
| |
Collapse
|
24
|
Zhang Y, Huang J, Fu D, Liu Z, Wang H, Wang J, Qu Q, Li K, Fan Z, Hu Z, Miao Y. Transcriptome Analysis Reveals an Inhibitory Effect of Dihydrotestosterone-Treated 2D- and 3D-Cultured Dermal Papilla Cells on Hair Follicle Growth. Front Cell Dev Biol 2021; 9:724310. [PMID: 34604224 PMCID: PMC8484716 DOI: 10.3389/fcell.2021.724310] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 08/31/2021] [Indexed: 12/31/2022] Open
Abstract
Dermal papillae are a target of androgen action in patients with androgenic alopecia, where androgen acts on the epidermis of hair follicles in a paracrine manner. To mimic the complexity of the dermal papilla microenvironment, a better culture model of human dermal papilla cells (DPCs) is needed. Therefore, we evaluated the inhibitory effect of dihydrotestosterone (DHT)-treated two-dimensional (2D)- and 3D-cultured DPCs on hair follicle growth. 2D- and 3D-cultured DPC proliferation was inhibited after co-culturing with outer root sheath (ORS) cells under DHT treatment. Moreover, gene expression levels of β-catenin and neural cell adhesion molecules were significantly decreased and those of cleaved caspase-3 significantly increased in 2D- and 3D-cultured DPCs with increasing DHT concentrations. ORS cell proliferation also significantly increased after co-culturing in the control-3D model compared with the control-2D model. Ki67 downregulation and cleaved caspase-3 upregulation in DHT-treated 2D and 3D groups significantly inhibited ORS cell proliferation. Sequencing showed an increase in the expression of genes related to extracellular matrix synthesis in the 3D model group. Additionally, the top 10 hub genes were identified, and the expression of nine chemokine-related genes in DHT-treated DPCs was found to be significantly increased. We also identified the interactions between transcription factor (TF) genes and microRNAs (miRNAs) with hub genes and the TF-miRNA coregulatory network. Overall, the findings indicate that 3D-cultured DPCs are more representative of in vivo conditions than 2D-cultured DPCs and contribute to our understanding of the molecular mechanisms underlying androgen-induced alopecia.
Collapse
Affiliation(s)
- Yufan Zhang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Junfei Huang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Danlan Fu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhen Liu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Hailin Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Jin Wang
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Qian Qu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Kaitao Li
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhexiang Fan
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Zhiqi Hu
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| | - Yong Miao
- Department of Plastic and Aesthetic Surgery, Nanfang Hospital of Southern Medical University, Guangzhou, China
| |
Collapse
|
25
|
Spurlock B, Parker D, Basu MK, Hjelmeland A, GC S, Liu S, Siegal GP, Gunter A, Moran A, Mitra K. Fine-tuned repression of Drp1-driven mitochondrial fission primes a 'stem/progenitor-like state' to support neoplastic transformation. eLife 2021; 10:e68394. [PMID: 34545812 PMCID: PMC8497058 DOI: 10.7554/elife.68394] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 09/08/2021] [Indexed: 12/13/2022] Open
Abstract
Gene knockout of the master regulator of mitochondrial fission, Drp1, prevents neoplastic transformation. Also, mitochondrial fission and its opposing process of mitochondrial fusion are emerging as crucial regulators of stemness. Intriguingly, stem/progenitor cells maintaining repressed mitochondrial fission are primed for self-renewal and proliferation. Using our newly derived carcinogen transformed human cell model, we demonstrate that fine-tuned Drp1 repression primes a slow cycling 'stem/progenitor-like state', which is characterized by small networks of fused mitochondria and a gene-expression profile with elevated functional stem/progenitor markers (Krt15, Sox2 etc) and their regulators (Cyclin E). Fine tuning Drp1 protein by reducing its activating phosphorylation sustains the neoplastic stem/progenitor cell markers. Whereas, fine-tuned reduction of Drp1 protein maintains the characteristic mitochondrial shape and gene-expression of the primed 'stem/progenitor-like state' to accelerate neoplastic transformation, and more complete reduction of Drp1 protein prevents it. Therefore, our data highlights a 'goldilocks' level of Drp1 repression supporting stem/progenitor state dependent neoplastic transformation.
Collapse
Affiliation(s)
- Brian Spurlock
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Danitra Parker
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Malay Kumar Basu
- Departments of Pathology, University of Alabama at BirminghamBirminghamUnited States
| | - Anita Hjelmeland
- Department of Cell Development and Integrative Biology, University of Alabama at BirminghamBirminghamUnited States
| | - Sajina GC
- Department of Cell Development and Integrative Biology, University of Alabama at BirminghamBirminghamUnited States
| | - Shanrun Liu
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Gene P Siegal
- Departments of Pathology, Surgery, Genetics and Cell and Developmental Biology, University of Alabama at BirminghamBirminghamUnited States
| | - Alan Gunter
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Aida Moran
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| | - Kasturi Mitra
- Department of Genetics, University of Alabama at BirminghamBirminghamUnited States
| |
Collapse
|
26
|
Alvarez-Trotta A, Guerrant W, Astudillo L, Lahiry M, Diluvio G, Shersher E, Kaneku H, Robbins DJ, Orton D, Capobianco AJ. Pharmacological Disruption of the Notch1 Transcriptional Complex Inhibits Tumor Growth by Selectively Targeting Cancer Stem Cells. Cancer Res 2021; 81:3347-3357. [PMID: 33820800 PMCID: PMC8655881 DOI: 10.1158/0008-5472.can-20-3611] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 03/08/2021] [Accepted: 04/01/2021] [Indexed: 11/16/2022]
Abstract
In many human cancers, deregulation of the Notch pathway has been shown to play a role in the initiation and maintenance of the neoplastic phenotype. Aberrant Notch activity also plays a central role in the maintenance and survival of cancer stem cells (CSC), which underlie metastasis and resistance to therapy. For these reasons, inhibition of Notch signaling has become an exceedingly attractive target for cancer therapeutic development. However, attempts to develop Notch pathway-specific drugs have largely failed in the clinic, in part due to intestinal toxicity. Here, we report the discovery of NADI-351, the first specific small-molecule inhibitor of Notch1 transcriptional complexes. NADI-351 selectively disrupted Notch1 transcription complexes and reduced Notch1 recruitment to target genes. NADI-351 demonstrated robust antitumor activity without inducing intestinal toxicity in mouse models, and CSCs were ablated by NADI-351 treatment. Our study demonstrates that NADI-351 is an orally available and potent inhibitor of Notch1-mediated transcription that inhibits tumor growth with low toxicity, providing a potential therapeutic approach for improved cancer treatment. SIGNIFICANCE: This study showcases the first Notch1-selective inhibitor that suppresses tumor growth with limited toxicity by selectively ablating cancer stem cells.
Collapse
Affiliation(s)
- Annamil Alvarez-Trotta
- The DeWitt Daughtry Family Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami, Florida
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | | | - Luisana Astudillo
- The DeWitt Daughtry Family Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami, Florida
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Mohini Lahiry
- The DeWitt Daughtry Family Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami, Florida
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Giulia Diluvio
- The DeWitt Daughtry Family Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami, Florida
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Elena Shersher
- The DeWitt Daughtry Family Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami, Florida
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | - Hugo Kaneku
- Department of Surgery, University of Miami Miller School of Medicine, Miami, Florida
| | - David J Robbins
- The DeWitt Daughtry Family Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami, Florida
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| | | | - Anthony J Capobianco
- The DeWitt Daughtry Family Department of Surgery, Molecular Oncology Program, Miller School of Medicine, University of Miami, Miami, Florida.
- Sylvester Cancer Center, Miller School of Medicine, University of Miami, Miami, Florida
| |
Collapse
|
27
|
High proliferation and delamination during skin epidermal stratification. Nat Commun 2021; 12:3227. [PMID: 34050161 PMCID: PMC8163813 DOI: 10.1038/s41467-021-23386-4] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 04/20/2021] [Indexed: 12/29/2022] Open
Abstract
The development of complex stratified epithelial barriers in mammals is initiated from single-layered epithelia. How stratification is initiated and fueled are still open questions. Previous studies on skin epidermal stratification suggested a central role for perpendicular/asymmetric cell division orientation of the basal keratinocyte progenitors. Here, we use centrosomes, that organize the mitotic spindle, to test whether cell division orientation and stratification are linked. Genetically ablating centrosomes from the developing epidermis leads to the activation of the p53-, 53BP1- and USP28-dependent mitotic surveillance pathway causing a thinner epidermis and hair follicle arrest. The centrosome/p53-double mutant keratinocyte progenitors significantly alter their division orientation in the later stages without majorly affecting epidermal differentiation. Together with time-lapse imaging and tissue growth dynamics measurements, the data suggest that the first and major phase of epidermal development is boosted by high proliferation rates in both basal and suprabasally-committed keratinocytes as well as cell delamination, whereas the second phase maybe uncoupled from the division orientation of the basal progenitors. The data provide insights for tissue homeostasis and hyperproliferative diseases that may recapitulate developmental programs. How the developing skin epidermis is transformed from a simple single-layered epithelium to a complex and stratified barrier is still an open question. Here, the authors provide a model based on high proliferation and delamination of the keratinocyte progenitors that support the stratification process.
Collapse
|
28
|
Schleicher K, Schramek D. AJUBA: A regulator of epidermal homeostasis and cancer. Exp Dermatol 2021; 30:546-559. [PMID: 33372298 DOI: 10.1111/exd.14272] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 12/17/2022]
Abstract
The epidermis, outermost layer of the skin, is constantly renewing itself through proliferative and differentiation processes. These processes are vital to maintain proper epidermal integrity during skin development and homeostasis and for preventing skin diseases and cancers. The biological mechanisms that permit this balancing act are vast, where individual pathway regulators are known, but the exact regulatory control and cross-talk between simultaneously turning one biological pathway on and an opposing one off remain elusive. This review explores the diverse roles the scaffolding protein AJUBA plays during epidermal homeostasis and cancer. Initially identified for its role in promoting meiotic progression in oocytes through Grb2 and MAP kinase activity, AJUBA also maintains cytoskeletal tension permitting epidermal tissue development and responds to retinoic acid committing cells to initiate development of surface epidermal layer. AJUBA regulates proliferation of skin stem cells through Hippo and Wnt signalling and encourages mitotic commitment through Aurora-A, Aurora-B and CDK1. In addition, AJUBA also induces epidermal differentiation to maintain appropriate epidermal thickness and barrier function by activating Notch signalling and stabilizing catenins and actin during cellular remodelling. AJUBA also plays an imperative context-dependent tumor-promoting and tumor-suppressive role within epithelial cancers. AJUBA's abundant roles within the epidermis signify its importance as a molecular switchboard, vetting multiple signalling pathways to control epidermal biology.
Collapse
Affiliation(s)
- Krista Schleicher
- Molecular, Structural and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada.,Faculty of Medicine, Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Daniel Schramek
- Molecular, Structural and Systems Biology, Lunenfeld-Tanenbaum Research Institute, Toronto, ON, Canada.,Faculty of Medicine, Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
29
|
Reichrath J, Reichrath S. The Impact of Notch Signaling for Carcinogenesis and Progression of Nonmelanoma Skin Cancer: Lessons Learned from Cancer Stem Cells, Tumor Angiogenesis, and Beyond. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1287:123-154. [PMID: 33034030 DOI: 10.1007/978-3-030-55031-8_9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Since many decades, nonmelanoma skin cancer (NMSCs) is the most common malignancy worldwide. Basal cell carcinomas (BCC) and squamous cell carcinomas (SCC) are the major types of NMSCs, representing approximately 70% and 25% of these neoplasias, respectively. Because of their continuously rising incidence rates, NMSCs represent a constantly increasing global challenge for healthcare, although they are in most cases nonlethal and curable (e.g., by surgery). While at present, carcinogenesis of NMSC is still not fully understood, the relevance of genetic and molecular alterations in several pathways, including evolutionary highly conserved Notch signaling, has now been shown convincingly. The Notch pathway, which was first developed during evolution in metazoans and that was first discovered in fruit flies (Drosophila melanogaster), governs cell fate decisions and many other fundamental processes that are of high relevance not only for embryonic development, but also for initiation, promotion, and progression of cancer. Choosing NMSC as a model, we give in this review a brief overview on the interaction of Notch signaling with important oncogenic and tumor suppressor pathways and on its role for several hallmarks of carcinogenesis and cancer progression, including the regulation of cancer stem cells, tumor angiogenesis, and senescence.
Collapse
Affiliation(s)
- Jörg Reichrath
- Department of Dermatology, Saarland University Medical Center, Homburg, Germany.
| | - Sandra Reichrath
- Department of Dermatology, Saarland University Medical Center, Homburg, Germany.,School of Health Professions, Saarland University Medical Center, Homburg, Germany
| |
Collapse
|
30
|
Two Variants in the NOTCH4 and HLA-C Genes Contribute to Familial Clustering of Psoriasis. Int J Genomics 2020; 2020:6907378. [PMID: 33134369 PMCID: PMC7593743 DOI: 10.1155/2020/6907378] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/18/2020] [Accepted: 10/05/2020] [Indexed: 12/05/2022] Open
Abstract
Psoriasis is a multifactorial immune-mediated skin disease with a strong genetic background. Previous studies reported that psoriasis with a family history (PFH) and sporadic psoriasis (SP) have a distinct manifestation and genetic predisposition. However, the genetic heterogeneity of PFH and SP in the major histocompatibility complex (MHC) region has not been fully elucidated. To explore genetic variants in the MHC region that drive family aggregation of psoriasis, we included a total of 8,127 psoriasis cases and 9,906 healthy controls from Han Chinese and divided psoriasis into two subtypes, PFH (n = 1,538) and SP (n = 5,262). Then, we calculated the heritability of PFH and SP and performed a large-scale stratified association analysis. We confirmed that variants in the MHC region collectively explained a higher heritability of PFH (16.8%) than SP (13.3%). Further stratified association analysis illustrated that HLA-C∗06:02 and NOTCH4:G511S contribute to the family aggregation of psoriasis, and BTNL2:R281K specifically confers risk for SP. HLA-C∗06:02 and NOTCH4:G511S could partially explain why patients with PFH have a stronger genetic predisposition, more complex phenotypes, and more frequent other autoimmune diseases. The identification of the SP-specific variant BTNL2:R281K revealed that the genetic architecture of SP is not just a subset of PFH.
Collapse
|
31
|
Koike Y, Yozaki M, Utani A, Murota H. Fibroblast growth factor 2 accelerates the epithelial-mesenchymal transition in keratinocytes during wound healing process. Sci Rep 2020; 10:18545. [PMID: 33122782 PMCID: PMC7596476 DOI: 10.1038/s41598-020-75584-7] [Citation(s) in RCA: 70] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 10/14/2020] [Indexed: 12/22/2022] Open
Abstract
In the wound healing process, the morphology of keratinocytes at the wound edge temporarily changes to a spindle morphology, which is thought to occur due to an epithelial–mesenchymal transition (EMT). Fibroblast growth factor (FGF) 2, also called basic FGF, has the potential to accelerate wound closure by activating vascular endothelial cells and fibroblasts. We examined the effects of FGF2 on keratinocyte morphology and EMT in wounded skin. Histological examination of murine wounds treated with FGF2 revealed that wound edge keratinocytes formed thickened and multilayered epithelia. In addition, we detected wound edge keratinocytes migrating individually toward the wound center. These migrating keratinocytes exhibited not only spindle morphology but also down-regulated E-cadherin and up-regulated vimentin expression, which is characteristic of EMT. In FGF2-treated wounds, a PCR array revealed the upregulation of genes related to EMT, including transforming growth factor (TGF) signaling. Further, FGF2-treated wound edge keratinocytes expressed EMT-associated transcription factors, including Snai2, and showed translocation of β-catenin from the cell membrane to the cytoplasm/nucleus. However, in vitro examination of keratinocytes revealed that FGF2 alone did not activate EMT in keratinocytes, but that FGF2 might promote EMT in combination with TGFβ1. These findings suggest that FGF2 treatment of wounds could promote keratinocyte EMT, accelerating wound closure.
Collapse
Affiliation(s)
- Yuta Koike
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan.
| | - Mariko Yozaki
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Atsushi Utani
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| | - Hiroyuki Murota
- Department of Dermatology, Nagasaki University Graduate School of Biomedical Sciences, Nagasaki, Japan
| |
Collapse
|
32
|
Brauweiler AM, Leung DYM, Goleva E. The Transcription Factor p63 Is a Direct Effector of IL-4- and IL-13-Mediated Repression of Keratinocyte Differentiation. J Invest Dermatol 2020; 141:770-778. [PMID: 33038352 DOI: 10.1016/j.jid.2020.09.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 09/01/2020] [Accepted: 09/02/2020] [Indexed: 12/20/2022]
Abstract
Atopic Dermatitis is an inflammatory skin disease associated with broad defects in skin barrier function caused by increased levels of type-2 cytokines (IL-4 and IL-13) that repress keratinocyte (KC) differentiation. Although crucial in mediating allergic disease, the mechanisms for gene repression induced by type-2 cytokines remain unclear. In this study, we determined that gene repression requires the master regulator of the epidermal differentiation program, p63. We found that type-2 cytokine-mediated inhibition of the expression of genes involved in early KC differentiation, including keratin 1, keratin 10, and DSC-1, is reversed by p63 blockade. Type-2 cytokines, through p63, also regulate additional genes involved in KC differentiation, including CHAC-1, STC2, and CALML5. The regulation of the expression of these genes is ablated by p63 small interfering RNA as well. In addition, we found that IL-4 and IL-13 and Staphylococcus aureus lipoteichoic acid work in combination through p63 to further suppress the early KC differentiation program. Finally, we found that IL-4 and IL-13 also inhibit the activity of Notch, a transcription factor required to induce early KC differentiation. In conclusion, type-2 cytokine-mediated gene repression and blockade of KC differentiation are multifactorial, involving pathways that converge on transcription factors critical for epidermal development, p63 and Notch.
Collapse
Affiliation(s)
- Anne M Brauweiler
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA
| | - Donald Y M Leung
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA; Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
| | - Elena Goleva
- Department of Pediatrics, National Jewish Health, Denver, Colorado, USA.
| |
Collapse
|
33
|
Rangel-Huerta E, Guzman A, Maldonado E. The dynamics of epidermal stratification during post-larval development in zebrafish. Dev Dyn 2020; 250:175-190. [PMID: 32877571 DOI: 10.1002/dvdy.249] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 08/08/2020] [Accepted: 08/22/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The epidermis, as a defensive barrier, is a consistent trait throughout animal evolution. During post-larval development, the zebrafish epidermis thickens by stratification or addition of new cell layers. Epidermal basal stem cells, expressing the transcription factor p63, are known to be involved in this process. Zebrafish post-larval epidermal stratification is a tractable system to study how stem cells participate in organ growth. METHODS We used immunohistochemistry, in combination with EdU cell proliferation detection, to study zebrafish epidermal stratification. For this procedure, we selected a window of post-larval stages (5-8 mm of standard length or SL, which normalizes age by size). Simultaneously, we used markers for asymmetric cell division and the Notch signaling pathway. RESULTS We found that epidermal stratification is the consequence of several events, including changes in cell shape, active cell proliferation and asymmetrical cell divisions. We identified a subset of highly proliferative epidermal cells with reduced levels of p63, which differed from the basal stem cells with high levels of p63. Additionally, we described different mechanisms that participate in the stratification process, including the phosphorylation of p63, asymmetric cell division regulated by the Par3 and LGN proteins, and expression of Notch genes.
Collapse
Affiliation(s)
- Emma Rangel-Huerta
- EvoDevo Research Group, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM), Puerto Morelos, Quintana Roo, Mexico.,Posgrado en Ciencias Biomédicas, Universidad Nacional Autónoma de México, UNAM, Puerto Morelos, Quintana Roo, Mexico
| | - Aida Guzman
- EvoDevo Research Group, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM), Puerto Morelos, Quintana Roo, Mexico.,Estudio Técnico Especializado en Histopatología, Escuela Nacional Preparatoria, ENP, Universidad Nacional Autónoma de México, UNAM, Ciudad de México, Mexico
| | - Ernesto Maldonado
- EvoDevo Research Group, Unidad de Sistemas Arrecifales, Instituto de Ciencias del Mar y Limnología, Universidad Nacional Autónoma de México (UNAM), Puerto Morelos, Quintana Roo, Mexico
| |
Collapse
|
34
|
Xi L, Carroll T, Matos I, Luo JD, Polak L, Pasolli HA, Jaffrey SR, Fuchs E. m6A RNA methylation impacts fate choices during skin morphogenesis. eLife 2020; 9:e56980. [PMID: 32845239 PMCID: PMC7535931 DOI: 10.7554/elife.56980] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 08/25/2020] [Indexed: 12/30/2022] Open
Abstract
N6-methyladenosine is the most prominent RNA modification in mammals. Here, we study mouse skin embryogenesis to tackle m6A's functions and physiological importance. We first landscape the m6A modifications on skin epithelial progenitor mRNAs. Contrasting with in vivo ribosomal profiling, we unearth a correlation between m6A modification in coding sequences and enhanced translation, particularly of key morphogenetic signaling pathways. Tapping physiological relevance, we show that m6A loss profoundly alters these cues and perturbs cellular fate choices and tissue architecture in all skin lineages. By single-cell transcriptomics and bioinformatics, both signaling and canonical translation pathways show significant downregulation after m6A loss. Interestingly, however, many highly m6A-modified mRNAs are markedly upregulated upon m6A loss, and they encode RNA-methylation, RNA-processing and RNA-metabolism factors. Together, our findings suggest that m6A functions to enhance translation of key morphogenetic regulators, while also destabilizing sentinel mRNAs that are primed to activate rescue pathways when m6A levels drop.
Collapse
Affiliation(s)
- Linghe Xi
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller UniversityNew YorkUnited States
| | - Thomas Carroll
- Bioinformatics Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Irina Matos
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller UniversityNew YorkUnited States
| | - Ji-Dung Luo
- Bioinformatics Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Lisa Polak
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller UniversityNew YorkUnited States
| | - H Amalia Pasolli
- Electron Microscopy Resource Center, The Rockefeller UniversityNew YorkUnited States
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, Cornell UniversityNew YorkUnited States
| | - Elaine Fuchs
- Howard Hughes Medical Institute, Robin Chemers Neustein Laboratory of Mammalian Cell Biology and Development, The Rockefeller UniversityNew YorkUnited States
| |
Collapse
|
35
|
Wang S, Drummond ML, Guerrero-Juarez CF, Tarapore E, MacLean AL, Stabell AR, Wu SC, Gutierrez G, That BT, Benavente CA, Nie Q, Atwood SX. Single cell transcriptomics of human epidermis identifies basal stem cell transition states. Nat Commun 2020; 11:4239. [PMID: 32843640 PMCID: PMC7447770 DOI: 10.1038/s41467-020-18075-7] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 07/30/2020] [Indexed: 12/19/2022] Open
Abstract
How stem cells give rise to epidermis is unclear despite the crucial role the epidermis plays in barrier and appendage formation. Here we use single cell-RNA sequencing to interrogate basal stem cell heterogeneity of human interfollicular epidermis and find four spatially distinct stem cell populations at the top and bottom of rete ridges and transitional positions between the basal and suprabasal epidermal layers. Cell-cell communication modeling suggests that basal cell populations serve as crucial signaling hubs to maintain epidermal communication. Combining pseudotime, RNA velocity, and cellular entropy analyses point to a hierarchical differentiation lineage supporting multi-stem cell interfollicular epidermal homeostasis models and suggest that transitional basal stem cells are stable states essential for proper stratification. Finally, alterations in differentially expressed transitional basal stem cell genes result in severe thinning of human skin equivalents, validating their essential role in epidermal homeostasis and reinforcing the critical nature of basal stem cell heterogeneity.
Collapse
Affiliation(s)
- Shuxiong Wang
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Mathematics, University of California, Irvine, Irvine, CA, 92697, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, 92697, USA
| | - Michael L Drummond
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
| | - Christian F Guerrero-Juarez
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Mathematics, University of California, Irvine, Irvine, CA, 92697, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, 92697, USA
| | - Eric Tarapore
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
| | - Adam L MacLean
- Department of Mathematics, University of California, Irvine, Irvine, CA, 92697, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, 92697, USA
| | - Adam R Stabell
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
| | - Stephanie C Wu
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
| | - Guadalupe Gutierrez
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
| | - Bao T That
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
| | - Claudia A Benavente
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA
- Department of Pharmaceutical Sciences, University of California, Irvine, Irvine, CA, 92697, USA
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, 92697, USA
| | - Qing Nie
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Mathematics, University of California, Irvine, Irvine, CA, 92697, USA.
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, 92697, USA.
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, 92697, USA.
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, 92697, USA.
| | - Scott X Atwood
- Department of Developmental and Cell Biology, University of California, Irvine, Irvine, CA, 92697, USA.
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, CA, 92697, USA.
- Chao Family Comprehensive Cancer Center, University of California, Irvine, Irvine, CA, 92697, USA.
- Center for Complex Biological Systems, University of California, Irvine, Irvine, CA, 92697, USA.
- Department of Dermatology, University of California, Irvine, Irvine, CA, 92697, USA.
| |
Collapse
|
36
|
Deciphering the Molecular Landscape of Cutaneous Squamous Cell Carcinoma for Better Diagnosis and Treatment. J Clin Med 2020; 9:jcm9072228. [PMID: 32674318 PMCID: PMC7408826 DOI: 10.3390/jcm9072228] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Revised: 07/10/2020] [Accepted: 07/13/2020] [Indexed: 02/07/2023] Open
Abstract
Cutaneous squamous cell carcinoma (cSCC) is a common type of neoplasia, representing a terrible burden on patients' life and clinical management. Although it seldom metastasizes, and most cases can be effectively treated with surgical intervention, once metastatic cSCC displays considerable aggressiveness leading to the death of affected individuals. No consensus has been reached as to which features better characterize the aggressive behavior of cSCC, an achievement hindered by the high mutational burden caused by chronic ultraviolet light exposure. Even though some subtypes have been recognized as high risk variants, depending on certain tumor features, cSCC that are normally thought of as low risk could pose an increased danger to the patients. In light of this, specific genetic and epigenetic markers for cutaneous SCC, which could serve as reliable diagnostic markers and possible targets for novel treatment development, have been searched for. This review aims to give an overview of the mutational landscape of cSCC, pointing out established biomarkers, as well as novel candidates, and future possible molecular therapies for cSCC.
Collapse
|
37
|
Jevtić M, Löwa A, Nováčková A, Kováčik A, Kaessmeyer S, Erdmann G, Vávrová K, Hedtrich S. Impact of intercellular crosstalk between epidermal keratinocytes and dermal fibroblasts on skin homeostasis. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2020; 1867:118722. [PMID: 32302667 DOI: 10.1016/j.bbamcr.2020.118722] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 04/01/2020] [Accepted: 04/09/2020] [Indexed: 10/24/2022]
Abstract
Dermal fibroblasts seem critical for epidermal maturation and differentiation and recent work demonstrated that diseased fibroblasts may drive pathophysiological processes. Nevertheless, still very little is known about the actual crosstalk between epidermal keratinocytes and dermal fibroblasts and the impact of dermal fibroblasts on epidermal maturation and differentiation. Aiming for a more fundamental understanding of the impact of the cellular crosstalk between keratinocytes and fibroblasts on the skin homeostasis, we generated full-thickness skin equivalents with and without fibroblasts and subsequently analysed them for the expression of skin differentiation markers, their barrier function, skin lipid content and epidermal cell signalling. Skin equivalents without fibroblasts consistently showed an impaired differentiation and dysregulated expression of skin barrier and tight junction proteins, increased skin permeability, and a decreased skin lipid/protein ratio. Most interestingly, impaired Ras/Raf/ERK/MEK signalling was evident in skin equivalents without fibroblasts. Our data clearly indicate that the epidermal-dermal crosstalk between keratinocytes and fibroblasts is critical for adequate skin differentiation and that fibroblasts orchestrate epidermal differentiation processes.
Collapse
Affiliation(s)
- Marijana Jevtić
- Institute for Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Germany
| | - Anna Löwa
- Institute for Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Germany
| | - Anna Nováčková
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Andrej Kováčik
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Sabine Kaessmeyer
- Department of Veterinary Medicine, Institute for Veterinary Anatomy, Freie Universität Berlin, Germany
| | | | - Kateřina Vávrová
- Skin Barrier Research Group, Faculty of Pharmacy in Hradec Králové, Charles University, Czech Republic
| | - Sarah Hedtrich
- Institute for Pharmacy, Pharmacology and Toxicology, Freie Universität Berlin, Germany; Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
38
|
Serrano-Coll H, Ospina JP, Salazar-Peláez L, Cardona-Castro N. Notch Signaling Pathway Expression in the Skin of Leprosy Patients: Association With Skin and Neural Damage. Front Immunol 2020; 11:368. [PMID: 32265900 PMCID: PMC7096478 DOI: 10.3389/fimmu.2020.00368] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 02/17/2020] [Indexed: 01/31/2023] Open
Abstract
Introduction: Leprosy is an infectious disease caused by Mycobacterium leprae, a debilitating disease that affects the skin and peripheral nerves. It is possible that tissue changes during infection with leprosy are related to alterations in the activity of the Notch signaling pathway, an innate signaling pathway in the physiology of the skin and peripheral nerves. Methods: This is a descriptive observational study. Thirty skin biopsies from leprosy patients and 15 from individuals with no history of this disease were evaluated. In these samples, gene expressions of cellular components associated with the Notch signaling pathway, Hes-1, Hey-1, Runx-1 Jagged-1, Notch-1, and Numb, were evaluated using q-PCR, and protein expression was evaluated using immunohistochemistry of Runx-1 and Hes-1. Results: Changes were observed in the transcription of Notch signaling pathway components; Hes-1 was downregulated and Runx-1 upregulated in the skin of infected patients. These results were confirmed by immunohistochemistry, where reduction of Hes-1 expression was found in the epidermis, eccrine glands, and hair follicles. Increased expression of Runx-1 was found in inflammatory cells in the dermis of infected patients; however, it is not related to tissue changes. With these results, a multivariate analysis was performed to determine the causes of transcription factor Hes-1 reduction. It was concluded that tissue inflammation was the main cause. Conclusions: The tissue changes found in the skin of infected patients could be associated with a reduction in the expression of Hes-1, a situation that would promote the survival and proliferation of M. leprae in this tissue.
Collapse
Affiliation(s)
- Héctor Serrano-Coll
- Grupo de Ciencias Básicas, Doctorado en Ciencias de la Salud, Escuela de Graduados, Universidad CES, Medellín, Colombia.,Línea de Investigación en Lepra, Instituto Colombiano de Medicina Tropical, Universidad CES, Medellín, Colombia
| | - Juan Pablo Ospina
- Laboratorio de Dermatopatología, Centro de Investigaciones en Dermatología (CIDERM), Facultad de Medicina, Universidad de Antioquia, Medellín, Colombia
| | - Lina Salazar-Peláez
- Grupo de Ciencias Básicas, Doctorado en Ciencias de la Salud, Escuela de Graduados, Universidad CES, Medellín, Colombia
| | - Nora Cardona-Castro
- Grupo de Ciencias Básicas, Doctorado en Ciencias de la Salud, Escuela de Graduados, Universidad CES, Medellín, Colombia.,Línea de Investigación en Lepra, Instituto Colombiano de Medicina Tropical, Universidad CES, Medellín, Colombia
| |
Collapse
|
39
|
Notch Signaling and Embryonic Development: An Ancient Friend, Revisited. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1218:9-37. [PMID: 32060869 DOI: 10.1007/978-3-030-34436-8_2] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The evolutionary highly conserved Notch pathway, which first developed during evolution in metazoans and was first discovered in fruit flies (Drosophila melanogaster), governs many core processes including cell fate decisions during embryonic development. A huge mountain of scientific evidence convincingly demonstrates that Notch signaling represents one of the most important pathways that regulate embryogenesis from sponges, roundworms, Drosophila melanogaster, and mice to humans. In this review, we give a brief introduction on how Notch orchestrates the embryonic development of several selected tissues, summarizing some of the most relevant findings in the central nervous system, skin, kidneys, liver, pancreas, inner ear, eye, skeleton, heart, and vascular system.
Collapse
|
40
|
Suen WJ, Li ST, Yang LT. Hes1 regulates anagen initiation and hair follicle regeneration through modulation of hedgehog signaling. Stem Cells 2019; 38:301-314. [PMID: 31721388 PMCID: PMC7027765 DOI: 10.1002/stem.3117] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 10/22/2019] [Indexed: 12/16/2022]
Abstract
Adult hair follicles undergo repeated cycling of regression (catagen), resting (telogen), and growth (anagen), which is maintained by hair follicle stem cells (HFSCs). The mechanism underlying hair growth initiation and HFSC maintenance is not fully understood. Here, by epithelial deletion of Hes1, a major Notch downstream transcriptional repressor, we found that hair growth is retarded, but the hair cycle progresses normally. Hes1 is specifically upregulated in the lower bulge/HG during anagen initiation. Accordingly, loss of Hes1 results in delayed activation of the secondary hair germ (HG) and shortened anagen phase. This developmental delay causes reduced hair shaft length but not identity changes in follicular lineages. Remarkably, Hes1 ablation results in impaired hair regeneration upon repetitive depilation. Microarray gene profiling on HFSCs indicates that Hes1 modulates Shh responsiveness in anagen initiation. Using primary keratinocyte cultures, we demonstrated that Hes1 deletion negatively influences ciliogenesis and Smoothened ciliary accumulation upon Shh treatment. Furthermore, transient application of Smoothened agonist during repetitive depilation can rescue anagen initiation and HFSC self-renewal in Hes1-deficient hair follicles. We reveal a critical function of Hes1 in potentiating Shh signaling in anagen initiation, which allows sufficient signaling strength to expand the HG and replenish HFSCs to maintain the hair cycle homeostasis.
Collapse
Affiliation(s)
- Wei-Jeng Suen
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, R.O.C
| | - Shao-Ting Li
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, R.O.C
| | - Liang-Tung Yang
- Institute of Cellular and System Medicine, National Health Research Institutes, Zhunan, Taiwan, R.O.C.,Graduate Institute of Biomedical Sciences, China Medical University, Taiwan, R.O.C
| |
Collapse
|
41
|
Pivetti S, Fernandez-Perez D, D’Ambrosio A, Barbieri CM, Manganaro D, Rossi A, Barnabei L, Zanotti M, Scelfo A, Chiacchiera F, Pasini D. Loss of PRC1 activity in different stem cell compartments activates a common transcriptional program with cell type-dependent outcomes. SCIENCE ADVANCES 2019; 5:eaav1594. [PMID: 31106267 PMCID: PMC6520019 DOI: 10.1126/sciadv.aav1594] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Accepted: 04/02/2019] [Indexed: 05/11/2023]
Abstract
Polycomb repressive complexes are evolutionarily conserved complexes that maintain transcriptional repression during development and differentiation to establish and preserve cell identity. We recently described the fundamental role of PRC1 in preserving intestinal stem cell identity through the inhibition of non-lineage-specific transcription factors. To further elucidate the role of PRC1 in adult stem cell maintenance, we now investigated its role in LGR5+ hair follicle stem cells during regeneration. We show that PRC1 depletion severely affects hair regeneration and, different from intestinal stem cells, derepression of its targets induces the ectopic activation of an epidermal-specific program. Our data support a general role of PRC1 in preserving stem cell identity that is shared between different compartments. However, the final outcome of the ectopic activation of non-lineage-specific transcription factors observed upon loss of PRC1 is largely context-dependent and likely related to the transcription factors repertoire and specific epigenetic landscape of different cellular compartments.
Collapse
Affiliation(s)
- Silvia Pivetti
- European Institute of Oncology–IRCCS, Department of Experimental Oncology, Milan, Italy
| | | | - Alessandro D’Ambrosio
- European Institute of Oncology–IRCCS, Department of Experimental Oncology, Milan, Italy
| | | | - Daria Manganaro
- European Institute of Oncology–IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Alessandra Rossi
- European Institute of Oncology–IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Laura Barnabei
- European Institute of Oncology–IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Marika Zanotti
- European Institute of Oncology–IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Andrea Scelfo
- European Institute of Oncology–IRCCS, Department of Experimental Oncology, Milan, Italy
| | - Fulvio Chiacchiera
- European Institute of Oncology–IRCCS, Department of Experimental Oncology, Milan, Italy
- University of Trento, Department of Cellular, Computational and Integrative Biology–CIBIO, Trento, Italy
- Corresponding author. (F.C.); (D.P.)
| | - Diego Pasini
- European Institute of Oncology–IRCCS, Department of Experimental Oncology, Milan, Italy
- University of Milan, Department of Health Sciences, Milan, Italy
- Corresponding author. (F.C.); (D.P.)
| |
Collapse
|
42
|
Goleva E, Berdyshev E, Leung DY. Epithelial barrier repair and prevention of allergy. J Clin Invest 2019; 129:1463-1474. [PMID: 30776025 DOI: 10.1172/jci124608] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Allergic diseases have in common a dysfunctional epithelial barrier, which allows the penetration of allergens and microbes, leading to the release of type 2 cytokines that drive allergic inflammation. The accessibility of skin, compared with lung or gastrointestinal tissue, has facilitated detailed investigations into mechanisms underlying epithelial barrier dysfunction in atopic dermatitis (AD). This Review describes the formation of the skin barrier and analyzes the link between altered skin barrier formation and the pathogenesis of AD. The keratinocyte differentiation process is under tight regulation. During epidermal differentiation, keratinocytes sequentially switch gene expression programs, resulting in terminal differentiation and the formation of a mature stratum corneum, which is essential for the skin to prevent allergen or microbial invasion. Abnormalities in keratinocyte differentiation in AD skin result in hyperproliferation of the basal layer of epidermis, inhibition of markers of terminal differentiation, and barrier lipid abnormalities, compromising skin barrier and antimicrobial function. There is also compelling evidence for epithelial dysregulation in asthma, food allergy, eosinophilic esophagitis, and allergic rhinosinusitis. This Review examines current epithelial barrier repair strategies as an approach for allergy prevention or intervention.
Collapse
Affiliation(s)
- Elena Goleva
- Division of Pediatric Allergy and Clinical Immunology, Department of Pediatrics, and
| | - Evgeny Berdyshev
- Division of Pulmonary Sciences and Critical Care Medicine, Department of Medicine, National Jewish Health, Denver, Colorado, USA
| | - Donald Ym Leung
- Division of Pediatric Allergy and Clinical Immunology, Department of Pediatrics, and.,Department of Pediatrics, University of Colorado Denver, Aurora, Colorado, USA
| |
Collapse
|
43
|
Bogutz AB, Oh-McGinnis R, Jacob KJ, Ho-Lau R, Gu T, Gertsenstein M, Nagy A, Lefebvre L. Transcription factor ASCL2 is required for development of the glycogen trophoblast cell lineage. PLoS Genet 2018; 14:e1007587. [PMID: 30096149 PMCID: PMC6105033 DOI: 10.1371/journal.pgen.1007587] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2018] [Revised: 08/22/2018] [Accepted: 07/24/2018] [Indexed: 12/22/2022] Open
Abstract
The basic helix-loop-helix (bHLH) transcription factor ASCL2 plays essential roles in diploid multipotent trophoblast progenitors, intestinal stem cells, follicular T-helper cells, as well as during epidermal development and myogenesis. During early development, Ascl2 expression is regulated by genomic imprinting and only the maternally inherited allele is transcriptionally active in trophoblast. The paternal allele-specific silencing of Ascl2 requires expression of the long non-coding RNA Kcnq1ot1 in cis and the deposition of repressive histone marks. Here we show that Del7AI, a 280-kb deletion allele neighboring Ascl2, interferes with this process in cis and leads to a partial loss of silencing at Ascl2. Genetic rescue experiments show that the low level of Ascl2 expression from the paternal Del7AI allele can rescue the embryonic lethality associated with maternally inherited Ascl2 mutations, in a level-dependent manner. Despite their ability to support development to term, the rescued placentae have a pronounced phenotype characterized by severe hypoplasia of the junctional zone, expansion of the parietal trophoblast giant cell layer, and complete absence of invasive glycogen trophoblast cells. Transcriptome analysis of ectoplacental cones at E7.5 and differentiation assays of Ascl2 mutant trophoblast stem cells show that ASCL2 is required for the emergence or early maintenance of glycogen trophoblast cells during development. Our work identifies a new cis-acting mutation interfering with Kcnq1ot1 silencing function and establishes a novel critical developmental role for the transcription factor ASCL2. By controlling precise networks of target genes, transcription factors play important roles in cell fate determination during development. The Ascl2 gene codes for a transcription factor essential for the maintenance of progenitor cell populations able to differentiate into specialized cell types in the intestine and in the extra-embryonic trophoblast lineage. The trophoblast is an essential component of the placenta, an organ required for development of the embryo in placental mammals. Ascl2 belongs to a group of unusual genes, called imprinted genes, which are expressed from only a single parental copy. Ascl2 is only expressed from the maternally inherited copy in the trophoblast, the paternal copy being kept silent. Here, we describe an engineered deletion neighboring Ascl2 that interferes with the complete silencing of the paternal copy of the gene. We show that the low amount of ASCL2 produced from this deletion can rescue the embryonic lethality associated with non-functional maternal copies of Ascl2. Although the rescued embryos can often survive to term, their placenta is highly disorganized and lacks members of a specific cell lineage, the trophoblast glycogen cells. By analyzing the transcriptional profile of mutant trophoblast progenitors in vivo and of differentiated trophoblast stem cells, we show that ASCL2 plays a very early role in the formation of this cell lineage.
Collapse
Affiliation(s)
- Aaron B. Bogutz
- Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, Vancouver, BC, Canada
| | - Rosemary Oh-McGinnis
- Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, Vancouver, BC, Canada
| | - Karen J. Jacob
- Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, Vancouver, BC, Canada
| | - Rita Ho-Lau
- Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, Vancouver, BC, Canada
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Ting Gu
- Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, Vancouver, BC, Canada
| | - Marina Gertsenstein
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Andras Nagy
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | - Louis Lefebvre
- Department of Medical Genetics, Molecular Epigenetics Group, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| |
Collapse
|
44
|
Montoro DT, Haber AL, Biton M, Vinarsky V, Lin B, Birket SE, Yuan F, Chen S, Leung HM, Villoria J, Rogel N, Burgin G, Tsankov AM, Waghray A, Slyper M, Waldman J, Nguyen L, Dionne D, Rozenblatt-Rosen O, Tata PR, Mou H, Shivaraju M, Bihler H, Mense M, Tearney GJ, Rowe SM, Engelhardt JF, Regev A, Rajagopal J. A revised airway epithelial hierarchy includes CFTR-expressing ionocytes. Nature 2018; 560:319-324. [PMID: 30069044 PMCID: PMC6295155 DOI: 10.1038/s41586-018-0393-7] [Citation(s) in RCA: 804] [Impact Index Per Article: 114.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 06/21/2018] [Indexed: 12/16/2022]
Abstract
The airways of the lung are the primary sites of disease in asthma and cystic fibrosis. Here we study the cellular composition and hierarchy of the mouse tracheal epithelium by single-cell RNA-sequencing (scRNA-seq) and in vivo lineage tracing. We identify a rare cell type, the Foxi1+ pulmonary ionocyte; functional variations in club cells based on their location; a distinct cell type in high turnover squamous epithelial structures that we term 'hillocks'; and disease-relevant subsets of tuft and goblet cells. We developed 'pulse-seq', combining scRNA-seq and lineage tracing, to show that tuft, neuroendocrine and ionocyte cells are continually and directly replenished by basal progenitor cells. Ionocytes are the major source of transcripts of the cystic fibrosis transmembrane conductance regulator in both mouse (Cftr) and human (CFTR). Knockout of Foxi1 in mouse ionocytes causes loss of Cftr expression and disrupts airway fluid and mucus physiology, phenotypes that are characteristic of cystic fibrosis. By associating cell-type-specific expression programs with key disease genes, we establish a new cellular narrative for airways disease.
Collapse
Affiliation(s)
- Daniel T Montoro
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Departments of Internal Medicine and Pediatrics, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Adam L Haber
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Moshe Biton
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA, USA
| | - Vladimir Vinarsky
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Departments of Internal Medicine and Pediatrics, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Brian Lin
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Departments of Internal Medicine and Pediatrics, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Susan E Birket
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Gregory Fleming James Cystic Fibrosis Research Center, Birmingham, AL, USA
| | - Feng Yuan
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Sijia Chen
- Department of Experimental Immunology, Academic Medical Center/University of Amsterdam, Amsterdam, The Netherlands
| | - Hui Min Leung
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Jorge Villoria
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Departments of Internal Medicine and Pediatrics, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Noga Rogel
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Grace Burgin
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Alexander M Tsankov
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Avinash Waghray
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Departments of Internal Medicine and Pediatrics, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Michal Slyper
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Julia Waldman
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Lan Nguyen
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Danielle Dionne
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Purushothama Rao Tata
- Department of Cell Biology, Duke University, Durham, NC, USA
- Duke Cancer Institute, Duke University, Durham, NC, USA
- Division of Pulmonary Critical Care, Department of Medicine, Duke University School of Medicine, Durham, NC, USA
- Regeneration Next, Duke University, Durham, NC, USA
| | - Hongmei Mou
- Department of Pediatrics, Massachusetts General Hospital, Boston, MA, USA
- Mucosal Immunology and Biology Research Center, Massachusetts General Hospital, Boston, MA, USA
| | - Manjunatha Shivaraju
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA
- Departments of Internal Medicine and Pediatrics, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, MA, USA
- Harvard Stem Cell Institute, Cambridge, MA, USA
| | - Hermann Bihler
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA, USA
| | - Martin Mense
- CFFT Lab, Cystic Fibrosis Foundation, Lexington, MA, USA
| | - Guillermo J Tearney
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
- Wellman Center for Photomedicine, Massachusetts General Hospital, Boston, MA, USA
| | - Steven M Rowe
- Department of Medicine, University of Alabama at Birmingham, Birmingham, AL, USA
- Gregory Fleming James Cystic Fibrosis Research Center, Birmingham, AL, USA
| | - John F Engelhardt
- Department of Anatomy and Cell Biology, Carver College of Medicine, University of Iowa, Iowa City, IA, USA
| | - Aviv Regev
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Howard Hughes Medical Institute and Koch Institute for Integrative Cancer Research, Department of Biology, Massachusetts Institute of Technology, Cambridge, MA, USA.
| | - Jayaraj Rajagopal
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Departments of Internal Medicine and Pediatrics, Pulmonary and Critical Care Unit, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Stem Cell Institute, Cambridge, MA, USA.
- Klarman Cell Observatory, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
45
|
Al Labban D, Jo SH, Ostano P, Saglietti C, Bongiovanni M, Panizzon R, Dotto GP. Notch-effector CSL promotes squamous cell carcinoma by repressing histone demethylase KDM6B. J Clin Invest 2018; 128:2581-2599. [PMID: 29757189 DOI: 10.1172/jci96915] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 03/20/2018] [Indexed: 12/19/2022] Open
Abstract
Notch 1/2 genes play tumor-suppressing functions in squamous cell carcinoma (SCC), a very common malignancy in skin and internal organs. In contrast with Notch, we show that the transcription factor CSL (also known as RBP-Jκ), a key effector of canonical Notch signaling endowed with intrinsic transcription-repressive functions, plays a tumor-promoting function in SCC development. Expression of this gene decreased in upper epidermal layers and human keratinocytes (HKCs) undergoing differentiation, while it increased in premalignant and malignant SCC lesions from skin, head/neck, and lung. Increased CSL levels enhanced the proliferative potential of HKCs and SCC cells, while silencing of CSL induced growth arrest and apoptosis. In vivo, SCC cells with increased CSL levels gave rise to rapidly expanding tumors, while cells with silenced CSL formed smaller and more differentiated tumors with enhanced inflammatory infiltrate. Global transcriptomic analysis of HKCs and SCC cells with silenced CSL revealed major modulation of apoptotic, cell-cycle, and proinflammatory genes. We also show that the histone demethylase KDM6B is a direct CSL-negative target, with inverse roles of CSL in HKC and SCC proliferative capacity, tumorigenesis, and tumor-associated inflammatory reaction. CSL/KDM6B protein expression could be used as a biomarker of SCC development and indicator of cancer treatment.
Collapse
Affiliation(s)
- Dania Al Labban
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Seung-Hee Jo
- Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| | - Paola Ostano
- Cancer Genomics Laboratory, Edo and Elvo Tempia Valenta Foundation, Biella, Italy
| | | | | | - Renato Panizzon
- Department of Dermatology, Lausanne University Hospital (CHUV), Lausanne, Switzerland
| | - G Paolo Dotto
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland.,Cutaneous Biology Research Center, Massachusetts General Hospital, Charlestown, Massachusetts, USA
| |
Collapse
|
46
|
Amini-Nik S, Yousuf Y, Jeschke MG. Scar management in burn injuries using drug delivery and molecular signaling: Current treatments and future directions. Adv Drug Deliv Rev 2018; 123:135-154. [PMID: 28757325 PMCID: PMC5742037 DOI: 10.1016/j.addr.2017.07.017] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2017] [Revised: 07/14/2017] [Accepted: 07/20/2017] [Indexed: 12/14/2022]
Abstract
In recent decades, there have been tremendous improvements in burn care that have allowed patients to survive severe burn injuries that were once fatal. However, a major limitation of burn care currently is the development of hypertrophic scars in approximately 70% of patients. This significantly decreases the quality of life for patients due to the physical and psychosocial symptoms associated with scarring. Current approaches to manage scarring include surgical techniques and non-surgical methods such as laser therapy, steroid injections, and compression therapy. These treatments are limited in their effectiveness and regularly fail to manage symptoms. As a result, the development of novel treatments that aim to improve outcomes and quality of life is imperative. Drug delivery that targets the molecular cascades of wound healing to attenuate or prevent hypertrophic scarring is a promising approach that has therapeutic potential. In this review, we discuss current treatments for scar management after burn injury, and how drug delivery targeting molecular signaling can lead to new therapeutic strategies.
Collapse
Affiliation(s)
- Saeid Amini-Nik
- Sunnybrook Research Institute, Toronto, Canada; Laboratory Medicine and Pathobiology, University of Toronto, Toronto, Canada; Department of Surgery, Division of Plastic Surgery, University of Toronto, Toronto, Canada.
| | - Yusef Yousuf
- Institute of Medical Science, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Toronto, Canada
| | - Marc G Jeschke
- Institute of Medical Science, University of Toronto, Toronto, Canada; Sunnybrook Research Institute, Toronto, Canada; Department of Surgery, Division of Plastic Surgery, University of Toronto, Toronto, Canada; Department of Immunology, University of Toronto, Toronto, Canada; Ross-Tilley Burn Centre, Sunnybrook Health Sciences Centre, Toronto, Canada.
| |
Collapse
|
47
|
Siebel C, Lendahl U. Notch Signaling in Development, Tissue Homeostasis, and Disease. Physiol Rev 2017; 97:1235-1294. [PMID: 28794168 DOI: 10.1152/physrev.00005.2017] [Citation(s) in RCA: 661] [Impact Index Per Article: 82.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Revised: 05/19/2017] [Accepted: 05/26/2017] [Indexed: 02/07/2023] Open
Abstract
Notch signaling is an evolutionarily highly conserved signaling mechanism, but in contrast to signaling pathways such as Wnt, Sonic Hedgehog, and BMP/TGF-β, Notch signaling occurs via cell-cell communication, where transmembrane ligands on one cell activate transmembrane receptors on a juxtaposed cell. Originally discovered through mutations in Drosophila more than 100 yr ago, and with the first Notch gene cloned more than 30 yr ago, we are still gaining new insights into the broad effects of Notch signaling in organisms across the metazoan spectrum and its requirement for normal development of most organs in the body. In this review, we provide an overview of the Notch signaling mechanism at the molecular level and discuss how the pathway, which is architecturally quite simple, is able to engage in the control of cell fates in a broad variety of cell types. We discuss the current understanding of how Notch signaling can become derailed, either by direct mutations or by aberrant regulation, and the expanding spectrum of diseases and cancers that is a consequence of Notch dysregulation. Finally, we explore the emerging field of Notch in the control of tissue homeostasis, with examples from skin, liver, lung, intestine, and the vasculature.
Collapse
Affiliation(s)
- Chris Siebel
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| | - Urban Lendahl
- Department of Discovery Oncology, Genentech Inc., DNA Way, South San Francisco, California; and Department of Cell and Molecular Biology, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
48
|
MicroRNAs in the skin: role in development, homoeostasis and regeneration. Clin Sci (Lond) 2017; 131:1923-1940. [PMID: 28705953 DOI: 10.1042/cs20170039] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2017] [Revised: 04/20/2017] [Accepted: 05/02/2017] [Indexed: 01/12/2023]
Abstract
The skin is the largest organ of the integumentary system and possesses a vast number of functions. Due to the distinct layers of the skin and the variety of cells which populate each, a tightly regulated network of molecular signals control development and regeneration, whether due to programmed cell termination or injury. MicroRNAs (miRs) are a relatively recent discovery; they are a class of small non-coding RNAs which possess a multitude of biological functions due to their ability to regulate gene expression via post-transcriptional gene silencing. Of interest, is that a plethora of data demonstrates that a number of miRs are highly expressed within the skin, and are evidently key regulators of numerous vital processes to maintain non-aberrant functioning. Recently, miRs have been targeted as therapeutic interventions due to the ability of synthetic 'antagomiRs' to down-regulate abnormal miR expression, thereby potentiating wound healing and attenuating fibrotic processes which can contribute to disease such as systemic sclerosis (SSc). This review will provide an introduction to the structure and function of the skin and miR biogenesis, before summarizing the literature pertaining to the role of miRs. Finally, miR therapies will also be discussed, highlighting important future areas of research.
Collapse
|
49
|
Notch1 maintains dormancy of olfactory horizontal basal cells, a reserve neural stem cell. Proc Natl Acad Sci U S A 2017. [PMID: 28637720 DOI: 10.1073/pnas.1701333114] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
The remarkable capacity of the adult olfactory epithelium (OE) to regenerate fully both neurosensory and nonneuronal cell types after severe epithelial injury depends on life-long persistence of two stem cell populations: the horizontal basal cells (HBCs), which are quiescent and held in reserve, and mitotically active globose basal cells. It has recently been demonstrated that down-regulation of the ΔN form of the transcription factor p63 is both necessary and sufficient to release HBCs from dormancy. However, the mechanisms by which p63 is down-regulated after acute OE injury remain unknown. To identify the cellular source of potential signaling mechanisms, we assessed HBC activation after neuron-only and sustentacular cell death. We found that ablation of sustentacular cells is sufficient for HBC activation to multipotency. By expression analysis, next-generation sequencing, and immunohistochemical examination, down-regulation of Notch pathway signaling is coincident with HBC activation. Therefore, using HBC-specific conditional knockout of Notch receptors and overexpression of N1ICD, we show that Notch signaling maintains p63 levels and HBC dormancy, in contrast to its suppression of p63 expression in other tissues. Additionally, Notch1, but not Notch2, is required to maintain HBC dormancy after selective neuronal degeneration. Taken together, our data indicate that the activation of HBCs observed after tissue injury or sustentacular cell ablation is caused by the reduction/elimination of Notch signaling on HBCs; elimination of Jagged1 expressed by sustentacular cells may be the ligand responsible.
Collapse
|
50
|
Totaro A, Castellan M, Battilana G, Zanconato F, Azzolin L, Giulitti S, Cordenonsi M, Piccolo S. YAP/TAZ link cell mechanics to Notch signalling to control epidermal stem cell fate. Nat Commun 2017; 8:15206. [PMID: 28513598 PMCID: PMC5442321 DOI: 10.1038/ncomms15206] [Citation(s) in RCA: 209] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Accepted: 03/08/2017] [Indexed: 12/11/2022] Open
Abstract
How the behaviour of somatic stem cells (SCs) is influenced by mechanical signals remains a black-box in cell biology. Here we show that YAP/TAZ regulation by cell shape and rigidity of the extracellular matrix (ECM) dictates a pivotal SC decision: to remain undifferentiated and grow, or to activate a terminal differentiation programme. Notably, mechano-activation of YAP/TAZ promotes epidermal stemness by inhibition of Notch signalling, a key factor for epidermal differentiation. Conversely, YAP/TAZ inhibition by low mechanical forces induces Notch signalling and loss of SC traits. As such, mechano-dependent regulation of YAP/TAZ reflects into mechano-dependent regulation of Notch signalling. Mechanistically, at least in part, this is mediated by YAP/TAZ binding to distant enhancers activating the expression of Delta-like ligands, serving as ‘in cis' inhibitors of Notch. Thus YAP/TAZ mechanotransduction integrates with cell–cell communication pathways for fine-grained orchestration of SC decisions. Notch signalling is a fundamental negative regulator of epidermal stemness. Here, the authors show that cell mechanics through YAP/TAZ activity prevent primary human keratinocytes from differentiating by inhibiting cell-autonomous Notch signals.
Collapse
Affiliation(s)
- Antonio Totaro
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| | - Martina Castellan
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| | - Giusy Battilana
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| | - Francesca Zanconato
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| | - Luca Azzolin
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| | - Stefano Giulitti
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy.,Department of Industrial Engineering (DII), University of Padua, via Marzolo 9, Padua 35131, Italy
| | - Michelangelo Cordenonsi
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| | - Stefano Piccolo
- Department of Molecular Medicine (DMM), University of Padua School of Medicine, viale Colombo 3, Padua 35126, Italy
| |
Collapse
|