1
|
Oda H, Nishiguchi S, Song C, Murata K, Uchihashi T, Suzuki Y. Nanoscale Visualization of Drosophila E-cadherin Ectodomain Fragments and Their Interactions Using DNA Origami Nanoblocks. J Mol Biol 2025; 437:168875. [PMID: 39581222 DOI: 10.1016/j.jmb.2024.168875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 11/03/2024] [Accepted: 11/18/2024] [Indexed: 11/26/2024]
Abstract
The adhesive function of cell surface proteins can be visually assessed through direct observation; however, the underlying structures that mediate adhesion typically remain invisible at the nanoscale level. This hinders knowledge on the diversity of molecular architectures responsible for cell-cell adhesion. Drosophila E-cadherin (DE-cadherin), a classical cadherin with a unique domain structure, demonstrates adhesive function; however, it lacks a structural model that explains its adhesion mechanism. Here, we present a novel application of DNA origami technology to create a cell-free, flat environment in which full DE-cadherin ectodomains are anchored using SNAP-tags and biotin-streptavidin interactions. DNA origami was assembled into a 120 nm long block, bearing 5 or 14 biotin:streptavidin sites that were evenly spaced on one lateral face. DE-cadherin ectodomain fragments were attached via biotinylated SNAP-tags. These decorated DNA origami nanoblocks were subjected to transmission electron and high-speed atomic force microscopy, which revealed a hinge-like site that separated the membrane-distal and -proximal portions of the DE-cadherin ectodomain, suggesting a role in mechanical flexibility. We also observed interactions between DE-cadherin ectodomains via their membrane-distal portions on single DNA origami nanoblocks. We reconstituted an adhesion-like process via pairing DNA origami nanoblocks using DE-cadherin ectodomain interactions. Homophilic associations of functional DE-cadherin ectodomains between the paired DNA origami nanoblocks were visualized at the nanoscale, displaying strand-like molecular configurations, likely representing the extracellular cadherin repeats without regular arrays of structural elements. This study introduces a DNA origami-based platform for reconstituting and visualizing cadherin ectodomain interactions, with potential applications for a broader range of adhesion molecules.
Collapse
Affiliation(s)
- Hiroki Oda
- Laboratory of Evolutionary Cell and Developmental Biology, JT Biohistory Research Hall, 1-1 Murasaki-cho, Takatsuki, Osaka 569-1125, Japan; Department of Biological Sciences, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan.
| | - Shigetaka Nishiguchi
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan
| | - Chihong Song
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Kazuyoshi Murata
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; National Institute for Physiological Sciences, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, Aichi 444-8585, Japan; Department of Physiological Sciences, School of Life Science, The Graduate University for Advanced Studies (SOKENDAI), 38 Nishigonaka, Myodaiji, Okazaki, Aichi, 444-8585, Japan
| | - Takayuki Uchihashi
- Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, Aichi 444-8787, Japan; Department of Physics, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi 464-8602, Japan
| | - Yuki Suzuki
- Department of Applied Chemistry, Graduate School of Engineering, Mie University, 1577 Kurimamachiya-cho, Tsu, Mie 514-8507, Japan
| |
Collapse
|
2
|
Rabino A, Awadia S, Ali N, Edson A, Garcia-Mata R. The Scribble-SGEF-Dlg1 complex regulates E-cadherin and ZO-1 stability, turnover and transcription in epithelial cells. J Cell Sci 2024; 137:jcs262181. [PMID: 39350674 PMCID: PMC11529605 DOI: 10.1242/jcs.262181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 09/09/2024] [Indexed: 10/04/2024] Open
Abstract
SGEF (also known as ARHGEF26), a RhoG specific GEF, can form a ternary complex with the Scribble polarity complex proteins Scribble and Dlg1, which regulates the formation and maintenance of adherens junctions and barrier function of epithelial cells. Notably, silencing SGEF results in a dramatic downregulation of both E-cadherin and ZO-1 (also known as TJP1) protein levels. However, the molecular mechanisms involved in the regulation of this pathway are not known. Here, we describe a novel signaling pathway governed by the Scribble-SGEF-Dlg1 complex. Our results show that the three members of the ternary complex are required to maintain the stability of the apical junctions, ZO-1 protein levels and tight junction (TJ) permeability. In contrast, only SGEF is necessary to regulate E-cadherin levels. The absence of SGEF destabilizes the E-cadherin-catenin complex at the membrane, triggering a positive feedback loop that exacerbates the phenotype through the repression of E-cadherin transcription in a process that involves the internalization of E-cadherin by endocytosis, β-catenin signaling and the transcriptional repressor Slug (also known as SNAI2).
Collapse
Affiliation(s)
- Agustin Rabino
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Sahezeel Awadia
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Nabaa Ali
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Amber Edson
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| |
Collapse
|
3
|
Harmon RM, Ayers JL, McCarthy EF, Kowalczyk AP, Green KJ, Simpson CL. Pumping the Breaks on Acantholytic Skin Disorders: Targeting Calcium Pumps, Desmosomes, and Downstream Signaling in Darier, Hailey-Hailey, and Grover Disease. J Invest Dermatol 2024:S0022-202X(24)01925-0. [PMID: 39207315 DOI: 10.1016/j.jid.2024.06.1289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 06/11/2024] [Accepted: 06/14/2024] [Indexed: 09/04/2024]
Abstract
Acantholytic skin disorders, by definition, compromise intercellular adhesion between epidermal keratinocytes. The root cause of blistering in these diseases traces back to direct disruption of adhesive cell-cell junctions, exemplified by autoantibody-mediated attack on desmosomes in pemphigus. However, genetic acantholytic disorders originate from more indirect mechanisms. Darier disease and Hailey-Hailey disease arise from mutations in the endoplasmic reticulum calcium pump, SERCA2, and the Golgi calcium/manganese pump, SPCA1, respectively. Though the disease-causing mutations have been known for nearly 25 years, the mechanistic linkage between dysregulation of intracellular ion stores and weakening of cell-cell junctions at the plasma membrane remains puzzling. The molecular underpinnings of a related idiopathic disorder, Grover disease, are even less understood. Due to an incomplete understanding of acantholytic pathology at the molecular level, these disorders lack proven, targeted treatment options, leaving patients with the significant physical and psychological burdens of chronic skin blistering, infections, and pain. This article aims to review what is known at the molecular, cellular, and clinical levels regarding these under-studied disorders and to highlight knowledge gaps and promising ongoing research. Armed with this knowledge, our goal is to aid investigators in defining essential questions about disease pathogenesis and to accelerate progress toward novel therapeutic strategies.
Collapse
Affiliation(s)
- Robert M Harmon
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA.
| | - Jessica L Ayers
- Molecular Medicine and Mechanisms of Disease PhD Program, Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington, USA; Department of Dermatology, University of Washington, Seattle, Washington, USA; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, USA
| | - Erin F McCarthy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Andrew P Kowalczyk
- Department of Dermatology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA; Department of Cellular and Molecular Physiology, Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Kathleen J Green
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA; Department of Dermatology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Cory L Simpson
- Department of Dermatology, University of Washington, Seattle, Washington, USA; Institute for Stem Cell & Regenerative Medicine, University of Washington, Seattle, Washington, USA.
| |
Collapse
|
4
|
Campàs O, Noordstra I, Yap AS. Adherens junctions as molecular regulators of emergent tissue mechanics. Nat Rev Mol Cell Biol 2024; 25:252-269. [PMID: 38093099 DOI: 10.1038/s41580-023-00688-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 03/28/2024]
Abstract
Tissue and organ development during embryogenesis relies on the collective and coordinated action of many cells. Recent studies have revealed that tissue material properties, including transitions between fluid and solid tissue states, are controlled in space and time to shape embryonic structures and regulate cell behaviours. Although the collective cellular flows that sculpt tissues are guided by tissue-level physical changes, these ultimately emerge from cellular-level and subcellular-level molecular mechanisms. Adherens junctions are key subcellular structures, built from clusters of classical cadherin receptors. They mediate physical interactions between cells and connect biochemical signalling to the physical characteristics of cell contacts, hence playing a fundamental role in tissue morphogenesis. In this Review, we take advantage of the results of recent, quantitative measurements of tissue mechanics to relate the molecular and cellular characteristics of adherens junctions, including adhesion strength, tension and dynamics, to the emergent physical state of embryonic tissues. We focus on systems in which cell-cell interactions are the primary contributor to morphogenesis, without significant contribution from cell-matrix interactions. We suggest that emergent tissue mechanics is an important direction for future research, bridging cell biology, developmental biology and mechanobiology to provide a holistic understanding of morphogenesis in health and disease.
Collapse
Affiliation(s)
- Otger Campàs
- Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany.
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
- Center for Systems Biology Dresden, Dresden, Germany.
| | - Ivar Noordstra
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia
| | - Alpha S Yap
- Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Queensland, Australia.
| |
Collapse
|
5
|
Rabino A, Awadia S, Ali N, Edson A, Garcia-Mata R. The Scribble/SGEF/Dlg1 complex regulates the stability of apical junctions in epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.26.586884. [PMID: 38585765 PMCID: PMC10996629 DOI: 10.1101/2024.03.26.586884] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
SGEF, a RhoG specific GEF, can form a ternary complex with the Scribble polarity complex proteins Scribble and Dlg1, which regulates the formation and maintenance of adherens junctions and barrier function of epithelial cells. Notably, silencing SGEF results in a dramatic downregulation of the expression of both E-cadherin and ZO-1. However, the molecular mechanisms involved in the regulation of this pathway are not known. Here, we describe a novel signaling pathway governed by the Scribble/SGEF/Dlg1 complex. Our results show that an intact ternary complex is required to maintain the stability of the apical junctions, the expression of ZO-1, and TJ permeability. In contrast, only SGEF is necessary to regulate E-cadherin expression. The absence of SGEF destabilizes the E-cadherin/catenin complex at the membrane, triggering a positive feedback loop that exacerbates the phenotype through the repression of E-cadherin transcription in a process that involves the internalization of E-cadherin by endocytosis, β-catenin signaling and the transcriptional repressor Slug.
Collapse
Affiliation(s)
- Agustin Rabino
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Sahezeel Awadia
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Nabaa Ali
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Amber Edson
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| | - Rafael Garcia-Mata
- Department of Biological Sciences, University of Toledo, Toledo, OH, USA
| |
Collapse
|
6
|
Troyanovsky RB, Indra I, Troyanovsky SM. Characterization of early and late events of adherens junction assembly. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.04.583373. [PMID: 38496678 PMCID: PMC10942379 DOI: 10.1101/2024.03.04.583373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/19/2024]
Abstract
Cadherins are transmembrane adhesion receptors. Cadherin ectodomains form adhesive 2D clusters through cooperative trans and cis interactions, whereas its intracellular region interacts with specific cytosolic proteins, termed catenins, to anchor the cadherin-catenin complex (CCC) to the actin cytoskeleton. How these two types of interactions are coordinated in the formation of specialized cell-cell adhesions, adherens junctions (AJ), remains unclear. We focus here on the role of the actin-binding domain of α-catenin (αABD) by showing that the interaction of αABD with actin generates actin-bound CCC oligomers (CCC/actin strands) incorporating up to six CCCs. The strands are primarily formed on the actin-rich cell protrusions. Once in cell-cell interface, the strands become involved in cadherin ectodomain clustering. Such combination of the extracellular and intracellular oligomerizations gives rise to the composite oligomers, trans CCC/actin clusters. To mature, these clusters then rearrange their actin filaments using several redundant pathways, two of which are characterized here: one depends on the α-catenin-associated protein, vinculin and the second one depends on the unstructured C-terminus of αABD. Thus, AJ assembly proceeds through spontaneous formation of trans CCC/actin clusters and their successive reorganization.
Collapse
Affiliation(s)
- Regina B Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Indrajyoti Indra
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
| | - Sergey M Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611
- Department of Cell & Developmental Biology, The Feinberg School of Medicine, Chicago, IL 60614
| |
Collapse
|
7
|
Śliwa A, Szczerba A, Pięta PP, Białas P, Lorek J, Nowak-Markwitz E, Jankowska A. A Recipe for Successful Metastasis: Transition and Migratory Modes of Ovarian Cancer Cells. Cancers (Basel) 2024; 16:783. [PMID: 38398174 PMCID: PMC10886816 DOI: 10.3390/cancers16040783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/02/2024] [Accepted: 02/13/2024] [Indexed: 02/25/2024] Open
Abstract
One of the characteristic features of ovarian cancer is its early dissemination. Metastasis and the invasiveness of ovarian cancer are strongly dependent on the phenotypical and molecular determinants of cancer cells. Invasive cancer cells, circulating tumor cells, and cancer stem cells, which are responsible for the metastatic process, may all undergo different modes of transition, giving rise to mesenchymal, amoeboid, and redifferentiated epithelial cells. Such variability is the result of the changing needs of cancer cells, which strive to survive and colonize new organs. This would not be possible if not for the variety of migration modes adopted by the transformed cells. The most common type of metastasis in ovarian cancer is dissemination through the transcoelomic route, but transitions in ovarian cancer cells contribute greatly to hematogenous and lymphatic dissemination. This review aims to outline the transition modes of ovarian cancer cells and discuss the migratory capabilities of those cells in light of the known ovarian cancer metastasis routes.
Collapse
Affiliation(s)
- Aleksandra Śliwa
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Anna Szczerba
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Paweł Piotr Pięta
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Piotr Białas
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| | - Jakub Lorek
- Gynecologic Oncology Department, Poznan University of Medical Sciences, 33 Polna Street, 60-101 Poznan, Poland
| | - Ewa Nowak-Markwitz
- Gynecologic Oncology Department, Poznan University of Medical Sciences, 33 Polna Street, 60-101 Poznan, Poland
| | - Anna Jankowska
- Chair and Department of Cell Biology, Poznan University of Medical Sciences, Rokietnicka 5D, 60-806 Poznan, Poland
| |
Collapse
|
8
|
Ikawa K, Hiro S, Kondo S, Ohsawa S, Sugimura K. Coronin-1 promotes directional cell rearrangement in Drosophila wing epithelium. Cell Struct Funct 2023; 48:251-257. [PMID: 38030242 PMCID: PMC11496784 DOI: 10.1247/csf.23049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 11/08/2023] [Indexed: 12/01/2023] Open
Abstract
Directional cell rearrangement is a critical process underlying correct tissue deformation during morphogenesis. Although the involvement of F-actin regulation in cell rearrangement has been established, the role and regulation of actin binding proteins (ABPs) in this process are not well understood. In this study, we investigated the function of Coronin-1, a WD-repeat actin-binding protein, in controlling directional cell rearrangement in the Drosophila pupal wing. Transgenic flies expressing Coronin-1-EGFP were generated using CRISPR-Cas9. We observed that Coronin-1 localizes at the reconnecting junction during cell rearrangement, which is dependent on actin interacting protein 1 (AIP1) and cofilin, actin disassemblers and known regulators of wing cell rearrangement. Loss of Coronin-1 function reduces cell rearrangement directionality and hexagonal cell fraction. These results suggest that Coronin-1 promotes directional cell rearrangement via its interaction with AIP1 and cofilin, highlighting the role of ABPs in the complex process of morphogenesis.Key words: morphogenesis, cell rearrangement, actin binding proteins (ABPs).
Collapse
Affiliation(s)
- Keisuke Ikawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Souta Hiro
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Shu Kondo
- Department of Biological Science and Technology, Faculty of Advanced Engineering, Tokyo University of Science, Tokyo 162-8601, Japan
- Invertebrate Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka 411-8540, Japan
| | - Shizue Ohsawa
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya, Aichi 464-8602, Japan
| | - Kaoru Sugimura
- Department of Biological Sciences, Graduate School of Science, The University of Tokyo, Tokyo 113-0032, Japan
- Universal Biology Institute, The University of Tokyo, Tokyo 113-0033, Japan
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba 277-8561, Japan
| |
Collapse
|
9
|
Zhang N, Häring M, Wolf F, Großhans J, Kong D. Dynamics and functions of E-cadherin complexes in epithelial cell and tissue morphogenesis. MARINE LIFE SCIENCE & TECHNOLOGY 2023; 5:585-601. [PMID: 38045551 PMCID: PMC10689684 DOI: 10.1007/s42995-023-00206-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Accepted: 10/31/2023] [Indexed: 12/05/2023]
Abstract
Cell-cell adhesion is at the center of structure and dynamics of epithelial tissue. E-cadherin-catenin complexes mediate Ca2+-dependent trans-homodimerization and constitute the kernel of adherens junctions. Beyond the basic function of cell-cell adhesion, recent progress sheds light the dynamics and interwind interactions of individual E-cadherin-catenin complex with E-cadherin superclusters, contractile actomyosin and mechanics of the cortex and adhesion. The nanoscale architecture of E-cadherin complexes together with cis-interactions and interactions with cortical actomyosin adjust to junctional tension and mechano-transduction by reinforcement or weakening of specific features of the interactions. Although post-translational modifications such as phosphorylation and glycosylation have been implicated, their role for specific aspects of in E-cadherin function has remained unclear. Here, we provide an overview of the E-cadherin complex in epithelial cell and tissue morphogenesis focusing on nanoscale architectures by super-resolution approaches and post-translational modifications from recent, in particular in vivo, studies. Furthermore, we review the computational modelling in E-cadherin complexes and highlight how computational modelling has contributed to a deeper understanding of the E-cadherin complexes.
Collapse
Affiliation(s)
- Na Zhang
- Department of Biology, Philipps University, 35043 Marburg, Germany
| | - Matthias Häring
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University Göttingen, 37073 Göttingen, Germany
| | - Fred Wolf
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University Göttingen, 37073 Göttingen, Germany
| | - Jörg Großhans
- Department of Biology, Philipps University, 35043 Marburg, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University Göttingen, 37073 Göttingen, Germany
| | - Deqing Kong
- Department of Biology, Philipps University, 35043 Marburg, Germany
- Göttingen Campus Institute for Dynamics of Biological Networks (CIDBN), Georg August University Göttingen, 37073 Göttingen, Germany
| |
Collapse
|
10
|
Naturale VF, Pickett MA, Feldman JL. Persistent cell contacts enable E-cadherin/HMR-1- and PAR-3-based symmetry breaking within a developing C. elegans epithelium. Dev Cell 2023; 58:1830-1846.e12. [PMID: 37552986 PMCID: PMC10592304 DOI: 10.1016/j.devcel.2023.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/10/2023] [Accepted: 07/17/2023] [Indexed: 08/10/2023]
Abstract
Tissue-wide patterning is essential to multicellular development, requiring cells to individually generate polarity axes and coordinate them in space and time with neighbors. Using the C. elegans intestinal epithelium, we identified a patterning mechanism that is informed by cell contact lifetime asymmetry and executed via the scaffolding protein PAR-3 and the transmembrane protein E-cadherin/HMR-1. Intestinal cells break symmetry as PAR-3 and HMR-1 recruit apical determinants into punctate "local polarity complexes" (LPCs) at homotypic contacts. LPCs undergo an HMR-1-based migration to a common midline, thereby establishing tissue-wide polarity. Thus, symmetry breaking results from PAR-3-dependent intracellular polarization coupled to HMR-1-based tissue-level communication, which occurs through a non-adhesive signaling role for HMR-1. Differential lifetimes between homotypic and heterotypic cell contacts are created by neighbor exchanges and oriented divisions, patterning where LPCs perdure and thereby breaking symmetry. These cues offer a logical and likely conserved framework for how epithelia without obvious molecular asymmetries can polarize.
Collapse
Affiliation(s)
| | - Melissa A Pickett
- Department of Biology, Stanford University, Stanford, CA 94305, USA; Department of Biological Sciences, San José State University, San José, CA 95192, USA
| | - Jessica L Feldman
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
11
|
Tokumon R, Sebastián I, Humbel BM, Okura N, Yamanaka H, Yamashiro T, Toma C. Degradation of p0071 and p120-catenin during adherens junction disassembly by Leptospira interrogans. Front Cell Infect Microbiol 2023; 13:1228051. [PMID: 37795382 PMCID: PMC10545952 DOI: 10.3389/fcimb.2023.1228051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 08/23/2023] [Indexed: 10/06/2023] Open
Abstract
Leptospira interrogans disseminates hematogenously to reach the target organs by disrupting epithelial adherens junctions (AJs), thus causing leptospirosis, which is a globally neglected zoonotic disease. L. interrogans induces E-cadherin (E-cad) endocytosis and cytoskeletal rearrangement during AJ disassembly, but the detailed mechanism remains unknown. Elucidation of AJ disassembly mechanisms will guide new approaches to developing vaccines and diagnostic methods. In this study, we combine proteomic and imaging analysis with chemical inhibition studies to demonstrate that disrupting the AJs of renal proximal tubule epithelial cells involves the degradation of two armadillo repeat-containing proteins, p0071 and p120-catenin, that stabilize E-cad at the plasma membrane. Combining proteasomal and lysosomal inhibitors substantially prevented p120-catenin degradation, and monolayer integrity destruction without preventing p0071 proteolysis. In contrast, the pan-caspase inhibitor Z-VAD-FMK inhibited p0071 proteolysis and displacement of both armadillo repeat-containing proteins from the cell-cell junctions. Our results show that L. interrogans induces p120-catenin and p0071 degradation, which mutually regulates E-cad stability by co-opting multiple cellular degradation pathways. This strategy may allow L. interrogans to disassemble AJs and disseminate through the body efficiently.
Collapse
Affiliation(s)
- Romina Tokumon
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Isabel Sebastián
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Bruno M. Humbel
- Provost Office, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
- Microscopy Center, Universidade Federal de Minas Gerais, Belo Horizonte, MG, Brazil
- Department of Cell Biology and Neuroscience, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Nobuhiko Okura
- Department of Molecular Anatomy, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Hidenori Yamanaka
- Environmental Technology Department, Chemicals Evaluation and Research Institute, Saitama, Japan
| | - Tetsu Yamashiro
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| | - Claudia Toma
- Department of Bacteriology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan
| |
Collapse
|
12
|
Lin WH, Cooper LM, Anastasiadis PZ. Cadherins and catenins in cancer: connecting cancer pathways and tumor microenvironment. Front Cell Dev Biol 2023; 11:1137013. [PMID: 37255594 PMCID: PMC10225604 DOI: 10.3389/fcell.2023.1137013] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/03/2023] [Indexed: 06/01/2023] Open
Abstract
Cadherin-catenin complexes are integral components of the adherens junctions crucial for cell-cell adhesion and tissue homeostasis. Dysregulation of these complexes is linked to cancer development via alteration of cell-autonomous oncogenic signaling pathways and extrinsic tumor microenvironment. Advances in multiomics have uncovered key signaling events in multiple cancer types, creating a need for a better understanding of the crosstalk between cadherin-catenin complexes and oncogenic pathways. In this review, we focus on the biological functions of classical cadherins and associated catenins, describe how their dysregulation influences major cancer pathways, and discuss feedback regulation mechanisms between cadherin complexes and cellular signaling. We discuss evidence of cross regulation in the following contexts: Hippo-Yap/Taz and receptor tyrosine kinase signaling, key pathways involved in cell proliferation and growth; Wnt, Notch, and hedgehog signaling, key developmental pathways involved in human cancer; as well as TGFβ and the epithelial-to-mesenchymal transition program, an important process for cancer cell plasticity. Moreover, we briefly explore the role of cadherins and catenins in mechanotransduction and the immune tumor microenvironment.
Collapse
|
13
|
Troyanovsky SM. Adherens junction: the ensemble of specialized cadherin clusters. Trends Cell Biol 2023; 33:374-387. [PMID: 36127186 PMCID: PMC10020127 DOI: 10.1016/j.tcb.2022.08.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/16/2022]
Abstract
The cell-cell connections in adherens junctions (AJs) are mediated by transmembrane receptors, type I cadherins (referred to here as cadherins). These cadherin-based connections (or trans bonds) are weak. To upregulate their strength, cadherins exploit avidity, the increased affinity of binding between cadherin clusters compared with isolated monomers. Formation of such clusters is a unique molecular process that is driven by a synergy of direct and indirect cis interactions between cadherins located at the same cell. In addition to their role in adhesion, cadherin clusters provide structural scaffolds for cytosolic proteins, which implicate cadherin into different cellular activities and signaling pathways. The cluster lifetime, which depends on the actin cytoskeleton, and on the mechanical forces it generates, determines the strength of AJs and their plasticity. The key aspects of cadherin adhesion, therefore, cannot be understood at the level of isolated cadherin molecules, but should be discussed in the context of cadherin clusters.
Collapse
Affiliation(s)
- Sergey M Troyanovsky
- Department of Dermatology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA; Department of Cell and Molecular Biology, Northwestern University, The Feinberg School of Medicine, Chicago, IL 60611, USA.
| |
Collapse
|
14
|
Noordstra I, Morris RG, Yap AS. Cadherins and the cortex: A matter of time? Curr Opin Cell Biol 2023; 80:102154. [PMID: 36822056 DOI: 10.1016/j.ceb.2023.102154] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 01/16/2023] [Accepted: 01/18/2023] [Indexed: 02/23/2023]
Abstract
Cell adhesion systems commonly operate in close partnership with the cytoskeleton. Adhesion receptors bind to the cortex and regulate its dynamics, organization and mechanics; conversely, the cytoskeleton influences aspects of adhesion, including strength, stability and ductility. In this review we consider recent advances in elucidating such cooperation, focusing on interactions between classical cadherins and actomyosin. The evidence presents an apparent paradox. Molecular mechanisms of mechanosensation by the cadherin-actin apparatus imply that adhesion strengthens under tension. However, this does not always translate to the broader setting of confluent tissues, where increases in fluctuations of tension can promote intercalation due to the shrinkage of adherens junctions. Emerging evidence suggests that understanding of timescales may be important in resolving this issue, but that further work is needed to understand the role of adhesive strengthening across scales.
Collapse
Affiliation(s)
- Ivar Noordstra
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072 Australia
| | - Richard G Morris
- School of Physics, Sydney, NSW 2052, Australia; EMBL Australia Node in Single Molecule Science, School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia.
| | - Alpha S Yap
- Centre for Cell Biology of Chronic Disease, Institute for Molecular Bioscience, The University of Queensland, St. Lucia, Brisbane, Queensland, 4072 Australia.
| |
Collapse
|
15
|
From the Catastrophic Objective Irreproducibility of Cancer Research and Unavoidable Failures of Molecular Targeted Therapies to the Sparkling Hope of Supramolecular Targeted Strategies. Int J Mol Sci 2023; 24:ijms24032796. [PMID: 36769134 PMCID: PMC9917659 DOI: 10.3390/ijms24032796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 02/05/2023] Open
Abstract
The unprecedented non-reproducibility of the results published in the field of cancer research has recently come under the spotlight. In this short review, we try to highlight some general principles in the organization and evolution of cancerous tumors, which objectively lead to their enormous variability and, consequently, the irreproducibility of the results of their investigation. This heterogeneity is also extremely unfavorable for the effective use of molecularly targeted medicine. Against the seemingly comprehensive background of this heterogeneity, we single out two supramolecular characteristics common to all tumors: the clustered nature of tumor interactions with their microenvironment and the formation of biomolecular condensates with tumor-specific distinctive features. We suggest that these features can form the basis of strategies for tumor-specific supramolecular targeted therapies.
Collapse
|
16
|
Kwak M, Southard KM, Kim WR, Lin A, Kim NH, Gopalappa R, Lee HJ, An M, Choi SH, Jung Y, Noh K, Farlow J, Georgakopoulos A, Robakis NK, Kang MK, Kutys ML, Seo D, Kim HH, Kim YH, Cheon J, Gartner ZJ, Jun YW. Adherens junctions organize size-selective proteolytic hotspots critical for Notch signalling. Nat Cell Biol 2022; 24:1739-1753. [PMID: 36456828 PMCID: PMC10665132 DOI: 10.1038/s41556-022-01031-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 10/19/2022] [Indexed: 12/02/2022]
Abstract
Adherens junctions (AJs) create spatially, chemically and mechanically discrete microdomains at cellular interfaces. Here, using a mechanogenetic platform that generates artificial AJs with controlled protein localization, clustering and mechanical loading, we find that AJs also organize proteolytic hotspots for γ-secretase with a spatially regulated substrate selectivity that is critical in the processing of Notch and other transmembrane proteins. Membrane microdomains outside of AJs exclusively organize Notch ligand-receptor engagement (LRE microdomains) to initiate receptor activation. Conversely, membrane microdomains within AJs exclusively serve to coordinate regulated intramembrane proteolysis (RIP microdomains). They do so by concentrating γ-secretase and primed receptors while excluding full-length Notch. AJs induce these functionally distinct microdomains by means of lipid-dependent γ-secretase recruitment and size-dependent protein segregation. By excluding full-length Notch from RIP microdomains, AJs prevent inappropriate enzyme-substrate interactions and suppress spurious Notch activation. Ligand-induced ectodomain shedding eliminates size-dependent segregation, releasing Notch to translocate into AJs for processing by γ-secretase. This mechanism directs radial differentiation of ventricular zone-neural progenitor cells in vivo and more broadly regulates the proteolysis of other large cell-surface receptors such as amyloid precursor protein. These findings suggest an unprecedented role of AJs in creating size-selective spatial switches that choreograph γ-secretase processing of multiple transmembrane proteins regulating development, homeostasis and disease.
Collapse
Affiliation(s)
- Minsuk Kwak
- Department of Otolaryngology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Helen Diller Family Cancer Comprehensive Center (HDFCCC), University of California, San Francisco, CA, USA
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Republic of Korea
| | - Kaden M Southard
- Department of Otolaryngology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Woon Ryoung Kim
- Department of Otolaryngology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Helen Diller Family Cancer Comprehensive Center (HDFCCC), University of California, San Francisco, CA, USA
| | - Annie Lin
- Department of Otolaryngology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Helen Diller Family Cancer Comprehensive Center (HDFCCC), University of California, San Francisco, CA, USA
| | - Nam Hyeong Kim
- Department of Otolaryngology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Helen Diller Family Cancer Comprehensive Center (HDFCCC), University of California, San Francisco, CA, USA
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Imnewrun Inc., Suwon, Republic of Korea
| | - Ramu Gopalappa
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Hyun Jung Lee
- Department of Otolaryngology, University of California, San Francisco, CA, USA
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
- Helen Diller Family Cancer Comprehensive Center (HDFCCC), University of California, San Francisco, CA, USA
| | - Minji An
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Seo Hyun Choi
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Yunmin Jung
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Kunwoo Noh
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
| | - Justin Farlow
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA
| | - Anastasios Georgakopoulos
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nikolaos K Robakis
- Department of Psychiatry and Neuroscience, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Min K Kang
- Department of Neurology, University of California, San Francisco, CA, USA
| | - Matthew L Kutys
- Department of Cell and Tissue Biology, University of California, San Francisco, CA, USA
| | - Daeha Seo
- Department of Physics and Chemistry, DGIST, Daegu, Republic of Korea
| | - Hyongbum Henry Kim
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
- Brain Korea 21 Plus Project, Yonsei University College of Medicine, Seoul, Republic of Korea
- Severance Biomedical Science Institute, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Yong Ho Kim
- SKKU Advanced Institute of Nanotechnology (SAINT), Sungkyunkwan University, Suwon, Republic of Korea
- Department of Nano Engineering, Sungkyunkwan University, Suwon, Republic of Korea
- Imnewrun Inc., Suwon, Republic of Korea
| | - Jinwoo Cheon
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea
- Department of Chemistry, Yonsei University, Seoul, Republic of Korea
| | - Zev J Gartner
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| | - Young-Wook Jun
- Department of Otolaryngology, University of California, San Francisco, CA, USA.
- Department of Pharmaceutical Chemistry, University of California, San Francisco, CA, USA.
- Helen Diller Family Cancer Comprehensive Center (HDFCCC), University of California, San Francisco, CA, USA.
- Center for Nanomedicine, Institute for Basic Science (IBS), Seoul, Republic of Korea.
- Graduate Program of Nano Biomedical Engineering (Nano BME), Advanced Science Institute, Yonsei University, Seoul, Republic of Korea.
| |
Collapse
|
17
|
Huebner RJ, Wallingford JB. Dishevelled controls bulk cadherin dynamics and the stability of individual cadherin clusters during convergent extension. Mol Biol Cell 2022; 33:br26. [PMID: 36222834 PMCID: PMC9727802 DOI: 10.1091/mbc.e22-06-0194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Animals are shaped through the movement of large cellular collectives. Such morphogenetic processes require cadherin-based cell adhesion to maintain tissue cohesion and planar cell polarity to coordinate movement. Despite a vast literature surrounding cadherin-based adhesion and planar cell polarity, it is unclear how these molecular networks interface. Here we investigate the relationship between cadherins and planar cell polarity during gastrulation cell movements in Xenopus laevis. We first assessed bulk cadherin localization and found that cadherins were enriched at a specific subset of morphogenetically active cell-cell junctions. We then found that cadherin and actin had coupled temporal dynamics and that disruption of planar cell polarity uncoupled these dynamics. Next, using superresolution time-lapse microscopy and quantitative image analysis, we were able to measure the lifespan and size of individual cadherin clusters. Finally, we show that planar cell polarity not only controls the size of cadherin clusters but, more interestingly, regulates cluster stability. These results reveal an intriguing link between two essential cellular properties, adhesion and planar polarity, and provide insight into the molecular control of morphogenetic cell movements.
Collapse
Affiliation(s)
- Robert J. Huebner
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712
| | - John B. Wallingford
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712,*Address correspondence to: John B. Wallingford ()
| |
Collapse
|
18
|
Malmi-Kakkada AN, Sinha S, Li X, Thirumalai D. Adhesion strength between cells regulate nonmonotonic growth by a biomechanical feedback mechanism. Biophys J 2022; 121:3719-3729. [PMID: 35505608 PMCID: PMC9617137 DOI: 10.1016/j.bpj.2022.04.032] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 03/22/2022] [Accepted: 04/26/2022] [Indexed: 11/24/2022] Open
Abstract
We determine how intercellular interactions and mechanical pressure experienced by single cells regulate cell proliferation using a minimal computational model for three-dimensional multicellular spheroid (MCS) growth. We discover that emergent spatial variations in the cell division rate, depending on the location of the cells either at the core or periphery within the MCS, is regulated by intercellular adhesion strength (fad). Varying fad results in nonmonotonic proliferation of cells in the MCS. A biomechanical feedback mechanism coupling the fad and microenvironment-dependent pressure fluctuations relative to a threshold value (pc) determines the onset of a dormant phase, and explains the nonmonotonic proliferation response. Increasing fad from low values enhances cell proliferation because pressure on individual cells is smaller compared with pc. However, at high fad, cells readily become dormant and cannot rearrange effectively in spacetime, leading to arrested cell proliferation. Utilizing our theoretical predictions, we explain experimental data on the impact of adhesion strength on cell proliferation and find good agreement. Our work, which shows that proliferation is regulated by pressure-adhesion feedback mechanism, may be a general feature of multicellular growth.
Collapse
Affiliation(s)
| | - Sumit Sinha
- Department of Physics, University of Texas at Austin, Austin, Texas
| | - Xin Li
- Department of Chemistry, University of Texas at Austin, Austin, Texas
| | - D Thirumalai
- Department of Chemistry, University of Texas at Austin, Austin, Texas.
| |
Collapse
|
19
|
Martin JB, Herman K, Houssin NS, Rich W, Reilly MA, Plageman TF. Arvcf Dependent Adherens Junction Stability is Required to Prevent Age-Related Cortical Cataracts. Front Cell Dev Biol 2022; 10:840129. [PMID: 35874813 PMCID: PMC9297370 DOI: 10.3389/fcell.2022.840129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Accepted: 06/14/2022] [Indexed: 11/30/2022] Open
Abstract
The etiology of age-related cortical cataracts is not well understood but is speculated to be related to alterations in cell adhesion and/or the changing mechanical stresses occurring in the lens with time. The role of cell adhesion in maintaining lens transparency with age is difficult to assess because of the developmental and physiological roles that well-characterized adhesion proteins have in the lens. This report demonstrates that Arvcf, a member of the p120-catenin subfamily of catenins that bind to the juxtamembrane domain of cadherins, is an essential fiber cell protein that preserves lens transparency with age in mice. No major developmental defects are observed in the absence of Arvcf, however, cortical cataracts emerge in all animals examined older than 6-months of age. While opacities are not obvious in young animals, histological anomalies are observed in lenses at 4-weeks that include fiber cell separations, regions of hexagonal lattice disorganization, and absence of immunolabeled membranes. Compression analysis of whole lenses also revealed that Arvcf is required for their normal biomechanical properties. Immunofluorescent labeling of control and Arvcf-deficient lens fiber cells revealed a reduction in membrane localization of N-cadherin, β-catenin, and αN-catenin. Furthermore, super-resolution imaging demonstrated that the reduction in protein membrane localization is correlated with smaller cadherin nanoclusters. Additional characterization of lens fiber cell morphology with electron microscopy and high resolution fluorescent imaging also showed that the cellular protrusions of fiber cells are abnormally elongated with a reduction and disorganization of cadherin complex protein localization. Together, these data demonstrate that Arvcf is required to maintain transparency with age by mediating the stability of the N-cadherin protein complex in adherens junctions.
Collapse
Affiliation(s)
- Jessica B. Martin
- College of Optometry, The Ohio State University, Columbus, OH, United States
| | - Kenneth Herman
- College of Optometry, The Ohio State University, Columbus, OH, United States
| | - Nathalie S. Houssin
- College of Optometry, The Ohio State University, Columbus, OH, United States
| | - Wade Rich
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
| | - Matthew A. Reilly
- Department of Biomedical Engineering, College of Engineering, The Ohio State University, Columbus, OH, United States
- Department of Ophthalmology and Visual Science, College of Medicine, The Ohio State University, Columbus, OH, United States
| | - Timothy F. Plageman
- College of Optometry, The Ohio State University, Columbus, OH, United States
- *Correspondence: Timothy F. Plageman Jr.,
| |
Collapse
|
20
|
Kaurin D, Bal PK, Arroyo M. Peeling dynamics of fluid membranes bridged by molecular bonds: moving or breaking. J R Soc Interface 2022; 19:20220183. [PMID: 35765808 PMCID: PMC9240675 DOI: 10.1098/rsif.2022.0183] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/01/2022] [Indexed: 11/28/2022] Open
Abstract
Biological adhesion is a critical mechanical function of complex organisms. At the scale of cell-cell contacts, adhesion is remarkably tunable to enable both cohesion and malleability during development, homeostasis and disease. It is physically supported by transient and laterally mobile molecular bonds embedded in fluid membranes. Thus, unlike specific adhesion at solid-solid or solid-fluid interfaces, peeling at fluid-fluid interfaces can proceed by breaking bonds, by moving bonds or by a combination of both. How the additional degree of freedom provided by bond mobility changes the mechanics of peeling is not understood. To address this, we develop a theoretical model coupling diffusion, reactions and mechanics. Mobility and reaction rates determine distinct peeling regimes. In a diffusion-dominated Stefan-like regime, bond motion establishes self-stabilizing dynamics that increase the effective fracture energy. In a reaction-dominated regime, peeling proceeds by travelling fronts where marginal diffusion and unbinding control peeling speed. In a mixed reaction-diffusion regime, strengthening by bond motion competes with weakening by bond breaking in a force-dependent manner, defining the strength of the adhesion patch. In turn, patch strength depends on molecular properties such as bond stiffness, force sensitivity or crowding. We thus establish the physical rules enabling tunable cohesion in cellular tissues and in engineered biomimetic systems.
Collapse
Affiliation(s)
- Dimitri Kaurin
- Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain
| | - Pradeep K. Bal
- Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain
| | - Marino Arroyo
- Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain
- Institute for Bioengineering of Catalonia (IBEC), The Barcelona Institute of Science and Technology, 08034 Barcelona, Spain
- CIMNE, 08034 Barcelona, Spain
| |
Collapse
|
21
|
α-catenin switches between a slip and an asymmetric catch bond with F-actin to cooperatively regulate cell junction fluidity. Nat Commun 2022; 13:1146. [PMID: 35241656 PMCID: PMC8894357 DOI: 10.1038/s41467-022-28779-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 02/10/2022] [Indexed: 12/11/2022] Open
Abstract
α-catenin is a crucial protein at cell junctions that provides connection between the actin cytoskeleton and the cell membrane. At adherens junctions (AJs), α-catenin forms heterodimers with β-catenin that are believed to resist force on F-actin. Outside AJs, α-catenin forms homodimers that regulates F-actin organization and directly connect the cell membrane to the actin cytoskeleton, but their mechanosensitive properties are inherently unknown. By using ultra-fast laser tweezers we found that a single α-β-catenin heterodimer does not resist force but instead slips along F-actin in the direction of force. Conversely, the action of 5 to 10 α-β-catenin heterodimers together with force applied toward F-actin pointed end engaged a molecular switch in α-catenin, which unfolded and strongly bound F-actin as a cooperative catch bond. Similarly, an α-catenin homodimer formed an asymmetric catch bond with F-actin triggered by protein unfolding under force. Our data suggest that α-catenin clustering together with intracellular tension engage a fluid-to-solid phase transition at the membrane-cytoskeleton interface.
Collapse
|
22
|
Schoenit A, Lo Giudice C, Hahnen N, Ollech D, Jahnke K, Göpfrich K, Cavalcanti-Adam EA. Tuning Epithelial Cell-Cell Adhesion and Collective Dynamics with Functional DNA-E-Cadherin Hybrid Linkers. NANO LETTERS 2022; 22:302-310. [PMID: 34939414 PMCID: PMC8759084 DOI: 10.1021/acs.nanolett.1c03780] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/12/2021] [Indexed: 06/14/2023]
Abstract
The binding strength between epithelial cells is crucial for tissue integrity, signal transduction and collective cell dynamics. However, there is no experimental approach to precisely modulate cell-cell adhesion strength at the cellular and molecular level. Here, we establish DNA nanotechnology as a tool to control cell-cell adhesion of epithelial cells. We designed a DNA-E-cadherin hybrid system consisting of complementary DNA strands covalently bound to a truncated E-cadherin with a modified extracellular domain. DNA sequence design allows to tune the DNA-E-cadherin hybrid molecular binding strength, while retaining its cytosolic interactions and downstream signaling capabilities. The DNA-E-cadherin hybrid facilitates strong and reversible cell-cell adhesion in E-cadherin deficient cells by forming mechanotransducive adherens junctions. We assess the direct influence of cell-cell adhesion strength on intracellular signaling and collective cell dynamics. This highlights the scope of DNA nanotechnology as a precision technology to study and engineer cell collectives.
Collapse
Affiliation(s)
- Andreas Schoenit
- Biophysical
Engineering Group, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Department
of Cellular Biophysics, Growth Factor Mechanobiology Group, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Cristina Lo Giudice
- Department
of Cellular Biophysics, Growth Factor Mechanobiology Group, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Nina Hahnen
- Biophysical
Engineering Group, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Department
of Cellular Biophysics, Growth Factor Mechanobiology Group, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Dirk Ollech
- Department
of Cellular Biophysics, Growth Factor Mechanobiology Group, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
| | - Kevin Jahnke
- Biophysical
Engineering Group, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Department
of Physics and Astronomy, Heidelberg University, D-69120 Heidelberg, Germany
| | - Kerstin Göpfrich
- Biophysical
Engineering Group, Max Planck Institute
for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
- Department
of Physics and Astronomy, Heidelberg University, D-69120 Heidelberg, Germany
| | - Elisabetta Ada Cavalcanti-Adam
- Department
of Cellular Biophysics, Growth Factor Mechanobiology Group, Max Planck Institute for Medical Research, Jahnstraße 29, D-69120 Heidelberg, Germany
| |
Collapse
|
23
|
Sotillos S, von der Decken I, Domenech Mercadé I, Srinivasan S, Sirokha D, Livshits L, Vanni S, Nef S, Biason-Lauber A, Rodríguez Gutiérrez D, Castelli-Gair Hombría J. A conserved function of Human DLC3 and Drosophila Cv-c in testis development. eLife 2022; 11:82343. [PMID: 36326091 PMCID: PMC9678365 DOI: 10.7554/elife.82343] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 10/25/2022] [Indexed: 11/23/2022] Open
Abstract
The identification of genes affecting gonad development is essential to understand the mechanisms causing Variations/Differences in Sex Development (DSD). Recently, a DLC3 mutation was associated with male gonadal dysgenesis in 46,XY DSD patients. We have studied the requirement of Cv-c, the Drosophila ortholog of DLC3, in Drosophila gonad development, as well as the functional capacity of DLC3 human variants to rescue cv-c gonad defects. We show that Cv-c is required to maintain testis integrity during fly development. We find that Cv-c and human DLC3 can perform the same function in fly embryos, as flies carrying wild type but not patient DLC3 variations can rescue gonadal dysgenesis, suggesting functional conservation. We also demonstrate that the StART domain mediates Cv-c's function in the male gonad independently from the GAP domain's activity. This work demonstrates a role for DLC3/Cv-c in male gonadogenesis and highlights a novel StART domain mediated function required to organize the gonadal mesoderm and maintain its interaction with the germ cells during testis development.
Collapse
Affiliation(s)
- Sol Sotillos
- Centro Andaluz de Biología del DesarrolloSevilleSpain
| | - Isabel von der Decken
- Department of Endocrinology, Metabolism and Cardiovascular research, University of FribourgFribourgSwitzerland
| | - Ivan Domenech Mercadé
- Department of Endocrinology, Metabolism and Cardiovascular research, University of FribourgFribourgSwitzerland
| | | | - Dmytro Sirokha
- Institute of Molecular Biology and Genetics, National Academy of Sciences of UkraineKyivUkraine
| | - Ludmila Livshits
- Institute of Molecular Biology and Genetics, National Academy of Sciences of UkraineKyivUkraine
| | - Stefano Vanni
- Department of Biology, University of FribourgFribourgSwitzerland
| | - Serge Nef
- Department of Genetic Medicine and Development, Faculty of Medicine, University of GenevaGenevaSwitzerland
| | - Anna Biason-Lauber
- Department of Endocrinology, Metabolism and Cardiovascular research, University of FribourgFribourgSwitzerland
| | - Daniel Rodríguez Gutiérrez
- Department of Endocrinology, Metabolism and Cardiovascular research, University of FribourgFribourgSwitzerland
| | | |
Collapse
|
24
|
Founounou N, Farhadifar R, Collu GM, Weber U, Shelley MJ, Mlodzik M. Tissue fluidity mediated by adherens junction dynamics promotes planar cell polarity-driven ommatidial rotation. Nat Commun 2021; 12:6974. [PMID: 34848713 PMCID: PMC8632910 DOI: 10.1038/s41467-021-27253-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 11/08/2021] [Indexed: 12/02/2022] Open
Abstract
The phenomenon of tissue fluidity-cells' ability to rearrange relative to each other in confluent tissues-has been linked to several morphogenetic processes and diseases, yet few molecular regulators of tissue fluidity are known. Ommatidial rotation (OR), directed by planar cell polarity signaling, occurs during Drosophila eye morphogenesis and shares many features with polarized cellular migration in vertebrates. We utilize in vivo live imaging analysis tools to quantify dynamic cellular morphologies during OR, revealing that OR is driven autonomously by ommatidial cell clusters rotating in successive pulses within a permissive substrate. Through analysis of a rotation-specific nemo mutant, we demonstrate that precise regulation of junctional E-cadherin levels is critical for modulating the mechanical properties of the tissue to allow rotation to progress. Our study defines Nemo as a molecular tool to induce a transition from solid-like tissues to more viscoelastic tissues broadening our molecular understanding of tissue fluidity.
Collapse
Affiliation(s)
- Nabila Founounou
- grid.59734.3c0000 0001 0670 2351Dept. of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029 USA
| | - Reza Farhadifar
- grid.430264.7Center for Computational Biology, Flatiron Institute, Simons Foundation, 162 5th Ave, New York, NY 10010 USA ,grid.38142.3c000000041936754XDepartment of Molecular and Cellular Biology, Harvard University, 52 Oxford St, Cambridge, MA 02138 USA
| | - Giovanna M. Collu
- grid.59734.3c0000 0001 0670 2351Dept. of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029 USA
| | - Ursula Weber
- grid.59734.3c0000 0001 0670 2351Dept. of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY 10029 USA
| | - Michael J. Shelley
- grid.430264.7Center for Computational Biology, Flatiron Institute, Simons Foundation, 162 5th Ave, New York, NY 10010 USA ,grid.137628.90000 0004 1936 8753Courant Institute, New York University, 251 Mercer St, New York, NY 10012 USA
| | - Marek Mlodzik
- Dept. of Cell, Developmental, & Regenerative Biology, Graduate School of Biomedical Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L Levy Place, New York, NY, 10029, USA.
| |
Collapse
|
25
|
Procter P, Hulsart-Billström G, Alves A, Pujari-Palmer M, Wenner D, Insley G, Engqvist H, Larsson S. Gluing Living Bone Using a Biomimetic Bioadhesive: From Initial Cut to Final Healing. Front Bioeng Biotechnol 2021; 9:728042. [PMID: 34820360 PMCID: PMC8606677 DOI: 10.3389/fbioe.2021.728042] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 09/24/2021] [Indexed: 01/12/2023] Open
Abstract
Osteoporotic fractures are a growing issue due to the increasing incidence of osteoporosis worldwide. High reoperation rates in osteoporotic fractures call for investigation into new methods in improving fixation of osteoporotic bones. In the present study, the strength of a recently developed bone bioadhesive, OsStictm, was evaluated in vivo using a novel bone core assay in a murine animal model at 0, 3, 7, 14, 28, and 42 days. Histology and micro-CT were obtained at all time points, and the mean peak pull-out force was assessed on days 0–28. The adhesive provided immediate fixation to the bone core. The mean peak bone core pull-out force gradually decreased from 6.09 N (σ 1.77 N) at day 0 to a minimum of 3.09 N (σ 1.08 N) at day 7, recovering to 6.37 N (σ 4.18 N) by day 28. The corresponding fibrin (Tisseel) control mean peak bone core pull-out characteristic was 0.27 N (σ 0.27 N) at day 0, with an abrupt increase from 0.37 N (σ 0.28) at day 3, 6.39 N (σ 5.09 N) at day 7, and continuing to increase to 11.34 N (σ 6.5 N) by day 28. The bone cores failed either through core pull-out or by the cancellous part of the core fracturing. Overall, the adhesive does not interrupt healing with pathological changes or rapid resorption. Initially, the adhesive bonded the bone core to the femur, and over time, the adhesive was replaced by a vascularised bone of equivalent quality and quantity to the original bone. At the 42 day time point, 70% of the adhesive in the cancellous compartment and 50% in the cortical compartment had been replaced. The adhesive outwith the bone shell was metabolized by cells that are only removing the material excess with no ectopic bone formation. It is concluded that the adhesive is not a physical and biochemical barrier as the bone heals through the adhesive and is replaced by a normal bone tissue. This adhesive composition meets many of the clinical unmet needs expressed in the literature, and may, after further preclinical assessments, have potential in the repair of bone and osteochondral fragments.
Collapse
Affiliation(s)
- Philip Procter
- Department of Engineering Sciences, Division of Applied Material Science, Uppsala University, Uppsala, Sweden.,Biomimetic Innovations Ltd, Shannon, Ireland
| | - Gry Hulsart-Billström
- Department of Surgical Sciences, Division of Orthopaedics, Uppsala University, Uppsala, Sweden
| | | | - Michael Pujari-Palmer
- Department of Engineering Sciences, Division of Applied Material Science, Uppsala University, Uppsala, Sweden
| | - David Wenner
- Department of Engineering Sciences, Division of Applied Material Science, Uppsala University, Uppsala, Sweden
| | - Gerard Insley
- Department of Engineering Sciences, Division of Applied Material Science, Uppsala University, Uppsala, Sweden.,Biomimetic Innovations Ltd, Shannon, Ireland
| | - Håkan Engqvist
- Department of Engineering Sciences, Division of Applied Material Science, Uppsala University, Uppsala, Sweden
| | - Sune Larsson
- Department of Surgical Sciences, Division of Orthopaedics, Uppsala University, Uppsala, Sweden
| |
Collapse
|
26
|
Vasquez CG, de la Serna EL, Dunn AR. How cells tell up from down and stick together to construct multicellular tissues - interplay between apicobasal polarity and cell-cell adhesion. J Cell Sci 2021; 134:272658. [PMID: 34714332 DOI: 10.1242/jcs.248757] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Polarized epithelia define a topological inside and outside, and hence constitute a key evolutionary innovation that enabled the construction of complex multicellular animal life. Over time, this basic function has been elaborated upon to yield the complex architectures of many of the organs that make up the human body. The two processes necessary to yield a polarized epithelium, namely regulated adhesion between cells and the definition of the apicobasal (top-bottom) axis, have likewise undergone extensive evolutionary elaboration, resulting in multiple sophisticated protein complexes that contribute to both functions. Understanding how these components function in combination to yield the basic architecture of a polarized cell-cell junction remains a major challenge. In this Review, we introduce the main components of apicobasal polarity and cell-cell adhesion complexes, and outline what is known about their regulation and assembly in epithelia. In addition, we highlight studies that investigate the interdependence between these two networks. We conclude with an overview of strategies to address the largest and arguably most fundamental unresolved question in the field, namely how a polarized junction arises as the sum of its molecular parts.
Collapse
Affiliation(s)
- Claudia G Vasquez
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Eva L de la Serna
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA
| | - Alexander R Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305, USA.,Biophysics Program, Stanford University, Stanford, CA 94305, USA.,Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
27
|
Arslan FN, Eckert J, Schmidt T, Heisenberg CP. Holding it together: when cadherin meets cadherin. Biophys J 2021; 120:4182-4192. [PMID: 33794149 PMCID: PMC8516678 DOI: 10.1016/j.bpj.2021.03.025] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 02/12/2021] [Accepted: 03/17/2021] [Indexed: 12/21/2022] Open
Abstract
Intercellular adhesion is the key to multicellularity, and its malfunction plays an important role in various developmental and disease-related processes. Although it has been intensively studied by both biologists and physicists, a commonly accepted definition of cell-cell adhesion is still being debated. Cell-cell adhesion has been described at the molecular scale as a function of adhesion receptors controlling binding affinity, at the cellular scale as resistance to detachment forces or modulation of surface tension, and at the tissue scale as a regulator of cellular rearrangements and morphogenesis. In this review, we aim to summarize and discuss recent advances in the molecular, cellular, and theoretical description of cell-cell adhesion, ranging from biomimetic models to the complexity of cells and tissues in an organismal context. In particular, we will focus on cadherin-mediated cell-cell adhesion and the role of adhesion signaling and mechanosensation therein, two processes central for understanding the biological and physical basis of cell-cell adhesion.
Collapse
Affiliation(s)
- Feyza Nur Arslan
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Julia Eckert
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, the Netherlands
| | - Thomas Schmidt
- Physics of Life Processes, Leiden Institute of Physics, Leiden University, Leiden, the Netherlands
| | | |
Collapse
|
28
|
Troyanovsky RB, Sergeeva AP, Indra I, Chen CS, Kato R, Shapiro L, Honig B, Troyanovsky SM. Sorting of cadherin-catenin-associated proteins into individual clusters. Proc Natl Acad Sci U S A 2021; 118:e2105550118. [PMID: 34272290 PMCID: PMC8307379 DOI: 10.1073/pnas.2105550118] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The cytoplasmic tails of classical cadherins form a multiprotein cadherin-catenin complex (CCC) that constitutes the major structural unit of adherens junctions (AJs). The CCC in AJs forms junctional clusters, "E clusters," driven by cis and trans interactions in the cadherin ectodomain and stabilized by α-catenin-actin interactions. Additional proteins are known to bind to the cytoplasmic region of the CCC. Here, we analyze how these CCC-associated proteins (CAPs) integrate into cadherin clusters and how they affect the clustering process. Using a cross-linking approach coupled with mass spectrometry, we found that the majority of CAPs, including the force-sensing protein vinculin, interact with CCCs outside of AJs. Accordingly, structural modeling shows that there is not enough space for CAPs the size of vinculin to integrate into E clusters. Using two CAPs, scribble and erbin, as examples, we provide evidence that these proteins form separate clusters, which we term "C clusters." As proof of principle, we show, by using cadherin ectodomain monoclonal antibodies (mAbs), that mAb-bound E-cadherin forms separate clusters that undergo trans interactions. Taken together, our data suggest that, in addition to its role in cell-cell adhesion, CAP-driven CCC clustering serves to organize cytoplasmic proteins into distinct domains that may synchronize signaling networks of neighboring cells within tissues.
Collapse
Affiliation(s)
- Regina B Troyanovsky
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Alina P Sergeeva
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032
| | - Indrajyoti Indra
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Chi-Shuo Chen
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Rei Kato
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| | - Lawrence Shapiro
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027
| | - Barry Honig
- Department of Systems Biology, Columbia University Medical Center, New York, NY 10032;
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY 10032
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY 10027
- Department of Medicine, Columbia University, New York, NY 10032
| | - Sergey M Troyanovsky
- Department of Dermatology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611;
- Department of Cell and Developmental Biology, The Feinberg School of Medicine, Northwestern University, Chicago, IL 60611
| |
Collapse
|
29
|
Inman A, Smutny M. Feeling the force: Multiscale force sensing and transduction at the cell-cell interface. Semin Cell Dev Biol 2021; 120:53-65. [PMID: 34238674 DOI: 10.1016/j.semcdb.2021.06.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/11/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022]
Abstract
A universal principle of all living cells is the ability to sense and respond to mechanical stimuli which is essential for many biological processes. Recent efforts have identified critical mechanosensitive molecules and response pathways involved in mechanotransduction during development and tissue homeostasis. Tissue-wide force transmission and local force sensing need to be spatiotemporally coordinated to precisely regulate essential processes during development such as tissue morphogenesis, patterning, cell migration and organogenesis. Understanding how cells identify and interpret extrinsic forces and integrate a specific response on cell and tissue level remains a major challenge. In this review we consider important cellular and physical factors in control of cell-cell mechanotransduction and discuss their significance for cell and developmental processes. We further highlight mechanosensitive macromolecules that are known to respond to external forces and present examples of how force responses can be integrated into cell and developmental programs.
Collapse
Affiliation(s)
- Angus Inman
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV47AL, UK
| | - Michael Smutny
- Centre for Mechanochemical Cell Biology and Division of Biomedical Sciences, Warwick Medical School, University of Warwick, Coventry CV47AL, UK.
| |
Collapse
|
30
|
Krneta-Stankic V, Corkins ME, Paulucci-Holthauzen A, Kloc M, Gladden AB, Miller RK. The Wnt/PCP formin Daam1 drives cell-cell adhesion during nephron development. Cell Rep 2021; 36:109340. [PMID: 34233186 PMCID: PMC8629027 DOI: 10.1016/j.celrep.2021.109340] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 03/31/2021] [Accepted: 06/11/2021] [Indexed: 12/02/2022] Open
Abstract
E-cadherin junctions facilitate assembly and disassembly of cell contacts that drive development and homeostasis of epithelial tissues. In this study, using Xenopus embryonic kidney and Madin-Darby canine kidney (MDCK) cells, we investigate the role of the Wnt/planar cell polarity (PCP) formin Daam1 (Dishevelled-associated activator of morphogenesis 1) in regulating E-cadherin-based intercellular adhesion. Using live imaging, we show that Daam1 localizes to newly formed cell contacts in the developing nephron. Furthermore, analyses of junctional filamentous actin (F-actin) upon Daam1 depletion indicate decreased microfilament localization and slowed turnover. We also show that Daam1 is necessary for efficient and timely localization of junctional E-cadherin, mediated by Daam1’s formin homology domain 2 (FH2). Finally, we establish that Daam1 signaling promotes organized movement of renal cells. This study demonstrates that Daam1 formin junctional activity is critical for epithelial tissue organization. How cells remodel their adhesions through cell-surface proteins such as E-cadherin is a central question in epithelial tissue biology. Krneta-Stankic et al. show that the Wnt/PCP formin Daam1 regulates cytoskeletal membrane dynamics and E-cadherin localization within developing nephrons. These findings provide a new framework for studying cell-cell adhesion and nephron morphogenesis.
Collapse
Affiliation(s)
- Vanja Krneta-Stankic
- Program in Genes and Development, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | - Mark E Corkins
- Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA
| | | | - Malgorzata Kloc
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Houston Methodist Hospital Research Institute, Houston, TX 77030, USA
| | - Andrew B Gladden
- Program in Genes and Development, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Pathology and Laboratory Medicine, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Rachel K Miller
- Program in Genes and Development, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA; Department of Pediatrics, Pediatric Research Center, UTHealth McGovern Medical School, Houston, TX 77030, USA; Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Program in Biochemistry and Cell Biology, MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX 77030, USA.
| |
Collapse
|
31
|
Huebner RJ, Malmi-Kakkada AN, Sarıkaya S, Weng S, Thirumalai D, Wallingford JB. Mechanical heterogeneity along single cell-cell junctions is driven by lateral clustering of cadherins during vertebrate axis elongation. eLife 2021; 10:e65390. [PMID: 34032216 PMCID: PMC8205493 DOI: 10.7554/elife.65390] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 05/01/2021] [Indexed: 02/06/2023] Open
Abstract
Morphogenesis is governed by the interplay of molecular signals and mechanical forces across multiple length scales. The last decade has seen tremendous advances in our understanding of the dynamics of protein localization and turnover at subcellular length scales, and at the other end of the spectrum, of mechanics at tissue-level length scales. Integrating the two remains a challenge, however, because we lack a detailed understanding of the subcellular patterns of mechanical properties of cells within tissues. Here, in the context of the elongating body axis of Xenopus embryos, we combine tools from cell biology and physics to demonstrate that individual cell-cell junctions display finely-patterned local mechanical heterogeneity along their length. We show that such local mechanical patterning is essential for the cell movements of convergent extension and is imparted by locally patterned clustering of a classical cadherin. Finally, the patterning of cadherins and thus local mechanics along cell-cell junctions are controlled by Planar Cell Polarity signaling, a key genetic module for CE that is mutated in diverse human birth defects.
Collapse
Affiliation(s)
- Robert J Huebner
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Abdul Naseer Malmi-Kakkada
- Department of Chemistry, University of TexasAustinUnited States
- Department of Chemistry and Physics, Augusta UniversityAugustaGeorgia
| | - Sena Sarıkaya
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - Shinuo Weng
- Department of Molecular Biosciences, University of TexasAustinUnited States
| | - D Thirumalai
- Department of Chemistry, University of TexasAustinUnited States
| | - John B Wallingford
- Department of Molecular Biosciences, University of TexasAustinUnited States
| |
Collapse
|
32
|
Abstract
The generation of organismal form - morphogenesis - arises from forces produced at the cellular level. In animal cells, much of this force is produced by the actin cytoskeleton. Here, we review how mechanisms of actin-based force generation are deployed during animal morphogenesis to sculpt organs and organisms. Furthermore, we consider how cytoskeletal forces are coupled through cell adhesions to propagate across tissues, and discuss cases where cytoskeletal force or adhesion is patterned across a tissue to direct shape changes. Together, our review provides a conceptual framework that reflects our current understanding of animal morphogenesis and gives perspectives on future opportunities for study.
Collapse
Affiliation(s)
- D Nathaniel Clarke
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA
| | - Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02142, USA.
| |
Collapse
|
33
|
What we can learn from embryos to understand the mesenchymal-to-epithelial transition in tumor progression. Biochem J 2021; 478:1809-1825. [PMID: 33988704 DOI: 10.1042/bcj20210083] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/06/2021] [Accepted: 04/23/2021] [Indexed: 12/15/2022]
Abstract
Epithelial plasticity involved the terminal and transitional stages that occur during epithelial-to-mesenchymal transition (EMT) and mesenchymal-to-epithelial transition (MET), both are essential at different stages of early embryonic development that have been co-opted by cancer cells to undergo tumor metastasis. These processes are regulated at multiple instances, whereas the post-transcriptional regulation of key genes mediated by microRNAs is gaining major attention as a common and conserved pathway. In this review, we focus on discussing the latest findings of the cellular and molecular basis of the less characterized process of MET during embryonic development, with special attention to the role of microRNAs. Although we take in consideration the necessity of being cautious when extrapolating the obtained evidence, we propose some commonalities between early embryonic development and cancer progression that can shed light into our current understanding of this complex event and might aid in the design of specific therapeutic approaches.
Collapse
|
34
|
Mechanochemical control of epidermal stem cell divisions by B-plexins. Nat Commun 2021; 12:1308. [PMID: 33637728 PMCID: PMC7910479 DOI: 10.1038/s41467-021-21513-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 01/28/2021] [Indexed: 01/31/2023] Open
Abstract
The precise spatiotemporal control of cell proliferation is key to the morphogenesis of epithelial tissues. Epithelial cell divisions lead to tissue crowding and local changes in force distribution, which in turn suppress the rate of cell divisions. However, the molecular mechanisms underlying this mechanical feedback are largely unclear. Here, we identify a critical requirement of B-plexin transmembrane receptors in the response to crowding-induced mechanical forces during embryonic skin development. Epidermal stem cells lacking B-plexins fail to sense mechanical compression, resulting in disinhibition of the transcriptional coactivator YAP, hyperproliferation, and tissue overgrowth. Mechanistically, we show that B-plexins mediate mechanoresponses to crowding through stabilization of adhesive cell junctions and lowering of cortical stiffness. Finally, we provide evidence that the B-plexin-dependent mechanochemical feedback is also pathophysiologically relevant to limit tumor growth in basal cell carcinoma, the most common type of skin cancer. Our data define a central role of B-plexins in mechanosensation to couple cell density and cell division in development and disease.
Collapse
|
35
|
Beauséjour M, Boutin A, Vachon PH. Anoikis and the Human Gut Epithelium in Health and Disease. ANOIKIS 2021:95-126. [DOI: 10.1007/978-3-030-73856-3_5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2025]
|
36
|
Korla PK, Chen CC, Gracilla DE, Lai MT, Chen CM, Chen HY, Hwang T, Chen SY, Sheu JJC. Somatic mutational landscapes of adherens junctions and their functional consequences in cutaneous melanoma development. Theranostics 2020; 10:12026-12043. [PMID: 33204327 PMCID: PMC7667680 DOI: 10.7150/thno.46705] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 10/14/2020] [Indexed: 02/06/2023] Open
Abstract
Cell-cell interaction in skin homeostasis is tightly controlled by adherens junctions (AJs). Alterations in such regulation lead to melanoma development. However, mutations in AJs and their functional consequences are still largely unknown. Methods: Cadherin mutations in skin cutaneous melanoma were identified using sequencing data from TCGA dataset, followed by cross-validation with data from non-TCGA cohorts. Mutations with significant occurrence were subjected to structural prediction using MODELLER and functional protein simulation using GROMACS software. Neo-antigen prediction was carried out using NetMHCpan tool. Cell-based fluorescence reporter assay was used to validate β-catenin activity in the presence of cadherin mutations. Clinical significance was analyzed using datasets from TCGA and other non-TCGA cohorts. Targeted gene exon sequencing and immunofluorescence staining on melanoma tissues were performed to confirm the in silico findings. Results: Highly frequent mutations in type-II classical cadherins were found in melanoma with one unique recurrent mutation (S524L) in the fifth domain of CDH6, which potentially destabilizes Ca2+-binding and cell-cell contacts. Mutational co-occurrence and physical dynamics analyses placed CDH6 at the center of the top-four mutated cadherins (core CDHs; all type-II), suggesting altered heterophilic interactions in melanoma development. Mutations in the intracellular domains significantly disturbed CDH6/β-catenin complex formation, resulting in β-catenin translocation into cytosol or nucleus and dysregulation of canonical Wnt/β-catenin signaling. Although mutations in core CDH genes correlated with advanced cancer stages and lymph node invasion, the overall and disease-free survival times in those patients were longer in patients with wild-type. Peptide/MHC-I binding affinity predictions confirmed overall increased neo-antigen potentials of mutated cadherins, which associated with T-lymphocyte infiltration and better clinical outcomes after immunotherapy. Conclusion: Changes in cell-cell communications by somatic mutations in AJ cadherins function as one of mechanisms to trigger melanoma development. Certain mutations in AJs may serve as potential neo-antigens which conversely benefit patients for longer survival times.
Collapse
|
37
|
Bischoff P, Kornhuber M, Dunst S, Zell J, Fauler B, Mielke T, Taubenberger AV, Guck J, Oelgeschläger M, Schönfelder G. Estrogens Determine Adherens Junction Organization and E-Cadherin Clustering in Breast Cancer Cells via Amphiregulin. iScience 2020; 23:101683. [PMID: 33163938 PMCID: PMC7607435 DOI: 10.1016/j.isci.2020.101683] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/18/2020] [Accepted: 10/12/2020] [Indexed: 12/17/2022] Open
Abstract
Estrogens play an important role in the development and progression of human cancers, particularly in breast cancer. Breast cancer progression depends on the malignant destabilization of adherens junctions (AJs) and disruption of tissue integrity. We found that estrogen receptor alpha (ERα) inhibition led to a striking spatial reorganization of AJs and microclustering of E-Cadherin (E-Cad) in the cell membrane of breast cancer cells. This resulted in increased stability of AJs and cell stiffness and a reduction of cell motility. These effects were actomyosin-dependent and reversible by estrogens. Detailed investigations showed that the ERα target gene and epidermal growth factor receptor (EGFR) ligand Amphiregulin (AREG) essentially regulates AJ reorganization and E-Cad microclustering. Our results not only describe a biological mechanism for the organization of AJs and the modulation of mechanical properties of cells but also provide a new perspective on how estrogens and anti-estrogens might influence the formation of breast tumors. ERα inhibition causes adherens junction (AJ) reorganization through AREG and EGFR AJ reorganization coincides with microclustering of E-Cadherin at cell membranes AJ reorganization and microclustering of E-Cadherin are actomyosin dependent AJ reorganization correlates with increased cell stiffness and reduced motility
Collapse
Affiliation(s)
- Philip Bischoff
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Marja Kornhuber
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.,Freie Universität Berlin, 14195 Berlin, Germany
| | - Sebastian Dunst
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Jakob Zell
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| | - Beatrix Fauler
- Max Planck Institute for Molecular Genetics, Microscopy and Cryo-Electron Microscopy Service Group, 14195 Berlin, Germany
| | - Thorsten Mielke
- Max Planck Institute for Molecular Genetics, Microscopy and Cryo-Electron Microscopy Service Group, 14195 Berlin, Germany
| | - Anna V Taubenberger
- Biotechnology Center, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jochen Guck
- Max Planck Institute for the Science of Light, Max-Planck-Zentrum für Physik und Medizin, 91058 Erlangen, Germany
| | - Michael Oelgeschläger
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany
| | - Gilbert Schönfelder
- German Federal Institute for Risk Assessment (BfR), German Centre for the Protection of Laboratory Animals (Bf3R), Max-Dohrn-Straße 8-10, 10589 Berlin, Germany.,Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, 10117 Berlin, Germany
| |
Collapse
|
38
|
Navarro-Imaz H, Ochoa B, García-Arcos I, Martínez MJ, Chico Y, Fresnedo O, Rueda Y. Molecular and cellular insights into the role of SND1 in lipid metabolism. Biochim Biophys Acta Mol Cell Biol Lipids 2020; 1865:158589. [DOI: 10.1016/j.bbalip.2019.158589] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 11/20/2019] [Accepted: 12/11/2019] [Indexed: 12/11/2022]
|
39
|
Are Synapse-Like Structures a Possible Way for Crosstalk of Cancer with Its Microenvironment? Cancers (Basel) 2020; 12:cancers12040806. [PMID: 32230806 PMCID: PMC7226151 DOI: 10.3390/cancers12040806] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2020] [Revised: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 01/03/2023] Open
Abstract
The failure of therapies directed at targets within cancer cells highlight the necessity for a paradigm change in cancer therapy. The attention of researchers has shifted towards the disruption of cancer cell interactions with the tumor microenvironment. A typical example of such a disruption is the immune checkpoint cancer therapy that disrupts interactions between the immune and the cancer cells. The interaction of cancer antigens with T cells occurs in the immunological synapses. This is characterized by several special features, i.e., the proximity of the immune cells and their target cells, strong intercellular adhesion, and secretion of signaling cytokines into the intercellular cleft. Earlier, we hypothesized that the cancer-associated fibroblasts interacting with cancer cells through a synapse-like adhesion might play an important role in cancer tumors. Studies of the interactions between cancer cells and cancer-associated fibroblasts showed that their clusterization on the membrane surface determined their strength and specificity. The hundreds of interacting pairs are involved in the binding that may indicate the formation of synapse-like structures. These interactions may be responsible for successful metastasis of cancer cells, and their identification and disruption may open new therapeutic possibilities.
Collapse
|
40
|
Martin AC. The Physical Mechanisms of Drosophila Gastrulation: Mesoderm and Endoderm Invagination. Genetics 2020; 214:543-560. [PMID: 32132154 PMCID: PMC7054018 DOI: 10.1534/genetics.119.301292] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 11/21/2019] [Indexed: 12/14/2022] Open
Abstract
A critical juncture in early development is the partitioning of cells that will adopt different fates into three germ layers: the ectoderm, the mesoderm, and the endoderm. This step is achieved through the internalization of specified cells from the outermost surface layer, through a process called gastrulation. In Drosophila, gastrulation is achieved through cell shape changes (i.e., apical constriction) that change tissue curvature and lead to the folding of a surface epithelium. Folding of embryonic tissue results in mesoderm and endoderm invagination, not as individual cells, but as collective tissue units. The tractability of Drosophila as a model system is best exemplified by how much we know about Drosophila gastrulation, from the signals that pattern the embryo to the molecular components that generate force, and how these components are organized to promote cell and tissue shape changes. For mesoderm invagination, graded signaling by the morphogen, Spätzle, sets up a gradient in transcriptional activity that leads to the expression of a secreted ligand (Folded gastrulation) and a transmembrane protein (T48). Together with the GPCR Mist, which is expressed in the mesoderm, and the GPCR Smog, which is expressed uniformly, these signals activate heterotrimeric G-protein and small Rho-family G-protein signaling to promote apical contractility and changes in cell and tissue shape. A notable feature of this signaling pathway is its intricate organization in both space and time. At the cellular level, signaling components and the cytoskeleton exhibit striking polarity, not only along the apical-basal cell axis, but also within the apical domain. Furthermore, gene expression controls a highly choreographed chain of events, the dynamics of which are critical for primordium invagination; it does not simply throw the cytoskeletal "on" switch. Finally, studies of Drosophila gastrulation have provided insight into how global tissue mechanics and movements are intertwined as multiple tissues simultaneously change shape. Overall, these studies have contributed to the view that cells respond to forces that propagate over great distances, demonstrating that cellular decisions, and, ultimately, tissue shape changes, proceed by integrating cues across an entire embryo.
Collapse
Affiliation(s)
- Adam C Martin
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02142
| |
Collapse
|
41
|
Venhuizen JH, Jacobs FJ, Span PN, Zegers MM. P120 and E-cadherin: Double-edged swords in tumor metastasis. Semin Cancer Biol 2020; 60:107-120. [DOI: 10.1016/j.semcancer.2019.07.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 07/26/2019] [Indexed: 12/11/2022]
|
42
|
van der Post RS, Oliveira C, Guilford P, Carneiro F. Hereditary gastric cancer: what's new? Update 2013-2018. Fam Cancer 2019; 18:363-367. [PMID: 30989426 DOI: 10.1007/s10689-019-00127-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Around 10-20% of gastric cancer patients have relatives with a diagnosis of GC and in 1-3% of patients a genetic cause can be confirmed. Histopathologically, GC is classified into intestinal-type, with glandular growth, and diffuse-type with poorly cohesive growth pattern often with signet ring cells. Familial or hereditary GC is classified into hereditary diffuse GC (HDGC), familial intestinal GC (FIGC) and polyposis forms. This review focuses on recent research findings and new concepts of hereditary GC.
Collapse
Affiliation(s)
- Rachel S van der Post
- Department of Pathology, Radboud university medical centre, Nijmegen, The Netherlands
| | - Carla Oliveira
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135, Porto, Portugal.,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Parry Guilford
- Cancer Genetics Laboratory, Department of Biochemistry, Centre for Translational Cancer Research, Te Aho Matatū, University of Otago, Dunedin, Aotearoa, New Zealand
| | - Fátima Carneiro
- i3S - Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Júlio Amaral de Carvalho, 45, 4200-135, Porto, Portugal. .,Ipatimup - Institute of Molecular Pathology and Immunology, University of Porto, Porto, Portugal. .,Faculty of Medicine, University of Porto, Porto, Portugal.
| |
Collapse
|
43
|
Kaurin D, Arroyo M. Surface Tension Controls the Hydraulic Fracture of Adhesive Interfaces Bridged by Molecular Bonds. PHYSICAL REVIEW LETTERS 2019; 123:228102. [PMID: 31868410 DOI: 10.1103/physrevlett.123.228102] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/24/2019] [Indexed: 06/10/2023]
Abstract
Biological function requires cell-cell adhesions to tune their cohesiveness; for instance, during the opening of new fluid-filled cavities under hydraulic pressure. To understand the physical mechanisms supporting this adaptability, we develop a stochastic model for the hydraulic fracture of adhesive interfaces bridged by molecular bonds. We find that surface tension strongly enhances the stability of these interfaces by controlling flaw sensitivity, lifetime, and optimal architecture in terms of bond clustering. We also show that bond mobility embrittles adhesions and changes the mechanism of decohesion. Our study provides a mechanistic background to understand the biological regulation of cell-cell cohesion and fracture.
Collapse
Affiliation(s)
- Dimitri Kaurin
- Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain
| | - Marino Arroyo
- Universitat Politècnica de Catalunya-BarcelonaTech, 08034 Barcelona, Spain
- Institute for Bioengineering of Catalonia, The Barcelona Institute of Science and Technology, 08028 Barcelona, Spain
| |
Collapse
|
44
|
Kim S, Kalappurakkal JM, Mayor S, Rosen MK. Phosphorylation of nephrin induces phase separated domains that move through actomyosin contraction. Mol Biol Cell 2019; 30:2996-3012. [PMID: 31599693 PMCID: PMC6857567 DOI: 10.1091/mbc.e18-12-0823] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Revised: 09/03/2019] [Accepted: 10/03/2019] [Indexed: 01/12/2023] Open
Abstract
The plasma membrane of eukaryotic cells is organized into lipid and protein microdomains, whose assembly mechanisms and functions are incompletely understood. We demonstrate that proteins in the nephrin/Nck/N-WASP actin-regulatory pathway cluster into micron-scale domains at the basal plasma membrane upon triggered phosphorylation of transmembrane protein nephrin. The domains are persistent but readily exchange components with their surroundings, and their formation is dependent on the number of Nck SH3 domains, suggesting they are phase separated polymers assembled through multivalent interactions among the three proteins. The domains form independent of the actin cytoskeleton, but acto-myosin contractility induces their rapid lateral movement. Nephrin phosphorylation induces larger clusters at the cell periphery, which are associated with extensive actin assembly and dense filopodia. Our studies illustrate how multivalent interactions between proteins at the plasma membrane can produce micron-scale organization of signaling molecules, and how the resulting clusters can both respond to and control the actin cytoskeleton.
Collapse
Affiliation(s)
- Soyeon Kim
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
- The HHMI/MBL Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543
| | - Joseph M. Kalappurakkal
- The HHMI/MBL Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543
- National Centre for Biological Sciences, Bangalore 560065, India
| | - Satyajit Mayor
- The HHMI/MBL Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543
- National Centre for Biological Sciences, Bangalore 560065, India
| | - Michael K. Rosen
- Department of Biophysics and Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390
- The HHMI/MBL Summer Institute, Marine Biological Laboratory, Woods Hole, MA 02543
| |
Collapse
|
45
|
Abstract
Cell-cell junctions are specializations of the plasma membrane responsible for physically integrating cells into tissues. We are now beginning to appreciate the diverse impacts that mechanical forces exert upon the integrity and function of these junctions. Currently, this is best understood for cadherin-based adherens junctions in epithelia and endothelia, where cell-cell adhesion couples the contractile cytoskeletons of cells together to generate tissue-scale tension. Junctional tension participates in morphogenesis and tissue homeostasis. Changes in tension can also be detected by mechanotransduction pathways that allow cells to communicate with each other. In this review, we discuss progress in characterising the forces present at junctions in physiological conditions; the cellular mechanisms that generate intrinsic tension and detect changes in tension; and, finally, we consider how tissue integrity is maintained in the face of junctional stresses.
Collapse
|
46
|
The male stem cell niche of Drosophila melanogaster: Interactions between the germline stem cells and the hub. Exp Cell Res 2019; 383:111489. [DOI: 10.1016/j.yexcr.2019.07.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2019] [Revised: 06/27/2019] [Accepted: 07/02/2019] [Indexed: 11/21/2022]
|
47
|
The membrane environment of cadherin adhesion receptors: a working hypothesis. Biochem Soc Trans 2019; 47:985-995. [DOI: 10.1042/bst20180012] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Revised: 06/09/2019] [Accepted: 06/11/2019] [Indexed: 11/17/2022]
Abstract
Abstract
Classical cadherin cell adhesion receptors are integral membrane proteins that mediate cell–cell interactions, tissue integrity and morphogenesis. Cadherins are best understood to function as membrane-spanning molecular composites that couple adhesion to the cytoskeleton. On the other hand, the membrane lipid environment of the cadherins is an under-investigated aspect of their cell biology. In this review, we discuss two lines of research that show how the membrane can directly or indirectly contribute to cadherin function. Firstly, we consider how modification of its local lipid environment can potentially influence cadherin signalling, adhesion and dynamics, focusing on a role for phosphoinositide-4,5-bisphosphate. Secondly, we discuss how caveolae may indirectly regulate cadherins by modifying either the lipid composition and/or mechanical tension of the plasma membrane. Thus, we suggest that the membrane is a frontier of cadherin biology that is ripe for re-exploration.
Collapse
|
48
|
Raza Q, Choi JY, Li Y, O’Dowd RM, Watkins SC, Chikina M, Hong Y, Clark NL, Kwiatkowski AV. Evolutionary rate covariation analysis of E-cadherin identifies Raskol as a regulator of cell adhesion and actin dynamics in Drosophila. PLoS Genet 2019; 15:e1007720. [PMID: 30763317 PMCID: PMC6375579 DOI: 10.1371/journal.pgen.1007720] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Accepted: 12/07/2018] [Indexed: 12/17/2022] Open
Abstract
The adherens junction couples the actin cytoskeletons of neighboring cells to provide the foundation for multicellular organization. The core of the adherens junction is the cadherin-catenin complex that arose early in the evolution of multicellularity to link actin to intercellular adhesions. Over time, evolutionary pressures have shaped the signaling and mechanical functions of the adherens junction to meet specific developmental and physiological demands. Evolutionary rate covariation (ERC) identifies proteins with correlated fluctuations in evolutionary rate that can reflect shared selective pressures and functions. Here we use ERC to identify proteins with evolutionary histories similar to the Drosophila E-cadherin (DE-cad) ortholog. Core adherens junction components α-catenin and p120-catenin displayed positive ERC correlations with DE-cad, indicating that they evolved under similar selective pressures during evolution between Drosophila species. Further analysis of the DE-cad ERC profile revealed a collection of proteins not previously associated with DE-cad function or cadherin-mediated adhesion. We then analyzed the function of a subset of ERC-identified candidates by RNAi during border cell (BC) migration and identified novel genes that function to regulate DE-cad. Among these, we found that the gene CG42684, which encodes a putative GTPase activating protein (GAP), regulates BC migration and adhesion. We named CG42684 raskol (“to split” in Russian) and show that it regulates DE-cad levels and actin protrusions in BCs. We propose that Raskol functions with DE-cad to restrict Ras/Rho signaling and help guide BC migration. Our results demonstrate that a coordinated selective pressure has shaped the adherens junction and this can be leveraged to identify novel components of the complexes and signaling pathways that regulate cadherin-mediated adhesion. The establishment of intercellular adhesions facilitated the genesis of multicellular organisms. The adherens junction, which links the actin cytoskeletons of neighboring cells, arose early in the evolution of multicellularity and selective pressures have shaped its function and molecular composition over time. In this study, we used evolutionary rate covariation (ERC) analysis to examine the evolutionary history of the adherens junction and to identify proteins that coevolved with the core adherens junction protein Drosophila E-cadherin (DE-cad). ERC analysis of DE-cad revealed a collection of proteins with similar evolutionary histories. We then tested the role of ERC-identified candidates in border cell migration in the fly egg chamber, a process that requires the coordinated regulation of cell-cell adhesion and cell motility. Among these, we found that a previously uncharacterized gene CG42684, which encodes a putative GTPase activating protein (GAP), regulates the collective cell migration of border cells, stabilizes cell-cell adhesions and regulates the actin dynamics. Our results demonstrate that components of the adherens junction share an evolutionary history and that ERC analysis is a powerful method to identify novel components of cell adhesion complexes in Drosophila.
Collapse
Affiliation(s)
- Qanber Raza
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Jae Young Choi
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, New York, United States of America
| | - Yang Li
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Roisin M. O’Dowd
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Simon C. Watkins
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- Center for Biologic Imaging, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Maria Chikina
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Yang Hong
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Nathan L. Clark
- Department of Computational and Systems Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
| | - Adam V. Kwiatkowski
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, United States of America
- * E-mail:
| |
Collapse
|
49
|
Pei D, Shu X, Gassama-Diagne A, Thiery JP. Mesenchymal–epithelial transition in development and reprogramming. Nat Cell Biol 2019; 21:44-53. [DOI: 10.1038/s41556-018-0195-z] [Citation(s) in RCA: 121] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Accepted: 08/10/2018] [Indexed: 02/07/2023]
|
50
|
Godwin TD, Kelly ST, Brew TP, Bougen-Zhukov NM, Single AB, Chen A, Stylianou CE, Harris LD, Currie SK, Telford BJ, Beetham HG, Evans GB, Black MA, Guilford PJ. E-cadherin-deficient cells have synthetic lethal vulnerabilities in plasma membrane organisation, dynamics and function. Gastric Cancer 2019; 22:273-286. [PMID: 30066183 PMCID: PMC6394693 DOI: 10.1007/s10120-018-0859-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2018] [Accepted: 07/21/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND The E-cadherin gene (CDH1) is frequently mutated in diffuse gastric cancer and lobular breast cancer, and germline mutations predispose to the cancer syndrome Hereditary Diffuse Gastric Cancer. We are taking a synthetic lethal approach to identify druggable vulnerabilities in CDH1-mutant cancers. METHODS Density distributions of cell viability data from a genome-wide RNAi screen of isogenic MCF10A and MCF10A-CDH1-/- cells were used to identify protein classes affected by CDH1 mutation. The synthetic lethal relationship between selected protein classes and E-cadherin was characterised by drug sensitivity assays in both the isogenic breast MCF10A cells and CDH1-isogenic gastric NCI-N87. Endocytosis efficiency was quantified using cholera toxin B uptake. Pathway metagene expression of 415 TCGA gastric tumours was statistically correlated with CDH1 expression. RESULTS MCF10A-CDH1-/- cells showed significantly altered sensitivity to RNAi inhibition of groups of genes including the PI3K/AKT pathway, GPCRs, ion channels, proteosomal subunit proteins and ubiquitinylation enzymes. Both MCF10A-CDH1-/- and NCI-N87-CDH1-/- cells were more sensitive than wild-type cells to compounds that disrupted plasma membrane composition and trafficking, but showed contrasting sensitivities to inhibitors of actin polymerisation and the chloride channel inhibitor NS3728. The MCF10A-CDH1-/- cell lines showed reduced capacity to endocytose cholera toxin B. Pathway metagene analysis identified 20 Reactome pathways that were potentially synthetic lethal in tumours. Genes involved in GPCR signalling, vesicle transport and the metabolism of PI3K and membrane lipids were strongly represented amongst the candidate synthetic lethal genes. CONCLUSIONS E-cadherin loss leads to disturbances in receptor signalling and plasma membrane trafficking and organisation, creating druggable vulnerabilities.
Collapse
Affiliation(s)
- Tanis D Godwin
- Cancer Genetics Laboratory, Centre for Translational Cancer Research (Te Aho Matatū), Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - S Thomas Kelly
- Cancer Genetics Laboratory, Centre for Translational Cancer Research (Te Aho Matatū), Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Tom P Brew
- Cancer Genetics Laboratory, Centre for Translational Cancer Research (Te Aho Matatū), Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Nicola M Bougen-Zhukov
- Cancer Genetics Laboratory, Centre for Translational Cancer Research (Te Aho Matatū), Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Andrew B Single
- Cancer Genetics Laboratory, Centre for Translational Cancer Research (Te Aho Matatū), Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Augustine Chen
- Cancer Genetics Laboratory, Centre for Translational Cancer Research (Te Aho Matatū), Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Cassie E Stylianou
- Cancer Genetics Laboratory, Centre for Translational Cancer Research (Te Aho Matatū), Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Lawrence D Harris
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Sophie K Currie
- Cancer Genetics Laboratory, Centre for Translational Cancer Research (Te Aho Matatū), Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Bryony J Telford
- Cancer Genetics Laboratory, Centre for Translational Cancer Research (Te Aho Matatū), Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Henry G Beetham
- Cancer Genetics Laboratory, Centre for Translational Cancer Research (Te Aho Matatū), Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Gary B Evans
- The Ferrier Research Institute, Victoria University of Wellington, Wellington, New Zealand
| | - Michael A Black
- Cancer Genetics Laboratory, Centre for Translational Cancer Research (Te Aho Matatū), Department of Biochemistry, University of Otago, Dunedin, New Zealand
| | - Parry J Guilford
- Cancer Genetics Laboratory, Centre for Translational Cancer Research (Te Aho Matatū), Department of Biochemistry, University of Otago, Dunedin, New Zealand.
- Parry Guilford Cancer Genetics Laboratory, Department of Biochemistry, University of Otago, PO Box 56, Dunedin, 9016, New Zealand.
| |
Collapse
|