1
|
Tsuneki H, Honda K, Sekine Y, Yahata K, Yasue M, Fujishima M, Takeda R, Wada T, Sasaoka T. C-terminal peptide of preproorexin enhances brain-derived neurotrophic factor expression in rat cerebrocortical cells and recognition memory in mice. Eur J Pharmacol 2024; 964:176306. [PMID: 38145647 DOI: 10.1016/j.ejphar.2023.176306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/08/2023] [Accepted: 12/21/2023] [Indexed: 12/27/2023]
Abstract
During the production of orexin A and B from preproorexin, a common precursor protein, in hypothalamic orexin neurons, C-terminal peptide (herein called preproorexin C-peptide) is concomitantly produced via post-translational processing. The predicted three-dimensional structure of preproorexin C-peptide is similar among mammalian species, suggestive of a conserved function in the mammalian brain. However, C-peptide has long been regarded as a non-functional peptide. We herein examined the effects of rat and/or mouse preproorexin C-peptide on gene expression and cell viability in cultured rat cerebrocortical cells and on memory behavior in C57BL/6J mice. Rat and mouse C-peptides both increased brain-derived neurotrophic factor (Bdnf) mRNA levels. Moreover, C-peptide enhanced high K+-, glutamate-, and BDNF-induced increases in Bdnf mRNA levels without affecting forskolin-induced Bdnf expression. H-89, a protein kinase A inhibitor, blocked C-peptide-induced Bdnf expression, whereas rolipram, a phosphodiesterase inhibitor, enhanced this effect. Intracellular cyclic AMP concentrations were elevated by C-peptide. These results demonstrate that preproorexin C-peptide promoted Bdnf mRNA expression by a cyclic AMP-dependent mechanism. Eleven amino acids at the N terminus of rat preproorexin C-peptide exerted similar effects on Bdnf expression as full-length preproorexin C-peptide. Preproorexin C-peptide also exerted protective effects against CoCl2-induced neuronal cell death. An intracerebroventricular injection of mouse preproorexin C-peptide induced c-fos and Bdnf expression in the cerebral cortex and hippocampus and enhanced novel object recognition memory in mice. Collectively, the present results show that preproorexin C-peptide is a functional substance, at least in some pharmacological and neuronal settings.
Collapse
Affiliation(s)
- Hiroshi Tsuneki
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan; Department of Integrative Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| | - Kosuke Honda
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Yurika Sekine
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Koji Yahata
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Moeka Yasue
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Masashi Fujishima
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Ryuta Takeda
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Tsutomu Wada
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan
| | - Toshiyasu Sasaoka
- Department of Clinical Pharmacology, University of Toyama, 2630 Sugitani, Toyama, 930-0194, Japan.
| |
Collapse
|
2
|
Sanetra AM, Palus-Chramiec K, Chrobok L, Jeczmien-Lazur JS, Klich JD, Lewandowski MH. Proglucagon signalling in the rat Dorsomedial Hypothalamus - Physiology and high-fat diet-mediated alterations. Mol Cell Neurosci 2023; 126:103873. [PMID: 37295578 DOI: 10.1016/j.mcn.2023.103873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/24/2023] [Accepted: 06/06/2023] [Indexed: 06/12/2023] Open
Abstract
A relatively new pharmacological target in obesity treatment has been the preproglucagon (PPG) signalling, predominantly with glucagon-like peptide (GLP) 1 receptor agonists. As far as the PPG role within the digestive system is well recognised, its actions in the brain remain understudied. Here, we investigated PPG signalling in the Dorsomedial Hypothalamus (DMH), a structure involved in feeding regulation and metabolism, using in situ hybridisation, electrophysiology, and immunohistochemistry. Our experiments were performed on animals fed both control, and high-fat diet (HFD), uncovering HFD-mediated alterations. First, sensitivity to exendin-4 (Exn4, a GLP1R agonist) was shown to increase under HFD, with a higher number of responsive neurons. The amplitude of the response to both Exn4 and oxyntomodulin (Oxm) was also altered, diminishing its relationship with the cells' spontaneous firing rate. Not only neuronal sensitivity, but also GLP1 presence, and therefore possibly release, was influenced by HFD. Immunofluorescent labelling of the GLP1 showed changes in its density depending on the metabolic state (fasted/fed), but this effect was eliminated by HFD feeding. Interestingly, these dietary differences were absent after a period of restricted feeding, allowing for an anticipation of the alternating metabolic states, which suggests possible prevention of such outcome.
Collapse
Affiliation(s)
- A M Sanetra
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland.
| | - K Palus-Chramiec
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland
| | - L Chrobok
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland; School of Physiology, Pharmacology, and Neuroscience, University of Bristol, University Walk, Biomedical Sciences Building, Bristol BS8 1TD, UK
| | - J S Jeczmien-Lazur
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland
| | - J D Klich
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland; Max-Delbrück-Center for Molecular Medicine in the Helmholtz Association (MDC), Robert-Rössle Street 10, 13125 Berlin, Germany
| | - M H Lewandowski
- Department of Neurophysiology and Chronobiology, Institute of Zoology and Biomedical Research, Jagiellonian University in Krakow, Gronostajowa Street 9, 30-387 Krakow, Poland.
| |
Collapse
|
3
|
Zhihong Y, Chen W, Qianqian Z, Lidan S, Qiang Z, Jing H, Wenxi W, Bhawal R. Emerging roles of oxyntomodulin-based glucagon-like peptide-1/glucagon co-agonist analogs in diabetes and obesity. Peptides 2023; 162:170955. [PMID: 36669563 DOI: 10.1016/j.peptides.2023.170955] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 01/19/2023]
Abstract
Oxyntomodulin (OXM) is an endogenous peptide hormone secreted from the intestines following nutrient ingestion that activates both glucagon-like peptide-1 (GLP-1) and glucagon receptors. OXM is known to exert various effects, including improvement in glucose tolerance, promotion of energy expenditure, acceleration of liver lipolysis, inhibition of food intake, delay of gastric emptying, neuroprotection, and pain relief. The antidiabetic and antiobesity properties have led to the development of biologically active and enzymatically stable OXM-based analogs with proposed therapeutic promise for metabolic diseases. Structural modification of OXM was ongoing to enhance its potency and prolong half-life, and several GLP-1/glucagon dual receptor agonist-based therapies are being explored in clinical trials for the treatment of type 2 diabetes mellitus and its complications. In the present article, we provide a brief overview of the physiology of OXM, focusing on its structural-activity relationship and ongoing clinical development.
Collapse
Affiliation(s)
- Yao Zhihong
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou 310000, China
| | - Wang Chen
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Zhu Qianqian
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China
| | - Sun Lidan
- Jiaxing Key Laboratory for Photonanomedicine and Experimental Therapeutics, College of Medicine, Jiaxing University, Jiaxing 314001, China.
| | - Zhou Qiang
- The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China.
| | - Han Jing
- School of Chemistry & Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Wang Wenxi
- The First Hospital of Jiaxing & The Affiliated Hospital of Jiaxing University, Jiaxing 314001, China; College of Pharmacy, Zhejiang University of Technology, Hangzhou 310000, China
| | - Ruchika Bhawal
- Proteomics and Metabolomics Facility, Institute of Biotechnology, Cornell University, Ithaca, NY, USA
| |
Collapse
|
4
|
Rehfeld JF. Four sidenotes about glucagon peptides. Peptides 2023; 159:170924. [PMID: 36521797 DOI: 10.1016/j.peptides.2022.170924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/30/2022] [Accepted: 12/08/2022] [Indexed: 12/14/2022]
Abstract
Century old glucagon is a classic pancreatic hormone. But today we also know that the glucagon gene is expressed at high levels at extrapancreatic sites - particularly so in the gut. Major hormonal glucagon gene products in the digestive tract are the two glucagon-like peptides (GLP-1 and -2). Of these, truncated GLP-1 has in recent decades attracted massive interest due to its incretin effect, and the subsequent GLP-1 derived design of potent diabetes and obesity drugs. Truncated GLP-1 has consequently become an important contributor to gastrointestinal endocrinology. The gastrointestinal branch of endocrinology today includes more than 100 bioactive peptides encoded by some 30 different hormone genes. Therefore, the gut is the largest endocrine organ in the body. In addition to a general discussion of glucagon peptides in the hierarchy of gut hormones, this review also includes three short notes about glucagon studies from the 1970s. These studies dealt with reactive hypoglycemia, chronic liver disease, and the secretory response of pancreatic glucagon to gastrin/cholecystokinin stimulation. Considering today's possibilities in molecular endocrinology, revisits to the questions raised by these studies might be worthwhile.
Collapse
|
5
|
Irwin DM. Variation in the Evolution and Sequences of Proglucagon and the Receptors for Proglucagon-Derived Peptides in Mammals. Front Endocrinol (Lausanne) 2021; 12:700066. [PMID: 34322093 PMCID: PMC8312260 DOI: 10.3389/fendo.2021.700066] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 06/24/2021] [Indexed: 01/12/2023] Open
Abstract
The mammalian proglucagon gene (Gcg) encodes three glucagon like sequences, glucagon, glucagon-like peptide-1 (GLP-1), and glucagon-like peptide-2 that are of similar length and share sequence similarity, with these hormones having cell surface receptors, glucagon receptor (Gcgr), GLP-1 receptor (Glp1r), and GLP-2 receptor (Glp2r), respectively. Gcgr, Glp1r, and Glp2r are all class B1 G protein-coupled receptors (GPCRs). Despite their sequence and structural similarity, analyses of sequences from rodents have found differences in patterns of sequence conservation and evolution. To determine whether these were rodent-specific traits or general features of these genes in mammals I analyzed coding and protein sequences for proglucagon and the receptors for proglucagon-derived peptides from the genomes of 168 mammalian species. Single copy genes for each gene were found in almost all genomes. In addition to glucagon sequences within Hystricognath rodents (e.g., guinea pig), glucagon sequences from a few other groups (e.g., pangolins and some bats) as well as changes in the proteolytic processing of GLP-1 in some bats are suggested to have functional effects. GLP-2 sequences display increased variability but accepted few substitutions that are predicted to have functional consequences. In parallel, Glp2r sequences display the most rapid protein sequence evolution, and show greater variability in amino acids at sites involved in ligand interaction, however most were not predicted to have a functional consequence. These observations suggest that a greater diversity in biological functions for proglucagon-derived peptides might exist in mammals.
Collapse
Affiliation(s)
- David M. Irwin
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
- Banting and Best Diabetes Centre, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
6
|
Aldawudi I, Katwal PC, Jirjees S, Htun ZM, Khan S. Future of Bariatric Embolization: A Review of Up-to-date Clinical Trials. Cureus 2020; 12:e7958. [PMID: 32509483 PMCID: PMC7270878 DOI: 10.7759/cureus.7958] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Accepted: 04/29/2020] [Indexed: 11/05/2022] Open
Abstract
Obesity is a significant health issue with an overall rise in mortality; it has multiple risk factors, including hormonal effects, which play a significant role in the balance of food intake and weight gain. Ghrelin is an anabolic hormone secreted from stomach fundus and plays a significant role in this regulation. Management of obesity involves multiple interventions, including lifestyle adjustment, pharmacotherapy, and bariatric surgery. Bariatric embolization is a relatively new procedure; several animal studies show that embolization of the left gastric artery reduces serum ghrelin and induces weight loss. Also, several clinical studies were conducted in the past ten years which have shown bariatric embolization's effectiveness in inducing weight loss: a meta-analysis of 47 patients included in six different clinical studies of left gastric artery embolization resulted in 8% total weight loss from baseline body weight. Many studies also show this procedure's effect on lowering the HgA1C level and lipid profile. Clinical studies mostly reported minor adverse effects such as transient abdominal discomfort, nausea and vomiting, gastric ulcers, and major adverse effects were uncommon, suggesting the procedure is well tolerated. It may be an alternative line of management in patients who are not suitable candidates for bariatric surgery. Although future clinical studies will provide an answer to several questions like the exact effects of the procedure on diabetes and metabolic syndrome, future studies are also needed to establish particular guidelines to match different patient characteristics with their optimal procedural techniques and pre- and post-procedure evaluation tests.
Collapse
Affiliation(s)
- Israa Aldawudi
- Radiology, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Prakash C Katwal
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Srood Jirjees
- Neurology, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| | - Zin Mar Htun
- Internal Medicine, California Institute of Behavioral Neuroscience and Psychology, Fairfield, USA
| | - Safeera Khan
- Internal Medicine, California Institute of Behavioral Neurosciences and Psychology, Fairfield, USA
| |
Collapse
|
7
|
Zhang Y, Yuan L, Chen Y, Lin C, Ye G. Oxyntomodulin attenuates TNF‑α induced neuropathic pain by inhibiting the activation of the NF‑κB pathway. Mol Med Rep 2019; 20:5223-5228. [PMID: 31661136 DOI: 10.3892/mmr.2019.10770] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Accepted: 08/08/2019] [Indexed: 11/06/2022] Open
Abstract
Neuropathic pain is rarely diagnosed. Oxyntomodulin is peripherally and centrally distributed; however, the potential mechanisms underlying the effects of oxyntomodulin in attenuating nociception remain unclear; thus, we aimed to explore them in the present study. A neuropathic pain model in male C57BL/6 mice was induced by intrathecal injection of tumor necrosis factor‑α (TNF‑α), and the duration of nociceptive behavioral responses was measured with a stop‑watch timer within 30 min. Western blotting was used to explore the protein levels of ionized calcium binding adaptor molecule‑1 (IBA1), nuclear factor‑κB (NF‑κB) phosphorylated‑p65, interleukin (IL)‑6 and IL‑1β. We performed reverse transcription‑quantitative polymerase chain reaction and ELISA were performed to determine the mRNA and protein expression levels of IL‑6 and IL‑1β, respectively. An MTT assay was conducted to detect BV2 cell viability. Oxyntomodulin was observed to attenuate TNF‑α‑induced pain hypersensitivity in mice, as well as the expression of IBA1, NF‑κB p‑p65, IL‑6 and IL‑1β in the spinal cord. Oxyntomodulin exhibited no cytotoxicity on BV2 cells, and attenuated TNF‑α‑induced IL‑6 and IL‑1β production and release in BV2 cells and culture medium, respectively. Collectively, we proposed oxyntomodulin to attenuate TNF‑α induced neuropathic pain associated with the release of glial cytokines IL‑6 and IL‑1β via inhibiting the activation of the NF‑κB pathway.
Collapse
Affiliation(s)
- Yu Zhang
- Department of Anesthesiology, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Liyong Yuan
- Department of Anesthesiology, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Yuebo Chen
- Department of Anesthesiology, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Chunyan Lin
- Department of Anesthesiology, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315040, P.R. China
| | - Guangyao Ye
- Department of Anesthesiology, Ningbo No. 6 Hospital, Ningbo, Zhejiang 315040, P.R. China
| |
Collapse
|
8
|
Katahira T, Kanazawa A, Shinohara M, Koshibu M, Kaga H, Mita T, Tosaka Y, Komiya K, Miyatsuka T, Ikeda F, Azuma K, Takayanagi N, Ogihara T, Ohmura C, Miyachi A, Mieno E, Yamashita S, Watada H. Postprandial Plasma Glucagon Kinetics in Type 2 Diabetes Mellitus: Comparison of Immunoassay and Mass Spectrometry. J Endocr Soc 2019; 3:42-51. [PMID: 30560227 PMCID: PMC6293234 DOI: 10.1210/js.2018-00142] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 10/23/2018] [Indexed: 01/20/2023] Open
Abstract
CONTEXT Accurate glucagon level measurements are necessary for investigation of mechanisms for postprandial hyperglycemia in type 2 diabetes. OBJECTIVE To evaluate the accuracy of postprandial glucagon level measurements using a sandwich ELISA vs a recently established liquid chromatography-high resolution mass spectrometry (LC-HRMS) method in type 2 diabetes mellitus. DESIGN AND PARTICIPANTS Twenty patients with type 2 diabetes treated with insulin underwent a meal test before and after administration of the dipeptidyl peptidase-4 inhibitor anagliptin for 4 weeks. Blood samples were taken serially after the meal, and glucagon levels were measured using both ELISA and LC-HRMS. We compared the change from baseline to 4 weeks (Δ0-4W) using the area under the curve for plasma glucagon during the meal test [area under the curve (AUC)0-3h] measured using ELISA and LC-HRMS. RESULTS ELISA-based glucagon AUC0-3h was higher than LC-HRMS-based AUC0-3h at baseline and 4 weeks. However, differences in Δ0-4W-AUC0-3h measured using ELISA and LC-HRMS were not statistically significant. Additionally, Δ0-4W-AUC0-3h measured using ELISA and LC-HRMS were strongly correlated (r = 0.87, P < 0.001). CONCLUSIONS Plasma glucagon levels during a meal test in patients with type 2 diabetes measured using ELISA were consistently higher than those measured using LC-HRMS. However, given that the changes in glucagon levels measured using ELISA before and after dipeptidyl peptidase-4 inhibitor therapy were similar to those based on LC-HRMS, this ELISA seems to be useful for evaluating the effect of the drug interventions on postprandial glucagon levels.
Collapse
Affiliation(s)
- Takehiro Katahira
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Akio Kanazawa
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mai Shinohara
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Mami Koshibu
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Hideyoshi Kaga
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Tomoya Mita
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Yuka Tosaka
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Koji Komiya
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takeshi Miyatsuka
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Identification of Diabetic Therapeutic Targets, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Fuki Ikeda
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Kosuke Azuma
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Naoko Takayanagi
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Takeshi Ogihara
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Chie Ohmura
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Atsushi Miyachi
- Radioisotope and Chemical Analysis Center, Sanwa Kagaku Kenkyusho Co., Ltd., Inabe, Mie, Japan
| | - Eri Mieno
- Radioisotope and Chemical Analysis Center, Sanwa Kagaku Kenkyusho Co., Ltd., Inabe, Mie, Japan
| | - Satoko Yamashita
- Pharmaceutical Research Laboratories, Sanwa Kagaku Kenkyusho Co., Ltd., Inabe, Mie, Japan
| | - Hirotaka Watada
- Department of Metabolism & Endocrinology, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Identification of Diabetic Therapeutic Targets, Juntendo University Graduate School of Medicine, Tokyo, Japan
- Center for Therapeutic Innovations in Diabetes, Juntendo University Graduate School of Medicine, Tokyo, Japan
- 6Sportology Center, Juntendo University Graduate School of Medicine, Tokyo, Japan
| |
Collapse
|
9
|
Raffort J, Chinetti G, Lareyre F. Glucagon-Like peptide-1: A new therapeutic target to treat abdominal aortic aneurysm? Biochimie 2018; 152:149-154. [PMID: 30103898 DOI: 10.1016/j.biochi.2018.06.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Accepted: 06/29/2018] [Indexed: 12/25/2022]
Abstract
Recent antidiabetic drugs including GLP-1 receptor agonists and DPP-IV inhibitors have demonstrated protective effects in several cardiovascular diseases but their effect in abdominal aortic aneurysm (AAA) is far less known. AAA can be associated with extremely high rates of mortality and pharmacological treatments are still lacking underlining the real need to identify new therapeutic targets. The aim of this review was to summarize current knowledge on the role of GLP-1 pathway in AAA. A systematic literature review was performed and 6 relevant studies (2 clinical and 4 experimental) were included. Experimental studies demonstrated a protective effect of both GLP-1 receptor agonists and DPP-IV inhibitors through targeting the main pathophysiological mechanisms underlying AAA formation. The effects of these drugs in human AAA are still poorly known. In the limelight of clinical and experimental studies, we discuss current limits and future directions.
Collapse
Affiliation(s)
- Juliette Raffort
- Clinical Chemistry Laboratory, University Hospital of Nice, France; Université Côte d'Azur, CHU, Inserm, C3M, Nice, France.
| | - Giulia Chinetti
- Clinical Chemistry Laboratory, University Hospital of Nice, France; Université Côte d'Azur, CHU, Inserm, C3M, Nice, France
| | - Fabien Lareyre
- Université Côte d'Azur, CHU, Inserm, C3M, Nice, France; Department of Vascular Surgery, University Hospital of Nice, France
| |
Collapse
|
10
|
Gar C, Rottenkolber M, Sacco V, Moschko S, Banning F, Hesse N, Popp D, Hübener C, Seissler J, Lechner A. Patterns of Plasma Glucagon Dynamics Do Not Match Metabolic Phenotypes in Young Women. J Clin Endocrinol Metab 2018; 103:972-982. [PMID: 29244078 DOI: 10.1210/jc.2017-02014] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2017] [Accepted: 12/07/2017] [Indexed: 01/08/2023]
Abstract
CONTEXT The role of hyperglucagonemia in type 2 diabetes is still debated. OBJECTIVE We analyzed glucagon dynamics during oral glucose tolerance tests (oGTTs) in young women with one out of three metabolic phenotypes: healthy control (normoglycemic after a normoglycemic pregnancy), normoglycemic high-risk (normoglycemic after a pregnancy complicated by gestational diabetes), and prediabetes/screening-diagnosed type 2 diabetes. We asked if glucagon patterns were homogeneous within the metabolic phenotypes. DESIGN AND SETTING Five-point oGTT, sandwich enzyme-linked immunosorbent assay for glucagon, and functional data analysis with unsupervised clustering. PARTICIPANTS Cross-sectional analysis of 285 women from the monocenter observational study Prediction, Prevention, and Subclassification of gestational and type 2 Diabetes, recruited between November 2011 and May 2016. RESULTS We found four patterns of glucagon dynamics that did not match the metabolic phenotypes. Elevated fasting glucagon and delayed glucagon suppression was overrepresented with prediabetes/diabetes, but this was only detected in 21% of this group. It also occurred in 8% of the control group. CONCLUSIONS We conclude that hyperglucagonemia may contribute to type 2 diabetes in a subgroup of affected individuals but that it is not a sine qua non for the disease. This should be considered in future pathophysiological studies and when testing pharmacotherapies addressing glucagon signaling.
Collapse
Affiliation(s)
- Christina Gar
- Diabetes Research Group, Medizinische Klinik IV, Medical Center of the University of Munich (Klinikum der Universitaet Muenchen), Munich, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum Muenchen, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Marietta Rottenkolber
- Diabetes Research Group, Medizinische Klinik IV, Medical Center of the University of Munich (Klinikum der Universitaet Muenchen), Munich, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum Muenchen, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Vanessa Sacco
- Diabetes Research Group, Medizinische Klinik IV, Medical Center of the University of Munich (Klinikum der Universitaet Muenchen), Munich, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum Muenchen, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Sarah Moschko
- Diabetes Research Group, Medizinische Klinik IV, Medical Center of the University of Munich (Klinikum der Universitaet Muenchen), Munich, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum Muenchen, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Friederike Banning
- Diabetes Research Group, Medizinische Klinik IV, Medical Center of the University of Munich (Klinikum der Universitaet Muenchen), Munich, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum Muenchen, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Nina Hesse
- Department of Clinical Radiology, Medical Center of the University of Munich (Klinikum der Universitaet Muenchen), Munich, Germany
| | - Daniel Popp
- Department of Clinical Radiology, Medical Center of the University of Munich (Klinikum der Universitaet Muenchen), Munich, Germany
| | - Christoph Hübener
- Department of Gynecology and Obstetrics, Medical Center of the University of Munich (Klinikum der Universitaet Muenchen), Munich, Germany
| | - Jochen Seissler
- Diabetes Research Group, Medizinische Klinik IV, Medical Center of the University of Munich (Klinikum der Universitaet Muenchen), Munich, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum Muenchen, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| | - Andreas Lechner
- Diabetes Research Group, Medizinische Klinik IV, Medical Center of the University of Munich (Klinikum der Universitaet Muenchen), Munich, Germany
- Clinical Cooperation Group Type 2 Diabetes, Helmholtz Zentrum Muenchen, Neuherberg, Germany
- German Center for Diabetes Research, Neuherberg, Germany
| |
Collapse
|
11
|
Paternoster S, Falasca M. Dissecting the Physiology and Pathophysiology of Glucagon-Like Peptide-1. Front Endocrinol (Lausanne) 2018; 9:584. [PMID: 30364192 PMCID: PMC6193070 DOI: 10.3389/fendo.2018.00584] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2018] [Accepted: 09/14/2018] [Indexed: 12/11/2022] Open
Abstract
An aging world population exposed to a sedentary life style is currently plagued by chronic metabolic diseases, such as type-2 diabetes, that are spreading worldwide at an unprecedented rate. One of the most promising pharmacological approaches for the management of type 2 diabetes takes advantage of the peptide hormone glucagon-like peptide-1 (GLP-1) under the form of protease resistant mimetics, and DPP-IV inhibitors. Despite the improved quality of life, long-term treatments with these new classes of drugs are riddled with serious and life-threatening side-effects, with no overall cure of the disease. New evidence is shedding more light over the complex physiology of GLP-1 in health and metabolic diseases. Herein, we discuss the most recent advancements in the biology of gut receptors known to induce the secretion of GLP-1, to bridge the multiple gaps into our understanding of its physiology and pathology.
Collapse
|
12
|
Controlling the bioactivity of a peptide hormone in vivo by reversible self-assembly. Nat Commun 2017; 8:1026. [PMID: 29044101 PMCID: PMC5647335 DOI: 10.1038/s41467-017-01114-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2017] [Accepted: 08/18/2017] [Indexed: 01/17/2023] Open
Abstract
The use of peptides as therapeutic agents is undergoing a renaissance with the expectation of new drugs with enhanced levels of efficacy and safety. Their clinical potential will be only fully realised once their physicochemical and pharmacokinetic properties have been precisely controlled. Here we demonstrate a reversible peptide self-assembly strategy to control and prolong the bioactivity of a native peptide hormone in vivo. We show that oxyntomodulin, a peptide with potential to treat obesity and diabetes, self-assembles into a stable nanofibril formulation which subsequently dissociates to release active peptide and produces a pharmacological effect in vivo. The subcutaneous administration of the nanofibrils in rats results in greatly prolonged exposure, with a constant oxyntomodulin bioactivity detectable in serum for at least 5 days as compared to free oxyntomodulin which is undetectable after only 4 h. Such an approach is simple, cost-efficient and generic in addressing the limitations of peptide therapeutics. The clinical potential of peptide therapeutic agents can only be fully realised once their physicochemical and pharmacokinetic properties are precisely controlled. Here the authors show a reversible peptide self-assembly strategy to control and prolong the bioactivity of a native peptide hormone in vivo.
Collapse
|
13
|
Raffort J, Lareyre F, Massalou D, Fénichel P, Panaïa-Ferrari P, Chinetti G. Insights on glicentin, a promising peptide of the proglucagon family. Biochem Med (Zagreb) 2017; 27:308-324. [PMID: 28736498 PMCID: PMC5508206 DOI: 10.11613/bm.2017.034] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Accepted: 04/11/2017] [Indexed: 12/25/2022] Open
Abstract
Glicentin is a proglucagon-derived peptide mainly produced in the L-intestinal cells. While the roles of other members of the proglucagon family including glucagon-like peptide 1, glucagon-like peptide 2 and oxyntomodulin has been well studied, the functions and variation of glicentin in human are not fully understood. Experimental and clinical studies have highlighted its role in both intestinal physiology and glucose metabolism, pointing to its potential interest in a wide range of pathological states including gastrointestinal and metabolic disorders. Due to its structure presenting many similarities with the other proglucagon-derived peptides, its measurement is technically challenging. The recent commercialization of specific detection methods has offered new opportunities to go further in the understanding of glicentin physiology. Here we summarize the current knowledge on glicentin biogenesis and physiological roles. In the limelight of clinical studies investigating glicentin variation in human, we discuss future directions for potential applications in clinical practice.
Collapse
Affiliation(s)
- Juliette Raffort
- Clinical Chemistry Laboratory, University Hospital of Nice, Nice, France.,Université Côte d'Azur, Institute for Research on Cancer and Aging, Nice, France
| | - Fabien Lareyre
- Université Côte d'Azur, Institute for Research on Cancer and Aging, Nice, France.,Department of Vascular Surgery, University Hospital of Nice, Nice, France
| | - Damien Massalou
- Department of General Surgery and Digestive Cancerology, University Hospital of Nice, Nice, France
| | - Patrick Fénichel
- Department of Endocrinology, University Hospital of Nice, Nice, France
| | - Patricia Panaïa-Ferrari
- Clinical Chemistry Laboratory, University Hospital of Nice, Nice, France.,Université Côte d'Azur, Institute for Research on Cancer and Aging, Nice, France
| | - Giulia Chinetti
- Clinical Chemistry Laboratory, University Hospital of Nice, Nice, France.,Université Côte d'Azur, Institute for Research on Cancer and Aging, Nice, France
| |
Collapse
|
14
|
Lutter M, Bahl E, Hannah C, Hofammann D, Acevedo S, Cui H, McAdams CJ, Michaelson JJ. Novel and ultra-rare damaging variants in neuropeptide signaling are associated with disordered eating behaviors. PLoS One 2017; 12:e0181556. [PMID: 28846695 PMCID: PMC5573281 DOI: 10.1371/journal.pone.0181556] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 07/03/2017] [Indexed: 02/07/2023] Open
Abstract
Objective Eating disorders develop through a combination of genetic vulnerability and environmental stress, however the genetic basis of this risk is unknown. Methods To understand the genetic basis of this risk, we performed whole exome sequencing on 93 unrelated individuals with eating disorders (38 restricted-eating and 55 binge-eating) to identify novel damaging variants. Candidate genes with an excessive burden of predicted damaging variants were then prioritized based upon an unbiased, data-driven bioinformatic analysis. One top candidate pathway was empirically tested for therapeutic potential in a mouse model of binge-like eating. Results An excessive burden of novel damaging variants was identified in 186 genes in the restricted-eating group and 245 genes in the binge-eating group. This list is significantly enriched (OR = 4.6, p<0.0001) for genes involved in neuropeptide/neurotrophic pathways implicated in appetite regulation, including neurotensin-, glucagon-like peptide 1- and BDNF-signaling. Administration of the glucagon-like peptide 1 receptor agonist exendin-4 significantly reduced food intake in a mouse model of ‘binge-like’ eating. Conclusions These findings implicate ultra-rare and novel damaging variants in neuropeptide/neurotropic factor signaling pathways in the development of eating disorder behaviors and identify glucagon-like peptide 1-receptor agonists as a potential treatment for binge eating.
Collapse
Affiliation(s)
- Michael Lutter
- Eating Recovery Center of Dallas, Plano, Texas, United States of America
| | - Ethan Bahl
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Claire Hannah
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Dabney Hofammann
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Summer Acevedo
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Huxing Cui
- Department of Pharmacology, University of Iowa, Carver College of Medicine, Iowa City, Iowa, United States of America
| | - Carrie J. McAdams
- Department of Psychiatry, University of Texas Southwestern Medical Center, Dallas, Texas, United States of America
| | - Jacob J. Michaelson
- Department of Psychiatry, University of Iowa, Carver College of Medicine, Iowa City, Iowa, United States of America
- * E-mail:
| |
Collapse
|
15
|
Accurate analytical method for human plasma glucagon levels using liquid chromatography-high resolution mass spectrometry: comparison with commercially available immunoassays. Anal Bioanal Chem 2017; 409:5911-5918. [DOI: 10.1007/s00216-017-0534-0] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2017] [Revised: 06/26/2017] [Accepted: 07/19/2017] [Indexed: 10/19/2022]
|
16
|
Raffort J, Panaïa-Ferrari P, Lareyre F, Blois M, Bayer P, Staccini P, Fénichel P, Chinetti G. Decreased serum glicentin concentration in patients with severe and morbid obesity. Ann Clin Biochem 2017; 55:198-204. [DOI: 10.1177/0004563217700172] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Background Proglucagon-derived hormones represent a family of peptides mainly produced in the pancreas and the intestine. While several proglucagon-derived peptides play key roles in metabolic diseases, little is known about glicentin. The aim of the present study was to investigate serum glicentin concentrations in individuals with adult obesity and to study its potential link with various metabolic parameters. Methods Fifty-two individuals with normal body mass index (BMI < 25 kg/m2) and 39 patients with severe or morbid obesity (BMI > 35 kg/m2) were prospectively included at the University Hospital of Nice between January 2014 and April 2016. Clinical data were recorded, and a fasting blood sample was collected to measure glicentin, glucose, insulin, C-peptide, total cholesterol, triglyceride, LDL and HDL-cholesterol. In addition, a homeostasis model assessment for insulin resistance (HOMA2-IR) was also calculated. Results Patients with severe and morbid obesity had significantly higher plasma glucose, together with higher serum concentrations of insulin, C-peptide, HOMA2-IR, triglyceride, LDL-cholesterol and lower serum concentrations of HDL-cholesterol compared with individuals with a normal body mass index. The obese patients displayed significantly lower fasting serum concentrations of glicentin compared with subjects with a normal body mass index (12 pmol/L vs. 24 pmol/L, P < 0.0001). In the total population, fasting glicentin concentrations did not correlate with BMI, glycaemic parameters (glucose, insulin, C-peptide, HOMA-IR) or lipid parameters (total cholesterol, triglyceride, LDL and HDL-cholesterol). Conclusion To the best of our knowledge, this is the first study reporting serum glicentin concentrations in healthy lean and obese adult subjects. We found that fasting serum glicentin concentrations are decreased in patients with severe or morbid obesity suggesting the potential interest of this peptide in obesity and metabolic-related disorders.
Collapse
Affiliation(s)
- Juliette Raffort
- Clinical Chemistry Laboratory, University Hospital of Nice, Nice, France
- CHU, CNRS, Inserm, IRCAN, Université Côte d’Azur, Nice, France
| | - Patricia Panaïa-Ferrari
- Clinical Chemistry Laboratory, University Hospital of Nice, Nice, France
- CHU, Université Côte d’Azur, Nice, France
| | - Fabien Lareyre
- CHU, CNRS, Inserm, IRCAN, Université Côte d’Azur, Nice, France
- Department of Vascular Surgery, University Hospital of Nice, Nice, France
| | | | - Pascale Bayer
- Clinical Chemistry Laboratory, University Hospital of Nice, Nice, France
| | | | - Patrick Fénichel
- CHU, Université Côte d’Azur, Nice, France
- Department of Endocrinology, University Hospital of Nice, Nice, France
| | - Giulia Chinetti
- Clinical Chemistry Laboratory, University Hospital of Nice, Nice, France
- CHU, CNRS, Inserm, IRCAN, Université Côte d’Azur, Nice, France
| |
Collapse
|
17
|
Hou Y, Hu W, Li X, Skinner JJ, Liu D, Wüthrich K. Solvent-accessibility of discrete residue positions in the polypeptide hormone glucagon by 19F-NMR observation of 4-fluorophenylalanine. JOURNAL OF BIOMOLECULAR NMR 2017; 68:1-6. [PMID: 28508109 PMCID: PMC5487752 DOI: 10.1007/s10858-017-0107-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 03/29/2017] [Indexed: 06/07/2023]
Abstract
The amino acid 4-fluoro-L-phenylalanine (4F-Phe) was introduced at the positions of Phe6 and Phe22 in the 29-residue polypeptide hormone glucagon by expressing glucagon in E. coli in the presence of an excess of 4F-Phe. Glucagon regulates blood glucose homeostasis by interaction with the glucagon receptor (GCGR), a class B GPCR. By referencing to the 4F-Phe chemical shifts at varying D2O concentrations, the solvent exposure of the two Phe sites along the glucagon sequence was determined, showing that 4F-Phe6 was fully solvent exposed and 4F-Phe22 was only partially exposed. The incorporation of fluorine atoms in polypeptide hormones paves the way for novel studies of their interactions with membrane-spanning receptors, specifically by differentiating between effects on the solvent accessibility, the line shapes, and the chemical shifts from interactions with lipids, detergents and proteins. Studies of interactions of GCGR with ligands in solution is at this point of keen interest, given that recent crystallographic studies revealed that an apparent small molecule antagonist actually binds as an allosteric effector at a distance of ~20 Å from the orthosteric ligand binding site (Jazayeri et al., in Nature 533:274-277, 2016).
Collapse
Affiliation(s)
- Yaguang Hou
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
- Institute of Biochemistry and Cell Biology, Shanghai Institutes for Biological Sciences, Chinese Academy of Sciences, 320 Yue Yang Road, Shanghai, 200031, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- School of Life Science and Technology, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Wanhui Hu
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Xiaona Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - John J Skinner
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Dongsheng Liu
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China
| | - Kurt Wüthrich
- iHuman Institute, ShanghaiTech University, 393 Middle Huaxia Road, Shanghai, 201210, China.
- Department of Integrative Structural and Computational Biology and the Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, 92037, USA.
| |
Collapse
|
18
|
Doktorova M, Zwarts I, Zutphen TV, Dijk THV, Bloks VW, Harkema L, Bruin AD, Downes M, Evans RM, Verkade HJ, Jonker JW. Intestinal PPARδ protects against diet-induced obesity, insulin resistance and dyslipidemia. Sci Rep 2017; 7:846. [PMID: 28404991 PMCID: PMC5429805 DOI: 10.1038/s41598-017-00889-z] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2016] [Accepted: 03/21/2017] [Indexed: 01/03/2023] Open
Abstract
Peroxisome proliferator-activated receptor δ (PPARδ) is a ligand-activated transcription factor that has an important role in lipid metabolism. Activation of PPARδ stimulates fatty acid oxidation in adipose tissue and skeletal muscle and improves dyslipidemia in mice and humans. PPARδ is highly expressed in the intestinal tract but its physiological function in this organ is not known. Using mice with an intestinal epithelial cell-specific deletion of PPARδ, we show that intestinal PPARδ protects against diet-induced obesity, insulin resistance and dyslipidemia. Furthermore, absence of intestinal PPARδ abolished the ability of PPARδ agonist GW501516 to increase plasma levels of HDL-cholesterol. Together, our findings show that intestinal PPARδ is important in maintaining metabolic homeostasis and suggest that intestinal-specific activation of PPARδ could be a therapeutic approach for treatment of the metabolic syndrome and dyslipidemia, while avoiding systemic toxicity.
Collapse
Affiliation(s)
- Marcela Doktorova
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Irene Zwarts
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Tim van Zutphen
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Theo H van Dijk
- Department of Laboratory Medicine, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Vincent W Bloks
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Liesbeth Harkema
- Dutch Molecular Pathology Center, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584, CL, Utrecht, The Netherlands
| | - Alain de Bruin
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
- Dutch Molecular Pathology Center, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, 3584, CL, Utrecht, The Netherlands
| | - Michael Downes
- Howard Hughes Medical Institute and Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California, 92037, USA
| | - Ronald M Evans
- Howard Hughes Medical Institute and Gene Expression Laboratory, Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, California, 92037, USA
| | - Henkjan J Verkade
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands
| | - Johan W Jonker
- Section of Molecular Metabolism and Nutrition, Department of Pediatrics, University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
19
|
|
20
|
Li Y, Wu KJ, Yu SJ, Tamargo IA, Wang Y, Greig NH. Neurotrophic and neuroprotective effects of oxyntomodulin in neuronal cells and a rat model of stroke. Exp Neurol 2016; 288:104-113. [PMID: 27856285 DOI: 10.1016/j.expneurol.2016.11.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/11/2016] [Accepted: 11/12/2016] [Indexed: 12/16/2022]
Abstract
Proglucagon-derived peptides, especially glucagon-like peptide-1 (GLP-1) and its long-acting mimetics, have exhibited neuroprotective effects in animal models of stroke. Several of these peptides are in clinical trials for stroke. Oxyntomodulin (OXM) is a proglucagon-derived peptide that co-activates the GLP-1 receptor (GLP-1R) and the glucagon receptor (GCGR). The neuroprotective action of OXM, however, has not been thoroughly investigated. In this study, the neuroprotective effect of OXM was first examined in human neuroblastoma (SH-SY5Y) cells and rat primary cortical neurons. GLP-1R and GCGR antagonists, and inhibitors of various signaling pathways were used in cell culture to characterize the mechanisms of action of OXM. To evaluate translation in vivo, OXM-mediated neuroprotection was assessed in a 60-min, transient middle cerebral artery occlusion (MCAo) rat model of stroke. We found that OXM dose- and time-dependently increased cell viability and protected cells from glutamate toxicity and oxidative stress. These neuroprotective actions of OXM were mainly mediated through the GLP-1R. OXM induced intracellular cAMP production and activated cAMP-response element-binding protein (CREB). Furthermore, inhibition of the PKA and MAPK pathways, but not inhibition of the PI3K pathway, significantly attenuated the OXM neuroprotective actions. Intracerebroventricular administration of OXM significantly reduced cerebral infarct size and improved locomotor activities in MCAo stroke rats. Therefore, we conclude that OXM is neuroprotective against ischemic brain injury. The mechanisms of action involve induction of intracellular cAMP, activation of PKA and MAPK pathways and phosphorylation of CREB.
Collapse
Affiliation(s)
- Yazhou Li
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| | - Kou-Jen Wu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Seong-Jin Yu
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Ian A Tamargo
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA
| | - Yun Wang
- Center for Neuropsychiatric Research, National Health Research Institutes, Miaoli, Taiwan
| | - Nigel H Greig
- Translational Gerontology Branch, Intramural Research Program, National Institute on Aging, National Institutes of Health, Baltimore, MD, USA.
| |
Collapse
|
21
|
Affiliation(s)
- Isabel Valverde
- Dpt. Metabolismo, Nutrición y Hormonas, Fundación Jiménez Díaz, Avda Reyes Católicos, 2, 28040, Madrid, Spain.
| |
Collapse
|
22
|
Busby ER, Mommsen TP. Proglucagons in vertebrates: Expression and processing of multiple genes in a bony fish. Comp Biochem Physiol B Biochem Mol Biol 2016; 199:58-66. [PMID: 26927880 DOI: 10.1016/j.cbpb.2016.02.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Revised: 02/17/2016] [Accepted: 02/17/2016] [Indexed: 11/16/2022]
Abstract
In contrast to mammals, where a single proglucagon (PG) gene encodes three peptides: glucagon, glucagon-like peptide 1 and glucagon-like peptide 2 (GLP-1; GLP-2), many non-mammalian vertebrates carry multiple PG genes. Here, we investigate proglucagon mRNA sequences, their tissue expression and processing in a diploid bony fish. Copper rockfish (Sebastes caurinus) express two independent genes coding for distinct proglucagon sequences (PG I, PG II), with PG II lacking the GLP-2 sequence. These genes are differentially transcribed in the endocrine pancreas, the brain, and the gastrointestinal tract. Alternative splicing identified in rockfish is only one part of this complex regulation of the PG transcripts: the system has the potential to produce two glucagons, four GLP-1s and a single GLP-2, or any combination of these peptides. Mass spectrometric analysis of partially purified PG-derived peptides in endocrine pancreas confirms translation of both PG transcripts and differential processing of the resulting peptides. The complex differential regulation of the two PG genes and their continued presence in this extant teleostean fish strongly suggests unique and, as yet largely unidentified, roles for the peptide products encoded in each gene.
Collapse
Affiliation(s)
- Ellen R Busby
- Department of Biochemistry and Microbiology, and Department of Biology, University of Victoria, Victoria, BC, Canada.
| | - Thomas P Mommsen
- Department of Biochemistry and Microbiology, and Department of Biology, University of Victoria, Victoria, BC, Canada
| |
Collapse
|
23
|
Pathak NM, Pathak V, Lynch AM, Irwin N, Gault VA, Flatt PR. Stable oxyntomodulin analogues exert positive effects on hippocampal neurogenesis and gene expression as well as improving glucose homeostasis in high fat fed mice. Mol Cell Endocrinol 2015; 412:95-103. [PMID: 26048772 DOI: 10.1016/j.mce.2015.05.035] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2015] [Revised: 05/26/2015] [Accepted: 05/29/2015] [Indexed: 01/05/2023]
Abstract
The weight-lowering and gluco-regulatory actions of oxyntomodulin (Oxm) have been well-documented however potential actions of this peptide in brain regions associated with learning and memory have not yet been evaluated. The present study examined the long-term actions of a stable acylated analogue of Oxm, (dS(2))Oxm(K-γ-glu-Pal), together with parent (dS(2))Oxm peptide, on hippocampal neurogenesis, gene expression and metabolic control in high fat (HF) mice. Groups of HF mice (n = 12) received twice-daily injections of Oxm analogues (both at 25 nmol/kg body weight) or saline vehicle (0.9% wt/vol) over 28 days. Hippocampal gene expression and histology were assessed together with evaluation of energy intake, body weight, non-fasting glucose and insulin, glucose tolerance, insulin sensitivity and lipids. Oxm analogues significantly reduced body weight, improved glucose tolerance, glucose-mediated insulin secretion, insulin sensitivity, islet architecture and lipid profile. Analysis of brain histology revealed significant reduction in hippocampal oxidative damage (8-oxoguanine), enhanced hippocampal neurogenesis (doublecortin) and improved hippocampal and cortical synaptogenesis (synaptophysin) following treatment. Furthermore, Oxm analogues up-regulated hippocampal mRNA expression of MASH1, Synaptophysin, SIRT1, GLUT4 and IRS1, and down-regulated expression of LDL-R and GSK3β. These data demonstrate potential of stable Oxm analogues, and particularly (dS(2))Oxm(K-γ-glu-Pal) to improve metabolic function and enhance neurogenesis, synaptic plasticity, insulin signalling and exert protective effects against oxidative damage in hippocampus and cortex brain regions in HF mice.
Collapse
Affiliation(s)
- N M Pathak
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, UK
| | - V Pathak
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, UK
| | - A M Lynch
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, UK
| | - N Irwin
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, UK
| | - V A Gault
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, UK.
| | - P R Flatt
- The SAAD Centre for Pharmacy and Diabetes, School of Biomedical Sciences, University of Ulster, UK
| |
Collapse
|
24
|
Matsuo T, Miyagawa JI, Kusunoki Y, Miuchi M, Ikawa T, Akagami T, Tokuda M, Katsuno T, Kushida A, Inagaki T, Namba M. Postabsorptive hyperglucagonemia in patients with type 2 diabetes mellitus analyzed with a novel enzyme-linked immunosorbent assay. J Diabetes Investig 2015; 7:324-31. [PMID: 27330717 PMCID: PMC4847885 DOI: 10.1111/jdi.12400] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/10/2015] [Revised: 06/29/2015] [Accepted: 07/09/2015] [Indexed: 01/11/2023] Open
Abstract
Aims/introduction The aims of the present study were to investigate the performance of a novel sandwich enzyme‐linked immunosorbent assay (ELISA) for measuring glucagon (1–29) with monoclonal antibodies against both the C‐ and N‐terminal regions of glucagon (1–29), and to analyze the differences in plasma levels and responses of glucagon (1–29) to oral glucose loading in normal glucose tolerance (NGT) subjects and patients with type 2 diabetes mellitus. Materials and Methods The cross‐reactivity against proglucagon fragments using the ELISA kit and two types of conventional radioimmunoassay (RIA) kits was evaluated. A 75‐g oral glucose tolerance test was carried out with NGT subjects and patients with type 2 diabetes mellitus, and the glucagon (1–29) concentration was measured using three types of kit. Results The ELISA kit clearly had the lowest cross‐reactivity against miniglucagon (19–29) and glicentin (1–61). The oral glucose tolerance test was carried out with 30 NGT and 17 patients with type 2 diabetes mellitus. The glucagon (1–29) levels measured by the ELISA kit after glucose loading were significantly higher at all time‐points in the type 2 diabetes mellitus group than in the NGT group. However, the glucagon (1–29) levels measured by one RIA kit were significantly higher in the NGT group, and those measured with the other RIA kit were approximately the same among the groups. Conclusions The novel sandwich ELISA accurately determines plasma glucagon (1–29) concentrations with much less cross‐reactivity against other proglucagon fragments than conventional RIA kits.
Collapse
Affiliation(s)
- Toshihiro Matsuo
- Division of Diabetes, Endocrinology and Metabolism Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Jun-Ichiro Miyagawa
- Division of Diabetes, Endocrinology and Metabolism Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Yoshiki Kusunoki
- Division of Diabetes, Endocrinology and Metabolism Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Masayuki Miuchi
- Division of Diabetes, Endocrinology and Metabolism Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Takashi Ikawa
- Division of Diabetes, Endocrinology and Metabolism Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Takafumi Akagami
- Division of Diabetes, Endocrinology and Metabolism Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Masaru Tokuda
- Division of Diabetes, Endocrinology and Metabolism Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| | - Tomoyuki Katsuno
- Division of Innovative Diabetes Treatment Hyogo College of Medicine Nishinomiya Hyogo Japan
| | | | | | - Mitsuyoshi Namba
- Division of Diabetes, Endocrinology and Metabolism Department of Internal Medicine Hyogo College of Medicine Nishinomiya Hyogo Japan
| |
Collapse
|
25
|
Glucose induces sensitivity to oxygen deprivation and modulates insulin/IGF-1 signaling and lipid biosynthesis in Caenorhabditis elegans. Genetics 2015; 200:167-84. [PMID: 25762526 DOI: 10.1534/genetics.115.174631] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Accepted: 03/02/2015] [Indexed: 12/15/2022] Open
Abstract
Diet is a central environmental factor that contributes to the phenotype and physiology of individuals. At the root of many human health issues is the excess of calorie intake relative to calorie expenditure. For example, the increasing amount of dietary sugars in the human diet is contributing to the rise of obesity and type 2 diabetes. Individuals with obesity and type 2 diabetes have compromised oxygen delivery, and thus it is of interest to investigate the impact a high-sugar diet has on oxygen deprivation responses. By utilizing the Caenorhabditis elegans genetic model system, which is anoxia tolerant, we determined that a glucose-supplemented diet negatively impacts responses to anoxia and that the insulin-like signaling pathway, through fatty acid and ceramide synthesis, modulates anoxia survival. Additionally, a glucose-supplemented diet alters lipid localization and initiates a positive chemotaxis response. Use of RNA-sequencing analysis to compare gene expression responses in animals fed either a standard or glucose-supplemented diet revealed that glucose impacts the expression of genes involved with multiple cellular processes including lipid and carbohydrate metabolism, stress responses, cell division, and extracellular functions. Several of the genes we identified show homology to human genes that are differentially regulated in response to obesity or type 2 diabetes, suggesting that there may be conserved gene expression responses between C. elegans fed a glucose-supplemented diet and a diabetic and/or obesity state observed in humans. These findings support the utility of the C. elegans model for understanding the molecular mechanisms regulating dietary-induced metabolic diseases.
Collapse
|
26
|
Abstract
After many years of research, obesity is still a disease with an unmet medical need. Very few compounds have been approved, acting mainly on neuromediators; researches, in recent years, pointed toward compounds potentially safer than first-generation antiobesity drugs, able to interact with one or more (multitarget therapy) receptors for substances produced by the gut, adipose tissue and other targets outside CNS. Other holistic approaches, such as those involving gut microbiota and plant extracts, appeared recently in the literature, and undoubtedly will contribute to the discovery of a valuable therapy for this disease. This review deals with the positive results and the pitfalls obtained following these approaches, with a view on their clinical trial studies.
Collapse
|