1
|
Macon EL, Harris P, Bailey S, Caldwell Barker A, Adams A. Identifying possible thresholds for nonstructural carbohydrates in the insulin dysregulated horse. Equine Vet J 2023; 55:1069-1077. [PMID: 36537847 DOI: 10.1111/evj.13910] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 11/10/2022] [Indexed: 01/24/2023]
Abstract
BACKGROUND Identifying intake levels of nonstructural carbohydrates (NSCs) that limit the postprandial insulinaemic response in the insulin dysregulated (ID) horse may help reduce hyperinsulinaemia-associated laminitis (HAL) risk. OBJECTIVE To determine if ID horses have thresholds for pure sources of starch and sugar, above which there is an augmented insulin response. STUDY DESIGN Randomised crossover experiment. METHODS Fourteen adult horses (6 ID and 8 noninsulin dysregulated, NID; matched for bodyweight) were randomly fed eight dietary treatments. Dietary treatments were formulated using a base of low-nonstructural carbohydrate pellet (LNSC; 0.04 g of water-soluble carbohydrates (WSCs)/kg bwt and 0.01 g of starch/kg bwt), to which pure sugar (dextrose) or starch (50:50 mix of waxy-maize and oat starch powder) sources were titrated to create diets with increasing amounts of either WSC (0.06-0.17 g WSC/kg bwt), or starch (0.03-0.1 g starch/kg bwt). Horses were fed each dietary treatment at a rate of 1 g/kg bwt once over 12 weeks. Serial blood samples were collected pre- and up to 240 min postprandially. Insulin was determined via RIA and diet analytes were determined via wet chemistry. Statistical analysis was performed with a mixed effect model. Positive incremental area under the curve for insulin (IAUCi) was calculated for all horses and dietary treatments. RESULTS There was no significant effect of diet in NID horses but diets with NSC >0.1 g/kg bwt produced an augmented response in ID horses compared with the LNSC (p < 0.05). ID horses IAUCi were also significantly different to all NID IAUCi for diets with NSC >0.1 g/kg (p < 0.04). Apparent thresholds for sugar and starch addition varied. CONCLUSIONS Based on this study, using supplemental pure starch and sugar sources, ID horses seem to have an apparent threshold for NSC of around 0.1 g/kg bwt/meal, above which significantly increased insulin responses are seen compared with NID horses.
Collapse
Affiliation(s)
- Erica Lyn Macon
- 108 M.H. Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, Kentucky, USA
| | - Patricia Harris
- Equine Studies Group, Waltham Petcare Science Institute, Leicestershire, UK
| | - Simon Bailey
- Melbourne Veterinary School, Faculty of Veterinary and Agricultural Sciences, University of Melbourne, Melbourne, Victoria, Australia
| | | | - Amanda Adams
- Mars Equestrian™ Fellow, Department of Veterinary Science, M.H. Gluck Equine Research Center, University of Kentucky, Lexington, Kentucky, USA
| |
Collapse
|
2
|
Li X, Zheng K, Gu W, Hou X, Guan Y, Liu L, Hou L, Geng J, Song G. Serum Fibroblast Growth Factor 21 Level After an Oral Fat Tolerance Test is Related to Postprandial Free Fatty Acid Level. Diabetes Metab Syndr Obes 2023; 16:1567-1576. [PMID: 37283621 PMCID: PMC10241254 DOI: 10.2147/dmso.s410457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 05/25/2023] [Indexed: 06/08/2023] Open
Abstract
Purpose The relationship between blood lipids and fibroblast growth factor (FGF) 21 in the postprandial period remains unclear. To investigate this, we observed the changes in blood lipid levels after an oral fat tolerance test (OFTT) and examined the short-term effects on FGF21. Patients and Methods A total of 158 non-diabetic adult volunteers who underwent OFTT were randomly recruited from the Hebei General Hospital. Participants were stratified into three groups according to fasting and 4-h postprandial triglyceride levels: normal fat tolerance (NFT), impaired fat tolerance (IFT), and hypertriglyceridemia (HTG). Blood samples were collected at 2-h intervals for 6 h. Circulating total cholesterol levels, triglycerides, high-density lipoprotein-cholesterol, low-density lipoprotein-cholesterol, free fatty acids (FFA), and FGF21 were assessed. Results Fasting FGF21 levels increased progressively in the NFT, IFT, and HTG groups and were strongly correlated with FFA levels (r = 0.531, P < 0.001). During the OFTT, the FFA and FGF21 levels decreased and then increased after reaching a nadir at 2 and 4 h, respectively. After adjusting for potential risk factors, the FFA incremental area under the curve (iAUC) was an independent influencing factor of FGF21 iAUC (P = 0.005). Conclusion Fasting FGF21 levels showed a strong positive correlation with FFA. During OFTT, changes in FGF21 levels were closely associated with alterations in FFA exogenously changed by OFTT. Moreover, they were linearly related to each other. Therefore, the serum FGF21 level is positively correlated to the FFA level in the postprandial period.
Collapse
Affiliation(s)
- Xiaolong Li
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Harrison International Peace Hospital, Hengshui, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Kunjie Zheng
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Harrison International Peace Hospital, Hengshui, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Wei Gu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Harrison International Peace Hospital, Hengshui, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Xiaoyu Hou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| | - Yunpeng Guan
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
| | - Lifang Liu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
- Department of Endocrinology, Baoding First Central Hospital, Baoding, Hebei, People’s Republic of China
| | - Liping Hou
- Department of Endocrinology, Harrison International Peace Hospital, Hengshui, Hebei, People’s Republic of China
| | - Jianlin Geng
- Department of Endocrinology, Harrison International Peace Hospital, Hengshui, Hebei, People’s Republic of China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, People’s Republic of China
- Department of Endocrinology, Hebei General Hospital, Shijiazhuang, People’s Republic of China
| |
Collapse
|
3
|
Cioana M, Deng J, Nadarajah A, Hou M, Qiu Y, Chen SSJ, Rivas A, Banfield L, Alfaraidi H, Alotaibi A, Thabane L, Samaan MC. Prevalence of Polycystic Ovary Syndrome in Patients With Pediatric Type 2 Diabetes: A Systematic Review and Meta-analysis. JAMA Netw Open 2022; 5:e2147454. [PMID: 35166782 PMCID: PMC8848210 DOI: 10.1001/jamanetworkopen.2021.47454] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPORTANCE The prevalence of pediatric type 2 diabetes (T2D) is increasing globally. Girls with T2D are at risk of developing polycystic ovary syndrome (PCOS), but the prevalence of PCOS among girls with T2D is unknown. OBJECTIVE To determine the prevalence of PCOS in girls with T2D and to assess the association of obesity and race with this prevalence. DATA SOURCES In this systematic review and meta-analysis, MEDLINE, Embase, CINAHL, Cochrane Central Register of Controlled Trials, Cochrane Database of Systematic Reviews, Web of Science: Conference Proceedings Citation Index-Science, and the gray literature were searched from inception to April 4, 2021. STUDY SELECTION Two reviewers independently screened for studies with observational study design that recruited 10 or more participants and reported the prevalence of PCOS in girls with T2D. DATA EXTRACTION AND SYNTHESIS Risk of bias was evaluated using a validated tool, and level of evidence was assessed using the Oxford Centre for Evidence-Based Medicine criteria. A random-effects meta-analysis was performed. This study follows the Meta-analysis of Observational Studies in Epidemiology (MOOSE) reporting guideline. MAIN OUTCOMES AND MEASURES The main outcome of this systematic review was the prevalence of PCOS in girls with T2D. Secondary outcomes included assessing the associations of obesity and race with PCOS prevalence. RESULTS Of 722 screened studies, 6 studies involving 470 girls with T2D (mean age at diagnosis, 12.9-16.1 years) met the inclusion criteria. The prevalence (weighted percentage) of PCOS was 19.58% (95% CI, 12.02%-27.14%; I2 = 74%; P = .002). Heterogeneity was moderate to high; however, it was significantly reduced after excluding studies that did not report PCOS diagnostic criteria, leading to a calculated prevalence (weighted percentage) of 24.04% (95% CI, 15.07%-33.01%; I2 = 0%; P = .92). Associations with obesity and race could not be determined because of data paucity. CONCLUSIONS AND RELEVANCE In this meta-analysis, approximately 1 in 5 girls with T2D had PCOS, but the results of this meta-analysis should be considered with caution because studies including the larger numbers of girls did not report the criteria used to diagnose PCOS, which is a challenge during adolescence. The associations of obesity and race with PCOS prevalence among girls with T2D need further evaluation to help define at-risk subgroups and implement early assessment and treatment strategies to improve management of this T2D-related comorbidity.
Collapse
Affiliation(s)
- Milena Cioana
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, Ontario, Canada
| | - Jiawen Deng
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, Ontario, Canada
| | - Ajantha Nadarajah
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, Ontario, Canada
| | - Maggie Hou
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, Ontario, Canada
| | - Yuan Qiu
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, Ontario, Canada
- Michael G. De Groote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Sondra Song Jie Chen
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, Ontario, Canada
| | - Angelica Rivas
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, Ontario, Canada
- Michael G. De Groote School of Medicine, McMaster University, Hamilton, Ontario, Canada
| | - Laura Banfield
- Health Sciences Library, McMaster University, Hamilton, Ontario, Canada
| | - Haifa Alfaraidi
- College of Medicine, King Saud bin Abdulaziz University for Health Sciences, Division of Endocrinology, Department of Pediatrics, Ministry of the National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Ahlam Alotaibi
- Department of Pediatrics, Division of Pediatric Endocrinology, King Abdullah bin Abdulaziz University Hospital, Princess Noura University, Riyadh, Saudi Arabia
| | - Lehana Thabane
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
- Department of Anesthesia, McMaster University, Hamilton, Ontario, Canada
- Centre for Evaluation of Medicines, St Joseph’s Health Care, Hamilton, Ontario, Canada
- Biostatistics Unit, St Joseph’s Healthcare, Hamilton, Ontario, Canada
| | - M. Constantine Samaan
- Department of Pediatrics, McMaster University, Hamilton, Ontario, Canada
- Division of Pediatric Endocrinology, McMaster Children’s Hospital, Hamilton, Ontario, Canada
- Michael G. De Groote School of Medicine, McMaster University, Hamilton, Ontario, Canada
- Department of Health Research Methods, Evidence and Impact, McMaster University, Hamilton, Ontario, Canada
| |
Collapse
|
4
|
Xing Z, Zhang Y, Li M, Guo C, Mi S. RBUD: A New Functional Potential Analysis Approach for Whole Microbial Genome Shotgun Sequencing. Microorganisms 2020; 8:E1563. [PMID: 33050530 PMCID: PMC7650719 DOI: 10.3390/microorganisms8101563] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 10/04/2020] [Accepted: 10/06/2020] [Indexed: 11/16/2022] Open
Abstract
Whole metagenome shotgun sequencing is a powerful approach to detect the functional potential of microbial communities. Currently, the read-based metagenomics profiling for established database (RBED) method is one of the two kinds of conventional methods for species and functional annotations. However, the databases, which are established based on test samples or specific reference genomes or protein sequences, limit the coverage of global microbial diversity. The other assembly-based metagenomics profiling for unestablished database (ABUD) method has a low utilization rate of reads, resulting in a lot of biological information loss. In this study, we proposed a new method, read-based metagenomics profiling for unestablished database (RBUD), based on Metagenome Database of Global Microorganisms (MDGM), to solve the above problems. To evaluate the accuracy and effectiveness of our method, the intestinal bacterial composition and function analyses were performed in both avian colibacillosis chicken cases and type 2 diabetes mellitus patients. Comparing to the existing methods, RBUD is superior in detecting proteins, percentage of reads mapping and ontological similarity of intestinal microbes. The results of RBUD are in better agreement with the classical functional studies on these two diseases. RBUD also has the advantages of fast analysis speed and is not limited by the sample size.
Collapse
Affiliation(s)
- Zhikai Xing
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China; (Z.X.); (Y.Z.); (M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yunting Zhang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China; (Z.X.); (Y.Z.); (M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Meng Li
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China; (Z.X.); (Y.Z.); (M.L.)
| | - Chongye Guo
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China; (Z.X.); (Y.Z.); (M.L.)
| | - Shuangli Mi
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, China National Center for Bioinformation, Beijing 100101, China; (Z.X.); (Y.Z.); (M.L.)
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
5
|
Carreau AM, Noll C, Blondin DP, Frisch F, Nadeau M, Pelletier M, Phoenix S, Cunnane SC, Guérin B, Turcotte EE, Lebel S, Biertho L, Tchernof A, Carpentier AC. Bariatric Surgery Rapidly Decreases Cardiac Dietary Fatty Acid Partitioning and Hepatic Insulin Resistance Through Increased Intra-abdominal Adipose Tissue Storage and Reduced Spillover in Type 2 Diabetes. Diabetes 2020; 69:567-577. [PMID: 31915151 DOI: 10.2337/db19-0773] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 01/01/2020] [Indexed: 11/13/2022]
Abstract
Reduced storage of dietary fatty acids (DFAs) in abdominal adipose tissues with enhanced cardiac partitioning has been shown in subjects with type 2 diabetes (T2D) and prediabetes. We measured DFA metabolism and organ partitioning using positron emission tomography with oral and intravenous long-chain fatty acid and glucose tracers during a standard liquid meal in 12 obese subjects with T2D before and 8-12 days after bariatric surgery (sleeve gastrectomy or sleeve gastrectomy and biliopancreatic diversion with duodenal switch). Bariatric surgery reduced cardiac DFA uptake from a median (standard uptake value [SUV]) 1.75 (interquartile range 1.39-2.57) before to 1.09 (1.04-1.53) after surgery (P = 0.01) and systemic DFA spillover from 56.7 mmol before to 24.7 mmol over 6 h after meal intake after surgery (P = 0.01), with a significant increase in intra-abdominal adipose tissue DFA uptake from 0.15 (0.04-0.31] before to 0.49 (0.20-0.59) SUV after surgery (P = 0.008). Hepatic insulin resistance was significantly reduced in close association with increased DFA storage in intra-abdominal adipose tissues (r = -0.79, P = 0.05) and reduced DFA spillover (r = 0.76, P = 0.01). We conclude that bariatric surgery in subjects with T2D rapidly reduces cardiac DFA partitioning and hepatic insulin resistance at least in part through increased intra-abdominal DFA storage and reduced spillover.
Collapse
Affiliation(s)
- Anne-Marie Carreau
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Christophe Noll
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Denis P Blondin
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Frédérique Frisch
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Mélanie Nadeau
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec, Québec, Québec, Canada
| | - Mélissa Pelletier
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec, Québec, Québec, Canada
| | - Serge Phoenix
- Department of Nuclear Medicine and Radiobiology, Centre de recherche du CHU de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - Stephen C Cunnane
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Centre de recherche du CHU de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - Eric E Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de recherche du CHU de Sherbrooke, Université de Sherbrooke, Québec, Canada
| | - Stéfane Lebel
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec, Québec, Québec, Canada
| | - Laurent Biertho
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec, Québec, Québec, Canada
| | - André Tchernof
- Centre de recherche de l'Institut universitaire de cardiologie et pneumologie de Québec, Québec, Québec, Canada
- School of Nutrition, Université Laval, Québec, Québec, Canada
| | - André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHU de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
6
|
Pozuelo-Sanchez I, Villasanta-Gonzalez A, Alcala-Diaz JF, Vals-Delgado C, Leon-Acuña A, Gonzalez-Requero A, Yubero-Serrano EM, Luque RM, Caballero-Villarraso J, Quesada I, Ordovas JM, Pérez-Martinez P, Roncero-Ramos I, Lopez-Miranda J. Postprandial Lipemia Modulates Pancreatic Alpha-Cell Function in the Prediction of Type 2 Diabetes Development: The CORDIOPREV Study. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:1266-1275. [PMID: 31937103 DOI: 10.1021/acs.jafc.9b06801] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Diabetes (T2DM) is a major global health issue, and developing new approaches to its prevention is of paramount importance. We hypothesized that abnormalities in lipid metabolism are involved in alpha-cell deregulation. We therefore studied the metabolic factors underlying alpha-cell dysfunction in T2DM progression after a dietary intervention (Mediterranean and low-fat). Additionally, we evaluated whether postprandial glucagon levels may be considered as a predictive factor of T2DM in cardiovascular patients. Non-T2DM participants from the CORDIOPREV study were categorized by tertiles of the area under the curve (AUC) for triacylglycerols and also by tertiles of AUC for glucagon. Our results showed that patients with higher triacylglycerols levels presented elevated postprandial glucagon (P = 0.009). Moreover, we observed higher risk of T2DM (hazard ratio: 2.65; 95% confidence interval: 1.56-4.53) in subjects with elevated glucagon. In conclusion, high postprandial lipemia may induce alpha-cell dysfunction in cardiovascular patients. Our results also showed that postprandial glucagon levels could be used to predict T2DM development.
Collapse
Affiliation(s)
- Isabel Pozuelo-Sanchez
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital , University of Cordoba , Córdoba 14004 , Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) , Instituto de Salud Carlos III , Madrid 28029 , Spain
| | - Alejandro Villasanta-Gonzalez
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital , University of Cordoba , Córdoba 14004 , Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) , Instituto de Salud Carlos III , Madrid 28029 , Spain
| | - Juan Francisco Alcala-Diaz
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital , University of Cordoba , Córdoba 14004 , Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) , Instituto de Salud Carlos III , Madrid 28029 , Spain
| | - Cristina Vals-Delgado
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital , University of Cordoba , Córdoba 14004 , Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) , Instituto de Salud Carlos III , Madrid 28029 , Spain
| | - Ana Leon-Acuña
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital , University of Cordoba , Córdoba 14004 , Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) , Instituto de Salud Carlos III , Madrid 28029 , Spain
| | - Anabel Gonzalez-Requero
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital , University of Cordoba , Córdoba 14004 , Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) , Instituto de Salud Carlos III , Madrid 28029 , Spain
| | - Elena Maria Yubero-Serrano
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital , University of Cordoba , Córdoba 14004 , Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) , Instituto de Salud Carlos III , Madrid 28029 , Spain
| | - Raul Miguel Luque
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) , Instituto de Salud Carlos III , Madrid 28029 , Spain
- Department of Cell Biology, Physiology, and Immunology, Maimonides Biomedical Research Institute of Córdoba (IMIBIC), Reina Sofía University Hospital , University of Córdoba , Córdoba 14004 , Spain
| | | | - Ivan Quesada
- Instituto de Investigación, Desarrollo e Innovación en Biotecnología Sanitaria de Elche (IDiBE) , Universidad Miguel Hernández and Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas (CIBERDEM) , Elche 03202 , Spain
| | - José María Ordovas
- Nutrition and Genomics Laboratory , J.M.-US Department of Agriculture Human Nutrition Research Center on Aging at Tufts University , Boston , Massachusetts 02111 , United States
- IMDEA Alimentacion , Madrid 28049 , Spain
| | - Pablo Pérez-Martinez
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital , University of Cordoba , Córdoba 14004 , Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) , Instituto de Salud Carlos III , Madrid 28029 , Spain
| | - Irene Roncero-Ramos
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital , University of Cordoba , Córdoba 14004 , Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) , Instituto de Salud Carlos III , Madrid 28029 , Spain
| | - Jose Lopez-Miranda
- Lipids and Atherosclerosis Unit, Department of Internal Medicine, Maimonides Biomedical Research Institute of Cordoba (IMIBIC), Reina Sofia University Hospital , University of Cordoba , Córdoba 14004 , Spain
- CIBER Fisiopatología de la Obesidad y Nutrición (CIBEROBN) , Instituto de Salud Carlos III , Madrid 28029 , Spain
| |
Collapse
|
7
|
Romualdi D, Versace V, Lanzone A. What is new in the landscape of insulin-sensitizing agents for polycystic ovary syndrome treatment. Ther Adv Reprod Health 2020; 14:2633494120908709. [PMID: 32435760 PMCID: PMC7236839 DOI: 10.1177/2633494120908709] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 01/11/2020] [Indexed: 12/19/2022] Open
Abstract
Polycystic ovary syndrome, the most common gynecological endocrinopathy, is burdened with a state of hyperinsulinemia and insulin resistance in 50-80% of affected women. Wherever the origin of these metabolic abnormalities lies, their pathogenetic role in determining, perpetuating, and worsening the clinical traits of the syndrome is ascertained. Many studies have already highlighted possible mechanisms: hyperinsulinemia and insulin resistance may contribute to hyperandrogenemia, chronic anovulation, and other comorbidities of the syndrome by differentially affecting the endocrine glands (ovaries, adrenals, and pituitary) and peripheral tissues (fat mass and skeletal muscle). Based on these evidences, in the past years, thorough research has been focused on the possible role of insulin-sensitizing agents in the treatment of polycystic ovary syndrome. Many compounds were tested to verify their efficacy against polycystic ovary syndrome-related metabolic dysfunction, both relying on previous acquired experiences in the field of diabetes mellitus and experimenting new agents, in particular, those belonging to the class of nutraceuticals. We sought to summarize the most relevant aspects of insulin-sensitizing treatments in polycystic ovary syndrome, by reporting the relevant literature on this topic and by keeping an attentive eye on the newly published international guidelines on polycystic ovary syndrome 2018. This overview encompasses metformin, thiazolidinediones, inositols, alpha-lipoic acid, and GLP1-R analogues. Starting from the analysis of the mechanisms of action, we anchored to the state of the art of the use of these drugs in polycystic ovary syndrome, to the most recent evidences for clinical practice and to the remaining open questions around indications, dose, treatment schedules, and side effects.
Collapse
Affiliation(s)
- Daniela Romualdi
- Department of Woman, Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
- Department Of Woman And Child Health, Division of Obstetrics and Gynecology, Azienda Ospedaliera “Cardinale Panico”, Tricase, Italy
| | - Valeria Versace
- Department of Woman, Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Antonio Lanzone
- Department of Woman, Child Health and Public Health, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
8
|
Woodward A, Klonizakis M, Broom D. Exercise and Polycystic Ovary Syndrome. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1228:123-136. [PMID: 32342454 DOI: 10.1007/978-981-15-1792-1_8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a complex endocrinopathy affecting both the metabolism and reproductive system of women of reproductive age. Prevalence ranges from 6.1-19.9% depending on the criteria used to give a diagnosis. PCOS accounts for approximately 80% of women with anovulatory infer-tility, and causes disruption at various stages of the reproductive axis. Evidence suggests lifestyle modification should be the first line of therapy for women with PCOS. Several studies have examined the impact of exercise interventions on reproductive function, with results indicating improvements in menstrual and/or ovulation frequency following exercise. Enhanced insulin sensitivity underpins the mechanisms of how exercise restores reproductive function. Women with PCOS typically have a cluster of metabolic abnormalities that are risk factors for CVD. There is irrefutable evidence that exercise mitigates CVD risk factors in women with PCOS. The mechanism by which exercise improves many CVD risk factors is again associated with improved insulin sensitivity and decreased hyperinsulinemia. In addition to cardiometabolic and reproductive complications, PCOS has been associated with an increased prevalence of mental health disorders. Exercise improves psychological well-being in women with PCOS, dependent on certain physiological factors. An optimal dose-response relationship to exercise in PCOS may not be feasible because of the highly individualised characteristics of the disorder. Guidelines for PCOS suggest at least 150 min of physical activity per week. Evidence confirms that this should form the basis of any clinician or healthcare professional prescription.
Collapse
Affiliation(s)
- Amie Woodward
- Faculty of Health and Wellbeing, Centre for Sport and Exercise Science, Sheffield Hallam University, Sheffield, UK
| | - Markos Klonizakis
- Faculty of Health and Wellbeing, Centre for Sport and Exercise Science, Sheffield Hallam University, Sheffield, UK
| | - David Broom
- Faculty of Health and Wellbeing, Centre for Sport and Exercise Science, Sheffield Hallam University, Sheffield, UK.
| |
Collapse
|
9
|
Ibáñez L, Oberfield SE, Witchel S, Auchus RJ, Chang RJ, Codner E, Dabadghao P, Darendeliler F, Elbarbary NS, Gambineri A, Garcia Rudaz C, Hoeger KM, López-Bermejo A, Ong K, Peña AS, Reinehr T, Santoro N, Tena-Sempere M, Tao R, Yildiz BO, Alkhayyat H, Deeb A, Joel D, Horikawa R, de Zegher F, Lee PA. An International Consortium Update: Pathophysiology, Diagnosis, and Treatment of Polycystic Ovarian Syndrome in Adolescence. Horm Res Paediatr 2018; 88:371-395. [PMID: 29156452 DOI: 10.1159/000479371] [Citation(s) in RCA: 206] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Accepted: 07/10/2017] [Indexed: 12/11/2022] Open
Abstract
This paper represents an international collaboration of paediatric endocrine and other societies (listed in the Appendix) under the International Consortium of Paediatric Endocrinology (ICPE) aiming to improve worldwide care of adolescent girls with polycystic ovary syndrome (PCOS)1. The manuscript examines pathophysiology and guidelines for the diagnosis and management of PCOS during adolescence. The complex pathophysiology of PCOS involves the interaction of genetic and epigenetic changes, primary ovarian abnormalities, neuroendocrine alterations, and endocrine and metabolic modifiers such as anti-Müllerian hormone, hyperinsulinemia, insulin resistance, adiposity, and adiponectin levels. Appropriate diagnosis of adolescent PCOS should include adequate and careful evaluation of symptoms, such as hirsutism, severe acne, and menstrual irregularities 2 years beyond menarche, and elevated androgen levels. Polycystic ovarian morphology on ultrasound without hyperandrogenism or menstrual irregularities should not be used to diagnose adolescent PCOS. Hyperinsulinemia, insulin resistance, and obesity may be present in adolescents with PCOS, but are not considered to be diagnostic criteria. Treatment of adolescent PCOS should include lifestyle intervention, local therapies, and medications. Insulin sensitizers like metformin and oral contraceptive pills provide short-term benefits on PCOS symptoms. There are limited data on anti-androgens and combined therapies showing additive/synergistic actions for adolescents. Reproductive aspects and transition should be taken into account when managing adolescents.
Collapse
Affiliation(s)
- Lourdes Ibáñez
- Endocrinology, Hospital Sant Joan de Deu, Esplugues, Barcelona, Spain.,CIBERDEM, ISCIII, Madrid, Spain
| | - Sharon E Oberfield
- Division of Pediatric Endocrinology, CUMC, New York-Presbyterian Morgan Stanley Children's Hospital, New York, New York, USA
| | - Selma Witchel
- Division of Pediatric Endocrinology, Children's Hospital of Pittsburgh of UPMC, Pittsburgh, Pennsylvania, USA
| | | | - R Jeffrey Chang
- Department of Reproductive Medicine, UCSD School of Medicine, La Jolla, California, USA
| | - Ethel Codner
- Institute of Maternal and Child Research, University of Chile, School of Medicine, Santiago, Chile
| | - Preeti Dabadghao
- Department of Endocrinology, Sanjay Gandhi Postgraduate Institute of Medical Sciences, Lucknow, India
| | | | | | - Alessandra Gambineri
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Cecilia Garcia Rudaz
- Division of Women, Youth and Children, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Kathleen M Hoeger
- Department of OBGYN, University of Rochester Medical Center, Rochester, New York, USA
| | - Abel López-Bermejo
- Pediatric Endocrinology, Hospital de Girona Dr. Josep Trueta, Girona, Spain
| | - Ken Ong
- MRC Epidemiology Unit, University of Cambridge, Institute of Metabolic Science, Cambridge Biomedical Campus, Cambridge, United Kingdom
| | - Alexia S Peña
- The University of Adelaide and Robinson Research Institute, Adelaide, South Australia, Australia
| | - Thomas Reinehr
- University of Witten/Herdecke, Vestische Kinder- und Jugendklinik, Pediatric Endocrinology, Diabetes, and Nutrition Medicine, Datteln, Germany
| | - Nicola Santoro
- Pediatrics, Yale School of Medicine, New Haven, Connecticut, USA
| | | | - Rachel Tao
- Division of Pediatric Endocrinology, CUMC, New York-Presbyterian Morgan Stanley Children's Hospital, New York, New York, USA
| | - Bulent O Yildiz
- Department of Internal Medicine, Division of Endocrinology and Metabolism, Hacettepe University School of Medicine, Ankara, Turkey
| | - Haya Alkhayyat
- Medical University of Bahrain, BDF Hospital, Riffa, Bahrein
| | - Asma Deeb
- Mafraq Hospital, Abu Dhabi, United Arab Emirates
| | - Dipesalema Joel
- Department of Paediatrics and Adolescent Health, University of Botswana Teaching Hospital, Gaborone, Botswana
| | - Reiko Horikawa
- Endocrinology and Metabolism, National Center for Child Health and Development, Tokyo, Japan
| | - Francis de Zegher
- Department Pediatrics, University Hospital Gasthuisberg, Leuven, Belgium
| | - Peter A Lee
- Department of Pediatrics, Penn State College of Medicine, Hershey, Pennsylvania, USA
| |
Collapse
|
10
|
Carpentier AC. Abnormal Myocardial Dietary Fatty Acid Metabolism and Diabetic Cardiomyopathy. Can J Cardiol 2018; 34:605-614. [PMID: 29627307 DOI: 10.1016/j.cjca.2017.12.029] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2017] [Revised: 12/08/2017] [Accepted: 12/19/2017] [Indexed: 12/13/2022] Open
Abstract
Patients with diabetes are at very high risk of hospitalization and death from heart failure. Increased prevalence of coronary heart disease, hypertension, autonomic neuropathy, and kidney failure all play a role in this increased risk. However, cardiac metabolic abnormalities are now recognized to play a role in this increased risk. Increased reliance on fatty acids to produce energy might predispose the diabetic heart to oxidative stress and ischemic damage. Intramyocellular accumulation of toxic lipid metabolites leads to a number of cellular abnormalities that might also contribute to cardiac remodelling and cardiac dysfunction. However, fatty acid availability from circulation and from intracellular lipid droplets to fuel the heart is critical to maintain its function. Fatty acids delivery to the heart is very complex and includes plasma nonesterified fatty acid flux as well as triglyceride-rich lipoprotein-mediated transport. Although many studies have shown a cross-sectional association between enhanced fatty acid delivery to the heart and reduction in left ventricular function in subjects with prediabetes and diabetes, these mechanisms change very rapidly during type 2 diabetes treatment. The present review focuses on the role of fatty acids in cardiac function, with particular emphasis on the possible role of early abnormalities of dietary fatty acid metabolism in the development of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
11
|
Connolly A, Leblanc S, Baillargeon JP. Role of Lipotoxicity and Contribution of the Renin-Angiotensin System in the Development of Polycystic Ovary Syndrome. Int J Endocrinol 2018; 2018:4315413. [PMID: 29971102 PMCID: PMC6008888 DOI: 10.1155/2018/4315413] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2018] [Accepted: 05/03/2018] [Indexed: 12/15/2022] Open
Abstract
Polycystic ovary syndrome (PCOS) is a common and significant condition associated with hyperandrogenism, infertility, low quality of life, and metabolic comorbidities. One possible explanation of PCOS development is cellular dysfunction induced by nonesterified fatty acids (NEFAs), that is, lipotoxicity, which could explain both the hyperandrogenemia and insulin resistance that characterize women with PCOS. The literature suggests that androgen biosynthesis may be induced by overexposure of androgen-secreting tissues to NEFA and/or defective NEFA metabolism, leading to lipotoxic effects. Indeed, lipotoxicity could trigger androgenic hyperresponsiveness to insulin, LH, and ACTH. In most PCOS women, lipotoxicity also causes insulin resistance, inducing compensatory hyperinsulinemia, and may thus further increase hyperandrogenemia. Many approaches aimed at insulin sensitization also reduce lipotoxicity and have been shown to treat PCOS hyperandrogenemia. Furthermore, our group and others found that angiotensin II type 2 receptor (AT2R) activation is able to improve lipotoxicity. We provided evidence, using C21/M24, that AT2R activation improves adipocytes' size and insulin sensitivity in an insulin-resistant rat model, as well as androgen levels in a PCOS obese rat model. Taken together, these findings point toward the important role of lipotoxicity in PCOS development and of the RAS system as a new target for the treatment of PCOS.
Collapse
Affiliation(s)
- Alexandre Connolly
- Department of Pharmacology-Physiology, Faculty of Medicine and Health Sciences, 3001 12e Avenue Nord, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, 3001 12e Avenue Nord, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| | - Samuel Leblanc
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, 3001 12e Avenue Nord, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| | - Jean-Patrice Baillargeon
- Division of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, 3001 12e Avenue Nord, Université de Sherbrooke, Sherbrooke, QC, Canada J1H 5N4
| |
Collapse
|
12
|
Iwen KA, Backhaus J, Cassens M, Waltl M, Hedesan OC, Merkel M, Heeren J, Sina C, Rademacher L, Windjäger A, Haug AR, Kiefer FW, Lehnert H, Schmid SM. Cold-Induced Brown Adipose Tissue Activity Alters Plasma Fatty Acids and Improves Glucose Metabolism in Men. J Clin Endocrinol Metab 2017; 102:4226-4234. [PMID: 28945846 DOI: 10.1210/jc.2017-01250] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Accepted: 09/05/2017] [Indexed: 12/12/2022]
Abstract
CONTEXT Mounting evidence suggests beneficial effects of brown adipose tissue (BAT) activation on glucose and lipid metabolism in humans. It is unclear whether cold-induced BAT activation affects not only insulin sensitivity but also insulin secretion. Likewise, the role in clearing circulating fatty acids (FAs) has not been fully explored. OBJECTIVE Exploring the effects of cold-induced BAT activation on insulin sensitivity and secretion, as well as on plasma FA profiles. DESIGN Fifteen healthy men participated in a cross-balanced repeated within-subject study with two experimental conditions. Subjects were exposed to thermoneutrality (22°C) and to moderate cold (18.06°C, shivering excluded) by use of a water-perfused whole body suit. Cold-induced BAT activation was quantified by [18F]-fluorodeoxyglucose positron emission tomography-computed tomography in a subset of volunteers. A Botnia clamp procedure was applied to determine pancreatic first phase insulin response (FPIR) and insulin sensitivity. Hormones and metabolites, including 26 specific plasma FAs, were sampled throughout the experiment. RESULTS Cold exposure induced BAT activity. Plasma noradrenaline and dopamine concentrations increased in response to cold. Peripheral glucose uptake and insulin sensitivity significantly improved by ∼20%, whereas FPIR remained stable. Lignoceric acid (C24:0) concentrations increased, whereas levels of eicosanoic acid (C20:1n9), nervonic acid (C24:1n9), and behenic acid (C22:0) decreased. CONCLUSIONS Cold-exposure induces sympathetic nervous system activity and BAT metabolism in humans, resulting in improved glucose metabolism without affecting pancreatic insulin secretion. In addition, BAT activation is associated with altered circulating concentrations of distinct FAs. These data support the concept that human BAT metabolism significantly contributes to whole body glucose and lipid utilization in a coordinated manner.
Collapse
Affiliation(s)
- K Alexander Iwen
- Department of Internal Medicine I, Section of Endocrinology & Diabetes, University Hospital Schleswig-Holstein, 23538 Lübeck, Germany
| | - Jenny Backhaus
- Department of Internal Medicine I, Section of Endocrinology & Diabetes, University Hospital Schleswig-Holstein, 23538 Lübeck, Germany
| | - Melanie Cassens
- Department of Internal Medicine I, Section of Endocrinology & Diabetes, University Hospital Schleswig-Holstein, 23538 Lübeck, Germany
| | - Maren Waltl
- Department of Internal Medicine I, Section of Endocrinology & Diabetes, University Hospital Schleswig-Holstein, 23538 Lübeck, Germany
| | - Oana C Hedesan
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | | | - Joerg Heeren
- Department of Biochemistry and Molecular Cell Biology, University Medical Center Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Christian Sina
- Department of Internal Medicine I, Section of Nutritional Medicine and Institute of Nutritional Medicine, University Hospital Schleswig-Holstein, 23538 Lübeck, Germany
| | - Leonie Rademacher
- Department of Internal Medicine I, Section of Endocrinology & Diabetes, University Hospital Schleswig-Holstein, 23538 Lübeck, Germany
| | - Anne Windjäger
- Department of Internal Medicine I, Section of Endocrinology & Diabetes, University Hospital Schleswig-Holstein, 23538 Lübeck, Germany
| | - Alexander R Haug
- Department of Biomedical Imaging and Image-Guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Florian W Kiefer
- Clinical Division of Endocrinology and Metabolism, Department of Medicine III, Medical University of Vienna, 1090 Vienna, Austria
| | - Hendrik Lehnert
- Department of Internal Medicine I, Section of Endocrinology & Diabetes, University Hospital Schleswig-Holstein, 23538 Lübeck, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| | - Sebastian M Schmid
- Department of Internal Medicine I, Section of Endocrinology & Diabetes, University Hospital Schleswig-Holstein, 23538 Lübeck, Germany
- German Center for Diabetes Research (DZD), 85764 Neuherberg, Germany
| |
Collapse
|
13
|
Harnois-Leblanc S, Trottier A, Leblanc S, Battista MC, Geller DH, Baillargeon JP. Evolution of metabolic alterations 5 Years after early puberty in a cohort of girls predisposed to polycystic ovary syndrome. Reprod Biol Endocrinol 2017; 15:56. [PMID: 28738839 PMCID: PMC5525344 DOI: 10.1186/s12958-017-0275-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 07/14/2017] [Indexed: 03/23/2023] Open
Abstract
BACKGROUND We and others have observed that young girls predisposed to polycystic ovary syndrome (PCOS) display defective insulin sensitivity, beta-cell function and non-esterified fatty acids (NEFA) suppressibility during early pubertal years, compared to controls. Our objective is to assess whether these differences in glucose and NEFA metabolisms persist after 5 years in late/post-puberty. METHODS We conducted a prospective cohort study between 2007 and 2015 with 4-6 years of follow-up in an academic institution research center. We compared 8 daughters and sisters of PCOS women (PCOSr) to 8 age-matched girls unrelated to PCOS (±1.5 years). Girls were assessed initially at 8-14 years old and re-assessed after a median follow-up of 5.4 years, at 13-21 years old. Our main measures were a frequently sampled intravenous glucose tolerance test (FSivGTT)-derived insulin sensitivity (IS) and beta-cell function (disposition index, DIFSivGTT); and indices of NEFA suppression during FSivGTT (logn-linear slope of NEFA and T50 of NEFA suppression). RESULTS At follow-up, both PCOSr and controls had similar results: IS = 3.2 vs 3.4 (p = 0.88), DIFSivGTT = 1926 vs 1380 (p = 0.44), logn-linear slope = -0.032 vs -0.032 (p = 0.88) and T50NEFA = 18.1 vs 20.8 min (p = 0.57). IS, DIFSivGTT and NEFA suppressibility were stable in PCOSr after 5 years, but decreased significantly in controls (all p < 0.05). CONCLUSIONS Impaired metabolism observed during early puberty in girls predisposed to PCOS remains stable after 5 years whereas control girls deteriorated their metabolic parameters. Therefore, both groups become comparable in late/post-puberty. Early puberty may thus represent a window during which metabolic alterations are transiently apparent in girls at risk of PCOS.
Collapse
Affiliation(s)
- Soren Harnois-Leblanc
- 0000 0000 9064 6198grid.86715.3dDivision of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, J1H 5N4 Québec Canada
| | - Andréanne Trottier
- 0000 0000 9064 6198grid.86715.3dDivision of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, J1H 5N4 Québec Canada
| | - Samuel Leblanc
- 0000 0000 9064 6198grid.86715.3dDivision of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, J1H 5N4 Québec Canada
| | - Marie-Claude Battista
- 0000 0001 0081 2808grid.411172.0Research Center, Centre Hospitalier Universitaire de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, J1H 5N4 Québec Canada
| | - David H. Geller
- 0000 0001 2152 9905grid.50956.3fDepartment of Pediatrics, Cedars-Sinai Medical Center, 8700 Beverly Boulevard, Los Angeles, 90048-1865 California USA
| | - Jean-Patrice Baillargeon
- 0000 0000 9064 6198grid.86715.3dDivision of Endocrinology, Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, J1H 5N4 Québec Canada
- 0000 0001 0081 2808grid.411172.0Research Center, Centre Hospitalier Universitaire de Sherbrooke, 3001, 12e Avenue Nord, Sherbrooke, J1H 5N4 Québec Canada
| |
Collapse
|
14
|
Seghieri M, Tricò D, Natali A. The impact of triglycerides on glucose tolerance: Lipotoxicity revisited. DIABETES & METABOLISM 2017; 43:314-322. [PMID: 28693962 DOI: 10.1016/j.diabet.2017.04.010] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Revised: 04/19/2017] [Accepted: 04/27/2017] [Indexed: 12/22/2022]
Abstract
Elevated plasma triglycerides (TGs) are early key features of conditions associated with a dysregulation in glucose metabolism and may predict the development of type 2 diabetes (T2D) over time. Although the acute ingestion of lipid, either mixed with or shortly before the meal, is neutral or slightly beneficial on glucose tolerance, a short-term increase in plasma TGs induced by either an i.v. lipid infusion or a high-fat diet produces a deterioration of glucose control. Accordingly, chronic lowering of plasma TGs by fibrates improves glucose homeostasis and may also prevent T2D. The chronic effects of the elevation of dietary lipid intake are less clear, particularly in humans, being the quality of fat probably more important than total fat intake. Although on the bases of the available experimental and clinical evidence it cannot be easily disentangled, with respect to elevated non-esterified fatty acids (NEFA) the relative contribution of elevated TGs to glucose homeostasis disregulation seems to be greater and also more plausible. In conclusion, although the association between elevated plasma TGs and impaired glucose tolerance is commonly considered not causative or merely a consequence of NEFA-mediated lipotoxicity, the available data suggest that TGs per se may directly contribute to disorders of glucose metabolism.
Collapse
Affiliation(s)
- M Seghieri
- Department of clinical and experimental medicine, laboratory of metabolism, nutrition and atherosclerosis, university of Pisa, Pisa, Italy
| | - D Tricò
- Department of clinical and experimental medicine, laboratory of metabolism, nutrition and atherosclerosis, university of Pisa, Pisa, Italy
| | - A Natali
- Department of clinical and experimental medicine, laboratory of metabolism, nutrition and atherosclerosis, university of Pisa, Pisa, Italy.
| |
Collapse
|
15
|
Chénard T, Guénard F, Vohl MC, Carpentier A, Tchernof A, Najmanovich RJ. Remodeling adipose tissue through in silico modulation of fat storage for the prevention of type 2 diabetes. BMC SYSTEMS BIOLOGY 2017; 11:60. [PMID: 28606124 PMCID: PMC5468946 DOI: 10.1186/s12918-017-0438-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2016] [Accepted: 06/05/2017] [Indexed: 11/10/2022]
Abstract
BACKGROUND Type 2 diabetes is one of the leading non-infectious diseases worldwide and closely relates to excess adipose tissue accumulation as seen in obesity. Specifically, hypertrophic expansion of adipose tissues is related to increased cardiometabolic risk leading to type 2 diabetes. Studying mechanisms underlying adipocyte hypertrophy could lead to the identification of potential targets for the treatment of these conditions. RESULTS We present iTC1390adip, a highly curated metabolic network of the human adipocyte presenting various improvements over the previously published iAdipocytes1809. iTC1390adip contains 1390 genes, 4519 reactions and 3664 metabolites. We validated the network obtaining 92.6% accuracy by comparing experimental gene essentiality in various cell lines to our predictions of biomass production. Using flux balance analysis under various test conditions, we predict the effect of gene deletion on both lipid droplet and biomass production, resulting in the identification of 27 genes that could reduce adipocyte hypertrophy. We also used expression data from visceral and subcutaneous adipose tissues to compare the effect of single gene deletions between adipocytes from each compartment. CONCLUSIONS We generated a highly curated metabolic network of the human adipose tissue and used it to identify potential targets for adipose tissue metabolic dysfunction leading to the development of type 2 diabetes.
Collapse
Affiliation(s)
- Thierry Chénard
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Canada
| | - Frédéric Guénard
- Institute of Nutrition and Functional Foods, Université Laval, Quebec City, Canada
| | - Marie-Claude Vohl
- Institute of Nutrition and Functional Foods, Université Laval, Quebec City, Canada.,School of Nutrition, Université Laval, Quebec City, Canada
| | - André Carpentier
- Division of Endocrinology, Department of Medicine, Centre de recherche du CHUS, Université de Sherbrooke, Sherbrooke, Canada
| | - André Tchernof
- School of Nutrition, Université Laval, Quebec City, Canada.,Centre de Recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, QC, Canada
| | - Rafael J Najmanovich
- Department of Pharmacology and Physiology, Faculty of Medicine, Université de Montréal, Montreal, QC, Canada.
| |
Collapse
|
16
|
Belan M, Pelletier C, Baillargeon JP. Alanine Aminotransferase Is a Marker of Lipotoxicity Consequences and Hyperandrogenemia in Women with Polycystic Ovary Syndrome. Metab Syndr Relat Disord 2017; 15:145-152. [DOI: 10.1089/met.2016.0119] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Affiliation(s)
- Matea Belan
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Canada
| | - Chloé Pelletier
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Canada
| | | |
Collapse
|
17
|
Grenier-Larouche T, Carreau AM, Carpentier AC. Early Metabolic Improvement After Bariatric Surgery: The First Steps Toward Remission of Type 2 Diabetes. Can J Diabetes 2017; 41:418-425. [PMID: 28318939 DOI: 10.1016/j.jcjd.2016.10.013] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 08/23/2016] [Accepted: 10/24/2016] [Indexed: 02/06/2023]
Abstract
The introduction of bariatric surgery into clinical practice in the 1980s was followed by a relatively long watch-and-wait period before the very rapid accumulation of scientific literature, over the past decade, concerning its clinical effectiveness and safety and its mechanisms of action in the treatment of obesity. These surgical procedures now emerge as the most effective therapeutic modality to induce long-term remission of type 2 diabetes. Recent research has shed light on the potential mechanisms leading to the profound improvement of glucose homeostasis following most bariatric surgery procedures. These mechanisms can be classified as weight loss dependent and independent, both playing sequential and then synergistic antidiabetes roles. Many groups, including our own, have contributed to our understanding of the relative roles of these mechanisms at differing time periods following these procedures. Here we summarize what we currently know about the mechanisms underlying the very rapid, weight loss-independent improvement in glucose homeostasis after bariatric surgery. Beyond its impact in the field of bariatric surgery, this new knowledge about the very rapid in vivo "reverse engineering" of type 2 diabetes actually provides unique insights into the intricate and complex mechanisms linking nutrition and obesity with the development of this disease.
Collapse
Affiliation(s)
- Thomas Grenier-Larouche
- Department of Medicine, Division of Endocrinology, Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CHUS), Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Anne-Marie Carreau
- Department of Medicine, Division of Endocrinology, Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CHUS), Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - André C Carpentier
- Department of Medicine, Division of Endocrinology, Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CHUS), Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| |
Collapse
|
18
|
Faubert J, Battista MC, Baillargeon JP. PHYSIOLOGY AND ENDOCRINOLOGY SYMPOSIUM: Insulin action and lipotoxicity in the development of polycystic ovary syndrome: A review1. J Anim Sci 2016; 94:1803-11. [DOI: 10.2527/jas.2015-0089] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
|
19
|
Nishikawa T, Okamura T, Shima A, Kawatsu Y, Sugiyama D, Kadota A, Morimoto A, Tatsumi Y, Godai K, Miyamatsu N. Casual serum triglyceride as a predictor of premature type 2 diabetes mellitus: an 8-year cohort study of middle-aged Japanese workers. Diabetol Int 2015; 7:252-258. [PMID: 30603271 DOI: 10.1007/s13340-015-0241-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2015] [Accepted: 09/23/2015] [Indexed: 12/22/2022]
Abstract
Background The utility of casual serum triglyceride (TG) as a predictor of type 2 diabetes mellitus (DM) is unclear, especially during the most productive years. Methods Participants were 3271 workers (913 men and 2358 women, age 20-57) without DM at baseline. They underwent consecutive annual medical check-ups for 8 years. The association between newly diagnosed DM and casual serum TG level was determined by classifying the participants into 4 groups according to casual serum TG level at baseline: below 50 mg/dL (group A), 50-100 mg/dL (group B), 100-150 mg/dL (group C), and ≥150 mg/dL (group D). The effects of casual serum TG level in combination with sex, obesity, or serum glucose level on newly diagnosed DM were also evaluated. Results A total of 222 newly diagnosed type 2 DM cases with a mean age of 50 years old were observed during the follow-up period, i.e., 10/406 in group A, 66/1534 in group B, 58/712 in group C, and 88/619 in group D. Compared with group A, the odds ratio (ORs) for newly diagnosed DM (after adjusting for DM-associated factors) was found to increase with casual serum TG level: 1.38 (group B), 1.79 (group C), and 2.36 (group D). Moreover, the OR for newly diagnosed DM was higher in participants with high casual serum TG levels who were also male (OR 2.46), obese (OR 4.18), or had a high serum glucose level (OR 6.96) than in the reference group. Conclusions Serum TG level ≥150 mg/dL when fasting or nonfasting is a significant predictor of type 2 diabetes in middle-aged Japanese workers.
Collapse
Affiliation(s)
- Tomofumi Nishikawa
- 1Department of Health and Nutrition, Kyoto Koka Women's University, 38 Kadonocho, Nishikyogoku, Ukyo-Ku, Kyoto, 615-0822 Japan
- 4Department of Clinical Nursing, Shiga University of Medical Science, Otsu, Japan
| | - T Okamura
- 2Preventive Medicine and Public Health, Keio University, Tokyo, Japan
| | - A Shima
- Heiwado Co., Ltd., Hikone, Japan
- 4Department of Clinical Nursing, Shiga University of Medical Science, Otsu, Japan
| | | | - D Sugiyama
- 2Preventive Medicine and Public Health, Keio University, Tokyo, Japan
| | - A Kadota
- 5Osaka Kyoiku University, Osaka, Japan
| | - A Morimoto
- 4Department of Clinical Nursing, Shiga University of Medical Science, Otsu, Japan
| | - Y Tatsumi
- 4Department of Clinical Nursing, Shiga University of Medical Science, Otsu, Japan
- 6Department of Mathematical Health Science, Graduate School of Osaka University, Suita, Japan
| | - K Godai
- 4Department of Clinical Nursing, Shiga University of Medical Science, Otsu, Japan
| | - N Miyamatsu
- 4Department of Clinical Nursing, Shiga University of Medical Science, Otsu, Japan
| |
Collapse
|
20
|
Kunach M, Noll C, Phoenix S, Guérin B, Baillargeon JP, Turcotte EE, Carpentier AC. Effect of Sex and Impaired Glucose Tolerance on Organ-Specific Dietary Fatty Acid Metabolism in Humans. Diabetes 2015; 64:2432-41. [PMID: 25503741 DOI: 10.2337/db14-1166] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Accepted: 12/09/2014] [Indexed: 11/13/2022]
Abstract
Oral 14(R,S)-[(18)F]-fluoro-6-thia-heptadecanoic acid was used to determine whether an increase in cardiac dietary fatty acid (DFA) metabolism in impaired glucose tolerance (IGT) is different in men and women. Myocardial DFA partitioning after 6 h was higher in IGT versus control subjects (P = 0.006) in both men (2.14 [95% CI 1.70-2.18] vs. 1.28 standard uptake value [SUV] units [0.80-1.76]) and women (1.95 [1.57-2.33] vs. 1.64 SUV units [1.32-1.96]) without difference between sexes. Myocardial DFA fractional uptake (Ki) between time 90 and 120 min postprandially was also higher in IGT versus control subjects (P < 0.001) in men (0.063 [0.032-0.095] vs. 0.016 min(-1) [0.007-0.025]) and women (0.050 [0.024-0.077] vs. 0.030 min(-1) [0.013-0.047]) without significant sex difference. Men had higher net myocardial DFA uptake between time 90 and 120 min driven by higher chylomicron-triglyceride (TG) levels. IGT-associated increased cardiac DFA partitioning was directly related to obesity in women, whereas it was associated with IGT per se in men. We conclude that early cardiac DFA uptake is higher in men driven by change in postprandial chylomicron-TG level but that increase in 6-h postprandial cardiac DFA partitioning nevertheless occurs with IGT both in men and women.
Collapse
Affiliation(s)
- Margaret Kunach
- Department of Medicine, Division of Endocrinology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Christophe Noll
- Department of Medicine, Division of Endocrinology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Serge Phoenix
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Brigitte Guérin
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Jean-Patrice Baillargeon
- Department of Medicine, Division of Endocrinology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Eric E Turcotte
- Department of Nuclear Medicine and Radiobiology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - André C Carpentier
- Department of Medicine, Division of Endocrinology, Centre de Recherche du Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
21
|
Gervais A, Battista MC, Carranza-Mamane B, Lavoie HB, Baillargeon JP. Follicular fluid concentrations of lipids and their metabolites are associated with intraovarian gonadotropin-stimulated androgen production in women undergoing in vitro fertilization. J Clin Endocrinol Metab 2015; 100:1845-54. [PMID: 25695883 DOI: 10.1210/jc.2014-3649] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
CONTEXT Although growing evidence points toward a role of lipotoxicity in the development of hyperandrogenesis, the main feature of polycystic ovary syndrome, few studies directly assessed this association in vivo in humans, and none targeted the ovarian milieu. OBJECTIVE The main objective of this study was to correlate follicular fluid (FF) T levels with lipids, lipid metabolites, and inflammation markers. DESIGN This was a cross-sectional study. SETTING Recruitment was performed in two fertility clinics at one private and one academic center. PARTICIPANTS Eighty women requiring in vitro fertilization were recruited during one of their scheduled visit at the fertility clinic. All women aged between 18 and 40 years with a body mass index between 18 and 40 kg/m(2) were invited to participate. INTERVENTION(S) There were no interventions. MAIN OUTCOME MEASURE(S) At the time of oocyte aspiration, FF was collected and analyzed for total T, lipids [nonesterified fatty acids (NEFAs) plus triglycerides], NEFA metabolites (acylcarnitines; markers of ineffective NEFAs β-oxidation), and inflammatory marker composition. The hypothesis being tested was formulated before the data collection. RESULTS FF T levels were significantly correlated with FF levels of lipids (r = 0.381, P = .001; independently of IL-6), acylcarnitines (r ≥ 0.255, all P = .008; not independently of lipids), and IL-6 (r = 0.300, P = .009, independently of lipids). Additionally, FF lipid levels were significantly and strongly correlated with acylcarnitines (r ≥ 0.594; all P < .001). CONCLUSIONS These results suggest that ovarian androgen production is related to intraovarian exposure to lipids, independently of inflammation and mainly through ineffective NEFA β-oxidation (as shown by higher acylcarnitine levels). Inflammation is also associated with intraovarian androgenesis, independently of lipids.
Collapse
Affiliation(s)
- A Gervais
- Division of Endocrinology (A.G., M.-C.B., J.-P.B.), Department of Medicine, and Department of Obstetrics and Gynecology (B.C.-M.), Université de Sherbrooke, and Centre de Recherche Clinique Étienne-LeBel (B.C.-M., J.-P.B.), Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4; and PROCREA Cliniques (B.C.-M.), Mt Royal, Québec, Canada H3P 2W3
| | | | | | | | | |
Collapse
|
22
|
Bellanger S, Benrezzak O, Battista MC, Naimi F, Labbé SM, Frisch F, Normand-Lauzière F, Gallo-Payet N, Carpentier AC, Baillargeon JP. Experimental dog model for assessment of fasting and postprandial fatty acid metabolism: pitfalls and feasibility. Lab Anim 2015; 49:228-40. [PMID: 25563731 DOI: 10.1177/0023677214566021] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The dog is a widely-used model for conducting metabolic studies. This is mainly due to its large size and its physiology which is relatively similar to that of humans. Here, we attempted to optimize a postprandial metabolic study protocol used in dogs. Following acclimatization, female mongrel dogs underwent 9 h profiling for time-course baseline plasma data on triglyceride, adrenocorticotropic hormone (ACTH) and cortisol levels. One week later, carotid and jugular catheters were surgically inserted for sampling and infusions. Initial post-operative care, based on the literature (Protocol 1), consisted of analgesia (buprenorphine every 8-12 h and 2-3 doses/day of acepromazine), restriction by Pavlov harness within cages, and a two- to three-day recovery period. Throughout the experiment, dogs received a lipid tracer diluted in 5% bovine serum albumin (BSA). Compared with baseline, animals vomited (n = 6/6) and exhibited high ACTH + cortisol levels (stress biomarkers), resulting in blunted triglyceride peak levels. To avoid these undesirable effects, post-operative care was modified (Protocol 2) as follows: animals (n = 19) were given a single dose of buprenorphine and no acepromazine, were unrestrained and free to move within cages, the recovery period was extended to seven days, and the lipid tracer was diluted in 0.002% versus 5% BSA. Using this modified protocol, postprandial plasma-triglyceride and ACTH/cortisol patterns were similar to baseline values. Controlling for stressors, as well as for factors which may alter proper digestion, is critical for all postprandial metabolic studies. Our results show that an optimized postprandial metabolic protocol used in dogs reduces experimental variability, while improving animal care and comfort.
Collapse
Affiliation(s)
- S Bellanger
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - O Benrezzak
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - M C Battista
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - F Naimi
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - S M Labbé
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - F Frisch
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - F Normand-Lauzière
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - N Gallo-Payet
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - A C Carpentier
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - J P Baillargeon
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
23
|
Abstract
Polycystic ovary syndrome is a frequent disorder in women of reproductive age that consists of a heterogeneous combination of hyperandrogenism, chronic anovulation, and polycystic ovaries. Hyperandrogenism and anovulation are clearly linked to insulin resistance and compensatory hyperinsulinism, with an ovarian androgenic hyperresponsiveness to circulating insulin. Evidence is increasing that suggests that lipotoxicity, which is a key mechanism in the development of insulin resistance and type 2 diabetes, could also explain the androgen overproduction. During adolescence, diagnosis of polycystic ovarian syndrome (PCOS) may be difficult but is of importance because PCOS increases future risk of type 2 diabetes and metabolic complications. Metabolic perturbations begin early in adolescence and also exist in adolescent relatives of women with PCOS, even before clinical signs of PCOS. Screening for impaired glucose tolerance or type 2 diabetes is also important in this population, and treatment should focus on PCOS clinical manifestations as well as long-term metabolic risk.
Collapse
Affiliation(s)
- Anne-Marie Carreau
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, 3001, 12th Ave North, Sherbrooke, Quebec, J1H 5 N4, Canada
| | | |
Collapse
|
24
|
VandenBerg P. The Canadian Diabetes Association, Canadian Society, is funding CDN $7.5 million in research in 2014-2015 to support excellent researchers and research trainees. Can J Diabetes 2014; 38:393-5. [PMID: 25449553 DOI: 10.1016/j.jcjd.2014.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 09/17/2014] [Indexed: 11/30/2022]
Affiliation(s)
- Polly VandenBerg
- Manager, Research Knowledge Translation, Canadian Diabetes Association, Toronto, Ontario, Canada
| |
Collapse
|
25
|
Russell RD, Nelson AG, Kraemer RR. Short Bouts of High-Intensity Resistance-Style Training Produce Similar Reductions in Fasting Blood Glucose of Diabetic Offspring and Controls. J Strength Cond Res 2014; 28:2760-7. [DOI: 10.1519/jsc.0000000000000624] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
26
|
Leblanc S, Battista MC, Noll C, Hallberg A, Gallo-Payet N, Carpentier AC, Vine DF, Baillargeon JP. Angiotensin II type 2 receptor stimulation improves fatty acid ovarian uptake and hyperandrogenemia in an obese rat model of polycystic ovary syndrome. Endocrinology 2014; 155:3684-93. [PMID: 24971613 DOI: 10.1210/en.2014-1185] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Polycystic ovary syndrome (PCOS) is mainly defined by hyperandrogenism but is also characterized by insulin resistance (IR). Studies showed that overexposure of nonadipose tissues to nonesterified fatty acids (NEFA) may explain both IR and hyperandrogenism. Recent studies indicate that treatment with an angiotensin II type 2 receptor (AT2R)-selective agonist improves diet-induced IR. We thus hypothesized that PCOS hyperandrogenism is triggered by ovarian NEFA overexposure and is improved after treatment with an AT2R agonist. Experiments were conducted in 12-week-old female JCR:LA-cp/cp rats, which are characterized by visceral obesity, IR, hyperandrogenism, and polycystic ovaries. Control JCR:LA +/? rats have a normal phenotype. Rats were treated for 8 days with saline or the selective AT2R agonist C21/M24 and then assessed for: 1) fasting testosterone, NEFA, and insulin levels; and 2) an iv 14(R,S)-[(18)F]fluoro-6-thia-heptadecanoic acid test to determine NEFA ovarian tissue uptake (Km). Compared with controls, saline-treated PCOS/cp rats displayed higher insulin (100 vs 5.6 μU/mL), testosterone (0.12 vs 0.04 nmol/L), NEFA (0.98 vs 0.48 mmol/L), and Km (20.7 vs 12.9 nmol/g·min) (all P < .0001). In PCOS/cp rats, C21/M24 did not significantly improve insulin or NEFA but normalized testosterone (P = .004) and Km (P = .009), which were strongly correlated together in all PCOS/cp rats (ρ = 0.74, P = .009). In conclusion, in an obese PCOS rat model, ovarian NEFA uptake and testosterone levels are strongly associated and are both significantly reduced after short-term C21/M24 therapy. These findings provide new information on the role of NEFA in PCOS hyperandrogenemia and suggest a potential role for AT2R agonists in the treatment of PCOS.
Collapse
Affiliation(s)
- Samuel Leblanc
- Division of Endocrinology (S.L., M.-C.B., C.N., N.G.-P., A.C.C., J.-P.B.), Department of Medicine, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4; Department of Medicinal Chemistry (A.H.), Biomedicinska Centrum, Uppsala University, Uppsala, Sweden 751 23; Alberta Institute for Human Nutrition, Metabolic and Cardiovascular Disease Laboratory (D.F.V.), University of Alberta, Edmonton, Alberta, Canada T6G 2E1; and Centre de Recherche Étienne-Lebel (N.G.-P., A.C.C., J.-P.B.), Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Quebec, Canada J1H 5N4
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Biet M, Morin N, Benrezzak O, Naimi F, Bellanger S, Baillargeon JP, Chouinard L, Gallo-Payet N, Carpentier AC, Dumaine R. Lasting alterations of the sodium current by short-term hyperlipidemia as a mechanism for initiation of cardiac remodeling. Am J Physiol Heart Circ Physiol 2014; 306:H291-7. [DOI: 10.1152/ajpheart.00715.2013] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
Clinical and animal studies indicate that increased fatty acid delivery to lean tissues induces cardiac electrical remodeling and alterations of cellular calcium homeostasis. Since this may represent a mechanism initiating cardiac dysfunction during establishment of insulin resistance and diabetes or anaerobic cardiac metabolism (ischemia), we sought to determine if short-term exposure to high plasma concentration of fatty acid in vivo was sufficient to alter the cardiac sodium current ( INa) in dog ventricular myocytes. Our results show that delivery of triglycerides and nonesterified fatty acids by infusion of Intralipid + heparin (IH) for 8 h increased the amplitude of INa by 43% and shifted its activation threshold by −5 mV, closer to the resting membrane potential. Steady-state inactivation (availability) of the channels was reduced by IH with no changes in recovery from inactivation. As a consequence, INa “window” current, a strong determinant of intracellular Na+ and Ca2+ concentrations, was significantly increased. The results indicate that increased circulating fatty acids alter INa gating in manners consistent with an increased cardiac excitability and augmentation of intracellular calcium. Moreover, these changes could still be measured after the dogs were left to recover for 12 h after IH perfusion, suggesting lasting changes in INa. Our results indicate that fatty acids rapidly induce cardiac remodeling and suggest that this process may be involved in the development of cardiac dysfunctions associated to insulin resistance and diabetes.
Collapse
Affiliation(s)
- M. Biet
- Department of Physiology and Biophysics, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and
| | - N. Morin
- Department of Physiology and Biophysics, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and
| | - O. Benrezzak
- Department of Medecine (Endocrinology), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - F. Naimi
- Department of Physiology and Biophysics, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and
| | - S. Bellanger
- Department of Physiology and Biophysics, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and
| | - J. P. Baillargeon
- Department of Medecine (Endocrinology), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - L. Chouinard
- Department of Medecine (Endocrinology), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - N. Gallo-Payet
- Department of Medecine (Endocrinology), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - A. C. Carpentier
- Department of Medecine (Endocrinology), Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - R. Dumaine
- Department of Physiology and Biophysics, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, Quebec, Canada; and
| |
Collapse
|
28
|
Massicotte MH, Langlois F, Baillargeon JP. Current procedures for managing polycystic ovary syndrome. ACTA ACUST UNITED AC 2014. [DOI: 10.1586/eog.09.74] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
29
|
Abstract
Abnormalities of insulin metabolism include hyperinsulinaemia and insulin resistance, and these problems are collectively referred to as insulin dysregulation in this review. Insulin dysregulation is a key component of equine metabolic syndrome: a collection of endocrine and metabolic abnormalities associated with the development of laminitis in horses, ponies and donkeys. Insulin dysregulation can also accompany prematurity and systemic illness in foals. Causes of insulin resistance are discussed, including pathological conditions of obesity, systemic inflammation and pituitary pars intermedia dysfunction, as well as the physiological responses to stress and pregnancy. Most of the discussion of insulin dysregulation to date has focused on insulin resistance, but there is increasing interest in hyperinsulinaemia itself and insulin responses to feeding. An oral sugar test or in-feed oral glucose tolerance test can be performed to assess insulin responses to dietary carbohydrates, and these tests are now recommended for use in clinical practice. Incretin hormones are likely to play an important role in postprandial hyperinsulinaemia and are the subject of current research. Insulin resistance exacerbates hyperinsulinaemia, and insulin sensitivity can be measured by performing a combined glucose-insulin test or i.v. insulin tolerance test. In both of these tests, exogenous insulin is administered and the rate of glucose uptake into tissues measured. Diagnosis and management of hyperinsulinaemia is recommended to reduce the risk of laminitis. The term insulin dysregulation is introduced here to refer collectively to excessive insulin responses to sugars, fasting hyperinsulinaemia and insulin resistance, which are all components of equine metabolic syndrome.
Collapse
Affiliation(s)
- N Frank
- Department of Clinical Sciences, Tufts Cummings School of Veterinary Medicine, North Grafton, Massachusetts, USA; Division of Veterinary Medicine, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, UK
| | | |
Collapse
|
30
|
Borel AL, Boulet G, Nazare JA, Smith J, Alméras N, Tremblay A, Bergeron J, Poirier P, Carpentier AC, Després JP. Improved plasma FFA/insulin homeostasis is independently associated with improved glucose tolerance after a 1-year lifestyle intervention in viscerally obese men. Diabetes Care 2013; 36:3254-61. [PMID: 23695818 PMCID: PMC3781540 DOI: 10.2337/dc12-2353] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Elevated plasma free fatty acids (FFAs) are one important link between excess visceral adiposity, insulin resistance, and the development of type 2 diabetes. Effects of lifestyle interventions on FFA metabolism are poorly known. This open-label study was conducted to test the effects of a 1-year healthy eating/physical activity intervention program on plasma FFA homeostasis in 117 viscerally obese men with dyslipidemia associated with insulin resistance (waist circumference≥90 cm, triglycerides≥1.69 mmol/L, and/or HDL-cholesterol<1.03 mmol/L). RESEARCH DESIGN AND METHODS Body weight, body composition, and fat distribution were assessed by dual-energy X-ray absorptiometry/computed tomography. Oral loads of lipid (60 g fat/m2 body surface area) and glucose (75 g) were measured before and after the intervention. RESULTS After 1 year of lifestyle intervention, visceral adiposity was reduced by -26% (95% CI -29 to -23), whereas cardiorespiratory fitness improved by +20% (95% CI +16 to +24). After 1 year, the suppression of FFAs after the glucose load improved, whereas insulin concentrations were drastically reduced. After the oral lipid load, the late increase in FFA was reduced together with reduced circulating insulin. We calculated an insulin sensitivity index to reflect the concentration of insulin needed to manage plasma FFAs after the oral lipid load, which increased after the intervention and was associated with improved glucose tolerance, independent of changes in visceral or total adiposity. CONCLUSIONS A 1-year healthy eating/physical activity intervention improved the suppression of FFAs after oral glucose and lipid load tests in viscerally obese men, possibly due to improved responsiveness to insulin. This insulin-mediated regulation of postprandial plasma FFA levels could be a link between visceral obesity and impaired glucose homeostasis.
Collapse
|
31
|
Russell RD, Kraemer RR, Nelson AG. Metabolic dysfunction in diabetic offspring: deviations in metabolic flexibility. Med Sci Sports Exerc 2013; 45:8-15. [PMID: 22811035 DOI: 10.1249/mss.0b013e31826909d3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
UNLABELLED In type 2 diabetes (T2D), insulin resistance is related to comorbidities, including high lipotoxicity, poor glucoregulation, and loss of metabolic flexibility. Controversy exists regarding whether reduced metabolic flexibility precedes insulin resistance or vice versa. PURPOSE The purpose of this study was to determine whether a family history of T2D leads to metabolic inflexibility. METHODS To examine potential loss of metabolic flexibility at early stages, we used a hooded metabolic cart to compare metabolic characteristics in people with T2D, family history of T2D (FH+), and controls (FH-) 1) at rest, 2) with passive stretching (PS) and recovery, and 3) with oral glucose load. Testing of 9 T2D, 11 FH+, and 9 FH- occurred after a 12-h fast under resting conditions. Expired gas and blood glucose (BG) were measured before and after each condition. RESULTS PS lowered BG (P < 0.05) in FH- and FH+ (mean ± SD, -2.7 ± 5.9 and -5.8 ± 7.5 mg·mL(-1)) compared with T2D (-0.9 ± 7.7). CHO use (kcal·min(-1)) increased with PS in all groups (0.04 ± 0.18, 0.03 ± 0.26, and 0.22 ± 1.6 mg·mL(-1) in FH-, FH+, and T2D, respectively). For oral glucose load, different metabolic flexibility existed between FH- as well as FH+ (0.16 ± 0.07) as well as T2D (0.16 ± 0.07), with no difference between FH- and T2D. CONCLUSION PS increases glycolytic activity without affecting BG in T2D, and reductions in metabolic flexibility exist in T2D and FH+ without glucoregulatory impairment in FH+, indicating early stage of mitochondrial dysfunction in FH+. Findings indicate PS is an important tool for assessing metabolic flexibility.
Collapse
Affiliation(s)
- Ryan D Russell
- Department of Kinesiology, Louisiana State University, Baton Rouge, LA, USA.
| | | | | |
Collapse
|
32
|
Carpentier AC. The 2012 CDA-CIHR INMD young investigator award lecture: dysfunction of adipose tissues and the mechanisms of ectopic fat deposition in type 2 diabetes. Can J Diabetes 2013; 37:109-14. [PMID: 24070801 DOI: 10.1016/j.jcjd.2013.03.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Revised: 03/12/2013] [Accepted: 03/12/2013] [Indexed: 12/20/2022]
Abstract
Ectopic fat deposition in skeletal muscles, liver, heart, and other tissues has been closely linked with the development of lean tissues' insulin resistance and progression toward type 2 diabetes mellitus. Mechanisms of overexposure of these tissues to fatty acids include increased de novo lipogenesis, impaired fatty acid oxidation and increased fatty acid flux to these organs. White adipose tissues are the main organs responsible for the regulation of circulating fatty acids. It has been clearly demonstrated that pre-diabetes individuals and individuals with diabetes display impaired adipose tissue dietary fatty acid storage that may lead to increased circulating flux and exaggerated lean tissue fatty acid exposure. Additionally, brown adipose tissue depots are less metabolically active in individuals with type 2 diabetes. We have developed a series of novel in vivo investigative tools using positron emission tomography to comprehensively assess postprandial interorgan fatty acid partitioning and white and brown adipose tissue metabolism in subjects with pre-diabetes and type 2 diabetes. Our findings shed new lights into the sophisticated mechanisms that regulate fatty acid partitioning and energy homeostasis during the development of type 2 diabetes. New links between abnormal dietary fatty acid metabolism and early myocardial metabolic and functional defects are now being uncovered in humans with the hope to find novel ways to predict and avoid the devastating complications of diabetes.
Collapse
Affiliation(s)
- André C Carpentier
- CIHR-GSK Chair in Diabetes Department of Medicine, Division of Endocrinology, Université de Sherbrooke, Centre de recherche clinique Étienne-Le Bel, Centre hospitalier universitaire de Sherbrooke, Sherbrooke, Québec, Canada.
| |
Collapse
|
33
|
Grenier-Larouche T, Labbé SM, Noll C, Richard D, Carpentier AC. Metabolic inflexibility of white and brown adipose tissues in abnormal fatty acid partitioning of type 2 diabetes. INTERNATIONAL JOURNAL OF OBESITY SUPPLEMENTS 2012; 2:S37-42. [PMID: 27152152 PMCID: PMC4850609 DOI: 10.1038/ijosup.2012.21] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Type 2 diabetes (T2D) is characterized by a general dysregulation of postprandial energy substrate partitioning. Although classically described in regard to glucose metabolism, it is now evident that metabolic inflexibility of plasma lipid fluxes is also present in T2D. The organ that is most importantly involved in the latter metabolic defect is the white adipose tissue (WAT). Both catecholamine-induced nonesterified fatty acid mobilization and insulin-stimulated storage of meal fatty acids are impaired in many WAT depots of insulin-resistant individuals. Novel molecular imaging techniques now demonstrate that these defects are linked to increased dietary fatty acid fluxes toward lean organs and myocardial dysfunction in humans. Recent findings also demonstrate functional abnormalities of brown adipose tissues in T2D, thus suggesting that a generalized adipose tissue dysregulation of energy storage and dissipation may be at play in the development of lean tissue energy overload and lipotoxicity.
Collapse
Affiliation(s)
- T Grenier-Larouche
- Department of Medicine, Division of Endocrinology, Centre Hospitalier Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - S M Labbé
- Department of Medicine, Division of Endocrinology, Centre Hospitalier Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - C Noll
- Department of Medicine, Division of Endocrinology, Centre Hospitalier Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - D Richard
- Centre de recherche de l'Institut de cardiologie et de pneumologie de Québec, Université Laval Québec, Québec City, Québec, Canada
| | - A C Carpentier
- Department of Medicine, Division of Endocrinology, Centre Hospitalier Université de Sherbrooke, Sherbrooke, Québec, Canada
| |
Collapse
|
34
|
Lomonaco R, Ortiz-Lopez C, Orsak B, Webb A, Hardies J, Darland C, Finch J, Gastaldelli A, Harrison S, Tio F, Cusi K. Effect of adipose tissue insulin resistance on metabolic parameters and liver histology in obese patients with nonalcoholic fatty liver disease. Hepatology 2012; 55:1389-97. [PMID: 22183689 DOI: 10.1002/hep.25539] [Citation(s) in RCA: 310] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2011] [Accepted: 11/25/2011] [Indexed: 12/11/2022]
Abstract
UNLABELLED The role of adipose tissue insulin resistance in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) remains unclear. To evaluate this, we measured in 207 patients with NAFLD (age = 51 ± 1, body mass index = 34.1 ± 0.3 kg/m(2) ) and 22 controls without NAFLD (no NAFLD) adipose tissue insulin resistance by means of a validated index (Adipo-IR(i) = plasma free fatty acids [FFA] x insulin [FPI] concentration) and as the suppression of plasma FFA during an oral glucose tolerance test and by a low-dose insulin infusion. We also explored the relationship between adipose tissue insulin resistance with metabolic and histological parameters by dividing them based on quartiles of adipose tissue insulin resistance (Adipo-IR(i) quartiles: Q1 = more sensitive; Q4 = more insulin resistant). Hepatic insulin resistance, measured as an index derived from endogenous glucose production x FPI (HIRi), and muscle insulin sensitivity, were assessed during a euglycemic insulin clamp with 3-[(3) H] glucose. Liver fat was measured by magnetic resonance imaging and spectroscopy, and a liver biopsy was performed to assess liver histology. Compared to patients without steatosis, patients with NAFLD were insulin resistant at the level of adipose tissue, liver, and skeletal muscle and had higher plasma aspartate aminotransferase and alanine aminotransferase, triglycerides, and lower high-density lipoprotein cholesterol and adiponectin levels (all P < 0.01). Metabolic parameters, hepatic insulin resistance, and liver fibrosis (but not necroinflammation) deteriorated as quartiles of adipose tissue insulin resistance worsened (all P < 0.01). CONCLUSION Adipose tissue insulin resistance plays a key role in the development of metabolic and histological abnormalities of obese patients with NAFLD. Treatment strategies targeting adipose tissue insulin resistance (e.g., weight loss and thiazolidinediones) may be of value in this population.
Collapse
Affiliation(s)
- Romina Lomonaco
- Diabetes, The University of Texas Health Science Center at San Antonio, San Antonio, TX 78229-3900, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
35
|
Vila-Bedmar R, Garcia-Guerra L, Nieto-Vazquez I, Mayor F, Lorenzo M, Murga C, Fernández-Veledo S. GRK2 contribution to the regulation of energy expenditure and brown fat function. FASEB J 2012; 26:3503-14. [PMID: 22516294 DOI: 10.1096/fj.11-202267] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Obesity is a major health problem and an important risk factor for the development of multiple disorders. Previous studies in our laboratory have revealed that down-regulation of GRK2 decreases age-related adiposity, but the physiological and molecular mechanisms underlying this outcome remain unclear. We evaluate whether the lean phenotype results from a direct effect of GRK2 on energy homeostasis. The study of white adipose tissue (WAT) in wild-type (WT) and GRK2(+/-) littermates showed a reduced expression of lipogenic enzymes and enhanced lipolytic rate in adult GRK2(+/-) mice. Moreover, hemizygous mice display higher energy expenditure and lower respiratory exchange ratio. Analysis of brown adipose tissue (BAT) from adult GRK2(+/-) mice showed a less deteriorated morphology associated with age compared to WT, which is correlated with a higher basal core temperature. BAT from young GRK2(+/-) mice showed an increase in gene expression of thermogenesis-related genes. Accordingly, hemizygous mice displayed better thermogenic capacity and exhibited a more oxidative phenotype in both BAT and WAT than WT littermates. Overexpression of GRK2 in brown adipocytes corroborated the negative effect of this kinase in BAT function and differentiation. Collectively, our data point to GRK2 inhibition as a potential tool for the enhancement of brown fat activity, which may have important therapeutic implications for the treatment of obesity and associated metabolic disorders.
Collapse
Affiliation(s)
- Rocio Vila-Bedmar
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, Complutense University-Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas, Madrid, Spain
| | | | | | | | | | | | | |
Collapse
|
36
|
Bellanger S, Battista MC, Fink GD, Baillargeon JP. Saturated fatty acid exposure induces androgen overproduction in bovine adrenal cells. Steroids 2012; 77:347-53. [PMID: 22245830 PMCID: PMC3848974 DOI: 10.1016/j.steroids.2011.12.017] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2011] [Accepted: 11/22/2011] [Indexed: 12/01/2022]
Abstract
BACKGROUND Polycystic ovary syndrome (PCOS) is mainly defined by hyperandrogenemia, from ovarian and adrenal origin, and is characterized by insulin resistance (IR). Studies found that raising in vivo non-esterified fatty acid (NEFA) levels, which induces lipotoxicity, increases androgen levels and IR. The aim of this study was therefore to determine the effects of in vitro over-exposure to NEFA on androgen synthesis in a bovine adrenocortical cell model. METHODS Bovine fasciculata/reticularis cells were cultured for 2days in the absence or presence of ACTH (10nmol/L) or Forskolin (fsk, 10μmol/L), alone or in combination with the saturated fatty acid (FA) palmitate (100μmol/L). Steroid production was measured in medium and corrected for initial cell seeding count. CYP17 protein expression and ERK1/2 phosphorylation were assessed by Western blotting. RESULTS Under unstimulated conditions, dehydroepiandrosterone (DHEA) levels were barely detected and no difference was observed after palmitate exposure, which was also the case for CYP17 expression and ERK1/2 phosphorylation. Under stimulation, palmitate exposure increased DHEA production by 38% and 69%, for ACTH and fsk, respectively, as compared to untreated conditions (Ps⩽0.05). In palmitate-treated vs untreated cells, fsk-stimulated ERK1/2 phosphorylation was reduced by 46% (P=0.0047), but stimulated CYP17 expression was not significantly affected. CONCLUSION In a model of androgen-producing cells, under stimulated conditions, overexposure to saturated FAs significantly increases androgen production and reduces MEK/ERK activation. Therefore, this study is the first to demonstrate that lipotoxicity can directly trigger androgen overproduction in vitro, in addition to its well-described impact on IR, which strongly supports a central role of lipotoxicity in PCOS pathophysiology.
Collapse
Affiliation(s)
- Sylvain Bellanger
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | - Marie-Claude Battista
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
| | - Guy D. Fink
- Department of Clinical Biochemistry, Centre Hospitalier Universitaire de Sherbrooke, Québec, Canada J1H 5N4
| | - Jean-Patrice Baillargeon
- Division of Endocrinology, Department of Medicine, Université de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4
- Corresponding author. Address: Division of Endocrinology, Department of Medicine, Université de Sherbrooke, 3001, 12th Ave. North, Sherbrooke, Quebec, Canada J1H 5N4. Tel.: +1 819 564 5243; fax: +1 819 564 5292. (J.-P. Baillargeon)
| |
Collapse
|
37
|
Lian K, Niu L, Kang W, Zhang P. Effects of a high fat diet on long-chain fatty acids composition in rats serum and liver. Food Res Int 2012. [DOI: 10.1016/j.foodres.2011.10.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
38
|
Peltsverger MY, Celi FS. Cardiovascular Risk in the Old Order Amish. CURRENT CARDIOVASCULAR RISK REPORTS 2011. [DOI: 10.1007/s12170-011-0163-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
39
|
Labbé SM, Grenier-Larouche T, Croteau E, Normand-Lauzière F, Frisch F, Ouellet R, Guérin B, Turcotte EE, Carpentier AC. Organ-specific dietary fatty acid uptake in humans using positron emission tomography coupled to computed tomography. Am J Physiol Endocrinol Metab 2011; 300:E445-53. [PMID: 21098737 DOI: 10.1152/ajpendo.00579.2010] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A noninvasive method to determine postprandial fatty acid tissue partition may elucidate the link between excess dietary fat and type 2 diabetes. We hypothesized that the positron-emitting fatty acid analog 14(R,S)-[(18)F]fluoro-6-thia-heptadecanoic acid ((18)FTHA) administered orally during a meal would be incorporated into chylomicron triglycerides, allowing determination of interorgan dietary fatty acid uptake. We administered (18)FTHA orally at the beginning of a standard liquid meal ingested in nine healthy men. There was no significant (18)FTHA uptake in the portal vein and the liver during the 1st hour. Whole body PET/CT acquisition revealed early appearance of (18)FTHA in the distal thoracic duct, reaching a peak at time 240 min. (18)FTHA mean standard uptake value increased progressively in the liver, heart, quadriceps, and subcutaneous and visceral adipose tissues between time 60 and 240 min. Most circulating (18)F activity between time 0 and 360 min was recovered into chylomicron triglycerides. Using Triton WR-1339 treatment in rats that received (18)FTHA by gavage, we confirmed that >90% of this tracer reached the circulation as triglycerides. This novel noninvasive method to determine tissue dietary fatty acid distribution in humans should prove useful in the study of the mechanisms leading to lipotoxicity.
Collapse
Affiliation(s)
- Sébastien M Labbé
- Division of Endocrinology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Plasma esterified and non-esterified fatty acids metabolic profiling using gas chromatography-mass spectrometry and its application in the study of diabetic mellitus and diabetic nephropathy. Anal Chim Acta 2011; 689:85-91. [PMID: 21338761 DOI: 10.1016/j.aca.2011.01.034] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2010] [Revised: 01/12/2011] [Accepted: 01/14/2011] [Indexed: 01/13/2023]
Abstract
Using gas chromatography-mass spectrometry (GC-MS), a new metabolic profiling method was established to assess the levels of non-esterified fatty acids (NEFAs) and esterified fatty acids (EFAs) in plasma. The extraction method was simple and robust without removing protein process. With this method 25 fatty acids (FAs), both EFAs and NEFAs, can be recognized simultaneously with only 10 μL plasma. 15 of the 25 can be precisely quantified. The method was validated and then applied into clinical metabonomics research. Five clinical groups including 150 cases were involved. The relationship between FA levels and diabetic mellitus (DM) as well as diabetic nephropathy (DN) pathology was speculated. Furthermore, the possible pathological causes and effects were discussed in detail. Potential biomarkers (p value <0.01) were screened with Student's t-test. With the application of partial least squares-discriminant analysis (PLS-DA), different stages were distinguished. The result may be useful for the pathology study of metabolic syndromes, and may also be helpful for monitoring the progression of DM and DN.
Collapse
|
41
|
Baptiste CG, Battista MC, Trottier A, Baillargeon JP. Insulin and hyperandrogenism in women with polycystic ovary syndrome. J Steroid Biochem Mol Biol 2010; 122:42-52. [PMID: 20036327 PMCID: PMC3846536 DOI: 10.1016/j.jsbmb.2009.12.010] [Citation(s) in RCA: 174] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2009] [Revised: 12/15/2009] [Accepted: 12/18/2009] [Indexed: 01/23/2023]
Abstract
Polycystic ovary syndrome (PCOS) is a very common endocrine disorder characterized by chronic anovulation, clinical and/or biochemical hyperandrogenism, and/or polycystic ovaries. But most experts consider that hyperandrogenism is the main characteristic of PCOS. Several theories propose different mechanisms to explain PCOS manifestations: (1) a primary enzymatic default in the ovarian and/or adrenal steroidogenesis; (2) an impairment in gonadotropin releasing hormone (GnRH) secretion that promotes luteal hormone (LH) secretion; or (3) alterations in insulin actions that lead to insulin resistance with compensatory hyperinsulinemia. However, in the past 20 years there has been growing evidence supporting that defects in insulin actions or in the insulin signalling pathways are central in the pathogenesis of the syndrome. Indeed, most women with PCOS are metabolically insulin resistant, in part due to genetic predisposition and in part secondary to obesity. But some women with typical PCOS do not display insulin resistance, which supports the hypothesis of a genetic predisposition specific to PCOS that would be revealed by the development of insulin resistance and compensatory hyperinsulinemia in most, but not all, women with PCOS. However, these hypotheses are not yet appropriately confirmed, and more research is still needed to unravel the true pathogenesis underlying this syndrome. The present review thus aims at discussing new concepts and findings regarding insulin actions in PCOS women and how it is related to hyperandrogenemia.
Collapse
|
42
|
Ménard SL, Croteau E, Sarrhini O, Gélinas R, Brassard P, Ouellet R, Bentourkia M, van Lier JE, Des Rosiers C, Lecomte R, Carpentier AC. Abnormal in vivo myocardial energy substrate uptake in diet-induced type 2 diabetic cardiomyopathy in rats. Am J Physiol Endocrinol Metab 2010; 298:E1049-57. [PMID: 20159856 DOI: 10.1152/ajpendo.00560.2009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The purpose of this study was to determine in vivo myocardial energy metabolism and function in a nutritional model of type 2 diabetes. Wistar rats rendered insulin-resistant and mildly hyperglycemic, hyperinsulinemic, and hypertriglyceridemic with a high-fructose/high-fat diet over a 6-wk period with injection of a small dose of streptozotocin (HFHFS) and control rats were studied using micro-PET (microPET) without or with a euglycemic hyperinsulinemic clamp. During glucose clamp, myocardial metabolic rate of glucose measured with [(18)F]fluorodeoxyglucose ([(18)F]FDG) was reduced by approximately 81% (P < 0.05), whereas myocardial plasma nonesterified fatty acid (NEFA) uptake as determined by [(18)F]fluorothia-6-heptadecanoic acid ([(18)F]FTHA) was not significantly changed in HFHFS vs. control rats. Myocardial oxidative metabolism as assessed by [(11)C]acetate and myocardial perfusion index as assessed by [(13)N]ammonia were similar in both groups, whereas left ventricular ejection fraction as assessed by microPET was reduced by 26% in HFHFS rats (P < 0.05). Without glucose clamp, NEFA uptake was approximately 40% lower in HFHFS rats (P < 0.05). However, myocardial uptake of [(18)F]FTHA administered by gastric gavage was significantly higher in HFHFS rats (P < 0.05). These abnormalities were associated with reduced Glut4 mRNA expression and increased Cd36 mRNA expression and mitochondrial carnitine palmitoyltransferase 1 activity (P < 0.05). HFHFS rats display type 2 diabetes complicated by left ventricular contractile dysfunction with profound reduction in myocardial glucose utilization, activation of fatty acid metabolic pathways, and preserved myocardial oxidative metabolism, suggesting reduced myocardial metabolic efficiency. In this model, increased myocardial fatty acid exposure likely occurs from circulating triglyceride, but not from circulating plasma NEFA.
Collapse
Affiliation(s)
- Sébastien L Ménard
- Division of Endocrinology, Department of Medicine, University de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Tremblay-Mercier J, Tessier D, Plourde M, Fortier M, Lorrain D, Cunnane SC. Bezafibrate mildly stimulates ketogenesis and fatty acid metabolism in hypertriglyceridemic subjects. J Pharmacol Exp Ther 2010; 334:341-6. [PMID: 20404010 DOI: 10.1124/jpet.110.166504] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Our objective was to determine whether bezafibrate, a hypotriglyceridemic drug and peroxisome proliferator-activated receptor (PPAR)-alpha agonist, is ketogenic and increases fatty acid oxidation in humans. We measured fatty acid metabolism and ketone levels in 13 mildly hypertriglycemic adults (67 +/- 11 years old) during 2 metabolic study days lasting 6 h, 1 day before and 1 day after bezafibrate (400 mg of bezafibrate per day for 12 weeks). beta-Hydroxybutyrate, triglycerides, free fatty acids, fatty acid profiles, insulin, and glucose were measured in plasma, and fatty acid beta-oxidation was measured in breath after an oral 50-mg dose of the fatty acid tracer [U-(13)C]linoleic acid. As expected, 12 weeks on bezafibrate decreased plasma triglycerides by 35%. Bezafibrate tended to raise postprandial beta-hydroxybutyrate, an effect that was significant after normalization to the fasting baseline values (p = 0.03). beta-Oxidation of [U-(13)C]linoleic acid increased by 30% (p = 0.03) after treatment. On the metabolic study day after bezafibrate treatment, postprandial insulin decreased by 26% (p = 0.01), and glucose concentrations were lower 2 to 5 h postprandially. Thus, in hypertriglyceridemic individuals, bezafibrate is mildly ketogenic and significantly changes fatty acid metabolism, effects that may be linked to PPARalpha stimulation and to moderately improved glucose metabolism.
Collapse
Affiliation(s)
- Jennifer Tremblay-Mercier
- Research Center on Aging, University Institute of Geriatrics of Sherbrooke, Sherbrooke, Quebec, Canada.
| | | | | | | | | | | |
Collapse
|
44
|
Carpentier AC, Bourbonnais A, Frisch F, Giacca A, Lewis GF. Plasma nonesterified Fatty Acid intolerance and hyperglycemia are associated with intravenous lipid-induced impairment of insulin sensitivity and disposition index. J Clin Endocrinol Metab 2010; 95:1256-64. [PMID: 20097711 DOI: 10.1210/jc.2009-1932] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
Abstract
CONTEXT It is currently unclear why susceptibility to lipid-induced impairment of beta-cell function varies in different populations. OBJECTIVE The aim of the study was to determine whether mild hyperglycemia may be associated with nonesterified fatty acid (NEFA) intolerance and increased iv lipid-induced lipotoxic effect on the beta-cell. DESIGN AND SETTING The study consisted of an experimental design with control group conducted at an academic clinical research center. PARTICIPANTS Twenty-six overweight or obese individuals (12 with normal glucose tolerance, nine with impaired glucose tolerance or type 2 diabetes, and five subjects who previously had impaired glucose tolerance or type 2 diabetes but at the time of study had normal glucose tolerance after biliopancreatic diversion). INTERVENTIONS We assessed insulin sensitivity (S(I)) and beta-cell function [insulin disposition index (DI)] after an overnight iv infusion of heparin + Intralipid (HI) vs. normal saline for 16 h using a stepwise, incremental iv glucose infusion followed by a hyperglycemic clamp. MAIN OUTCOME MEASURES We measured S(I), DI, HI-induced change in plasma NEFA, and its association with HI-induced change in S(I) and DI. RESULTS HI resulted in significant reduction in S(I) and DI across the three groups of participants. HI-induced elevation of plasma NEFA was higher in hyperglycemic vs. normoglycemic groups. Both fasting glucose level and the magnitude of HI-induced NEFA elevation were associated with the reduction in S(I) (P = 0.007 and P = 0.01, respectively) and DI (P = 0.001 and P = 0.007, respectively). CONCLUSION Mild hyperglycemia and NEFA intolerance to iv lipid are associated with susceptibility to lipid-induced reduction in S(I) and DI.
Collapse
Affiliation(s)
- André C Carpentier
- Division of Endocrinology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada J1H 5N4.
| | | | | | | | | |
Collapse
|
45
|
Differential effects of dietary fatty acids on the cerebral distribution of plasma-derived apo B lipoproteins with amyloid-beta. Br J Nutr 2009; 103:652-62. [PMID: 19860996 DOI: 10.1017/s0007114509992194] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Some dietary fats are a risk factor for Alzheimer's disease (AD) but the mechanisms for this association are presently unknown. In the present study we showed in wild-type mice that chronic ingestion of SFA results in blood-brain barrier (BBB) dysfunction and significant delivery into the brain of plasma proteins, including apo B lipoproteins that are endogenously enriched in amyloid-beta (Abeta). Conversely, the plasma concentration of S100B was used as a marker of brain-to-blood leakage and was found to be increased two-fold because of SFA feeding. Consistent with a deterioration in BBB integrity in SFA-fed mice was a diminished cerebrovascular expression of occludin, an endothelial tight junction protein. In contrast to SFA-fed mice, chronic ingestion of MUFA or PUFA had no detrimental effect on BBB integrity. Utilising highly sensitive three-dimensional immunomicroscopy, we also showed that the cerebral distribution and co-localisation of Abeta with apo B lipoproteins in SFA-fed mice are similar to those found in amyloid precursor protein/presenilin-1 (APP/PS1) amyloid transgenic mice, an established murine model of AD. Moreover, there was a strong positive association of plasma-derived apo B lipoproteins with cerebral Abeta deposits. Collectively, the findings of the present study provide a plausible explanation of how dietary fats may influence AD risk. Ingestion of SFA could enhance peripheral delivery to the brain of circulating lipoprotein-Abeta and exacerbate the amyloidogenic cascade.
Collapse
|
46
|
Shen H, Pollin TI, Damcott CM, McLenithan JC, Mitchell BD, Shuldiner AR. Glucokinase regulatory protein gene polymorphism affects postprandial lipemic response in a dietary intervention study. Hum Genet 2009; 126:567-74. [PMID: 19526250 DOI: 10.1007/s00439-009-0700-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2009] [Accepted: 06/03/2009] [Indexed: 11/25/2022]
Abstract
Postprandial triglyceridemia is an emerging risk factor for cardiovascular disease. However, most of the genes that influence postprandial triglyceridemia are not known. We evaluated whether a common nonsynonymous SNP rs1260326/P446L in the glucokinase regulatory protein (GCKR) gene influenced variation in the postprandial lipid response after a high-fat challenge in seven hundred and seventy participants in the Amish HAPI Heart Study who underwent an oral high-fat challenge and had blood samples taken in the fasting state and during the postprandial phase at 1, 2, 3, 4, and 6 h. We found that the minor T allele at rs1260326 was associated with significantly higher fasting TG levels after adjusting for age, sex, and family structure (P (a) = 0.06 for additive model, and P (r) = 0.0003 for recessive model). During the fat challenge, the T allele was associated with significantly higher maximum TG level (P (a) = 0.006), incremental maximum TG level (P (a) = 0.006), TG area under the curve (P (a) = 0.02) and incremental TG area under the curve (P (a) = 0.03). Our data indicate that the rs1260326 T allele of GCKR is associated with both higher fasting levels of TG as well as the postprandial TG response, which may result in higher atherogenic risk.
Collapse
Affiliation(s)
- Haiqing Shen
- Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, 660 West Redwood Street, Rm. 494, Baltimore, MD 21201, USA.
| | | | | | | | | | | |
Collapse
|
47
|
|
48
|
MacKenzie J, Koekemoer T, van de Venter M, Dealtry G, Roux S. Sutherlandia frutescens
limits the development of insulin resistance by decreasing plasma free fatty acid levels. Phytother Res 2009; 23:1609-14. [DOI: 10.1002/ptr.2830] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
49
|
Salgin B, Marcovecchio ML, Humphreys SM, Hill N, Chassin LJ, Lunn DJ, Hovorka R, Dunger DB. Effects of prolonged fasting and sustained lipolysis on insulin secretion and insulin sensitivity in normal subjects. Am J Physiol Endocrinol Metab 2009; 296:E454-61. [PMID: 19106250 PMCID: PMC2660143 DOI: 10.1152/ajpendo.90613.2008] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2008] [Accepted: 12/15/2008] [Indexed: 11/22/2022]
Abstract
Normal beta-cells adjust their function to compensate for any decrease in insulin sensitivity. Our aim was to explore whether a prolonged fast would allow a study of the effects of changes in circulating free fatty acid (FFA) levels on insulin secretion and insulin sensitivity and whether any potential effects could be reversed by the antilipolytic agent acipimox. Fourteen (8 female, 6 male) healthy young adults (aged 22.8-26.9 yr) without a family history of diabetes and a body mass index of 22.6 +/- 3.2 kg/m(2) were studied on three occasions in random order. Growth hormone and FFA levels were regularly measured overnight (2200-0759), and subjects underwent an intravenous glucose tolerance test in the morning (0800-1100) on each visit. Treatment A was an overnight fast, treatment B was a 24-h fast with regular administrations of a placebo, and treatment C was a 24-h fast with regular ingestions of 250 mg of acipimox. The 24-h fast increased overnight FFA levels (as measured by the area under the curve) 2.8-fold [51.3 (45.6-56.9) vs. 18.4 (14.4-22.5) *10(4) micromol/l*min, P < 0.0001], and it led to decreases in insulin sensitivity [5.7 (3.6-8.9) vs. 2.6 (1.3-4.7) *10(-4) min(-1) per mU/l, P < 0.0001] and the acute insulin response [16.3 (10.9-21.6) vs. 12.7 (8.7-16.6) *10(2) pmol/l*min, P = 0.02], and therefore a reduction in the disposition index [93.1 (64.8-121.4) vs. 35.5 (21.6-49.4) *10(2) pmol/mU, P < 0.0001]. Administration of acipimox during the 24-h fast lowered FFA levels by an average of 20% (range: -62 to +49%; P = 0.03), resulting in a mean increase in the disposition index of 31% (P = 0.03). In conclusion, the 24-h fast was accompanied by substantial increases in fasting FFA levels and induced reductions in the acute glucose-simulated insulin response and insulin sensitivity. The use of acipimox during the prolonged fast increased the disposition index, suggesting a partial reversal of the effects of fasting on the acute insulin response and insulin sensitivity.
Collapse
Affiliation(s)
- B Salgin
- University Department of Paediatrics, Addenbrooke's Hospital, Cambridge CB2 0QQ, UK.
| | | | | | | | | | | | | | | |
Collapse
|
50
|
Lavoie F, Frisch F, Brassard P, Normand-Lauzière F, Cyr D, Gagnon R, Drouin R, Baillargeon JP, Carpentier AC. Relationship between total and high molecular weight adiponectin levels and plasma nonesterified fatty acid tolerance during enhanced intravascular triacylglycerol lipolysis in men. J Clin Endocrinol Metab 2009; 94:998-1004. [PMID: 19066306 DOI: 10.1210/jc.2008-1021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/12/2023]
Abstract
CONTEXT Increased plasma nonesterified fatty acid (NEFA) appearance during enhanced intravascular triacylglycerol (TG) lipolysis is a marker of metabolic adipose tissue dysfunction and may lead to the development of insulin resistance. The relationship between total and high molecular weight (HMW) adiponectin levels, NEFA appearance, and total TG lipolytic capacity has not been previously studied in humans. OBJECTIVES Our objective was to determine whether total and HMW adiponectin plasma levels are associated with plasma NEFA level and appearance, and with total TG lipolytic rate during enhanced intravascular TG lipolysis in men. DESIGN This was a cross-sectional metabolic study. SETTING The study was performed at an academic clinical research center. PARTICIPANTS There were 15 healthy men (mean +/- sd body mass index 25.5 +/- 4.7 kg/m(2)) aged 21-50 yr (mean +/- sd 31.1 +/- 10.2) without first-degree relatives with type 2 diabetes included in the study. INTERVENTIONS Pancreatic clamps and iv infusion of stable isotopic tracers ([1,1,2,3,3-(2)H(5)]glycerol and [U-(13)C]palmitate) were performed, whereas intravascular TG lipolysis was clamped by iv infusion of heparin plus Intralipid at low (fasting) and high insulin levels. Total and HMW adiponectin levels were measured using an ELISA. MAIN OUTCOME MEASURES Levels of total and HMW adiponectin, palmitate appearance (plasma palmitate appearance rate), and glycerol appearance (plasma glycerol appearance rate) were calculated. RESULTS During heparin plus Intralipid infusion, total and HMW adiponectin was inversely correlated with plasma palmitate appearance rate (r = -0.65; P = 0.01), but this association was lost when expressed per nonlean weight. Adiponectin levels were positively associated with plasma glycerol appearance rate per nonlean weight (r = 0.71 and r = 0.66, respectively; P < or = 0.01). CONCLUSIONS Increased adipose tissue mass likely explains the association between low adiponectin and reduced NEFA tolerance. Adiponectin level is a marker of total TG lipolytic rate per adipose tissue mass in men.
Collapse
Affiliation(s)
- F Lavoie
- Department of Medicine, Division of Endocrinology, Centre Hospitalier Universitaire de Sherbrooke, Québec, Canada J1H 5N4
| | | | | | | | | | | | | | | | | |
Collapse
|