1
|
Novoplansky A, Souza G, Brenner E, Bhatla S, Van Volkenburgh E. Exploring the complex information processes underlying plant behavior. PLANT SIGNALING & BEHAVIOR 2024; 19:2411913. [PMID: 39381978 PMCID: PMC11469436 DOI: 10.1080/15592324.2024.2411913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Revised: 09/21/2024] [Accepted: 09/28/2024] [Indexed: 10/10/2024]
Abstract
Newly discovered plant behaviors, linked to historical observations, contemporary technologies, and emerging knowledge of signaling mechanisms, argue that plants utilize complex information processing systems. Plants are goal-oriented in an evolutionary and physiological sense; they demonstrate agency and learning. While most studies on plant plasticity, learning, and memory deal with the responsiveness of individual plants to resource availability and biotic stresses, adaptive information is often perceived from and coordinated with neighboring plants, while competition occurs for limited resources. Based on existing knowledge, technologies, and sustainability principles, climate-smart agricultural practices are now being adopted to enhance crop resilience and productivity. A deeper understanding of the dynamics of plant behavior offers a rich palette of potential amelioration strategies for improving the productivity and health of natural and agricultural ecosystems.
Collapse
Affiliation(s)
- A. Novoplansky
- Mitrani Department of Desert Ecology, Blaustein Institutes for Desert Research, Ben-Gurion University of the Negev, Midreshet Ben-Gurion, Israel
| | - G.M. Souza
- Department of Botany, Institute of Biology – Section of Plant Physiology, Federal University of Pelotas, Pelotas, RS, Brazil
| | - E.D. Brenner
- Department of Biology, Pace University, New York, New York, USA
| | - S.C. Bhatla
- Department of Botany, University of Delhi, New Delhi, Delhi, India
| | | |
Collapse
|
2
|
Chen J, Cao K, Lu X, Huang D, Ming R, Lu R, Huang R, Li L. Investigating the action model of the resistance enhancement induced by bacterial volatile organic compounds against Botrytis cinerea in tomato fruit. FRONTIERS IN PLANT SCIENCE 2024; 15:1475416. [PMID: 39659409 PMCID: PMC11628293 DOI: 10.3389/fpls.2024.1475416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Accepted: 11/05/2024] [Indexed: 12/12/2024]
Abstract
Introduction Inducing natural resistance against pathogen infection in postharvest tomatoes is a sustainable strategy for reducing postharvest losses. The action model underlying the resistance enhancement of tomatoes induced by bacterial volatile organic compounds (VOCs) against Botrytis cinerea, however, have not been explored. Methods In this study, RNA-seq, metabolomics and physiological analysis were used to evaluate global change of defense response induced by VOCs in tomatoes. Results The application of VOCs inhibited the damage to tomatoes caused by B. cinerea. VOCs treatment had remarkable beneficial effects on the activities of the main defence-related enzymes, including chitinases, glucanases, peroxidases, ascorbate peroxidases, polyphenol oxidases, and phenylalanine ammonia-lyases. The expression of response genes involved in salicylic acid and jasmonic acid biosynthesis and signalling pathways was enhanced upon VOCs treatment. Metabolomics data demonstrated that VOC treatment triggered the accumulation of phenolic acids, including substrates in phenolic acid biosynthesis pathways, hydroxycinnamic acid, hydroxybenzoic acid, and their derivatives. Transcriptomics analysis and qRT-PCR verification revealed that VOCs treatment significantly upregulates the expression of core genes related to phenolic acid biosynthesis, specifically in shikimate pathway (SlDAHPS, SlSDH, SlCS, and SlADT3) and phenylalanine metabolic pathway (SlPAL, Sl4CL, SlBAHD1, SlCYP98A2 and SlCAP84A1). Discussion Results confirmed that VOCs enhanced tomatoes postharvest resistance against B. cinerea by regulating defence enzyme activity, SA/JA signalling, and phenolic acid biosynthesis pathway. This study provides new insights into the mechanisms by which VOCs fumigation manages postharvest grey mould in tomatoes.
Collapse
Affiliation(s)
- Jianhua Chen
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Kexin Cao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
- College of Agriculture, Guangxi University, Nanning, China
| | - Xuan Lu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Ding Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Ruhong Ming
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Rumei Lu
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Rongshao Huang
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| | - Liangbo Li
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning, China
| |
Collapse
|
3
|
Tian H, Lyu R, Yi P. Crosstalk between Rho of Plants GTPase signalling and plant hormones. JOURNAL OF EXPERIMENTAL BOTANY 2024; 75:3778-3796. [PMID: 38616410 DOI: 10.1093/jxb/erae162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 04/12/2024] [Indexed: 04/16/2024]
Abstract
Rho of Plants (ROPs) constitute a plant-specific subset of small guanine nucleotide-binding proteins within the Cdc42/Rho/Rac family. These versatile proteins regulate diverse cellular processes, including cell growth, cell division, cell morphogenesis, organ development, and stress responses. In recent years, the dynamic cellular and subcellular behaviours orchestrated by ROPs have unveiled a notable connection to hormone-mediated organ development and physiological responses, thereby expanding our knowledge of the functions and regulatory mechanisms of this signalling pathway. This review delineates advancements in understanding the interplay between plant hormones and the ROP signalling cascade, focusing primarily on the connections with auxin and abscisic acid pathways, alongside preliminary discoveries in cytokinin, brassinosteroid, and salicylic acid responses. It endeavours to shed light on the intricate, coordinated mechanisms bridging cell- and tissue-level signals that underlie plant cell behaviour, organ development, and physiological processes, and highlights future research prospects and challenges in this rapidly developing field.
Collapse
Affiliation(s)
- Haoyu Tian
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Ruohan Lyu
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| | - Peishan Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, 610064, P. R. China
| |
Collapse
|
4
|
Kheng S, Choe SH, Sahu N, Park JI, Kim HT. Identification of Gene Responsible for Conferring Resistance against Race KN2 of Podosphaera xanthii in Melon. Int J Mol Sci 2024; 25:1134. [PMID: 38256205 PMCID: PMC10816175 DOI: 10.3390/ijms25021134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 12/26/2023] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Powdery mildew caused by Podosphaera xanthii is a serious fungal disease which causes severe damage to melon production. Unlike with chemical fungicides, managing this disease with resistance varieties is cost effective and ecofriendly. But, the occurrence of new races and a breakdown of the existing resistance genes poses a great threat. Therefore, this study aimed to identify the resistance locus responsible for conferring resistance against P. xanthii race KN2 in melon line IML107. A bi-parental F2 population was used in this study to uncover the resistance against race KN2. Genetic analysis revealed the resistance to be monogenic and controlled by a single dominant gene in IML107. Initial marker analysis revealed the position of the gene to be located on chromosome 2 where many of the resistance gene against P. xanthii have been previously reported. Availability of the whole genome of melon and its R gene analysis facilitated the identification of a F-box type Leucine Rich Repeats (LRR) to be accountable for the resistance against race KN2 in IML107. The molecular marker developed in this study can be used for marker assisted breeding programs.
Collapse
Affiliation(s)
| | | | | | | | - Hoy-Taek Kim
- Department of Horticulture, Sunchon National University, Suncheon 57922, Republic of Korea; (S.K.); (S.-H.C.); (N.S.); (J.-I.P.)
| |
Collapse
|
5
|
Bhaskar R, Pandey SP, Kumar U, Kim H, Jayakodi SK, Gupta MK, Han SS. Nanobionics for sustainable crop production: Recent development to regulate plant growth and protection strategies from pests. OPENNANO 2024; 15:100198. [DOI: 10.1016/j.onano.2023.100198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2025]
|
6
|
Ahkami AH. Systems biology of root development in Populus: Review and perspectives. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2023; 335:111818. [PMID: 37567482 DOI: 10.1016/j.plantsci.2023.111818] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 06/28/2023] [Accepted: 08/04/2023] [Indexed: 08/13/2023]
Abstract
The root system of plants consists of primary, lateral, and adventitious roots (ARs) (aka shoot-born roots). ARs arise from stem- or leaf-derived cells during post-embryonic development. Adventitious root development (ARD) through stem cuttings is the first requirement for successful establishment and growth of planted trees; however, the details of the molecular mechanisms underlying ARD are poorly understood. This knowledge is important to both basic plant biology and because of its necessary role in the successful propagation of superior cultivars of commercial woody bioenergy crops, like poplar. In this review article, the molecular mechanisms that control both endogenous (auxin) and environmentally (nutrients and microbes) regulated ARD and how these systems interact to control the rooting efficiency of poplar trees are described. Then, potential future studies in employing integrated systems biology approaches at cellular resolutions are proposed to more precisely identify the molecular mechanisms that cause AR. Using genetic transformation and genome editing approaches, this information can be used for improving ARD in economically important plants for which clonal propagation is a requirement.
Collapse
Affiliation(s)
- Amir H Ahkami
- Environmental Molecular Sciences Laboratory (EMSL), Pacific Northwest National Laboratory (PNNL), Richland, WA, USA.
| |
Collapse
|
7
|
You Y, Luo B, Wang C, Dong H, Wang X, Hou P, Sun L, Li A. An ultrasensitive probe-free electrochemical immunosensor for gibberellins employing polydopamine-antibody nanoparticles modified electrode. Bioelectrochemistry 2023; 150:108331. [PMID: 36446196 DOI: 10.1016/j.bioelechem.2022.108331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 11/14/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
Gibberellins (GA3) is an ubiquitous plant hormone, which plays a regulatory role in different growth stages of plants, so it is of great significance to develop a sensitive quantitative analysis method for GA3. In this study, carboxylated graphene oxide- carboxylated multi-walled carbon nanotubes-Fc (GO-MWNT-Fc) composite material and PDANPs-antibody (PDANPs-Ab) were sequentially modified to screen-printed electrodes (SPEs), and an ultrasensitive probe-free immunosensor for GA3 was developed. Fc was applied to generate electrochemical signals. GO-COOH and MWNT-COOH can increase the catalytic ability of the sensor and bind the PDANPs-Ab nanoparticles. PDANPs nanomaterial were synthetized by a facile self-polymerization and used to bind with antibody, so as to increase the antibody loading of the sensor. The as-prepared immunosensor has the widest detection range (100 aM-1 mM) and lowest detection limit (17.4 aM) for GA3 up to date. To our knowledge, it is the first electrochemical immunosensor for GA3. By changing the GA3 antibody to ABA antibody, a sensitive and selective immunosensor for ABA was also fabricated. This immunosensor platform is simple, sensitive, and low cost. It opens broad prospect in on-site applications for biosensors in detecting of various biomolecules in precision agriculture.
Collapse
Affiliation(s)
- Yang You
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China; College of Landscape and Ecological Engineering, Hebei University of Engineering, Handan 056038, China
| | - Bin Luo
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Cheng Wang
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Hongtu Dong
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Xiaodong Wang
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Peichen Hou
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China
| | - Lijun Sun
- School of Life Sciences, Nantong University, 9 Seyuan Rd, Nantong, Jiangsu 226019, China.
| | - Aixue Li
- Research Center of Intelligent Equipment, Beijing Academy of Agriculture and Forestry Sciences, Beijing 100097, China.
| |
Collapse
|
8
|
Luo Z, Zhao Z, Xu Y, Shi M, Tu T, Pei N, Zhang D. Comprehensive transcriptomic profiling reveals complex molecular mechanisms in the regulation of style-length dimorphism in Guettarda speciosa (Rubiaceae), a species with "anomalous" distyly. FRONTIERS IN PLANT SCIENCE 2023; 14:1116078. [PMID: 37008460 PMCID: PMC10060554 DOI: 10.3389/fpls.2023.1116078] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 02/16/2023] [Indexed: 06/19/2023]
Abstract
BACKGROUND The evolution of heterostyly, a genetically controlled floral polymorphism, has been a hotspot of research since the 19th century. In recent years, studies on the molecular mechanism of distyly (the most common form of heterostyly) revealed an evolutionary convergence in genes for brassinosteroids (BR) degradation in different angiosperm groups. This floral polymorphism often exhibits considerable variability that some taxa have significant stylar dimorphism, but anther height differs less. This phenomenon has been termed "anomalous" distyly, which is usually regarded as a transitional stage in evolution. Compared to "typical" distyly, the genetic regulation of "anomalous" distyly is almost unknown, leaving a big gap in our understanding of this special floral adaptation strategy. METHODS Here we performed the first molecular-level study focusing on this floral polymorphism in Guettarda speciosa (Rubiaceae), a tropical tree with "anomalous" distyly. Comprehensive transcriptomic profiling was conducted to examine which genes and metabolic pathways were involved in the genetic control of style dimorphism and if they exhibit similar convergence with "typical" distylous species. RESULTS "Brassinosteroid homeostasis" and "plant hormone signal transduction" was the most significantly enriched GO term and KEGG pathway in the comparisons between L- and S-morph styles, respectively. Interestingly, homologs of all the reported S-locus genes either showed very similar expressions between L- and S-morph styles or no hits were found in G. speciosa. BKI1, a negative regulator of brassinosteroid signaling directly repressing BRI1 signal transduction, was identified as a potential gene regulating style length, which significantly up-regulated in the styles of S-morph. DISCUSSION These findings supported the hypothesis that style length in G. speciosa was regulated through a BR-related signaling network in which BKI1 may be one key gene. Our data suggested, in species with "anomalous" distyly, style length was regulated by gene differential expressions, instead of the "hemizygous" S-locus genes in "typical" distylous flowers such as Primula and Gelsemium, representing an "intermediate" stage in the evolution of distyly. Genome-level analysis and functional studies in more species with "typical" and "anomalous" distyly would further decipher this "most complex marriage arrangement" in angiosperms and improve our knowledge of floral evolution.
Collapse
Affiliation(s)
- Zhonglai Luo
- School of Life Sciences and Medicine, Shandong University of Technology, Zibo, China
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Zhongtao Zhao
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Yuanqing Xu
- Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, Yunnan, China
| | - Miaomiao Shi
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Tieyao Tu
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Nancai Pei
- Research Institute of Tropical Forestry, Chinese Academy of Forestry, Guangzhou, China
| | - Dianxiang Zhang
- Key Laboratory of Plant Resources Conservation and Sustainable Utilization, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| |
Collapse
|
9
|
Root ABA Accumulation Delays Lateral Root Emergence in Osmotically Stressed Barley Plants by Decreasing Root Primordial IAA Accumulation. INTERNATIONAL JOURNAL OF PLANT BIOLOGY 2023. [DOI: 10.3390/ijpb14010007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Increased auxin levels in root primordia are important in controlling root branching, while their interaction with abscisic acid (ABA) likely regulates lateral root development in water-deficient plants. The role of ABA accumulation in regulating root branching was investigated using immunolocalization to detect auxin (indoleacetic acid, IAA) and ABA (abscisic acid) in root primordia of the ABA-deficient barley mutant Az34 and its parental genotype (cv. Steptoe) barley plants. Osmotic stress strongly inhibited lateral root branching in Steptoe plants, but hardly affected Az34. Root primordial cells of Steptoe plants had increased immunostaining for ABA but diminished staining for IAA. ABA did not accumulate in root primordia of the Az34, and IAA levels and distribution were unaltered. Treating Az34 plants with exogenous ABA decreased root IAA concentration, while increasing root primordial ABA accumulation and decreasing root primordial IAA concentration. Although ABA treatment of Az34 plants increased the root primordial number, it decreased the number of visible emerged lateral roots. These effects were qualitatively similar to that of osmotic stress on the number of lateral root primordia and emerged lateral roots in Steptoe. Thus ABA accumulation (and its crosstalk with auxin) in root primordia seems important in regulating lateral root branching in response to water stress.
Collapse
|
10
|
Ang MCY, Lew TTS. Non-destructive Technologies for Plant Health Diagnosis. FRONTIERS IN PLANT SCIENCE 2022; 13:884454. [PMID: 35712566 PMCID: PMC9197209 DOI: 10.3389/fpls.2022.884454] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Accepted: 04/29/2022] [Indexed: 06/01/2023]
Abstract
As global population grows rapidly, global food supply is increasingly under strain. This is exacerbated by climate change and declining soil quality due to years of excessive fertilizer, pesticide and agrichemical usage. Sustainable agricultural practices need to be put in place to minimize destruction to the environment while at the same time, optimize crop growth and productivity. To do so, farmers will need to embrace precision agriculture, using novel sensors and analytical tools to guide their farm management decisions. In recent years, non-destructive or minimally invasive sensors for plant metabolites have emerged as important analytical tools for monitoring of plant signaling pathways and plant response to external conditions that are indicative of overall plant health in real-time. This will allow precise application of fertilizers and synthetic plant growth regulators to maximize growth, as well as timely intervention to minimize yield loss from plant stress. In this mini-review, we highlight in vivo electrochemical sensors and optical nanosensors capable of detecting important endogenous metabolites within the plant, together with sensors that detect surface metabolites by probing the plant surface electrophysiology changes and air-borne volatile metabolites. The advantages and limitations of each kind of sensing tool are discussed with respect to their potential for application in high-tech future farms.
Collapse
Affiliation(s)
- Mervin Chun-Yi Ang
- Disruptive and Sustainable Technologies for Agricultural Precision IRG, Singapore-MIT Alliance for Research and Technology, Singapore, Singapore
| | - Tedrick Thomas Salim Lew
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- Institute of Materials Research and Engineering, Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
11
|
Wang C, Liu H, Huang L, Chen H, Lu X, Zhou B. LcNAC13 Is Involved in the Reactive Oxygen Species-Dependent Senescence of the Rudimentary Leaves in Litchi chinensis. FRONTIERS IN PLANT SCIENCE 2022; 13:886131. [PMID: 35615126 PMCID: PMC9125249 DOI: 10.3389/fpls.2022.886131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/04/2022] [Indexed: 06/15/2023]
Abstract
Litchi is an important evergreen fruit tree. Floral formation in litchi is induced by low temperatures (LTs). However, unstable flowering is a challenge for litchi production in times of global warming and climate change. Previous studies have shown that the methyl viologen dichloride hydrate-generated reactive oxygen species (ROS) could promote flowering. Leaves in the panicles may affect the development of the inflorescence in litchi under high-temperature condition. In this study, potted litchi trees were transferred to growth chambers at LT and high temperature (HT). From a previous dataset of the RNA sequencing of the ROS-treated rudimentary leaves, a NAC transcription factor-encoding gene LcNAC13 was identified. By genetic transformation of LcNAC13 to Arabidopsis thaliana and tobacco, it was found that the ROS-induced senescence of the leaves was accelerated. Silencing LcNAC13 by virus-induced gene silencing (VIGS) delayed ROS-dependent senescence. Our results suggested that LcNAC13 regulates rudimentary leaf senescence. Our study provided a new target gene for the future molecular breeding of new cultivars that could flower under global warming conditions.
Collapse
Affiliation(s)
- Congcong Wang
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Silviculture, Protection and Utilization, Guangdong Academy of Forestry, Guangzhou, China
| | - Hao Liu
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Lijie Huang
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Houbin Chen
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Xingyu Lu
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| | - Biyan Zhou
- Guangdong Litchi Engineering Research Center, College of Horticulture, South China Agricultural University, Guangzhou, China
| |
Collapse
|
12
|
Cioć M, Dziurka M, Pawłowska B. Changes in Endogenous Phytohormones of Gerbera jamesonii Axillary Shoots Multiplied under Different Light Emitting Diodes Light Quality. Molecules 2022; 27:1804. [PMID: 35335168 PMCID: PMC8950344 DOI: 10.3390/molecules27061804] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 12/05/2022] Open
Abstract
Light quality is essential in in vitro cultures for morphogenesis process. Light emitting diodes system (LED) allows adjustment as desired and the most appropriate light spectrum. The study analyzed the influence of different LED light quality on the balance of endogenous phytohormones and related compounds (PhRC) in in vitro multiplied axillary shoots of Gerbera jamesonii. Over a duration of 40 days, the shoots were exposed to 100% red light, 100% blue light, red and blue light at a 7:3 ratio with control fluorescent lamps. Every 10 days plant tissues were tested for their PhRC content with the use of an ultra-high performance liquid chromatography (UHPLC). Shoots' morphometric features were analyzed after a multiplication cycle. We identified 35 PhRC including twelve cytokinins, seven auxins, nine gibberellins, and seven stress-related phytohormones. Compounds content varied from 0.00052 nmol/g to 168.15 nmol/g of dry weight (DW). The most abundant group were stress-related phytohormones (particularly benzoic and salicylic acids), and the least abundant were cytokinins (about 370 times smaller content). LED light did not disturb the endogenous phytohormone balance, and more effectively mitigated the stress experienced by in vitro grown plants than the fluorescent lamps. The stress was most effectively reduced under the red LED. Red and red:blue light lowered tissue auxin levels. Blue LED light lowered the shoot multiplication rate and their height, and induced the highest content of gibberellins at the last stage of the culture.
Collapse
Affiliation(s)
- Monika Cioć
- Department of Ornamental Plants and Garden Art, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland
| | - Michał Dziurka
- Department of Developmental Biology, The Franciszek Górski Institute of Plant Physiology, Polish Academy of Sciences, Niezapominajek 21, 30-239 Kraków, Poland
| | - Bożena Pawłowska
- Department of Ornamental Plants and Garden Art, Faculty of Biotechnology and Horticulture, University of Agriculture in Kraków, 29 Listopada 54, 31-425 Kraków, Poland
| |
Collapse
|
13
|
Krayem M, Khatib SE, Hassan Y, Deluchat V, Labrousse P. In search for potential biomarkers of copper stress in aquatic plants. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 239:105952. [PMID: 34488000 DOI: 10.1016/j.aquatox.2021.105952] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Revised: 07/21/2021] [Accepted: 08/23/2021] [Indexed: 06/13/2023]
Abstract
Over the last few decades, the use of pesticides and discharge of industrial and domestic wastewater on water surfaces have increased. Especially, Copper (Cu) pollution in aquatic ecosystems could constitute a major health problem, not only for flora and fauna but also for humans. To cope with this challenge, environmental monitoring studies have sought to find Cu-specific biomarkers in terrestrial and aquatic flora and/or fauna. This review discusses the toxic effects caused by Cu on the growth and development of plants, with a special focus on aquatic plants. While copper is considered as an essential metal involved in vital mechanisms for plants, when in excess it becomes toxic and causes alterations on biomarkers: biochemical (oxidative stress, pigment content, phytochelatins, polyamines), physiological (photosynthesis, respiration, osmotic potential), and morphological. In addition, Cu has a detrimental effect on DNA and hormonal balance. An overview of Cu toxicity and detoxification in plants is provided, along with information regarding Cu bioaccumulation and transport. Awareness of the potential use of these reactions as specific biomarkers for copper contamination has indeed become essential.
Collapse
Affiliation(s)
- Maha Krayem
- LIU, Lebanese International University, Bekaa Campus, Al Khyara-West Bekaa, Lebanon; Université de Limoges, PEIRENE EA 7500, Limoges, France
| | - S El Khatib
- LIU, Lebanese International University, Bekaa Campus, Al Khyara-West Bekaa, Lebanon
| | - Yara Hassan
- LIU, Lebanese International University, Bekaa Campus, Al Khyara-West Bekaa, Lebanon
| | | | | |
Collapse
|
14
|
Um T, Park T, Shim JS, Kim YS, Lee GS, Choi IY, Kim JK, Seo JS, Park SC. Application of Upstream Open Reading Frames (uORFs) Editing for the Development of Stress-Tolerant Crops. Int J Mol Sci 2021; 22:ijms22073743. [PMID: 33916772 PMCID: PMC8038395 DOI: 10.3390/ijms22073743] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/27/2021] [Accepted: 03/31/2021] [Indexed: 12/20/2022] Open
Abstract
Global population growth and climate change are posing increasing challenges to the production of a stable crop supply using current agricultural practices. The generation of genetically modified (GM) crops has contributed to improving crop stress tolerance and productivity; however, many regulations are still in place that limit their commercialization. Recently, alternative biotechnology-based strategies, such as gene-edited (GE) crops, have been in the spotlight. Gene-editing technology, based on the clustered regularly interspaced short palindromic repeats (CRISPR) platform, has emerged as a revolutionary tool for targeted gene mutation, and has received attention as a game changer in the global biotechnology market. Here, we briefly introduce the concept of upstream open reading frames (uORFs) editing, which allows for control of the translation of downstream ORFs, and outline the potential for enhancing target gene expression by mutating uORFs. We discuss the current status of developing stress-tolerant crops, and discuss uORF targets associated with salt stress-responsive genes in rice that have already been verified by transgenic research. Finally, we overview the strategy for developing GE crops using uORF editing via the CRISPR-Cas9 system. A case is therefore made that the mutation of uORFs represents an efficient method for developing GE crops and an expansion of the scope of application of genome editing technology.
Collapse
Affiliation(s)
- Taeyoung Um
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Korea; (T.U.); (Y.S.K.)
| | - Taehyeon Park
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea; (T.P.); (J.-K.K.)
| | - Jae Sung Shim
- School of Biological Sciences and Technology, Chonnam National University, Gwangju 61186, Korea;
| | - Youn Shic Kim
- Agriculture and Life Sciences Research Institute, Kangwon National University, Chuncheon 24341, Korea; (T.U.); (Y.S.K.)
| | - Gang-Seob Lee
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea;
| | - Ik-Young Choi
- Department of Agricultural and Life Industry, Kangwon National University, Chuncheon 24341, Korea;
| | - Ju-Kon Kim
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea; (T.P.); (J.-K.K.)
| | - Jun Sung Seo
- Crop Biotechnology Institute, GreenBio Science and Technology, Seoul National University, Pyeongchang 25354, Korea; (T.P.); (J.-K.K.)
- Correspondence: (J.S.S.); (S.C.P.); Tel.: +82-33-339-5826 (J.S.S.); +82-63-238-4584 (S.C.P.)
| | - Soo Chul Park
- Department of Agricultural Biotechnology, National Academy of Agricultural Science, Rural Development Administration, Jeonju 54874, Korea;
- Correspondence: (J.S.S.); (S.C.P.); Tel.: +82-33-339-5826 (J.S.S.); +82-63-238-4584 (S.C.P.)
| |
Collapse
|
15
|
Ga E, Song J, Min MK, Ha J, Park S, Lee SB, Lee JY, Kim BG. Reconstitution of Cytokinin Signaling in Rice Protoplasts. Int J Mol Sci 2021; 22:ijms22073647. [PMID: 33807467 PMCID: PMC8037374 DOI: 10.3390/ijms22073647] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/29/2021] [Accepted: 03/29/2021] [Indexed: 01/25/2023] Open
Abstract
The major components of the cytokinin (CK) signaling pathway have been identified from the receptors to their downstream transcription factors. However, since signaling proteins are encoded by multigene families, characterizing and quantifying the contribution of each component or their combinations to the signaling cascade have been challenging. Here, we describe a transient gene expression system in rice (Oryza sativa) protoplasts suitable to reconstitute CK signaling branches using the CK reporter construct TCSn:fLUC, consisting of a synthetic CK-responsive promoter and the firefly luciferase gene, as a sensitive readout of signaling output. We used this system to systematically test the contributions of CK signaling components, either alone or in various combinations, with or without CK treatment. The type-B response regulators (RRs) OsRR16, OsRR17, OsRR18, and OsRR19 all activated TCSn:fLUC strongly, with OsRR18 and OsRR19 showing the strongest induction by CK. Cotransfecting the reporter with OsHP01, OsHP02, OsHP05, or OsHK03 alone resulted in much weaker effects relative to those of the type-B OsRRs. When we tested combinations of OsHK03, OsHPs, and OsRRs, each combination exhibited distinct CK signaling activities. This system thus allows the rapid and high-throughput exploration of CK signaling in rice.
Collapse
|
16
|
The Landscape of the Genomic Distribution and the Expression of the F-Box Genes Unveil Genome Plasticity in Hexaploid Wheat during Grain Development and in Response to Heat and Drought Stress. Int J Mol Sci 2021; 22:ijms22063111. [PMID: 33803701 PMCID: PMC8002965 DOI: 10.3390/ijms22063111] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/01/2021] [Accepted: 03/15/2021] [Indexed: 11/17/2022] Open
Abstract
FBX proteins are subunits of the SCF complex (Skp1-cullin-FBX) belonging to the E3 ligase family, which is involved in the ubiquitin-proteasome 26S (UPS) pathway responsible for the post-translational protein turnover. By targeting, in a selective manner, key regulatory proteins for ubiquitination and 26S proteasome degradation, FBX proteins play a major role in plant responses to diverse developmental and stress conditions. Although studies on the genomic organization of the FBX gene family in various species have been reported, knowledge related to bread wheat (Triticum aestivum) is scarce and needs to be broadened. Using the latest assembly of the wheat genome, we identified 3670 TaFBX genes distributed non-homogeneously within the three subgenomes (A, B and D) and between the 21 chromosomes, establishing it as one of the richest gene families among plant species. Based on the presence of the five different chromosomal regions previously identified, the present study focused on the genomic distribution of the TaFBX family and the identification of differentially expressed genes during the embryogenesis stages and in response to heat and drought stress. Most of the time, when comparing the expected number of genes (taking into account the formal gene distribution on the entire wheat genome), the TaFBX family harbors a different pattern at the various stratum of observation (subgenome, chromosome, chromosomal regions). We report here that the local gene expansion of the TaFBX family must be the consequence of multiple and complex events, including tandem and small-scale duplications. Regarding the differentially expressed TaFBX genes, while the majority of the genes are localized in the distal chromosomal regions (R1 and R3), differentially expressed genes are more present in the interstitial regions (R2a and R2b) than expected, which could be an indication of the preservation of major genes in those specific chromosomal regions.
Collapse
|
17
|
Zhang J, He S. Co-immunoprecipitation Assay for Blue Light-Dependent Protein Interactions in Plants. Methods Mol Biol 2021; 2297:141-146. [PMID: 33656677 DOI: 10.1007/978-1-0716-1370-2_14] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Co-immunoprecipitation (CoIP) assay has been used as a powerful and routine technique to detect in vivo protein-protein interactions. Not only can it probe stable interactions, but also it is applicable for semiquantitative and inducible protein associations. Here we describe the protocol for detecting blue light-dependent protein interactions, particularly for blue light receptor cryptochrome-mediated complex formation. In addition, we present some notes which may be helpful for common Co-IP study as well.
Collapse
Affiliation(s)
- Jingyi Zhang
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK
| | - Shengbo He
- Department of Cell and Developmental Biology, John Innes Centre, Norwich, UK.
| |
Collapse
|
18
|
Champeyroux C, Stoof C, Rodriguez-Villalon A. Signaling phospholipids in plant development: small couriers determining cell fate. CURRENT OPINION IN PLANT BIOLOGY 2020; 57:61-71. [PMID: 32771964 DOI: 10.1016/j.pbi.2020.05.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2020] [Revised: 04/24/2020] [Accepted: 05/23/2020] [Indexed: 05/25/2023]
Abstract
The survival of plants hinges on their ability to perceive various environmental stimuli and translate them into appropriate biochemical responses. Phospholipids, a class of membrane lipid compounds that are asymmetrically distributed within plant cells, stand out among signal transmitters for their diversity of mechanisms by which they modulate stress and developmental processes. By modifying the chemo-physical properties of the plasma membrane (PM) as well as vesicle trafficking, phospholipids contribute to changes in the protein membrane landscape, and hence, signaling responses. In this article, we review the distinct signaling mechanisms phospholipids are involved in, with a special focus on the nuclear role of these compounds. Additionally, we summarize exemplary developmental processes greatly influenced by phospholipids.
Collapse
Affiliation(s)
- Chloe Champeyroux
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland
| | - Claudia Stoof
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland
| | - Antia Rodriguez-Villalon
- Group of Plant Vascular Development, Swiss Federal Institute of Technology (ETH) Zurich, 8092 Zurich, Switzerland.
| |
Collapse
|
19
|
Huang L, Zhang L, Zeng R, Wang X, Zhang H, Wang L, Liu S, Wang X, Chen T. Brassinosteroid Priming Improves Peanut Drought Tolerance via Eliminating Inhibition on Genes in Photosynthesis and Hormone Signaling. Genes (Basel) 2020; 11:genes11080919. [PMID: 32796553 PMCID: PMC7465412 DOI: 10.3390/genes11080919] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 08/04/2020] [Accepted: 08/07/2020] [Indexed: 01/11/2023] Open
Abstract
Drought negatively affects the growth and yield of terrestrial crops. Seed priming, pre-exposing seed to a compound, could induce improved tolerance and adaptation to stress in germinated plants. To understand the effects and regulatory mechanism of seed priming with brassinosteroid (BR) on peanut plants, we treated seeds with five BR concentrations and examined dozens of physiological and biochemical features, and transcriptomic changes in leaves under well-watered and drought conditions. We found optimal 0.15 ppm BR priming could reduce inhibitions from drought and increase the yield of peanut, and priming effects are dependent on stage of plant development and duration of drought. BR priming induced fewer differentially expressed genes (DEGs) than no BR priming under well-watered condition. Drought with BR priming reduced the number of DEGs than drought only. These DEGs were enriched in varied gene ontologies and metabolism pathways. Downregulation of DEGs involved in both light perceiving and photosynthesis in leaves is consistent with low parameters of photosynthesis. Optimal BR priming partially rescued the levels of growth promoting auxin and gibberellin which were largely reduced by drought, and increased levels of defense associated abscisic acid and salicylic acid after long-term drought. BR priming induced many DEGs which function as kinase or transcription factor for signal cascade under drought. We proposed BR priming-induced regulatory responses will be memorized and recalled for fast adaptation in later drought stress. These results provide physiological and regulatory bases of effects of seed priming with BR, which can help to guide the framing improvement under drought stress.
Collapse
Affiliation(s)
- Luping Huang
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.H.); (L.Z.); (R.Z.); (X.W.); (H.Z.); (L.W.); (S.L.)
| | - Lei Zhang
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.H.); (L.Z.); (R.Z.); (X.W.); (H.Z.); (L.W.); (S.L.)
| | - Ruier Zeng
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.H.); (L.Z.); (R.Z.); (X.W.); (H.Z.); (L.W.); (S.L.)
| | - Xinyue Wang
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.H.); (L.Z.); (R.Z.); (X.W.); (H.Z.); (L.W.); (S.L.)
| | - Huajian Zhang
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.H.); (L.Z.); (R.Z.); (X.W.); (H.Z.); (L.W.); (S.L.)
| | - Leidi Wang
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.H.); (L.Z.); (R.Z.); (X.W.); (H.Z.); (L.W.); (S.L.)
| | - Shiyuan Liu
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.H.); (L.Z.); (R.Z.); (X.W.); (H.Z.); (L.W.); (S.L.)
| | - Xuewen Wang
- Department of Genetics, University of Georgia, Athens, GA 30602, USA
- Correspondence: (X.W.); (T.C.)
| | - Tingting Chen
- Guangdong Key Laboratory of Plant Molecular Breeding, State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Agriculture, South China Agricultural University, Guangzhou 510642, China; (L.H.); (L.Z.); (R.Z.); (X.W.); (H.Z.); (L.W.); (S.L.)
- Correspondence: (X.W.); (T.C.)
| |
Collapse
|
20
|
Petti C. Phloroglucinol Mediated Plant Regeneration of Ornithogalum dubium as the Sole "Hormone-Like Supplement" in Plant Tissue Culture Long-Term Experiments. PLANTS (BASEL, SWITZERLAND) 2020; 9:E929. [PMID: 32717803 PMCID: PMC7464755 DOI: 10.3390/plants9080929] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 07/17/2020] [Indexed: 06/11/2023]
Abstract
Tissue culture is an essential requirement in plant science to preserve genetic resources and to expand naturally occurring germplasm. A variety of naturally occurring and synthetic hormones are available to induce the processes of dedifferentiation and redifferentiation. Not all plant material is susceptible to tissue culture, and often complex media and hormone requirements are needed to achieve successful plant propagations. The availability of new hormones or chemicals acting as hormones are critical to the expansion of tissue culture potentials. Phloroglucinol has been shown to have certain hormone-like properties in a variety of studies. Ornithogalum dubium, an important geophyte species, was used to characterise the potential of phloroglucinol as the sole plant-like hormone in a tissue culture experiment. Tissue culture, plant regeneration, total phenolic and genetic variability were established by applying a variety of methods throughout long-term experiments. Phloroglucinol did induce callus formation and plant regeneration when used as the sole supplement in the media at a rate of 37%, thus demonstrating auxin/cytokines-like properties. Callus formation was of 3 types, friable and cellular, hard and compact, and a mixture of the two. The important finding was that direct somatogenesis did occur albeit more frequently on younger tissue, whereby rates of induction were up to 52%. It is concluded that phloroglucinol acts as a "hormone-like" molecule and can trigger direct embryogenesis without callus formation.
Collapse
Affiliation(s)
- Carloalberto Petti
- Institute of Technology Carlow, EnviroCORE, DSH, Kilkenny Road, R93 V960 Carlow, Ireland
| |
Collapse
|
21
|
Novel markers for high-throughput protoplast-based analyses of phytohormone signaling. PLoS One 2020; 15:e0234154. [PMID: 32497144 PMCID: PMC7272087 DOI: 10.1371/journal.pone.0234154] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2020] [Accepted: 05/19/2020] [Indexed: 02/03/2023] Open
Abstract
Phytohormones mediate most diverse processes in plants, ranging from organ development to immune responses. Receptor protein complexes perceive changes in intracellular phytohormone levels and trigger a signaling cascade to effectuate downstream responses. The in planta analysis of elements involved in phytohormone signaling can be achieved through transient expression in mesophyll protoplasts, which are a fast and versatile alternative to generating plant lines that stably express a transgene. While promoter-reporter constructs have been used successfully to identify internal or external factors that change phytohormone signaling, the range of available marker constructs does not meet the potential of the protoplast technique for large scale approaches. The aim of our study was to provide novel markers for phytohormone signaling in the Arabidopsis mesophyll protoplast system. We validated 18 promoter::luciferase constructs towards their phytohormone responsiveness and specificity and suggest an experimental setup for high-throughput analyses. We recommend novel markers for the analysis of auxin, abscisic acid, cytokinin, salicylic acid and jasmonic acid responses that will facilitate future screens for biological elements and environmental stimuli affecting phytohormone signaling.
Collapse
|
22
|
Zhong W, Xie C, Hu D, Pu S, Xiong X, Ma J, Sun L, Huang Z, Jiang M, Li X. Effect of 24-epibrassinolide on reactive oxygen species and antioxidative defense systems in tall fescue plants under lead stress. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 187:109831. [PMID: 31654868 DOI: 10.1016/j.ecoenv.2019.109831] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2019] [Revised: 10/13/2019] [Accepted: 10/15/2019] [Indexed: 06/10/2023]
Abstract
Lead is one of the most hazardous pollutants to both the environment as well as human beings. As one of the approaches to enhance phytoremediation, brassinosteroids are predicted as a potential candidate phytohormone for assisted phytoremediation. Few studies have focused on the physiological regulations of tall fescue plants (Festuca arundinacea Schreb.), a potential phytoremediation species, for its responses to applications of brassinosteroids under lead stress. Therefore, the objectives of this study were to investigate the effects of foliar application of 24-epibrassinolide, a brassinosteroids analogue, on reactive oxygen species accumulation and antioxidative defense systems of tall fescue when exposed to lead, and ultimately its potential to be used in phytoremediation. When exposed to lead (1000 mg/kg) for 80 d, decreases in shoot and root biomass of tall fescue biomass as well as chlorophyll and carotenoid productions were found. Foliar application of 24-epibrassinolide at three rates and five applications every 7 d improved the biomass of both shoots and roots, and increased the photosynthetic pigments. The improved lead tolerance in tall fescue plants after 24-epibrassinolide applications was associated with reduced H2O2 and O2.- accumulations and increased antioxidative enzyme activities including superoxide dismutase, catalase, and guaiacol peroxidase. Additionally, osmoprotectants increased and lipid peroxidation decreased. Ultimately, foliar applications of 24-epibrassinolide enhanced the lead recovery rate of tall fescue plants, proving its potential role in phytoremediation for soil contaminated with heavy metals such as lead.
Collapse
Affiliation(s)
- Woxiu Zhong
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, PR China
| | - Chengcheng Xie
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, PR China
| | - Dan Hu
- College of Tourism and Urban-Rural Planning, Chengdu University of Technology, No. 1, Dongsan Road, Erxianqiao, Chenghua, Sichuan, 610051, PR China.
| | - Siyi Pu
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, PR China
| | - Xi Xiong
- Division of Plant Sciences, University of Missouri, Columbia, Missouri, 65211, USA
| | - Jun Ma
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, PR China
| | - Lingxia Sun
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, PR China
| | - Zhuo Huang
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, PR China
| | - Mingyan Jiang
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, PR China
| | - Xi Li
- College of Landscape Architecture, Sichuan Agricultural University, Wenjiang, Sichuan, 611130, PR China.
| |
Collapse
|
23
|
Chhetri HB, Furches A, Macaya-Sanz D, Walker AR, Kainer D, Jones P, Harman-Ware AE, Tschaplinski TJ, Jacobson D, Tuskan GA, DiFazio SP. Genome-Wide Association Study of Wood Anatomical and Morphological Traits in Populus trichocarpa. FRONTIERS IN PLANT SCIENCE 2020; 11:545748. [PMID: 33013968 PMCID: PMC7509168 DOI: 10.3389/fpls.2020.545748] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 08/21/2020] [Indexed: 05/04/2023]
Abstract
To understand the genetic mechanisms underlying wood anatomical and morphological traits in Populus trichocarpa, we used 869 unrelated genotypes from a common garden in Clatskanie, Oregon that were previously collected from across the distribution range in western North America. Using GEMMA mixed model analysis, we tested for the association of 25 phenotypic traits and nine multitrait combinations with 6.741 million SNPs covering the entire genome. Broad-sense trait heritabilities ranged from 0.117 to 0.477. Most traits were significantly correlated with geoclimatic variables suggesting a role of climate and geography in shaping the variation of this species. Fifty-seven SNPs from single trait GWAS and 11 SNPs from multitrait GWAS passed an FDR threshold of 0.05, leading to the identification of eight and seven nearby candidate genes, respectively. The percentage of phenotypic variance explained (PVE) by the significant SNPs for both single and multitrait GWAS ranged from 0.01% to 6.18%. To further evaluate the potential roles of candidate genes, we used a multi-omic network containing five additional data sets, including leaf and wood metabolite GWAS layers and coexpression and comethylation networks. We also performed a functional enrichment analysis on coexpression nearest neighbors for each gene model identified by the wood anatomical and morphological trait GWAS analyses. Genes affecting cell wall composition and transport related genes were enriched in wood anatomy and stomatal density trait networks. Signaling and metabolism related genes were also common in networks for stomatal density. For leaf morphology traits (leaf dry and wet weight) the networks were significantly enriched for GO terms related to photosynthetic processes as well as cellular homeostasis. The identified genes provide further insights into the genetic control of these traits, which are important determinants of the suitability and sustainability of improved genotypes for lignocellulosic biofuel production.
Collapse
Affiliation(s)
- Hari B. Chhetri
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Anna Furches
- Biosciences Division, and The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States
| | - David Macaya-Sanz
- Department of Biology, West Virginia University, Morgantown, WV, United States
| | - Alejandro R. Walker
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, FL, United States
| | - David Kainer
- Biosciences Division, and The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Piet Jones
- Biosciences Division, and The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States
| | - Anne E. Harman-Ware
- Biosciences Center, and National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, United States
| | - Timothy J. Tschaplinski
- Biosciences Division, and The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Daniel Jacobson
- Biosciences Division, and The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
- The Bredesen Center for Interdisciplinary Research and Graduate Education, University of Tennessee, Knoxville, TN, United States
| | - Gerald A. Tuskan
- Biosciences Division, and The Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, United States
| | - Stephen P. DiFazio
- Department of Biology, West Virginia University, Morgantown, WV, United States
- *Correspondence: Stephen P. DiFazio,
| |
Collapse
|
24
|
Zhang S, Tian Z, Li H, Guo Y, Zhang Y, Roberts JA, Zhang X, Miao Y. Genome-wide analysis and characterization of F-box gene family in Gossypium hirsutum L. BMC Genomics 2019; 20:993. [PMID: 31856713 PMCID: PMC6921459 DOI: 10.1186/s12864-019-6280-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Accepted: 11/13/2019] [Indexed: 11/18/2022] Open
Abstract
Background F-box proteins are substrate-recognition components of the Skp1-Rbx1-Cul1-F-box protein (SCF) ubiquitin ligases. By selectively targeting the key regulatory proteins or enzymes for ubiquitination and 26S proteasome mediated degradation, F-box proteins play diverse roles in plant growth/development and in the responses of plants to both environmental and endogenous signals. Studies of F-box proteins from the model plant Arabidopsis and from many additional plant species have demonstrated that they belong to a super gene family, and function across almost all aspects of the plant life cycle. However, systematic exploration of F-box family genes in the important fiber crop cotton (Gossypium hirsutum) has not been previously performed. The genome-wide analysis of the cotton F-box gene family is now possible thanks to the completion of several cotton genome sequencing projects. Results In current study, we first conducted a genome-wide investigation of cotton F-box family genes by reference to the published F-box protein sequences from other plant species. 592 F-box protein encoding genes were identified in the Gossypium hirsutume acc.TM-1 genome and, subsequently, we were able to present their gene structures, chromosomal locations, syntenic relationships with their parent species. In addition, duplication modes analysis showed that cotton F-box genes were distributed to 26 chromosomes, with the maximum number of genes being detected on chromosome 5. Although the WGD (whole-genome duplication) mode seems play a dominant role during cotton F-box gene expansion process, other duplication modes including TD (tandem duplication), PD (proximal duplication), and TRD (transposed duplication) also contribute significantly to the evolutionary expansion of cotton F-box genes. Collectively, these bioinformatic analysis suggest possible evolutionary forces underlying F-box gene diversification. Additionally, we also conducted analyses of gene ontology, and expression profiles in silico, allowing identification of F-box gene members potentially involved in hormone signal transduction. Conclusion The results of this study provide first insights into the Gossypium hirsutum F-box gene family, which lays the foundation for future studies of functionality, particularly those involving F-box protein family members that play a role in hormone signal transduction.
Collapse
Affiliation(s)
- Shulin Zhang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.,College of Biology and Food Engineering, Anyang Institute of Technology, Anyang, 455000, China
| | - Zailong Tian
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Haipeng Li
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Yutao Guo
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Yanqi Zhang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China
| | - Jeremy A Roberts
- Faculty of Science and Engineering, School of Biological & Marine Sciences, University of Plymouth, Devon, UK
| | - Xuebin Zhang
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.
| | - Yuchen Miao
- State Key Laboratory of Cotton Biology, Institute of Plant Stress Biology, School of Life Sciences, Henan University, Jinming Street, Kaifeng, 475004, China.
| |
Collapse
|
25
|
Phytohormones as stimulators to improve arachidonic acid biosynthesis in Mortierella alpina. Enzyme Microb Technol 2019; 131:109381. [DOI: 10.1016/j.enzmictec.2019.109381] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Revised: 07/11/2019] [Accepted: 07/12/2019] [Indexed: 12/24/2022]
|
26
|
Cold Atmospheric Plasma-Activated Water Irrigation Induces Defense Hormone and Gene expression in Tomato seedlings. Sci Rep 2019; 9:16080. [PMID: 31695109 PMCID: PMC6834632 DOI: 10.1038/s41598-019-52646-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/21/2019] [Indexed: 01/04/2023] Open
Abstract
Plants are very vulnerable to pathogen attacks and environmental stress as they are exposed to harsh environments in natural conditions. However, they have evolved a self-defense system whereby reactive oxygen and nitrogen species (RONS) act as double-edged swords by imposing (at higher concentration) and mitigating (at lower concentration) environmental stress. Cold plasma is emerging as a feasible option to produce a variety of RONS in a controlled manner when amalgamate with water. Cold plasma activated/treated water (PAW) contains a variety of RONS at concentrations, which may help to activate the plant’s defense system components. In the present study, we examine the effect of cold atmospheric-air jet plasma exposure (15 min, 30 min, and 60 min) on the water’s RONS level, as well as the impact of PAW irrigation, (assigned as 15PAW, 30PAW, and 60PAW) on tomato seedlings growth and defense response. We found that PAW irrigation (priming) upregulate seedlings growth, endogenous RONS, defense hormone (salicylic acid and jasmonic acid), and expression of key pathogenesis related (PR) gene. 30 min PAW contains RONS at concentrations which can induce non-toxic signaling. The present study suggests that PAW irrigation can be beneficial for agriculture as it modulates plant growth as well as immune response components.
Collapse
|
27
|
Global transcriptome and gene co-expression network analyses on the development of distyly in Primula oreodoxa. Heredity (Edinb) 2019; 123:784-794. [PMID: 31308492 DOI: 10.1038/s41437-019-0250-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2019] [Revised: 06/27/2019] [Accepted: 06/27/2019] [Indexed: 12/14/2022] Open
Abstract
Distyly is a genetically controlled flower polymorphism that has intrigued both botanists and evolutionary biologists ever since Darwin's time. Despite extensive reports on the pollination and evolution of distylous systems, the genetic basis and mechanism of molecular regulation remain unclear. In the present study, comparative transcriptome profiling was conducted in primrose (Primula oreodoxa), the prime research model for heterostyly. Thirty-six transcriptomes were sequenced for styles at different stages and corolla tube in the three morphs of P. oreodoxa. Large numbers of differentially expressed genes (DEGs) were detected in the transcriptomes of styles across different morphs. Several transcription factors (TFs) and phytohormone metabolism-related genes were highlighted in S-morphs. A growing number of genes showed differential expression patterns along with the development of styles, suggesting that the genetic control of distyly may be more complicated than ever expected. Analysis of co-expression networks and module-trait relationships identified modules significantly associated with style development. CYP734A50, a key S-locus gene whose products degrade brassinosteroids, was co-expressed with many genes in the module and showed significant negative association with style length. In addition, crucial TFs involved in phytohormone signaling pathways were found to be connected with CYP734A50 in the co-expression module. Our global transcriptomic analysis has identified DEGs that are potentially involved in regulation of style length in P. oreodoxa, and may shed light on the evolution and broad biological processes of heterostyly.
Collapse
|
28
|
Debono MW, Souza GM. Plants as electromic plastic interfaces: A mesological approach. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2019; 146:123-133. [PMID: 30826433 DOI: 10.1016/j.pbiomolbio.2019.02.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2018] [Revised: 01/21/2019] [Accepted: 02/21/2019] [Indexed: 11/15/2022]
Abstract
In this manuscript, we propose that plants are eco-plastic and electromic interfaces that can drive emergent intelligent behaviours from synchronized electrical networks. Behind the semantic and anthropocentric problems related by many authors to the extensive use of the terms cognition, intelligence or even 'consciousness' for plants, we suggest a more pragmatic perspective, considering the vegetal world to be a complex biosystemic entity that is able to co-build the world or a form of the world or of significant reality via a set of reciprocal, emerging and confluent interactions. Speaking of adaptive sensory modalities involving perceptual binding or a global state of receptivity nonlinearly leading to cognitive functions, learning capabilities and intelligent behaviours of plants seem to be the more realistic and operational model to describe how plants perceive and treat environmental data. In this study, we strongly suggest that the electrome, which mainly involves constant spontaneous emission of low voltage potentials, is an early marker and a unifying factor of whole plant reactivity in a constantly changing environment and is therefore the key to understanding the cognitive nature of plants. This dynamic coupling enables plants to be knowledge-accumulating systems that are used by evolution to progress and survive, while mesological plasticity is a unique means for plants to interact as subjects with their milieu (umwelt) or natural habitat and to co-signify a possible world.
Collapse
|
29
|
Martirena Ramírez A, Veitía Rodríguez N, Rodríguez García L, Collado López R, Rodríguez Torres D, Rivero Quintana L, Ramírez-López M. Efecto de diferentes explantes irradiados en la regeneración <i>in vitro</i> de frijol común <i>(Phaseolus vulgaris </i>L.) cultivar “ICA Pijao”. ACTA BIOLÓGICA COLOMBIANA 2019. [DOI: 10.15446/abc.v24n1.70422] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
El mejoramiento genético convencional en frijol común resulta difícil debido a que presenta una base genética estrecha y muy estable. En este sentido, la combinación de la mutagénesis y el cultivo de tejidos, es una alternativa para inducir variabilidad genética en la búsqueda de tolerancia a factores bióticos y abióticos. Es por ello, que el presente trabajo tuvo como objetivo determinar el efecto de diferentes explantes irradiados en la regeneración in vitro de frijol común (Phaseolus vulgaris L.) cultivar “ICA Pijao”. Se aplicaron radiaciones gamma en callos, en el nudo cotiledonal con un cotiledón (NC-1) con dosis de 0, 10, 20, 30, 40, 50 y 60 Gy y semillas con 0, 100, 200, 300 y 400 Gy. Se evaluó el porcentaje de germinación, longitud de las raíces, porcentaje de explantes que formaron callos, masa fresca (g) de los callos, número de brotes por callo y el número de brotes con raíces. La radiación gamma provocó una disminución en la masa fresca del callo y NC-1. Los callos y el NC-1 solamente formaron brotes con las dosis de 10 y 20 Gy, pero estos fueron hiperhíricos. Los resultados demostraron que la semilla irradiada fue el explante con el que se logró la regeneración in vitro de plantas con hojas definidas, por lo que se recomienda como explante inicial para el uso combinado de mutagénesis y regeneración in vitro de plantas para el cultivar P. vulgaris “ICA Pijao” a través de la organogénesis indirecta.
Collapse
|
30
|
Tyagi S, Mulla SI, Lee KJ, Chae JC, Shukla P. VOCs-mediated hormonal signaling and crosstalk with plant growth promoting microbes. Crit Rev Biotechnol 2018; 38:1277-1296. [PMID: 29862848 DOI: 10.1080/07388551.2018.1472551] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In the natural environment, plants communicate with various microorganisms (pathogenic or beneficial) and exhibit differential responses. In recent years, research on microbial volatile compounds (MVCs) has revealed them to be simple, effective and efficient groups of compounds that modulate plant growth and developmental processes. They also interfere with the signaling process. Different MVCs have been shown to promote plant growth via improved photosynthesis rates, increased plant resistance to pathogens, activated phytohormone signaling pathways, or, in some cases, inhibit plant growth, leading to death. Regardless of these exhibited roles, the molecules responsible, the underlying mechanisms, and induced specific metabolic/molecular changes are not fully understood. Here, we review current knowledge on the effects of MVCs on plants, with particular emphasis on their modulation of the salicylic acid, jasmonic acid/ethylene, and auxin signaling pathways. Additionally, opportunities for further research and potential practical applications presented.
Collapse
Affiliation(s)
- Swati Tyagi
- a Division of Biotechnology , Chonbuk National University , Iksan , Republic of Korea
| | - Sikandar I Mulla
- a Division of Biotechnology , Chonbuk National University , Iksan , Republic of Korea
| | - Kui-Jae Lee
- a Division of Biotechnology , Chonbuk National University , Iksan , Republic of Korea
| | - Jong-Chan Chae
- a Division of Biotechnology , Chonbuk National University , Iksan , Republic of Korea
| | - Pratyoosh Shukla
- b Enzyme Technology and Protein Bioinformatics Laboratory, Department of Microbiology , Maharshi Dayanand University , Rohtak , India
| |
Collapse
|
31
|
Bi H, Fan W, Zhang P. C4 Protein of Sweet Potato Leaf Curl Virus Regulates Brassinosteroid Signaling Pathway through Interaction with AtBIN2 and Affects Male Fertility in Arabidopsis. FRONTIERS IN PLANT SCIENCE 2017; 8:1689. [PMID: 29021807 PMCID: PMC5623726 DOI: 10.3389/fpls.2017.01689] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2017] [Accepted: 09/14/2017] [Indexed: 05/21/2023]
Abstract
Sweepoviruses have been identified globally and cause substantial yield losses and cultivar decline in sweet potato. This study aimed to investigate the interaction between sweepovirus and plant host by analyzing the function of the viral protein C4 of Sweet potato leaf curl virus-Jiangsu (SPLCV-JS), a sweepovirus cloned from diseased sweet potato plants in East China. Ectopic expression of the C4 in Arabidopsis altered plant development drastically with phenotypic changes including leaf curling, seedling twisting, deformation of floral tissues and reduction of pollen fertility, and seed number. Using bimolecular fluorescence complementation analysis, this study demonstrated that the SPLCV-JS C4 protein interacted with brassinosteroid-insensitive 2 (AtBIN2) in the plasma membrane of Nicotiana benthamiana cells. The C4 AtBIN2 interaction was further confirmed by yeast two-hybrid assays. This interaction led to the re-localization of AtBIN2-interacting proteins AtBES1/AtBZR1 into the nucleus which altered the expression of brassinosteroid (BR)-response genes, resulting in the activation of BR-signaling pathway. The interaction of SPLCV-JS C4 and AtBIN2 also led to the down-regulated expression of key genes involved in anther and pollen development, including SPROROCYTELESS/NOZZLE, DEFECTIVE IN TAPEL DEVELOPMENT AND FUNCTION 1, and ABORTED MICROSPORES, which caused abnormal tapetal development, followed by defective exine pattern formation of microspores and pollen release. Consequently, male fertility in the C4 transgenic Arabidopsis was reduced. The present study illustrated how the sweepovirus C4 protein functioned in host cells and affected male fertility by interacting with the key components of BR-signaling pathway.
Collapse
Affiliation(s)
- Huiping Bi
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
- Key Laboratory of Systems Microbial Biotechnology, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China
| | - Weijuan Fan
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peng Zhang
- National Key Laboratory of Plant Molecular Genetics, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
32
|
Shi TQ, Peng H, Zeng SY, Ji RY, Shi K, Huang H, Ji XJ. Microbial production of plant hormones: Opportunities and challenges. Bioengineered 2017; 8:124-128. [PMID: 27459344 PMCID: PMC5398602 DOI: 10.1080/21655979.2016.1212138] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2016] [Revised: 07/04/2016] [Accepted: 07/07/2016] [Indexed: 01/09/2023] Open
Abstract
Plant hormones are a class of organic substances which are synthesized during the plant metabolism. They have obvious physiological effect on plant growth at very low concentrations. Generally, plant hormones are mainly divided into 5 categories: auxins, cytokinins, ethylene, gibberellins (GAs) and abscisic acid (ABA). With the deepening of research, some novel plant hormones such as brassinosteroid and salicylates have been found and identified. The plant hormone products are mainly obtained through plant extraction, chemical synthesis as well as microbial fermentation. However, the extremely low yield in plants and relatively complex chemical structure limit the development of the former 2 approaches. Therefore, more attention has been paid into the microbial fermentative production. In this commentary, the developments and technological achievements of the 2 important plant hormones (GAs and ABA) have been discussed. The discovery, producing strains, fermentation technologies, and their accumulation mechanisms are first introduced. Furthermore, progresses in the industrial mass scale production are discussed. Finally, guidelines for future studies for GAs and ABA production are proposed in light of the current progress, challenges and trends in the field. With the widespread use of plant hormones in agriculture, we believe that the microbial production of plant hormones will have a bright future.
Collapse
Affiliation(s)
- Tian-Qiong Shi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Hui Peng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Si-Yu Zeng
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Rong-Yu Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - Kun Shi
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
| | - He Huang
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, People's Republic of China
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, People's Republic of China
| | - Xiao-Jun Ji
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials (SICAM), Nanjing, People's Republic of China
| |
Collapse
|
33
|
Saithong T, Saerue S, Kalapanulak S, Sojikul P, Narangajavana J, Bhumiratana S. Gene Co-Expression Analysis Inferring the Crosstalk of Ethylene and Gibberellin in Modulating the Transcriptional Acclimation of Cassava Root Growth in Different Seasons. PLoS One 2015; 10:e0137602. [PMID: 26366737 PMCID: PMC4569563 DOI: 10.1371/journal.pone.0137602] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2015] [Accepted: 08/20/2015] [Indexed: 12/21/2022] Open
Abstract
Cassava is a crop of hope for the 21st century. Great advantages of cassava over other crops are not only the capacity of carbohydrates, but it is also an easily grown crop with fast development. As a plant which is highly tolerant to a poor environment, cassava has been believed to own an effective acclimation process, an intelligent mechanism behind its survival and sustainability in a wide range of climates. Herein, we aimed to investigate the transcriptional regulation underlying the adaptive development of a cassava root to different seasonal cultivation climates. Gene co-expression analysis suggests that AP2-EREBP transcription factor (ERF1) orthologue (D142) played a pivotal role in regulating the cellular response to exposing to wet and dry seasons. The ERF shows crosstalk with gibberellin, via ent-Kaurene synthase (D106), in the transcriptional regulatory network that was proposed to modulate the downstream regulatory system through a distinct signaling mechanism. While sulfur assimilation is likely to be a signaling regulation for dry crop growth response, calmodulin-binding protein is responsible for regulation in the wet crop. With our initiative study, we hope that our findings will pave the way towards sustainability of cassava production under various kinds of stress considering the future global climate change.
Collapse
Affiliation(s)
- Treenut Saithong
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Thakham, Bangkhunthian, Bangkok, Thailand
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Thakham, Bangkhunthian, Bangkok, Thailand
| | - Samorn Saerue
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Thakham, Bangkhunthian, Bangkok, Thailand
| | - Saowalak Kalapanulak
- Bioinformatics and Systems Biology Program, School of Bioresources and Technology, King Mongkut’s University of Technology Thonburi, Thakham, Bangkhunthian, Bangkok, Thailand
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Thakham, Bangkhunthian, Bangkok, Thailand
| | - Punchapat Sojikul
- Center for Cassava Molecular Biotechnology, Faculty of Science, Mahidol University, Thungphayathai, Ratchathewi, Bangkok, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Thungphayathai, Ratchathewi, Bangkok, Thailand
| | - Jarunya Narangajavana
- Center for Cassava Molecular Biotechnology, Faculty of Science, Mahidol University, Thungphayathai, Ratchathewi, Bangkok, Thailand
- Department of Biotechnology, Faculty of Science, Mahidol University, Thungphayathai, Ratchathewi, Bangkok, Thailand
| | - Sakarindr Bhumiratana
- Systems Biology and Bioinformatics Research Group, Pilot Plant Development and Training Institute, King Mongkut’s University of Technology Thonburi, Thakham, Bangkhunthian, Bangkok, Thailand
- Department of Chemical Engineering, Faculty of Engineering, King Mongkut’s University of Technology Thonburi, Bangkok, Thungkhru, Bangmod, Bangkok, Thailand
| |
Collapse
|
34
|
Lu Q, Zhang W, Gao J, Lu M, Zhang L, Li J. Simultaneous determination of plant hormones in peach based on dispersive liquid-liquid microextraction coupled with liquid chromatography-ion trap mass spectrometry. J Chromatogr B Analyt Technol Biomed Life Sci 2015; 992:8-13. [PMID: 25939092 DOI: 10.1016/j.jchromb.2015.04.014] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Revised: 04/02/2015] [Accepted: 04/09/2015] [Indexed: 12/25/2022]
Abstract
Fruit development is influenced greatly by endogenous hormones including salicylic acid (SA) and abscisic acid (ABA). Mass spectrometry with high sensitivity has become a routine technology to analyze hormones. However, pretreatment of plant samples remains a difficult problem. Thus, dispersive liquid-liquid microextraction (DLLME) was used to concentrate trace plant hormones before liquid chromatography-ion trap mass spectrometry (LC-ITMS) analysis. Standard curves were linear within the ranges of 0.5-50, 0.2-20ng/mL for SA and ABA, respectively. The correlation coefficients were greater than 0.9995 with recoveries above 87.5%. The limits of detection were 0.2ng/mL for SA and 0.1ng/mL for ABA in spiked water solution, respectively (injection 20μL). The successful analysis of SA and ABA in fruit samples indicated our DLLME-LC-ITMS approach was efficient, allowing reliable quantification of both two compounds from very small amounts of plant material. Moreover, this research revealed the relationship between SA and ABA content and development of peach fruit at different growth stages.
Collapse
Affiliation(s)
- Qiaomei Lu
- Analytical and Testing Center, Fuzhou University, Fuzhou, Fujian, 350002, China; Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350002, Fujian, China
| | - Wenmin Zhang
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350002, Fujian, China
| | - Jia Gao
- Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350002, Fujian, China
| | - Minghua Lu
- Analytical and Testing Center, Fuzhou University, Fuzhou, Fujian, 350002, China; Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350002, Fujian, China
| | - Lan Zhang
- Analytical and Testing Center, Fuzhou University, Fuzhou, Fujian, 350002, China; Ministry of Education Key Laboratory of Analysis and Detection for Food Safety, College of Chemistry, Fuzhou University, Fuzhou, 350002, Fujian, China.
| | - Jianrong Li
- Food Safety Key Laboratory of Zhejiang Province, College of Food Science and Biotechnology, Zhejiang Gongshang University, Hangzhou, Zhejiang, 310035, China; Food Safety Key Laboratory of Liaoning Province, Bohai University, Jinzhou, Liaoning, 121013, China.
| |
Collapse
|
35
|
Sun L, Liu X, Gao L, Lu Y, Li Y, Pan Z, Bao N, Gu H. Simultaneous Electrochemical Determination of Indole-3-acetic Acid and Salicylic Acid in Pea Roots using a Multiwalled Carbon Nanotube Modified Electrode. ANAL LETT 2015. [DOI: 10.1080/00032719.2014.991963] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
36
|
Teichmann T, Muhr M. Shaping plant architecture. FRONTIERS IN PLANT SCIENCE 2015; 6:233. [PMID: 25914710 PMCID: PMC4390985 DOI: 10.3389/fpls.2015.00233] [Citation(s) in RCA: 108] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/23/2015] [Indexed: 05/18/2023]
Abstract
Plants exhibit phenotypical plasticity. Their general body plan is genetically determined, but plant architecture and branching patterns are variable and can be adjusted to the prevailing environmental conditions. The modular design of the plant facilitates such morphological adaptations. The prerequisite for the formation of a branch is the initiation of an axillary meristem. Here, we review the current knowledge about this process. After its establishment, the meristem can develop into a bud which can either become dormant or grow out and form a branch. Many endogenous factors, such as photoassimilate availability, and exogenous factors like nutrient availability or shading, have to be integrated in the decision whether a branch is formed. The underlying regulatory network is complex and involves phytohormones and transcription factors. The hormone auxin is derived from the shoot apex and inhibits bud outgrowth indirectly in a process termed apical dominance. Strigolactones appear to modulate apical dominance by modification of auxin fluxes. Furthermore, the transcription factor BRANCHED1 plays a central role. The exact interplay of all these factors still remains obscure and there are alternative models. We discuss recent findings in the field along with the major models. Plant architecture is economically significant because it affects important traits of crop and ornamental plants, as well as trees cultivated in forestry or on short rotation coppices. As a consequence, plant architecture has been modified during plant domestication. Research revealed that only few key genes have been the target of selection during plant domestication and in breeding programs. Here, we discuss such findings on the basis of various examples. Architectural ideotypes that provide advantages for crop plant management and yield are described. We also outline the potential of breeding and biotechnological approaches to further modify and improve plant architecture for economic needs.
Collapse
Affiliation(s)
- Thomas Teichmann
- *Correspondence: Thomas Teichmann, Plant Cell Biology, Georg-August-Universität Göttingen, Julia-Lermontowa-Weg 3, Göttingen, Germany
| | | |
Collapse
|
37
|
Sun LJ, Feng QM, Yan YF, Pan ZQ, Li XH, Song FM, Yang H, Xu JJ, Bao N, Gu HY. Paper-based electroanalytical devices for in situ determination of salicylic acid in living tomato leaves. Biosens Bioelectron 2014; 60:154-60. [DOI: 10.1016/j.bios.2014.04.021] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Revised: 04/05/2014] [Accepted: 04/12/2014] [Indexed: 11/28/2022]
|
38
|
Evaluating Insect-Microbiomes at the Plant-Insect Interface. J Chem Ecol 2014; 40:836-47. [DOI: 10.1007/s10886-014-0475-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2014] [Revised: 06/17/2014] [Accepted: 06/20/2014] [Indexed: 12/17/2022]
|
39
|
Chen M, Maodzeka A, Zhou L, Ali E, Wang Z, Jiang L. Removal of DELLA repression promotes leaf senescence in Arabidopsis. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2014; 219-220:26-34. [PMID: 24576761 DOI: 10.1016/j.plantsci.2013.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2013] [Revised: 10/19/2013] [Accepted: 11/24/2013] [Indexed: 05/23/2023]
Abstract
Leaf senescence is an integrated response of leaf cells to developmental age and various internal and environmental signals. However, the role of gibberellins (GA) in leaf senescence is not clear. In the current study, we investigated the effect of DELLA on leaf senescence. Compared with the wild type (WT), leaf senescence occurred earlier in the mutant ga1-3 gai-t6 rga-t2 rgl1-1 rgl2-1 (abbreviated as Q-DELLA/ga1-3) whose DELLA repression was removed, whereas leaf senescence was retarded in the mutant ga1-3 whose GA biosynthesis was blocked and whose DELLA proteins accumulated abnormally. During leaf senescence, SAG12 and SAG29 were upregulated in Q-DELLA/ga1-3 and downregulated in ga1-3 plants. The Q-DELLA/ga1-3 senescent leaves contained more sugar but less chlorophyll and fatty acids (FAs) than those of ga1-3 and WT. Both absolute and relative contents of C18:3 in Q-DELLA/ga1-3 senescent leaves were lower compared with those of the WT and ga1-3 leaves. The genes regulating FA β-oxidation in Q-DELLA/ga1-3, such as KAT2, LACS6, LACS7, ACX1, ACX2 and MAP2, were significantly upregulated. The removal of DELLA repression highly upregulated certain genes on various hormone pathways, suggesting that GA signaling acts upstream of the jasmonic acid, salicylic acid, and ethylene pathways in regulating leaf senescence.
Collapse
Affiliation(s)
- Mingxun Chen
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China
| | - Antony Maodzeka
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China
| | - Longhua Zhou
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China
| | - Essa Ali
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China
| | - Zhong Wang
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China
| | - Lixi Jiang
- College of Agriculture and Biotechnology, Zhejiang University, 866 Yu-Hang-Tang Road, Hangzhou 310058, PR China.
| |
Collapse
|
40
|
Liang Z, Ma Y, Xu T, Cui B, Liu Y, Guo Z, Yang D. Effects of abscisic acid, gibberellin, ethylene and their interactions on production of phenolic acids in salvia miltiorrhiza bunge hairy roots. PLoS One 2013; 8:e72806. [PMID: 24023778 PMCID: PMC3759372 DOI: 10.1371/journal.pone.0072806] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Accepted: 06/24/2013] [Indexed: 11/30/2022] Open
Abstract
Salvia miltiorrhiza is one of the most important traditional Chinese medicinal plants because of its excellent performance in treating coronary heart disease. Phenolic acids mainly including caffeic acid, rosmarinic acid and salvianolic acid B are a group of active ingredients in S. miltiorrhiza. Abscisic acid (ABA), gibberellin (GA) and ethylene are three important phytohormones. In this study, effects of the three phytohormones and their interactions on phenolic production in S.miltiorrhiza hairy roots were investigated. The results showed that ABA, GA and ethylene were all effective to induce production of phenolic acids and increase activities of PAL and TAT in S. miltiorrhiza hairy roots. Effects of phytohormones were reversed by their biosynthetic inhibitors. Antagonistic actions between the three phytohormones played important roles in the biosynthesis of phenolic acids. GA signaling is necessary for ABA and ethylene-induced phenolic production. Yet, ABA and ethylene signaling is probably not necessary for GA3-induced phenolic production. The complex interactions of phytohormones help us reveal regulation mechanism of secondary metabolism and scale-up production of active ingredients in plants.
Collapse
Affiliation(s)
- Zongsuo Liang
- College of Life Science of Zhejiang Sci-Tech University, Hangzhou, China
| | - Yini Ma
- College of Life Science of Zhejiang Sci-Tech University, Hangzhou, China
| | - Tao Xu
- College of Life Science of Zhejiang Sci-Tech University, Hangzhou, China
| | - Beimi Cui
- College of Life Science of Northwest A&F University, Yangling, China
| | - Yan Liu
- Tianjin Tasly Modern TCM Resources Co., Ltd., Tianjin, China
| | | | - Dongfeng Yang
- College of Life Science of Zhejiang Sci-Tech University, Hangzhou, China
- * E-mail:
| |
Collapse
|
41
|
Oh Y, Baldwin IT, Galis I. A jasmonate ZIM-domain protein NaJAZd regulates floral jasmonic acid levels and counteracts flower abscission in Nicotiana attenuata plants. PLoS One 2013; 8:e57868. [PMID: 23469091 PMCID: PMC3585257 DOI: 10.1371/journal.pone.0057868] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 01/27/2013] [Indexed: 12/22/2022] Open
Abstract
Jasmonic acid is an important regulator of plant growth, development and defense. The jasmonate-ZIM domain (JAZ) proteins are key regulators in jasmonate signaling ubiquitously present in flowering plants but their functional annotation remains largely incomplete. Recently, we identified 12 putative JAZ proteins in native tobacco, Nicotiana attenuata, and initiated systematic functional characterization of these proteins by reverse genetic approaches. In this report, Nicotiana attenuata plants silenced in the expression of NaJAZd (irJAZd) by RNA interference were used to characterize NaJAZd function. Although NaJAZd transcripts were strongly and transiently up-regulated in the rosette leaves by simulated herbivory treatment, we did not observe strong defense-related phenotypes, such as altered herbivore performance or the constitutive accumulation of defense-related secondary metabolites in irJAZd plants compared to wild type plants, both in the glasshouse and the native habitat of Nicotiana attenuata in the Great Basin Desert, Utah, USA. Interestingly, irJAZd plants produced fewer seed capsules than did wild type plants as a result of increased flower abscission in later stages of flower development. The early- and mid-developmental stages of irJAZd flowers had reduced levels of jasmonic acid and jasmonoyl-L-isoleucine, while fully open flowers had normal levels, but these were impaired in NaMYB305 transcript accumulations. Previously, NaMYB305-silenced plants were shown to have strong flower abscission phenotypes and contained lower NECTARIN 1 transcript levels, phenotypes which are copied in irJAZd plants. We propose that the NaJAZd protein is required to counteract flower abscission, possibly by regulating jasmonic acid and jasmonoyl-L-isoleucine levels and/or expression of NaMYB305 gene in Nicotiana attenuata flowers. This novel insight into the function of JAZ proteins in flower and seed development highlights the diversity of functions played by jasmonates and JAZ proteins.
Collapse
Affiliation(s)
- Youngjoo Oh
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ian T. Baldwin
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| | - Ivan Galis
- Department of Molecular Ecology, Max Planck Institute for Chemical Ecology, Jena, Germany
| |
Collapse
|
42
|
Bellieny-Rabelo D, Oliveira AEA, Venancio TM. Impact of whole-genome and tandem duplications in the expansion and functional diversification of the F-box family in legumes (Fabaceae). PLoS One 2013; 8:e55127. [PMID: 23390519 PMCID: PMC3563651 DOI: 10.1371/journal.pone.0055127] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2012] [Accepted: 12/18/2012] [Indexed: 12/16/2022] Open
Abstract
F-box proteins constitute a large gene family that regulates processes from hormone signaling to stress response. F-box proteins are the substrate recognition modules of SCF E3 ubiquitin ligases. Here we report very distinct trends in family size, duplication, synteny and transcription of F-box genes in two nitrogen-fixing legumes, Glycine max (soybean) and Medicago truncatula (alfafa). While the soybean FBX genes emerged mainly through segmental duplications (including whole-genome duplications), M. truncatula genome is dominated by locally-duplicated (tandem) F-box genes. Many of these young FBX genes evolved complex transcriptional patterns, including preferential transcription in different tissues, suggesting that they have probably been recruited to important biochemical pathways (e.g. nodulation and seed development).
Collapse
Affiliation(s)
- Daniel Bellieny-Rabelo
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Antônia Elenir Amâncio Oliveira
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| | - Thiago Motta Venancio
- Laboratório de Química e Função de Proteínas e Peptídeos, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, Brazil
| |
Collapse
|
43
|
Shamloo-Dashtpagerdi R, Razi H, Lindlöf A, Niazi A, Dadkhodaie A, Ebrahimie E. Comparative analysis of expressed sequence tags (ESTs) from Triticum monococcum shoot apical meristem at vegetative and reproductive stages. Genes Genomics 2013. [DOI: 10.1007/s13258-013-0091-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
44
|
Chmielowska-Bąk J, Deckert J. A common response to common danger? Comparison of animal and plant signaling pathways involved in cadmium sensing. J Cell Commun Signal 2012; 6:191-204. [PMID: 22865263 PMCID: PMC3497896 DOI: 10.1007/s12079-012-0173-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2012] [Accepted: 07/20/2012] [Indexed: 01/14/2023] Open
Abstract
Exposure to cadmium results in disturbances in cell homeostasis in all living organisms. The first response to stress factors, including cadmium, is activation of signal transduction pathways that mobilize cell defense mechanisms. The aim of this review is a comparison between the signaling network triggered by Cd in plants and animals. Despite differences in the structure and physiology of plant and animal cells, their cadmium signal transduction pathways share many common elements. These elements include signaling molecules such as ROS, Ca(2+) and NO, the involvement of phospholipase C, mitogen-activated protein kinase cascades, and activation of transcription factors. Undoubtedly, both animals and plants also possess specific signaling pathways. In case of animals, Wnt/β-catenin, sonic hedgehog and oestorgen signaling are engaged in the transduction of cadmium signal. Plant specific signal transduction pathways include signaling mediated by plant hormones. The role of ethylene and jasmonic, salicylic and abscisic acid in plant response to cadmium is also discussed.
Collapse
Affiliation(s)
- Jagna Chmielowska-Bąk
- Department of Plant Ecophysiology, Institute of Experimental Biology, Faculty of Biology, Adam Mickiewicz University, ul.Umultowska 89, 61-614, Poznań, Poland,
| | | |
Collapse
|
45
|
Gürsoy M, Balkan A, Ulukan H. Ecophysiological responses to stresses in plants: a general approach. Pak J Biol Sci 2012; 15:506-516. [PMID: 24191624 DOI: 10.3923/pjbs.2012.506.516] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
Stress (abiotic and biotic) factors reflect and specify the plant morphology and called as "stress" and have negative effect(s) on growth, development, quality, quantity and can reduce average plant productivity by 65 to 87%, depending on the plants and stage(s) and also give various permanent or temporary damage(s) according to length of exposed period, violence/density, developmental stage, age, etc. Researches have revealed that despite the advanced technology levels the fundamental basis of stress have not been understood comprehensively. Firstly taken response(s) has/have not yet fully understood and secondly any "resistance" or "tolerance level of a variety/species" because of their complex structure(s). But, this point is clear that with the help or assistance of "multi-disciplinary" approaches, it will be able to get promising result(s) in near future. This review focuses some of the ecophysiological responses of plants to biotic and abiotic stresses.
Collapse
Affiliation(s)
- M Gürsoy
- Güzelyurt Vocational School, University of Aksaray, Aksaray, Türkiye
| | | | | |
Collapse
|
46
|
Casteel CL, Hansen AK, Walling LL, Paine TD. Manipulation of plant defense responses by the tomato psyllid (Bactericerca cockerelli) and its associated endosymbiont Candidatus Liberibacter psyllaurous. PLoS One 2012; 7:e35191. [PMID: 22539959 PMCID: PMC3335145 DOI: 10.1371/journal.pone.0035191] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2012] [Accepted: 03/09/2012] [Indexed: 12/27/2022] Open
Abstract
Some plant pathogens form obligate relationships with their insect vector and are vertically transmitted via eggs analogous to insect endosymbionts. Whether insect endosymbionts manipulate plant defenses to benefit their insect host remains unclear. The tomato psyllid, Bactericerca cockerelli (Sulc), vectors the endosymbiont "Candidatus Liberibacter psyllaurous" (Lps) during feeding on tomato (Solanum lycopersicum L.). Lps titer in psyllids varied relative to the psyllid developmental stage with younger psyllids harboring smaller Lps populations compared to older psyllids. In the present study, feeding by different life stages of B. cockerelli infected with Lps, resulted in distinct tomato transcript profiles. Feeding by young psyllid nymphs, with lower Lps levels, induced tomato genes regulated by jasmonic acid (JA) and salicylic acid (SA) (Allene oxide synthase, Proteinase inhibitor 2, Phenylalanine ammonia-lyase 5, Pathogenesis-related protein 1) compared to feeding by older nymphs and adults, where higher Lps titers were found. In addition, inoculation of Lps without insect hosts suppressed accumulation of these defense transcripts. Collectively, these data suggest that the endosymbiont-like pathogen Lps manipulates plant signaling and defensive responses to benefit themselves and the success of their obligate insect vector on their host plant.
Collapse
Affiliation(s)
- Clare L Casteel
- Boyce Thompson Institute for Plant Research, Ithaca, New York, United States of America.
| | | | | | | |
Collapse
|
47
|
Analytical methods for tracing plant hormones. Anal Bioanal Chem 2012; 403:55-74. [PMID: 22215246 DOI: 10.1007/s00216-011-5623-x] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2011] [Revised: 11/27/2011] [Accepted: 11/28/2011] [Indexed: 12/22/2022]
Abstract
Plant hormones play important roles in regulating numerous aspects of plant growth, development, and response to stress. In the past decade, more analytical methods for the accurate identification and quantitative determination of trace plant hormones have been developed to better our understanding of the molecular mechanisms of plant hormones. As sample preparation is often the bottleneck in analysis of plant hormones in biological samples, this review firstly discusses sample preparation techniques after a brief introduction to the classes, roles, and methods used in the analysis of plant hormones. The analytical methods, especially chromatographic techniques and immuno-based methods, are reviewed in detail, and their corresponding advantages, limitations, applications, and prospects are also discussed. This review mainly covers reports published from 2000 to the present on methods for the analysis of plant hormones.
Collapse
|
48
|
DU FY, BAI Y, BAI Y, LIU HW. Mass Spectrometric Fragmentation Mechanism and Chromatographic Retention for Polypeptide Hormones-Systemin and Its Analogues. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2011. [DOI: 10.1016/s1872-2040(10)60461-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
49
|
Derepression of ethylene-stabilized transcription factors (EIN3/EIL1) mediates jasmonate and ethylene signaling synergy in Arabidopsis. Proc Natl Acad Sci U S A 2011; 108:12539-44. [PMID: 21737749 DOI: 10.1073/pnas.1103959108] [Citation(s) in RCA: 485] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Jasmonate (JA) and ethylene (ET) are two major plant hormones that synergistically regulate plant development and tolerance to necrotrophic fungi. Both JA and ET induce the expression of several pathogenesis-related genes, while blocking either signaling pathway abolishes the induction of these genes by JA and ET alone or in combination. However, the molecular basis of JA/ET coaction and signaling interdependency is largely unknown. Here, we report that two Arabidopsis ET-stabilized transcription factors (EIN3 and EIL1) integrate ET and JA signaling in the regulation of gene expression, root development, and necrotrophic pathogen defense. Further studies reveal that JA enhances the transcriptional activity of EIN3/EIL1 by removal of JA-Zim domain (JAZ) proteins, which physically interact with and repress EIN3/EIL1. In addition, we find that JAZ proteins recruit an RPD3-type histone deacetylase (HDA6) as a corepressor that modulates histone acetylation, represses EIN3/EIL1-dependent transcription, and inhibits JA signaling. Our studies identify EIN3/EIL1 as a key integration node whose activation requires both JA and ET signaling, and illustrate transcriptional derepression as a common mechanism to integrate diverse signaling pathways in the regulation of plant development and defense.
Collapse
|
50
|
Chen Y, Pang Q, Dai S, Wang Y, Chen S, Yan X. Proteomic identification of differentially expressed proteins in Arabidopsis in response to methyl jasmonate. JOURNAL OF PLANT PHYSIOLOGY 2011; 168:995-1008. [PMID: 21377756 DOI: 10.1016/j.jplph.2011.01.018] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2010] [Revised: 01/06/2011] [Accepted: 01/10/2011] [Indexed: 05/25/2023]
Abstract
Jasmonates (JAs) are the well characterized fatty acid-derived cyclopentanone signals involved in the plant response to biotic and abiotic stresses. JAs have been shown to regulate many aspects of plant metabolism, including glucosinolate biosynthesis. Glucosinolates are natural plant products that function in defense against herbivores and pathogens. In this study, we applied a proteomic approach to gain insight into the physiological processes, including glucosinolate metabolism, in response to methyl jasmonate (MeJA). We identified 194 differentially expressed protein spots that contained proteins that participated in a wide range of physiological processes. Functional classification analysis showed that photosynthesis and carbohydrate anabolism were repressed after MeJA treatment, while carbohydrate catabolism was up-regulated. Additionally, proteins related to the JA biosynthesis pathway, stress and defense, and secondary metabolism were up-regulated. Among the differentially expressed proteins, many were involved in oxidative tolerance. The results indicate that MeJA elicited a defense response at the proteome level through a mechanism of redirecting growth-related metabolism to defense-related metabolism.
Collapse
Affiliation(s)
- Yazhou Chen
- Alkali Soil Natural Environmental Science Center, Northeast Forestry University/Key Laboratory of Saline-alkali Vegetation Ecology Restoration in Oil Field, Ministry of Education, Harbin 150040, China
| | | | | | | | | | | |
Collapse
|