1
|
Bhattacharjee R, Kayang H, Kharshiing EV. Engineering plant photoreceptors towards enhancing plant productivity. PLANT MOLECULAR BIOLOGY 2025; 115:64. [PMID: 40327169 DOI: 10.1007/s11103-025-01591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2025] [Accepted: 04/10/2025] [Indexed: 05/07/2025]
Abstract
Light is a critical environmental factor that governs the growth and development of plants. Plants have specialised photoreceptor proteins, which allow them to sense both quality and quantity of light and drive a wide range of responses critical for optimising growth, resource use and adaptation to changes in environment. Understanding the role of these photoreceptors in plant biology has opened up potential avenues for engineering crops with enhanced productivity by engineering photoreceptor activity and/or action. The ability to manipulate plant genomes through genetic engineering and synthetic biology approaches offers the potential to unlock new agricultural innovations by fine-tuning photoreceptors or photoreceptor pathways that control plant traits of agronomic significance. Additionally, optogenetic tools which allow for precise, light-triggered control of plant responses are emerging as powerful technologies for real-time manipulation of plant cellular responses. As these technologies continue to develop, the integration of photoreceptor engineering and optogenetics into crop breeding programs could potentially revolutionise how plant researchers tackle challenges of plant productivity. Here we provide an overview on the roles of key photoreceptors in regulating agronomically important traits, the current state of plant photoreceptor engineering, the emerging use of optogenetics and synthetic biology, and the practical considerations of applying these approaches to crop improvement. This review seeks to highlight both opportunities and challenges in harnessing photoreceptor engineering approaches for enhancing plant productivity. In this review, we provide an overview on the roles of key photoreceptors in regulating agronomically important traits, the current state of plant photoreceptor engineering, the emerging use of optogenetics and synthetic biology, and the practical considerations of applying these approaches to crop improvement.
Collapse
Affiliation(s)
- Ramyani Bhattacharjee
- Department of Botany, St. Edmund's College, Shillong, Meghalaya, 793 003, India
- Department of Botany, Centre for Advanced Studies in Botany, North-Eastern Hill University, Shillong, Meghalaya, 793 022, India
| | - Highland Kayang
- Department of Botany, Centre for Advanced Studies in Botany, North-Eastern Hill University, Shillong, Meghalaya, 793 022, India.
| | - Eros V Kharshiing
- Department of Botany, St. Edmund's College, Shillong, Meghalaya, 793 003, India.
| |
Collapse
|
2
|
Greig JC, Tipping WJ, Graham D, Faulds K, Gould GW. New insights into lipid and fatty acid metabolism from Raman spectroscopy. Analyst 2024. [PMID: 39258960 DOI: 10.1039/d4an00846d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/12/2024]
Abstract
One of the challenges facing biology is to understand metabolic events at a single cellular level. While approaches to examine dynamics of protein distribution or report on spatiotemporal location of signalling molecules are well-established, tools for the dissection of metabolism in single living cells are less common. Advances in Raman spectroscopy, such as stimulated Raman scattering (SRS), are beginning to offer new insights into metabolic events in a range of experimental systems, including model organisms and clinical samples, and across a range of disciplines. Despite the power of Raman imaging, it remains a relatively under-used technique to approach biological problems, in part because of the specialised nature of the analysis. To raise the profile of this method, here we consider some key studies which illustrate how Raman spectroscopy has revealed new insights into fatty acid and lipid metabolism across a range of cellular systems. The powerful and non-invasive nature of this approach offers a new suite of tools for biomolecular scientists to address how metabolic events within cells informs on or underpins biological function. We illustrate potential biological applications, discuss some recent advances, and offer a direction of travel for metabolic research in this area.
Collapse
Affiliation(s)
- Justin C Greig
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, UK.
| | | | - Duncan Graham
- Pure and Applied Chemistry, University of Strathclyde, UK
| | - Karen Faulds
- Pure and Applied Chemistry, University of Strathclyde, UK
| | - Gwyn W Gould
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral Street, Glasgow, UK.
| |
Collapse
|
3
|
Donati A, Schneider-Maunoury S, Vesque C. Centriole Translational Planar Polarity in Monociliated Epithelia. Cells 2024; 13:1403. [PMID: 39272975 PMCID: PMC11393834 DOI: 10.3390/cells13171403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/14/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Ciliated epithelia are widespread in animals and play crucial roles in many developmental and physiological processes. Epithelia composed of multi-ciliated cells allow for directional fluid flow in the trachea, oviduct and brain cavities. Monociliated epithelia play crucial roles in vertebrate embryos, from the establishment of left-right asymmetry to the control of axis curvature via cerebrospinal flow motility in zebrafish. Cilia also have a central role in the motility and feeding of free-swimming larvae in a variety of marine organisms. These diverse functions rely on the coordinated orientation (rotational polarity) and asymmetric localization (translational polarity) of cilia and of their centriole-derived basal bodies across the epithelium, both being forms of planar cell polarity (PCP). Here, we review our current knowledge on the mechanisms of the translational polarity of basal bodies in vertebrate monociliated epithelia from the molecule to the whole organism. We highlight the importance of live imaging for understanding the dynamics of centriole polarization. We review the roles of core PCP pathways and of apicobasal polarity proteins, such as Par3, whose central function in this process has been recently uncovered. Finally, we emphasize the importance of the coordination between polarity proteins, the cytoskeleton and the basal body itself in this highly dynamic process.
Collapse
Affiliation(s)
- Antoine Donati
- Developmental Biology Unit, UMR7622, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM U1156, 75005 Paris, France
- Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Sylvie Schneider-Maunoury
- Developmental Biology Unit, UMR7622, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM U1156, 75005 Paris, France
| | - Christine Vesque
- Developmental Biology Unit, UMR7622, Institut de Biologie Paris Seine (IBPS), Sorbonne Université, CNRS, INSERM U1156, 75005 Paris, France
| |
Collapse
|
4
|
Baloban M, Kasatkina LA, Verkhusha VV. iLight2: A near-infrared optogenetic tool for gene transcription with low background activation. Protein Sci 2024; 33:e4993. [PMID: 38647395 PMCID: PMC11034490 DOI: 10.1002/pro.4993] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 04/01/2024] [Accepted: 04/03/2024] [Indexed: 04/25/2024]
Abstract
Optogenetic tools (OTs) operating in the far-red and near-infrared (NIR) region offer advantages for light-controlling biological processes in deep tissues and spectral multiplexing with fluorescent probes and OTs acting in the visible range. However, many NIR OTs suffer from background activation in darkness. Through shortening linkers, we engineered a novel NIR OT, iLight2, which exhibits a significantly reduced background activity in darkness, thereby increasing the light-to-dark activation contrast. The resultant optimal configuration of iLight2 components suggests a molecular mechanism of iLight2 action. Using a biliverdin reductase knock-out mouse model, we show that iLight2 exhibits advanced performance in mouse primary cells and deep tissues in vivo. Efficient light-controlled cell migration in wound healing cellular model demonstrates the possibility of using iLight2 in therapy and, overall, positions it as a valuable addition to the NIR OT toolkit for gene transcription applications.
Collapse
Affiliation(s)
- Mikhail Baloban
- Department of Genetics and Gruss‐Lipper Biophotonics CenterAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Ludmila A. Kasatkina
- Department of Genetics and Gruss‐Lipper Biophotonics CenterAlbert Einstein College of MedicineBronxNew YorkUSA
| | - Vladislav V. Verkhusha
- Department of Genetics and Gruss‐Lipper Biophotonics CenterAlbert Einstein College of MedicineBronxNew YorkUSA
- Medicum, Faculty of MedicineUniversity of HelsinkiHelsinkiFinland
| |
Collapse
|
5
|
Krut' VG, Kalinichenko AL, Maltsev DI, Jappy D, Shevchenko EK, Podgorny OV, Belousov VV. Optogenetic and chemogenetic approaches for modeling neurological disorders in vivo. Prog Neurobiol 2024; 235:102600. [PMID: 38548126 DOI: 10.1016/j.pneurobio.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 04/01/2024]
Abstract
Animal models of human neurological disorders provide valuable experimental tools which enable us to study various aspects of disorder pathogeneses, ranging from structural abnormalities and disrupted metabolism and signaling to motor and mental deficits, and allow us to test novel therapies in preclinical studies. To be valid, these animal models should recapitulate complex pathological features at the molecular, cellular, tissue, and behavioral levels as closely as possible to those observed in human subjects. Pathological states resembling known human neurological disorders can be induced in animal species by toxins, genetic factors, lesioning, or exposure to extreme conditions. In recent years, novel animal models recapitulating neuropathologies in humans have been introduced. These animal models are based on synthetic biology approaches: opto- and chemogenetics. In this paper, we review recent opto- and chemogenetics-based animal models of human neurological disorders. These models allow for the creation of pathological states by disrupting specific processes at the cellular level. The artificial pathological states mimic a range of human neurological disorders, such as aging-related dementia, Alzheimer's and Parkinson's diseases, amyotrophic lateral sclerosis, epilepsy, and ataxias. Opto- and chemogenetics provide new opportunities unavailable with other animal models of human neurological disorders. These techniques enable researchers to induce neuropathological states varying in severity and ranging from acute to chronic. We also discuss future directions for the development and application of synthetic biology approaches for modeling neurological disorders.
Collapse
Affiliation(s)
- Viktoriya G Krut'
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Andrei L Kalinichenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - Dmitry I Maltsev
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia
| | - David Jappy
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Evgeny K Shevchenko
- Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia
| | - Oleg V Podgorny
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia.
| | - Vsevolod V Belousov
- Pirogov Russian National Research Medical University, Moscow 117997, Russia; Federal Center of Brain Research and Neurotechnologies, Federal Medical Biological Agency, Moscow 117997, Russia; Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117997, Russia; Life Improvement by Future Technologies (LIFT) Center, Skolkovo, Moscow 143025, Russia.
| |
Collapse
|
6
|
Mirdass C, Catala M, Bocel M, Nedelec S, Ribes V. Stem cell-derived models of spinal neurulation. Emerg Top Life Sci 2023; 7:423-437. [PMID: 38087891 DOI: 10.1042/etls20230087] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Revised: 11/26/2023] [Accepted: 11/27/2023] [Indexed: 12/19/2023]
Abstract
Neurulation is a critical step in early embryonic development, giving rise to the neural tube, the primordium of the central nervous system in amniotes. Understanding this complex, multi-scale, multi-tissue morphogenetic process is essential to provide insights into normal development and the etiology of neural tube defects. Innovations in tissue engineering have fostered the generation of pluripotent stem cell-based in vitro models, including organoids, that are emerging as unique tools for delving into neurulation mechanisms, especially in the context of human development. Each model captures specific aspects of neural tube morphogenesis, from epithelialization to neural tissue elongation, folding and cavitation. In particular, the recent models of human and mouse trunk morphogenesis, such as gastruloids, that form a spinal neural plate-like or neural tube-like structure are opening new avenues to study normal and pathological neurulation. Here, we review the morphogenetic events generating the neural tube in the mammalian embryo and questions that remain unanswered. We discuss the advantages and limitations of existing in vitro models of neurulation and possible future technical developments.
Collapse
Affiliation(s)
- Camil Mirdass
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
- Institut du Fer à Moulin, 75005 Paris, France
- Inserm, UMR-S 1270, 75005 Paris, France
- Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Martin Catala
- Institut de Biologie Paris Seine (IBPS) - Developmental Biology Laboratory, UMR7622 CNRS, INSERM ERL 1156, Sorbonne Université, 9 Quai Saint-Bernard, 75005 Paris, France
| | - Mikaëlle Bocel
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| | - Stéphane Nedelec
- Institut du Fer à Moulin, 75005 Paris, France
- Inserm, UMR-S 1270, 75005 Paris, France
- Sorbonne Université, Science and Engineering Faculty, 75005 Paris, France
| | - Vanessa Ribes
- Université Paris Cité, CNRS, Institut Jacques Monod, F-75013 Paris, France
| |
Collapse
|
7
|
Ramos AP, Szalapak A, Ferme LC, Modes CD. From cells to form: A roadmap to study shape emergence in vivo. Biophys J 2023; 122:3587-3599. [PMID: 37243338 PMCID: PMC10541488 DOI: 10.1016/j.bpj.2023.05.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 04/25/2023] [Accepted: 05/18/2023] [Indexed: 05/28/2023] Open
Abstract
Organogenesis arises from the collective arrangement of cells into progressively 3D-shaped tissue. The acquisition of a correctly shaped organ is then the result of a complex interplay between molecular cues, responsible for differentiation and patterning, and the mechanical properties of the system, which generate the necessary forces that drive correct shape emergence. Nowadays, technological advances in the fields of microscopy, molecular biology, and computer science are making it possible to see and record such complex interactions in incredible, unforeseen detail within the global context of the developing embryo. A quantitative and interdisciplinary perspective of developmental biology becomes then necessary for a comprehensive understanding of morphogenesis. Here, we provide a roadmap to quantify the events that lead to morphogenesis from imaging to image analysis, quantification, and modeling, focusing on the discrete cellular and tissue shape changes, as well as their mechanical properties.
Collapse
Affiliation(s)
| | - Alicja Szalapak
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany
| | | | - Carl D Modes
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany; Center for Systems Biology Dresden, Dresden, Germany; Cluster of Excellence Physics of Life, TU Dresden, Dresden, Germany
| |
Collapse
|
8
|
McNamara HM, Ramm B, Toettcher JE. Synthetic developmental biology: New tools to deconstruct and rebuild developmental systems. Semin Cell Dev Biol 2023; 141:33-42. [PMID: 35484026 PMCID: PMC10332110 DOI: 10.1016/j.semcdb.2022.04.013] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Accepted: 04/13/2022] [Indexed: 11/16/2022]
Abstract
Technological advances have driven many recent advances in developmental biology. Light sheet imaging can reveal single-cell dynamics in living three-dimensional tissues, whereas single-cell genomic methods open the door to a complete catalogue of cell types and gene expression states. An equally powerful but complementary set of approaches are also becoming available to define development processes from the bottom up. These synthetic approaches aim to reconstruct the minimal developmental patterns, signaling processes, and gene networks that produce the basic set of developmental operations: spatial polarization, morphogen interpretation, tissue movement, and cellular memory. In this review we discuss recent approaches at the intersection of synthetic biology and development, including synthetic circuits to deliver and record signaling stimuli and synthetic reconstitution of pattern formation on multicellular scales.
Collapse
Affiliation(s)
- Harold M McNamara
- Lewis Sigler Institute, Princeton University, Princeton, NJ 08544, USA; Department of Physics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Beatrice Ramm
- Department of Physics, Princeton University, Princeton, NJ 08544, USA; Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA
| | - Jared E Toettcher
- Department of Molecular Biology, Princeton University, Princeton, NJ 08544, USA.
| |
Collapse
|
9
|
Oda S, Sato-Ebine E, Nakamura A, Kimura KD, Aoki K. Optical Control of Cell Signaling with Red/Far-Red Light-Responsive Optogenetic Tools in Caenorhabditis elegans. ACS Synth Biol 2023; 12:700-708. [PMID: 36802521 DOI: 10.1021/acssynbio.2c00461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
Optogenetic techniques have been intensively applied to the nematode Caenorhabditis elegans to investigate its neural functions. However, as most of these optogenetics are responsive to blue light and the animal exhibits avoidance behavior to blue light, the application of optogenetic tools responsive to longer wavelength light has been eagerly anticipated. In this study, we report the implementation in C. elegans of a phytochrome-based optogenetic tool that responds to red/near-infrared light and manipulates cell signaling. We first introduced the SynPCB system, which enabled us to synthesize phycocyanobilin (PCB), a chromophore for phytochrome, and confirmed the biosynthesis of PCB in neurons, muscles, and intestinal cells. We further confirmed that the amount of PCBs synthesized by the SynPCB system was sufficient for photoswitching of phytochrome B (PhyB)-phytochrome interacting factor 3 (PIF3). In addition, optogenetic elevation of intracellular Ca2+ levels in intestinal cells induced a defecation motor program. These SynPCB system and phytochrome-based optogenetic techniques would be of great value in elucidating the molecular mechanisms underlying C. elegans behaviors.
Collapse
Affiliation(s)
- Shigekazu Oda
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Emi Sato-Ebine
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Akinobu Nakamura
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan
| | - Koutarou D Kimura
- Graduate School of Science, Nagoya City University, Nagoya 467-8501, Japan
| | - Kazuhiro Aoki
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, Okazaki 444-8787, Japan.,Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, Okazaki 444-8787, Japan.,Department of Basic Biology, Faculty of Life Science, SOKENDAI (Graduate University for Advanced Studies), Okazaki 444-8787, Japan
| |
Collapse
|
10
|
Chen P, Levy DL. Regulation of organelle size and organization during development. Semin Cell Dev Biol 2023; 133:53-64. [PMID: 35148938 PMCID: PMC9357868 DOI: 10.1016/j.semcdb.2022.02.002] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Revised: 01/20/2022] [Accepted: 02/01/2022] [Indexed: 12/11/2022]
Abstract
During early embryogenesis, as cells divide in the developing embryo, the size of intracellular organelles generally decreases to scale with the decrease in overall cell size. Organelle size scaling is thought to be important to establish and maintain proper cellular function, and defective scaling may lead to impaired development and disease. However, how the cell regulates organelle size and organization are largely unanswered questions. In this review, we summarize the process of size scaling at both the cell and organelle levels and discuss recently discovered mechanisms that regulate this process during early embryogenesis. In addition, we describe how some recently developed techniques and Xenopus as an animal model can be used to investigate the underlying mechanisms of size regulation and to uncover the significance of proper organelle size scaling and organization.
Collapse
Affiliation(s)
- Pan Chen
- Institute of Biochemistry and Molecular Biology, School of Medicine, Ningbo University, Ningbo, Zhejiang 315211, China.
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, WY 82071, USA.
| |
Collapse
|
11
|
Crellin HA, Buckley CE. Using Optogenetics to Investigate the Shared Mechanisms of Apical-Basal Polarity and Mitosis. Cells Tissues Organs 2023; 213:161-180. [PMID: 36599311 DOI: 10.1159/000528796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 12/18/2022] [Indexed: 01/05/2023] Open
Abstract
The initiation of apical-basal (AB) polarity and the process of mitotic cell division are both characterised by the generation of specialised plasma membrane and cortical domains. These are generated using shared mechanisms, such as asymmetric protein accumulation, Rho GTPase signalling, cytoskeletal reorganisation, vesicle trafficking, and asymmetric phosphoinositide distribution. In epithelial tissue, the coordination of AB polarity and mitosis in space and time is important both during initial epithelial development and to maintain tissue integrity and ensure appropriate cell differentiation at later stages. Whilst significant progress has been made in understanding the mechanisms underlying cell division and AB polarity, it has so far been challenging to fully unpick the complex interrelationship between polarity, signalling, morphogenesis, and cell division. However, the recent emergence of optogenetic protein localisation techniques is now allowing researchers to reversibly control protein activation, localisation, and signalling with high spatiotemporal resolution. This has the potential to revolutionise our understanding of how subcellular processes such as AB polarity are integrated with cell behaviours such as mitosis and how these processes impact whole tissue morphogenesis. So far, these techniques have been used to investigate processes such as cleavage furrow ingression, mitotic spindle positioning, and in vivo epithelial morphogenesis. This review describes some of the key shared mechanisms of cell division and AB polarity establishment, how they are coordinated during development and how the advance of optogenetic techniques is furthering this research field.
Collapse
Affiliation(s)
- Helena A Crellin
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - Clare E Buckley
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
12
|
Entenberg D, Oktay MH, Condeelis JS. Intravital imaging to study cancer progression and metastasis. Nat Rev Cancer 2023; 23:25-42. [PMID: 36385560 PMCID: PMC9912378 DOI: 10.1038/s41568-022-00527-5] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/11/2022] [Indexed: 11/17/2022]
Abstract
Navigation through the bulk tumour, entry into the blood vasculature, survival in the circulation, exit at distant sites and resumption of proliferation are all steps necessary for tumour cells to successfully metastasize. The ability of tumour cells to complete these steps is highly dependent on the timing and sequence of the interactions that these cells have with the tumour microenvironment (TME), including stromal cells, the extracellular matrix and soluble factors. The TME thus plays a major role in determining the overall metastatic phenotype of tumours. The complexity and cause-and-effect dynamics of the TME cannot currently be recapitulated in vitro or inferred from studies of fixed tissue, and are best studied in vivo, in real time and at single-cell resolution. Intravital imaging (IVI) offers these capabilities, and recent years have been a time of immense growth and innovation in the field. Here we review some of the recent advances in IVI of mammalian models of cancer and describe how IVI is being used to understand cancer progression and metastasis, and to develop novel treatments and therapies. We describe new techniques that allow access to a range of tissue and cancer types, novel fluorescent reporters and biosensors that allow fate mapping and the probing of functional and phenotypic states, and the clinical applications that have arisen from applying these techniques, reporters and biosensors to study cancer. We finish by presenting some of the challenges that remain in the field, how to address them and future perspectives.
Collapse
Affiliation(s)
- David Entenberg
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| | - Maja H Oktay
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Pathology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| | - John S Condeelis
- Gruss Lipper Biophotonics Center, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Integrated Imaging Program, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Surgery, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
- Department of Cell Biology, Albert Einstein College of Medicine/Montefiore Medical Center, Bronx, NY, USA.
| |
Collapse
|
13
|
Lepeta K, Roubinet C, Bauer M, Vigano MA, Aguilar G, Kanca O, Ochoa-Espinosa A, Bieli D, Cabernard C, Caussinus E, Affolter M. Engineered kinases as a tool for phosphorylation of selected targets in vivo. J Cell Biol 2022; 221:213463. [PMID: 36102907 PMCID: PMC9477969 DOI: 10.1083/jcb.202106179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 05/19/2022] [Accepted: 07/27/2022] [Indexed: 11/22/2022] Open
Abstract
Reversible protein phosphorylation by kinases controls a plethora of processes essential for the proper development and homeostasis of multicellular organisms. One main obstacle in studying the role of a defined kinase–substrate interaction is that kinases form complex signaling networks and most often phosphorylate multiple substrates involved in various cellular processes. In recent years, several new approaches have been developed to control the activity of a given kinase. However, most of them fail to regulate a single protein target, likely hiding the effect of a unique kinase–substrate interaction by pleiotropic effects. To overcome this limitation, we have created protein binder-based engineered kinases that permit a direct, robust, and tissue-specific phosphorylation of fluorescent fusion proteins in vivo. We show the detailed characterization of two engineered kinases based on Rho-associated protein kinase (ROCK) and Src. Expression of synthetic kinases in the developing fly embryo resulted in phosphorylation of their respective GFP-fusion targets, providing for the first time a means to direct the phosphorylation to a chosen and tagged target in vivo. We presume that after careful optimization, the novel approach we describe here can be adapted to other kinases and targets in various eukaryotic genetic systems to regulate specific downstream effectors.
Collapse
Affiliation(s)
| | - Chantal Roubinet
- MRC Laboratory for Molecular Cell Biology, University College London, London, UK 2
| | - Milena Bauer
- Biozentrum, University of Basel, Basel, Switzerland 1
| | | | | | - Oguz Kanca
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 3
| | | | | | | | | | | |
Collapse
|
14
|
Kuznetsov IA, Berlew EE, Glantz ST, Hannanta-Anan P, Chow BY. Computational framework for single-cell spatiotemporal dynamics of optogenetic membrane recruitment. CELL REPORTS METHODS 2022; 2:100245. [PMID: 35880018 PMCID: PMC9308134 DOI: 10.1016/j.crmeth.2022.100245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 05/18/2022] [Accepted: 06/09/2022] [Indexed: 10/27/2022]
Abstract
We describe a modular computational framework for analyzing cell-wide spatiotemporal signaling dynamics in single-cell microscopy experiments that accounts for the experiment-specific geometric and diffractive complexities that arise from heterogeneous cell morphologies and optical instrumentation. Inputs are unique cell geometries and protein concentrations derived from confocal stacks and spatiotemporally varying environmental stimuli. After simulating the system with a model of choice, the output is convolved with the microscope point-spread function for direct comparison with the observable image. We experimentally validate this approach in single cells with BcLOV4, an optogenetic membrane recruitment system for versatile control over cell signaling, using a three-dimensional non-linear finite element model with all parameters experimentally derived. The simulations recapitulate observed subcellular and cell-to-cell variability in BcLOV4 signaling, allowing for inter-experimental differences of cellular and instrumentation origins to be elucidated and resolved for improved interpretive robustness. This single-cell approach will enhance optogenetics and spatiotemporally resolved signaling studies.
Collapse
Affiliation(s)
- Ivan A. Kuznetsov
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Erin E. Berlew
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Spencer T. Glantz
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Pimkhuan Hannanta-Anan
- Department of Biomedical Engineering, School of Engineering, King Mongkut's Institute of Technology Ladkrabang, Bangkok 10520, Thailand
| | - Brian Y. Chow
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
15
|
Li H, Burgie ES, Gannam ZTK, Li H, Vierstra RD. Plant phytochrome B is an asymmetric dimer with unique signalling potential. Nature 2022; 604:127-133. [PMID: 35355010 PMCID: PMC9930725 DOI: 10.1038/s41586-022-04529-z] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 02/07/2022] [Indexed: 12/24/2022]
Abstract
Many aspects of plant photoperception are mediated by the phytochrome (Phy) family of bilin-containing photoreceptors that reversibly interconvert between inactive Pr and active Pfr conformers1,2. Despite extensive biochemical studies, full understanding of plant Phy signalling has remained unclear due to the absence of relevant 3D models. Here we report a cryo-electron microscopy structure of Arabidopsis PhyB in the Pr state that reveals a topologically complex dimeric organization that is substantially distinct from its prokaryotic relatives. Instead of an anticipated parallel architecture, the C-terminal histidine-kinase-related domains (HKRDs) associate head-to-head, whereas the N-terminal photosensory regions associate head-to-tail to form a parallelogram-shaped platform with near two-fold symmetry. The platform is internally linked by the second of two internal Per/Arnt/Sim domains that binds to the photosensory module of the opposing protomer and a preceding 'modulator' loop that assembles tightly with the photosensory module of its own protomer. Both connections accelerate the thermal reversion of Pfr back to Pr, consistent with an inverse relationship between dimer assembly and Pfr stability. Lopsided contacts between the HKRDs and the platform create profound asymmetry to PhyB that might imbue distinct signalling potentials to the protomers. We propose that this unique structural dynamism creates an extensive photostate-sensitive surface for conformation-dependent interactions between plant Phy photoreceptors and their signalling partners.
Collapse
Affiliation(s)
- Hua Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA
| | - E Sethe Burgie
- Department of Biology, Washington University in St Louis, St Louis, MO, USA
| | - Zira T K Gannam
- Department of Biology, Washington University in St Louis, St Louis, MO, USA
| | - Huilin Li
- Department of Structural Biology, Van Andel Institute, Grand Rapids, MI, USA.
| | - Richard D Vierstra
- Department of Biology, Washington University in St Louis, St Louis, MO, USA.
| |
Collapse
|
16
|
Dionne U, Gingras AC. Proximity-Dependent Biotinylation Approaches to Explore the Dynamic Compartmentalized Proteome. Front Mol Biosci 2022; 9:852911. [PMID: 35309513 PMCID: PMC8930824 DOI: 10.3389/fmolb.2022.852911] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Accepted: 02/07/2022] [Indexed: 12/12/2022] Open
Abstract
In recent years, proximity-dependent biotinylation approaches, including BioID, APEX, and their derivatives, have been widely used to define the compositions of organelles and other structures in cultured cells and model organisms. The associations between specific proteins and given compartments are regulated by several post-translational modifications (PTMs); however, these effects have not been systematically investigated using proximity proteomics. Here, we discuss the progress made in this field and how proximity-dependent biotinylation strategies could elucidate the contributions of PTMs, such as phosphorylation, to the compartmentalization of proteins.
Collapse
Affiliation(s)
- Ugo Dionne
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- *Correspondence: Anne-Claude Gingras,
| |
Collapse
|
17
|
Lehtinen K, Nokia MS, Takala H. Red Light Optogenetics in Neuroscience. Front Cell Neurosci 2022; 15:778900. [PMID: 35046775 PMCID: PMC8761848 DOI: 10.3389/fncel.2021.778900] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 12/02/2021] [Indexed: 12/25/2022] Open
Abstract
Optogenetics, a field concentrating on controlling cellular functions by means of light-activated proteins, has shown tremendous potential in neuroscience. It possesses superior spatiotemporal resolution compared to the surgical, electrical, and pharmacological methods traditionally used in studying brain function. A multitude of optogenetic tools for neuroscience have been created that, for example, enable the control of action potential generation via light-activated ion channels. Other optogenetic proteins have been used in the brain, for example, to control long-term potentiation or to ablate specific subtypes of neurons. In in vivo applications, however, the majority of optogenetic tools are operated with blue, green, or yellow light, which all have limited penetration in biological tissues compared to red light and especially infrared light. This difference is significant, especially considering the size of the rodent brain, a major research model in neuroscience. Our review will focus on the utilization of red light-operated optogenetic tools in neuroscience. We first outline the advantages of red light for in vivo studies. Then we provide a brief overview of the red light-activated optogenetic proteins and systems with a focus on new developments in the field. Finally, we will highlight different tools and applications, which further facilitate the use of red light optogenetics in neuroscience.
Collapse
Affiliation(s)
- Kimmo Lehtinen
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| | - Miriam S. Nokia
- Department of Psychology, University of Jyväskylä, Jyväskylä, Finland
- Centre for Interdisciplinary Brain Research, University of Jyväskylä, Jyväskylä, Finland
| | - Heikki Takala
- Department of Biological and Environmental Science, Nanoscience Center, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
18
|
Tang K, Beyer HM, Zurbriggen MD, Gärtner W. The Red Edge: Bilin-Binding Photoreceptors as Optogenetic Tools and Fluorescence Reporters. Chem Rev 2021; 121:14906-14956. [PMID: 34669383 PMCID: PMC8707292 DOI: 10.1021/acs.chemrev.1c00194] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Indexed: 12/15/2022]
Abstract
This review adds the bilin-binding phytochromes to the Chemical Reviews thematic issue "Optogenetics and Photopharmacology". The work is structured into two parts. We first outline the photochemistry of the covalently bound tetrapyrrole chromophore and summarize relevant spectroscopic, kinetic, biochemical, and physiological properties of the different families of phytochromes. Based on this knowledge, we then describe the engineering of phytochromes to further improve these chromoproteins as photoswitches and review their employment in an ever-growing number of different optogenetic applications. Most applications rely on the light-controlled complex formation between the plant photoreceptor PhyB and phytochrome-interacting factors (PIFs) or C-terminal light-regulated domains with enzymatic functions present in many bacterial and algal phytochromes. Phytochrome-based optogenetic tools are currently implemented in bacteria, yeast, plants, and animals to achieve light control of a wide range of biological activities. These cover the regulation of gene expression, protein transport into cell organelles, and the recruitment of phytochrome- or PIF-tagged proteins to membranes and other cellular compartments. This compilation illustrates the intrinsic advantages of phytochromes compared to other photoreceptor classes, e.g., their bidirectional dual-wavelength control enabling instant ON and OFF regulation. In particular, the long wavelength range of absorption and fluorescence within the "transparent window" makes phytochromes attractive for complex applications requiring deep tissue penetration or dual-wavelength control in combination with blue and UV light-sensing photoreceptors. In addition to the wide variability of applications employing natural and engineered phytochromes, we also discuss recent progress in the development of bilin-based fluorescent proteins.
Collapse
Affiliation(s)
- Kun Tang
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Hannes M. Beyer
- Institute
of Synthetic Biology, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse 1, D-40225 Düsseldorf, Germany
| | - Matias D. Zurbriggen
- Institute
of Synthetic Biology and CEPLAS, Heinrich-Heine-University
Düsseldorf, Universitätsstrasse
1, D-40225 Düsseldorf, Germany
| | - Wolfgang Gärtner
- Retired: Max Planck Institute
for Chemical Energy Conversion. At present: Institute for Analytical Chemistry, University
Leipzig, Linnéstrasse
3, 04103 Leipzig, Germany
| |
Collapse
|
19
|
Neely SA, Lyons DA. Insights Into Central Nervous System Glial Cell Formation and Function From Zebrafish. Front Cell Dev Biol 2021; 9:754606. [PMID: 34912801 PMCID: PMC8666443 DOI: 10.3389/fcell.2021.754606] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/05/2021] [Indexed: 12/23/2022] Open
Abstract
The term glia describes a heterogenous collection of distinct cell types that make up a large proportion of our nervous system. Although once considered the glue of the nervous system, the study of glial cells has evolved significantly in recent years, with a large body of literature now highlighting their complex and diverse roles in development and throughout life. This progress is due, in part, to advances in animal models in which the molecular and cellular mechanisms of glial cell development and function as well as neuron-glial cell interactions can be directly studied in vivo in real time, in intact neural circuits. In this review we highlight the instrumental role that zebrafish have played as a vertebrate model system for the study of glial cells, and discuss how the experimental advantages of the zebrafish lend themselves to investigate glial cell interactions and diversity. We focus in particular on recent studies that have provided insight into the formation and function of the major glial cell types in the central nervous system in zebrafish.
Collapse
Affiliation(s)
- Sarah A. Neely
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - David A. Lyons
- Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|
20
|
Ryan A, Hammond GRV, Deiters A. Optical Control of Phosphoinositide Binding: Rapid Activation of Subcellular Protein Translocation and Cell Signaling. ACS Synth Biol 2021; 10:2886-2895. [PMID: 34748306 DOI: 10.1021/acssynbio.1c00328] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Cells utilize protein translocation to specific compartments for spatial and temporal regulation of protein activity, in particular in the context of signaling processes. Protein recognition and binding to various subcellular membranes is mediated by a network of phosphatidylinositol phosphate (PIP) species bearing one or multiple phosphate moieties on the polar inositol head. Here, we report a new, highly efficient method for optical control of protein localization through the site-specific incorporation of a photocaged amino acid for steric and electrostatic disruption of inositol phosphate recognition and binding. We demonstrate general applicability of the approach by photocaging two unrelated proteins, sorting nexin 3 (SNX3) and the pleckstrin homology (PH) domain of phospholipase C delta 1 (PLCδ1), with two distinct PIP binding domains and distinct subcellular localizations. We have established the applicability of this methodology through its application to Son of Sevenless 2 (SOS2), a signaling protein involved in the extracellular signal-regulated kinase/mitogen-activated protein kinase (ERK/MAPK) cascade. Upon fusing the photocaged plasma membrane-targeted construct PH-enhanced green fluorescent protein (EGFP), to the catalytic domain of SOS2, we demonstrated light-induced membrane localization of the construct resulting in fast and extensive activation of the ERK signaling pathway in NIH 3T3 cells. This approach can be readily extended to other proteins, with minimal protein engineering, and provides a method for acute optical control of protein translocation with rapid and complete activation.
Collapse
Affiliation(s)
- Amy Ryan
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Gerald R. V. Hammond
- Department of Cell Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania 15260, United States
| | - Alexander Deiters
- Department of Chemistry, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| |
Collapse
|
21
|
Saydmohammed M, Jha A, Mahajan V, Gavlock D, Shun TY, DeBiasio R, Lefever D, Li X, Reese C, Kershaw EE, Yechoor V, Behari J, Soto-Gutierrez A, Vernetti L, Stern A, Gough A, Miedel MT, Lansing Taylor D. Quantifying the progression of non-alcoholic fatty liver disease in human biomimetic liver microphysiology systems with fluorescent protein biosensors. Exp Biol Med (Maywood) 2021; 246:2420-2441. [PMID: 33957803 PMCID: PMC8606957 DOI: 10.1177/15353702211009228] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 03/23/2021] [Indexed: 12/12/2022] Open
Abstract
Metabolic syndrome is a complex disease that involves multiple organ systems including a critical role for the liver. Non-alcoholic fatty liver disease (NAFLD) is a key component of the metabolic syndrome and fatty liver is linked to a range of metabolic dysfunctions that occur in approximately 25% of the population. A panel of experts recently agreed that the acronym, NAFLD, did not properly characterize this heterogeneous disease given the associated metabolic abnormalities such as type 2 diabetes mellitus (T2D), obesity, and hypertension. Therefore, metabolic dysfunction-associated fatty liver disease (MAFLD) has been proposed as the new term to cover the heterogeneity identified in the NAFLD patient population. Although many rodent models of NAFLD/NASH have been developed, they do not recapitulate the full disease spectrum in patients. Therefore, a platform has evolved initially focused on human biomimetic liver microphysiology systems that integrates fluorescent protein biosensors along with other key metrics, the microphysiology systems database, and quantitative systems pharmacology. Quantitative systems pharmacology is being applied to investigate the mechanisms of NAFLD/MAFLD progression to select molecular targets for fluorescent protein biosensors, to integrate computational and experimental methods to predict drugs for repurposing, and to facilitate novel drug development. Fluorescent protein biosensors are critical components of the platform since they enable monitoring of the pathophysiology of disease progression by defining and quantifying the temporal and spatial dynamics of protein functions in the biosensor cells, and serve as minimally invasive biomarkers of the physiological state of the microphysiology system experimental disease models. Here, we summarize the progress in developing human microphysiology system disease models of NAFLD/MAFLD from several laboratories, developing fluorescent protein biosensors to monitor and to measure NAFLD/MAFLD disease progression and implementation of quantitative systems pharmacology with the goal of repurposing drugs and guiding the creation of novel therapeutics.
Collapse
Affiliation(s)
- Manush Saydmohammed
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Anupma Jha
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Vineet Mahajan
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Dillon Gavlock
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Tong Ying Shun
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Richard DeBiasio
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Daniel Lefever
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Xiang Li
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Celeste Reese
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Erin E Kershaw
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Vijay Yechoor
- Department of Medicine, Division of Endocrinology and Metabolism, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Jaideep Behari
- Department of Medicine, Division of Gastroenterology, Hepatology and Nutrition, Pittsburgh, PA 15261, USA
- UPMC Liver Clinic, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Alejandro Soto-Gutierrez
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Larry Vernetti
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Andrew Stern
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Albert Gough
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - Mark T Miedel
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| | - D Lansing Taylor
- University of Pittsburgh Drug Discovery Institute, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Pittsburgh Liver Research Center, University of Pittsburgh, Pittsburgh, PA 15261, USA
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA 15261, USA
| |
Collapse
|
22
|
Mechanics of neural tube morphogenesis. Semin Cell Dev Biol 2021; 130:56-69. [PMID: 34561169 DOI: 10.1016/j.semcdb.2021.09.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 09/07/2021] [Accepted: 09/10/2021] [Indexed: 01/07/2023]
Abstract
The neural tube is an important model system of morphogenesis representing the developmental module of out-of-plane epithelial deformation. As the embryonic precursor of the central nervous system, the neural tube also holds keys to many defects and diseases. Recent advances begin to reveal how genetic, cellular and environmental mechanisms work in concert to ensure correct neural tube shape. A physical model is emerging where these factors converge at the regulation of the mechanical forces and properties within and around the tissue that drive tube formation towards completion. Here we review the dynamics and mechanics of neural tube morphogenesis and discuss the underlying cellular behaviours from the viewpoint of tissue mechanics. We will also highlight some of the conceptual and technical next steps.
Collapse
|
23
|
Stower MJ, Srinivas S. Advances in live imaging early mouse development: exploring the researcher's interdisciplinary toolkit. Development 2021; 148:dev199433. [PMID: 34897401 PMCID: PMC7615354 DOI: 10.1242/dev.199433] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Live imaging is an important part of the developmental biologist's armoury of methods. In the case of the mouse embryo, recent advances in several disciplines including embryo culture, microscopy hardware and computational analysis have all contributed to our ability to probe dynamic events during early development. Together, these advances have provided us with a versatile and powerful 'toolkit', enabling us not only to image events during mouse embryogenesis, but also to intervene with them. In this short Spotlight article, we summarise advances and challenges in using live imaging specifically for understanding early mouse embryogenesis.
Collapse
Affiliation(s)
- Matthew J. Stower
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| | - Shankar Srinivas
- Department of Physiology, Anatomy and Genetics, University of Oxford, South Parks Road, Oxford OX1 3QX, UK
| |
Collapse
|
24
|
Wichert N, Witt M, Blume C, Scheper T. Clinical applicability of optogenetic gene regulation. Biotechnol Bioeng 2021; 118:4168-4185. [PMID: 34287844 DOI: 10.1002/bit.27895] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/27/2021] [Accepted: 07/13/2021] [Indexed: 11/10/2022]
Abstract
The field of optogenetics is rapidly growing in relevance and number of developed tools. Among other things, the optogenetic repertoire includes light-responsive ion channels and methods for gene regulation. This review will be confined to the optogenetic control of gene expression in mammalian cells as suitable models for clinical applications. Here optogenetic gene regulation might offer an excellent method for spatially and timely regulated gene and protein expression in cell therapeutic approaches. Well-known systems for gene regulation, such as the LOV-, CRY2/CIB-, PhyB/PIF-systems, as well as other, in mammalian cells not yet fully established systems, will be described. Advantages and disadvantages with regard to clinical applications are outlined in detail. Among the many unanswered questions concerning the application of optogenetics, we discuss items such as the use of exogenous chromophores and their effects on the biology of the cells and methods for a gentle, but effective gene transfection method for optogenetic tools for in vivo applications.
Collapse
Affiliation(s)
- Nina Wichert
- Insitute of Technical Chemistry, Leibniz University of Hannover, Hannover, Germany
| | - Martin Witt
- Insitute of Technical Chemistry, Leibniz University of Hannover, Hannover, Germany
| | - Cornelia Blume
- Insitute of Technical Chemistry, Leibniz University of Hannover, Hannover, Germany
| | - Thomas Scheper
- Insitute of Technical Chemistry, Leibniz University of Hannover, Hannover, Germany
| |
Collapse
|
25
|
Kaberniuk AA, Baloban M, Monakhov MV, Shcherbakova DM, Verkhusha VV. Single-component near-infrared optogenetic systems for gene transcription regulation. Nat Commun 2021; 12:3859. [PMID: 34162879 PMCID: PMC8222386 DOI: 10.1038/s41467-021-24212-7] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Accepted: 06/03/2021] [Indexed: 11/09/2022] Open
Abstract
Near-infrared (NIR) optogenetic systems for transcription regulation are in high demand because NIR light exhibits low phototoxicity, low scattering, and allows combining with probes of visible range. However, available NIR optogenetic systems consist of several protein components of large size and multidomain structure. Here, we engineer single-component NIR systems consisting of evolved photosensory core module of Idiomarina sp. bacterial phytochrome, named iLight, which are smaller and packable in adeno-associated virus. We characterize iLight in vitro and in gene transcription repression in bacterial and gene transcription activation in mammalian cells. Bacterial iLight system shows 115-fold repression of protein production. Comparing to multi-component NIR systems, mammalian iLight system exhibits higher activation of 65-fold in cells and faster 6-fold activation in deep tissues of mice. Neurons transduced with viral-encoded iLight system exhibit 50-fold induction of fluorescent reporter. NIR light-induced neuronal expression of green-light-activatable CheRiff channelrhodopsin causes 20-fold increase of photocurrent and demonstrates efficient spectral multiplexing. Current near-IR optogenetic systems to regulate transcription consist of a number of large protein components. Here the authors report a smaller single-component near-IR system, iLight, developed from a bacterial phytochrome that they use to control gene transcription in bacterial and mammalian cells.
Collapse
Affiliation(s)
- Andrii A Kaberniuk
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mikhail Baloban
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Mikhail V Monakhov
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Daria M Shcherbakova
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA
| | - Vladislav V Verkhusha
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, USA. .,Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland. .,Science Center for Genetics and Life Sciences, Sirius University of Science and Technology, Sochi, Russia.
| |
Collapse
|
26
|
Vigano MA, Ell CM, Kustermann MMM, Aguilar G, Matsuda S, Zhao N, Stasevich TJ, Affolter M, Pyrowolakis G. Protein manipulation using single copies of short peptide tags in cultured cells and in Drosophila melanogaster. Development 2021; 148:dev191700. [PMID: 33593816 PMCID: PMC7990863 DOI: 10.1242/dev.191700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 02/09/2021] [Indexed: 01/01/2023]
Abstract
Cellular development and function rely on highly dynamic molecular interactions among proteins distributed in all cell compartments. Analysis of these interactions has been one of the main topics in cellular and developmental research, and has been mostly achieved by the manipulation of proteins of interest (POIs) at the genetic level. Although genetic strategies have significantly contributed to our current understanding, targeting specific interactions of POIs in a time- and space-controlled manner or analysing the role of POIs in dynamic cellular processes, such as cell migration or cell division, would benefit from more-direct approaches. The recent development of specific protein binders, which can be expressed and function intracellularly, along with advancement in synthetic biology, have contributed to the creation of a new toolbox for direct protein manipulations. Here, we have selected a number of short-tag epitopes for which protein binders from different scaffolds have been generated and showed that single copies of these tags allowed efficient POI binding and manipulation in living cells. Using Drosophila, we also find that single short tags can be used for POI manipulation in vivo.
Collapse
Affiliation(s)
- M Alessandra Vigano
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Clara-Maria Ell
- Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, 79104 Freiburg, Germany
- Institute for Biology I, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104 Freiburg, Germany
| | - Manuela M M Kustermann
- Institute for Biology I, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104 Freiburg, Germany
| | - Gustavo Aguilar
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Shinya Matsuda
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - Ning Zhao
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO 80523, USA
| | - Markus Affolter
- Growth and Development, Biozentrum, University of Basel, Klingelbergstrasse 70, CH-4056 Basel, Switzerland
| | - George Pyrowolakis
- Institute for Biology I, Faculty of Biology, University of Freiburg, 79104 Freiburg, Germany
- CIBSS - Centre for Integrative Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany
- Center for Biological Systems Analysis, University of Freiburg, Habsburgerstrasse 49, 79104 Freiburg, Germany
| |
Collapse
|
27
|
Christie JM, Zurbriggen MD. Optogenetics in plants. THE NEW PHYTOLOGIST 2021; 229:3108-3115. [PMID: 33064858 DOI: 10.1111/nph.17008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Accepted: 09/18/2020] [Indexed: 06/11/2023]
Abstract
The last two decades have witnessed the emergence of optogenetics; a field that has given researchers the ability to use light to control biological processes at high spatiotemporal and quantitative resolutions, in a reversible manner with minimal side-effects. Optogenetics has revolutionized the neurosciences, increased our understanding of cellular signalling and metabolic networks and resulted in variety of applications in biotechnology and biomedicine. However, implementing optogenetics in plants has been less straightforward, given their dependency on light for their life cycle. Here, we highlight some of the widely used technologies in microorganisms and animal systems derived from plant photoreceptor proteins and discuss strategies recently implemented to overcome the challenges for using optogenetics in plants.
Collapse
Affiliation(s)
- John M Christie
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Matias D Zurbriggen
- Institute of Synthetic Biology and CEPLAS, University of Duesseldorf, Duesseldorf, 40225, Germany
| |
Collapse
|
28
|
Fonin AV, Antifeeva IA, Shpironok OG, Stepanenko OV, Silonov SA, Stepanenko OV, Antifeev IE, Romanovich AE, Kuznetsova IM, Kim JI, Uversky VN, Turoverov KK. Photo-dependent membrane-less organelles formed from plant phyB and PIF6 proteins in mammalian cells. Int J Biol Macromol 2021; 176:325-331. [PMID: 33582218 DOI: 10.1016/j.ijbiomac.2021.02.075] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/29/2022]
Abstract
Plant photobodies are the membrane-less organelles (MLOs) that can be generated by protein-protein interactions between active form of phytochrome B (phyB) and phytochrome-interacting factors (PIFs). These organelles regulate plant photomorphogenesis. In this study, we developed two chimeric proteins with fluorescent proteins, phyB fused to EGFP and PIF6 fused to mCherry, and investigated their exogenous expression in mammalian cells by confocal fluorescence microscopy. Results showed that irradiation with diffused 630-nm light induced formation and subsequent increase in sizes of the MLOs. The assembly and disassembly of the photo-inducible MLOs in the mammalian cell cytoplasm obeyed the laws inherent in the concentration-dependent phase separation of biopolymers. The sizes of MLOs formed from phyB and PIF6 in mammalian cells corresponded to the sizes of the so-called "early" photobodies in plant cells. These results suggested that the first step for the formation of plant photobodies might be based on the light-dependent liquid-liquid phase separation of PIFs and other proteins that can specifically interact with the active form of phyB. The developed chimeric proteins in principle can be used to control the assembly and disassembly of photo-inducible MLOs, and thereby to regulate various intracellular processes in mammalian cells.
Collapse
Affiliation(s)
- Alexander V Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russian Federation; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russian Federation.
| | - Iuliia A Antifeeva
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russian Federation
| | - Olesya G Shpironok
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russian Federation; Research Center for Molecular Mechanisms of Aging and Age-Related Diseases, Moscow Institute of Physics and Technology, 141700 Dolgoprudny, Russian Federation
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russian Federation.
| | - Sergey A Silonov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russian Federation
| | - Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russian Federation.
| | - Ivan E Antifeev
- Institute for Analytical Instrumentation of the Russian Academy of Sciences, Rizhsky av., 26, St. Petersburg 190103, Russian Federation
| | - Anna E Romanovich
- St-Petersburg State University Science Park, Resource Center of Molecular and Cell Technologies, Universitetskaya nab. 7-9, St. Petersburg 199034, Russian Federation.
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russian Federation.
| | - Jeong-Il Kim
- Department of Integrative Food, Bioscience and Biotechnology, Chonnam National University, Gwangju 61186, Republic of Korea.
| | - Vladimir N Uversky
- University of South Florida, Morsani College of Medicine, Department of Molecular Medicine and Byrd Alzheimer's Research Institute, Tampa, FL 33612, USA.
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky Ave., St. Petersburg 194064, Russian Federation; Peter the Great St.-Petersburg Polytechnic University, Polytechnicheskaya 29, St. Petersburg 195251, Russian Federation.
| |
Collapse
|
29
|
Jayanthi B, Bachhav B, Wan Z, Martinez Legaspi S, Segatori L. A platform for post-translational spatiotemporal control of cellular proteins. Synth Biol (Oxf) 2021; 6:ysab002. [PMID: 33763602 PMCID: PMC7976946 DOI: 10.1093/synbio/ysab002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/31/2020] [Accepted: 01/06/2021] [Indexed: 12/11/2022] Open
Abstract
Mammalian cells process information through coordinated spatiotemporal regulation of proteins. Engineering cellular networks thus relies on efficient tools for regulating protein levels in specific subcellular compartments. To address the need to manipulate the extent and dynamics of protein localization, we developed a platform technology for the target-specific control of protein destination. This platform is based on bifunctional molecules comprising a target-specific nanobody and universal sequences determining target subcellular localization or degradation rate. We demonstrate that nanobody-mediated localization depends on the expression level of the target and the nanobody, and the extent of target subcellular localization can be regulated by combining multiple target-specific nanobodies with distinct localization or degradation sequences. We also show that this platform for nanobody-mediated target localization and degradation can be regulated transcriptionally and integrated within orthogonal genetic circuits to achieve the desired temporal control over spatial regulation of target proteins. The platform reported in this study provides an innovative tool to control protein subcellular localization, which will be useful to investigate protein function and regulate large synthetic gene circuits.
Collapse
Affiliation(s)
- Brianna Jayanthi
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
| | - Bhagyashree Bachhav
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
| | - Zengyi Wan
- Department of Bioengineering, Rice University, Houston, TX, USA
| | | | - Laura Segatori
- Systems, Synthetic and Physical Biology Graduate Program, Rice University, Houston, TX, USA
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, TX, USA
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
30
|
Shaaya M, Fauser J, Karginov AV. Optogenetics: The Art of Illuminating Complex Signaling Pathways. Physiology (Bethesda) 2021; 36:52-60. [PMID: 33325819 PMCID: PMC8425415 DOI: 10.1152/physiol.00022.2020] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/20/2020] [Accepted: 07/21/2020] [Indexed: 12/12/2022] Open
Abstract
Dissection of cell signaling requires tools that can mimic spatiotemporal dynamics of individual pathways in living cells. Optogenetic methods enable manipulation of signaling processes with precise timing and local control. In this review, we describe recent optogenetic approaches for regulation of cell signaling, highlight their advantages and limitations, and discuss examples of their application.
Collapse
Affiliation(s)
- Mark Shaaya
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of Medicine, Chicago, Illinois
| | - Jordan Fauser
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of Medicine, Chicago, Illinois
| | - Andrei V Karginov
- Department of Pharmacology and Regenerative Medicine, The University of Illinois at Chicago, College of Medicine, Chicago, Illinois
- University of Illinois Cancer Center, The University of Illinois at Chicago, Chicago, Illinois
| |
Collapse
|
31
|
Mumford TR, Roth L, Bugaj LJ. Reverse and Forward Engineering Multicellular Structures with Optogenetics. CURRENT OPINION IN BIOMEDICAL ENGINEERING 2020; 16:61-71. [PMID: 33718689 PMCID: PMC7945718 DOI: 10.1016/j.cobme.2020.100250] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Understanding how cells self-organize into functional higher-order structures is of great interest, both towards deciphering animal development, as well as for our ability to predictably build custom tissues to meet research and therapeutic needs. The proper organization of cells across length-scales results from interconnected and dynamic networks of molecules and cells. Optogenetic probes provide dynamic and tunable control over molecular events within cells, and thus represent a powerful approach to both dissect and control collective cell behaviors. Here we emphasize the breadth of the optogenetic toolkit and discuss how these methods have already been used to reverse-engineer the design rules of developing organisms. We also offer our perspective on the rich potential for optogenetics to power forward-engineering of tissue assembly towards the generation of bespoke tissues with user-defined properties.
Collapse
Affiliation(s)
- Thomas R. Mumford
- University of Pennsylvania, Department of Bioengineering, 240 Skirkanich Hall, 210 South 33 Street, Philadelphia, Pennsylvania, 19104, United States
| | - Lee Roth
- University of Pennsylvania, Department of Bioengineering, 240 Skirkanich Hall, 210 South 33 Street, Philadelphia, Pennsylvania, 19104, United States
| | - Lukasz J. Bugaj
- University of Pennsylvania, Department of Bioengineering, 240 Skirkanich Hall, 210 South 33 Street, Philadelphia, Pennsylvania, 19104, United States
| |
Collapse
|
32
|
Verbič A, Praznik A, Jerala R. A guide to the design of synthetic gene networks in mammalian cells. FEBS J 2020; 288:5265-5288. [PMID: 33289352 DOI: 10.1111/febs.15652] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/06/2020] [Accepted: 11/01/2020] [Indexed: 12/22/2022]
Abstract
Synthetic biology aims to harness natural and synthetic biological parts and engineering them in new combinations and systems, producing novel therapies, diagnostics, bioproduction systems, and providing information on the mechanism of function of biological systems. Engineering cell function requires the rewiring or de novo construction of cell information processing networks. Using natural and synthetic signal processing elements, researchers have demonstrated a wide array of signal sensing, processing and propagation modules, using transcription, translation, or post-translational modification to program new function. The toolbox for synthetic network design is ever-advancing and has still ample room to grow. Here, we review the diversity of synthetic gene networks, types of building modules, techniques of regulation, and their applications.
Collapse
Affiliation(s)
- Anže Verbič
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Arne Praznik
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| | - Roman Jerala
- Department of Synthetic Biology and Immunology, National Institute of Chemistry, Ljubljana, Slovenia
| |
Collapse
|
33
|
Uda Y, Miura H, Goto Y, Yamamoto K, Mii Y, Kondo Y, Takada S, Aoki K. Improvement of Phycocyanobilin Synthesis for Genetically Encoded Phytochrome-Based Optogenetics. ACS Chem Biol 2020; 15:2896-2906. [PMID: 33164485 DOI: 10.1021/acschembio.0c00477] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Optogenetics is a powerful technique using photoresponsive proteins, and the light-inducible dimerization (LID) system, an optogenetic tool, allows to manipulate intracellular signaling pathways. One of the red/far-red responsive LID systems, phytochrome B (PhyB)-phytochrome interacting factor (PIF), has a unique property of controlling both association and dissociation by light on the second time scale, but PhyB requires a linear tetrapyrrole chromophore such as phycocyanobilin (PCB), and such chromophores are present only in higher plants and cyanobacteria. Here, we report that we further improved our previously developed PCB synthesis system (SynPCB) and successfully established a stable cell line containing a genetically encoded PhyB-PIF LID system. First, four genes responsible for PCB synthesis, namely, PcyA, HO1, Fd, and Fnr, were replaced with their counterparts derived from thermophilic cyanobacteria. Second, Fnr was truncated, followed by fusion with Fd to generate a chimeric protein, tFnr-Fd. Third, these genes were concatenated with P2A peptide cDNAs for polycistronic expression, resulting in an approximately 4-fold increase in PCB synthesis compared with the previous version. Finally, we incorporated the PhyB, PIF, and SynPCB system into drug inducible lentiviral and transposon vectors, which enabled us to induce PCB synthesis and the PhyB-PIF LID system by doxycycline treatment. These tools provide a new opportunity to advance our understanding of the causal relationship between intracellular signaling and cellular functions.
Collapse
Affiliation(s)
- Youichi Uda
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Pathology and Biology of Diseases, Graduate School of Medicine, Kyoto University, Yoshida-Konoe-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Haruko Miura
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yuhei Goto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Kei Yamamoto
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yusuke Mii
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Yohei Kondo
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Shinji Takada
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| | - Kazuhiro Aoki
- Quantitative Biology Research Group, Exploratory Research Center on Life and Living Systems (ExCELLS), National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Division of Quantitative Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
- Department of Basic Biology, School of Life Science, SOKENDAI (The Graduate University for Advanced Studies), 5-1 Higashiyama, Myodaiji-cho, Okazaki, Aichi 444-8787, Japan
| |
Collapse
|
34
|
Lu X, Shen Y, Campbell RE. Engineering Photosensory Modules of Non-Opsin-Based Optogenetic Actuators. Int J Mol Sci 2020; 21:E6522. [PMID: 32906617 PMCID: PMC7555876 DOI: 10.3390/ijms21186522] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 11/17/2022] Open
Abstract
Optogenetic (photo-responsive) actuators engineered from photoreceptors are widely used in various applications to study cell biology and tissue physiology. In the toolkit of optogenetic actuators, the key building blocks are genetically encodable light-sensitive proteins. Currently, most optogenetic photosensory modules are engineered from naturally-occurring photoreceptor proteins from bacteria, fungi, and plants. There is a growing demand for novel photosensory domains with improved optical properties and light-induced responses to satisfy the needs of a wider variety of studies in biological sciences. In this review, we focus on progress towards engineering of non-opsin-based photosensory domains, and their representative applications in cell biology and physiology. We summarize current knowledge of engineering of light-sensitive proteins including light-oxygen-voltage-sensing domain (LOV), cryptochrome (CRY2), phytochrome (PhyB and BphP), and fluorescent protein (FP)-based photosensitive domains (Dronpa and PhoCl).
Collapse
Affiliation(s)
- Xiaocen Lu
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (X.L.); (Y.S.)
| | - Yi Shen
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (X.L.); (Y.S.)
| | - Robert E. Campbell
- Department of Chemistry, University of Alberta, Edmonton, AB T6G 2G2, Canada; (X.L.); (Y.S.)
- Department of Chemistry, The University of Tokyo, Tokyo 113-0033, Japan
| |
Collapse
|
35
|
Dcona MM, Mitra K, Hartman MCT. Photocontrolled activation of small molecule cancer therapeutics. RSC Med Chem 2020; 11:982-1002. [PMID: 33479692 PMCID: PMC7513389 DOI: 10.1039/d0md00107d] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 07/19/2020] [Indexed: 12/11/2022] Open
Abstract
Cancer remains one of the leading causes of death worldwide. Conventional treatment of the disease is comprised of chemotherapy, radiation and surgery among other treatment approaches. Chemotherapy is plagued by multiple side-effects caused due to non-specific drug action. Light-based therapies offer an alternative treatment approach that can be fine tuned to achieve the desired effect to treat the disease and address challenges posed by chemotherapeutic side-effects. Photodynamic therapy (PDT) is one of the light mediated treatment modalities that has been successfully applied to treat superficial malignancies with high-efficiency, although its dependence on normoxic conditions limits its efficiency to treat deep-seated tumors. On the other hand, light-sensitive drug-mimetics and drug-release platforms have been deemed efficient in preclinical settings to induce cancer cell death with minimal collateral damage. Drawing from about a decade's worth of examples, we highlight the application of photosensitive molecules as an alternative therapeutic option to PDT and describe their designs that influence the biology of the cancer cells, in turn affecting their viability with high spatio-temporal control.
Collapse
Affiliation(s)
- M Michael Dcona
- Department of Internal Medicine , Virginia Commonwealth University , 1201 East Marshall Street , Richmond , 23298 , Virginia , USA .
- Massey Cancer Center , 401 College St. , Richmond , 23219 , Virginia , USA
| | - Koushambi Mitra
- Massey Cancer Center , 401 College St. , Richmond , 23219 , Virginia , USA
- Department of Chemistry , Virginia Commonwealth University , 1001 W Main St , Richmond , 23284 , Virginia , USA
| | - Matthew C T Hartman
- Massey Cancer Center , 401 College St. , Richmond , 23219 , Virginia , USA
- Department of Chemistry , Virginia Commonwealth University , 1001 W Main St , Richmond , 23284 , Virginia , USA
| |
Collapse
|
36
|
Li M, Oh TJ, Fan H, Diao J, Zhang K. Syntaxin Clustering and Optogenetic Control for Synaptic Membrane Fusion. J Mol Biol 2020; 432:4773-4782. [PMID: 32682743 DOI: 10.1016/j.jmb.2020.07.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 07/05/2020] [Accepted: 07/12/2020] [Indexed: 01/01/2023]
Abstract
Membrane fusion during synaptic transmission mediates the trafficking of chemical signals and neuronal communication. The fast kinetics of membrane fusion on the order of millisecond is precisely regulated by the assembly of SNAREs and accessory proteins. It is believed that the formation of the SNARE complex is a key step during membrane fusion. Little is known, however, about the molecular machinery that mediates the formation of a large pre-fusion complex, including multiple SNAREs and accessory proteins. Syntaxin, a transmembrane protein on the plasma membrane, has been observed to undergo oligomerization to form clusters. Whether this clustering plays a critical role in membrane fusion is poorly understood in live cells. Optogenetics is an emerging biotechnology armed with the capacity to precisely modulate protein-protein interaction in time and space. Here, we propose an experimental scheme that combines optogenetics with single-vesicle membrane fusion, aiming to gain a better understanding of the molecular mechanism by which the syntaxin cluster regulates membrane fusion. We envision that newly developed optogenetic tools could facilitate the mechanistic understanding of synaptic transmission in live cells and animals.
Collapse
Affiliation(s)
- Miaoling Li
- Key Laboratory of Medical Electrophysiology of Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Teak-Jung Oh
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Huaxun Fan
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA.
| | - Kai Zhang
- Department of Biochemistry, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA.
| |
Collapse
|
37
|
Yen ST, Trimmer KA, Aboul-Fettouh N, Mullen RD, Culver JC, Dickinson ME, Behringer RR, Eisenhoffer GT. CreLite: An optogenetically controlled Cre/loxP system using red light. Dev Dyn 2020; 249:1394-1403. [PMID: 32745301 DOI: 10.1002/dvdy.232] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Revised: 07/21/2020] [Accepted: 07/27/2020] [Indexed: 11/09/2022] Open
Abstract
BACKGROUND Precise manipulation of gene expression with temporal and spatial control is essential for functional analysis and determining cell lineage relationships in complex biological systems. The cyclic recombinase (Cre)-loxP system is commonly used for gene manipulation at desired times and places. However, specificity is dependent on the availability of tissue- or cell-specific regulatory elements used in combination with Cre. Here, we present CreLite, an optogenetically controlled Cre system using red light in developing zebrafish embryos. RESULTS Cre activity is disabled by splitting Cre and fusing with the Arabidopsis thaliana red light-inducible binding partners, PhyB and PIF6. Upon red light illumination, the PhyB-CreC and PIF6-CreN fusion proteins come together in the presence of the cofactor phycocyanobilin (PCB) to restore Cre activity. Red light exposure of zebrafish embryos harboring a Cre-dependent multicolor fluorescent protein reporter injected with CreLite mRNAs and PCB resulted in Cre activity as measured by the generation of multispectral cell labeling in several different tissues. CONCLUSIONS Our data show that CreLite can be used for gene manipulations in whole embryos or small groups of cells at different developmental stages, and suggests CreLite may also be useful for temporal and spatial control of gene expression in cell culture, ex vivo organ culture, and other animal models.
Collapse
Affiliation(s)
- Shuo-Ting Yen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Kenneth A Trimmer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - Nader Aboul-Fettouh
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Rachel D Mullen
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - James C Culver
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Mary E Dickinson
- Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, Texas, USA
| | - Richard R Behringer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| | - George T Eisenhoffer
- Department of Genetics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, Texas, USA
| |
Collapse
|
38
|
de Mena L, Rincon-Limas DE. PhotoGal4: A Versatile Light-Dependent Switch for Spatiotemporal Control of Gene Expression in Drosophila Explants. iScience 2020; 23:101308. [PMID: 32652492 PMCID: PMC7347995 DOI: 10.1016/j.isci.2020.101308] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2020] [Revised: 05/15/2020] [Accepted: 06/19/2020] [Indexed: 12/04/2022] Open
Abstract
We present here PhotoGal4, a phytochrome B-based optogenetic switch for fine-tuned spatiotemporal control of gene expression in Drosophila explants. This switch integrates the light-dependent interaction between phytochrome B and PIF6 from plants with regulatory elements from the yeast Gal4/UAS system. We found that PhotoGal4 efficiently activates and deactivates gene expression upon red- or far-red-light irradiation, respectively. In addition, this optogenetic tool reacts to different illumination conditions, allowing for fine modulation of the light-dependent response. Importantly, by simply focusing a laser beam, PhotoGal4 induces intricate patterns of expression in a customized manner. For instance, we successfully sketched personalized patterns of GFP fluorescence such as emoji-like shapes or letterform logos in Drosophila explants, which illustrates the exquisite precision and versatility of this tool. Hence, we anticipate that PhotoGal4 will expand the powerful Drosophila toolbox and will provide a new avenue to investigate intricate and complex problems in biomedical research.
Collapse
Affiliation(s)
- Lorena de Mena
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32611, USA.
| | - Diego E Rincon-Limas
- Department of Neurology, McKnight Brain Institute, and Norman Fixel Institute for Neurological Diseases, University of Florida, Gainesville, FL 32611, USA; Department of Neuroscience, Center for Translational Research in Neurodegenerative Disease, University of Florida, Gainesville, FL 32611, USA; Genetics Institute, University of Florida, Gainesville, FL 32611, USA.
| |
Collapse
|
39
|
Herrera-Perez RM, Kasza KE. Manipulating the Patterns of Mechanical Forces That Shape Multicellular Tissues. Physiology (Bethesda) 2020; 34:381-391. [PMID: 31577169 DOI: 10.1152/physiol.00018.2019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
During embryonic development, spatial and temporal patterns of mechanical forces help to transform unstructured groups of cells into complex, functional tissue architectures. Here, we review emerging approaches to manipulate these patterns of forces to investigate the mechanical mechanisms that shape multicellular tissues, with a focus on recent experimental studies of epithelial tissue sheets in the embryo of the model organism Drosophila melanogaster.
Collapse
Affiliation(s)
| | - Karen E Kasza
- Department of Mechanical Engineering, Columbia University, New York, New York
| |
Collapse
|
40
|
Mruk K, Ciepla P, Piza PA, Alnaqib MA, Chen JK. Targeted cell ablation in zebrafish using optogenetic transcriptional control. Development 2020; 147:dev183640. [PMID: 32414936 PMCID: PMC7328002 DOI: 10.1242/dev.183640] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 04/22/2020] [Indexed: 12/11/2022]
Abstract
Cell ablation is a powerful method for elucidating the contributions of individual cell populations to embryonic development and tissue regeneration. Targeted cell loss in whole organisms has been typically achieved through expression of a cytotoxic or prodrug-activating gene product in the cell type of interest. This approach depends on the availability of tissue-specific promoters, and it does not allow further spatial selectivity within the promoter-defined region(s). To address this limitation, we have used the light-inducible GAVPO transactivator in combination with two genetically encoded cell-ablation technologies: the nitroreductase/nitrofuran system and a cytotoxic variant of the M2 ion channel. Our studies establish ablative methods that provide the tissue specificity afforded by cis-regulatory elements and the conditionality of optogenetics. Our studies also demonstrate differences between the nitroreductase and M2 systems that influence their efficacies for specific applications. Using this integrative approach, we have ablated cells in zebrafish embryos with both spatial and temporal control.
Collapse
Affiliation(s)
- Karen Mruk
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- School of Pharmacy, University of Wyoming, Laramie, WY 82071, USA
| | - Paulina Ciepla
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Patrick A Piza
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Mohammad A Alnaqib
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - James K Chen
- Department of Chemical and Systems Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Developmental Biology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Chemistry, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
41
|
Varady A, Distel M. Non-neuromodulatory Optogenetic Tools in Zebrafish. Front Cell Dev Biol 2020; 8:418. [PMID: 32582702 PMCID: PMC7283495 DOI: 10.3389/fcell.2020.00418] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/05/2020] [Indexed: 01/18/2023] Open
Abstract
The zebrafish (Danio rerio) is a popular vertebrate model organism to investigate molecular mechanisms driving development and disease. Due to its transparency at embryonic and larval stages, investigations in the living organism are possible with subcellular resolution using intravital microscopy. The beneficial optical characteristics of zebrafish not only allow for passive observation, but also active manipulation of proteins and cells by light using optogenetic tools. Initially, photosensitive ion channels have been applied for neurobiological studies in zebrafish to dissect complex behaviors on a cellular level. More recently, exciting non-neural optogenetic tools have been established to control gene expression or protein localization and activity, allowing for unprecedented non-invasive and precise manipulation of various aspects of cellular physiology. Zebrafish will likely be a vertebrate model organism at the forefront of in vivo application of non-neural optogenetic tools and pioneering work has already been performed. In this review, we provide an overview of non-neuromodulatory optogenetic tools successfully applied in zebrafish to control gene expression, protein localization, cell signaling, migration and cell ablation.
Collapse
Affiliation(s)
- Adam Varady
- St. Anna Children's Cancer Research Institute, Innovative Cancer Models, Vienna, Austria
| | - Martin Distel
- St. Anna Children's Cancer Research Institute, Innovative Cancer Models, Vienna, Austria
| |
Collapse
|
42
|
Aptamer-based optical manipulation of protein subcellular localization in cells. Nat Commun 2020; 11:1347. [PMID: 32165631 PMCID: PMC7067792 DOI: 10.1038/s41467-020-15113-2] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2019] [Accepted: 02/14/2020] [Indexed: 01/03/2023] Open
Abstract
Protein-dominant cellular processes cannot be fully decoded without precise manipulation of their activity and localization in living cells. Advances in optogenetics have allowed spatiotemporal control over cellular proteins with molecular specificity; however, these methods require recombinant expression of fusion proteins, possibly leading to conflicting results. Instead of modifying proteins of interest, in this work, we focus on design of a tunable recognition unit and develop an aptamer-based near-infrared (NIR) light-responsive nanoplatform for manipulating the subcellular localization of specific proteins in their native states. Our results demonstrate that this nanoplatform allows photocontrol over the cytoplasmic-nuclear shuttling behavior of the target RelA protein (a member of the NF-κβ family), enabling regulation of RelA-related signaling pathways. With a modular design, this aptamer-based nanoplatform can be readily extended for the manipulation of different proteins (e.g., lysozyme and p53), holding great potential to develop a variety of label-free protein photoregulation strategies for studying complex biological events. Optogenetic manipulation of protein localisation in cells involves the creation of fusions that can influence activity. Here the authors develop a near-infrared light-responsive aptamer-based system to regulate the nuclear-cytoplasmic shuttling of NF-κB subunit RelA.
Collapse
|
43
|
Wesley CC, Mishra S, Levy DL. Organelle size scaling over embryonic development. WILEY INTERDISCIPLINARY REVIEWS-DEVELOPMENTAL BIOLOGY 2020; 9:e376. [PMID: 32003549 DOI: 10.1002/wdev.376] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 12/19/2019] [Accepted: 01/08/2020] [Indexed: 12/13/2022]
Abstract
Cell division without growth results in progressive cell size reductions during early embryonic development. How do the sizes of intracellular structures and organelles scale with cell size and what are the functional implications of such scaling relationships? Model organisms, in particular Caenorhabditis elegans worms, Drosophila melanogaster flies, Xenopus laevis frogs, and Mus musculus mice, have provided insights into developmental size scaling of the nucleus, mitotic spindle, and chromosomes. Nuclear size is regulated by nucleocytoplasmic transport, nuclear envelope proteins, and the cytoskeleton. Regulators of microtubule dynamics and chromatin compaction modulate spindle and mitotic chromosome size scaling, respectively. Developmental scaling relationships for membrane-bound organelles, like the endoplasmic reticulum, Golgi, mitochondria, and lysosomes, have been less studied, although new imaging approaches promise to rectify this deficiency. While models that invoke limiting components and dynamic regulation of assembly and disassembly can account for some size scaling relationships in early embryos, it will be exciting to investigate the contribution of newer concepts in cell biology such as phase separation and interorganellar contacts. With a growing understanding of the underlying mechanisms of organelle size scaling, future studies promise to uncover the significance of proper scaling for cell function and embryonic development, as well as how aberrant scaling contributes to disease. This article is categorized under: Establishment of Spatial and Temporal Patterns > Regulation of Size, Proportion, and Timing Early Embryonic Development > Fertilization to Gastrulation Comparative Development and Evolution > Model Systems.
Collapse
Affiliation(s)
- Chase C Wesley
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Sampada Mishra
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| | - Daniel L Levy
- Department of Molecular Biology, University of Wyoming, Laramie, Wyoming
| |
Collapse
|
44
|
Redchuk TA, Karasev MM, Verkhusha PV, Donnelly SK, Hülsemann M, Virtanen J, Moore HM, Vartiainen MK, Hodgson L, Verkhusha VV. Optogenetic regulation of endogenous proteins. Nat Commun 2020; 11:605. [PMID: 32001718 PMCID: PMC6992714 DOI: 10.1038/s41467-020-14460-4] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Accepted: 01/12/2020] [Indexed: 12/21/2022] Open
Abstract
Techniques of protein regulation, such as conditional gene expression, RNA interference, knock-in and knock-out, lack sufficient spatiotemporal accuracy, while optogenetic tools suffer from non-physiological response due to overexpression artifacts. Here we present a near-infrared light-activatable optogenetic system, which combines the specificity and orthogonality of intrabodies with the spatiotemporal precision of optogenetics. We engineer optically-controlled intrabodies to regulate genomically expressed protein targets and validate the possibility to further multiplex protein regulation via dual-wavelength optogenetic control. We apply this system to regulate cytoskeletal and enzymatic functions of two non-tagged endogenous proteins, actin and RAS GTPase, involved in complex functional networks sensitive to perturbations. The optogenetically-enhanced intrabodies allow fast and reversible regulation of both proteins, as well as simultaneous monitoring of RAS signaling with visible-light biosensors, enabling all-optical approach. Growing number of intrabodies should make their incorporation into optogenetic tools the versatile technology to regulate endogenous targets.
Collapse
Affiliation(s)
- Taras A Redchuk
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Maksim M Karasev
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland
| | - Polina V Verkhusha
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Sara K Donnelly
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Maren Hülsemann
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Jori Virtanen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Henna M Moore
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Maria K Vartiainen
- Institute of Biotechnology, HiLIFE, University of Helsinki, Helsinki, 00790, Finland
| | - Louis Hodgson
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA
| | - Vladislav V Verkhusha
- Medicum, Faculty of Medicine, University of Helsinki, Helsinki, 00290, Finland.
- Department of Anatomy and Structural Biology, and Gruss-Lipper Biophotonics Center, Albert Einstein College of Medicine, Bronx, NY, 10461, USA.
| |
Collapse
|
45
|
Espino-Saldaña AE, Rodríguez-Ortiz R, Pereida-Jaramillo E, Martínez-Torres A. Modeling Neuronal Diseases in Zebrafish in the Era of CRISPR. Curr Neuropharmacol 2020; 18:136-152. [PMID: 31573887 PMCID: PMC7324878 DOI: 10.2174/1570159x17666191001145550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 07/04/2019] [Accepted: 09/29/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Danio rerio is a powerful experimental model for studies in genetics and development. Recently, CRISPR technology has been applied in this species to mimic various human diseases, including those affecting the nervous system. Zebrafish offer multiple experimental advantages: external embryogenesis, rapid development, transparent embryos, short life cycle, and basic neurobiological processes shared with humans. This animal model, together with the CRISPR system, emerging imaging technologies, and novel behavioral approaches, lay the basis for a prominent future in neuropathology and will undoubtedly accelerate our understanding of brain function and its disorders. OBJECTIVE Gather relevant findings from studies that have used CRISPR technologies in zebrafish to explore basic neuronal function and model human diseases. METHODS We systematically reviewed the most recent literature about CRISPR technology applications for understanding brain function and neurological disorders in D. rerio. We highlighted the key role of CRISPR in driving forward our understanding of particular topics in neuroscience. RESULTS We show specific advances in neurobiology when the CRISPR system has been applied in zebrafish and describe how CRISPR is accelerating our understanding of brain organization. CONCLUSION Today, CRISPR is the preferred method to modify genomes of practically any living organism. Despite the rapid development of CRISPR technologies to generate disease models in zebrafish, more efforts are needed to efficiently combine different disciplines to find the etiology and treatments for many brain diseases.
Collapse
Affiliation(s)
- Angeles Edith Espino-Saldaña
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Campus UNAM Juriquilla, Querétaro, Qro CP76230, México
- Universidad Autónoma de Querétaro, Facultad de Ciencias Naturales, Av. de las Ciencias S/N, Querétaro, Mexico
| | - Roberto Rodríguez-Ortiz
- CONACYT - Instituto de Neurobiología, Universidad Nacional Autónoma de México. Querétaro, Qro., México
| | - Elizabeth Pereida-Jaramillo
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Campus UNAM Juriquilla, Querétaro, Qro CP76230, México
| | - Ataúlfo Martínez-Torres
- Departamento de Neurobiología Celular y Molecular, Laboratorio de Neurobiología Molecular y Celular, Instituto de Neurobiología, Campus UNAM Juriquilla, Querétaro, Qro CP76230, México
| |
Collapse
|
46
|
McCormick JW, Pincus D, Resnekov O, Reynolds KA. Strategies for Engineering and Rewiring Kinase Regulation. Trends Biochem Sci 2019; 45:259-271. [PMID: 31866305 DOI: 10.1016/j.tibs.2019.11.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2019] [Revised: 11/13/2019] [Accepted: 11/15/2019] [Indexed: 12/31/2022]
Abstract
Eukaryotic protein kinases (EPKs) catalyze the transfer of a phosphate group onto another protein in response to appropriate regulatory cues. In doing so, they provide a primary means for cellular information transfer. Consequently, EPKs play crucial roles in cell differentiation and cell-cycle progression, and kinase dysregulation is associated with numerous disease phenotypes including cancer. Nonnative cues for synthetically regulating kinases are thus much sought after, both for dissecting cell signaling pathways and for pharmaceutical development. In recent years advances in protein engineering and sequence analysis have led to new approaches for manipulating kinase activity, localization, and in some instances specificity. These tools have revealed fundamental principles of intracellular signaling and suggest paths forward for the design of therapeutic allosteric kinase regulators.
Collapse
Affiliation(s)
- James W McCormick
- The Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - David Pincus
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA; Center for Physics of Evolving Systems, University of Chicago, Chicago, IL 60637, USA
| | | | - Kimberly A Reynolds
- The Green Center for Systems Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
47
|
Rogers KW, Müller P. Optogenetic approaches to investigate spatiotemporal signaling during development. Curr Top Dev Biol 2019; 137:37-77. [PMID: 32143750 DOI: 10.1016/bs.ctdb.2019.11.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Embryogenesis is coordinated by signaling pathways that pattern the developing organism. Many aspects of this process are not fully understood, including how signaling molecules spread through embryonic tissues, how signaling amplitude and dynamics are decoded, and how multiple signaling pathways cooperate to pattern the body plan. Optogenetic approaches can be used to address these questions by providing precise experimental control over a variety of biological processes. Here, we review how these strategies have provided new insights into developmental signaling and discuss how they could contribute to future investigations.
Collapse
Affiliation(s)
- Katherine W Rogers
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany
| | - Patrick Müller
- Systems Biology of Development Group, Friedrich Miescher Laboratory of the Max Planck Society, Tübingen, Germany; Modeling Tumorigenesis Group, Translational Oncology Division, Eberhard Karls University Tübingen, Tübingen, Germany.
| |
Collapse
|
48
|
Deconstructing and repurposing the light-regulated interplay between Arabidopsis phytochromes and interacting factors. Commun Biol 2019; 2:448. [PMID: 31815202 PMCID: PMC6888877 DOI: 10.1038/s42003-019-0687-9] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 11/07/2019] [Indexed: 01/30/2023] Open
Abstract
Phytochrome photoreceptors mediate adaptive responses of plants to red and far-red light. These responses generally entail light-regulated association between phytochromes and other proteins, among them the phytochrome-interacting factors (PIF). The interaction with Arabidopsis thaliana phytochrome B (AtPhyB) localizes to the bipartite APB motif of the A. thaliana PIFs (AtPIF). To address a dearth of quantitative interaction data, we construct and analyze numerous AtPIF3/6 variants. Red-light-activated binding is predominantly mediated by the APB N-terminus, whereas the C-terminus modulates binding and underlies the differential affinity of AtPIF3 and AtPIF6. We identify AtPIF variants of reduced size, monomeric or homodimeric state, and with AtPhyB affinities between 10 and 700 nM. Optogenetically deployed in mammalian cells, the AtPIF variants drive light-regulated gene expression and membrane recruitment, in certain cases reducing basal activity and enhancing regulatory response. Moreover, our results provide hitherto unavailable quantitative insight into the AtPhyB:AtPIF interaction underpinning vital light-dependent responses in plants. David Golonka et al. report the epitopes in Arabidopsis phytochrome-interacting factors (PIF) that underlie light-dependent interactions with phytochrome B. They identify compact PIF variants that enable light-activated gene expression and membrane recruitment with reduced basal activity and enhanced regulatory response.
Collapse
|
49
|
Stepanenko OV, Stepanenko OV, Shpironok OG, Fonin AV, Kuznetsova IM, Turoverov KK. Near-Infrared Markers based on Bacterial Phytochromes with Phycocyanobilin as a Chromophore. Int J Mol Sci 2019; 20:ijms20236067. [PMID: 31810174 PMCID: PMC6928796 DOI: 10.3390/ijms20236067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 11/27/2019] [Accepted: 11/29/2019] [Indexed: 12/03/2022] Open
Abstract
Biomarkers engineered on the basis of bacterial phytochromes with biliverdin IXα (BV) cofactor as a chromophore are increasingly used in cell biology and biomedicine, since their absorption and fluorescence spectra lie within the so-called optical “transparency window” of biological tissues. However, the quantum yield of BV fluorescence in these biomarkers does not exceed 0.145. The task of generating biomarkers with a higher fluorescence quantum yield remains relevant. To address the problem, we proposed the use of phycocyanobilin (PCB) as a chromophore of biomarkers derived from bacterial phytochromes. In this work, we characterized the complexes of iRFP713 evolved from RpBphP2 and its mutant variants with different location of cysteine residues capable of covalent tetrapyrrole attachment with the PCB cofactor. All analyzed proteins assembled with PCB were shown to have a higher fluorescence quantum yield than the proteins assembled with BV. The iRFP713/V256C and iRFP713/C15S/V256C assembled with PCB have a particularly high quantum yield of 0.5 and 0.45, which exceeds the quantum yield of all currently available near-infrared biomarkers. Moreover, PCB has 4 times greater affinity for iRFP713/V256C and iRFP713/C15S/V256C proteins compared to BV. These data establish iRFP713/V256C and iRFP713/C15S/V256C assembled with the PCB chromophore as promising biomarkers for application in vivo. The analysis of the spectral properties of the tested biomarkers allowed for suggesting that the high-fluorescence quantum yield of the PCB chromophore can be attributed to the lower mobility of the D-ring of PCB compared to BV.
Collapse
Affiliation(s)
- Olesya V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russia; (O.V.S.); (O.V.S.); (O.G.S.); (A.V.F.); (I.M.K.)
| | - Olga V. Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russia; (O.V.S.); (O.V.S.); (O.G.S.); (A.V.F.); (I.M.K.)
| | - Olesya G. Shpironok
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russia; (O.V.S.); (O.V.S.); (O.G.S.); (A.V.F.); (I.M.K.)
| | - Alexander V. Fonin
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russia; (O.V.S.); (O.V.S.); (O.G.S.); (A.V.F.); (I.M.K.)
| | - Irina M. Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russia; (O.V.S.); (O.V.S.); (O.G.S.); (A.V.F.); (I.M.K.)
| | - Konstantin K. Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, 4 Tikhoretsky ave., St. Petersburg 194064, Russia; (O.V.S.); (O.V.S.); (O.G.S.); (A.V.F.); (I.M.K.)
- Peter the Great St. Petersburg Polytechnic University, Polytechnicheskaya str., 29, St. Petersburg 194064, Russia
- Correspondence: ; Tel.: +7-812-297-19-57
| |
Collapse
|
50
|
Mondal P, Krishnamurthy VV, Sharum SR, Haack N, Zhou H, Cheng J, Yang J, Zhang K. Repurposing Protein Degradation for Optogenetic Modulation of Protein Activities. ACS Synth Biol 2019; 8:2585-2592. [PMID: 31600062 DOI: 10.1021/acssynbio.9b00285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Non-neuronal optogenetic approaches empower precise regulation of protein dynamics in live cells but often require target-specific protein engineering. To address this challenge, we developed a generalizable light-modulated protein stabilization system (GLIMPSe) to control the intracellular protein level independent of its functionality. We applied GLIMPSe to control two distinct classes of proteins: mitogen-activated protein kinase phosphatase 3 (MKP3), a negative regulator of the extracellular signal-regulated kinase (ERK) pathway, and a constitutively active form of MEK (CA MEK), a positive regulator of the same pathway. Kinetics study showed that light-induced protein stabilization could be achieved within 30 min of blue light stimulation. GLIMPSe enables target-independent optogenetic control of protein activities and therefore minimizes the systematic variation embedded within different photoactivatable proteins. Overall, GLIMPSe promises to achieve light-mediated post-translational stabilization of a wide array of target proteins in live cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Jing Yang
- Department of Comparative Biosciences, University of Illinois at Urbana−Champaign, 2001 S Lincoln Avenue, Urbana, Illinois 61802, United States
| | | |
Collapse
|