1
|
Wang Y, Yemelyanov A, Go CD, Kim SK, Quinn JM, Flozak AS, Le PM, Liang S, Gingras AC, Ikura M, Ishiyama N, Gottardi CJ. α-Catenin force-sensitive binding and sequestration of LZTS2 leads to cytokinesis failure. J Cell Biol 2025; 224:e202308124. [PMID: 39786338 PMCID: PMC11716113 DOI: 10.1083/jcb.202308124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/11/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025] Open
Abstract
Epithelial cells can become polyploid upon tissue injury, but mechanosensitive cues that trigger this state are poorly understood. Using an Madin Darby Canine Kidney (MDCK) cell knock-out/reconstitution system, we show that α-catenin mutants that alter force-sensitive binding to F-actin or middle (M)-domain promote cytokinesis failure and binucleation, particularly near epithelial wound-fronts. We identified Leucine Zipper Tumor Suppressor 2 (LZTS2), a factor previously implicated in abscission, as a conformation sensitive proximity partner of α-catenin. We show that LZTS2 enriches not only at midbody/intercellular bridges but also at apical adhering junctions. α-Catenin mutants with persistent M-domain opening show elevated junctional enrichment of LZTS2 compared with wild-type cells. LZTS2 knock-down leads to elevated rates of binucleation. These data implicate LZTS2 as a mechanosensitive effector of α-catenin that is critical for cytokinetic fidelity. This model rationalizes how persistent mechanoactivation of α-catenin may drive tension-induced polyploidization of epithelia after injury and suggests an underlying mechanism for how pathogenic α-catenin M-domain mutations drive macular dystrophy.
Collapse
Affiliation(s)
- Yuou Wang
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alex Yemelyanov
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christopher D. Go
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Sun K. Kim
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jeanne M. Quinn
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Annette S. Flozak
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Phuong M. Le
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Shannon Liang
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Canada
| | - Mitsu Ikura
- Department of Medical Biophysics, University Health Network, Princess Margaret Cancer Center, University of Toronto, Toronto, Canada
| | - Noboru Ishiyama
- Department of Medical Biophysics, University Health Network, Princess Margaret Cancer Center, University of Toronto, Toronto, Canada
| | - Cara J. Gottardi
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Cell and Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
2
|
Gonçalves M, Lopes C, Alégot H, Osswald M, Bosveld F, Ramos C, Richard G, Bellaiche Y, Mirouse V, Morais-de-Sá E. The Dystrophin-Dystroglycan complex ensures cytokinesis efficiency in Drosophila epithelia. EMBO Rep 2025; 26:307-328. [PMID: 39548266 PMCID: PMC11772804 DOI: 10.1038/s44319-024-00319-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 10/21/2024] [Accepted: 10/24/2024] [Indexed: 11/17/2024] Open
Abstract
Cytokinesis physically separates daughter cells at the end of cell division. This step is particularly challenging for epithelial cells, which are connected to their neighbors and to the extracellular matrix by transmembrane protein complexes. To systematically evaluate the impact of the cell adhesion machinery on epithelial cytokinesis efficiency, we performed an RNAi-based modifier screen in the Drosophila follicular epithelium. Strikingly, this unveiled adhesion molecules and transmembrane receptors that facilitate cytokinesis completion. Among these is Dystroglycan, which connects the extracellular matrix to the cytoskeleton via Dystrophin. Live imaging revealed that Dystrophin and Dystroglycan become enriched in the ingressing membrane, below the cytokinetic ring, during and after ring constriction. Using multiple alleles, including Dystrophin isoform-specific mutants, we show that Dystrophin/Dystroglycan localization is linked with unanticipated roles in regulating cytokinetic ring contraction and in preventing membrane regression during the abscission period. Altogether, we provide evidence that, rather than opposing cytokinesis completion, the machinery involved in cell-cell and cell-matrix interactions has also evolved functions to ensure cytokinesis efficiency in epithelial tissues.
Collapse
Affiliation(s)
- Margarida Gonçalves
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCBiology), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto, Portugal
| | - Catarina Lopes
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135, Porto, Portugal
| | - Hervé Alégot
- Université Clermont Auvergne - iGReD (Institute of Genetics, Reproduction and Development), UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Mariana Osswald
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135, Porto, Portugal
| | - Floris Bosveld
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005, Paris, France
| | - Carolina Ramos
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135, Porto, Portugal
| | - Graziella Richard
- Université Clermont Auvergne - iGReD (Institute of Genetics, Reproduction and Development), UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Yohanns Bellaiche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005, Paris, France
| | - Vincent Mirouse
- Université Clermont Auvergne - iGReD (Institute of Genetics, Reproduction and Development), UMR CNRS 6293 - INSERM U1103, Faculté de Médecine, Clermont-Ferrand, France
| | - Eurico Morais-de-Sá
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135, Porto, Portugal.
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135, Porto, Portugal.
| |
Collapse
|
3
|
Sabbagh S, Zhang H, Harris TJC. Drosophila anterior midgut internalization via collective epithelial-mesenchymal transition at the embryo surface and enclosure by surrounding tissues. Dev Biol 2025; 517:191-202. [PMID: 39393484 DOI: 10.1016/j.ydbio.2024.10.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/13/2024]
Abstract
Internal organ development requires cell internalization, which can occur individually or collectively. The best characterized mode of collective internalization is epithelial invagination. Alternate modes involving collective mesenchymal behaviours at the embryo surface have been documented, but their prevalence is unclear. The Drosophila embryo has been a major model for the study of epithelial invaginations. However, internalization of the Drosophila anterior midgut primordium is incompletely understood. Here, we report that an epithelial-mesenchymal transition (EMT) occurs across the internalizing primordium when it is still at the embryo surface. At the earliest internalization stage, the primordium displays less junctional DE-cadherin than surrounding tissues but still exhibits coordinated epithelial structure as it invaginates with the ventral furrow. This initial invagination is transient, and its loss correlates with the activation of an associated mitotic domain. Activation of a subsequent mitotic domain across the broader primordium results in cell divisions with mixed orientations that deposit some cells within the embryo. However, cell division is non-essential for primordium internalization. Post-mitotically, the surface primordium displays hallmarks of EMT: loss of adherens junctions, loss of epithelial cell polarity, and gain of cell protrusions. Primordium cells extend over each other as they internalize asynchronously as individuals or small groups, and the primordium becomes enclosed by the reorganizations of surrounding epithelial tissues. We propose that collective EMT at the embryo surface promotes anterior midgut internalization through both inwardly-directed divisions and movements of its cells, and that the latter process is facilitated by surrounding tissue remodeling.
Collapse
Affiliation(s)
- Sandra Sabbagh
- Department of Cell & Systems Biology, University of Toronto, Canada
| | - Hui Zhang
- Department of Cell & Systems Biology, University of Toronto, Canada
| | - Tony J C Harris
- Department of Cell & Systems Biology, University of Toronto, Canada.
| |
Collapse
|
4
|
Pallavicini G, Moccia A, Iegiani G, Parolisi R, Peirent ER, Berto GE, Lorenzati M, Tshuva RY, Ferraro A, Balzac F, Turco E, Salvi SU, Myklebust HF, Wang S, Eisenberg J, Chitale M, Girgla NS, Boda E, Reiner O, Buffo A, Di Cunto F, Bielas SL. Modeling primary microcephaly with human brain organoids reveals fundamental roles of CIT kinase activity. J Clin Invest 2024; 134:e175435. [PMID: 39316437 PMCID: PMC11527453 DOI: 10.1172/jci175435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 09/06/2024] [Indexed: 09/26/2024] Open
Abstract
Brain size and cellular heterogeneity are tightly regulated by species-specific proliferation and differentiation of multipotent neural progenitor cells (NPCs). Errors in this process are among the mechanisms of primary hereditary microcephaly (MCPH), a group of disorders characterized by reduced brain size and intellectual disability. Biallelic citron rho-interacting serine/threonine kinase (CIT) missense variants that disrupt kinase function (CITKI/KI) and frameshift loss-of-function variants (CITFS/FS) are the genetic basis for MCPH17; however, the function of CIT catalytic activity in brain development and NPC cytokinesis is unknown. Therefore, we created the CitKI/KI mouse model and found that it did not phenocopy human microcephaly, unlike biallelic CitFS/FS animals. Nevertheless, both Cit models exhibited binucleation, DNA damage, and apoptosis. To investigate human-specific mechanisms of CIT microcephaly, we generated CITKI/KI and CITFS/FS human forebrain organoids. We found that CITKI/KI and CITFS/FS organoids lost cytoarchitectural complexity, transitioning from pseudostratified to simple neuroepithelium. This change was associated with defects that disrupted the polarity of NPC cytokinesis, in addition to elevating apoptosis. Together, our results indicate that both CIT catalytic and scaffolding functions in NPC cytokinesis are critical for human corticogenesis. Species differences in corticogenesis and the dynamic 3D features of NPC mitosis underscore the utility of human forebrain organoid models for understanding human microcephaly.
Collapse
Affiliation(s)
- Gianmarco Pallavicini
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | | | - Giorgia Iegiani
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Roberta Parolisi
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Emily R. Peirent
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Gaia Elena Berto
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Martina Lorenzati
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Rami Y. Tshuva
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Alessia Ferraro
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Fiorella Balzac
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Emilia Turco
- Department of Molecular Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | | | | | - Julia Eisenberg
- Department of Human Genetics and
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | | | - Enrica Boda
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Orly Reiner
- Departments of Molecular Genetics and Molecular Neuroscience, Weizmann Institute of Science, Rehovot, Israel
| | - Annalisa Buffo
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Ferdinando Di Cunto
- Neuroscience Institute Cavalieri Ottolenghi, Turin, Italy
- Department of Neuroscience “Rita Levi Montalcini,” University of Turin, Turin, Italy
| | - Stephanie L. Bielas
- Department of Human Genetics and
- Neuroscience Graduate Program, University of Michigan Medical School, Ann Arbor, Michigan, USA
- Department of Pediatrics, University of Michigan Medical School, Ann Arbor, Michigan, USA
| |
Collapse
|
5
|
Dagher L, Descroix S, Maître JL. Intercellular fluid dynamics in tissue morphogenesis. Curr Biol 2024; 34:R1031-R1044. [PMID: 39437722 DOI: 10.1016/j.cub.2024.05.061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
During embryonic development, cells shape our body, which is mostly made up of water. It is often forgotten that some of this water is found in intercellular fluid, which, for example, immerses the cells of developing embryos. Intercellular fluid contributes to the properties of tissues and influences cell behaviour, thereby participating in tissue morphogenesis. While our understanding of the role of cells in shaping tissues advances, the exploration of the contribution of intercellular fluid dynamics is just beginning. In this review, we delve into the intricate mechanisms employed by cells to control fluid movements both across and within sealed tissue compartments. These mechanisms encompass sealing by tight junctions and controlled leakage, osmotic pumping, hydraulic fracturing of cell adhesion, cell and tissue contractions, as well as beating cilia. We illustrate key concepts by drawing extensively from the early mouse embryo, which successively forms multiple lumens that play essential roles in its development. Finally, we detail experimental approaches and emerging techniques that allow for the quantitative characterization and the manipulation of intercellular fluids in vivo, as well as theoretical frameworks that are crucial for comprehending their dynamics.
Collapse
Affiliation(s)
- Louise Dagher
- Institut Curie, CNRS UMR3215, INSERM U934, PSL Research University, 75005 Paris, France; Institut Curie, Laboratoire Physics of Cells and Cancer (CNRS UMR 168), Institut Pierre-Gilles de Gennes, Sorbonne Université, PSL Research University, 6 rue Jean Calvin, 75005 Paris, France
| | - Stéphanie Descroix
- Institut Curie, Laboratoire Physics of Cells and Cancer (CNRS UMR 168), Institut Pierre-Gilles de Gennes, Sorbonne Université, PSL Research University, 6 rue Jean Calvin, 75005 Paris, France
| | - Jean-Léon Maître
- Institut Curie, CNRS UMR3215, INSERM U934, PSL Research University, 75005 Paris, France.
| |
Collapse
|
6
|
Tam R, Harris TJ. Centrosome-organized plasma membrane infoldings linked to growth of a cortical actin domain. J Cell Biol 2024; 223:e202403115. [PMID: 38935075 PMCID: PMC11215285 DOI: 10.1083/jcb.202403115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 05/27/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Regulated cell shape change requires the induction of cortical cytoskeletal domains. Often, local changes to plasma membrane (PM) topography are involved. Centrosomes organize cortical domains and can affect PM topography by locally pulling the PM inward. Are these centrosome effects coupled? At the syncytial Drosophila embryo cortex, centrosome-induced actin caps grow into dome-like compartments for mitoses. We found the nascent cap to be a collection of PM folds and tubules formed over the astral centrosomal MT array. The localized infoldings require centrosome and dynein activities, and myosin-based surface tension prevents them elsewhere. Centrosome-engaged PM infoldings become specifically enriched with an Arp2/3 induction pathway. Arp2/3 actin network growth between the infoldings counterbalances centrosomal pulling forces and disperses the folds for actin cap expansion. Abnormal domain topography with either centrosome or Arp2/3 disruption correlates with decreased exocytic vesicle association. Together, our data implicate centrosome-organized PM infoldings in coordinating Arp2/3 network growth and exocytosis for cortical domain assembly.
Collapse
Affiliation(s)
- Rebecca Tam
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Tony J.C. Harris
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
7
|
Ray T, Shi D, Harris TJC. Confinement promotes nematic alignment of spindle-shaped cells during Drosophila embryogenesis. Development 2024; 151:dev202577. [PMID: 38864272 PMCID: PMC11234378 DOI: 10.1242/dev.202577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/05/2024] [Indexed: 06/13/2024]
Abstract
Tissue morphogenesis is often controlled by actomyosin networks pulling on adherens junctions (AJs), but junctional myosin levels vary. At an extreme, the Drosophila embryo amnioserosa forms a horseshoe-shaped strip of aligned, spindle-shaped cells lacking junctional myosin. What are the bases of amnioserosal cell interactions and alignment? Compared with surrounding tissue, we find that amnioserosal AJ continuity has lesser dependence on α-catenin, the mediator of AJ-actomyosin association, and greater dependence on Bazooka/Par-3, a junction-associated scaffold protein. Microtubule bundles also run along amnioserosal AJs and support their long-range curvilinearity. Amnioserosal confinement is apparent from partial overlap of its spindle-shaped cells, its outward bulging from surrounding tissue and from compressive stress detected within the amnioserosa. Genetic manipulations that alter amnioserosal confinement by surrounding tissue also result in amnioserosal cells losing alignment and gaining topological defects characteristic of nematically ordered systems. With Bazooka depletion, confinement by surrounding tissue appears to be relatively normal and amnioserosal cells align despite their AJ fragmentation. Overall, the fully elongated amnioserosa appears to form through tissue-autonomous generation of spindle-shaped cells that nematically align in response to confinement by surrounding tissue.
Collapse
Affiliation(s)
- Tirthankar Ray
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Damo Shi
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| | - Tony J. C. Harris
- Department of Cell & Systems Biology, University of Toronto, Toronto, Ontario M5S 3G5, Canada
| |
Collapse
|
8
|
Pinot M, Le Borgne R. Spatio-Temporal Regulation of Notch Activation in Asymmetrically Dividing Sensory Organ Precursor Cells in Drosophila melanogaster Epithelium. Cells 2024; 13:1133. [PMID: 38994985 PMCID: PMC11240559 DOI: 10.3390/cells13131133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 06/24/2024] [Accepted: 06/25/2024] [Indexed: 07/13/2024] Open
Abstract
The Notch communication pathway, discovered in Drosophila over 100 years ago, regulates a wide range of intra-lineage decisions in metazoans. The division of the Drosophila mechanosensory organ precursor is the archetype of asymmetric cell division in which differential Notch activation takes place at cytokinesis. Here, we review the molecular mechanisms by which epithelial cell polarity, cell cycle and intracellular trafficking participate in controlling the directionality, subcellular localization and temporality of mechanosensitive Notch receptor activation in cytokinesis.
Collapse
Affiliation(s)
| | - Roland Le Borgne
- Univ Rennes, Centre National de la Recherche Scientifique UMR 6290, IGDR (Institut de Génétique et Développement de Rennes), F-35000 Rennes, France
| |
Collapse
|
9
|
Higashi T, Saito AC, Chiba H. Damage control of epithelial barrier function in dynamic environments. Eur J Cell Biol 2024; 103:151410. [PMID: 38579602 DOI: 10.1016/j.ejcb.2024.151410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/07/2024] Open
Abstract
Epithelial tissues cover the surfaces and lumens of the internal organs of multicellular animals and crucially contribute to internal environment homeostasis by delineating distinct compartments within the body. This vital role is known as epithelial barrier function. Epithelial cells are arranged like cobblestones and intricately bind together to form an epithelial sheet that upholds this barrier function. Central to the restriction of solute and fluid diffusion through intercellular spaces are occluding junctions, tight junctions in vertebrates and septate junctions in invertebrates. As part of epithelial tissues, cells undergo constant renewal, with older cells being replaced by new ones. Simultaneously, the epithelial tissue undergoes relative rearrangement, elongating, and shifting directionally as a whole. The movement or shape changes within the epithelial sheet necessitate significant deformation and reconnection of occluding junctions. Recent advancements have shed light on the intricate mechanisms through which epithelial cells sustain their barrier function in dynamic environments. This review aims to introduce these noteworthy findings and discuss some of the questions that remain unanswered.
Collapse
Affiliation(s)
- Tomohito Higashi
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan.
| | - Akira C Saito
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| | - Hideki Chiba
- Department of Basic Pathology, Fukushima Medical University, Fukushima 960-1295, Japan
| |
Collapse
|
10
|
Esmangart de Bournonville T, Jaglarz MK, Durel E, Le Borgne R. ESCRT-III-dependent adhesive and mechanical changes are triggered by a mechanism detecting alteration of septate junction integrity in Drosophila epithelial cells. eLife 2024; 13:e91246. [PMID: 38305711 PMCID: PMC10959524 DOI: 10.7554/elife.91246] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 02/01/2024] [Indexed: 02/03/2024] Open
Abstract
Barrier functions of proliferative epithelia are constantly challenged by mechanical and chemical constraints. How epithelia respond to and cope with disturbances of barrier functions to allow tissue integrity maintenance is poorly characterised. Cellular junctions play an important role in this process and intracellular traffic contribute to their homeostasis. Here, we reveal that, in Drosophila pupal notum, alteration of the bi- or tricellular septate junctions (SJs) triggers a mechanism with two prominent outcomes. On one hand, there is an increase in the levels of E-cadherin, F-actin, and non-muscle myosin II in the plane of adherens junctions. On the other hand, β-integrin/Vinculin-positive cell contacts are reinforced along the lateral and basal membranes. We found that the weakening of SJ integrity, caused by the depletion of bi- or tricellular SJ components, alters ESCRT-III/Vps32/Shrub distribution, reduces degradation and instead favours recycling of SJ components, an effect that extends to other recycled transmembrane protein cargoes including Crumbs, its effector β-Heavy Spectrin Karst, and β-integrin. We propose a mechanism by which epithelial cells, upon sensing alterations of the SJ, reroute the function of Shrub to adjust the balance of degradation/recycling of junctional cargoes and thereby compensate for barrier junction defects to maintain epithelial integrity.
Collapse
Affiliation(s)
- Thomas Esmangart de Bournonville
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290RennesFrance
- Global Health Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne (EPFL)LausanneSwitzerland
| | - Mariusz K Jaglarz
- Department of Developmental Biology and Invertebrate Morphology, Institute of Zoology and Biomedical Research, Jagiellonian University in KrakowKrakowPoland
| | - Emeline Durel
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290RennesFrance
| | - Roland Le Borgne
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) – UMR 6290RennesFrance
| |
Collapse
|
11
|
Levayer R. Staying away from the breaking point: Probing the limits of epithelial cell elimination. Curr Opin Cell Biol 2024; 86:102316. [PMID: 38199024 DOI: 10.1016/j.ceb.2023.102316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
Epithelial tissues are dramatically remodelled during embryogenesis and tissue homeostasis and yet need to maintain their sealing properties to sustain their barrier functions at any time. Part of these remodellings involve the elimination of a large proportion of cells through apoptosis. Cell extrusion, the remodelling steps leading to seamless dying cell expulsion, helps to maintain tissue cohesion. However, there is an intrinsic limit in the system that can only accommodate a certain proportion/rate of cell elimination as well as certain spatiotemporal distributions. What are then the critical conditions leading to epithelial rupture/tear/sealing defects upon cell elimination and which mechanisms ensure that such limits are never reached? In this short review, I document the conditions in which epithelial rupture has been observed, including in the contexts of epithelial cell death, and the mechanical parameters influencing tissue rupture, and review feedback mechanisms which help to keep the epithelia away from the breaking point.
Collapse
Affiliation(s)
- Romain Levayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr. Roux, 75015 Paris, France.
| |
Collapse
|
12
|
Mira-Osuna M, Borgne RL. Assembly, dynamics and remodeling of epithelial cell junctions throughout development. Development 2024; 151:dev201086. [PMID: 38205947 DOI: 10.1242/dev.201086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2024]
Abstract
Cell junctions play key roles in epithelial integrity. During development, when epithelia undergo extensive morphogenesis, these junctions must be remodeled in order to maintain mechanochemical barriers and ensure the cohesion of the tissue. In this Review, we present a comprehensive and integrated description of junctional remodeling mechanisms in epithelial cells during development, from embryonic to adult epithelia. We largely focus on Drosophila, as quantitative analyses in this organism have provided a detailed characterization of the molecular mechanisms governing cell topologies, and discuss the conservation of these mechanisms across metazoans. We consider how changes at the molecular level translate to tissue-scale irreversible deformations, exploring the composition and assembly of cellular interfaces to unveil how junctions are remodeled to preserve tissue homeostasis during cell division, intercalation, invagination, ingression and extrusion.
Collapse
Affiliation(s)
- Marta Mira-Osuna
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS UMR 6290, F-35000 Rennes, France
| | - Roland Le Borgne
- Institut de Génétique et Développement de Rennes (IGDR), Université de Rennes, CNRS UMR 6290, F-35000 Rennes, France
| |
Collapse
|
13
|
Hsu CR, Sangha G, Fan W, Zheng J, Sugioka K. Contractile ring mechanosensation and its anillin-dependent tuning during early embryogenesis. Nat Commun 2023; 14:8138. [PMID: 38065974 PMCID: PMC10709429 DOI: 10.1038/s41467-023-43996-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/27/2023] [Indexed: 12/18/2023] Open
Abstract
Cytokinesis plays crucial roles in morphogenesis. Previous studies have examined how tissue mechanics influences the position and closure direction of the contractile ring. However, the mechanisms by which the ring senses tissue mechanics remain largely elusive. Here, we show the mechanism of contractile ring mechanosensation and its tuning during asymmetric ring closure of Caenorhabditis elegans embryos. Integrative analysis of ring closure and cell cortex dynamics revealed that mechanical suppression of the ring-directed cortical flow is associated with asymmetric ring closure. Consistently, artificial obstruction of ring-directed cortical flow induces asymmetric ring closure in otherwise symmetrically dividing cells. Anillin is vital for mechanosensation. Our genetic analysis suggests that the positive feedback loop among ring-directed cortical flow, myosin enrichment, and ring constriction constitutes a mechanosensitive pathway driving asymmetric ring closure. These findings and developed tools should advance the 4D mechanobiology of cytokinesis in more complex tissues.
Collapse
Affiliation(s)
- Christina Rou Hsu
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Gaganpreet Sangha
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Wayne Fan
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Joey Zheng
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada
| | - Kenji Sugioka
- Life Sciences Institute, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada.
- Department of Zoology, The University of British Columbia, 2350 Health Sciences Mall, Vancouver, BC, V6T1Z3, Canada.
| |
Collapse
|
14
|
Wang Y, Yemelyanov A, Go CD, Kim S, Quinn JM, Flozak AS, Le PM, Liang S, Claude-Gingras A, Ikura M, Ishiyama N, Gottardi CJ. α-catenin mechanosensitivity as a route to cytokinesis failure through sequestration of LZTS2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.25.554884. [PMID: 37662204 PMCID: PMC10473746 DOI: 10.1101/2023.08.25.554884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Epithelial cells can become polyploid upon tissue injury, but mechanosensitive cues that trigger this state are poorly understood. Using α-catenin (α-cat) knock-out Madin Darby Canine Kidney (MDCK) cells reconstituted with wild-type and mutant forms of α-cat as a model system, we find that an established α-cat actin-binding domain unfolding mutant designed to reduce force-sensitive binding to F-actin (α-cat-H0-FABD+) can promote cytokinesis failure, particularly along epithelial wound-fronts. Enhanced α-cat coupling to cortical actin is neither sufficient nor mitotic cell-autonomous for cytokinesis failure, but critically requires the mechanosensitive Middle-domain (M1-M2-M3) and neighboring cells. Disease relevant α-cat M-domain missense mutations known to cause a form of retinal pattern dystrophy (α-cat E307K or L436P) are associated with elevated binucleation rates via cytokinesis failure. Similar binucleation rates are seen in cells expressing an α-cat salt-bridge destabilizing mutant (R551A) designed to promote M2-M3 domain unfurling at lower force thresholds. Since binucleation is strongly enhanced by removal of the M1 as opposed to M2-M3 domains, cytokinetic fidelity is most sensitive to α-cat M2-M3 domain opening. To identify α-cat conformation-dependent proximity partners that contribute to cytokinesis, we used a biotin-ligase approach to distinguished proximity partners that show enhanced recruitment upon α-cat M-domain unfurling (R551A). We identified Leucine Zipper Tumor Suppressor 2 (LZTS2), an abscission factor previously implicated in cytokinesis. We confirm that LZTS2 enriches at the midbody, but discover it also localizes to tight and tricellular junctions. LZTS2 knock-down promotes binucleation in both MDCK and Retinal Pigmented Epithelial (RPE) cells. α-cat mutants with persistent M2-M3 domain opening showed elevated junctional enrichment of LZTS2 from the cytosol compared α-cat wild-type cells. These data implicate LZTS2 as a mechanosensitive effector of α-cat that is critical for cytokinetic fidelity. This model rationalizes how persistent mechano-activation of α-cat may drive tension-induced polyploidization of epithelia post-injury and suggests an underlying mechanism for how pathogenic α-cat mutations drive macular dystrophy.
Collapse
Affiliation(s)
- Yuou Wang
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Alex Yemelyanov
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Christopher D. Go
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Sun Kim
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Ontario, M5G 1X5, Canada
| | - Jeanne M. Quinn
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Annette S. Flozak
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Phuong M. Le
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Shannon Liang
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| | - Anne Claude-Gingras
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Sinai Health, Toronto, Ontario, M5G 1X5, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, M5S 1A8, Canada
| | - Mitsu Ikura
- Department of Medical Biophysics, University Health Network, Princess Margaret Cancer Center, University of Toronto, Toronto, Ontario, Canada
| | - Noboru Ishiyama
- Department of Medical Biophysics, University Health Network, Princess Margaret Cancer Center, University of Toronto, Toronto, Ontario, Canada
| | - Cara J. Gottardi
- Department of Pulmonary Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
- Cell & Developmental Biology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611
| |
Collapse
|
15
|
Cazzagon G, Roubinet C, Baum B. Polarized SCAR and the Arp2/3 complex regulate apical cortical remodeling in asymmetrically dividing neuroblasts. iScience 2023; 26:107129. [PMID: 37434695 PMCID: PMC10331462 DOI: 10.1016/j.isci.2023.107129] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/03/2023] [Accepted: 06/10/2023] [Indexed: 07/13/2023] Open
Abstract
Although the formin-nucleated actomyosin cortex has been shown to drive the changes in cell shape that accompany animal cell division in both symmetric and asymmetric cell divisions, the mitotic role of cortical Arp2/3-nucleated actin networks remain unclear. Here using asymmetrically dividing Drosophila neural stem cells as a model system, we identify a pool of membrane protrusions that form at the apical cortex of neuroblasts as they enter mitosis. Strikingly, these apically localized protrusions are enriched in SCAR, and depend on SCAR and Arp2/3 complexes for their formation. Because compromising SCAR or the Arp2/3 complex delays the apical clearance of Myosin II at the onset of anaphase and induces cortical instability at cytokinesis, these data point to a role for an apical branched actin filament network in fine-tuning the actomyosin cortex to enable the precise control of cell shape changes during an asymmetric cell division.
Collapse
Affiliation(s)
- Giulia Cazzagon
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Chantal Roubinet
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| | - Buzz Baum
- Medical Research Council Laboratory of Molecular Biology, Cambridge CB2 0QH, UK
| |
Collapse
|
16
|
Landino J, Misterovich E, Chumki S, Miller AL. Neighbor cells restrain furrowing during epithelial cytokinesis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.08.544077. [PMID: 37333405 PMCID: PMC10274919 DOI: 10.1101/2023.06.08.544077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2023]
Abstract
Cytokinesis challenges epithelial tissue homeostasis by generating forces that pull on neighboring cells via cell-cell junctions. Previous work has shown that junction reinforcement at the furrow in Xenopus laevis epithelia regulates the speed of furrowing1. This suggests the cytokinetic array that drives cell division is subject to resistive forces from epithelial neighbor cells. We show here that contractility factors accumulate in neighboring cells near the furrow during cytokinesis. Additionally, increasing neighbor cell stiffness, via ɑ-actinin overexpression, or contractility, through optogenetic Rho activation in one neighbor cell, slows or asymmetrically pauses furrowing, respectively. Notably, optogenetic stimulation of neighbor cell contractility on both sides of the furrow induces cytokinetic failure and binucleation. We conclude that forces from the cytokinetic array in the dividing cell are carefully balanced with restraining forces generated by neighbor cells, and neighbor cell mechanics regulate the speed and success of cytokinesis.
Collapse
Affiliation(s)
- Jennifer Landino
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor
| | - Eileen Misterovich
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor
| | - Shahana Chumki
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor
| | - Ann L. Miller
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor
- Cellular and Molecular Biology Graduate Program, University of Michigan, Ann Arbor
| |
Collapse
|
17
|
Bruelle C, Pinot M, Daniel E, Daudé M, Mathieu J, Le Borgne R. Cell-intrinsic and -extrinsic roles of the ESCRT-III subunit Shrub in abscission of Drosophila sensory organ precursors. Development 2023; 150:dev201409. [PMID: 37226981 DOI: 10.1242/dev.201409] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Accepted: 04/17/2023] [Indexed: 05/17/2023]
Abstract
Although the molecular mechanisms governing abscission of isolated cells have largely been elucidated, those underlying the abscission of epithelial progenitors surrounded by epidermal cells (ECs), connected via cellular junctions, remain largely unexplored. Here, we investigated the remodeling of the paracellular diffusion barrier ensured by septate junctions (SJs) during cytokinesis of Drosophila sensory organ precursors (SOPs). We found that SOP cytokinesis involves the coordinated, polarized assembly and remodeling of SJs in the dividing cell and its neighbors, which remain connected to the former via membrane protrusions pointing towards the SOP midbody. SJ assembly and midbody basal displacement occur faster in SOPs than in ECs, leading to quicker disentanglement of neighboring cell membrane protrusions prior to midbody release. As reported in isolated cells, the endosomal sorting complex required for the transport-III component Shrub/CHMP4B is recruited at the midbody and cell-autonomously regulates abscission. In addition, Shrub is recruited to membrane protrusions and is required for SJ integrity, and alteration of SJ integrity leads to premature abscission. Our study uncovers cell-intrinsic and -extrinsic functions of Shrub in coordinating remodeling of the SJs and SOP abscission.
Collapse
Affiliation(s)
- Céline Bruelle
- Université de Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR), UMR 6290, F-35000 Rennes, France
| | - Mathieu Pinot
- Université de Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR), UMR 6290, F-35000 Rennes, France
| | - Emeline Daniel
- Université de Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR), UMR 6290, F-35000 Rennes, France
| | - Marion Daudé
- Université de Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR), UMR 6290, F-35000 Rennes, France
| | - Juliette Mathieu
- Center for Interdisciplinary Research in Biology (CIRB), UMR CNRS 7241/INSERM U1050, Collège de France, 11 place Marcelin Berthelot, 75005 Paris, France
| | - Roland Le Borgne
- Université de Rennes, CNRS, Institut de Génétique et Développement de Rennes (IGDR), UMR 6290, F-35000 Rennes, France
| |
Collapse
|
18
|
Uechi H, Kuranaga E. Underlying mechanisms that ensure actomyosin-mediated directional remodeling of cell-cell contacts for multicellular movement: Tricellular junctions and negative feedback as new aspects underlying actomyosin-mediated directional epithelial morphogenesis: Tricellular junctions and negative feedback as new aspects underlying actomyosin-mediated directional epithelial morphogenesis. Bioessays 2023; 45:e2200211. [PMID: 36929512 DOI: 10.1002/bies.202200211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/18/2023]
Abstract
Actomyosin (actin-myosin II complex)-mediated contractile forces are central to the generation of multifaceted uni- and multi-cellular material properties and dynamics such as cell division, migration, and tissue morphogenesis. In the present article, we summarize our recent researches addressing molecular mechanisms that ensure actomyosin-mediated directional cell-cell junction remodeling, either shortening or extension, driving cell rearrangement for epithelial morphogenesis. Genetic perturbation clarified two points concerning cell-cell junction remodeling: an inhibitory mechanism against negative feedback in which actomyosin contractile forces, which are well known to induce cell-cell junction shortening, can concomitantly alter actin dynamics, oppositely leading to perturbation of the shortening; and tricellular junctions as a point that organizes extension of new cell-cell junctions after shortening. These findings highlight the notion that cells develop underpinning mechanisms to transform the multi-tasking property of actomyosin contractile forces into specific and proper cellular dynamics in space and time.
Collapse
Affiliation(s)
- Hiroyuki Uechi
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| | - Erina Kuranaga
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, Sendai, Japan
| |
Collapse
|
19
|
di Pietro F, Osswald M, De Las Heras JM, Cristo I, López-Gay J, Wang Z, Pelletier S, Gaugué I, Leroy A, Martin C, Morais-de-Sá E, Bellaïche Y. Systematic analysis of RhoGEF/GAP localizations uncovers regulators of mechanosensing and junction formation during epithelial cell division. Curr Biol 2023; 33:858-874.e7. [PMID: 36917931 PMCID: PMC10017266 DOI: 10.1016/j.cub.2023.01.028] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/30/2022] [Accepted: 01/16/2023] [Indexed: 02/17/2023]
Abstract
Cell proliferation is central to epithelial tissue development, repair, and homeostasis. During cell division, small RhoGTPases control both actomyosin dynamics and cell-cell junction remodeling to faithfully segregate the genome while maintaining tissue polarity and integrity. To decipher the mechanisms of RhoGTPase spatiotemporal regulation during epithelial cell division, we generated a transgenic fluorescently tagged library for the 48 Drosophila Rho guanine exchange factors (RhoGEFs) and GTPase-activating proteins (GAPs), and we systematically characterized their endogenous distributions by time-lapse microscopy. Therefore, we unveiled candidate regulators of the interplay between actomyosin and junctional dynamics during epithelial cell division. Building on these findings, we established that the conserved RhoGEF Cysts and RhoGEF4 play sequential and distinct roles to couple cytokinesis with de novo junction formation. During ring contraction, Cysts via Rho1 participates in the neighbor mechanosensing response, promoting daughter-daughter cell membrane juxtaposition in preparation to de novo junction formation. Subsequently and upon midbody formation, RhoGEF4 via Rac acts in the dividing cell to ensure the withdrawal of the neighboring cell membranes, thus controlling de novo junction length and cell-cell arrangements upon cytokinesis. Altogether, our findings delineate how the RhoGTPases Rho and Rac are locally and temporally activated during epithelial cytokinesis, highlighting the RhoGEF/GAP library as a key resource to understand the broad range of biological processes regulated by RhoGTPases.
Collapse
Affiliation(s)
- Florencia di Pietro
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Mariana Osswald
- IBMC - Instituto de Biologia Molecular e Celular; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal
| | - José M De Las Heras
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Inês Cristo
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Jesús López-Gay
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Zhimin Wang
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Stéphane Pelletier
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Isabelle Gaugué
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Adrien Leroy
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Charlotte Martin
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Eurico Morais-de-Sá
- IBMC - Instituto de Biologia Molecular e Celular; i3S - Instituto de Investigação e Inovação em Saúde, Universidade do Porto, 4200-135 Porto, Portugal.
| | - Yohanns Bellaïche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR3215, INSERM U934, Genetics and Developmental Biology, 75005 Paris, France.
| |
Collapse
|
20
|
Chann AS, Chen Y, Kinwel T, Humbert PO, Russell SM. Scribble and E-cadherin cooperate to control symmetric daughter cell positioning by multiple mechanisms. J Cell Sci 2023; 136:286705. [PMID: 36661138 DOI: 10.1242/jcs.260547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/25/2022] [Indexed: 01/21/2023] Open
Abstract
The fate of the two daughter cells is intimately connected to their positioning, which is in turn regulated by cell junction remodelling and orientation of the mitotic spindle. How multiple cues are integrated to dictate the ultimate positioning of daughters is not clear. Here, we identify novel mechanisms of regulation of daughter positioning in single MCF10A cells. The polarity protein, Scribble cooperates with E-cadherin for sequential roles in daughter positioning. First Scribble stabilises E-cadherin at the mitotic cortex as well as the retraction fibres, to mediate spindle orientation. Second, Scribble re-locates to the junction between the two daughters to allow a new E-cadherin-based-interface to form between them, influencing the width of the nascent daughter-daughter junction and subsequent cell positioning. Thus, E-cadherin and Scribble dynamically relocate to different intracellular sites during cell division to orient the mitotic spindle and control placement of the daughter cells after cell division. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Anchi S Chann
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000Australia
| | - Ye Chen
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000Australia
| | - Tanja Kinwel
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia.,Department of Biochemistry & Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia.,Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Sarah M Russell
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
21
|
Contractile and expansive actin networks in Drosophila: Developmental cell biology controlled by network polarization and higher-order interactions. Curr Top Dev Biol 2023; 154:99-129. [PMID: 37100525 DOI: 10.1016/bs.ctdb.2023.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Actin networks are central to shaping and moving cells during animal development. Various spatial cues activate conserved signal transduction pathways to polarize actin network assembly at sub-cellular locations and to elicit specific physical changes. Actomyosin networks contract and Arp2/3 networks expand, and to affect whole cells and tissues they do so within higher-order systems. At the scale of tissues, actomyosin networks of epithelial cells can be coupled via adherens junctions to form supracellular networks. Arp2/3 networks typically integrate with distinct actin assemblies, forming expansive composites which act in conjunction with contractile actomyosin networks for whole-cell effects. This review explores these concepts using examples from Drosophila development. First, we discuss the polarized assembly of supracellular actomyosin cables which constrict and reshape epithelial tissues during embryonic wound healing, germ band extension, and mesoderm invagination, but which also form physical borders between tissue compartments at parasegment boundaries and during dorsal closure. Second, we review how locally induced Arp2/3 networks act in opposition to actomyosin structures during myoblast cell-cell fusion and cortical compartmentalization of the syncytial embryo, and how Arp2/3 and actomyosin networks also cooperate for the single cell migration of hemocytes and the collective migration of border cells. Overall, these examples show how the polarized deployment and higher-order interactions of actin networks organize developmental cell biology.
Collapse
|
22
|
Andrade V, Echard A. Mechanics and regulation of cytokinetic abscission. Front Cell Dev Biol 2022; 10:1046617. [PMID: 36506096 PMCID: PMC9730121 DOI: 10.3389/fcell.2022.1046617] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/31/2022] [Indexed: 11/25/2022] Open
Abstract
Cytokinetic abscission leads to the physical cut of the intercellular bridge (ICB) connecting the daughter cells and concludes cell division. In different animal cells, it is well established that the ESCRT-III machinery is responsible for the constriction and scission of the ICB. Here, we review the mechanical context of abscission. We first summarize the evidence that the ICB is initially under high tension and explain why, paradoxically, this can inhibit abscission in epithelial cells by impacting on ESCRT-III assembly. We next detail the different mechanisms that have been recently identified to release ICB tension and trigger abscission. Finally, we discuss whether traction-induced mechanical cell rupture could represent an ancient alternative mechanism of abscission and suggest future research avenues to further understand the role of mechanics in regulating abscission.
Collapse
Affiliation(s)
- Virginia Andrade
- CNRS UMR3691, Membrane Traffic and Cell Division Unit, Institut Pasteur, Université Paris Cité, Paris, France,Collège Doctoral, Sorbonne Université, Paris, France
| | - Arnaud Echard
- CNRS UMR3691, Membrane Traffic and Cell Division Unit, Institut Pasteur, Université Paris Cité, Paris, France,*Correspondence: Arnaud Echard,
| |
Collapse
|
23
|
Ibata N, Terentjev EM. Nucleation of cadherin clusters on cell-cell interfaces. Sci Rep 2022; 12:18485. [PMID: 36323859 PMCID: PMC9630535 DOI: 10.1038/s41598-022-23220-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 10/27/2022] [Indexed: 12/05/2022] Open
Abstract
Cadherins mediate cell-cell adhesion and help the cell determine its shape and function. Here we study collective cadherin organization and interactions within cell-cell contact areas, and find the cadherin density at which a 'gas-liquid' phase transition occurs, when cadherin monomers begin to aggregate into dense clusters. We use a 2D lattice model of a cell-cell contact area, and coarse-grain to the continuous number density of cadherin to map the model onto the Cahn-Hilliard coarsening theory. This predicts the density required for nucleation, the characteristic length scale of the process, and the number density of clusters. The analytical predictions of the model are in good agreement with experimental observations of cadherin clustering in epithelial tissues.
Collapse
Affiliation(s)
- Neil Ibata
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE UK
| | - Eugene M. Terentjev
- grid.5335.00000000121885934Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE UK
| |
Collapse
|
24
|
Osswald M, Barros-Carvalho A, Carmo AM, Loyer N, Gracio PC, Sunkel CE, Homem CCF, Januschke J, Morais-de-Sá E. aPKC regulates apical constriction to prevent tissue rupture in the Drosophila follicular epithelium. Curr Biol 2022; 32:4411-4427.e8. [PMID: 36113470 PMCID: PMC9632327 DOI: 10.1016/j.cub.2022.08.063] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 07/14/2022] [Accepted: 08/22/2022] [Indexed: 01/02/2023]
Abstract
Apical-basal polarity is an essential epithelial trait controlled by the evolutionarily conserved PAR-aPKC polarity network. Dysregulation of polarity proteins disrupts tissue organization during development and in disease, but the underlying mechanisms are unclear due to the broad implications of polarity loss. Here, we uncover how Drosophila aPKC maintains epithelial architecture by directly observing tissue disorganization after fast optogenetic inactivation in living adult flies and ovaries cultured ex vivo. We show that fast aPKC perturbation in the proliferative follicular epithelium produces large epithelial gaps that result from increased apical constriction, rather than loss of apical-basal polarity. Accordingly, we can modulate the incidence of epithelial gaps by increasing and decreasing actomyosin-driven contractility. We traced the origin of these large epithelial gaps to tissue rupture next to dividing cells. Live imaging shows that aPKC perturbation induces apical constriction in non-mitotic cells within minutes, producing pulling forces that ultimately detach dividing and neighboring cells. We further demonstrate that epithelial rupture requires a global increase of apical constriction, as it is prevented by the presence of non-constricting cells. Conversely, a global induction of apical tension through light-induced recruitment of RhoGEF2 to the apical side is sufficient to produce tissue rupture. Hence, our work reveals that the roles of aPKC in polarity and actomyosin regulation are separable and provides the first in vivo evidence that excessive tissue stress can break the epithelial barrier during proliferation.
Collapse
Affiliation(s)
- Mariana Osswald
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - André Barros-Carvalho
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana M Carmo
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Nicolas Loyer
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD5 1EH, UK
| | - Patricia C Gracio
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1150-199 Lisbon, Portugal
| | - Claudio E Sunkel
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal
| | - Catarina C F Homem
- iNOVA4Health, CEDOC, NOVA Medical School, NMS, Universidade Nova de Lisboa, 1150-199 Lisbon, Portugal
| | - Jens Januschke
- Cell and Developmental Biology, School of Life Sciences, University of Dundee, Dow Street, Dundee DD5 1EH, UK
| | - Eurico Morais-de-Sá
- IBMC - Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal; Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, 4200-135 Porto, Portugal.
| |
Collapse
|
25
|
Villars A, Matamoro-Vidal A, Levillayer F, Levayer R. Microtubule disassembly by caspases is an important rate-limiting step of cell extrusion. Nat Commun 2022; 13:3632. [PMID: 35752632 PMCID: PMC9233712 DOI: 10.1038/s41467-022-31266-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 06/10/2022] [Indexed: 11/16/2022] Open
Abstract
The expulsion of dying epithelial cells requires well-orchestrated remodelling steps to maintain tissue sealing. This process, named cell extrusion, has been mostly analysed through the study of actomyosin regulation. Yet, the mechanistic relationship between caspase activation and cell extrusion is still poorly understood. Using the Drosophila pupal notum, a single layer epithelium where extrusions are caspase-dependent, we showed that the initiation of cell extrusion and apical constriction are surprisingly not associated with the modulation of actomyosin concentration and dynamics. Instead, cell apical constriction is initiated by the disassembly of a medio-apical mesh of microtubules which is driven by effector caspases. Importantly, the depletion of microtubules is sufficient to bypass the requirement of caspases for cell extrusion, while microtubule stabilisation strongly impairs cell extrusion. This study shows that microtubules disassembly by caspases is a key rate-limiting step of extrusion, and outlines a more general function of microtubules in epithelial cell shape stabilisation. Using the Drosophila pupal notum, the authors demonstrate that the disassembly of microtubules by effector caspases initiate cell extrusion independently of actomyosin regulation, thus providing insights into how caspases orchestrate dying epithelial cell expulsion.
Collapse
Affiliation(s)
- Alexis Villars
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr. Roux, 75015, Paris, France.,Sorbonne Université, Collège Doctoral, F75005, Paris, France
| | - Alexis Matamoro-Vidal
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr. Roux, 75015, Paris, France
| | - Florence Levillayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr. Roux, 75015, Paris, France
| | - Romain Levayer
- Department of Developmental and Stem Cell Biology, Institut Pasteur, Université de Paris Cité, CNRS UMR 3738, 25 rue du Dr. Roux, 75015, Paris, France.
| |
Collapse
|
26
|
Martin E, Suzanne M. Functions of Arp2/3 Complex in the Dynamics of Epithelial Tissues. Front Cell Dev Biol 2022; 10:886288. [PMID: 35557951 PMCID: PMC9089454 DOI: 10.3389/fcell.2022.886288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/01/2022] [Indexed: 11/13/2022] Open
Abstract
Epithelia are sheets of cells that communicate and coordinate their behavior in order to ensure their barrier function. Among the plethora of proteins involved in epithelial dynamics, actin nucleators play an essential role. The branched actin nucleation complex Arp2/3 has numerous functions, such as the regulation of cell-cell adhesion, intracellular trafficking, the formation of protrusions, that have been well described at the level of individual cells. Here, we chose to focus on its role in epithelial tissue, which is rising attention in recent works. We discuss how the cellular activities of the Arp2/3 complex drive epithelial dynamics and/or tissue morphogenesis. In the first part, we examined how this complex influences cell-cell cooperation at local scale in processes such as cell-cell fusion or cell corpses engulfment. In the second part, we summarized recent papers dealing with the impact of the Arp2/3 complex at larger scale, focusing on different morphogenetic events, including cell intercalation, epithelial tissue closure and epithelial folding. Altogether, this review highlights the central role of Arp2/3 in a diversity of epithelial tissue reorganization.
Collapse
Affiliation(s)
- Emmanuel Martin
- Molecular, Cellular and Developmental Biology (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France.,FR3743 Centre de Biologie Intégrative (CBI), Toulouse, France
| | - Magali Suzanne
- Molecular, Cellular and Developmental Biology (MCD), Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, Toulouse, France.,FR3743 Centre de Biologie Intégrative (CBI), Toulouse, France
| |
Collapse
|
27
|
Cell size and polarization determine cytokinesis furrow ingression dynamics in mouse embryos. Proc Natl Acad Sci U S A 2022; 119:e2119381119. [PMID: 35294282 PMCID: PMC8944651 DOI: 10.1073/pnas.2119381119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The final step of cell division, termed cytokinesis, comprises the constriction of a furrow that divides the cytoplasm to form two daughter cells. Although cytokinesis is well studied in traditional cell systems, how cytokinesis is regulated in complex multicellular settings and during cell-fate decisions is less well understood. Here, using live imaging and physical and molecular interventions, we find that the emergence of cell polarity during mouse embryo morphogenesis dramatically impacts cytokinesis mechanisms. Specifically, the assembly of the apical domain in outer cells locally inhibits the cytokinetic machinery, leading to an unexpected laterally biased cytokinesis. Cytokinesis is the final step of cell division during which a contractile ring forms a furrow that partitions the cytoplasm in two. How furrow ingression is spatiotemporally regulated and how it is adapted to complex cellular environments and developmental transitions remain poorly understood. Here, we examine furrow ingression dynamics in the context of the early mouse embryo and find that cell size is a powerful determinant of furrow ingression speed during reductive cell divisions. In addition, the emergence of cell polarity and the assembly of the apical domain in outer cells locally inhibits the recruitment of cytokinesis components and thereby negatively regulates furrow ingression specifically on one side of the furrow. We show that this biasing of cytokinesis is not dependent upon cell–cell adhesion or shape but rather is cell intrinsic and is caused by a paucity of cytokinetic machinery in the apical domain. The results thus reveal that in the mouse embryo cell polarity directly regulates the recruitment of cytokinetic machinery in a cell-autonomous manner and that subcellular organization can instigate differential force generation and constriction speed in different zones of the cytokinetic furrow.
Collapse
|
28
|
Sugioka K. Symmetry-breaking of animal cytokinesis. Semin Cell Dev Biol 2021; 127:100-109. [PMID: 34955355 DOI: 10.1016/j.semcdb.2021.12.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 12/05/2021] [Accepted: 12/16/2021] [Indexed: 12/24/2022]
Abstract
Cytokinesis is a mechanism that separates dividing cells via constriction of a supramolecular structure, the contractile ring. In animal cells, three modes of symmetry-breaking of cytokinesis result in unilateral cytokinesis, asymmetric cell division, and oriented cell division. Each mode of cytokinesis plays a significant role in tissue patterning and morphogenesis by the mechanisms that control the orientation and position of the contractile ring relative to the body axis. Despite its significance, the mechanisms involved in the symmetry-breaking of cytokinesis remain unclear in many cell types. Classical embryologists have identified that the geometric relationship between the mitotic spindle and cell cortex induces cytokinesis asymmetry; however, emerging evidence suggests that a concerted flow of compressional cell-cortex materials (cortical flow) is a spindle-independent driving force in spatial cytokinesis control. This review provides an overview of both classical and emerging mechanisms of cytokinesis asymmetry and their roles in animal development.
Collapse
Affiliation(s)
- Kenji Sugioka
- Life Sciences Institute, The University of British Columbia, Vancouver, BC V6T1Z3, Canada; Department of Zoology, The University of British Columbia, Vancouver, BC V6T1Z3, Canada.
| |
Collapse
|
29
|
di Pietro F, Herszterg S, Huang A, Bosveld F, Alexandre C, Sancéré L, Pelletier S, Joudat A, Kapoor V, Vincent JP, Bellaïche Y. Rapid and robust optogenetic control of gene expression in Drosophila. Dev Cell 2021; 56:3393-3404.e7. [PMID: 34879263 PMCID: PMC8693864 DOI: 10.1016/j.devcel.2021.11.016] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/13/2021] [Accepted: 11/15/2021] [Indexed: 11/28/2022]
Abstract
Deciphering gene function requires the ability to control gene expression in space and time. Binary systems such as the Gal4/UAS provide a powerful means to modulate gene expression and to induce loss or gain of function. This is best exemplified in Drosophila, where the Gal4/UAS system has been critical to discover conserved mechanisms in development, physiology, neurobiology, and metabolism, to cite a few. Here we describe a transgenic light-inducible Gal4/UAS system (ShineGal4/UAS) based on Magnet photoswitches. We show that it allows efficient, rapid, and robust activation of UAS-driven transgenes in different tissues and at various developmental stages in Drosophila. Furthermore, we illustrate how ShineGal4 enables the generation of gain and loss-of-function phenotypes at animal, organ, and cellular levels. Thanks to the large repertoire of UAS-driven transgenes, ShineGal4 enriches the Drosophila genetic toolkit by allowing in vivo control of gene expression with high temporal and spatial resolutions.
Collapse
Affiliation(s)
- Florencia di Pietro
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France
| | | | - Anqi Huang
- Francis Crick Institute, 1 Midland Rd, London NW1 1AT, UK
| | - Floris Bosveld
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France
| | | | - Lucas Sancéré
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Stéphane Pelletier
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Amina Joudat
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France
| | - Varun Kapoor
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France
| | | | - Yohanns Bellaïche
- Institut Curie, Université PSL, Sorbonne Université, CNRS UMR 3215, Inserm U934, Genetics and Developmental Biology, 75005 Paris, France.
| |
Collapse
|
30
|
Houssin E, Pinot M, Bellec K, Le Borgne R. Par3 cooperates with Sanpodo for the assembly of Notch clusters following asymmetric division of Drosophila sensory organ precursor cells. eLife 2021; 10:e66659. [PMID: 34596529 PMCID: PMC8516416 DOI: 10.7554/elife.66659] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 09/25/2021] [Indexed: 12/15/2022] Open
Abstract
In multiple cell lineages, Delta-Notch signalling regulates cell fate decisions owing to unidirectional signalling between daughter cells. In Drosophila pupal sensory organ lineage, Notch regulates the intra-lineage pIIa/pIIb fate decision at cytokinesis. Notch and Delta that localise apically and basally at the pIIa-pIIb interface are expressed at low levels and their residence time at the plasma membrane is in the order of minutes. How Delta can effectively interact with Notch to trigger signalling from a large plasma membrane area remains poorly understood. Here, we report that the signalling interface possesses a unique apico-basal polarity with Par3/Bazooka localising in the form of nano-clusters at the apical and basal level. Notch is preferentially targeted to the pIIa-pIIb interface, where it co-clusters with Bazooka and its cofactor Sanpodo. Clusters whose assembly relies on Bazooka and Sanpodo activities are also positive for Neuralized, the E3 ligase required for Delta activity. We propose that the nano-clusters act as snap buttons at the new pIIa-pIIb interface to allow efficient intra-lineage signalling.
Collapse
Affiliation(s)
- Elise Houssin
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F- 35000RennesFrance
- Equipe Labellisée Ligue Nationale contre le cancerGlasgowUnited Kingdom
| | - Mathieu Pinot
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F- 35000RennesFrance
- Equipe Labellisée Ligue Nationale contre le cancerGlasgowUnited Kingdom
| | - Karen Bellec
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F- 35000RennesFrance
- Equipe Labellisée Ligue Nationale contre le cancerGlasgowUnited Kingdom
| | - Roland Le Borgne
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes) - UMR 6290, F- 35000RennesFrance
- Equipe Labellisée Ligue Nationale contre le cancerGlasgowUnited Kingdom
| |
Collapse
|
31
|
Gorfinkiel N, Martinez Arias A. The cell in the age of the genomic revolution: Cell Regulatory Networks. Cells Dev 2021; 168:203720. [PMID: 34252599 DOI: 10.1016/j.cdev.2021.203720] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/05/2021] [Accepted: 07/07/2021] [Indexed: 12/30/2022]
Abstract
Over the last few years an intense activity in the areas of advanced microscopy and quantitative cell biology has put the focus on the morphogenetic events that shape embryos. The interest in these processes is taking place against the backdrop of genomic studies, particularly of global patterns of gene expression at the level of single cells, which cannot fully account for the way cells build tissues and organs. Here we discuss the need to integrate the activity of genes with that of cells and propose the need to develop a framework, based on cellular processes and cell interactions, that parallels that which has been created for gene activity in the form of Gene Regulatory Networks (GRNs). We begin to do this by suggesting elements for building Cell Regulatory Networks (CRNs). In the same manner that GRNs create schedules of gene expression that result in the emergence of cell fates over time, CRNs create tissues and organs i.e. space. We also suggest how GRNs and CRNs might interact in the building of embryos through feedback loops involving mechanics and tissue tectonics.
Collapse
Affiliation(s)
- Nicole Gorfinkiel
- Departamento de Genética, Fisiología y Microbiología, Facultad de CC Biológicas, Universidad Complutense, José Antonio Nováis 12, Madrid, Spain.
| | - Alfonso Martinez Arias
- Systems Bioengineering, DCEXS, Universidad Pompeu Fabra, ICREA (Institució Catalana de Recerca i Estudis Avançats), Doctor Aiguader 88, Pg. Lluís Companys 23, Barcelona, Spain.
| |
Collapse
|
32
|
Sallee MD, Pickett MA, Feldman JL. Apical PAR complex proteins protect against programmed epithelial assaults to create a continuous and functional intestinal lumen. eLife 2021; 10:64437. [PMID: 34137371 PMCID: PMC8245128 DOI: 10.7554/elife.64437] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Accepted: 06/16/2021] [Indexed: 12/16/2022] Open
Abstract
Sustained polarity and adhesion of epithelial cells is essential for the protection of our organs and bodies, and this epithelial integrity emerges during organ development amidst numerous programmed morphogenetic assaults. Using the developing Caenorhabditis elegans intestine as an in vivo model, we investigated how epithelia maintain their integrity through cell division and elongation to build a functional tube. Live imaging revealed that apical PAR complex proteins PAR-6/Par6 and PKC-3/aPkc remained apical during mitosis while apical microtubules and microtubule-organizing center (MTOC) proteins were transiently removed. Intestine-specific depletion of PAR-6, PKC-3, and the aPkc regulator CDC-42/Cdc42 caused persistent gaps in the apical MTOC as well as in other apical and junctional proteins after cell division and in non-dividing cells that elongated. Upon hatching, gaps coincided with luminal constrictions that blocked food, and larvae arrested and died. Thus, the apical PAR complex maintains apical and junctional continuity to construct a functional intestinal tube.
Collapse
|
33
|
The morphogenetic changes that lead to cell extrusion in development and cell competition. Dev Biol 2021; 477:1-10. [PMID: 33984304 DOI: 10.1016/j.ydbio.2021.05.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 04/28/2021] [Accepted: 05/05/2021] [Indexed: 12/30/2022]
Abstract
Cell extrusion is a morphogenetic process in which unfit or dying cells are eliminated from the tissue at the interface with healthy neighbours in homeostasis. This process is also highly associated with cell fate specification followed by differentiation in development. Spontaneous cell death occurs in development and inhibition of this process can result in abnormal development, suggesting that survival or death is part of cell fate specification during morphogenesis. Moreover, spontaneous somatic mutations in oncogenes or tumour suppressor genes can trigger new morphogenetic events at the interface with healthy cells. Cell competition is considered as the global quality control mechanism for causing unfit cells to be eliminated at the interface with healthy neighbours in proliferating tissues. In this review, I will discuss variations of cell extrusion that are coordinated by unfit cells and healthy neighbours in relation to the geometry and topology of the tissue in development and cell competition.
Collapse
|
34
|
Shard C, Luna-Escalante J, Schweisguth F. Tissue-wide coordination of epithelium-to-neural stem cell transition in the Drosophila optic lobe requires Neuralized. J Cell Biol 2021; 219:152101. [PMID: 32946560 PMCID: PMC7594497 DOI: 10.1083/jcb.202005035] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 08/06/2020] [Accepted: 08/17/2020] [Indexed: 12/15/2022] Open
Abstract
Many tissues are produced by specialized progenitor cells emanating from epithelia via epithelial-to-mesenchymal transition (EMT). Most studies have so far focused on EMT involving single or isolated groups of cells. Here we describe an EMT-like process that requires tissue-level coordination. This EMT-like process occurs along a continuous front in the Drosophila optic lobe neuroepithelium to produce neural stem cells (NSCs). We find that emerging NSCs remain epithelial and apically constrict before dividing asymmetrically to produce neurons. Apical constriction is associated with contractile myosin pulses and involves RhoGEF3 and down-regulation of the Crumbs complex by the E3 ubiquitin ligase Neuralized. Anisotropy in Crumbs complex levels also results in accumulation of junctional myosin. Disrupting the regulation of Crumbs by Neuralized lowered junctional myosin and led to imprecision in the integration of emerging NSCs into the front. Thus, Neuralized promotes smooth progression of the differentiation front by coupling epithelium remodeling at the tissue level with NSC fate acquisition.
Collapse
Affiliation(s)
- Chloé Shard
- Institut Pasteur, Paris, France.,UMR3738, Centre National de la Recherche Scientifique, Paris, France
| | - Juan Luna-Escalante
- Institut Pasteur, Paris, France.,UMR3738, Centre National de la Recherche Scientifique, Paris, France.,Laboratoire de Physique, Ecole Normale Supérieure, Centre National de la Recherche Scientifique, Sorbonne Université, Université Paris Diderot, Paris, France
| | - François Schweisguth
- Institut Pasteur, Paris, France.,UMR3738, Centre National de la Recherche Scientifique, Paris, France
| |
Collapse
|
35
|
Willoughby PM, Allen M, Yu J, Korytnikov R, Chen T, Liu Y, So I, Macpherson N, Mitchell JA, Fernandez-Gonzalez R, Bruce AE. The recycling endosome protein Rab25 coordinates collective cell movements in the zebrafish surface epithelium. eLife 2021; 10:66060. [PMID: 33755014 PMCID: PMC8034978 DOI: 10.7554/elife.66060] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Accepted: 03/22/2021] [Indexed: 12/16/2022] Open
Abstract
In emerging epithelial tissues, cells undergo dramatic rearrangements to promote tissue shape changes. Dividing cells remain interconnected via transient cytokinetic bridges. Bridges are cleaved during abscission and currently, the consequences of disrupting abscission in developing epithelia are not well understood. We show that the Rab GTPase Rab25 localizes near cytokinetic midbodies and likely coordinates abscission through endomembrane trafficking in the epithelium of the zebrafish gastrula during epiboly. In maternal-zygotic Rab25a and Rab25b mutant embryos, morphogenic activity tears open persistent apical cytokinetic bridges that failed to undergo timely abscission. Cytokinesis defects result in anisotropic cell morphologies that are associated with a reduction of contractile actomyosin networks. This slows cell rearrangements and alters the viscoelastic responses of the tissue, all of which likely contribute to delayed epiboly. We present a model in which Rab25 trafficking coordinates cytokinetic bridge abscission and cortical actin density, impacting local cell shape changes and tissue-scale forces.
Collapse
Affiliation(s)
| | - Molly Allen
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Jessica Yu
- Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Roman Korytnikov
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Tianhui Chen
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Yupeng Liu
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Isis So
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Neil Macpherson
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Jennifer A Mitchell
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| | - Rodrigo Fernandez-Gonzalez
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada.,Ted Rogers Centre for Heart Research, Translational Biology and Engineering Program, University of Toronto, Toronto, Canada.,Institute of Biomaterials and Biomedical Engineering, University of Toronto, Toronto, Canada
| | - Ashley Ee Bruce
- Department of Cell and Systems Biology, University of Toronto, Toronto, Canada
| |
Collapse
|
36
|
Hatte G, Prigent C, Tassan JP. Adherens junctions are involved in polarized contractile ring formation in dividing epithelial cells of Xenopus laevis embryos. Exp Cell Res 2021; 402:112525. [PMID: 33662366 DOI: 10.1016/j.yexcr.2021.112525] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 02/12/2021] [Accepted: 02/15/2021] [Indexed: 01/02/2023]
Abstract
Cells dividing in the plane of epithelial tissues proceed by polarized constriction of the actomyosin contractile ring, leading to asymmetric ingression of the plasma mem brane. Asymmetric cytokinesis results in the apical positioning of the actomyosin contractile ring and ultimately of the midbody. Studies have indicated that the contractile ring is associated with adherens junctions, whose role is to maintain epithelial tissue cohesion. However, it is yet unknown when the contractile ring becomes associated with adherens junctions in epithelial cells. Here, we examined contractile ring formation and activation in the epithelium of Xenopus embryos and explored the implication of adherens junctions in the contractile ring formation. We show that accumulation of proteins involved in contractile ring formation and activation is polarized, starting at apical cell-cell contacts at the presumptive division site and spreading within seconds towards the cell basal side. We also show that adherens junctions are involved in the kinetics of contractile ring formation. Our study reveals that the link between the adherens junctions and the contractile ring is established from the onset of cytokinesis.
Collapse
Affiliation(s)
- Guillaume Hatte
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, 2 Avenue Du Professeur Leon Bernard, 35000, Rennes, France
| | - Claude Prigent
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, 2 Avenue Du Professeur Leon Bernard, 35000, Rennes, France; Centre de Recherche de Biologie Cellulaire de Montpellier (CRBM), University of Montpellier, CNRS, 34293, Montpellier, France
| | - Jean-Pierre Tassan
- Univ Rennes, CNRS, IGDR (Institut de Génétique et Développement de Rennes), UMR 6290, 2 Avenue Du Professeur Leon Bernard, 35000, Rennes, France.
| |
Collapse
|
37
|
Magliozzi JO, Moseley JB. Connecting cell polarity signals to the cytokinetic machinery in yeast and metazoan cells. Cell Cycle 2021; 20:1-10. [PMID: 33397181 DOI: 10.1080/15384101.2020.1864941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
Polarized growth and cytokinesis are two fundamental cellular processes that exist in virtually all cell types. Mechanisms for asymmetric distribution of materials allow for cells to grow in a polarized manner. This gives rise to a variety of cell shapes seen throughout all cell types. Following polarized growth during interphase, dividing cells assemble a cytokinetic ring containing the protein machinery to constrict and separate daughter cells. Here, we discuss how cell polarity signaling pathways act on cytokinesis, with a focus on direct regulation of the contractile actomyosin ring (CAR). Recent studies have exploited phosphoproteomics to identify new connections between cell polarity kinases and CAR proteins. Existing evidence suggests that some polarity kinases guide the local organization of CAR proteins and structures while also contributing to global organization of the division plane within a cell. We provide several examples of this regulation from budding yeast, fission yeast, and metazoan cells. In some cases, kinase-substrate connections point to conserved processes in these different organisms. We point to several examples where future work can indicate the degree of conservation and divergence in the cell division process of these different organisms.
Collapse
Affiliation(s)
- Joseph O Magliozzi
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth , Hanover, New Hampshire, USA
| | - James B Moseley
- Department of Biochemistry and Cell Biology, The Geisel School of Medicine at Dartmouth , Hanover, New Hampshire, USA
| |
Collapse
|
38
|
Symonds AC, Buckley CE, Williams CA, Clarke JDW. Coordinated assembly and release of adhesions builds apical junctional belts during de novo polarisation of an epithelial tube. Development 2020; 147:dev191494. [PMID: 33361092 PMCID: PMC7774892 DOI: 10.1242/dev.191494] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Accepted: 10/28/2020] [Indexed: 01/05/2023]
Abstract
Using the zebrafish neural tube as a model, we uncover the in vivo mechanisms allowing the generation of two opposing apical epithelial surfaces within the centre of an initially unpolarised, solid organ. We show that Mpp5a and Rab11a play a dual role in coordinating the generation of ipsilateral junctional belts whilst simultaneously releasing contralateral adhesions across the centre of the tissue. We show that Mpp5a- and Rab11a-mediated resolution of cell-cell adhesions are both necessary for midline lumen opening and contribute to later maintenance of epithelial organisation. We propose that these roles for both Mpp5a and Rab11a operate through the transmembrane protein Crumbs. In light of a recent conflicting publication, we also clarify that the junction-remodelling role of Mpp5a is not specific to dividing cells.
Collapse
Affiliation(s)
- Andrew C Symonds
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Clare E Buckley
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London SE1 1UL, UK
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3BY, UK
| | - Charlotte A Williams
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London SE1 1UL, UK
| | - Jonathan D W Clarke
- Centre for Developmental Neurobiology, Institute of Psychiatry, Psychology and Neuroscience, King's College London, Guy's Campus, London SE1 1UL, UK
| |
Collapse
|
39
|
López-Gay JM, Nunley H, Spencer M, di Pietro F, Guirao B, Bosveld F, Markova O, Gaugue I, Pelletier S, Lubensky DK, Bellaïche Y. Apical stress fibers enable a scaling between cell mechanical response and area in epithelial tissue. Science 2020; 370:370/6514/eabb2169. [PMID: 33060329 DOI: 10.1126/science.abb2169] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2020] [Accepted: 08/13/2020] [Indexed: 12/14/2022]
Abstract
Biological systems tailor their properties and behavior to their size throughout development and in numerous aspects of physiology. However, such size scaling remains poorly understood as it applies to cell mechanics and mechanosensing. By examining how the Drosophila pupal dorsal thorax epithelium responds to morphogenetic forces, we found that the number of apical stress fibers (aSFs) anchored to adherens junctions scales with cell apical area to limit larger cell elongation under mechanical stress. aSFs cluster Hippo pathway components, thereby scaling Hippo signaling and proliferation with area. This scaling is promoted by tricellular junctions mediating an increase in aSF nucleation rate and lifetime in larger cells. Development, homeostasis, and repair entail epithelial cell size changes driven by mechanical forces; our work highlights how, in turn, mechanosensitivity scales with cell size.
Collapse
Affiliation(s)
- Jesús M López-Gay
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005 Paris, France
| | - Hayden Nunley
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA
| | - Meryl Spencer
- Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Florencia di Pietro
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005 Paris, France
| | - Boris Guirao
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005 Paris, France
| | - Floris Bosveld
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005 Paris, France
| | - Olga Markova
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005 Paris, France
| | - Isabelle Gaugue
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005 Paris, France
| | - Stéphane Pelletier
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France.,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005 Paris, France
| | - David K Lubensky
- Biophysics Program, University of Michigan, Ann Arbor, MI 48109, USA. .,Department of Physics, University of Michigan, Ann Arbor, MI 48109, USA
| | - Yohanns Bellaïche
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France. .,Sorbonne Universités, UPMC Univ Paris 06, CNRS, CNRS UMR 3215, INSERM U934, F-75005 Paris, France
| |
Collapse
|
40
|
Interplay between Anakonda, Gliotactin, and M6 for Tricellular Junction Assembly and Anchoring of Septate Junctions in Drosophila Epithelium. Curr Biol 2020; 30:4245-4253.e4. [PMID: 32857971 DOI: 10.1016/j.cub.2020.07.090] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 07/27/2020] [Accepted: 07/29/2020] [Indexed: 11/22/2022]
Abstract
In epithelia, tricellular junctions (TCJs) serve as pivotal sites for barrier function and integration of both biochemical and mechanical signals [1-3]. In Drosophila, TCJs are composed of the transmembrane protein Sidekick at the adherens junction (AJ) level, which plays a role in cell-cell contact rearrangement [4-6]. At the septate junction (SJ) level, TCJs are formed by Gliotactin (Gli) [7], Anakonda (Aka) [8, 9], and the Myelin proteolipid protein (PLP) M6 [10, 11]. Despite previous data on TCJ organization [12-14], TCJ assembly, composition, and links to adjacent bicellular junctions (BCJs) remain poorly understood. Here, we have characterized the making of TCJs within the plane of adherens junctions (tricellular adherens junction [tAJ]) and the plane of septate junctions (tricellular septate junction [tSJ]) and report that their assembly is independent of each other. Aka and M6, whose localizations are interdependent, act upstream to localize Gli. In turn, Gli stabilizes Aka at tSJ. Moreover, tSJ components are not only essential at vertex, as we found that loss of tSJ integrity induces micron-length bicellular SJ (bSJ) deformations. This phenotype is associated with the disappearance of SJ components at tricellular contacts, indicating that bSJs are no longer connected to tSJs. Reciprocally, SJ components are required to restrict the localization of Aka and Gli at vertex. We propose that tSJs function as pillars to anchor bSJs to ensure the maintenance of tissue integrity in Drosophila proliferative epithelia.
Collapse
|
41
|
Ventura G, Moreira S, Barros-Carvalho A, Osswald M, Morais-de-Sá E. Lgl cortical dynamics are independent of binding to the Scrib-Dlg complex but require Dlg-dependent restriction of aPKC. Development 2020; 147:dev.186593. [PMID: 32665243 DOI: 10.1242/dev.186593] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Accepted: 07/02/2020] [Indexed: 01/06/2023]
Abstract
Apical-basal polarity underpins the formation of epithelial barriers that are crucial for metazoan physiology. Although apical-basal polarity is long known to require the basolateral determinants Lethal Giant Larvae (Lgl), Discs Large (Dlg) and Scribble (Scrib), mechanistic understanding of their function is limited. Lgl plays a role as an aPKC inhibitor, but it remains unclear whether Lgl also forms complexes with Dlg or Scrib. Using fluorescence recovery after photobleaching, we show that Lgl does not form immobile complexes at the lateral domain of Drosophila follicle cells. Optogenetic depletion of plasma membrane PIP2 or dlg mutants accelerate Lgl cortical dynamics. However, Dlg and Scrib are required only for Lgl localization and dynamic behavior in the presence of aPKC function. Furthermore, light-induced oligomerization of basolateral proteins indicates that Lgl is not part of the Scrib-Dlg complex in the follicular epithelium. Thus, Scrib and Dlg are necessary to repress aPKC activity in the lateral domain but do not provide cortical binding sites for Lgl. Our work therefore highlights that Lgl does not act in a complex but in parallel with Scrib-Dlg to antagonize apical determinants.
Collapse
Affiliation(s)
- Guilherme Ventura
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto) and IBMC (Instituto de Biologia Molecular e Celular), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Sofia Moreira
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto) and IBMC (Instituto de Biologia Molecular e Celular), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - André Barros-Carvalho
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto) and IBMC (Instituto de Biologia Molecular e Celular), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Mariana Osswald
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto) and IBMC (Instituto de Biologia Molecular e Celular), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| | - Eurico Morais-de-Sá
- i3S (Instituto de Investigação e Inovação em Saúde, Universidade do Porto) and IBMC (Instituto de Biologia Molecular e Celular), Rua Alfredo Allen, 208, 4200-135 Porto, Portugal
| |
Collapse
|
42
|
Ponte S, Carvalho L, Gagliardi M, Campos I, Oliveira PJ, Jacinto A. Drp1-mediated mitochondrial fission regulates calcium and F-actin dynamics during wound healing. Biol Open 2020; 9:bio048629. [PMID: 32184231 PMCID: PMC7225088 DOI: 10.1242/bio.048629] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/09/2020] [Indexed: 12/15/2022] Open
Abstract
Mitochondria adapt to cellular needs by changes in morphology through fusion and fission events, referred to as mitochondrial dynamics. Mitochondrial function and morphology are intimately connected and the dysregulation of mitochondrial dynamics is linked to several human diseases. In this work, we investigated the role of mitochondrial dynamics in wound healing in the Drosophila embryonic epidermis. Mutants for mitochondrial fusion and fission proteins fail to close their wounds, indicating that the regulation of mitochondrial dynamics is required for wound healing. By live-imaging, we found that loss of function of the mitochondrial fission protein Dynamin-related protein 1 (Drp1) compromises the increase of cytosolic and mitochondrial calcium upon wounding and leads to reduced reactive oxygen species (ROS) production and F-actin defects at the wound edge, culminating in wound healing impairment. Our results highlight a new role for mitochondrial dynamics in the regulation of calcium, ROS and F-actin during epithelial repair.
Collapse
Affiliation(s)
- Susana Ponte
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Lara Carvalho
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Maria Gagliardi
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| | - Isabel Campos
- Animal Platforms, Champalimaud Centre for the Unknown, 1400-038 Lisboa, Portugal
| | - Paulo J Oliveira
- CNC, Center for Neuroscience and Cell Biology, University of Coimbra, UC Biotech Building, 3060-197 Cantanhede, Portugal
| | - António Jacinto
- CEDOC, Chronic Diseases Research Center, NOVA Medical School/Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal
| |
Collapse
|
43
|
Ko CS, Kalakuntla P, Martin AC. Apical Constriction Reversal upon Mitotic Entry Underlies Different Morphogenetic Outcomes of Cell Division. Mol Biol Cell 2020; 31:1663-1674. [PMID: 32129704 PMCID: PMC7521848 DOI: 10.1091/mbc.e19-12-0673] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
During development, coordinated cell shape changes and cell divisions sculpt tissues. While these individual cell behaviors have been extensively studied, how cell shape changes and cell divisions that occur concurrently in epithelia influence tissue shape is less understood. We addressed this question in two contexts of the early Drosophila embryo: premature cell division during mesoderm invagination, and native ectodermal cell divisions with ectopic activation of apical contractility. Using quantitative live-cell imaging, we demonstrated that mitotic entry reverses apical contractility by interfering with medioapical RhoA signaling. While premature mitotic entry inhibits mesoderm invagination, which relies on apical constriction, mitotic entry in an artificially contractile ectoderm induced ectopic tissue invaginations. Ectopic invaginations resulted from medioapical myosin loss in neighboring mitotic cells. This myosin loss enabled nonmitotic cells to apically constrict through mitotic cell stretching. Thus, the spatial pattern of mitotic entry can differentially regulate tissue shape through signal interference between apical contractility and mitosis.
Collapse
Affiliation(s)
- Clint S Ko
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Prateek Kalakuntla
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142
| |
Collapse
|
44
|
Abstract
Epithelial cells form highly organized polarized sheets with characteristic cell morphologies and tissue architecture. Cell–cell adhesion and intercellular communication are prerequisites of such cohesive sheets of cells, and cell connectivity is mediated through several junctional assemblies, namely desmosomes, adherens, tight and gap junctions. These cell–cell junctions form signalling hubs that not only mediate cell–cell adhesion but impact on multiple aspects of cell behaviour, helping to coordinate epithelial cell shape, polarity and function. This review will focus on the tight and adherens junctions, constituents of the apical junctional complex, and aims to provide a comprehensive overview of the complex signalling that underlies junction assembly, integrity and plasticity.
Collapse
Affiliation(s)
- Alexandra D Rusu
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| | - Marios Georgiou
- School of Life Sciences, University of Nottingham, Nottingham NG7 2UH, UK
| |
Collapse
|
45
|
Bai X, Melesse M, Sorensen Turpin CG, Sloan DE, Chen CY, Wang WC, Lee PY, Simmons JR, Nebenfuehr B, Mitchell D, Klebanow LR, Mattson N, Betzig E, Chen BC, Cheerambathur D, Bembenek JN. Aurora B functions at the apical surface after specialized cytokinesis during morphogenesis in C. elegans. Development 2020; 147:dev.181099. [PMID: 31806662 PMCID: PMC6983721 DOI: 10.1242/dev.181099] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022]
Abstract
Although cytokinesis has been intensely studied, the way it is executed during development is not well understood, despite a long-standing appreciation that various aspects of cytokinesis vary across cell and tissue types. To address this, we investigated cytokinesis during the invariant Caenorhabditis elegans embryonic divisions and found several parameters that are altered at different stages in a reproducible manner. During early divisions, furrow ingression asymmetry and midbody inheritance is consistent, suggesting specific regulation of these events. During morphogenesis, we found several unexpected alterations to cytokinesis, including apical midbody migration in polarizing epithelial cells of the gut, pharynx and sensory neurons. Aurora B kinase, which is essential for several aspects of cytokinesis, remains apically localized in each of these tissues after internalization of midbody ring components. Aurora B inactivation disrupts cytokinesis and causes defects in apical structures, even if inactivated post-mitotically. Therefore, we demonstrate that cytokinesis is implemented in a specialized way during epithelial polarization and that Aurora B has a role in the formation of the apical surface.
Collapse
Affiliation(s)
- Xiaofei Bai
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Michael Melesse
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | | | - Dillon E. Sloan
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Chin-Yi Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Wen-Cheng Wang
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - Po-Yi Lee
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan
| | - James R. Simmons
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Benjamin Nebenfuehr
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Diana Mitchell
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA
| | - Lindsey R. Klebanow
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Nicholas Mattson
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA
| | - Eric Betzig
- Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
| | - Bi-Chang Chen
- Research Center for Applied Sciences, Academia Sinica, Taipei, Taiwan,Janelia Research Campus, HHMI, Ashburn, VA 20147, USA
| | - Dhanya Cheerambathur
- Wellcome Centre for Cell Biology, University of Edinburgh, Edinburgh, EH9 3BF, UK
| | - Joshua N. Bembenek
- Department of Biochemistry, Cellular and Molecular Biology, University of Tennessee, Knoxville, TN 37996, USA,Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI 48109, USA,Author for correspondence ()
| |
Collapse
|
46
|
Chan FY, Silva AM, Carvalho AX. Using the Four-Cell C. elegans Embryo to Study Contractile Ring Dynamics During Cytokinesis. Methods Mol Biol 2020; 2101:297-325. [PMID: 31879911 DOI: 10.1007/978-1-0716-0219-5_18] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Cytokinesis is the process that completes cell division by partitioning the contents of the mother cell between the two daughter cells. It involves the highly regulated assembly and constriction of an actomyosin contractile ring, whose function is to pinch the mother cell in two. Research on the contractile ring has particularly focused on the signaling mechanisms that dictate when and where the ring is formed. In vivo studies of ring constriction are however scarce and its mechanistic understanding is therefore limited. Here we present several experimental approaches for monitoring ring constriction in vivo, using the four-cell C. elegans embryo as model. These approaches allow for the ring to be perturbed only after it forms and include the combination of live imaging with acute drug treatments, temperature-sensitive mutants and rapid temperature shifts, as well as laser microsurgery. In addition, we explain how to combine these with RNAi-mediated depletion of specific components of the cytokinetic machinery.
Collapse
Affiliation(s)
- Fung Yi Chan
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana Marta Silva
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal
| | - Ana Xavier Carvalho
- Instituto de Investigação e Inovação em Saúde (i3S), Universidade do Porto, Porto, Portugal.
- Instituto de Biologia Molecular e Celular (IBMC), Universidade do Porto, Porto, Portugal.
| |
Collapse
|
47
|
Dealing with apical–basal polarity and intercellular junctions: a multidimensional challenge for epithelial cell division. Curr Opin Cell Biol 2019; 60:75-83. [DOI: 10.1016/j.ceb.2019.04.006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 04/12/2019] [Accepted: 04/16/2019] [Indexed: 02/01/2023]
|
48
|
Dutta P, Odedra D, Pohl C. Planar Asymmetries in the C. elegans Embryo Emerge by Differential Retention of aPARs at Cell-Cell Contacts. Front Cell Dev Biol 2019; 7:209. [PMID: 31612135 PMCID: PMC6776615 DOI: 10.3389/fcell.2019.00209] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 09/11/2019] [Indexed: 01/08/2023] Open
Abstract
Formation of the anteroposterior and dorsoventral body axis in Caenorhabditis elegans depends on cortical flows and advection of polarity determinants. The role of this patterning mechanism in tissue polarization after formation of cell-cell contacts is not fully understood. Here, we demonstrate that planar asymmetries are established during left-right symmetry breaking: Centripetal cortical flows asymmetrically and differentially advect anterior polarity determinants (aPARs) from contacts to the medial cortex, resulting in their unmixing from apical myosin. Contact localization and advection of PAR-6 requires balanced CDC-42 activation, while asymmetric retention and advection of PAR-3 can occur independently of PAR-6. Concurrent asymmetric retention of PAR-3, E-cadherin/HMR-1 and opposing retention of antagonistic CDC-42 and Wnt pathway components leads to planar asymmetries. The most obvious mark of planar asymmetry, retention of PAR-3 at a single cell-cell contact, is required for proper cytokinetic cell intercalation. Hence, our data uncover how planar polarity is established in a system without the canonical planar cell polarity pathway through planar asymmetric retention of aPARs.
Collapse
Affiliation(s)
| | | | - Christian Pohl
- Medical Faculty, Buchmann Institute for Molecular Life Sciences, Institute of Biochemistry II, Goethe University, Frankfurt, Germany
| |
Collapse
|
49
|
Uechi H, Kuranaga E. The Tricellular Junction Protein Sidekick Regulates Vertex Dynamics to Promote Bicellular Junction Extension. Dev Cell 2019; 50:327-338.e5. [PMID: 31353316 DOI: 10.1016/j.devcel.2019.06.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Revised: 03/20/2019] [Accepted: 06/22/2019] [Indexed: 01/23/2023]
Abstract
Remodeling of cell-cell junctions drives cell intercalation that causes tissue movement during morphogenesis through the shortening and growth of bicellular junctions. The growth of new junctions is essential for continuing and then completing cellular dynamics and tissue shape sculpting; however, the mechanism underlying junction growth remains obscure. We investigated Drosophila genitalia rotation where continuous cell intercalation occurs to show that myosin II accumulating at the vertices of a new junction is required for the junction growth. This myosin II accumulation requires the adhesive transmembrane protein Sidekick (Sdk), which localizes to the adherens junctions (AJs) of tricellular contacts (tAJs). Sdk also localizes to and blocks the accumulation of E-Cadherin at newly formed growing junctions, which maintains the growth rate. We propose that Sdk facilitates tAJ movement by mediating myosin II-driven contraction and altering the adhesive properties at the tAJs, leading to cell-cell junction extension during persistent junction remodeling.
Collapse
Affiliation(s)
- Hiroyuki Uechi
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan
| | - Erina Kuranaga
- Laboratory for Histogenetic Dynamics, Graduate School of Life Sciences, Tohoku University, 6-3 Aramaki Aza-Aoba, Aoba-ku, Sendai 980-8578, Japan.
| |
Collapse
|
50
|
Activation of Arp2/3 by WASp Is Essential for the Endocytosis of Delta Only during Cytokinesis in Drosophila. Cell Rep 2019; 28:1-10.e3. [DOI: 10.1016/j.celrep.2019.06.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 04/26/2019] [Accepted: 06/04/2019] [Indexed: 12/11/2022] Open
|