1
|
Kosicki M, Zhang B, Pampari A, Akiyama JA, Plajzer-Frick I, Novak CS, Tran S, Zhu Y, Kato M, Hunter RD, von Maydell K, Barton S, Beckman E, Kundaje A, Dickel DE, Visel A, Pennacchio LA. Mutagenesis Sensitivity Mapping of Human Enhancers In Vivo. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.06.611737. [PMID: 39282388 PMCID: PMC11398460 DOI: 10.1101/2024.09.06.611737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
Distant-acting enhancers are central to human development. However, our limited understanding of their functional sequence features prevents the interpretation of enhancer mutations in disease. Here, we determined the functional sensitivity to mutagenesis of human developmental enhancers in vivo. Focusing on seven enhancers active in the developing brain, heart, limb and face, we created over 1700 transgenic mice for over 260 mutagenized enhancer alleles. Systematic mutation of 12-basepair blocks collectively altered each sequence feature in each enhancer at least once. We show that 69% of all blocks are required for normal in vivo activity, with mutations more commonly resulting in loss (60%) than in gain (9%) of function. Using predictive modeling, we annotated critical nucleotides at base-pair resolution. The vast majority of motifs predicted by these machine learning models (88%) coincided with changes to in vivo function, and the models showed considerable sensitivity, identifying 59% of all functional blocks. Taken together, our results reveal that human enhancers contain a high density of sequence features required for their normal in vivo function and provide a rich resource for further exploration of human enhancer logic.
Collapse
Affiliation(s)
- Michael Kosicki
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Boyang Zhang
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Anusri Pampari
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Jennifer A. Akiyama
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Ingrid Plajzer-Frick
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Catherine S. Novak
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Stella Tran
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Yiwen Zhu
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Momoe Kato
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Riana D. Hunter
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Kianna von Maydell
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Sarah Barton
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Erik Beckman
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Anshul Kundaje
- Department of Genetics, Stanford University, Stanford, CA, USA
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | - Diane E. Dickel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Axel Visel
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- School of Natural Sciences, University of California, Merced, CA 95343, USA
- U.S. Department of Energy Joint Genome Institute, One Cyclotron Road, Berkeley, CA 94720, USA
| | - Len A. Pennacchio
- Environmental Genomics & System Biology Division, Lawrence Berkeley National Laboratory, One Cyclotron Road, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, One Cyclotron Road, Berkeley, CA 94720, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA 94720, USA
| |
Collapse
|
2
|
Biddie SC, Weykopf G, Hird EF, Friman ET, Bickmore WA. DNA-binding factor footprints and enhancer RNAs identify functional non-coding genetic variants. Genome Biol 2024; 25:208. [PMID: 39107801 PMCID: PMC11304670 DOI: 10.1186/s13059-024-03352-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024] Open
Abstract
BACKGROUND Genome-wide association studies (GWAS) have revealed a multitude of candidate genetic variants affecting the risk of developing complex traits and diseases. However, the highlighted regions are typically in the non-coding genome, and uncovering the functional causative single nucleotide variants (SNVs) is challenging. Prioritization of variants is commonly based on genomic annotation with markers of active regulatory elements, but current approaches still poorly predict functional variants. To address this, we systematically analyze six markers of active regulatory elements for their ability to identify functional variants. RESULTS We benchmark against molecular quantitative trait loci (molQTL) from assays of regulatory element activity that identify allelic effects on DNA-binding factor occupancy, reporter assay expression, and chromatin accessibility. We identify the combination of DNase footprints and divergent enhancer RNA (eRNA) as markers for functional variants. This signature provides high precision, but with a trade-off of low recall, thus substantially reducing candidate variant sets to prioritize variants for functional validation. We present this as a framework called FINDER-Functional SNV IdeNtification using DNase footprints and eRNA. CONCLUSIONS We demonstrate the utility to prioritize variants using leukocyte count trait and analyze variants in linkage disequilibrium with a lead variant to predict a functional variant in asthma. Our findings have implications for prioritizing variants from GWAS, in development of predictive scoring algorithms, and for functionally informed fine mapping approaches.
Collapse
Affiliation(s)
- Simon C Biddie
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
- NHS Lothian, Edinburgh, UK.
| | - Giovanna Weykopf
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | | | - Elias T Friman
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK
| | - Wendy A Bickmore
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, UK.
| |
Collapse
|
3
|
Soussi G, Girdziusaite A, Jhanwar S, Palacio V, Notaro M, Sheth R, Zeller R, Zuniga A. TBX3 is essential for establishment of the posterior boundary of anterior genes and upregulation of posterior genes together with HAND2 during the onset of limb bud development. Development 2024; 151:dev202722. [PMID: 38828908 PMCID: PMC11190573 DOI: 10.1242/dev.202722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2024] [Accepted: 04/26/2024] [Indexed: 06/05/2024]
Abstract
During limb bud formation, axis polarities are established as evidenced by the spatially restricted expression of key regulator genes. In particular, the mutually antagonistic interaction between the GLI3 repressor and HAND2 results in distinct and non-overlapping anterior-distal Gli3 and posterior Hand2 expression domains. This is a hallmark of the establishment of antero-posterior limb axis polarity, together with spatially restricted expression of homeodomain and other transcriptional regulators. Here, we show that TBX3 is required for establishment of the posterior expression boundary of anterior genes in mouse limb buds. ChIP-seq and differential gene expression analysis of wild-type and mutant limb buds identifies TBX3-specific and shared TBX3-HAND2 target genes. High sensitivity fluorescent whole-mount in situ hybridisation shows that the posterior expression boundaries of anterior genes are positioned by TBX3-mediated repression, which excludes anterior genes such as Gli3, Alx4, Hand1 and Irx3/5 from the posterior limb bud mesenchyme. This exclusion delineates the posterior mesenchymal territory competent to establish the Shh-expressing limb bud organiser. In turn, HAND2 is required for Shh activation and cooperates with TBX3 to upregulate shared posterior identity target genes in early limb buds.
Collapse
Affiliation(s)
- Geoffrey Soussi
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Ausra Girdziusaite
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Shalu Jhanwar
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Victorio Palacio
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | | | - Rushikesh Sheth
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Rolf Zeller
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| | - Aimée Zuniga
- Developmental Genetics, Department of Biomedicine, University of Basel, 4058 Basel, Switzerland
| |
Collapse
|
4
|
Bower G, Hollingsworth EW, Jacinto S, Clock B, Cao K, Liu M, Dziulko A, Alcaina-Caro A, Xu Q, Skowronska-Krawczyk D, Lopez-Rios J, Dickel DE, Bardet AF, Pennacchio LA, Visel A, Kvon EZ. Conserved Cis-Acting Range Extender Element Mediates Extreme Long-Range Enhancer Activity in Mammals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.26.595809. [PMID: 38826394 PMCID: PMC11142232 DOI: 10.1101/2024.05.26.595809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/04/2024]
Abstract
While most mammalian enhancers regulate their cognate promoters over moderate distances of tens of kilobases (kb), some enhancers act over distances in the megabase range. The sequence features enabling such extreme-distance enhancer-promoter interactions remain elusive. Here, we used in vivo enhancer replacement experiments in mice to show that short- and medium-range enhancers cannot initiate gene expression at extreme-distance range. We uncover a novel conserved cis-acting element, Range EXtender (REX), that confers extreme-distance regulatory activity and is located next to a long-range enhancer of Sall1. The REX element itself has no endogenous enhancer activity. However, addition of the REX to other short- and mid-range enhancers substantially increases their genomic interaction range. In the most extreme example observed, addition of the REX increased the range of an enhancer by an order of magnitude, from its native 71kb to 840kb. The REX element contains highly conserved [C/T]AATTA homeodomain motifs. These motifs are enriched around long-range limb enhancers genome-wide, including the ZRS, a benchmark long-range limb enhancer of Shh. Mutating the [C/T]AATTA motifs within the ZRS does not affect its limb-specific enhancer activity at short range, but selectively abolishes its long-range activity, resulting in severe limb reduction in knock-in mice. In summary, we identify a sequence signature globally associated with long-range enhancer-promoter interactions and describe a prototypical REX element that is necessary and sufficient to confer extreme-distance gene activation by remote enhancers.
Collapse
Affiliation(s)
- Grace Bower
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Ethan W. Hollingsworth
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
- Medical Scientist Training Program, University of California, Irvine, CA 92967, USA
| | - Sandra Jacinto
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Benjamin Clock
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Kaitlyn Cao
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Mandy Liu
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| | - Adam Dziulko
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Ana Alcaina-Caro
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, 41013, Spain
| | - Qianlan Xu
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California, Irvine, CA, USA
| | - Dorota Skowronska-Krawczyk
- Department of Physiology and Biophysics, Department of Ophthalmology, Center for Translational Vision Research, School of Medicine, University of California, Irvine, CA, USA
| | - Javier Lopez-Rios
- Centro Andaluz de Biología del Desarrollo (CABD), CSIC-Universidad Pablo de Olavide-Junta de Andalucía, Seville, 41013, Spain
| | - Diane E. Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
| | - Anaïs F. Bardet
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC), Université de Strasbourg, CNRS UMR7104, INSERM U1258, 67400 Illkirch, France
| | - Len A. Pennacchio
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
- Comparative Biochemistry Program, University of California, Berkeley, CA 94720, USA
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- U.S. Department of Energy Joint Genome Institute, Walnut Creek, CA 94598, USA
- School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Evgeny Z. Kvon
- Department of Developmental and Cell Biology, University of California, Irvine, CA 92967, USA
| |
Collapse
|
5
|
Shroff NP, Xu P, Kim S, Shelton ER, Gross BJ, Liu Y, Gomez CO, Ye Q, Drennon TY, Hu JK, Green JBA, Campàs O, Klein OD. Proliferation-driven mechanical compression induces signalling centre formation during mammalian organ development. Nat Cell Biol 2024; 26:519-529. [PMID: 38570617 PMCID: PMC11482733 DOI: 10.1038/s41556-024-01380-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 02/15/2024] [Indexed: 04/05/2024]
Abstract
Localized sources of morphogens, called signalling centres, play a fundamental role in coordinating tissue growth and cell fate specification during organogenesis. However, how these signalling centres are established in tissues during embryonic development is still unclear. Here we show that the main signalling centre orchestrating development of rodent incisors, the enamel knot (EK), is specified by a cell proliferation-driven buildup in compressive stresses (mechanical pressure) in the tissue. Direct mechanical measurements indicate that the stresses generated by cell proliferation are resisted by the surrounding tissue, creating a circular pattern of mechanical anisotropy with a region of high compressive stress at its centre that becomes the EK. Pharmacological inhibition of proliferation reduces stresses and suppresses EK formation, and application of external pressure in proliferation-inhibited conditions rescues the formation of the EK. Mechanical information is relayed intracellularly through YAP protein localization, which is cytoplasmic in the region of compressive stress that establishes the EK and nuclear in the stretched anisotropic cells that resist the pressure buildup around the EK. Together, our data identify a new role for proliferation-driven mechanical compression in the specification of a model signalling centre during mammalian organ development.
Collapse
Affiliation(s)
- Neha Pincha Shroff
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA, USA
| | - Pengfei Xu
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA, USA
| | - Sangwoo Kim
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
- Institute of Mechanical Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Elijah R Shelton
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Ben J Gross
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Yucen Liu
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA
| | - Carlos O Gomez
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA
| | - Qianlin Ye
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Tingsheng Yu Drennon
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA, USA
| | - Jimmy K Hu
- School of Dentistry, University of California Los Angeles, Los Angeles, CA, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA, USA
| | - Jeremy B A Green
- Centre for Craniofacial Regeneration and Biology, King's College London, London, UK
| | - Otger Campàs
- Department of Mechanical Engineering, University of California, Santa Barbara, CA, USA.
- Department of Molecular, Cellular, and Developmental Biology, University of California, Santa Barbara, CA, USA.
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| | - Ophir D Klein
- Department of Orofacial Sciences and Program in Craniofacial Biology, University of California, San Francisco, CA, USA.
- Department of Pediatrics, Cedars-Sinai Guerin Children's, Los Angeles, CA, USA.
| |
Collapse
|
6
|
Lim F, Solvason JJ, Ryan GE, Le SH, Jindal GA, Steffen P, Jandu SK, Farley EK. Affinity-optimizing enhancer variants disrupt development. Nature 2024; 626:151-159. [PMID: 38233525 PMCID: PMC10830414 DOI: 10.1038/s41586-023-06922-8] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 11/30/2023] [Indexed: 01/19/2024]
Abstract
Enhancers control the location and timing of gene expression and contain the majority of variants associated with disease1-3. The ZRS is arguably the most well-studied vertebrate enhancer and mediates the expression of Shh in the developing limb4. Thirty-one human single-nucleotide variants (SNVs) within the ZRS are associated with polydactyly4-6. However, how this enhancer encodes tissue-specific activity, and the mechanisms by which SNVs alter the number of digits, are poorly understood. Here we show that the ETS sites within the ZRS are low affinity, and identify a functional ETS site, ETS-A, with extremely low affinity. Two human SNVs and a synthetic variant optimize the binding affinity of ETS-A subtly from 15% to around 25% relative to the strongest ETS binding sequence, and cause polydactyly with the same penetrance and severity. A greater increase in affinity results in phenotypes that are more penetrant and more severe. Affinity-optimizing SNVs in other ETS sites in the ZRS, as well as in ETS, interferon regulatory factor (IRF), HOX and activator protein 1 (AP-1) sites within a wide variety of enhancers, cause gain-of-function gene expression. The prevalence of binding sites with suboptimal affinity in enhancers creates a vulnerability in genomes whereby SNVs that optimize affinity, even slightly, can be pathogenic. Searching for affinity-optimizing SNVs in genomes could provide a mechanistic approach to identify causal variants that underlie enhanceropathies.
Collapse
Affiliation(s)
- Fabian Lim
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Biological Sciences Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Joe J Solvason
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Genevieve E Ryan
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Sophia H Le
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Granton A Jindal
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Paige Steffen
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Simran K Jandu
- Department of Medicine, University of California San Diego, La Jolla, CA, USA
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA
| | - Emma K Farley
- Department of Medicine, University of California San Diego, La Jolla, CA, USA.
- Department of Molecular Biology, Biological Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
7
|
Jindal GA, Bantle AT, Solvason JJ, Grudzien JL, D'Antonio-Chronowska A, Lim F, Le SH, Song BP, Ragsac MF, Klie A, Larsen RO, Frazer KA, Farley EK. Single-nucleotide variants within heart enhancers increase binding affinity and disrupt heart development. Dev Cell 2023; 58:2206-2216.e5. [PMID: 37848026 PMCID: PMC10720985 DOI: 10.1016/j.devcel.2023.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 06/07/2023] [Accepted: 09/20/2023] [Indexed: 10/19/2023]
Abstract
Transcriptional enhancers direct precise gene expression patterns during development and harbor the majority of variants associated with phenotypic diversity, evolutionary adaptations, and disease. Pinpointing which enhancer variants contribute to changes in gene expression and phenotypes is a major challenge. Here, we find that suboptimal or low-affinity binding sites are necessary for precise gene expression during heart development. Single-nucleotide variants (SNVs) can optimize the affinity of ETS binding sites, causing gain-of-function (GOF) gene expression, cell migration defects, and phenotypes as severe as extra beating hearts in the marine chordate Ciona robusta. In human induced pluripotent stem cell (iPSC)-derived cardiomyocytes, a SNV within a human GATA4 enhancer increases ETS binding affinity and causes GOF enhancer activity. The prevalence of suboptimal-affinity sites within enhancers creates a vulnerability whereby affinity-optimizing SNVs can lead to GOF gene expression, changes in cellular identity, and organismal-level phenotypes that could contribute to the evolution of novel traits or diseases.
Collapse
Affiliation(s)
- Granton A Jindal
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Alexis T Bantle
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Joe J Solvason
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Jessica L Grudzien
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | | | - Fabian Lim
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Sophia H Le
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Benjamin P Song
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Biological Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Michelle F Ragsac
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Adam Klie
- Bioinformatics and Systems Biology Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Reid O Larsen
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, CA 92093, USA
| | - Kelly A Frazer
- Department of Pediatrics, School of Medicine, University of California, San Diego, La Jolla, CA 92093, USA; Institute for Genomic Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA
| | - Emma K Farley
- Department of Medicine, Health Sciences, University of California, San Diego, La Jolla, CA 92093, USA; Department of Molecular Biology, School of Biological Sciences, University of California, San Diego, La Jolla, CA 92093, USA.
| |
Collapse
|
8
|
Jacobs J, Pagani M, Wenzl C, Stark A. Widespread regulatory specificities between transcriptional co-repressors and enhancers in Drosophila. Science 2023; 381:198-204. [PMID: 37440660 DOI: 10.1126/science.adf6149] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 06/13/2023] [Indexed: 07/15/2023]
Abstract
Gene expression is controlled by the precise activation and repression of transcription. Repression is mediated by specialized transcription factors (TFs) that recruit co-repressors (CoRs) to silence transcription, even in the presence of activating cues. However, whether CoRs can dominantly silence all enhancers or display distinct specificities is unclear. In this work, we report that most enhancers in Drosophila can be repressed by only a subset of CoRs, and enhancers classified by CoR sensitivity show distinct chromatin features, function, TF motifs, and binding. Distinct TF motifs render enhancers more resistant or sensitive to specific CoRs, as we demonstrate by motif mutagenesis and addition. These CoR-enhancer compatibilities constitute an additional layer of regulatory specificity that allows differential regulation at close genomic distances and is indicative of distinct mechanisms of transcriptional repression.
Collapse
Affiliation(s)
- Jelle Jacobs
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Michaela Pagani
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Christoph Wenzl
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
| | - Alexander Stark
- Research Institute of Molecular Pathology (IMP), Vienna BioCenter (VBC), Campus-Vienna-Biocenter 1, Vienna, Austria
- Medical University of Vienna, Vienna BioCenter (VBC), Vienna, Austria
| |
Collapse
|
9
|
Losa M, Barozzi I, Osterwalder M, Hermosilla-Aguayo V, Morabito A, Chacón BH, Zarrineh P, Girdziusaite A, Benazet JD, Zhu J, Mackem S, Capellini TD, Dickel D, Bobola N, Zuniga A, Visel A, Zeller R, Selleri L. A spatio-temporally constrained gene regulatory network directed by PBX1/2 acquires limb patterning specificity via HAND2. Nat Commun 2023; 14:3993. [PMID: 37414772 PMCID: PMC10325989 DOI: 10.1038/s41467-023-39443-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/14/2023] [Indexed: 07/08/2023] Open
Abstract
A lingering question in developmental biology has centered on how transcription factors with widespread distribution in vertebrate embryos can perform tissue-specific functions. Here, using the murine hindlimb as a model, we investigate the elusive mechanisms whereby PBX TALE homeoproteins, viewed primarily as HOX cofactors, attain context-specific developmental roles despite ubiquitous presence in the embryo. We first demonstrate that mesenchymal-specific loss of PBX1/2 or the transcriptional regulator HAND2 generates similar limb phenotypes. By combining tissue-specific and temporally controlled mutagenesis with multi-omics approaches, we reconstruct a gene regulatory network (GRN) at organismal-level resolution that is collaboratively directed by PBX1/2 and HAND2 interactions in subsets of posterior hindlimb mesenchymal cells. Genome-wide profiling of PBX1 binding across multiple embryonic tissues further reveals that HAND2 interacts with subsets of PBX-bound regions to regulate limb-specific GRNs. Our research elucidates fundamental principles by which promiscuous transcription factors cooperate with cofactors that display domain-restricted localization to instruct tissue-specific developmental programs.
Collapse
Affiliation(s)
- Marta Losa
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Orofacial Sciences and Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Iros Barozzi
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Marco Osterwalder
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department for Biomedical Research (DBMR), University of Bern, Bern, Switzerland
- Department of Cardiology, Bern University Hospital, Bern, Switzerland
| | - Viviana Hermosilla-Aguayo
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Orofacial Sciences and Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Angela Morabito
- Developmental Genetics, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Brandon H Chacón
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Orofacial Sciences and Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Peyman Zarrineh
- School of Medical Sciences, University of Manchester, Manchester, UK
| | - Ausra Girdziusaite
- Developmental Genetics, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Jean Denis Benazet
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Orofacial Sciences and Department of Anatomy, University of California San Francisco, San Francisco, CA, USA
| | - Jianjian Zhu
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Susan Mackem
- Cancer and Developmental Biology Laboratory, Center for Cancer Research, National Cancer Institute, Frederick, MD, USA
| | - Terence D Capellini
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Diane Dickel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
| | - Nicoletta Bobola
- School of Medical Sciences, University of Manchester, Manchester, UK
| | - Aimée Zuniga
- Developmental Genetics, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Axel Visel
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- US Department of Energy Joint Genome Institute, Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA
- School of Natural Sciences, University of California, Merced, Merced, CA, 95343, USA
| | - Rolf Zeller
- Developmental Genetics, Department Biomedicine, University of Basel, Basel, Switzerland
| | - Licia Selleri
- Program in Craniofacial Biology, Institute for Human Genetics, Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, Department of Orofacial Sciences and Department of Anatomy, University of California San Francisco, San Francisco, CA, USA.
| |
Collapse
|
10
|
Zhang D, Zhang C, Zhu Y, Xie H, Yue C, Li M, Wei W, Peng Y, Yin G, Guo Y, Guan Y. Recruitment of transcription factor ETS1 to activated accessible regions promotes the transcriptional program of cilia genes. Nucleic Acids Res 2023:gkad506. [PMID: 37326025 PMCID: PMC10359609 DOI: 10.1093/nar/gkad506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 05/25/2023] [Accepted: 06/01/2023] [Indexed: 06/17/2023] Open
Abstract
Defects in cilia genes, which are critical for cilia formation and function, can cause complicated ciliopathy syndromes involving multiple organs and tissues; however, the underlying regulatory mechanisms of the networks of cilia genes in ciliopathies remain enigmatic. Herein, we have uncovered the genome-wide redistribution of accessible chromatin regions and extensive alterations of expression of cilia genes during Ellis-van Creveld syndrome (EVC) ciliopathy pathogenesis. Mechanistically, the distinct EVC ciliopathy-activated accessible regions (CAAs) are shown to positively regulate robust changes in flanking cilia genes, which are a key requirement for cilia transcription in response to developmental signals. Moreover, a single transcription factor, ETS1, can be recruited to CAAs, leading to prominent chromatin accessibility reconstruction in EVC ciliopathy patients. In zebrafish, the collapse of CAAs driven by ets1 suppression subsequently causes defective cilia proteins, resulting in body curvature and pericardial oedema. Our results depict a dynamic landscape of chromatin accessibility in EVC ciliopathy patients, and uncover an insightful role for ETS1 in controlling the global transcriptional program of cilia genes by reprogramming the widespread chromatin state.
Collapse
Affiliation(s)
- Donghui Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| | - Chong Zhang
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| | - Yanmei Zhu
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| | - Haixia Xie
- Precision Clinical Laboratory, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| | - Caifeng Yue
- Precision Clinical Laboratory, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
- Department of Laboratory Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| | - Mingfeng Li
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| | - Wenlu Wei
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| | - Yu Peng
- Pediatric Intensive Care Unit Central, People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| | - Guibin Yin
- Department of Orthopedics, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| | - Yunmiao Guo
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| | - Yiting Guan
- Zhanjiang Institute of Clinical Medicine, Central People's Hospital of Zhanjiang, Guangdong Medical University Zhanjiang Central Hospital, Zhanjiang 524045, PR China
| |
Collapse
|
11
|
Tada R, Higashidate T, Amano T, Ishikawa S, Yokoyama C, Kobari S, Nara S, Ishida K, Kawaguchi A, Ochi H, Ogino H, Yakushiji-Kaminatsui N, Sakamoto J, Kamei Y, Tamura K, Yokoyama H. The shh limb enhancer is activated in patterned limb regeneration but not in hypomorphic limb regeneration in Xenopus laevis. Dev Biol 2023:S0012-1606(23)00093-3. [PMID: 37247832 DOI: 10.1016/j.ydbio.2023.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 05/16/2023] [Accepted: 05/26/2023] [Indexed: 05/31/2023]
Abstract
Xenopus young tadpoles regenerate a limb with the anteroposterior (AP) pattern, but metamorphosed froglets regenerate a hypomorphic limb after amputation. The key gene for AP patterning, shh, is expressed in a regenerating limb of the tadpole but not in that of the froglet. Genomic DNA in the shh limb-specific enhancer, MFCS1 (ZRS), is hypermethylated in froglets but hypomethylated in tadpoles: shh expression may be controlled by epigenetic regulation of MFCS1. Is MFCS1 specifically activated for regenerating the AP-patterned limb? We generated transgenic Xenopus laevis lines that visualize the MFCS1 enhancer activity with a GFP reporter. The transgenic tadpoles showed GFP expression in hoxd13-and shh-expressing domains of developing and regenerating limbs, whereas the froglets showed no GFP expression in the regenerating limbs despite having hoxd13 expression. Genome sequence analysis and co-transfection assays using cultured cells revealed that Hoxd13 can activate Xenopus MFCS1. These results suggest that MFCS1 activation correlates with regeneration of AP-patterned limbs and that re-activation of epigenetically inactivated MFCS1 would be crucial to confer the ability to non-regenerative animals for regenerating a properly patterned limb.
Collapse
Affiliation(s)
- Reimi Tada
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Takuya Higashidate
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aramaki-Aza-Aoba 6-3, Aoba-ku, Sendai, 980-8578, Japan
| | - Takanori Amano
- Next Generation Human Disease Model Team, RIKEN BioResource Research Center, 3-1-1 Koyadai, Tsukuba, Ibaraki, 305-0074, Japan
| | - Shoma Ishikawa
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Chifuyu Yokoyama
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Suzu Kobari
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Saki Nara
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Koshiro Ishida
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan
| | - Akane Kawaguchi
- Graduate School of Biological Sciences, Nara Institute of Science and Technology (NAIST), Ikoma, Nara, Japan
| | - Haruki Ochi
- Institute for Promotion of Medical Science Research, Faculty of Medicine, Yamagata University, Yamagata, 990-9585, Japan
| | - Hajime Ogino
- Amphibian Research Center / Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagami-yama, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Nayuta Yakushiji-Kaminatsui
- RIKEN Center for Integrative Medical Sciences (IMS), 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, 230-0045, Japan
| | - Joe Sakamoto
- Laboratory for Biothermology, National Institute for Basic, Biology, Myodaiji, Okazaki, Aichi, 444-8585, Japan; Biophotonics Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institute for Physiological Sciences, Higashiyama Myodaiji, Okazaki, Aichi, 444-8787, Japan
| | - Yasuhiro Kamei
- Laboratory for Biothermology, National Institute for Basic, Biology, Myodaiji, Okazaki, Aichi, 444-8585, Japan; Department of Basic Biology in the School of Life Science of the Graduate University for Advanced Studies (SOKENDAI), Okazaki, Aichi, 444-8585, Japan
| | - Koji Tamura
- Department of Ecological Developmental Adaptability Life Sciences, Graduate School of Life Sciences, Tohoku University, Aramaki-Aza-Aoba 6-3, Aoba-ku, Sendai, 980-8578, Japan
| | - Hitoshi Yokoyama
- Department of Biochemistry and Molecular Biology, Faculty of Agriculture and Life Science, Hirosaki University, 3 Bunkyo-cho, Hirosaki, Aomori, 036-8561, Japan.
| |
Collapse
|
12
|
Chee JM, Lanoue L, Clary D, Higgins K, Bower L, Flenniken A, Guo R, Adams DJ, Bosch F, Braun RE, Brown SDM, Chin HJG, Dickinson ME, Hsu CW, Dobbie M, Gao X, Galande S, Grobler A, Heaney JD, Herault Y, de Angelis MH, Mammano F, Nutter LMJ, Parkinson H, Qin C, Shiroishi T, Sedlacek R, Seong JK, Xu Y, Brooks B, McKerlie C, Lloyd KCK, Westerberg H, Moshiri A. Genome-wide screening reveals the genetic basis of mammalian embryonic eye development. BMC Biol 2023; 21:22. [PMID: 36737727 PMCID: PMC9898963 DOI: 10.1186/s12915-022-01475-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 11/23/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Microphthalmia, anophthalmia, and coloboma (MAC) spectrum disease encompasses a group of eye malformations which play a role in childhood visual impairment. Although the predominant cause of eye malformations is known to be heritable in nature, with 80% of cases displaying loss-of-function mutations in the ocular developmental genes OTX2 or SOX2, the genetic abnormalities underlying the remaining cases of MAC are incompletely understood. This study intended to identify the novel genes and pathways required for early eye development. Additionally, pathways involved in eye formation during embryogenesis are also incompletely understood. This study aims to identify the novel genes and pathways required for early eye development through systematic forward screening of the mammalian genome. RESULTS Query of the International Mouse Phenotyping Consortium (IMPC) database (data release 17.0, August 01, 2022) identified 74 unique knockout lines (genes) with genetically associated eye defects in mouse embryos. The vast majority of eye abnormalities were small or absent eyes, findings most relevant to MAC spectrum disease in humans. A literature search showed that 27 of the 74 lines had previously published knockout mouse models, of which only 15 had ocular defects identified in the original publications. These 12 previously published gene knockouts with no reported ocular abnormalities and the 47 unpublished knockouts with ocular abnormalities identified by the IMPC represent 59 genes not previously associated with early eye development in mice. Of these 59, we identified 19 genes with a reported human eye phenotype. Overall, mining of the IMPC data yielded 40 previously unimplicated genes linked to mammalian eye development. Bioinformatic analysis showed that several of the IMPC genes colocalized to several protein anabolic and pluripotency pathways in early eye development. Of note, our analysis suggests that the serine-glycine pathway producing glycine, a mitochondrial one-carbon donator to folate one-carbon metabolism (FOCM), is essential for eye formation. CONCLUSIONS Using genome-wide phenotype screening of single-gene knockout mouse lines, STRING analysis, and bioinformatic methods, this study identified genes heretofore unassociated with MAC phenotypes providing models to research novel molecular and cellular mechanisms involved in eye development. These findings have the potential to hasten the diagnosis and treatment of this congenital blinding disease.
Collapse
Affiliation(s)
- Justine M Chee
- Oakland University William Beaumont School of Medicine, Rochester, MI, USA
| | - Louise Lanoue
- Mouse Biology Program, University of California Davis, Davis, CA, USA
| | - Dave Clary
- Mouse Biology Program, University of California Davis, Davis, CA, USA
| | - Kendall Higgins
- University of Miami: Miller School of Medicine, Miami, FL, USA
| | - Lynette Bower
- Mouse Biology Program, University of California Davis, Davis, CA, USA
| | - Ann Flenniken
- The Centre for Phenogenomics, Toronto, ON, Canada
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Ruolin Guo
- The Centre for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - David J Adams
- The Wellcome Trust Sanger Institute, Wellcome Genome Campus, Hinxton, Cambridge, UK
| | - Fatima Bosch
- Centre of Animal Biotechnology and Gene Therapy (CBATEG), Universitat Autònoma de Barcelona, Barcelona, Spain
| | | | - Steve D M Brown
- Medical Research Council Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire, UK
| | - H-J Genie Chin
- National Laboratory Animal Center, National Applied Research Laboratories (NARLabs), Taipei City, Taiwan
| | - Mary E Dickinson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Chih-Wei Hsu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Michael Dobbie
- Phenomics Australia, The John Curtin School of Medical Research, Canberra, Australia
| | - Xiang Gao
- Nanjing Biomedical Research Institute, Nanjing University, Nanjing, China
| | - Sanjeev Galande
- Indian Institutes of Science Education and Research, Pune, India
| | - Anne Grobler
- Faculty of Health Sciences, PCDDP North-West University, Potchefstroom, South Africa
| | - Jason D Heaney
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA
| | - Yann Herault
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, Germany
| | - Fabio Mammano
- Monterotondo Mouse Clinic, Italian National Research Council (CNR), Monterotondo Scalo, Italy
| | - Lauryl M J Nutter
- The Centre for Phenogenomics, Toronto, ON, Canada
- The Hospital for Sick Children, Toronto, ON, Canada
| | - Helen Parkinson
- European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, Cambridgeshire, UK
| | - Chuan Qin
- National Laboratory Animal Center, National Applied Research Laboratories, Beijing, China
| | | | - Radislav Sedlacek
- Czech Center for Phenogenomics, Institute of Molecular Genetics of the Czech Academy of Sciences, Vestec, Czech Republic
| | - J-K Seong
- Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, South Korea
| | - Ying Xu
- CAM-SU Genomic Resource Center, Soochow University, Suzhou, China
| | - Brian Brooks
- Ophthalmic Genetics and Visual Function Branch, National Eye Institute, NIH, Bethesda, MD, 20892, USA
| | - Colin McKerlie
- The Hospital for Sick Children, Toronto, ON, Canada
- Department of Laboratory Medicine & Pathobiology, Faculty of Medicine, University of Toronto, Toronto, ON, Canada
| | - K C Kent Lloyd
- Mouse Biology Program, University of California Davis, Davis, CA, USA
- Department of Surgery, School of Medicine, University of California Davis, Sacramento, CA, USA
| | - Henrik Westerberg
- Medical Research Council Harwell Institute, Mammalian Genetics Unit and Mary Lyon Centre, Harwell Campus, Oxfordshire, UK
| | - Ala Moshiri
- Department of Ophthalmology & Vision Science, School of Medicine, University of California Davis, Sacramento, CA, USA.
- UC Davis Eye Center, 4860 Y St., Ste. 2400, Sacramento, CA, 95817, USA.
| |
Collapse
|
13
|
Álvarez LFG, Tenorio-Castaño J, Poletta FA, Santos-Simarro F, Arias P, Gallego N, Orioli IM, Mundlos S, Castilla EE, Martínez-Glez V, Martínez-Frías ML, Ruiz-Pérez VL, Nevado J, Lapunzina P. A large, ten-generation family with autosomal dominant preaxial polydactyly/triphalangeal thumb: Historical, clinical, genealogical, and molecular studies. Am J Med Genet A 2023; 191:100-107. [PMID: 36308343 DOI: 10.1002/ajmg.a.62994] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Revised: 07/05/2022] [Accepted: 08/19/2022] [Indexed: 12/14/2022]
Abstract
We present a large, ten-generation family of 273 individuals with 84 people having preaxial polydactyly/triphalangeal thumb due to a pathogenic variant in the zone of polarizing activity regulatory sequence (ZRS) within the exon 5 of LMBR1. The causative change maps to position 396 of the ZRS, located at position c.423 + 4909C > T (chr7:156791480; hg38; LMBR1 ENST00000353442.10; rs606231153 NG_009240.2) in the intron 5 of LMBR1. The first affected individual with the disorder was traced back to mid-1700, when some settlers and workers established in Cervera de Buitrago, a small village about 82 km North to Madrid. Clinical and radiological studies of most of the affected members have been performed for 42 years (follow-up of the family by LFGA). Molecular studies have confirmed a pathogenic variant in the ZRS that segregates in this family. To the best of our knowledge, this is the largest family with preaxial polydactyly/triphalangeal thumb reported so far.
Collapse
Affiliation(s)
| | - Jair Tenorio-Castaño
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Brussels, Belgium
| | - Fernando A Poletta
- ECLAMC at CEMIC (Center for Medical Education and Clinical Research) and CONICET (National Council for Scientific and Technical Investigation), Buenos Aires, Argentina
- ECLAMC (Latin American Collaborative Study of Congenital Malformations) at INAGEMP (National Institute of Population Medical Genetics), Rio de Janeiro, Brazil
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Santos-Simarro
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Brussels, Belgium
| | - Pedro Arias
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
| | - Natalia Gallego
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Brussels, Belgium
| | - Iêda Maria Orioli
- ECLAMC at CEMIC (Center for Medical Education and Clinical Research) and CONICET (National Council for Scientific and Technical Investigation), Buenos Aires, Argentina
- ECLAMC (Latin American Collaborative Study of Congenital Malformations) at INAGEMP (National Institute of Population Medical Genetics), Rio de Janeiro, Brazil
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Stefan Mundlos
- Institute of Medical and Human Genetics, Charité Universitätsmedizin, Berlin, Germany
- Max Planck Institute for Molecular Genetics, Berlin, Germany
| | - Eduardo E Castilla
- ECLAMC at CEMIC (Center for Medical Education and Clinical Research) and CONICET (National Council for Scientific and Technical Investigation), Buenos Aires, Argentina
- ECLAMC (Latin American Collaborative Study of Congenital Malformations) at INAGEMP (National Institute of Population Medical Genetics), Rio de Janeiro, Brazil
- Department of Genetics, Institute of Biology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Víctor Martínez-Glez
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Brussels, Belgium
| | | | - Víctor L Ruiz-Pérez
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- ITHACA, European Reference Network, Brussels, Belgium
- Instituto de Investigaciones Biomédicas Alberto Sols, IIB-UAM, Madrid, Spain
| | - Julián Nevado
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Brussels, Belgium
| | - Pablo Lapunzina
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, Madrid, Spain
- INGEMM-Idipaz, Institute of Medical and Molecular Genetics, Madrid, Spain
- ITHACA, European Reference Network, Brussels, Belgium
| |
Collapse
|
14
|
Bastide S, Chomsky E, Saudemont B, Loe-Mie Y, Schmutz S, Novault S, Marlow H, Tanay A, Spitz F. TATTOO-seq delineates spatial and cell type-specific regulatory programs in the developing limb. SCIENCE ADVANCES 2022; 8:eadd0695. [PMID: 36516250 PMCID: PMC9750149 DOI: 10.1126/sciadv.add0695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
The coordinated differentiation of progenitor cells into specialized cell types and their spatial organization into distinct domains is central to embryogenesis. Here, we developed and applied an unbiased spatially resolved single-cell transcriptomics method to identify the genetic programs underlying the emergence of specialized cell types during mouse limb development and their spatial integration. We identify multiple transcription factors whose expression patterns are predominantly associated with cell type specification or spatial position, suggesting two parallel yet highly interconnected regulatory systems. We demonstrate that the embryonic limb undergoes a complex multiscale reorganization upon perturbation of one of its spatial organizing centers, including the loss of specific cell populations, alterations of preexisting cell states' molecular identities, and changes in their relative spatial distribution. Our study shows how multidimensional single-cell, spatially resolved molecular atlases can allow the deconvolution of spatial identity and cell fate and reveal the interconnected genetic networks that regulate organogenesis and its reorganization upon genetic alterations.
Collapse
Affiliation(s)
- Sébastien Bastide
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- École Doctorale “Complexité du Vivant”, Sorbonne Université, 75005 Paris, France
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| | - Elad Chomsky
- Department of Computer Science and Applied Mathematics, Weizmann Institute, Rehovot, Israel
- Department of Biological Regulation, Weizmann Institute, Rehovot, Israel
| | - Baptiste Saudemont
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
| | - Yann Loe-Mie
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, Paris, France
| | - Sandrine Schmutz
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Sophie Novault
- Cytometry and Biomarkers, Center for Technological Resources and Research, Institut Pasteur, Paris, France
| | - Heather Marlow
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Department of Organismal Biology and Anatomy, The University of Chicago, Chicago, IL, USA
| | - Amos Tanay
- Department of Computer Science and Applied Mathematics, Weizmann Institute, Rehovot, Israel
| | - François Spitz
- (Epi)genomics of Animal Development, Department of Developmental and Stem Cell Biology, Institut Pasteur, Paris, France
- Department of Human Genetics, The University of Chicago, Chicago, IL, USA
| |
Collapse
|
15
|
Fong SL, Capra JA. Function and Constraint in Enhancer Sequences with Multiple Evolutionary Origins. Genome Biol Evol 2022; 14:evac159. [PMID: 36314566 PMCID: PMC9673499 DOI: 10.1093/gbe/evac159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2022] [Indexed: 11/04/2022] Open
Abstract
Thousands of human gene regulatory enhancers are composed of sequences with multiple evolutionary origins. These evolutionarily "complex" enhancers consist of older "core" sequences and younger "derived" sequences. However, the functional relationship between the sequences of different evolutionary origins within complex enhancers is poorly understood. We evaluated the function, selective pressures, and sequence variation across core and derived components of human complex enhancers. We find that both components are older than expected from the genomic background, and complex enhancers are enriched for core and derived sequences of similar evolutionary ages. Both components show strong evidence of biochemical activity in massively parallel report assays. However, core and derived sequences have distinct transcription factor (TF)-binding preferences that are largely similar across evolutionary origins. As expected, given these signatures of function, both core and derived sequences have substantial evidence of purifying selection. Nonetheless, derived sequences exhibit weaker purifying selection than adjacent cores. Derived sequences also tolerate more common genetic variation and are enriched compared with cores for expression quantitative trait loci associated with gene expression variability in human populations. In conclusion, both core and derived sequences have strong evidence of gene regulatory function, but derived sequences have distinct constraint profiles, TF-binding preferences, and tolerance to variation compared with cores. We propose that the step-wise integration of younger derived with older core sequences has generated regulatory substrates with robust activity and the potential for functional variation. Our analyses demonstrate that synthesizing study of enhancer evolution and function can aid interpretation of regulatory sequence activity and functional variation across human populations.
Collapse
Affiliation(s)
- Sarah L Fong
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, Tennessee
| | - John A Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, Tennessee
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Biostatistics, University of California, San Francisco
| |
Collapse
|
16
|
Downes DJ, Hughes JR. Natural and Experimental Rewiring of Gene Regulatory Regions. Annu Rev Genomics Hum Genet 2022; 23:73-97. [PMID: 35472292 DOI: 10.1146/annurev-genom-112921-010715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The successful development and ongoing functioning of complex organisms depend on the faithful execution of the genetic code. A critical step in this process is the correct spatial and temporal expression of genes. The highly orchestrated transcription of genes is controlled primarily by cis-regulatory elements: promoters, enhancers, and insulators. The medical importance of this key biological process can be seen by the frequency with which mutations and inherited variants that alter cis-regulatory elements lead to monogenic and complex diseases and cancer. Here, we provide an overview of the methods available to characterize and perturb gene regulatory circuits. We then highlight mechanisms through which regulatory rewiring contributes to disease, and conclude with a perspective on how our understanding of gene regulation can be used to improve human health.
Collapse
Affiliation(s)
- Damien J Downes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom;
| | - Jim R Hughes
- MRC Molecular Haematology Unit, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom;
- MRC WIMM Centre for Computational Biology, MRC Weatherall Institute of Molecular Medicine, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom;
| |
Collapse
|
17
|
Miguel-Escalada I, Maestro MÁ, Balboa D, Elek A, Bernal A, Bernardo E, Grau V, García-Hurtado J, Sebé-Pedrós A, Ferrer J. Pancreas agenesis mutations disrupt a lead enhancer controlling a developmental enhancer cluster. Dev Cell 2022; 57:1922-1936.e9. [PMID: 35998583 PMCID: PMC9426562 DOI: 10.1016/j.devcel.2022.07.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 05/30/2022] [Accepted: 07/21/2022] [Indexed: 12/04/2022]
Abstract
Sequence variants in cis-acting enhancers are important for polygenic disease, but their role in Mendelian disease is poorly understood. Redundancy between enhancers that regulate the same gene is thought to mitigate the pathogenic impact of enhancer mutations. Recent findings, however, have shown that loss-of-function mutations in a single enhancer near PTF1A cause pancreas agenesis and neonatal diabetes. Using mouse and human genetic models, we show that this enhancer activates an entire PTF1A enhancer cluster in early pancreatic multipotent progenitors. This leading role, therefore, precludes functional redundancy. We further demonstrate that transient expression of PTF1A in multipotent progenitors sets in motion an epigenetic cascade that is required for duct and endocrine differentiation. These findings shed insights into the genome regulatory mechanisms that drive pancreas differentiation. Furthermore, they reveal an enhancer that acts as a regulatory master key and is thus vulnerable to pathogenic loss-of-function mutations. The pancreas agenesis enhancer (EnhP) activates PTF1A in early pancreatic progenitors EnhP also activates other progenitor PTF1A enhancers This master key function explains why EnhP is vulnerable to loss-of-function mutations Transient PTF1A expression in progenitors controls pancreas growth and endocrinogenesis
Collapse
Affiliation(s)
- Irene Miguel-Escalada
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain.
| | - Miguel Ángel Maestro
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Diego Balboa
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Anamaria Elek
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain
| | - Aina Bernal
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Edgar Bernardo
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Vanessa Grau
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Javier García-Hurtado
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain
| | - Arnau Sebé-Pedrós
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain
| | - Jorge Ferrer
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona 08003, Spain; CIBER de Diabetes y Enfermedades Metabólicas Asociadas, Instituto de Salud Carlos III, Spain; Genetics and Genomics Section, Department of Metabolism, Digestion and Reproduction, National Institute for Health Research (NIHR) Imperial Biomedical Research Centre, Imperial College London, London W12 0NN, UK; Universitat Pompeu Fabra (UPF), Barcelona 08003, Spain.
| |
Collapse
|
18
|
Wang J, Wang A, Tian K, Hua X, Zhang B, Zheng Y, Kong X, Li W, Xu L, Wang J, Li Z, Liu Y, Zhou Y. A Ctnnb1 enhancer regulates neocortical neurogenesis by controlling the abundance of intermediate progenitors. Cell Discov 2022; 8:74. [PMID: 35915089 PMCID: PMC9343459 DOI: 10.1038/s41421-022-00421-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Accepted: 05/05/2022] [Indexed: 11/09/2022] Open
Abstract
β-catenin-dependent canonical Wnt signaling plays a plethora of roles in neocortex (Ncx) development, but its function in regulating the abundance of intermediate progenitors (IPs) is elusive. Here we identified neCtnnb1, an evolutionarily conserved cis-regulatory element with typical enhancer features in developing Ncx. neCtnnb1 locates 55 kilobase upstream of and spatially close to the promoter of Ctnnb1, the gene encoding β-catenin. CRISPR/Cas9-mediated activation or interference of the neCtnnb1 locus enhanced or inhibited transcription of Ctnnb1. neCtnnb1 drove transcription predominantly in the subventricular zone of developing Ncx. Knock-out of neCtnnb1 in mice resulted in compromised expression of Ctnnb1 and the Wnt reporter in developing Ncx. Importantly, knock-out of neCtnnb1 lead to reduced production and transit-amplification of IPs, which subsequently generated fewer upper-layer Ncx projection neurons (PNs). In contrast, enhancing the canonical Wnt signaling by stabilizing β-catenin in neCtnnb1-active cells promoted the production of IPs and upper-layer Ncx PNs. ASH2L was identified as the key trans-acting factor that associates with neCtnnb1 and Ctnnb1’s promoter to maintain Ctnnb1’s transcription in both mouse and human Ncx progenitors. These findings advance understanding of transcriptional regulation of Ctnnb1, and provide insights into mechanisms underlying Ncx expansion during development.
Collapse
Affiliation(s)
- Junbao Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Andi Wang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Kuan Tian
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Xiaojiao Hua
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Bo Zhang
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Yue Zheng
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Xiangfei Kong
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Wei Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Lichao Xu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Juan Wang
- Department of Neurology, Wuhan Central Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhiqiang Li
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China
| | - Ying Liu
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China.
| | - Yan Zhou
- Department of Neurosurgery, Zhongnan Hospital of Wuhan University; Frontier Science Center for Immunology and Metabolism, Medical Research Institute at School of Medicine; The RNA Institute, College of Life Sciences; Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
19
|
Koyano-Nakagawa N, Gong W, Das S, Theisen JWM, Swanholm TB, Van Ly D, Dsouza N, Singh BN, Kawakami H, Young S, Chen KQ, Kawakami Y, Garry DJ. Etv2 regulates enhancer chromatin status to initiate Shh expression in the limb bud. Nat Commun 2022; 13:4221. [PMID: 35864091 PMCID: PMC9304341 DOI: 10.1038/s41467-022-31848-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2019] [Accepted: 07/05/2022] [Indexed: 12/02/2022] Open
Abstract
Sonic hedgehog (Shh) is essential for limb development, and the mechanisms that govern the propagation and maintenance of its expression has been well studied; however, the mechanisms that govern the initiation of Shh expression are incomplete. Here we report that ETV2 initiates Shh expression by changing the chromatin status of the developmental limb enhancer, ZRS. Etv2 expression precedes Shh in limb buds, and Etv2 inactivation prevents the opening of limb chromatin, including the ZRS, resulting in an absence of Shh expression. Etv2 overexpression in limb buds causes nucleosomal displacement at the ZRS, ectopic Shh expression, and polydactyly. Areas of nucleosome displacement coincide with ETS binding site clusters. ETV2 also functions as a transcriptional activator of ZRS and is antagonized by ETV4/5 repressors. Known human polydactyl mutations introduce novel ETV2 binding sites in the ZRS, suggesting that ETV2 dosage regulates ZRS activation. These studies identify ETV2 as a pioneer transcription factor (TF) regulating the onset of Shh expression, having both a chromatin regulatory role and a transcriptional activation role.
Collapse
Affiliation(s)
- Naoko Koyano-Nakagawa
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
- Hamre, Schumann, Mueller & Larson, P.C., Minneapolis, MN, 55402, USA
- Mitchell Hamline School of Law, St. Paul, MN, 55105, USA
| | - Wuming Gong
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Satyabrata Das
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Joshua W M Theisen
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Tran B Swanholm
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Daniel Van Ly
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Nikita Dsouza
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Bhairab N Singh
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Hiroko Kawakami
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Samantha Young
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Katherine Q Chen
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Yasuhiko Kawakami
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Daniel J Garry
- Lillehei Heart Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
- Stem Cell Institute, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
20
|
The pZRS non-coding regulatory mutation resulting in triphalangeal thumb-polysyndactyly syndrome changes the pattern of local interactions. Mol Genet Genomics 2022; 297:1343-1352. [PMID: 35821352 DOI: 10.1007/s00438-022-01921-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 06/18/2022] [Indexed: 10/17/2022]
Abstract
Herein, we report on a large Polish family presenting with a classical triphalangeal thumb-polysyndactyly syndrome (TPT-PS). This rare congenital limb anomaly is generally caused by microduplications encompassing the Sonic Hedgehog (SHH) limb enhancer, termed the zone of polarizing activity (ZPA) regulatory sequence (ZRS). Recently, a pathogenic variant in the pre-ZRS (pZRS), a conserved sequence located near the ZRS, has been described in a TPT-PS Dutch family. We performed targeted ZRS sequencing, array comparative genomic hybridization, and whole-exome sequencing. Next, we sequenced the recently described pZRS region. Finally, we performed a circular chromatin conformation capture-sequencing (4C-seq) assay on skin fibroblasts of one affected family member and control samples to examine potential alterations in the SHH regulatory domain and functionally characterize the identified variant. We found that all affected individuals shared a recently identified pathogenic point mutation in the pZRS region: NC_000007.14:g.156792782C>G (GRCh38/hg38), which is the same as in the Dutch family. The results of 4C-seq experiments revealed increased interactions within the whole SHH regulatory domain (SHH-LMBR1 TAD) in the patient compared to controls. Our study expands the number of TPT-PS families carrying a pathogenic alteration of the pZRS and underlines the importance of routine pZRS sequencing in the genetic diagnostics of patients with TPT-PS or similar phenotypes. The pathogenic mutation causative for TPT-PS in our patient gave rise to increased interactions within the SHH regulatory domain in yet unknown mechanism.
Collapse
|
21
|
Chua EHZ, Yasar S, Harmston N. The importance of considering regulatory domains in genome-wide analyses - the nearest gene is often wrong! Biol Open 2022; 11:274931. [PMID: 35377406 PMCID: PMC9002814 DOI: 10.1242/bio.059091] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The expression of a large number of genes is regulated by regulatory elements that are located far away from their promoters. Identifying which gene is the target of a specific regulatory element or is affected by a non-coding mutation is often accomplished by assigning these regions to the nearest gene in the genome. However, this heuristic ignores key features of genome organisation and gene regulation; in that the genome is partitioned into regulatory domains, which at some loci directly coincide with the span of topologically associated domains (TADs), and that genes are regulated by enhancers located throughout these regions, even across intervening genes. In this review, we examine the results from genome-wide studies using chromosome conformation capture technologies and from those dissecting individual gene regulatory domains, to highlight that the phenomenon of enhancer skipping is pervasive and affects multiple types of genes. We discuss how simply assigning a genomic region of interest to its nearest gene is problematic and often leads to incorrect predictions and highlight that where possible information on both the conservation and topological organisation of the genome should be used to generate better hypotheses. The article has an associated Future Leader to Watch interview. Summary: Identifying which gene is the target of an enhancer is often accomplished by assigning it to the nearest gene, here we discuss how this heuristic can lead to incorrect predictions.
Collapse
Affiliation(s)
| | - Samen Yasar
- Science Division, Yale-NUS College, Singapore 138527, Singapore
| | - Nathan Harmston
- Science Division, Yale-NUS College, Singapore 138527, Singapore.,Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore 169857, Singapore
| |
Collapse
|
22
|
Snetkova V, Pennacchio LA, Visel A, Dickel DE. Perfect and imperfect views of ultraconserved sequences. Nat Rev Genet 2022; 23:182-194. [PMID: 34764456 PMCID: PMC8858888 DOI: 10.1038/s41576-021-00424-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2021] [Indexed: 12/12/2022]
Abstract
Across the human genome, there are nearly 500 'ultraconserved' elements: regions of at least 200 contiguous nucleotides that are perfectly conserved in both the mouse and rat genomes. Remarkably, the majority of these sequences are non-coding, and many can function as enhancers that activate tissue-specific gene expression during embryonic development. From their first description more than 15 years ago, their extreme conservation has both fascinated and perplexed researchers in genomics and evolutionary biology. The intrigue around ultraconserved elements only grew with the observation that they are dispensable for viability. Here, we review recent progress towards understanding the general importance and the specific functions of ultraconserved sequences in mammalian development and human disease and discuss possible explanations for their extreme conservation.
Collapse
Affiliation(s)
- Valentina Snetkova
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Len A Pennacchio
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- Comparative Biochemistry Program, University of California, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.
| | - Axel Visel
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
- US Department of Energy Joint Genome Institute, Berkeley, CA, USA.
- School of Natural Sciences, University of California, Merced, Merced, CA, USA.
| | - Diane E Dickel
- Environmental Genomics & Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
23
|
Dutrow EV, Emera D, Yim K, Uebbing S, Kocher AA, Krenzer M, Nottoli T, Burkhardt DB, Krishnaswamy S, Louvi A, Noonan JP. Modeling uniquely human gene regulatory function via targeted humanization of the mouse genome. Nat Commun 2022; 13:304. [PMID: 35027568 PMCID: PMC8758698 DOI: 10.1038/s41467-021-27899-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 12/16/2021] [Indexed: 01/22/2023] Open
Abstract
The evolution of uniquely human traits likely entailed changes in developmental gene regulation. Human Accelerated Regions (HARs), which include transcriptional enhancers harboring a significant excess of human-specific sequence changes, are leading candidates for driving gene regulatory modifications in human development. However, insight into whether HARs alter the level, distribution, and timing of endogenous gene expression remains limited. We examined the role of the HAR HACNS1 (HAR2) in human evolution by interrogating its molecular functions in a genetically humanized mouse model. We find that HACNS1 maintains its human-specific enhancer activity in the mouse embryo and modifies expression of Gbx2, which encodes a transcription factor, during limb development. Using single-cell RNA-sequencing, we demonstrate that Gbx2 is upregulated in the limb chondrogenic mesenchyme of HACNS1 homozygous embryos, supporting that HACNS1 alters gene expression in cell types involved in skeletal patterning. Our findings illustrate that humanized mouse models provide mechanistic insight into how HARs modified gene expression in human evolution.
Collapse
Affiliation(s)
- Emily V Dutrow
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Cancer Genetics and Comparative Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, 20892, USA
| | - Deena Emera
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Center for Reproductive Longevity and Equality, Buck Institute for Research on Aging, Novato, CA, 94945, USA
| | - Kristina Yim
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Severin Uebbing
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Acadia A Kocher
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Martina Krenzer
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Neuroscience Research Training Program, Department of Psychiatry, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Timothy Nottoli
- Department of Comparative Medicine, Yale School of Medicine, New Haven, CT, 06510, USA
- Yale Genome Editing Center, Yale School of Medicine, New Haven, CT, 06510, USA
| | - Daniel B Burkhardt
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Cellarity, Cambridge, MA, 02139, USA
| | - Smita Krishnaswamy
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Computer Science, Yale University, New Haven, CT, 06520, USA
| | - Angeliki Louvi
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, 06510, USA
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA
| | - James P Noonan
- Department of Genetics, Yale School of Medicine, New Haven, CT, 06510, USA.
- Department of Neuroscience, Yale School of Medicine, New Haven, CT, 06510, USA.
- Department of Ecology and Evolutionary Biology, Yale University, New Haven, CT, 06520, USA.
| |
Collapse
|
24
|
Ray-Jones H, Spivakov M. Transcriptional enhancers and their communication with gene promoters. Cell Mol Life Sci 2021; 78:6453-6485. [PMID: 34414474 PMCID: PMC8558291 DOI: 10.1007/s00018-021-03903-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 07/08/2021] [Accepted: 07/19/2021] [Indexed: 12/13/2022]
Abstract
Transcriptional enhancers play a key role in the initiation and maintenance of gene expression programmes, particularly in metazoa. How these elements control their target genes in the right place and time is one of the most pertinent questions in functional genomics, with wide implications for most areas of biology. Here, we synthesise classic and recent evidence on the regulatory logic of enhancers, including the principles of enhancer organisation, factors that facilitate and delimit enhancer-promoter communication, and the joint effects of multiple enhancers. We show how modern approaches building on classic insights have begun to unravel the complexity of enhancer-promoter relationships, paving the way towards a quantitative understanding of gene control.
Collapse
Affiliation(s)
- Helen Ray-Jones
- MRC London Institute of Medical Sciences, London, W12 0NN, UK
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, W12 0NN, UK
| | - Mikhail Spivakov
- MRC London Institute of Medical Sciences, London, W12 0NN, UK.
- Institute of Clinical Sciences, Faculty of Medicine, Imperial College, London, W12 0NN, UK.
| |
Collapse
|
25
|
Zboril E, Yoo H, Chen L, Liu Z. Dynamic Interactions of Transcription Factors and Enhancer Reprogramming in Cancer Progression. Front Oncol 2021; 11:753051. [PMID: 34616687 PMCID: PMC8488287 DOI: 10.3389/fonc.2021.753051] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 09/03/2021] [Indexed: 01/01/2023] Open
Abstract
While improved tumor treatment has significantly reduced the overall mortality rates, invasive progression including recurrence, therapy resistance and metastasis contributes to the majority of deaths caused by cancer. Enhancers are essential distal DNA regulatory elements that control temporal- or spatial-specific gene expression patterns during development and other biological processes. Genome-wide sequencing has revealed frequent alterations of enhancers in cancers and reprogramming of distal enhancers has emerged as one of the important features for tumors. In this review, we will discuss tumor progression-associated enhancer dynamics, its transcription factor (TF) drivers and how enhancer reprogramming modulates gene expression during cancer invasive progression. Additionally, we will explore recent advancements in contemporary technology including single-cell sequencing, spatial transcriptomics and CUT&RUN, which have permitted integrated studies of enhancer reprogramming in vivo. Given the essential roles of enhancer dynamics and its drivers in controlling cancer progression and treatment outcome, understanding these changes will be paramount in mitigating invasive events and discovering novel therapeutic targets.
Collapse
Affiliation(s)
- Emily Zboril
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Hannah Yoo
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Lizhen Chen
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
- Department of Cell Systems and Anatomy, Barshop Institute for Longevity and Aging Studies, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Zhijie Liu
- Department of Molecular Medicine, Mays Cancer Center, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| |
Collapse
|
26
|
Boltsis I, Grosveld F, Giraud G, Kolovos P. Chromatin Conformation in Development and Disease. Front Cell Dev Biol 2021; 9:723859. [PMID: 34422840 PMCID: PMC8371409 DOI: 10.3389/fcell.2021.723859] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 07/16/2021] [Indexed: 01/23/2023] Open
Abstract
Chromatin domains and loops are important elements of chromatin structure and dynamics, but much remains to be learned about their exact biological role and nature. Topological associated domains and functional loops are key to gene expression and hold the answer to many questions regarding developmental decisions and diseases. Here, we discuss new findings, which have linked chromatin conformation with development, differentiation and diseases and hypothesized on various models while integrating all recent findings on how chromatin architecture affects gene expression during development, evolution and disease.
Collapse
Affiliation(s)
- Ilias Boltsis
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Frank Grosveld
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
| | - Guillaume Giraud
- Department of Cell Biology, Erasmus Medical Centre, Rotterdam, Netherlands
- Cancer Research Center of Lyon – INSERM U1052, Lyon, France
| | - Petros Kolovos
- Department of Molecular Biology and Genetics, Democritus University of Thrace, Alexandroupolis, Greece
| |
Collapse
|
27
|
Gu H, Zhang P, Xu M, Liang D. Amplicon genome fishing (AGF): a rapid and efficient method for sequencing target cis-regulatory regions in nonmodel organisms. Mol Genet Genomics 2021; 296:527-539. [PMID: 33797587 DOI: 10.1007/s00438-021-01775-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Accepted: 03/15/2021] [Indexed: 10/21/2022]
Abstract
Cis-regulatory sequences play a crucial role in regulating gene expression and are evolutionary hot spots that drive phenotypic divergence among organisms. Sequencing some cis-regulatory regions of interest in many different species is common in comparative genetic studies. For nonmodel organisms lacking genomic data, genome walking is often the preferred method for this type of application. However, applying genome walking will be laborious and time-consuming when the number of cis-regulatory regions and species to be analyzed is large. In this study, we propose a novel method called amplicon genome fishing (AGF), which can isolate and sequence cis-regulatory regions of interest for any organism. The main idea of the AGF method is to use fragments amplified from the target cis-regulatory regions as enrichment baits to capture and sequence the whole target cis-regulatory regions from genomic library pools. Unlike genome walking, the AGF method is based on hybridization capture and high-throughput sequencing, which makes this method rapid and efficient for projects where some cis-regulatory regions have to be sequenced for many species. We used human amplicons as capture baits and successfully sequenced five target enhancer regions of Homo sapiens, Mus musculus, Gallus gallus, and Xenopus tropicalis, proving the feasibility and repeatability of AGF. To show the utility of the AGF method in real studies, we used it to sequence the ZRS enhancer, a cis-regulatory region associated with the limb loss of snakes, for twenty-three vertebrate species (includes many limbless species never sequenced before). The newly obtained ZRS sequences provide new perspectives into the relationship between the ZRS enhancer's evolution and limb loss in major tetrapod lineages.
Collapse
Affiliation(s)
- HanMei Gu
- State Key Laboratory of Biocontrol, Higher Education Mega Center, School of Life Sciences, College of Ecology and Evolution, Sun Yat-Sen University, #434, Guangzhou, 510006, China
| | - Peng Zhang
- State Key Laboratory of Biocontrol, Higher Education Mega Center, School of Life Sciences, College of Ecology and Evolution, Sun Yat-Sen University, #434, Guangzhou, 510006, China
| | - ManHao Xu
- State Key Laboratory of Biocontrol, Higher Education Mega Center, School of Life Sciences, College of Ecology and Evolution, Sun Yat-Sen University, #434, Guangzhou, 510006, China
| | - Dan Liang
- State Key Laboratory of Biocontrol, Higher Education Mega Center, School of Life Sciences, College of Ecology and Evolution, Sun Yat-Sen University, #434, Guangzhou, 510006, China.
| |
Collapse
|
28
|
Lin GH, Zhang L. Apical ectodermal ridge regulates three principal axes of the developing limb. J Zhejiang Univ Sci B 2020; 21:757-766. [PMID: 33043642 PMCID: PMC7606201 DOI: 10.1631/jzus.b2000285] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Accepted: 08/06/2020] [Indexed: 11/11/2022]
Abstract
Understanding limb development not only gives insights into the outgrowth and differentiation of the limb, but also has clinical relevance. Limb development begins with two paired limb buds (forelimb and hindlimb buds), which are initially undifferentiated mesenchymal cells tipped with a thickening of the ectoderm, termed the apical ectodermal ridge (AER). As a transitional embryonic structure, the AER undergoes four stages and contributes to multiple axes of limb development through the coordination of signalling centres, feedback loops, and other cell activities by secretory signalling and the activation of gene expression. Within the scope of proximodistal patterning, it is understood that while fibroblast growth factors (FGFs) function sequentially over time as primary components of the AER signalling process, there is still no consensus on models that would explain proximodistal patterning itself. In anteroposterior patterning, the AER has a dual-direction regulation by which it promotes the sonic hedgehog (Shh) gene expression in the zone of polarizing activity (ZPA) for proliferation, and inhibits Shh expression in the anterior mesenchyme. In dorsoventral patterning, the AER activates Engrailed-1 (En1) expression, and thus represses Wnt family member 7a (Wnt7a) expression in the ventral ectoderm by the expression of Fgfs, Sp6/8, and bone morphogenetic protein (Bmp) genes. The AER also plays a vital role in shaping the individual digits, since levels of Fgf4/8 and Bmps expressed in the AER affect digit patterning by controlling apoptosis. In summary, the knowledge of crosstalk within AER among the three main axes is essential to understand limb growth and pattern formation, as the development of its areas proceeds simultaneously.
Collapse
Affiliation(s)
- Guo-hao Lin
- Centre for Anatomy and Human Identification, University of Dundee, Dundee DD1 5EH, UK
- Collaborative Innovation Center for Sports Health Promotion, Shandong Sport University, Jinan 250102, China
| | - Lan Zhang
- Collaborative Innovation Center for Sports Health Promotion, Shandong Sport University, Jinan 250102, China
| |
Collapse
|
29
|
Abstract
The vertebrate limb continues to serve as an influential model of growth, morphogenesis and pattern formation. With this Review, we aim to give an up-to-date picture of how a population of undifferentiated cells develops into the complex pattern of the limb. Focussing largely on mouse and chick studies, we concentrate on the positioning of the limbs, the formation of the limb bud, the establishment of the principal limb axes, the specification of pattern, the integration of pattern formation with growth and the determination of digit number. We also discuss the important, but little understood, topic of how gene expression is interpreted into morphology.
Collapse
Affiliation(s)
- Caitlin McQueen
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| | - Matthew Towers
- Department of Biomedical Science, University of Sheffield, Western Bank, Sheffield S10 2TN, UK
| |
Collapse
|
30
|
Amano T. Gene regulatory landscape of the sonic hedgehog locus in embryonic development. Dev Growth Differ 2020; 62:334-342. [PMID: 32343848 DOI: 10.1111/dgd.12668] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/31/2020] [Accepted: 04/15/2020] [Indexed: 12/22/2022]
Abstract
The organs of vertebrate species display a wide variety of morphology. A remaining challenge in evolutionary developmental biology is to elucidate how vertebrate lineages acquire distinct morphological features. Developmental programs are driven by spatiotemporal regulation of gene expression controlled by hundreds of thousands of cis-regulatory elements. Changes in the regulatory elements caused by the introduction of genetic variants can confer regulatory innovation that may underlie morphological novelties. Recent advances in sequencing technology have revealed a number of potential regulatory variants that can alter gene expression patterns. However, a limited number of studies demonstrate causal dependence between genetic and morphological changes. Regulation of Shh expression is a good model to understand how multiple regulatory elements organize tissue-specific gene expression patterns. This model also provides insights into how evolution of molecular traits, such as gene regulatory networks, lead to phenotypic novelty.
Collapse
Affiliation(s)
- Takanori Amano
- Next Generation Human Disease Model Team, RIKEN BioResource Research Center, Tsukuba, Japan
| |
Collapse
|
31
|
Dynamic and self-regulatory interactions among gene regulatory networks control vertebrate limb bud morphogenesis. Curr Top Dev Biol 2020; 139:61-88. [DOI: 10.1016/bs.ctdb.2020.02.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
32
|
Estrada-Cuzcano A, Etard C, Delvallée C, Stoetzel C, Schaefer E, Scheidecker S, Geoffroy V, Schneider A, Studer F, Mattioli F, Chennen K, Sigaudy S, Plassard D, Poch O, Piton A, Strahle U, Muller J, Dollfus H. Novel IQCE variations confirm its role in postaxial polydactyly and cause ciliary defect phenotype in zebrafish. Hum Mutat 2019; 41:240-254. [PMID: 31549751 DOI: 10.1002/humu.23924] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 09/06/2019] [Accepted: 09/15/2019] [Indexed: 12/12/2022]
Abstract
Polydactyly is one of the most frequent inherited defects of the limbs characterized by supernumerary digits and high-genetic heterogeneity. Among the many genes involved, either in isolated or syndromic forms, eight have been implicated in postaxial polydactyly (PAP). Among those, IQCE has been recently identified in a single consanguineous family. Using whole-exome sequencing in patients with uncharacterized ciliopathies, including PAP, we identified three families with biallelic pathogenic variations in IQCE. Interestingly, the c.895_904del (p.Val301Serfs*8) was found in all families without sharing a common haplotype, suggesting a recurrent mechanism. Moreover, in two families, the systemic phenotype could be explained by additional pathogenic variants in known genes (TULP1, ATP6V1B1). RNA expression analysis on patients' fibroblasts confirms that the dysfunction of IQCE leads to the dysregulation of genes associated with the hedgehog-signaling pathway, and zebrafish experiments demonstrate a full spectrum of phenotypes linked to defective cilia: Body curvature, kidney cysts, left-right asymmetry, misdirected cilia in the pronephric duct, and retinal defects. In conclusion, we identified three additional families confirming IQCE as a nonsyndromic PAP gene. Our data emphasize the importance of taking into account the complete set of variations of each individual, as each clinical presentation could finally be explained by multiple genes.
Collapse
Affiliation(s)
- Alejandro Estrada-Cuzcano
- Laboratoire de Génétique médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France
| | - Christelle Etard
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Eggenstein-Leopoldshafen, Germany
| | - Clarisse Delvallée
- Laboratoire de Génétique médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France
| | - Corinne Stoetzel
- Laboratoire de Génétique médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France
| | - Elise Schaefer
- Laboratoire de Génétique médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France.,Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Sophie Scheidecker
- Laboratoire de Génétique médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France.,Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Véronique Geoffroy
- Laboratoire de Génétique médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France
| | - Aline Schneider
- Laboratoire de Génétique médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France
| | - Fouzia Studer
- Centre de Référence pour les affections rares en génétique ophtalmologique, CARGO, Filière SENSGENE, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Francesca Mattioli
- Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, Illkirch-Graffenstaden, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, Illkirch-Graffenstaden, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
| | - Kirsley Chennen
- Laboratoire de Génétique médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France.,Complex Systems and Translational Bioinformatics, ICube UMR 7357, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Sabine Sigaudy
- Département de Génétique Médicale, Hôpital de la Timone, Marseille, France
| | | | - Olivier Poch
- Complex Systems and Translational Bioinformatics, ICube UMR 7357, Fédération de Médecine Translationnelle, Université de Strasbourg, Strasbourg, France
| | - Amélie Piton
- Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Illkirch-Graffenstaden, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, INSERM U1258, Illkirch-Graffenstaden, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, CNRS UMR 7104, Illkirch-Graffenstaden, France.,Institut de Génétique et de Biologie Moléculaire et Cellulaire, Université de Strasbourg, Illkirch, France
| | - Uwe Strahle
- Institute of Toxicology and Genetics (ITG), Karlsruhe Institute of Technology (KIT), Karlsruhe, Eggenstein-Leopoldshafen, Germany
| | - Jean Muller
- Laboratoire de Génétique médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France.,Laboratoires de Diagnostic Génétique, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| | - Hélène Dollfus
- Laboratoire de Génétique médicale, UMR_S INSERM U1112, IGMA, Faculté de Médecine, FMTS, Université de Strasbourg, Strasbourg, France.,Service de Génétique Médicale, Institut de Génétique Médicale d'Alsace, Hôpitaux Universitaires de Strasbourg, Strasbourg, France.,Centre de Référence pour les affections rares en génétique ophtalmologique, CARGO, Filière SENSGENE, Hôpitaux Universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
33
|
A novel ZRS variant causes preaxial polydactyly type I by increased sonic hedgehog expression in the developing limb bud. Genet Med 2019; 22:189-198. [PMID: 31395945 PMCID: PMC6944640 DOI: 10.1038/s41436-019-0626-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 07/22/2019] [Indexed: 02/06/2023] Open
Abstract
Purpose Preaxial polydactyly (PPD) is a common congenital hand malformation classified into four subtypes (PPD I–IV). Variants in the zone of polarizing activity regulatory sequence (ZRS) within intron 5 of the LMBR1 gene are linked to most PPD types. However, the genes responsible for PPD I and the underlying mechanisms are unknown. Methods A rare large four-generation family with isolated PPD I was subjected to genome-wide genotyping and sequence analysis. In vitro and in vivo functional studies were performed in Caco-2 cells, 293T cells, and a knockin transgenic mouse model. Results A novel g.101779T>A (reference sequence: NG_009240.2; position 446 of the ZRS) variant segregates with all PPD I–affected individuals. The knockin mouse with this ZRS variant exhibited PPD I phenotype accompanying ectopic and excess expression of Shh. We confirmed that HnRNP K can bind the ZRS and SHH promoters. The ZRS mutant enhanced the binding affinity for HnRNP K and upregulated SHH expression. Conclusion Our results identify the first PPD I disease-causing variant. The variant leading to PPD I may be associated with enhancing SHH expression mediated by HnRNP K. This study adds to the ZRS-associated syndromes classification system for PPD and clarifies the underlying molecular mechanisms.
Collapse
|
34
|
Genome Sequencing of the Japanese Eel ( Anguilla japonica) for Comparative Genomic Studies on tbx4 and a tbx4 Gene Cluster in Teleost Fishes. Mar Drugs 2019; 17:md17070426. [PMID: 31330852 PMCID: PMC6669545 DOI: 10.3390/md17070426] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 07/17/2019] [Accepted: 07/18/2019] [Indexed: 01/08/2023] Open
Abstract
Limbs originated from paired fish fins are an important innovation in Gnathostomata. Many studies have focused on limb development-related genes, of which the T-box transcription factor 4 gene (tbx4) has been considered as one of the most essential factors in the regulation of the hindlimb development. We previously confirmed pelvic fin loss in tbx4-knockout zebrafish. Here, we report a high-quality genome assembly of the Japanese eel (Anguilla japonica), which is an economically important fish without pelvic fins. The assembled genome is 1.13 Gb in size, with a scaffold N50 of 1.03 Mb. In addition, we collected 24 tbx4 sequences from 22 teleost fishes to explore the correlation between tbx4 and pelvic fin evolution. However, we observed complete exon structures of tbx4 in several pelvic-fin-loss species such as Ocean sunfish (Mola mola) and ricefield eel (Monopterus albus). More interestingly, an inversion of a special tbx4 gene cluster (brip1-tbx4-tbx2b- bcas3) occurred twice independently, which coincides with the presence of fin spines. A nonsynonymous mutation (M82L) was identified in the nuclear localization sequence (NLS) of the Japanese eel tbx4. We also examined variation and loss of hindlimb enhancer B (HLEB), which may account for pelvic fin loss in Tetraodontidae and Diodontidae. In summary, we generated a genome assembly of the Japanese eel, which provides a valuable genomic resource to study the evolution of fish tbx4 and helps elucidate the mechanism of pelvic fin loss in teleost fishes. Our comparative genomic studies, revealed for the first time a potential correlation between the tbx4 gene cluster and the evolutionary development of toxic fin spines. Because fin spines in teleosts are usually venoms, this tbx4 gene cluster may facilitate the genetic engineering of toxin-related marine drugs.
Collapse
|
35
|
Abstract
Structural and quantitative chromosomal rearrangements, collectively referred to as structural variation (SV), contribute to a large extent to the genetic diversity of the human genome and thus are of high relevance for cancer genetics, rare diseases and evolutionary genetics. Recent studies have shown that SVs can not only affect gene dosage but also modulate basic mechanisms of gene regulation. SVs can alter the copy number of regulatory elements or modify the 3D genome by disrupting higher-order chromatin organization such as topologically associating domains. As a result of these position effects, SVs can influence the expression of genes distant from the SV breakpoints, thereby causing disease. The impact of SVs on the 3D genome and on gene expression regulation has to be considered when interpreting the pathogenic potential of these variant types.
Collapse
Affiliation(s)
- Malte Spielmann
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Darío G Lupiáñez
- Epigenetics and Sex Development Group, Berlin Institute for Medical Systems Biology, Max-Delbrück Center for Molecular Medicine, Berlin-Buch, Germany
| | - Stefan Mundlos
- Max Planck Institute for Molecular Genetics, RG Development & Disease, Berlin, Germany. .,Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, Berlin, Germany.
| |
Collapse
|
36
|
Pigeon foot feathering reveals conserved limb identity networks. Dev Biol 2019; 454:128-144. [PMID: 31247188 DOI: 10.1016/j.ydbio.2019.06.015] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Revised: 06/19/2019] [Accepted: 06/20/2019] [Indexed: 12/15/2022]
Abstract
The tetrapod limb is a stunning example of evolutionary diversity, with dramatic variation not only among distantly related species, but also between the serially homologous forelimbs (FLs) and hindlimbs (HLs) within species. Despite this variation, highly conserved genetic and developmental programs underlie limb development and identity in all tetrapods, raising the question of how limb diversification is generated from a conserved toolkit. In some breeds of domestic pigeon, shifts in the expression of two conserved limb identity transcription factors, PITX1 and TBX5, are associated with the formation of feathered HLs with partial FL identity. To determine how modulation of PITX1 and TBX5 expression affects downstream gene expression, we compared the transcriptomes of embryonic limb buds from pigeons with scaled and feathered HLs. We identified a set of differentially expressed genes enriched for genes encoding transcription factors, extracellular matrix proteins, and components of developmental signaling pathways with important roles in limb development. A subset of the genes that distinguish scaled and feathered HLs are also differentially expressed between FL and scaled HL buds in pigeons, pinpointing a set of gene expression changes downstream of PITX1 and TBX5 in the partial transformation from HL to FL identity. We extended our analyses by comparing pigeon limb bud transcriptomes to chicken, anole lizard, and mammalian datasets to identify deeply conserved PITX1- and TBX5-responsive components of the limb identity program. Our analyses reveal a suite of predominantly low-level gene expression changes that are conserved across amniotes to regulate the identity of morphologically distinct limbs.
Collapse
|
37
|
Paliou C, Guckelberger P, Schöpflin R, Heinrich V, Esposito A, Chiariello AM, Bianco S, Annunziatella C, Helmuth J, Haas S, Jerković I, Brieske N, Wittler L, Timmermann B, Nicodemi M, Vingron M, Mundlos S, Andrey G. Preformed chromatin topology assists transcriptional robustness of Shh during limb development. Proc Natl Acad Sci U S A 2019; 116:12390-12399. [PMID: 31147463 PMCID: PMC6589666 DOI: 10.1073/pnas.1900672116] [Citation(s) in RCA: 106] [Impact Index Per Article: 21.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Long-range gene regulation involves physical proximity between enhancers and promoters to generate precise patterns of gene expression in space and time. However, in some cases, proximity coincides with gene activation, whereas, in others, preformed topologies already exist before activation. In this study, we investigate the preformed configuration underlying the regulation of the Shh gene by its unique limb enhancer, the ZRS, in vivo during mouse development. Abrogating the constitutive transcription covering the ZRS region led to a shift within the Shh-ZRS contacts and a moderate reduction in Shh transcription. Deletion of the CTCF binding sites around the ZRS resulted in the loss of the Shh-ZRS preformed interaction and a 50% decrease in Shh expression but no phenotype, suggesting an additional, CTCF-independent mechanism of promoter-enhancer communication. This residual activity, however, was diminished by combining the loss of CTCF binding with a hypomorphic ZRS allele, resulting in severe Shh loss of function and digit agenesis. Our results indicate that the preformed chromatin structure of the Shh locus is sustained by multiple components and acts to reinforce enhancer-promoter communication for robust transcription.
Collapse
Affiliation(s)
- Christina Paliou
- Research Group Development & Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Philine Guckelberger
- Research Group Development & Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Robert Schöpflin
- Research Group Development & Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Verena Heinrich
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Andrea Esposito
- Dipartimento di Fisica, Università di Napoli Federico II, 80126 Naples, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Berlin Institute of Health (BIH), Max Delbrück Center-Berlin, 13125 Berlin, Germany
| | - Andrea M Chiariello
- Dipartimento di Fisica, Università di Napoli Federico II, 80126 Naples, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Simona Bianco
- Dipartimento di Fisica, Università di Napoli Federico II, 80126 Naples, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Carlo Annunziatella
- Dipartimento di Fisica, Università di Napoli Federico II, 80126 Naples, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
| | - Johannes Helmuth
- Otto-Warburg-Laboratory: Epigenomics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Stefan Haas
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Ivana Jerković
- Research Group Development & Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Norbert Brieske
- Research Group Development & Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Lars Wittler
- Department of Developmental Genetics, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Bernd Timmermann
- Sequencing Core Facility, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Mario Nicodemi
- Dipartimento di Fisica, Università di Napoli Federico II, 80126 Naples, Italy
- Istituto Nazionale di Fisica Nucleare (INFN) Napoli, Complesso Universitario di Monte Sant'Angelo, 80126 Naples, Italy
- Berlin Institute of Health (BIH), Max Delbrück Center-Berlin, 13125 Berlin, Germany
| | - Martin Vingron
- Department of Computational Molecular Biology, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany
| | - Stefan Mundlos
- Research Group Development & Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany;
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
- Institute for Medical and Human Genetics, Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| | - Guillaume Andrey
- Research Group Development & Disease, Max Planck Institute for Molecular Genetics, 14195 Berlin, Germany;
- Berlin-Brandenburg Center for Regenerative Therapies (BCRT), Charité Universitätsmedizin Berlin, 13353 Berlin, Germany
| |
Collapse
|
38
|
Conrad S, Demurger F, Moradkhani K, Pichon O, Le Caignec C, Pascal C, Thomas C, Bayart S, Perlat A, Dubourg C, Jaillard S, Nizon M. 11q24.2q24.3 microdeletion in two families presenting features of Jacobsen syndrome, without intellectual disability: Role of FLI1, ETS1, and SENCR long noncoding RNA. Am J Med Genet A 2019; 179:993-1000. [PMID: 30888095 DOI: 10.1002/ajmg.a.61113] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2018] [Revised: 01/27/2019] [Accepted: 02/11/2019] [Indexed: 12/29/2022]
Abstract
This report presents two families with interstitial 11q24.2q24.3 deletion, associated with malformations, hematologic features, and typical facial dysmorphism, observed in Jacobsen syndrome (JS), except for intellectual disability (ID). The smallest 700 Kb deletion contains only two genes: FLI1 and ETS1, and a long noncoding RNA, SENCR, narrowing the minimal critical region for some features of JS. Consistent with recent literature, it adds supplemental data to confirm the crucial role of FLI1 and ETS1 in JS, namely FLI1 in thrombocytopenia and ETS1 in cardiopathy and immune deficiency. It also supports that combined ETS1 and FLI1 haploinsufficiency explains dysmorphic features, notably ears, and nose anomalies. Moreover, it raises the possibility that SENCR, a long noncoding RNA, could be responsible for limb defects, because of its early role in endothelial cell commitment and function. Considering ID and autism spectrum disorder, which are some of the main features of JS, a participation of ETS1, FLI1, or SENCR cannot be excluded. But, considering the normal neurodevelopment of our patients, their role would be either minor or with an important variability in penetrance. Furthermore, according to literature, ARHGAP32 and KIRREL3 seem to be the strongest candidate genes in the 11q24 region for other Jacobsen patients.
Collapse
Affiliation(s)
| | | | | | | | - Cédric Le Caignec
- Service de Génétique Médicale, CHU Nantes, France.,INSERM, CNRS, UNIV Nantes, l'Institut du Thorax, Nantes, France
| | - Cécile Pascal
- Service de Cardiologie pédiatrique et fœtale, Hôpital privé du Confluent, Nantes, France
| | | | - Sophie Bayart
- Centre de traitement des maladies hémorragiques, CHU Rennes, France
| | - Antoinette Perlat
- Service de Médecine Interne-Immunologie Clinique, CHU de Rennes, France
| | - Christèle Dubourg
- Service de Génétique Moléculaire et Génomique, CHU Rennes, France.,Univ Rennes, CNRS, IGDR (Institut de génétique et développement de Rennes), UMR 6290, Rennes, France
| | - Sylvie Jaillard
- CHU Rennes, Service de Cytogénétique et Biologie Cellulaire, F-35033, Rennes, France.,INSERM U1085-IRSET, Université de Rennes 1, Rennes, France
| | - Mathilde Nizon
- Service de Génétique Médicale, CHU Nantes, France.,INSERM, CNRS, UNIV Nantes, l'Institut du Thorax, Nantes, France
| |
Collapse
|
39
|
Yip RK, Chan D, Cheah KS. Mechanistic insights into skeletal development gained from genetic disorders. Curr Top Dev Biol 2019; 133:343-385. [DOI: 10.1016/bs.ctdb.2019.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
40
|
Watson BA, Feenstra JM, Van Arsdale JM, Rai-Bhatti KS, Kim DJH, Coggins AS, Mattison GL, Yoo S, Steinman ED, Pira CU, Gongol BR, Oberg KC. LHX2 Mediates the FGF-to-SHH Regulatory Loop during Limb Development. J Dev Biol 2018; 6:E13. [PMID: 29914077 PMCID: PMC6027391 DOI: 10.3390/jdb6020013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2018] [Revised: 06/11/2018] [Accepted: 06/12/2018] [Indexed: 12/26/2022] Open
Abstract
During limb development, fibroblast growth factors (Fgfs) govern proximal⁻distal outgrowth and patterning. FGFs also synchronize developmental patterning between the proximal⁻distal and anterior⁻posterior axes by maintaining Sonic hedgehog (Shh) expression in cells of the zone of polarizing activity (ZPA) in the distal posterior mesoderm. Shh, in turn, maintains Fgfs in the apical ectodermal ridge (AER) that caps the distal tip of the limb bud. Crosstalk between Fgf and Shh signaling is critical for patterned limb development, but the mechanisms underlying this feedback loop are not well-characterized. Implantation of Fgf beads in the proximal posterior limb bud can maintain SHH expression in the former ZPA domain (evident 3 h after application), while prolonged exposure (24 h) can induce SHH outside of this domain. Although temporally and spatially disparate, comparative analysis of transcriptome data from these different populations accentuated genes involved in SHH regulation. Comparative analysis identified 25 candidates common to both treatments, with eight linked to SHH expression or function. Furthermore, we demonstrated that LHX2, a LIM Homeodomain transcription factor, is an intermediate in the FGF-mediated regulation of SHH. Our data suggest that LHX2 acts as a competency factor maintaining distal posterior SHH expression subjacent to the AER.
Collapse
Affiliation(s)
- Billy A Watson
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
- Division of Microbiology and Molecular Genetics, Department of Basic Sciences, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Jennifer M Feenstra
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Jonathan M Van Arsdale
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Karndeep S Rai-Bhatti
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Diana J H Kim
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Ashley S Coggins
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Gennaya L Mattison
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Stephen Yoo
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Eric D Steinman
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Charmaine U Pira
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Brendan R Gongol
- Department of Cardiopulmonary Sciences, School of Allied Health Professions, Loma Linda University, Loma Linda, CA 92354, USA.
| | - Kerby C Oberg
- Department of Pathology and Human Anatomy, School of Medicine, Loma Linda University, Loma Linda, CA 92354, USA.
| |
Collapse
|
41
|
Warrington NM, Shevroja E, Hemani G, Hysi PG, Jiang Y, Auton A, Boer CG, Mangino M, Wang CA, Kemp JP, McMahon G, Medina-Gomez C, Hickey M, Trajanoska K, Wolke D, Ikram MA, Montgomery GW, Felix JF, Wright MJ, Mackey DA, Jaddoe VW, Martin NG, Tung JY, Davey Smith G, Pennell CE, Spector TD, van Meurs J, Rivadeneira F, Medland SE, Evans DM. Genome-wide association study identifies nine novel loci for 2D:4D finger ratio, a putative retrospective biomarker of testosterone exposure in utero. Hum Mol Genet 2018; 27:2025-2038. [PMID: 29659830 PMCID: PMC5961159 DOI: 10.1093/hmg/ddy121] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/12/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023] Open
Abstract
The ratio of the length of the index finger to that of the ring finger (2D:4D) is sexually dimorphic and is commonly used as a non-invasive biomarker of prenatal androgen exposure. Most association studies of 2D:4D ratio with a diverse range of sex-specific traits have typically involved small sample sizes and have been difficult to replicate, raising questions around the utility and precise meaning of the measure. In the largest genome-wide association meta-analysis of 2D:4D ratio to date (N = 15 661, with replication N = 75 821), we identified 11 loci (9 novel) explaining 3.8% of the variance in mean 2D:4D ratio. We also found weak evidence for association (β = 0.06; P = 0.02) between 2D:4D ratio and sensitivity to testosterone [length of the CAG microsatellite repeat in the androgen receptor (AR) gene] in females only. Furthermore, genetic variants associated with (adult) testosterone levels and/or sex hormone-binding globulin were not associated with 2D:4D ratio in our sample. Although we were unable to find strong evidence from our genetic study to support the hypothesis that 2D:4D ratio is a direct biomarker of prenatal exposure to androgens in healthy individuals, our findings do not explicitly exclude this possibility, and pathways involving testosterone may become apparent as the size of the discovery sample increases further. Our findings provide new insight into the underlying biology shaping 2D:4D variation in the general population.
Collapse
Affiliation(s)
- Nicole M Warrington
- The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD 4102, Australia
- Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA 6009, Australia
| | - Enisa Shevroja
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - Pirro G Hysi
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | | | - Adam Auton
- 23andMe, Inc., Mountain View, CA 94061, USA
| | - Cindy G Boer
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Carol A Wang
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA 6009, Australia
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, NSW 2308, Australia
| | - John P Kemp
- The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD 4102, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - George McMahon
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - Carolina Medina-Gomez
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
| | - Martha Hickey
- Department of Obstetrics and Gynaecology, The University of Melbourne and the Royal Women’s Hospital, Parkville, VIC 3052, Australia
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
| | - Dieter Wolke
- Department of Psychology and Warwick Medical School, University of Warwick, Coventry CV47AL, UK
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
| | | | - Grant W Montgomery
- Queensland Brain Institute and Centre for Advanced Imaging, University of Queensland, Brisbane, QLD 4072, Australia
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Margaret J Wright
- Queensland Brain Institute and Centre for Advanced Imaging, University of Queensland, Brisbane, QLD 4072, Australia
| | - David A Mackey
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA 6009, Australia
| | - Vincent W Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Nicholas G Martin
- Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia
| | | | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - Craig E Pennell
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA 6009, Australia
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, NSW 2308, Australia
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Joyce van Meurs
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
| | - Fernando Rivadeneira
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
| | - Sarah E Medland
- Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia
| | - David M Evans
- The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD 4102, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| |
Collapse
|
42
|
Warrington NM, Shevroja E, Hemani G, Hysi PG, Jiang Y, Auton A, Boer CG, Mangino M, Wang CA, Kemp JP, McMahon G, Medina-Gomez C, Hickey M, Trajanoska K, Wolke D, Ikram MA, Montgomery GW, Felix JF, Wright MJ, Mackey DA, Jaddoe VW, Martin NG, Tung JY, Davey Smith G, Pennell CE, Spector TD, van Meurs J, Rivadeneira F, Medland SE, Evans DM. Genome-wide association study identifies nine novel loci for 2D:4D finger ratio, a putative retrospective biomarker of testosterone exposure in utero. Hum Mol Genet 2018; 27:2025-2038. [PMID: 29659830 PMCID: PMC5961159 DOI: 10.1093/hmg/ddy121 10.1093/hmg/ddy121] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2017] [Revised: 03/12/2018] [Accepted: 04/03/2018] [Indexed: 10/22/2023] Open
Abstract
The ratio of the length of the index finger to that of the ring finger (2D:4D) is sexually dimorphic and is commonly used as a non-invasive biomarker of prenatal androgen exposure. Most association studies of 2D:4D ratio with a diverse range of sex-specific traits have typically involved small sample sizes and have been difficult to replicate, raising questions around the utility and precise meaning of the measure. In the largest genome-wide association meta-analysis of 2D:4D ratio to date (N = 15 661, with replication N = 75 821), we identified 11 loci (9 novel) explaining 3.8% of the variance in mean 2D:4D ratio. We also found weak evidence for association (β = 0.06; P = 0.02) between 2D:4D ratio and sensitivity to testosterone [length of the CAG microsatellite repeat in the androgen receptor (AR) gene] in females only. Furthermore, genetic variants associated with (adult) testosterone levels and/or sex hormone-binding globulin were not associated with 2D:4D ratio in our sample. Although we were unable to find strong evidence from our genetic study to support the hypothesis that 2D:4D ratio is a direct biomarker of prenatal exposure to androgens in healthy individuals, our findings do not explicitly exclude this possibility, and pathways involving testosterone may become apparent as the size of the discovery sample increases further. Our findings provide new insight into the underlying biology shaping 2D:4D variation in the general population.
Collapse
Affiliation(s)
- Nicole M Warrington
- The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD 4102, Australia
- Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA 6009, Australia
| | - Enisa Shevroja
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Gibran Hemani
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - Pirro G Hysi
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | | | - Adam Auton
- 23andMe, Inc., Mountain View, CA 94061, USA
| | - Cindy G Boer
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Massimo Mangino
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Carol A Wang
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA 6009, Australia
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, NSW 2308, Australia
| | - John P Kemp
- The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD 4102, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - George McMahon
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - Carolina Medina-Gomez
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
| | - Martha Hickey
- Department of Obstetrics and Gynaecology, The University of Melbourne and the Royal Women’s Hospital, Parkville, VIC 3052, Australia
| | - Katerina Trajanoska
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
| | - Dieter Wolke
- Department of Psychology and Warwick Medical School, University of Warwick, Coventry CV47AL, UK
| | - M Arfan Ikram
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
| | | | - Grant W Montgomery
- Queensland Brain Institute and Centre for Advanced Imaging, University of Queensland, Brisbane, QLD 4072, Australia
| | - Janine F Felix
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Margaret J Wright
- Queensland Brain Institute and Centre for Advanced Imaging, University of Queensland, Brisbane, QLD 4072, Australia
| | - David A Mackey
- Lions Eye Institute, Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, WA 6009, Australia
| | - Vincent W Jaddoe
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
- Department of Pediatrics, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
| | - Nicholas G Martin
- Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia
| | | | - George Davey Smith
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| | - Craig E Pennell
- Division of Obstetrics and Gynaecology, The University of Western Australia, Perth, WA 6009, Australia
- School of Medicine and Public Health, Faculty of Medicine and Health, The University of Newcastle, Newcastle, NSW 2308, Australia
| | - Tim D Spector
- Department of Twin Research and Genetic Epidemiology, King’s College London, London SE1 7EH, UK
| | - Joyce van Meurs
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
| | - Fernando Rivadeneira
- The Generation R Study Group, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, South Holland, The Netherlands
- Department of Internal Medicine, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, University Medical Center Rotterdam, 3015 CN, Rotterdam, Netherlands
| | - Sarah E Medland
- Queensland Institute of Medical Research, Brisbane, QLD 4006, Australia
| | - David M Evans
- The University of Queensland Diamantina Institute, Translational Research Institute, University of Queensland, Brisbane, QLD 4102, Australia
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol BS8 2BN, UK
- Population Health Sciences, University of Bristol, Bristol BS8 2PS, UK
| |
Collapse
|
43
|
Lettice LA, Devenney P, De Angelis C, Hill RE. The Conserved Sonic Hedgehog Limb Enhancer Consists of Discrete Functional Elements that Regulate Precise Spatial Expression. Cell Rep 2018; 20:1396-1408. [PMID: 28793263 PMCID: PMC5561167 DOI: 10.1016/j.celrep.2017.07.037] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2016] [Revised: 05/17/2017] [Accepted: 07/13/2017] [Indexed: 12/21/2022] Open
Abstract
Expression of sonic hedgehog (Shh) in the limb bud is regulated by an enhancer called the zone of polarizing activity regulatory sequence (ZRS), which, in evolution, belongs to an ancient group of highly conserved cis regulators found in all classes of vertebrates. Here, we examined the endogenous ZRS in mice, using genome editing to establish the relationship between enhancer composition and embryonic phenotype. We show that enhancer activity is a consolidation of distinct activity domains. Spatial restriction of Shh expression is mediated by a discrete repressor module, whereas levels of gene expression are controlled by large overlapping domains containing varying numbers of HOXD binding sites. The number of HOXD binding sites regulates expression levels incrementally. Substantial portions of conserved sequence are dispensable, indicating the presence of sequence redundancy. We propose a collective model for enhancer activity in which function is an integration of discrete expression activities and redundant components that drive robust expression. The ancient vertebrate enhancer, the ZRS, shows sequence plasticity Discrete regulatory activities are assigned to specific sites in the enhancer The number of HOXD binding sites determines the level of Shh expression Robust expression is a collective of regulatory and redundant information
Collapse
Affiliation(s)
- Laura A Lettice
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Paul Devenney
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Carlo De Angelis
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK
| | - Robert E Hill
- MRC Human Genetics Unit, MRC Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh EH4 2XU, UK.
| |
Collapse
|
44
|
Bickelmann C, Frota-Lima GN, Triepel SK, Kawaguchi A, Schneider I, Fröbisch NB. Noncanonical Hox, Etv4, and Gli3 gene activities give insight into unique limb patterning in salamanders. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:138-147. [PMID: 29602205 DOI: 10.1002/jez.b.22798] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 03/02/2018] [Accepted: 03/02/2018] [Indexed: 01/08/2023]
Abstract
Limb development in salamanders is unique among tetrapods in significant ways. Not only can salamanders regenerate lost limbs repeatedly and throughout their lives, but also the preaxial zeugopodial element and digits form before the postaxial ones and, hence, with a reversed polarity compared to all other tetrapods. Moreover, in salamanders with free-swimming larval stages, as exemplified by the axolotl (Ambystoma mexicanum), each digit buds independently, instead of undergoing a paddle stage. Here, we report gene expression patterns of Hoxa and d clusters, and other crucial transcription factors during axolotl limb development. During early phases of limb development, expression patterns are mostly similar to those reported for amniotes and frogs. Likewise, Hoxd and Shh regulatory landscapes are largely conserved. However, during late digit-budding phases, remarkable differences are present: (i) the Hoxd13 expression domain excludes developing digits I and IV, (ii) we expand upon previous observation that Hoxa11 expression, which traditionally marks the zeugopodium, extends distally into the developing digits, and (iii) Gli3 and Etv4 show prolonged expression in developing digits. Our findings identify derived patterns in the expression of key transcription factors during late phases of salamander limb development, and provide the basis for a better understanding of the unique patterning of salamander limbs.
Collapse
Affiliation(s)
- Constanze Bickelmann
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Gabriela Neiva Frota-Lima
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany.,Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Sandra Karla Triepel
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany
| | - Akane Kawaguchi
- Research Institute of Molecular Pathology, Campus Vienna Biocenter 1, Vienna, Austria
| | - Igor Schneider
- Instituto de Ciências Biológicas, Universidade Federal do Pará, Belém, Brazil
| | - Nadia Belinda Fröbisch
- Museum für Naturkunde, Leibniz-Institut für Evolutions- und Biodiversitätsforschung, Berlin, Germany.,Institut für Biologie, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
45
|
Potuijt JWP, Baas M, Sukenik-Halevy R, Douben H, Nguyen P, Venter DJ, Gallagher R, Swagemakers SM, Hovius SER, van Nieuwenhoven CA, Galjaard RJH, van der Spek PJ, Ahituv N, de Klein A. A point mutation in the pre-ZRS disrupts sonic hedgehog expression in the limb bud and results in triphalangeal thumb-polysyndactyly syndrome. Genet Med 2018. [PMID: 29543231 DOI: 10.1038/gim.2018.18] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
PURPOSE The zone of polarizing activity regulatory sequence (ZRS) is an enhancer that regulates sonic hedgehog during embryonic limb development. Recently, mutations in a noncoding evolutionary conserved sequence 500 bp upstream of the ZRS, termed the pre-ZRS (pZRS), have been associated with polydactyly in dogs and humans. Here, we report the first case of triphalangeal thumb-polysyndactyly syndrome (TPT-PS) to be associated with mutations in this region and show via mouse enhancer assays how this mutation leads to ectopic expression throughout the developing limb bud. METHODS We used linkage analysis, whole-exome sequencing, Sanger sequencing, fluorescence in situ hybridization, multiplex ligation-dependent probe amplification, single-nucleotide polymorphism array, and a mouse transgenic enhancer assay. RESULTS Ten members of a TPT-PS family were included in this study. The mutation was linked to chromosome 7q36 (LOD score 3.0). No aberrations in the ZRS could be identified. A point mutation in the pZRS (chr7:156585476G>C; GRCh37/hg19) was detected in all affected family members. Functional characterization using a mouse transgenic enhancer essay showed extended ectopic expression dispersed throughout the entire limb bud (E11.5). CONCLUSION Our work describes the first mutation in the pZRS to be associated with TPT-PS and provides functional evidence that this mutation leads to ectopic expression of this enhancer within the developing limb.
Collapse
Affiliation(s)
- Jacob W P Potuijt
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.
| | - Martijn Baas
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Rivka Sukenik-Halevy
- Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, San Francisco, California, USA.,Institute for Human Genetics, University of California-San Francisco, San Francisco, California, USA.,Sackler School of Medicine, Tel-Aviv University, Tel Aviv, Israel
| | - Hannie Douben
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Picard Nguyen
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Deon J Venter
- Department of Pathology, Mater Health Services, South Brisbane, Queensland, Australia.,Department of Neuropathology, Royal Prince Alfred Hospital, Camperdown, Sydney, Australia.,School of Medicine, University of Wollongong, Wollongong, New South Wales, Australia
| | - Renée Gallagher
- Department of Pathology, Mater Health Services, South Brisbane, Queensland, Australia
| | - Sigrid M Swagemakers
- Department of Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Steven E R Hovius
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Christianne A van Nieuwenhoven
- Department of Plastic and Reconstructive Surgery and Hand Surgery, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Robert-Jan H Galjaard
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Peter J van der Spek
- Department of Bioinformatics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands.,Department of Pathology, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| | - Nadav Ahituv
- Department of Bioengineering and Therapeutic Sciences, University of California-San Francisco, San Francisco, California, USA.,Institute for Human Genetics, University of California-San Francisco, San Francisco, California, USA
| | - Annelies de Klein
- Department of Clinical Genetics, Erasmus MC, University Medical Center Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
46
|
Hasenpusch-Theil K, Watson JA, Theil T. Direct Interactions Between Gli3, Wnt8b, and Fgfs Underlie Patterning of the Dorsal Telencephalon. Cereb Cortex 2018; 27:1137-1148. [PMID: 26656997 DOI: 10.1093/cercor/bhv291] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
A key step in the development of the cerebral cortex is a patterning process, which subdivides the telencephalon into several molecularly distinct domains and is critical for cortical arealization. This process is dependent on a complex network of interactions between signaling molecules of the Fgf and Wnt gene families and the Gli3 transcription factor gene, but a better knowledge of the molecular basis of the interplay between these factors is required to gain a deeper understanding of the genetic circuitry underlying telencephalic patterning. Using DNA-binding and reporter gene assays, we here investigate the possibility that Gli3 and these signaling molecules interact by directly regulating each other's expression. We show that Fgf signaling is required for Wnt8b enhancer activity in the cortical hem, whereas Wnt/β-catenin signaling represses Fgf17 forebrain enhancer activity. In contrast, Fgf and Wnt/β-catenin signaling cooperate to regulate Gli3 expression. Taken together, these findings indicate that mutual interactions between Gli3, Wnt8b, and Fgf17 are crucial elements of the balance between these factors thereby conferring robustness to the patterning process. Hence, our study provides a framework for understanding the genetic circuitry underlying telencephalic patterning and how defects in this process can affect the formation of cortical areas.
Collapse
Affiliation(s)
- Kerstin Hasenpusch-Theil
- Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, EdinburghEH8 9XD, UK
| | - Julia A Watson
- Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, EdinburghEH8 9XD, UK
| | - Thomas Theil
- Centre for Integrative Physiology, Hugh Robson Building, University of Edinburgh, EdinburghEH8 9XD, UK
| |
Collapse
|
47
|
Zone of Polarizing Activity Regulatory Sequence Mutations/Duplications with Preaxial Polydactyly and Longitudinal Preaxial Ray Deficiency in the Phenotype: A Review of Human Cases, Animal Models, and Insights Regarding the Pathogenesis. BIOMED RESEARCH INTERNATIONAL 2018; 2018:1573871. [PMID: 29651423 PMCID: PMC5832050 DOI: 10.1155/2018/1573871] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Revised: 12/19/2017] [Accepted: 01/16/2018] [Indexed: 02/06/2023]
Abstract
Clinicians and scientists interested in developmental biology have viewed preaxial polydactyly (PPD) and longitudinal preaxial ray deficiency (LPAD) as two different entities. Point mutations and duplications in the zone of polarizing activity regulatory sequence (ZRS) are associated with anterior ectopic expression of Sonic Hedgehog (SHH) in the limb bud and usually result in a PPD phenotype. However, some of these mutations/duplications also have LPAD in the phenotype. This unusual PPD-LPAD association in ZRS mutations/duplications has not been specifically reviewed in the literature. The author reviews this unusual entity and gives insights regarding its pathogenesis.
Collapse
|
48
|
Abstract
Two groups have studied the loss of limbs in snake evolution by focusing on a long-distance cis-acting enhancer of Sonic Hedgehog. They find a progressive degeneration of binding sites for key transcription factors, mirroring the progressive limblessness occurring in these reptiles.
Collapse
Affiliation(s)
- Maria M Kaltcheva
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA
| | - Mark Lewandoski
- Cancer and Developmental Biology Laboratory, National Cancer Institute, Frederick, MD 21702, USA.
| |
Collapse
|
49
|
Leal F, Cohn MJ. Developmental, genetic, and genomic insights into the evolutionary loss of limbs in snakes. Genesis 2017; 56. [DOI: 10.1002/dvg.23077] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Revised: 09/29/2017] [Accepted: 10/06/2017] [Indexed: 12/31/2022]
Affiliation(s)
- Francisca Leal
- Howard Hughes Medical Institute, UF Genetics Institute, University of Florida; Gainesville FL 32610
- Department of Biology; University of Florida; Gainesville FL 32610
| | - Martin J. Cohn
- Department of Biology; University of Florida; Gainesville FL 32610
- Department of Molecular Genetics and Microbiology; University of Florida; Gainesville FL 32610
| |
Collapse
|
50
|
Peluso S, Douglas A, Hill A, De Angelis C, Moore BL, Grimes G, Petrovich G, Essafi A, Hill RE. Fibroblast growth factors (FGFs) prime the limb specific Shh enhancer for chromatin changes that balance histone acetylation mediated by E26 transformation-specific (ETS) factors. eLife 2017; 6:28590. [PMID: 28949289 PMCID: PMC5659820 DOI: 10.7554/elife.28590] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2017] [Accepted: 09/25/2017] [Indexed: 01/12/2023] Open
Abstract
Sonic hedgehog (Shh) expression in the limb bud organizing centre called the zone of polarizing activity is regulated by the ZRS enhancer. Here, we examine in mouse and in a mouse limb-derived cell line the dynamic events that activate and restrict the spatial activity of the ZRS. Fibroblast growth factor (FGF) signalling in the distal limb primes the ZRS at early embryonic stages maintaining a poised, but inactive state broadly across the distal limb mesenchyme. The E26 transformation-specific transcription factor, ETV4, which is induced by FGF signalling and acts as a repressor of ZRS activity, interacts with the histone deacetylase HDAC2 and ensures that the poised ZRS remains transcriptionally inactive. Conversely, GABPα, an activator of the ZRS, recruits p300, which is associated with histone acetylation (H3K27ac) indicative of an active enhancer. Hence, the primed but inactive state of the ZRS is induced by FGF signalling and in combination with balanced histone modification events establishes the restricted, active enhancer responsible for patterning the limb bud during development. As an animal embryo develops, specific genes need to be switched on and off at the right time and place to ensure that the embryo’s tissues and organs form properly. Proteins called transcription factors control the activity of individual genes by binding to regions of DNA known as enhancers. Changes in the way DNA is packaged inside cells can affect the ability of transcription factors to access the enhancers, and therefore also influence when particular genes are switched on or off. Sonic hedgehog (or Shh for short) is a gene that helps to control various aspects of development including the formation of the limbs and brain. The limb forms from a structure in the embryo referred to as the limb bud. An enhancer called ZRS regulates the precise position within the limb bud where the Shh gene is active in a region designated as the “zone of polarizing activity”. Yet, it was not known how the enhancer is controlled to ensure this pattern is achieved. Peluso et al. investigated the events that lead to ZRS becoming active in mice embryos. The experiments show that the ZRS enhancer exists in three different states in cells across the limb bud: poised, active and inactive. The enhancer is poised in a broad region of the limb bud in cells that are potentially able to switch on the Shh gene. Proteins called fibroblast growth factors drive the enhancer to enter this poised state by altering the way the DNA containing the enhancer is packaged in the cell. Specific transcription factors are able to bind to the poised enhancer and it is the balance between these different transcription factors that activates the enhancer in the zone of polarizing activity. Furthermore in the region of the limb bud where the fibroblast growth factors are not present the ZRS is inactive. These findings show that fibroblast growth factors, in combination with other changes to the ZRS enhancer, restrict the area in which the enhancer is active to a particular region of the limb bud. Differences in enhancer elements are known to underlie a range of inherited characteristics and may influence whether an individual develops many common diseases. In the future, investigating how cells control the activity of enhancers may provide clues to identifying new targets for drugs to treat some of these diseases.
Collapse
Affiliation(s)
- Silvia Peluso
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Adam Douglas
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Alison Hill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Carlo De Angelis
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Benjamin L Moore
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Graeme Grimes
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Giulia Petrovich
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| | - Abdelkader Essafi
- School of Cellular and Molecular Medicine, Faculty of Biomedical Sciences, University of Bristol, Bristol, United Kingdom
| | - Robert E Hill
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|