1
|
Agraib LM, Al-Shami I, Alkhatib B, Hasan H. The impact of energy releasing B-vitamin intake on indices of obesity and cardiac function: a cross-sectional study. F1000Res 2024; 12:1382. [PMID: 39140087 PMCID: PMC11319906 DOI: 10.12688/f1000research.139672.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/01/2024] [Indexed: 08/15/2024] Open
Abstract
Background B vitamins play a crucial role in the balance and metabolism of energy. Energy metabolism mainly benefits from the B-complex vitamins. Specifically, decarboxylation, transamination, acylation, oxidation, and reduction of substrates that are ultimately employed in energy intake require thiamin, riboflavin, niacin, and vitamin B6. Vitamin deficiency could lead to chronic disease occurrence. Objectives To assess the impact of energy-releasing B-vitamins intake (B1, B2, B3, and B6) on selected indices of obesity and cardiac function. Methods A cross-sectional study was performed on 491 apparently healthy adults (18-64 years old) between January and May 2019 at Hashemite University, Jordan. Anthropometric measurements were taken, lipid profiles were analyzed, and indices of obesity and cardiac function were calculated. The typical dietary intake of B1, B2, B3, and B6 vitamins was calculated. Results Conicity index (CI) and abdominal volume index (AVI) scores significantly decreased with the increased adjusted vitamin B1 and B6 intake. Also, body roundness index (BRI), weight-adjusted-waist index (WWI), lipid accumulation product (LAP), and atherogenic index of plasma (AIP) scores were decreased with the increase of adjusted B6 intake ( p<0.05). The total sample showed a significant inverse weak correlation between energy-adjusted intake of B1 and AVI (r= -0.156, p=0.001) and BRI (r= 0.111, p=0.014). Similar correlations were detected among male participants between energy-adjusted B1 intake and BAI, AVI, and BRI. Female participants had a significant weak inverse correlation between BAI and energy-adjusted B2 (r= -0.180, p=0.029) and B6 intake (r= -0.212, p=0.010). Only B1, the vitamin, significantly explained 2.43 and 1.24% of changes observed in the AVI and BRI scores, respectively ( p<0.05). Conclusions Increasing the consumption of B1, B2, and B6 may significantly lower values of indices of obesity and cardiac function regardless of sex differences. Thus reducing the occurrence of obesity and related coronary heart diseases.
Collapse
Affiliation(s)
- Lana M. Agraib
- Department of Food Technology and Nutrition, Faculty of Agriculture, Jerash University, Jerash, Jerash Governorate, Jordan
| | - Islam Al-Shami
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | - Buthaina Alkhatib
- Department of Clinical Nutrition and Dietetics, Faculty of Applied Medical Sciences, The Hashemite University, Zarqa, Jordan
| | | |
Collapse
|
2
|
Vernì F. Vitamin B6 and diabetes and its role in counteracting advanced glycation end products. VITAMINS AND HORMONES 2024; 125:401-438. [PMID: 38997171 DOI: 10.1016/bs.vh.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/14/2024]
Abstract
Naturally occurring forms of vitamin B6 include six interconvertible water-soluble compounds: pyridoxine (PN), pyridoxal (PL), pyridoxamine (PM), and their respective monophosphorylated derivatives (PNP, PLP, and PMP). PLP is the catalytically active form which works as a cofactor in approximately 200 reactions that regulate the metabolism of glucose, lipids, amino acids, DNA, and neurotransmitters. Most of vitamers can counteract the formation of reactive oxygen species and the advanced glycation end-products (AGEs) which are toxic compounds that accumulate in diabetic patients due to prolonged hyperglycemia. Vitamin B6 levels have been inversely associate with diabetes, while vitamin B6 supplementation reduces diabetes onset and its vascular complications. The mechanisms at the basis of the relation between vitamin B6 and diabetes onset are still not completely clarified. In contrast more evidence indicates that vitamin B6 can protect from diabetes complications through its role as scavenger of AGEs. It has been demonstrated that in diabetes AGEs can destroy the functionality of macromolecules such as protein, lipids, and DNA, thus producing tissue damage that result in vascular diseases. AGEs can be in part also responsible for the increased cancer risk associated with diabetes. In this chapter the relationship between vitamin B6, diabetes and AGEs will be discussed by showing the acquired knowledge and questions that are still open.
Collapse
Affiliation(s)
- F Vernì
- Department of Biology and Biotechnology "Charles Darwin" Sapienza University of Rome, Rome, Italy.
| |
Collapse
|
3
|
Wang P, Huang J, Xue F, Abuduaini M, Tao Y, Liu H. Associations of serum vitamin B6 status with the risks of cardiovascular, cancer, and all-cause mortality in the elderly. Front Immunol 2024; 15:1354958. [PMID: 38698865 PMCID: PMC11064647 DOI: 10.3389/fimmu.2024.1354958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 04/02/2024] [Indexed: 05/05/2024] Open
Abstract
Background There are few studies investigating the relationship between serum vitamin B6 and mortality risk in the elderly. This study hereby evaluated the associations between biomarkers of serum vitamin B6 status and cardiovascular, cancer, and all-cause mortality risks in the elderly. Methods Our study included a total of 4,881 participants aged 60 years or older from the National Health and Nutrition Examination Survey (NHANES) 2005-2010. Serum vitamin B6 status was estimated based on levels of pyridoxal 5'-phosphate (PLP), 4-pyridoxic acid (4-PA), and vitamin B6 turnover rate (4-PA/PLP) detected by high-performance liquid chromatography. Survival status and corresponding causes of death were matched through the National Death Index records through December 31, 2019. Multivariate Cox regression model was adopted to assess the relationships between serum vitamin B6 status and the risk of mortality. Results During a median follow-up period of 10.33 years, 507 cardiovascular deaths, 426 cancer deaths, and 1995 all-cause deaths were recorded, respectively. In the multivariate-adjusted Cox model, the hazard ratios (HRs) and 95% confidence intervals (CIs) for the highest versus the lowest quartiles of PLP, 4-PA, and 4-PA/PLP were 0.70(0.54-0.90), 1.33(0.88-2.02), and 2.01(1.41-2.79) for cardiovascular mortality, 0.73(0.52-1.02), 1.05(0.71-1.57), and 1.95(1.25-3.05) for cancer mortality, and 0.62(0.53-0.74), 1.05(0.82-1.34), and 2.29(1.87-2.79) for all-cause mortality, respectively. Conclusion Our study found that lower serum PLP levels were associated with increased risks of cardiovascular and all-cause mortality among the elderly population. And higher vitamin B6 turnover rate was associated with increased risks of cardiovascular, cancer, and all-cause mortality.
Collapse
Affiliation(s)
- Pengxi Wang
- Department of Medical Genetics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Jia Huang
- Department of Medical Genetics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Feng Xue
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Munire Abuduaini
- College of Public Health, Zhengzhou University, Zhengzhou, China
| | - Yuchang Tao
- Department of Medical Genetics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyan Liu
- Department of Medical Genetics, Henan Provincial People’s Hospital, People’s Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
4
|
Ali SS, Ismail QUA, Yusuf A, Adnan STA, Durga F, Priyanka F, Ghersheen HA, Ahuja M, Anwar A, Hashmi AA. Correlation of Serum Sodium and Potassium With Thiamin Levels in Type 1 and Type 2 Diabetic Patients. Cureus 2024; 16:e59416. [PMID: 38826611 PMCID: PMC11140155 DOI: 10.7759/cureus.59416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/30/2024] [Indexed: 06/04/2024] Open
Abstract
Introduction Chronic metabolic disorders such as diabetes mellitus (DM) are becoming a global health concern. According to recent studies, the pathophysiology of DM may involve factors other than traditional glycemic control, such as electrolyte balance and thiamin status. Therefore, this study evaluated the relationship between sodium and potassium and serum thiamin levels in patients with type 1 and type 2 DM. Methods This study was conducted in multiple diabetic outpatient clinics and centers in Karachi, Pakistan, using a non-probability convenience sampling method. The study lasted for approximately six months after the synopsis was approved. A total of 64 patients were selected, 32 of whom each had type 1 and type 2 DM. All patients who were between the ages of 25 and 46 years old and had either type 1 or type 2 DM were included in the study. A Mann-Whitney test and an independent t-test were used to compare the means between the two study groups. Pearson's correlation and chi-square tests were used to determine the variables, correlations, and associations with type 1 and type 2 DM. Results The study findings showed that the distribution of gender among diabetic patients revealed that among males, eight (25.0%) had type 1 DM, and 10 (31.2%) had type 2 DM. Among females, 24 (75.0%) had type 1 DM, and 22 (68.8%) had type 2 DM. Significant correlations were observed in the means of blood glucose levels, such as glycated hemoglobin (HbA1c), fasting blood sugar (FBS), and serum thiamin levels, among patients with type 1 and type 2 DM (p < 0.001). The HbA1c, FBS, and serum thiamin levels were significantly higher in type 2 DM patients than in type 1 DM patients. Among patients with type 1 DM, sodium levels were not substantially correlated with thiamin levels (p = 0.570, r = 0.104), whereas potassium levels were significantly correlated with thiamin levels (p = 0.005, r = 0.263). Conclusion We conclude that the sodium level was not significantly correlated with serum thiamin status in type 1 and type 2 DM, whereas a low positive correlation was observed between potassium and serum thiamin levels in type 1 DM. However, there was no significant correlation concerning potassium levels in type 2 DM.
Collapse
Affiliation(s)
- Syed Shahiq Ali
- Internal Medicine, Jinnah Postgraduate Medical Centre, Karachi, PAK
| | | | - Anusha Yusuf
- Emergency Medicine, Supporting Health and Education, Deserving Fellows (SHED) Hospital, Karachi, PAK
| | | | - Fnu Durga
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | - Fnu Priyanka
- Internal Medicine, Jinnah Sindh Medical University, Karachi, PAK
| | | | - Mehak Ahuja
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | - Adnan Anwar
- Physiology, Hamdard College of Medicine and Dentistry, Karachi, PAK
- Internal Medicine, Anabiya General Hospital, Karachi, PAK
| | - Atif A Hashmi
- Pathology, Liaquat National Hospital and Medical College, Karachi, PAK
| |
Collapse
|
5
|
Younes S. The role of micronutrients on the treatment of diabetes. HUMAN NUTRITION & METABOLISM 2024; 35:200238. [DOI: 10.1016/j.hnm.2023.200238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/05/2024]
|
6
|
Wong PL, Zolkeflee NKZ, Ramli NS, Tan CP, Azlan A, Tham CL, Shaari K, Abas F. Antidiabetic effect of Ardisia elliptica extract and its mechanisms of action in STZ-NA-induced diabetic rat model via 1H-NMR-based metabolomics. JOURNAL OF ETHNOPHARMACOLOGY 2024; 318:117015. [PMID: 37572932 DOI: 10.1016/j.jep.2023.117015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/19/2023] [Accepted: 08/07/2023] [Indexed: 08/14/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Ardisia elliptica Thunb. (AE) (Primulaceae) is a medicinal plant found in the Malay Peninsula and has been traditionally used to treat diabetes. However, limited studies to date in providing scientific evidence to support the antidiabetic efficacy of this plant by in-vitro and in-vivo models. AIM OF THE STUDY To investigate the anti-hyperglycemic potential of AE through in-vitro enzymatic activities and streptozotocin-nicotinamide (STZ-NA) induced diabetic rat models using proton-nuclear magnetic resonance (1H-NMR)-based metabolomics approach. MATERIALS AND METHODS Anti-α-amylase and anti-α-glucosidase activities of the hydroethanolic extracts of AE were evaluated. The absolute quantification of bioactive constituents, using ultra-high performance liquid chromatography (UHPLC) was performed for the most active extract. Three different dosage levels of the AE extract were orally administered for 4 weeks consecutively in STZ-NA induced diabetic rats. Physical assessments, biochemical analysis, and an untargeted 1H-NMR-based metabolomics analysis of the urine and serum were carried out on the animal model. RESULTS Type 2 diabetes mellitus (T2DM) rat model was successfully developed based on the clear separation observed between the STZ-NA induced diabetic and normal non-diabetic groups. Discriminating biomarkers included glucose, citrate, succinate, allantoin, hippurate, 2-oxoglutarate, and 3-hydroxybutyrate, as determined through an orthogonal partial least squares-discriminant analysis (OPLS-DA) model. A treatment dosage of 250 mg/kg body weight (BW) of standardized 70% ethanolic AE extract mitigated increase in serum glucose, creatinine, and urea levels, providing treatment levels comparable to that obtained using metformin, with flavonoids primarily contribute to the anti-hyperglycemic activities. Urinary metabolomics disclosed that the following disturbed metabolism pathways: the citrate cycle (TCA cycle), butanoate metabolism, glycolysis and gluconeogenesis, pyruvate metabolism, and synthesis and degradation of ketone bodies, were ameliorated after treatment with the standardized AE extract. CONCLUSIONS This study demonstrated the first attempt at revealing the therapeutic effect of oral treatment with 250 mg/kg BW of standardized AE extract on chemically induced T2DM rats. The present study provides scientific evidence supporting the ethnomedicinal use of Ardisia elliptica and further advances the understanding of the fundamental molecular mechanisms affected by this herbal antidote.
Collapse
Affiliation(s)
- Pei Lou Wong
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Nur Khaleeda Zulaikha Zolkeflee
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Nurul Shazini Ramli
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Chin Ping Tan
- Department of Food Technology, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Azrina Azlan
- Department of Nutrition and Dietetics, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Chau Ling Tham
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Khozirah Shaari
- Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| | - Faridah Abas
- Department of Food Science, Faculty of Food Science and Technology, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia; Natural Medicines and Products Research Laboratory, Institute of Bioscience, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
7
|
Hu Z, Yan B. Portable, Intelligent Fluorescence Sensing Platform for Dense Convolutional Network-Capable Detection of Indophenol Sulfate and Methylmalonic Acid Using a Luminescent Eu@HOF Film. ACS Sens 2023; 8:4344-4352. [PMID: 37944941 DOI: 10.1021/acssensors.3c01729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Indophenol sulfate (IS) and methylmalonic acid (MMA) are biomarkers of chronic kidney disease (CKD) and diabetes polyneuropathy (DPN), respectively. Portable and accurate monitoring of IS and MMA is very important to ensuring human health. The dense convolutional network (DenseNet) with image recognition has great potential in fluorescence sensing, but developing a platform with high precision and portability to diagnose the disease still faces huge challenges. Herein, we developed a high-sensitivity platform with a fluorescence material, a smartphone, and the DenseNet to monitor IS and MMA. A red-emitting Eu@PFC-13 (1) is prepared, and 1 shows high selectivity and low detection limits (DLs) to detect IS and MMA. The sensing mechanism of 1 toward IS and MMA is investigated by experiments and theoretical calculation. For detecting IS and MMA in serum and urine, 1 is fabricated into an Eu@PFC-13/AG (2) film with DLs of 1.4 and 1.6 μM, respectively. In addition, a portable smartphone platform is designed to monitor IS and MMA with high precision. Moreover, the DenseNet is constructed by Python, which can output the concentration of analytes by identifying fluorescence images and judge whether any is in a dangerous range. This work not only proposes a novel method that integrates a fluorescence material, a smartphone, and deep learning to detect analytes but also opens a new way for the diagnosis of CKD and DPN.
Collapse
Affiliation(s)
- Zhongqian Hu
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| | - Bing Yan
- School of Chemical Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, China
| |
Collapse
|
8
|
Alsaeedi A, Welham S, Rose P. Impact of lifestyle factors on dietary vitamin B 6 intake and plasma pyridoxal 5'-phosphate level in UK adults: National Diet and Nutrition Survey Rolling Programme (NDNS) (2008-2017). Br J Nutr 2023; 130:1403-1415. [PMID: 36789783 PMCID: PMC10511679 DOI: 10.1017/s0007114523000417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 02/01/2023] [Accepted: 02/06/2023] [Indexed: 02/16/2023]
Abstract
Reduction in dietary vitamin B6 intake is associated with an increased relative risk of diseases such as cancer, atherosclerosis and cognitive dysfunction. The current research has assessed vitamin B6 intakes and PLP concentrations as a marker of vitamin B6 status among the UK adult (≥ 19 years) population. This study was carried out using a cross-sectional analysis of the National Diet and Nutrition Survey Rolling Programme (NDNS) (2008-2017). The impacts of lifestyle factors, including type of diet, smoking, alcohol consumption, and commonly used medications grouped by therapeutic usage, were determined, and data were analysed using IBM SPSS®. Results are expressed as medians (25th-75th percentiles), with P values ≤ 0·05 considered statistically significant. Among UK adults, the median intakes of total population of dietary vitamin B6 met the reference nutrient intake and median plasma PLP concentrations were above the cut-off of vitamin B6 deficiency; however, we found an association between reduction in vitamin B6 intake and plasma PLP concentration and age group (P < 0·001). Smokers had significantly lower plasma PLP concentrations than non-smokers (P < 0·001). Moreover, regression analysis showed some commonly used medications were associated with plasma PLP levels reduction (P < 0·05). Taken together, we report on a tendency for dietary vitamin B6 intake and plasma PLP concentrations to decrease with age and lifestyle factors such as smoking and medication usage. This information could have important implications for smokers and in the elderly population using multiple medications (polypharmacy).
Collapse
Affiliation(s)
- Asrar Alsaeedi
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Loughborough, LeicestershireLE12 5RD, UK
| | - Simon Welham
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Loughborough, LeicestershireLE12 5RD, UK
| | - Peter Rose
- Division of Food, Nutrition and Dietetics, School of Biosciences, University of Nottingham, Loughborough, LeicestershireLE12 5RD, UK
| |
Collapse
|
9
|
Mikkelsen K, Dargahi N, Fraser S, Apostolopoulos V. High-Dose Vitamin B6 (Pyridoxine) Displays Strong Anti-Inflammatory Properties in Lipopolysaccharide-Stimulated Monocytes. Biomedicines 2023; 11:2578. [PMID: 37761018 PMCID: PMC10526783 DOI: 10.3390/biomedicines11092578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Vitamin B6 is shown to have anti-inflammatory properties, which makes it an interesting nutraceutical agent. Vitamin B6 deficiency is well established as a contributor to inflammatory-related conditions, whilst B6 supplementation can reverse these inflammatory effects. There is less information available regarding the effects of high-dose vitamin B6 supplementation as a therapeutic agent. This study set out to examine the effects of high-dose vitamin B6 on an LPS-stimulated monocyte/macrophage cell population via an analysis of protein and gene expression using an RT2 profiler PCR array for Human Innate and Adaptive Immune responses. It was identified that high-dose vitamin B6 has a global anti-inflammatory effect on lipopolysaccharide-induced inflammation in monocyte/macrophage cells by downregulating the key broad-spectrum inflammatory mediators CCL2, CCL5, CXCL2, CXCL8, CXCL10, CCR4, CCR5, CXCR3, IL-1β, IL-5, IL-6, IL-10, IL-18, IL-23-a, TNF-α, CSF2, DDX58, NLRP3, NOD1, NOD2, TLR-1 -2 -4 -5 -7 -8 -9, MYD88, C3, FOXP3, STAT1, STAT3, STAT6, LYZ, CASP-1, CD4, HLA-E, MAPK1, MAPK8 MPO, MX-1, NF-κβ, NF-κβ1A, CD14, CD40, CD40LG, CD86, Ly96, ICAM1, IRF3, ITGAM, and IFCAM2. The outcomes of this study show promise regarding vitamin B6 within the context of a potent broad-spectrum anti-inflammatory mediator and could prove useful as an adjunct treatment for inflammatory-related diseases.
Collapse
Affiliation(s)
| | | | | | - Vasso Apostolopoulos
- Immunology and Translational Research Group, Institute for Health and Sport, Werribee Campus, Victoria University, Melbourne, VIC 3030, Australia; (K.M.); (N.D.); (S.F.)
| |
Collapse
|
10
|
Zhou L, Zhang J, Zhang D, Yu Y, Jiang M, Liu H, Li J, Li M, Zhang Z, Guo L. Co-exposure to multiple vitamins and the risk of all-cause mortality in patients with diabetes. Front Endocrinol (Lausanne) 2023; 14:1254133. [PMID: 37795357 PMCID: PMC10546318 DOI: 10.3389/fendo.2023.1254133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Accepted: 09/04/2023] [Indexed: 10/06/2023] Open
Abstract
Objective Although the effect of vitamins on the risk of mortality in diabetic patients has been reported, most studies focus on individual vitamins. However, humans are often exposed to multiple vitamins simultaneously in daily life. Therefore, it is worth exploring the effects of co-exposure to multiple vitamins on the risk of mortality in diabetic patients. Methods This study included diabetic patients aged ≥20WD years who participated in NHANES from 2003 to 2006. An unsupervised K-means clustering method was used to cluster eight vitamins in serum into several patterns of co-exposure to multiple vitamins, and the Cox proportional hazards model was used to evaluate the impact of different patterns of co-exposure to multiple vitamins on the risk of all-cause mortality in diabetic patients. Results Three patterns of co-exposure to multiple vitamins were generated based on K-means clustering, namely, low-level, moderate-level, and high-level. Among the 484 diabetic patients, with a median follow-up of 13.7 years, a total of 211 deaths occurred. After adjusting for covariates, the individual vitamins had varying effects on the risk of all-cause mortality in diabetic patients. Compared to the low-level group of co-exposure to multiple vitamins, the high-level group significantly reduced the risk of all-cause mortality in diabetic patients, with a HR of 0.42 (95% CI: 0.20, 0.87). Subgroup analysis demonstrated that high levels of co-exposure to multiple vitamins significantly reduced the risk of all-cause mortality in males, individuals aged ≥ 60 years, and non-Hispanic White people with diabetes compared to the low-level group, with HR of 0.42 (95% CI: 0.18, 0.98), 0.53 (95% CI: 0.26, 0.98), and 0.26 (95% CI: 0.12, 0.58) respectively. Conclusion While individual vitamins had different effects on the risk of all-cause mortality in patients with diabetes, high-level co-exposure to multiple vitamins significantly reduced the risk of all-cause mortality in patients with diabetes, with differences observed among genders, ages, and race. This suggests that when developing vitamin intervention strategies for patients with diabetes, consideration should be given not only to the dosage of individual vitamins but also to the variations between different population groups.
Collapse
Affiliation(s)
- Lin Zhou
- School of Public Health, Shenyang Medical College, Shenyang, China
| | - Jianing Zhang
- School of Public Health, Shenyang Medical College, Shenyang, China
| | - Dan Zhang
- Department of School Health, Shenyang Center for Disease Control and Prevention, Shenyang, China
| | - Ye Yu
- School of Public Health, Shenyang Medical College, Shenyang, China
| | - Mengqi Jiang
- School of Public Health, Shenyang Medical College, Shenyang, China
| | - Huiying Liu
- School of Public Health, Shenyang Medical College, Shenyang, China
| | - Jiatong Li
- School of Public Health, Shenyang Medical College, Shenyang, China
| | - Minghui Li
- School of Public Health, Shenyang Medical College, Shenyang, China
| | - Zhuo Zhang
- School of Public Health, Shenyang Medical College, Shenyang, China
| | - Lianying Guo
- School of Public Health, Shenyang Medical College, Shenyang, China
| |
Collapse
|
11
|
Qian X, Ko A, Li H, Liao C. Saliva sampling strategies affecting the salivary glucose measurement. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2023; 15:4598-4605. [PMID: 37655760 DOI: 10.1039/d3ay01005h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Characterized by sustained elevated blood glucose levels, diabetes mellitus has become one of the largest global public health concerns by imposing a heavy global burden on socio-economic development. To date, regular blood glucose level check by performing a finger-prick test has been a routine strategy to monitor diabetes. However, the intrusive nature of finger blood prick tests makes it challenging for individuals to maintain consistent testing routines. Recently, salivary glucose measurement (SGM) has increasingly become a non-invasive alternative to traditional blood glucose testing for diabetes. Despite that, further research is needed to standardize the collection methods and address the issues of variability to ensure accurate and reliable SGM. To resolve possible remaining issues in SGM, we here thoroughly explored saliva sampling strategies that could impact the measurement results. Additionally, the effects of supplements taken, mouth washing, gum chewing, and smoking were collectively analyzed, followed by a continuous SGM over a long period, forming the stepping stone for the practical transitional development of SGM in non-invasive diabetes monitoring.
Collapse
Affiliation(s)
- Xia Qian
- Medical School, Sun Yat-Sen University, Guangzhou, China
- Renaissance Bio, New Territories, Hong Kong SAR, China.
| | - Anthony Ko
- Renaissance Bio, New Territories, Hong Kong SAR, China.
| | - Haifeng Li
- Shenzhen People's Hospital, Shenzhen, China
| | - Caizhi Liao
- Renaissance Bio, New Territories, Hong Kong SAR, China.
| |
Collapse
|
12
|
Vinnai BÁ, Arianti R, Győry F, Bacso Z, Fésüs L, Kristóf E. Extracellular thiamine concentration influences thermogenic competency of differentiating neck area-derived human adipocytes. Front Nutr 2023; 10:1207394. [PMID: 37781121 PMCID: PMC10534038 DOI: 10.3389/fnut.2023.1207394] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 08/14/2023] [Indexed: 10/03/2023] Open
Abstract
Introduction Brown adipose tissue (BAT) dissipates energy in the form of heat majorly via the mitochondrial uncoupling protein 1 (UCP1). The activation of BAT, which is enriched in the neck area and contains brown and beige adipocytes in humans, was considered as a potential therapeutic target to treat obesity. Therefore, finding novel agents that can stimulate the differentiation and recruitment of brown or beige thermogenic adipocytes are important subjects for investigation. The current study investigated how the availability of extracellular thiamine (vitamin B1), an essential cofactor of mitochondrial enzyme complexes that catalyze key steps in the catabolism of nutrients, affects the expression of thermogenic marker genes and proteins and subsequent functional parameters during ex vivo adipocyte differentiation. Methods We differentiated primary human adipogenic progenitors that were cultivated from subcutaneous (SC) or deep neck (DN) adipose tissues in the presence of gradually increasing thiamine concentrations during their 14-day differentiation program. mRNA and protein expression of thermogenic genes were analyzed by RT-qPCR and western blot, respectively. Cellular respiration including stimulated maximal and proton-leak respiration was measured by Seahorse analysis. Results Higher thiamine levels resulted in increased expression of thiamine transporter 1 and 2 both at mRNA and protein levels in human neck area-derived adipocytes. Gradually increasing concentrations of thiamine led to increased basal, cAMP-stimulated, and proton-leak respiration along with elevated mitochondrial biogenesis of the differentiated adipocytes. The extracellular thiamine availability during adipogenesis determined the expression levels of UCP1, PGC1a, CKMT2, and other browning-related genes and proteins in primary SC and DN-derived adipocytes in a concentration-dependent manner. Providing abundant amounts of thiamine further increased the thermogenic competency of the adipocytes. Discussion Case studies in humans reported that thiamine deficiency was found in patients with type 2 diabetes and obesity. Our study raises the possibility of a novel strategy with long-term thiamine supplementation, which can enhance the thermogenic competency of differentiating neck area-derived adipocytes for preventing or combating obesity.
Collapse
Affiliation(s)
- Boglárka Ágnes Vinnai
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
| | - Rini Arianti
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Universitas Muhammadiyah Bangka Belitung, Pangkalanbaru, Indonesia
| | - Ferenc Győry
- Department of Surgery, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Zsolt Bacso
- Doctoral School of Molecular Cell and Immune Biology, University of Debrecen, Debrecen, Hungary
- Department of Biophysics and Cell Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Faculty of Pharmacy, University of Debrecen, Debrecen, Hungary
| | - László Fésüs
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Endre Kristóf
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
13
|
Khan MU, Mubeen M, Chohan HK, Jawed S, Jamal A, Qamar JA, Chohan MK, Siddiqui AA, Anwar A, Hashmi AA. Correlation of Fasting Blood Sugar and Glycated Hemoglobin (HbA1c) With Thiamine Levels in Diabetic Patients. Cureus 2023; 15:e46178. [PMID: 37905298 PMCID: PMC10613325 DOI: 10.7759/cureus.46178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/29/2023] [Indexed: 11/02/2023] Open
Abstract
Introduction It has been discovered that low levels of thiamine reserves in the body are related to diabetes mellitus (DM) because thiamine directly influences carbohydrate metabolism. Therefore, the purpose of this study was to assess several metabolic variables and blood thiamine levels in patients with type 1 and type 2 DM and compare them with those in a control group of healthy individuals. Methods This case-control study was conducted at multiple diabetic outpatient centers in Karachi. A total of 90 participants, who were divided into three groups, each containing 30 individuals, were chosen using a convenient non-probability sampling technique. Group A served as the control group and consisted of healthy, non-diabetic individuals. Groups B and C contained subjects with type 1 and type 2 DM, respectively. Descriptive analysis was reported as mean standard deviation, whereas gender and comorbidities were expressed as frequencies and percentages. The chi-square test and Pearson's correlation coefficient were used to determine the associations of the variables with type 1 DM, type 2 DM, and controls. Results The study results revealed statistically significant differences between controls, type 1 and type 2 DM, in the means of blood glucose levels and all lipid profiles, such as glycated hemoglobin (HbA1c), fasting blood sugar (FBS), random blood sugar (RBS), serum thiamine, triglycerides (p < 0.001), high-density lipoprotein (HDL) (p = 0.014), and total cholesterol (p = 0.013). Furthermore, it was shown that among the control group, type 1 and type 2 DM, HbA1c, and FBS were insignificantly correlated with thiamine levels, whereas the HbA1c and FBS of the combined diabetic groups were significantly correlated with the thiamine level (r = 0.465, p < 0.001) and (r = 0.360, p = 0.005), respectively, where 'r' is the Pearson correlation coefficient. Additionally, HbA1c and FBS in the combined three groups were significantly correlated with the thiamine level (r = -0.626, p < 0.001) and (r = -0.561, p < 0.001), respectively. Conclusion This study concluded that patients with type 1 and type 2 DM had significantly higher levels of FBS, RBS, HbA1c, triglycerides, and total cholesterol than controls. Furthermore, both type 1 and type 2 DM patients' serum thiamine and HDL levels were observed to be considerably lower than those of controls. Additionally, among both types of DM and controls, there was a strong correlation between FBS and HbA1c. Therefore, we recommend that serum thiamine levels be routinely monitored in diabetic patients, and thiamine supplementation should be considered to avoid complications, especially vascular complications of DM.
Collapse
Affiliation(s)
| | - Muhammad Mubeen
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| | | | - Sidra Jawed
- Internal Medicine, Jinnah Medical and Dental College, Karachi, PAK
| | - Aisha Jamal
- Internal Medicine, Army Medical College, Rawalpindi, PAK
| | | | | | | | - Adnan Anwar
- Physiology, Hamdard College of Medicine and Dentistry, Karachi, PAK
- Internal Medicine, Essa General Hospital, Karachi, PAK
| | - Atif A Hashmi
- Pathology, Liaquat National Hospital and Medical College, Karachi, PAK
| |
Collapse
|
14
|
Ziegler D, Reiners K, Strom A, Obeid R. Association between diabetes and thiamine status - A systematic review and meta-analysis. Metabolism 2023; 144:155565. [PMID: 37094704 DOI: 10.1016/j.metabol.2023.155565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 04/17/2023] [Accepted: 04/18/2023] [Indexed: 04/26/2023]
Abstract
BACKGROUND Thiamine (vitamin B1) is an essential cofactor in glucose metabolism, but it remains unclear whether thiamine status is lower in individuals with diabetes compared to individuals with normal glucose metabolism. AIMS We conducted a systematic review and meta-analysis to study whether the circulating concentrations of various thiamine analytes differ between people with and those without diabetes. METHODS PubMed and the Cochrane Central Register of Controlled Trials were searched according to the study protocol. The standardized mean difference (SMD) and 95 % confidence intervals (CI) of thiamine markers between individuals with and without diabetes were used as effect size (random effects model). Subgroup analysis considered albuminuria as an additional variable. RESULTS Out of the 459 articles identified, 24 full-texts were eligible for the systematic review, 20 of which qualified for the data analysis and four were evaluated for coherence. Compared to controls, individuals with diabetes showed lower concentrations of thiamine (pooled estimate SMD [95 % CI]: -0.97 [-1.89, -0.06]), thiamine monophosphate (-1.16 [-1.82, -0.50]), and total thiamine compounds (-1.01 [-1.48, -0.54]). Thiamine diphosphate (-0.72 [-1.54, 0.11] and erythrocyte transketolase activity (-0.42 [-0.90, 0.05]) tended to be lower in persons with diabetes than in controls without reaching statistical significance. Subgroup analysis showed that individuals with diabetes and albuminuria had lower thiamine levels than the controls (-2.68 [-5.34, -0.02]). CONCLUSIONS Diabetes is associated with lower levels of various thiamine markers, suggesting that individuals with diabetes may have higher thiamine requirements than those without diabetes, but well-designed studies are required to confirm these findings.
Collapse
Affiliation(s)
- Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany.
| | | | - Alexander Strom
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University, D-40225 Düsseldorf, Germany
| | - Rima Obeid
- Department of Clinical Chemistry and Laboratory Medicine, Saarland University Hospital, D-66421 Homburg, Saar, Germany
| |
Collapse
|
15
|
Wu HHL, McDonnell T, Chinnadurai R. Physiological Associations between Vitamin B Deficiency and Diabetic Kidney Disease. Biomedicines 2023; 11:biomedicines11041153. [PMID: 37189771 DOI: 10.3390/biomedicines11041153] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/24/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
The number of people living with chronic kidney disease (CKD) is growing as our global population continues to expand. With aging, diabetes, and cardiovascular disease being major harbingers of kidney disease, the number of people diagnosed with diabetic kidney disease (DKD) has grown concurrently. Poor clinical outcomes in DKD could be influenced by an array of factors-inadequate glycemic control, obesity, metabolic acidosis, anemia, cellular senescence, infection and inflammation, cognitive impairment, reduced physical exercise threshold, and, importantly, malnutrition contributing to protein-energy wasting, sarcopenia, and frailty. Amongst the various causes of malnutrition in DKD, the metabolic mechanisms of vitamin B (B1 (Thiamine), B2 (Riboflavin), B3 (Niacin/Nicotinamide), B5 (Pantothenic Acid), B6 (Pyridoxine), B8 (Biotin), B9 (Folate), and B12 (Cobalamin)) deficiency and its clinical impact has garnered greater scientific interest over the past decade. There remains extensive debate on the biochemical intricacies of vitamin B metabolic pathways and how their deficiencies may affect the development of CKD, diabetes, and subsequently DKD, and vice-versa. Our article provides a review of updated evidence on the biochemical and physiological properties of the vitamin B sub-forms in normal states, and how vitamin B deficiency and defects in their metabolic pathways may influence CKD/DKD pathophysiology, and in reverse how CKD/DKD progression may affect vitamin B metabolism. We hope our article increases awareness of vitamin B deficiency in DKD and the complex physiological associations that exist between vitamin B deficiency, diabetes, and CKD. Further research efforts are needed going forward to address the knowledge gaps on this topic.
Collapse
Affiliation(s)
- Henry H L Wu
- Renal Research Laboratory, Kolling Institute of Medical Research, Royal North Shore Hospital, The University of Sydney, Sydney, NSW 2065, Australia
| | - Thomas McDonnell
- Department of Renal Medicine, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK
| | - Rajkumar Chinnadurai
- Department of Renal Medicine, Northern Care Alliance NHS Foundation Trust, Salford M6 8HD, UK
- Faculty of Biology, Medicine & Health, The University of Manchester, Manchester M1 7HR, UK
| |
Collapse
|
16
|
Khobrani M, Kandasamy G, Vasudevan R, Alhossan A, Chowdary Puvvada R, Devanandan P, Dhurke R, Naredla M. Impact of Vitamin B6 Deficiency on the Severity of Diabetic Peripheral Neuropathy – A Cross Sectional Study. Saudi Pharm J 2023; 31:655-658. [PMID: 37181142 PMCID: PMC10172568 DOI: 10.1016/j.jsps.2023.03.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 03/01/2023] [Indexed: 03/11/2023] Open
Abstract
Background Diabetic Peripheral Neuropathy is one of the most important and significantly prevalent microvascular complications of Diabetes Mellitus. Pyridoxine is a key nutrient for protecting nerve health. The objective of this research is to study the prevalence rate of pyridoxine deficiency in Diabetic neuropathy patients, to understand the correlation between various biochemical and markers of diabetic neuropathy and pyridoxine deficiency. Results 249 patients were selected for the study based on the selection criteria participants. 51.8% prevalence of pyridoxine deficiency in Diabetic neuropathy patients. The nerve conduction velocity significantly reduced in pyridoxine deficiency cases (p < 0.05). A strong inverse relationship is observed with fasting blood sugar levels and glycated hemoglobin pyridoxine deficiency might contribute to impaired glucose tolerance. Conclusion There also exists a strong inverse relationship with glycemic markers. Significant direct correlation is observed with nerve conduction velocity. Pyridoxine also has properties of antioxidant which may be utilized for the management of Diabetic Neuropathy.
Collapse
|
17
|
Water-Soluble Vitamins Status in Patients Undergoing Maintenance Hemodialysis. Nutrients 2023; 15:nu15020440. [PMID: 36678310 PMCID: PMC9862031 DOI: 10.3390/nu15020440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/08/2023] [Accepted: 01/12/2023] [Indexed: 01/17/2023] Open
Abstract
The concentration of water-soluble vitamins (except folic acid and vitamin B12) is not routinely measured, which may lead to undiagnosed deficiencies among hemodialysis (HD) patients. The aim of the study was to assess the blood concentration of water-soluble vitamins in HD patients in comparison with healthy subjects and to assess the impact of diabetes mellitus (DM) coexistence on the concentration of these vitamins. The two-center study included 142 HD patients and a control group of 31 healthy subjects. Vitamins concentration was determined using high-performance liquid chromatography (HPLC). Vitamin B1, B6, and B12 levels were significantly lower in the HD group than in the control group (p < 0.001). Vitamin B1 and B2 were negatively correlated with blood urea nitrogen (BUN) levels before HD (R = −0.39, R = −0.38; p < 0.05). Vitamin B3, B12, and C were positively correlated with the albumin concentration (R = 0.26, R = 0.27, R = 0.28; p < 0.05). Among diabetic patients, only the concentration of vitamin B1 was lower than among non-diabetic patients. The concentration of water-soluble vitamins may be related to the adequacy of dialysis, the time of laboratory determination since the last dialysis, diet, coexistence of other diseases, use of drugs, and dietary supplements in individual patients.
Collapse
|
18
|
Li C, Qin J, Liu W, Lv B, Yi N, Xue J, Xue Z. Profiling of Homocysteine Metabolic Pathway Related Metabolites in Plasma of Diabetic Mellitus Based on LC-QTOF-MS. Molecules 2023; 28:molecules28020656. [PMID: 36677712 PMCID: PMC9861464 DOI: 10.3390/molecules28020656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/25/2022] [Accepted: 01/03/2023] [Indexed: 01/11/2023] Open
Abstract
Background: Homocysteine (Hcy) has been found to be closely related to the occurrence of diabetes mellitus (DM) and is considered as one of the risk factors of DM. However, Hcy alone is not enough as a factor to predict DM, and our study analyzed and determined the relationship between the main metabolites involved in the Hcy metabolic pathway and DM. Methods: A total of 48 clinical samples were collected, including 18 health control samples and 30 DM samples. All standards and samples were detected by LC-QTOF-MS. Multivariate statistical analysis and k-means cluster analysis were performed to screen and confirm the metabolites significantly correlated with DM. Results: A total of 13 metabolites of the Hcy metabolic pathway were detected in the samples. The content of Hcy, cysteine, taurine, pyridoxamine, methionine, and choline were significantly increased in the DM group (p < 0.05). Hcy, choline, cystathionine, methionine, and taurine contributed significantly to the probabilistic principal component analysis (PPCA) model. The odds ratios (OR) of Hcy, cysteine, taurine, methionine, and choline were all greater than one. K-means cluster analysis showed that the Hcy, taurine, methionine, and choline were significantly correlated with the distribution of glucose values (divided into four levels: 10.5−11.7 mmol/L, 7.7−9.7 mmol/L, 6.0−6.9 mmol/L, and 5.0−5.9 mmol/L, respectively). Conclusion: Hcy, taurine, methionine, and choline can be used as risk factors for diabetes diagnosis and are expected to be used for the assessment of diabetes severity.
Collapse
Affiliation(s)
- Chanyi Li
- Department of Regenerative Medicine, School of Medicine, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jiaying Qin
- Department of Regenerative Medicine, School of Medicine, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Wuping Liu
- International Joint Research Center for Medical Metabolomics, Xiangya Hospital, Central South University, 87 Xiangya Road, Changsha 410008, China
| | - Bo Lv
- Department of Regenerative Medicine, School of Medicine, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Ning Yi
- Department of Regenerative Medicine, School of Medicine, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jinfeng Xue
- Department of Regenerative Medicine, School of Medicine, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Correspondence: (J.X.); (Z.X.)
| | - Zhigang Xue
- Department of Regenerative Medicine, School of Medicine, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Translational Center of Stem Cell Research, Tongji Hospital, Tongji University School of Medicine, Shanghai 200065, China
- Hunan Jiahui Genetics Hospital, 72 Xiangya Road, Changsha 410008, China
- Correspondence: (J.X.); (Z.X.)
| |
Collapse
|
19
|
Yang X, Hu R, Zhu Y, Wang Z, Hou Y, Su K, He X, Song G. Meta-analysis of Serum Vitamin B12 Levels and Diabetic Retinopathy in Type 2 Diabetes. Arch Med Res 2023; 54:64-73. [PMID: 36549948 DOI: 10.1016/j.arcmed.2022.12.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/19/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Previous studies have shown an association between low serum vitamin B12 levels and the risk of diabetic retinopathy (DR) in type 2 diabetes, but the conclusions from various studies were inconsistent. Therefore, we collected relevant data from various databases to perform a meta-analysis and address the inconsistencies in these studies. METHODS We searched PubMed, Embase, Cochrane Library, CNKI, Wanfang and CQVIP for eligible studies published up to April 10, 2022, and performed a meta-analysis using Stata software to assess the association between serum vitamin B12 levels and DR. RESULTS A total of 15 studies were included in this meta-analysis. Statistical analysis showed that serum vitamin B12 levels were significantly reduced in patients with type 2 diabetic retinopathy ,WMD 95% CI = -68.91 (-76.76, -61.06) (p <0.00001, I2 = 88.30%). In subgroup analyses by ethnicity, an association between low serum vitamin B12 levels and DR risk was found in East Asian, South Asian and mixed populations, but not in Caucasian populations. CONCLUSIONS This meta-analysis analyzed vitamin B12 in patients with type 2 diabetic retinopathy and emphasized the importance of monitoring serum vitamin B12 levels in patients with type 2 diabetic retinopathy, but this meta-analysis still has deficiencies and limitations, and more clinical studies are needed to confirm this conclusion in the future.
Collapse
Affiliation(s)
- Xiaoyue Yang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Rui Hu
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yajun Zhu
- Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei, PR China
| | - Zhen Wang
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Yilin Hou
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Kangkang Su
- Graduate School of Hebei North University, Zhangjiakou, Hebei, PR China
| | - Xiaoyu He
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, PR China
| | - Guangyao Song
- Department of Internal Medicine, Hebei Medical University, Shijiazhuang, Hebei, PR China; Endocrinology Department, Hebei General Hospital, Shijiazhuang, Hebei, PR China; Graduate School of Hebei North University, Zhangjiakou, Hebei, PR China.
| |
Collapse
|
20
|
Wang G, Xu J, Ma H, Mu Y, Xu W, Yan N, Liu W, Zheng D, Huang X, Li L. Phenolipid JE improves metabolic profile and inhibits gluconeogenesis via modulating AKT-mediated insulin signaling in STZ-induced diabetic mice. Pharmacol Res 2023; 187:106569. [PMID: 36427798 DOI: 10.1016/j.phrs.2022.106569] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Revised: 11/13/2022] [Accepted: 11/19/2022] [Indexed: 11/26/2022]
Abstract
Phenolipids are characteristic phytochemicals of Syzygium genus. However, the antidiabetic potential and underlying molecular mechanism of these components are not fully elucidated. Herein, we studied the anti-diabetic effects of jambone E (JE), a phenolipid from S. cumini, with in vitro and in vivo models. Data from current study showed that JE enhanced glucose consumption and uptake, promoted glycogen synthesis, and suppressed gluconeogenesis in insulin resistant (IR)-HepG2 cells and primary mouse hepatocytes. JE also attenuated streptozotocin-induced hyperglycemia and hyperlipidemia in type 1 diabetic (T1D) mice. Eleven metabolites (e.g. trimethylamine n-oxide, 4-pyridoxic acid, phosphatidylinositol 39:4, phenaceturic acid, and hippuric acid) were identified as potential serum biomarkers for JE's antidiabetic effects by an untargeted metabolomics approach. The further molecular mechanistic study revealed that JE up-regulated phosphorylation levels of protein kinase B (AKT), glycogen synthase kinase 3 beta, and forkhead box O1 (FoxO1), promoted nuclear exclusion of FoxO1 whilst decreased gene expression levels of peroxisome proliferator-activated receptor gamma coactivator-1 alpha, phosphoenolpyruvate carboxykinase and glucose 6-phosphatase in IR-HepG2 cells and T1D mice. Our data suggested that JE might be a potent activator for AKT-mediated insulin signaling pathway, which was confirmed by the usage of AKT inhibitor and AKT-target siRNA interference, as well as the cellular thermal shift assay. Findings from the current study shed light on the anti-diabetic effects of phenolipids in the Syzygium species, which supports the use of medicinal plants in the Syzygium genus for potential pharmaceutical applications.
Collapse
Affiliation(s)
- Guihua Wang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Jialin Xu
- Institute of Biochemistry and Molecular Biology, College of Life and Health Sciences, Northeastern University, Shenyang 110169, PR China
| | - Hang Ma
- Bioactive Botanical Research Laboratory, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, United States
| | - Yu Mu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Wen Xu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Na Yan
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Wei Liu
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Dan Zheng
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Xueshi Huang
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China
| | - Liya Li
- Institute of Microbial Pharmaceuticals, College of Life and Health Sciences, Northeastern University, Shenyang 110819, PR China.
| |
Collapse
|
21
|
Fraszczyk E, Thio CHL, Wackers P, Dollé MET, Bloks VW, Hodemaekers H, Picavet HS, Stynenbosch M, Verschuren WMM, Snieder H, Spijkerman AMW, Luijten M. DNA methylation trajectories and accelerated epigenetic aging in incident type 2 diabetes. GeroScience 2022; 44:2671-2684. [PMID: 35947335 PMCID: PMC9768051 DOI: 10.1007/s11357-022-00626-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 07/19/2022] [Indexed: 01/07/2023] Open
Abstract
DNA methylation (DNAm) patterns across the genome changes during aging and development of complex diseases including type 2 diabetes (T2D). Our study aimed to estimate DNAm trajectories of CpG sites associated with T2D, epigenetic age (DNAmAge), and age acceleration based on four epigenetic clocks (GrimAge, Hannum, Horvath, phenoAge) in the period 10 years prior to and up to T2D onset. In this nested case-control study within Doetinchem Cohort Study, we included 132 incident T2D cases and 132 age- and sex-matched controls. DNAm was measured in blood using the Illumina Infinium Methylation EPIC array. From 107 CpG sites associated with T2D, 10 CpG sites (9%) showed different slopes of DNAm trajectories over time (p < 0.05) and an additional 8 CpG sites (8%) showed significant differences in DNAm levels (at least 1%, p-value per time point < 0.05) at all three time points with nearly parallel trajectories between incident T2D cases and controls. In controls, age acceleration levels were negative (slower epigenetic aging), while in incident T2D cases, levels were positive, suggesting accelerated aging in the case group. We showed that DNAm levels at specific CpG sites, up to 10 years before T2D onset, are different between incident T2D cases and healthy controls and distinct patterns of clinical traits over time may have an impact on those DNAm profiles. Up to 10 years before T2D diagnosis, cases manifested accelerated epigenetic aging. Markers of biological aging including age acceleration estimates based on Horvath need further investigation to assess their utility for predicting age-related diseases including T2D.
Collapse
Affiliation(s)
- Eliza Fraszczyk
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Chris H L Thio
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Paul Wackers
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Martijn E T Dollé
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Vincent W Bloks
- Department of Pediatrics, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Hennie Hodemaekers
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - H Susan Picavet
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Marjolein Stynenbosch
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - W M Monique Verschuren
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
- Julius Center for Health Sciences and Primary Care, University Medical Center Utrecht, Utrecht University, Utrecht, The Netherlands
| | - Harold Snieder
- Department of Epidemiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Annemieke M W Spijkerman
- Centre for Nutrition, Prevention and Health Services, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Mirjam Luijten
- Centre for Health Protection, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands.
| |
Collapse
|
22
|
Dietary vitamin B6 restriction aggravates neurodegeneration in mice fed a high-fat diet. Life Sci 2022; 309:121041. [DOI: 10.1016/j.lfs.2022.121041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 09/26/2022] [Accepted: 10/01/2022] [Indexed: 11/18/2022]
|
23
|
Zhang Y, Zhou XA, Liu C, Shen Q, Wu Y. Vitamin B6 Inhibits High Glucose-Induced Islet β Cell Apoptosis by Upregulating Autophagy. Metabolites 2022; 12:1048. [PMID: 36355132 PMCID: PMC9695582 DOI: 10.3390/metabo12111048] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 07/27/2023] Open
Abstract
Vitamin B6 may alleviate diabetes by regulating insulin secretion and increasing insulin sensitivity, but its mechanism remains to be explored. In this study, vitamin B6-mediated autophagy and high glucose-induced apoptosis were tested to investigate the mechanism by which vitamin B6 regulates insulin release. The results showed that 20 mM glucose increased the apoptosis rate from 10.39% to 22.44%. Vitamin B6 reduced the apoptosis rate of RIN-m5F cells from 22.44% to 11.31%. Our data also showed that the vitamin B6 content in processed eggs was decreased and that the hydrothermal process did not affect the bioactivity of vitamin B6. Vitamin B6 increased the number of autophagosomes and the ratio of autophagosome marker protein microtubule associated protein 1 light chain 3 beta to microtubule associated protein 1 light chain 3 alpha (LC3-II/LC3-I). It also decreased the amount of sequetosome 1 (SQSTM1/p62) and inhibited the phosphorylation of p70 ribosomal protein S6 kinase (p70S6K) under normal and high glucose stress. Another study showed that vitamin B6 inhibited the apoptosis rate, whereas the autophagy inhibitor 3-methyladenine (3-MA) blocked the protective effect of vitamin B6 against apoptosis induced by high glucose. The hydrothermal process decreased the vitamin B6 content in eggs but had no effect on the cytoprotective function of vitamin B6 in RIN-m5f cells. In conclusion, we demonstrated that vitamin B6-mediated autophagy protected RIN-m5f cells from high glucose-induced apoptosis might via the mTOR-dependent pathway. Our data also suggest that low temperatures and short-term hydrothermal processes are beneficial for dietary eggs.
Collapse
Affiliation(s)
- Yu Zhang
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
| | - Xi-an Zhou
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
| | - Chuxin Liu
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
| | - Qingwu Shen
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
| | - Yanyang Wu
- Key Laboratory for Food Science and Biotechnology of Hunan Province, College of Food Science and Technology, Hunan Agricultural University, Changsha 410128, China
- Horticulture and Landscape College, Hunan Agricultural University, Changsha 410128, China
- Hunan Co-Innovation Center for Utilization of Botanical Functional Ingredients, Changsha 410128, China
- State Key Laboratory of Subhealth Intervention Technology, Changsha 410128, China
| |
Collapse
|
24
|
Ding L, Yang Q, Sun Z, Liu L, Meng Z, Zhao X, Tao N, Liu J. Association between dietary intake of one-carbon metabolism nutrients and hyperglycemia in coal-burning fluorosis areas of Guizhou, China. Front Nutr 2022; 9:1002044. [PMID: 36299987 PMCID: PMC9589113 DOI: 10.3389/fnut.2022.1002044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Accepted: 09/23/2022] [Indexed: 11/13/2022] Open
Abstract
Background and aims There are limited studies describing the association between dietary intake of one-carbon metabolism nutrients and hyperglycemia. The present study aimed to investigate the association of habitual dietary intake of one-carbon metabolism nutrients with hyperglycemia in a fluorosis area in China, and explored the interaction between these nutrients and fluorosis related to hyperglycemia. Method In a cross-sectional study, we recruited 901 villagers, ages ranging from 18–75, in Guizhou Province. Dietary data and other covariate data were obtained through an interviewer-administered questionnaire. We collected venous blood samples from participants who had fasted for one night to obtain fasting blood glucose levels and we categorized dietary intake of betaine, total choline, methionine, folate, vitamins B6 and B12, and choline subclasses into quartiles (Q1–Q4). The lowest quartile (Q1) served as the reference group. An unconditional logistic regression model was used to evaluate the protective effects of a dietary intake of one-carbon nutrients against hyperglycemia. We calculated Odds Ratios (ORs) with 95% confidence intervals (CIs). A presence or absence of fluorosis subgroup analysis was performed to determine the potential effect of fluorosis on hyperglycemia. Result After adjusting for potential confounding factors, we found that a greater intake of dietary vitamin B6, total choline and methyl-donor index was inversely associated with the occurrence of hyperglycemia (P-trend <0.05). However, there were no significant associations between hyperglycemia and the dietary intake of folate, vitamin B12, methionine, and betaine. As for the choline subgroups, it showed that the dietary intake of free choline, phosphatidylcholine, and glycerol phosphatidylcholine was negatively correlated with the occurrence of hyperglycemia (P < 0.05). In contrast, there was no statistical association between dietary phosphatidylcholine and sphingomyelin and hyperglycemia (all P > 0.05). The results of subgroup analysis showed that dietary intake of folate, vitamin B6, total choline, free choline, glycerol phosphorylcholine, and phosphocholine had a protective effect against the occurrence of hyperglycemia in the non-fluorosis subgroup, although no effects were observed in the fluorosis subgroup. There were significant interactions between these nutrients and fluorosis (P = 0.010–0.048). Conclusion The study demonstrated that higher dietary intake of vitamin B6, total choline, methyl-donor index, free choline, glycerol phosphorylcholine, and phosphocholine in choline compounds were associated with a lower incidence of hyperglycemia. Moreover, the associations were modified by the presence or absence of fluorosis. Further investigation is needed to test the association in large-scale follow-up studies.
Collapse
Affiliation(s)
- Li Ding
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China,Department of Nutrition and Food Hygiene, School of Public Health, Soochow University, Suzhou, China
| | - Qinglin Yang
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Zhongming Sun
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Lu Liu
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Zeyu Meng
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China
| | - Xun Zhao
- Department of Chronic Disease, Center of Disease Control and Prevention of Zhijin County, Bijie, China
| | - Na Tao
- Department of Pharmacy, Affiliated Hospital of Zunyi Medical University, Zunyi, China,*Correspondence: Na Tao
| | - Jun Liu
- Department of Preventive Medicine, School of Public Health, Zunyi Medical University, Zunyi, China,Jun Liu
| |
Collapse
|
25
|
Zhang D, Li Y, Lang X, Zhang Y. Associations of Serum Vitamin B6 Status and Catabolism With All-Cause Mortality in Patients With T2DM. J Clin Endocrinol Metab 2022; 107:2822-2832. [PMID: 35907182 PMCID: PMC9516105 DOI: 10.1210/clinem/dgac429] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Indexed: 11/24/2022]
Abstract
CONTEXT There is little evidence regarding the association between serum vitamin B6 status and catabolism and all-cause mortality in patients with type-2 diabetes mellitus (T2DM). OBJECTIVE We aimed to ascertain if the serum level of vitamin B6 and catabolism, including pyridoxal 5'-phosphate (PLP) and 4-pyridoxic acid (4-PA), were associated with risk of all-cause mortality in T2DM patients. METHODS This prospective cohort study involved 2574 patients with T2DM who participated in the National Health and Nutrition Examination Survey (NHANES) from 2005 to 2010. The serum concentrations of PLP and 4-PA were used to assess the serum level of vitamin B6. Mortality status was determined by routine follow-up using the National Death Index through December 31, 2015. RESULTS Over a median follow-up of 85 months, there were 588 deaths. The fully adjusted Cox model indicated that the highest serum PLP concentrations (> 63.6 nmol/L) were associated with a decrease in all-cause mortality (hazard ratio [HR], 0.74; 95% CI, 0.55-0.99, P trend = .035). The risk for all-cause mortality was 59% higher for participants with the highest quartile of 4-PA level compared with the lowest quartile (HR, 1.62; 95% CI, 1.12-2.35; P trend = .003). The sensitivity and specificity of the combination of PLP and 4-PA levels for the prediction of all-cause mortality were 59.5% and 60.9%, respectively (area under the receiver operating characteristic curve = 0.632). The Kaplan-Meier method was used to estimate overall survival for patients based on different combinations of PLP level and 4-PA level. Patients with PLP less than 24.3 nmol/L and 4-PA greater than or equal to 25.4 nmol/L had the worst outcomes (log-rank P < .001). CONCLUSION Overall, our data suggest that a low serum level of PLP and high serum level of 4-PA, which represent the serum level of vitamin B6, increases the risk of all-cause mortality significantly in patients with T2DM.
Collapse
Affiliation(s)
| | | | - Xueyan Lang
- Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, Harbin, Nangang, 150001, China
- Key Laboratory of Myocardial Ischemia, Ministry of Education, Harbin Medical University, Harbin, Nangang, 150001, China
| | - Yao Zhang
- Correspondence: Yao Zhang, MD, PhD, Department of Cardiology, the Second Affiliated Hospital of Harbin Medical University, No. 194 Xuefu Rd, Harbin, Nangang, 150001, China.
| |
Collapse
|
26
|
Mascolo E, Liguori F, Merigliano C, Schiano L, Gnocchini E, Pilesi E, Volonté C, Di Salvo ML, Contestabile R, Tramonti A, Vernì F. Vitamin B6 rescues insulin resistance and glucose-induced DNA damage caused by reduced activity of Drosophila PI3K. J Cell Physiol 2022; 237:3578-3586. [PMID: 35678366 PMCID: PMC9545242 DOI: 10.1002/jcp.30812] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 05/19/2022] [Accepted: 05/31/2022] [Indexed: 01/19/2023]
Abstract
The insulin signaling pathway controls cell growth and metabolism, thus its deregulation is associated with both cancer and diabetes. Phosphatidylinositol 3‐kinase (PI3K) contributes to the cascade of phosphorylation events occurring in the insulin pathway by activating the protein kinase B (PKB/AKT), which phosphorylates several substrates, including those involved in glucose uptake and storage. PI3K inactivating mutations are associated with insulin resistance while activating mutations are identified in human cancers. Here we show that RNAi‐induced depletion of the Drosophila PI3K catalytic subunit (Dp110) results in diabetic phenotypes such as hyperglycemia, body size reduction, and decreased glycogen content. Interestingly, we found that hyperglycemia produces chromosome aberrations (CABs) triggered by the accumulation of advanced glycation end‐products and reactive oxygen species. Rearing PI3KRNAi flies in a medium supplemented with pyridoxal 5′‐phosphate (PLP; the catalytically active form of vitamin B6) rescues DNA damage while, in contrast, treating PI3KRNAi larvae with the PLP inhibitor 4‐deoxypyridoxine strongly enhances CAB frequency. Interestingly, PLP supplementation rescues also diabetic phenotypes. Taken together, our results provide a strong link between impaired PI3K activity and genomic instability, a crucial relationship that needs to be monitored not only in diabetes due to impaired insulin signaling but also in cancer therapies based on PI3K inhibitors. In addition, our findings confirm the notion that vitamin B6 is a good natural remedy to counteract insulin resistance and its complications.
Collapse
Affiliation(s)
- Elisa Mascolo
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | | | - Chiara Merigliano
- Department of Molecular and Computational Biology, University of Southern California, Los Angeles, California, USA
| | - Ludovica Schiano
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Eleonora Gnocchini
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Eleonora Pilesi
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Cinzia Volonté
- Preclinical Neuroscience, IRCCS Santa Lucia Foundation, Rome, Italy.,Institute for Systems Analysis and Computer Science "A. Ruberti", National Research Council (IASI-CNR), Rome, Italy
| | - Martino L Di Salvo
- Istituto Pasteur Italia - Fondazione Cenci Bolognetti and Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Roberto Contestabile
- Istituto Pasteur Italia - Fondazione Cenci Bolognetti and Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy
| | - Angela Tramonti
- Istituto Pasteur Italia - Fondazione Cenci Bolognetti and Department of Biochemical Sciences "A. Rossi Fanelli", Sapienza University of Rome, Rome, Italy.,Institute of Molecular Biology and Pathology, National Research Council (IBPM-CNR), Rome, Italy
| | - Fiammetta Vernì
- Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
27
|
Mangel N, Fudge JB, Gruissem W, Fitzpatrick TB, Vanderschuren H. Natural Variation in Vitamin B 1 and Vitamin B 6 Contents in Rice Germplasm. FRONTIERS IN PLANT SCIENCE 2022; 13:856880. [PMID: 35444674 PMCID: PMC9014206 DOI: 10.3389/fpls.2022.856880] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 02/24/2022] [Indexed: 05/03/2023]
Abstract
Insufficient dietary intake of micronutrients contributes to the onset of deficiencies termed hidden hunger-a global health problem affecting approximately 2 billion people. Vitamin B1 (thiamine) and vitamin B6 (pyridoxine) are essential micronutrients because of their roles as enzymatic cofactors in all organisms. Metabolic engineering attempts to biofortify rice endosperm-a poor source of several micronutrients leading to deficiencies when consumed monotonously-have led to only minimal improvements in vitamin B1 and B6 contents. To determine if rice germplasm could be exploited for biofortification of rice endosperm, we screened 59 genetically diverse accessions under greenhouse conditions for variation in vitamin B1 and vitamin B6 contents across three tissue types (leaves, unpolished and polished grain). Accessions from low, intermediate and high vitamin categories that had similar vitamin levels in two greenhouse experiments were chosen for in-depth vitamer profiling and selected biosynthesis gene expression analyses. Vitamin B1 and B6 contents in polished seeds varied almost 4-fold. Genes encoding select vitamin B1 and B6 biosynthesis de novo enzymes (THIC for vitamin B1, PDX1.3a-c and PDX2 for vitamin B6) were differentially expressed in leaves across accessions contrasting in their respective vitamin contents. These expression levels did not correlate with leaf and unpolished seed vitamin contents, except for THIC expression in leaves that was positively correlated with total vitamin B1 contents in polished seeds. This study expands our knowledge of diversity in micronutrient traits in rice germplasm and provides insights into the expression of genes for vitamin B1 and B6 biosynthesis in rice.
Collapse
Affiliation(s)
- Nathalie Mangel
- Plant Biotechnology, Department of Biology, ETH Zurich, Zurich, Switzerland
| | - Jared B Fudge
- Vitamin & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, Université de Genève, Geneva, Switzerland
| | - Wilhelm Gruissem
- Plant Biotechnology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Biotechnology Center, National Chung Hsing University, Taichung, Taiwan
| | - Teresa B Fitzpatrick
- Vitamin & Environmental Stress Responses in Plants, Department of Botany and Plant Biology, Université de Genève, Geneva, Switzerland
| | - Hervé Vanderschuren
- Plant Biotechnology, Department of Biology, ETH Zurich, Zurich, Switzerland
- Plant Genetics Laboratory, TERRA Teaching and Research Center, Gembloux Agro-Bio Tech, Université de Liège, Gembloux, Belgium
| |
Collapse
|
28
|
Bajic Z, Sobot T, Skrbic R, Stojiljkovic MP, Ponorac N, Matavulj A, Djuric DM. Homocysteine, Vitamins B6 and Folic Acid in Experimental Models of Myocardial Infarction and Heart Failure—How Strong Is That Link? Biomolecules 2022; 12:biom12040536. [PMID: 35454125 PMCID: PMC9027107 DOI: 10.3390/biom12040536] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/24/2022] [Accepted: 03/28/2022] [Indexed: 12/29/2022] Open
Abstract
Cardiovascular diseases are the leading cause of death and the main cause of disability. In the last decade, homocysteine has been found to be a risk factor or a marker for cardiovascular diseases, including myocardial infarction (MI) and heart failure (HF). There are indications that vitamin B6 plays a significant role in the process of transsulfuration in homocysteine metabolism, specifically, in a part of the reaction in which homocysteine transfers a sulfhydryl group to serine to form α-ketobutyrate and cysteine. Therefore, an elevated homocysteine concentration (hyperhomocysteinemia) could be a consequence of vitamin B6 and/or folate deficiency. Hyperhomocysteinemia in turn could damage the endothelium and the blood vessel wall and induce worsening of atherosclerotic process, having a negative impact on the mechanisms underlying MI and HF, such as oxidative stress, inflammation, and altered function of gasotransmitters. Given the importance of the vitamin B6 in homocysteine metabolism, in this paper, we review its role in reducing oxidative stress and inflammation, influencing the functions of gasotransmitters, and improving vasodilatation and coronary flow in animal models of MI and HF.
Collapse
Affiliation(s)
- Zorislava Bajic
- Department of Physiology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (Z.B.); (T.S.); (N.P.); (A.M.)
| | - Tanja Sobot
- Department of Physiology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (Z.B.); (T.S.); (N.P.); (A.M.)
| | - Ranko Skrbic
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (R.S.); (M.P.S.)
| | - Milos P. Stojiljkovic
- Department of Pharmacology, Toxicology and Clinical Pharmacology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (R.S.); (M.P.S.)
| | - Nenad Ponorac
- Department of Physiology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (Z.B.); (T.S.); (N.P.); (A.M.)
| | - Amela Matavulj
- Department of Physiology, Faculty of Medicine, University of Banja Luka, 78000 Banja Luka, Bosnia and Herzegovina; (Z.B.); (T.S.); (N.P.); (A.M.)
| | - Dragan M. Djuric
- Faculty of Medicine, Institute of Medical Physiology “Richard Burian”, University of Belgrade, 11000 Belgrade, Serbia
- Correspondence:
| |
Collapse
|
29
|
Ziegler D, Tesfaye S, Spallone V, Gurieva I, Al Kaabi J, Mankovsky B, Martinka E, Radulian G, Nguyen KT, Stirban AO, Tankova T, Varkonyi T, Freeman R, Kempler P, Boulton AJ. Screening, diagnosis and management of diabetic sensorimotor polyneuropathy in clinical practice: International expert consensus recommendations. Diabetes Res Clin Pract 2022; 186:109063. [PMID: 34547367 DOI: 10.1016/j.diabres.2021.109063] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 09/10/2021] [Accepted: 09/14/2021] [Indexed: 11/24/2022]
Abstract
Diabetic sensorimotor polyneuropathy (DSPN) affects around one third of people with diabetes and accounts for considerable morbidity, increased risk of mortality, reduced quality of life, and increased health care costs resulting particularly from neuropathic pain and foot ulcers. Painful DSPN is encountered in 13-26% of diabetes patients, while up to 50% of patients with DSPN may be asymptomatic. Unfortunately, DSPN still remains inadequately diagnosed and treated. Herein we provide international expert consensus recommendations and algorithms for screening, diagnosis, and treatment of DSPN in clinical practice derived from a Delphi process. Typical neuropathic symptoms include pain, paresthesias, and numbness particularly in the feet and calves. Clinical diagnosis of DSPN is based on neuropathic symptoms and signs (deficits). Management of DSPN includes three cornerstones: (1) lifestyle modification, optimal diabetes treatment aimed at near-normoglycemia, and multifactorial cardiovascular risk intervention, (2) pathogenetically oriented pharmacotherapy (e.g. α-lipoic acid and benfotiamine), and (3) symptomatic treatment of neuropathic pain including analgesic pharmacotherapy (antidepressants, anticonvulsants, opioids, capsaicin 8% patch and combinations, if required) and non-pharmacological options. Considering the individual risk profile, pain management should not only aim at pain relief, but also allow for improvement in quality of sleep, functionality, and general quality of life.
Collapse
Affiliation(s)
- Dan Ziegler
- Institute for Clinical Diabetology, German Diabetes Center, Leibniz Center for Diabetes Research at Heinrich Heine University Düsseldorf, Düsseldorf, Germany; Department of Endocrinology and Diabetology, Medical Faculty and University Hospital Düsseldorf, Heinrich Heine University Düsseldorf, Düsseldorf, Germany.
| | - Solomon Tesfaye
- Diabetes Research Department, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Vincenza Spallone
- Department of Systems Medicine, Endocrinology Section, University of Rome Tor Vergata, Rome, Italy
| | - Irina Gurieva
- Department of Endocrinology, Federal Bureau of Medical and Social Expertise, Moscow, Russia; Department of Endocrinology, Russian Medical Academy of Continuous Professional Education, Moscow, Russia
| | - Juma Al Kaabi
- Zayed Centre for Health Sciences, United Arab Emirates University, Al Ain, United Arab Emirates; Department of Internal Medicine, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, United Arab Emirates
| | - Boris Mankovsky
- Department of Diabetology, National Medical Academy for Postgraduate Education, Kiev, Ukraine
| | - Emil Martinka
- National Institute of Endocrinology and Diabetology, Lubochna, Slovak Republic; Faculty of Health Sciences University of Ss. Cyril and Methodius in Trnava, Slovak Republic
| | - Gabriela Radulian
- "N. Paulescu" National Institute of Diabetes, Nutrition and Metabolic Diseases, University of Medicine and Pharmacy "Carol Davila" Bucharest, Romania
| | - Khue Thy Nguyen
- Ho Chi Minh City University of Medicine and Pharmacy, Ho Chi Minh City, Vietnam
| | | | - Tsvetalina Tankova
- Department of Endocrinology, Medical University - Sofia, Sofia, Bulgaria
| | - Tamás Varkonyi
- Department of Internal Medicine, Faculty of Medicine, University of Szeged, Szeged, Hungary
| | - Roy Freeman
- Department of Neurology, Harvard Medical School, Boston, MA, United States
| | - Péter Kempler
- Department of Internal Medicine and Oncology, Semmelweis University, Budapest, Hungary
| | - Andrew Jm Boulton
- Faculty of Biology, Medicine and Health, University of Manchester and Manchester University Foundation Trust, Manchester, UK
| |
Collapse
|
30
|
Subramani PA, Shaik FB, Michael RD, Panati K, Narala VR. Thiamine Is a Natural Peroxisome Proliferator–Activated Receptor Gamma (PPAR-γ) Activator. LETT DRUG DES DISCOV 2022. [DOI: 10.2174/1570180819666220127121403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
There has been increasing evidence for the correlation between thiamine deficiency and type 2 diabetes (T2D). T2D is a condition in which an individual’s insulin sensitivity is highly compromised. Peroxisome proliferator–activated receptor gamma (PPAR-γ) is a ligand-activated transcription factor etiologically relevant to T2D. We hypothesized that thiamine could be a PPAR-γ ligand and thus activate PPAR-γ and ameliorate T2D.
Objective:
This study aims to establish thiamine as a PPAR-γ ligand via molecular docking and dynamics simulations (MDS) and thiamine’s ability to induce adipogenesis, upregulating PPAR-γ and AP-2 genes using in vitro assays.
Methods:
Thiamine/PPAR-γ binding was studied using Schrödinger’s Glide. The bound complex was simulated in the OPLS 2005 force field using Desmond. 3T3-L1 preadipocyte cells were differentiated in the presence of thiamine and rosiglitazone and stained with Oil Red O. Nuclear protein from the differentiated cells was used to study the binding of the PPAR-γ response element (PPRE) using an ELISA-based assay. mRNA from differentiated cells was used to study the expression of genes using quantitative RT-PCR.
Results:
In silico docking shows that thiamine binds with PPAR-γ. MDS indicate that the interactions between thiamine and PPAR-γ are stable over a significant period. Thiamine induces the differentiation of 3T3-L1 preadipocytes in a dose-dependent manner and enhances the PPRE-binding activity of PPAR-γ. Thiamine treatment significantly increases the mRNA levels of PPAR-γ and AP-2 genes.
Conclusion:
Our results show that thiamine is a PPAR-γ ligand. Animal studies and clinical trials are required to corroborate the results obtained.
Collapse
Affiliation(s)
- Parasuraman Aiya Subramani
- Department of Zoology, Yogi Vemana University, Kadapa, A.P., 516 005, India
- Centre for Fish Immunology, School of Life Sciences, Vels University, Pallavaram, Chennai-600117, India
| | | | - R. Dinakaran Michael
- Centre for Fish Immunology, School of Life Sciences, Vels University, Pallavaram, Chennai-600117, India
| | - Kalpana Panati
- Department of Biotechnology, Government College for Men, Kadapa -516 004, India
| | | |
Collapse
|
31
|
Makarchikov AF, Kudyrka TG, Luchko TA, Yantsevich AV, Rusina IM, Makar AA, Kolas IK, Usanov SA. Synthesis, physico-chemical properties and effect of adenosine thiamine triphosphate on vitamin B 1 metabolism in the liver of alloxan diabetic rats. Biochim Biophys Acta Gen Subj 2022; 1866:130086. [PMID: 35016976 DOI: 10.1016/j.bbagen.2022.130086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 12/23/2021] [Accepted: 01/05/2022] [Indexed: 10/19/2022]
Abstract
BACKGROUND Adenosine thiamine triphosphate (AThTP) is a nucleotide discovered in bacteria and some other living organisms more than a decade ago. No biochemical function for AThTP has been established yet, however, experimental data available indicate its possible involvement in metabolic regulation or cell signaling. Metabolism of AThTP in mammals, as well as the feasibility of its pharmacological application, is essentially unstudied. METHODS Preparative low-pressure chromatography was employed to purify chemically synthesized AThTP with its further analysis by mass spectrometry, HPLC, UV and fluorescence spectroscopy. Enzyme activity assays along with HPLC were used to examine the effects of AThTP and thiamine on vitamin B1 metabolism in the liver of alloxan-induced diabetic rats. RESULTS An improved procedure for AThTP synthesis and purification is elaborated. Solution stability, optical spectral properties and the molar absorption coefficient for AThTP were determined. The levels of thiamine compounds were found to be increased in the liver of diabetic rats. Neither AThTP nor thiamine treatment affected hepatic vitamin B1 metabolism. Fasting blood glucose concentration was also unchangeable after AThTP or thiamine administration. GENERAL SIGNIFICANCE Contrast to the widespread view about thiamine deficiency in diabetes, our results clearly shows an adaptive increase in the level of B1 vitamers in the liver of alloxan diabetic rats with no further rising after AThTP or thiamine treatment at a moderate dose. Neither AThTP nor thiamine is effective in glycaemic control. These findings are to be considered in future studies dealing with thiamine or its analogues application to correct metabolic disturbances in diabetes.
Collapse
Affiliation(s)
- Alexander F Makarchikov
- Grodno State Agrarian University, 28 Tereshkova St., Grodno 230008, Belarus; Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences of Belarus, 50 BLK, Grodno 230030, Belarus.
| | - Tatsiana G Kudyrka
- Grodno State Agrarian University, 28 Tereshkova St., Grodno 230008, Belarus; Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences of Belarus, 50 BLK, Grodno 230030, Belarus
| | - Tatyana A Luchko
- Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences of Belarus, 50 BLK, Grodno 230030, Belarus
| | - Aliaksei V Yantsevich
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 5/2 Kuprevicha St., Minsk 220141, Belarus
| | - Iryna M Rusina
- Grodno State Agrarian University, 28 Tereshkova St., Grodno 230008, Belarus; Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences of Belarus, 50 BLK, Grodno 230030, Belarus
| | - Alena A Makar
- Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences of Belarus, 50 BLK, Grodno 230030, Belarus
| | - Iryna K Kolas
- Grodno State Agrarian University, 28 Tereshkova St., Grodno 230008, Belarus; Institute of Biochemistry of Biologically Active Compounds, National Academy of Sciences of Belarus, 50 BLK, Grodno 230030, Belarus
| | - Sergey A Usanov
- Institute of Bioorganic Chemistry, National Academy of Sciences of Belarus, 5/2 Kuprevicha St., Minsk 220141, Belarus
| |
Collapse
|
32
|
Farah S, Yammine K. A systematic review on the efficacy of vitamin B supplementation on diabetic peripheral neuropathy. Nutr Rev 2022; 80:1340-1355. [PMID: 34990506 DOI: 10.1093/nutrit/nuab116] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
CONTEXT Diabetic peripheral neuropathy (DPN) is a common complication. OBJECTIVE To re-evaluate the role of vitamin B supplementation on reducing the signs and symptoms of DPN. DATA SOURCES Electronic databases such as PubMed, Cochrane Library, and Medline. DATA EXTRACTION An Excel spreadsheet was used to report the extracted relevant data. DATA ANALYSIS Fourteen randomized controlled trials were selected, comprising a pooled sample of 997 study subjects. The pooled odds ratio values were 3.1 (95%CI, 1.197-8.089) and 3.04 (95%CI, 1.556-5.937) for pain and dysesthesia outcomes, respectively. For the amplitude change in electromyography of the sensory sural nerve, the weighted difference from 2 studies was 0.37 (95%CI, 0.034-0.709) in favor of intervention. Peak latency changes were in favor of the intervention group. Two studies yielded a weighted difference of 0.571 (95%CI, 0.310-0.831) for the velocity outcome in favor of intervention. Unlike the fibular nerve, the electromyographic motor outcomes of the tibial nerve were in favor of vitamin B supplementation. CONCLUSION Vitamin B supplementation could improve many symptoms and signs of DPN.
Collapse
Affiliation(s)
- Stephanie Farah
- Postdoctoral Research Fellow, Lebanese American University Medical Center, Beirut, Lebanon
| | - Kaissar Yammine
- Department of Orthopedic Surgery, Lebanese American University Medical Center-Rizk Hospital; Diabetic Foot Clinic; and the Center for Evidence-Based Anatomy, Sport & Orthopedic Research, Lebanese American University, School of Medicine, Beirut, Lebanon
| |
Collapse
|
33
|
UHPLC-MS-Based Serum and Urine Metabolomics Reveals the Anti-Diabetic Mechanism of Ginsenoside Re in Type 2 Diabetic Rats. Molecules 2021; 26:molecules26216657. [PMID: 34771066 PMCID: PMC8588396 DOI: 10.3390/molecules26216657] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 10/28/2021] [Accepted: 10/29/2021] [Indexed: 11/17/2022] Open
Abstract
Panax ginseng was employed in the treatment of “Xiao-Ke” symptom, which nowadays known as diabetes mellitus, in traditional Chinese medicine for more than a thousand years. Ginsenoside Re was the major pharmacologic ingredient found abundantly in ginseng. However, the anti-diabetic of Ginsenoside Re and its underlying mechanism in metabolic level are still unclear. Serum and urine metabolomic method was carried out to investigate the anti-diabetic pharmacological effects and the potential mechanism of Ginsenoside Re on high-fat diet combined streptozotocin-induced type 2 diabetes mellitus (T2DM) rats based on ultra-high-performance liquid chromatography coupled with quadrupole exactive orbitrap mass spectrometry (UHPLC-Q-Exactive Orbitrap/MS). Serum and urine samples were collected from the control group (CON), T2DM group, metformin (MET) treatment group, and ginsenoside Re treatment group after intervention. The biochemical parameters of serum were firstly analyzed. The endogenous metabolites in serum and urine were detected by UHPLC-MS. The potential metabolites were screened by multivariate statistical analysis and identified by accurate mass measurement, MS/MS, and metabolite databases. The anti-diabetic-related metabolites were analyzed by KEGG metabolic pathway, and its potential mechanism was discussed. The treatment of ginsenoside Re significantly reduced the blood glucose and serum lipid level improved the oxidative stress caused by T2DM. Biochemical parameters (urea nitrogen, uric acid) showed that ginsenoside Re could improve renal function in T2DM rats. Respective 2 and 6 differential metabolites were found and identified in serum and urine of ginsenoside Re compared with T2DM group and enriched in KEGG pathway. Metabolic pathways analysis indicated that the differential metabolites related to T2DM were mainly involved in arachidonic acid metabolism, Vitamin B6, steroid hormone biosynthesis, and bile secretion metabolic pathways. This study verified the anti-diabetic and anti-oxidation effects of ginsenoside Re, elaborated that ginsenoside Re has a good regulation of the metabolic disorder in T2DM rats, which could promote insulin secretion, stimulated cannabinoid type 1 receptor (CB1), and CaMKK β to activate AMPK signaling pathway, inhibited insulin resistance, and improved blood glucose uptake and diabetic nephropathy, so as to play the role of anti-diabetic.
Collapse
|
34
|
Hiding in Plain Sight: Modern Thiamine Deficiency. Cells 2021; 10:cells10102595. [PMID: 34685573 PMCID: PMC8533683 DOI: 10.3390/cells10102595] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/22/2021] [Accepted: 09/23/2021] [Indexed: 12/13/2022] Open
Abstract
Thiamine or vitamin B1 is an essential, water-soluble vitamin required for mitochondrial energetics—the production of adenosine triphosphate (ATP). It is a critical and rate-limiting cofactor to multiple enzymes involved in this process, including those at the entry points and at critical junctures for the glucose, fatty acid, and amino acid pathways. It has a very short half-life, limited storage capacity, and is susceptible to degradation and depletion by a number of products that epitomize modern life, including environmental and pharmaceutical chemicals. The RDA for thiamine is 1.1–1.2 mg for adult females and males, respectively. With an average diet, even a poor one, it is not difficult to meet that daily requirement, and yet, measurable thiamine deficiency has been observed across multiple patient populations with incidence rates ranging from 20% to over 90% depending upon the study. This suggests that the RDA requirement may be insufficient to meet the demands of modern living. Inasmuch as thiamine deficiency syndromes pose great risk of chronic morbidity, and if left untreated, mortality, a more comprehensive understanding thiamine chemistry, relative to energy production, modern living, and disease, may prove useful.
Collapse
|
35
|
Stach K, Stach W, Augoff K. Vitamin B6 in Health and Disease. Nutrients 2021; 13:3229. [PMID: 34579110 PMCID: PMC8467949 DOI: 10.3390/nu13093229] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 02/06/2023] Open
Abstract
Vitamin B6 is a fascinating molecule involved in the vast majority of changes in the human body because it is a coenzyme involved in over 150 biochemical reactions. It is active in the metabolism of carbohydrates, lipids, amino acids, and nucleic acids, and participates in cellular signaling. It is an antioxidant and a compound with the ability to lower the advanced glycation end products (AGE) level. In this review, we briefly summarize its involvement in biochemical pathways and consider whether its deficiency may be associated with various diseases such as diabetes, heart disease, cancer, or the prognosis of COVID-19.
Collapse
Affiliation(s)
- Kamilla Stach
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Wojciech Stach
- Department of Medical Biochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland;
| | - Katarzyna Augoff
- Department of Surgical Education, Wroclaw Medical University, 50-668 Wroclaw, Poland;
| |
Collapse
|
36
|
Shakoor H, Feehan J, Mikkelsen K, Al Dhaheri AS, Ali HI, Platat C, Ismail LC, Stojanovska L, Apostolopoulos V. Be well: A potential role for vitamin B in COVID-19. Maturitas 2021; 144:108-111. [PMID: 32829981 PMCID: PMC7428453 DOI: 10.1016/j.maturitas.2020.08.007] [Citation(s) in RCA: 74] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 08/13/2020] [Indexed: 01/07/2023]
Affiliation(s)
- Hira Shakoor
- Department of Food, Nutrition and Health, College of Food and Agriculture, Al Ain, United Arab Emirates University, United Arab Emirates
| | - Jack Feehan
- Institute for Health and Sport, Victoria University, Melbourne, Australia; Department of Medicine, Western Health, The University of Melbourne, Melbourne, Australia
| | - Kathleen Mikkelsen
- Institute for Health and Sport, Victoria University, Melbourne, Australia
| | - Ayesha S Al Dhaheri
- Department of Food, Nutrition and Health, College of Food and Agriculture, Al Ain, United Arab Emirates University, United Arab Emirates
| | - Habiba I Ali
- Department of Food, Nutrition and Health, College of Food and Agriculture, Al Ain, United Arab Emirates University, United Arab Emirates
| | - Carine Platat
- Department of Food, Nutrition and Health, College of Food and Agriculture, Al Ain, United Arab Emirates University, United Arab Emirates
| | - Leila Cheikh Ismail
- Clinical Nutrition and Dietetics Department, College of Health Sciences, University of Sharjah, Sharjah, United Arab Emirates; Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Lily Stojanovska
- Department of Food, Nutrition and Health, College of Food and Agriculture, Al Ain, United Arab Emirates University, United Arab Emirates; Institute for Health and Sport, Victoria University, Melbourne, Australia
| | | |
Collapse
|
37
|
Gonçalves SEAB, Gonçalves TJM, Guarnieri A, Risegato RC, Guimarães MP, de Freitas DC. Association between thiamine deficiency and hyperlactatemia among critically ill patients with diabetes infected by SARS-CoV-2. J Diabetes 2021; 13:413-419. [PMID: 33448683 PMCID: PMC8014215 DOI: 10.1111/1753-0407.13156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 01/07/2021] [Accepted: 01/10/2021] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND The present study aims to verify the association between diabetes and thiamine deficiency in critically ill patients infected by severe acute respiratory syndrome coronavirus 2. METHODS This is a descriptive cross-sectional study, whose demographic, anthropometric, and laboratory data (arterial lactate, bicarbonate, and plasma thiamine) were obtained in the first hours of admission to the intensive care unit. Patients with diabetes were compared with individuals without diabetes, and the correlation was performed between thiamine and lactate levels. Thiamine levels <28 μg/L were considered as thiamine deficiency. RESULTS Overall, 270 patients met the inclusion criteria; 51.1% were men, and the median age was 74 years (66.8-81). The median value of thiamine was 54.0 μg/L (38-72.3), and 15.6% had thiamine deficiency. Among patients with diabetes, 26.3% had thiamine deficiency, and 69.3% had hyperlactatemia. There was an association between thiamine deficiency and diabetes (odds ratio 4.28; 95% CI, 2.08-8.81; P < .001). There was a strong negative correlation between thiamine and arterial lactate in patients with diabetes (r = -0.711, P < .001) and a moderate negative correlation in critically ill patients without diabetes (r = -0.489, P < .001). CONCLUSIONS The prevalence of thiamine deficiency in critically ill patients due to coronavirus disease 2019 is higher in patients with diabetes. There is a negative correlation between thiamine and arterial lactate levels, which is higher in people with diabetes.
Collapse
Affiliation(s)
| | | | - Andreia Guarnieri
- Sancta Maggiore Hospital, Prevent Senior Private Health OperatorSão PauloBrazil
| | | | | | | |
Collapse
|
38
|
Calderon-Ospina CA, Nava-Mesa MO, Paez-Hurtado AM. Update on Safety Profiles of Vitamins B1, B6, and B12: A Narrative Review. Ther Clin Risk Manag 2020; 16:1275-1288. [PMID: 33376337 PMCID: PMC7764703 DOI: 10.2147/tcrm.s274122] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022] Open
Abstract
The neurotropic B vitamins B1 (thiamine), B6 (pyridoxine), and B12 (cobalamin) are essential for proper functioning of the nervous system. Deficiencies may induce neurological disorders like peripheral neuropathy (PN) and mainly occur in vulnerable populations (eg, elderly, diabetics, alcoholics). As epidemiologic cohort studies raised safety concerns about vitamin B6/B12 intake being potentially associated with increased risks of hip fracture (HF) and lung cancer (LC), we explored these aspects and performed comprehensive literature searches. However, we suggest not to neglect actual high-risk factors (eg, smoking in LC, higher age in HF) by focusing on individual nutrients, but to examine the complex interaction of numerous factors involved in disease development. Because it warrants continued consideration, we also provide an update on neurotoxicity associated with vitamin B6. We consider that neurological side effects due to vitamin B6 intake are rare and only occur with high daily doses and/or longer treatment duration. The benefit-risk ratio of high-dose treatment with neurotropic B vitamins in indications like PN is therefore considered advantageous, particularly if dosing recommendations are followed and serum levels monitored.
Collapse
Affiliation(s)
- Carlos-Alberto Calderon-Ospina
- Center for Research in Genetics and Genomics (CIGGUR), GENIUROS Research Group, School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Mauricio Orlando Nava-Mesa
- Neuroscience Research Group (NEUROS), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| | - Ana María Paez-Hurtado
- Neuroscience Research Group (NEUROS), School of Medicine and Health Sciences, Universidad del Rosario, Bogotá, Colombia
| |
Collapse
|
39
|
Um HJ, Ko JW, Won SB, Kwon YH. Effects of Dietary Vitamin B6 Restriction on Hepatic Gene Expression Profile of Non-Obese and Obese Mice. Nutrients 2020; 12:nu12123821. [PMID: 33327560 PMCID: PMC7765059 DOI: 10.3390/nu12123821] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 02/06/2023] Open
Abstract
Although vitamin B6 is contained in various foods, its deficiency is one of the most common micronutrient deficiencies worldwide. Furthermore, patients with obesity and cardiovascular disease are more likely to have suboptimal vitamin B6 status than healthy people. Therefore, we investigated the effects of dietary vitamin B6 restriction on hepatic gene expression and function in obese mice. C57BL/6J male mice were fed a low-fat (LF) or high-fat (HF) diet in combination with sufficient (7 mg pyridoxine/kg diet) or insufficient (1 mg) amounts of vitamin B6 for 16 weeks. Analysis of microarray data revealed that expressions of 4000 genes were significantly altered by the experimental diets (LF7, LF1, HF7, and HF1). The effects of dietary fat content on gene expressions were markedly greater than vitamin B6 content. Only three differentially expressed genes (DEGs) were overlapped between the LF1/LF7 and HF1/HF7 comparison. In the LF1/LF7 comparison, 54 upregulated DEGs were enriched in gene ontology (GO) terms associated with the sterol metabolic process and 54 downregulated DEGs were enriched in GO terms associated with immune response. In HF1/HF7 comparison, 26 upregulated DEGs were enriched in GO terms associated with amino acid catabolic process. High-fat consumption downregulated gene expressions associated with vitamin B6-dependent pathways. In conclusion, our data suggest that obesity may differentially regulate vitamin B6-associated metabolic pathways in the body.
Collapse
Affiliation(s)
- Hyun-Jee Um
- Department of Food and Nutrition, Seoul National University, Seoul 08826, Korea; (H.-J.U.); (J.W.K.)
| | - Je Won Ko
- Department of Food and Nutrition, Seoul National University, Seoul 08826, Korea; (H.-J.U.); (J.W.K.)
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea
| | - Sae Bom Won
- Department of Human Nutrition and Food Science, Chungwoon University, Hongseong, Chungnam 32244, Korea;
| | - Young Hye Kwon
- Department of Food and Nutrition, Seoul National University, Seoul 08826, Korea; (H.-J.U.); (J.W.K.)
- Research Institute of Human Ecology, Seoul National University, Seoul 08826, Korea
- Correspondence: ; Tel.: +82-2-880-6833
| |
Collapse
|
40
|
Gu X, Al Dubayee M, Alshahrani A, Masood A, Benabdelkamel H, Zahra M, Li L, Abdel Rahman AM, Aljada A. Distinctive Metabolomics Patterns Associated With Insulin Resistance and Type 2 Diabetes Mellitus. Front Mol Biosci 2020; 7:609806. [PMID: 33381523 PMCID: PMC7768025 DOI: 10.3389/fmolb.2020.609806] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 11/23/2020] [Indexed: 01/17/2023] Open
Abstract
Obesity is associated with an increased risk of insulin resistance (IR) and type 2 diabetes mellitus (T2DM) which is a multi-factorial disease associated with a dysregulated metabolism and can be prevented in pre-diabetic individuals with impaired glucose tolerance. A metabolomic approach emphasizing metabolic pathways is critical to our understanding of this heterogeneous disease. This study aimed to characterize the serum metabolomic fingerprint and multi-metabolite signatures associated with IR and T2DM. Here, we have used untargeted high-performance chemical isotope labeling (CIL) liquid chromatography-mass spectrometry (LC-MS) to identify candidate biomarkers of IR and T2DM in sera from 30 adults of normal weight, 26 obese adults, and 16 adults newly diagnosed with T2DM. Among the 3633 peak pairs detected, 62% were either identified or matched. A group of 78 metabolites were up-regulated and 111 metabolites were down-regulated comparing obese to lean group while 459 metabolites were up-regulated and 166 metabolites were down-regulated comparing T2DM to obese groups. Several metabolites were identified as IR potential biomarkers, including amino acids (Asn, Gln, and His), methionine (Met) sulfoxide, 2-methyl-3-hydroxy-5-formylpyridine-4-carboxylate, serotonin, L-2-amino-3-oxobutanoic acid, and 4,6-dihydroxyquinoline. T2DM was associated with dysregulation of 42 metabolites, including amino acids, amino acids metabolites, and dipeptides. In conclusion, these pilot data have identified IR and T2DM metabolomics panels as potential novel biomarkers of IR and identified metabolites associated with T2DM, with possible diagnostic and therapeutic applications. Further studies to confirm these associations in prospective cohorts are warranted.
Collapse
Affiliation(s)
- Xinyun Gu
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Mohammed Al Dubayee
- Department of Medicine, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Awad Alshahrani
- Department of Medicine, College of Medicine, King Saud bin Abdulaziz University for Health Sciences, King Abdullah International Medical Research Center, Ministry of National Guard Health Affairs, Riyadh, Saudi Arabia
| | - Afshan Masood
- Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Hicham Benabdelkamel
- Obesity Research Center, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mahmoud Zahra
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| | - Liang Li
- Department of Chemistry, University of Alberta, Edmonton, AB, Canada
| | - Anas M Abdel Rahman
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia.,Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh, Saudi Arabia.,Department of Chemistry, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Ahmad Aljada
- Department of Biochemistry and Molecular Medicine, College of Medicine, Alfaisal University, Riyadh, Saudi Arabia
| |
Collapse
|
41
|
Mechanick JI, Marchetti A, Hegazi R, Hamdy O. Diabetes-Specific Nutrition Formulas in the Management of Patients with Diabetes and Cardiometabolic Risk. Nutrients 2020; 12:E3616. [PMID: 33255565 PMCID: PMC7761009 DOI: 10.3390/nu12123616] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 01/29/2023] Open
Abstract
Food-based dietary management, enhanced with evidence-based commercial products, such as diabetes-specific nutrition formulas (DSNFs), can help control the development, progression, and severity of certain chronic diseases. In this review, evidence is detailed on the use of DSNFs in patients with or at risk for diabetes and cardiometabolic-based chronic disease. Many DSNF strategies target glycemic excursions and cardiovascular physiology, taking into account various elements of healthy eating patterns. Nevertheless, significant research, knowledge, and practice gaps remain. These gaps are actionable in terms of formulating and testing relevant and pragmatic research questions, developing an educational program for the uniform distribution of information, and collaboratively writing clinical practice guidelines that incorporate the evidence base for DSNF. In sum, the benefits of DNSF as part of validated clinical practice algorithms include mitigation of chronic disease progression, cost-savings for the healthcare system, and applicability on a global scale.
Collapse
Affiliation(s)
- Jeffrey I. Mechanick
- The Marie-Josee and Henry R. Kravis Center for Cardiovascular Health at Mount Sinai Heart, Metabolic Support, Division of Endocrinology, Diabetes and Bone Disease, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Albert Marchetti
- Medical Education and Research Alliance (Med-ERA, Inc.), Pompano Beach, FL 33069, USA
- Preventive Medicine and Community Health, Rutgers New Jersey Medical School, Newark, NJ 07103, USA
| | - Refaat Hegazi
- Research and Development Department, Abbott Nutrition, Columbus, OH 43219, USA;
- Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
| | - Osama Hamdy
- Obesity Clinical Program and Inpatient Diabetes Program, Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA;
| |
Collapse
|
42
|
Zhou J, Effiong U. Isolated Pyridoxine Deficiency Presenting as Muscle Spasms in a Patient With Type 2 Diabetes: A Case Report and Literature Review. Am J Med Sci 2020; 361:791-794. [PMID: 33958192 DOI: 10.1016/j.amjms.2020.10.027] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 10/12/2020] [Accepted: 10/27/2020] [Indexed: 11/17/2022]
Abstract
Pyridoxine is an important co-factor for many biochemical reactions in cellular metabolism related to the synthesis and catabolism of amino acids, fatty acids, neurotransmitters. Deficiency of pyridoxine results in impaired transcellular signaling between neurons and presents with muscular convulsions, hyperirritability, and peripheral neuropathy. Deficiency of pyridoxine is usually found in association with other vitamin B deficiencies such as folate (vitamin B9) and cobalamin (vitamin B12). Isolated pyridoxine deficiency is extremely rare. We present the case of a 59-year old female with type 2 diabetes who complained of painful muscle spasms. Her muscle spasms involved in both feet, which have spread proximally to her legs. She also experienced intermittent muscle spasms in her left arm, which is not alleviated by baclofen, cyclobenzaprine. Her plasma pyridoxal 5-phosphate confirmed pyridoxine deficiency. Vitamins B1, B3, B12, and folate were within normal limits. The patient received standard-dose intramuscular pyridoxine injections for three weeks followed by oral supplements for 3 months and her symptoms resolved. This case illustrates the rare instance of isolated pyridoxine deficiency in type 2 diabetes patient manifesting as myoclonic muscle spasms involving the legs and arms in the absence of objective polyneuropathy. Pyridoxine level should, therefore, be assessed in patients with type 2 diabetes, including newly diagnosed patients.
Collapse
Affiliation(s)
- Joseph Zhou
- College of Medicine, Central Michigan University, Mount Pleasant, MI, USA.
| | - Utibe Effiong
- College of Medicine, Central Michigan University, Mount Pleasant, MI, USA; MidMichigan Health, Midland, MI, USA
| |
Collapse
|
43
|
Kumrungsee T, Zhang P, Chartkul M, Yanaka N, Kato N. Potential Role of Vitamin B6 in Ameliorating the Severity of COVID-19 and Its Complications. Front Nutr 2020; 7:562051. [PMID: 33195363 PMCID: PMC7658555 DOI: 10.3389/fnut.2020.562051] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 09/28/2020] [Indexed: 12/18/2022] Open
Affiliation(s)
| | - Peipei Zhang
- State Key Laboratory of Cellular Stress Biology, School of Medicine and School of Life Science, Xiamen University, Xiamen, China
| | - Maesaya Chartkul
- Emergency Department, Bangkok Chanthaburi Hospital, Chanthaburi, Thailand
- Emergency Department, King Prajadhipok Memorial Hospital, Chanthaburi, Thailand
- Department of Preventive and Social Medicine, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Noriyuki Yanaka
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Norihisa Kato
- Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
44
|
Kamchatnov PR, Abusueva BA, Khanmurzaeva SB, Khanmurzaeva NB. [Choosing of therapy for a patient with dorsalgia]. TERAPEVT ARKH 2020; 92:102-107. [PMID: 33346438 DOI: 10.26442/00403660.2020.09.000836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Accepted: 10/13/2020] [Indexed: 11/22/2022]
Abstract
Dorsalgia is one of the most common skeletal muscle syndromes. Dorsalgia often develops in patients of older age groups with polymorbidity that requires the appointment of a large number of medications. In these conditions, the choice of effective and safe therapy is a difficult problem. Discusses management of a patient suffering dorsalgia with comorbidities, the risks of complications of therapy, possible safety treatment, in particular, through the use of combination therapy.
Collapse
|
45
|
Marques AM, Sarandy MM, Novaes RD, Gonçalves RV, Freitas MB. Preclinical relevance of probiotics in type 2 diabetes: A systematic review. Int J Exp Pathol 2020; 101:68-79. [PMID: 32608551 DOI: 10.1111/iep.12359] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2019] [Revised: 05/20/2020] [Accepted: 05/24/2020] [Indexed: 12/14/2022] Open
Abstract
Type 2 diabetes (T2DM) is among the most prevalent metabolic diseases in the world and may result in several long-term complications. The crosstalk between gut microbiota and host metabolism is closely related to T2DM. Currently, fragmented data hamper defining the relationship between probiotics and T2DM. This systematic review aimed at investigating the effects of probiotics on T2DM in animal models. We systematically reviewed preclinical evidences using PubMed/MEDLINE and Scopus databases, recovering 24 original articles published until September 27th, 2019. This systematic review was performed according to PRISMA guidelines. We included experimental studies with animal models reporting the effects of probiotics on T2DM. Studies were sorted by characteristics of publications, animal models, performed analyses, probiotic used and interventions. Bias analysis and methodological quality assessments were examined through the SYRCLE's Risk of Bias tool. Probiotics improved T2DM in 96% of the studies. Most studies (96%) used Lactobacillus strains, and all of them led to improved glycaemia. All studies used rodents as models, and male animals were preferred over females. Results suggest that probiotics have a beneficial effect in T2DM animals and could be used as a supporting alternative in the disease treatment. Considering a detailed evaluation of the reporting and methodological quality, the current preclinical evidence is at high risk of bias. We hope that our critical analysis will be useful in mitigating the sources of bias in further studies.
Collapse
Affiliation(s)
| | | | - Rômulo Dias Novaes
- Department of Structural Biology, Federal University of Alfenas, Alfenas, Brazil
| | | | | |
Collapse
|
46
|
Vitamin B6 and Diabetes: Relationship and Molecular Mechanisms. Int J Mol Sci 2020; 21:ijms21103669. [PMID: 32456137 PMCID: PMC7279184 DOI: 10.3390/ijms21103669] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 05/21/2020] [Accepted: 05/21/2020] [Indexed: 12/14/2022] Open
Abstract
Vitamin B6 is a cofactor for approximately 150 reactions that regulate the metabolism of glucose, lipids, amino acids, DNA, and neurotransmitters. In addition, it plays the role of antioxidant by counteracting the formation of reactive oxygen species (ROS) and advanced glycation end-products (AGEs). Epidemiological and experimental studies indicated an evident inverse association between vitamin B6 levels and diabetes, as well as a clear protective effect of vitamin B6 on diabetic complications. Interestingly, by exploring the mechanisms that govern the relationship between this vitamin and diabetes, vitamin B6 can be considered both a cause and effect of diabetes. This review aims to report the main evidence concerning the role of vitamin B6 in diabetes and to examine the underlying molecular and cellular mechanisms. In addition, the relationship between vitamin B6, genome integrity, and diabetes is examined. The protective role of this vitamin against diabetes and cancer is discussed.
Collapse
|
47
|
Anwar A, Ahmed Azmi M, Siddiqui JA, Panhwar G, Shaikh F, Ariff M. Thiamine Level in Type I and Type II Diabetes Mellitus Patients: A Comparative Study Focusing on Hematological and Biochemical Evaluations. Cureus 2020; 12:e8027. [PMID: 32528766 PMCID: PMC7282352 DOI: 10.7759/cureus.8027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 05/08/2020] [Indexed: 01/19/2023] Open
Abstract
Objective Diabetes has been found to be associated with low levels of thiamine stores in the body, as thiamine directly affects carbohydrate metabolism. Amplified renal clearance of thiamine has been found in both type I and type II diabetic patients. It has been shown that high-dose thiamine therapy may have a therapeutic effect on early-stage diabetic nephropathy. The aim of this study was to evaluate various biochemical parameters and serum thiamine levels in type I and type II diabetic patients and compare them with a healthy control group. Methods A case-control study was carried out in the diabetic out-patient multi-centers in Karachi. A total of 90 participants were selected by using a non-probability convenient sampling technique and divided into three groups, each with 30 subjects. Group A included healthy non-diabetic subjects, while group B included subjects with type I diabetes mellitus (DM), and group C included subjects with type II DM. After receiving informed consent, blood samples were collected from all the participants for hematological and biochemical evaluation. The duration of the study was eight months. Results The study results revealed that the patients with type II DM had significantly higher mean fasting blood sugar (FBS), random blood sugar (RBS), and hemoglobin A1c (HbA1c) levels than those with type I DM or the control group (p<0.001 for all). Furthermore, the patients with type I or II DM had significantly higher mean levels of triglyceride (p<0.001) and total cholesterol (0.013) while significantly lower mean levels of high-density lipoprotein (HDL) (p=0.014) than controls. The study results further revealed that the patients with type I or II DM had significantly lower serum thiamine levels than controls (14.89±4.82 and 7.35±1.90 vs. 69.56±12.75, p<0.001). Conclusion The study results revealed that FBS, RBS, HbA1c, triglyceride, and total cholesterol levels were significantly higher in both type I and type II diabetes patients compared to controls. Furthermore, HDL and serum thiamine levels were found to be significantly lower in both type I and type II diabetic patients than in controls.
Collapse
Affiliation(s)
- Adnan Anwar
- Stereotactic Radiosurgery/Radiation Oncology, Al-Tibri Medical College, Karachi, PAK
- Physiology, Al-Tibri Medical College, Karachi, PAK
| | - Muhammad Ahmed Azmi
- Physiology, Al-Tibri Medical College and Hospital, Karachi, PAK
- Physiology, Isra University, Karachi, PAK
| | - Jamil Ahmed Siddiqui
- Biochemistry, Fazaia Ruth Pfau Medical College, Karachi, PAK
- Biochemistry, Al-Tibri Medical College, Karachi, PAK
| | - Ghazala Panhwar
- Biochemistry, Al-Tibri Medical College and Hospital, Karachi, PAK
| | | | - Madiha Ariff
- Internal Medicine, Dow University of Health Sciences, Karachi, PAK
| |
Collapse
|
48
|
Wakeman M, Archer DT. Metformin and Micronutrient Status in Type 2 Diabetes: Does Polypharmacy Involving Acid-Suppressing Medications Affect Vitamin B12 Levels? Diabetes Metab Syndr Obes 2020; 13:2093-2108. [PMID: 32606868 PMCID: PMC7308123 DOI: 10.2147/dmso.s237454] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Accepted: 02/27/2020] [Indexed: 12/13/2022] Open
Abstract
Metformin is the first-choice drug in uncomplicated type 2 diabetes (T2DM) and is effective in improving glycaemic control. It is the most widely prescribed oral antidiabetic medicine and has a good safety profile. However, there is an abundance of evidence that metformin use is associated with decreased Vitamin B12 status, though the clinical implications of this in terms of increased risk of diabetic peripheral neuropathy are debated. There is growing evidence that other B vitamins, vitamin D and magnesium may also be impacted by metformin use in addition to alterations to the composition of the microbiome, depending on the dose and duration of therapy. Patients using metformin for prolonged periods may, therefore, need initial screening with intermittent follow-up, particularly since vitamin B12 deficiency has similar symptoms to diabetic neuropathy which itself affects 40-50% of patients with T2DM at some stage. Among patients with T2DM, 40% are reported to experience symptomatic gastroesophageal reflux disease (GORD), of whom 70% use oral antidiabetic medications. The most common medications used to treat GORD are proton pump inhibitors (PPIs) and antagonists of histamine selective H2 receptors (H2RAs), both of which independently affect vitamin B12 and magnesium status. Research indicates that co-prescribing metformin with either PPIs or H2RAs can have further deleterious effects on vitamin B12 status. Vitamin B12 deficiency related to metformin and polypharmacy is likely to contribute to the symptoms of diabetic neuropathy which may frequently be under-recognised. This review explores current knowledge surrounding these issues and suggests treatment strategies such as supplementation.
Collapse
Affiliation(s)
- Michael Wakeman
- Faculty of Health and Wellbeing, Sciences Complex, University of Sunderland, SunderlandSR1, UK
- Correspondence: Michael Wakeman Faculty of Health and Wellbeing, Sciences Complex, University of Sunderland, SunderlandSR1 3SD, UKTel +44 191 5153381 Email
| | - David T Archer
- Faculty of Health and Wellbeing, Sciences Complex, University of Sunderland, SunderlandSR1, UK
| |
Collapse
|
49
|
The relationship between plasma albumin, alkaline phosphatase and pyridoxal phosphate concentrations in plasma and red cells: Implications for assessing vitamin B6 status. Clin Nutr 2019; 39:2824-2831. [PMID: 31883613 DOI: 10.1016/j.clnu.2019.12.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 11/22/2022]
Abstract
BACKGROUND Plasma concentrations of most vitamins decrease as part of the systemic inflammatory response (SIR). Thus low plasma values do not necessarily indicate deficiency. Vitamin B6 status is usually assessed by measurement of pyridoxal phosphate (PLP) in plasma, although vitamin concentrations in blood cells tend to be better markers of cellular stores. In health, plasma PLP appears to be determined primarily by intake, its binding to albumin, and its hydrolysis by alkaline phosphatase (ALP). OBJECTIVE To examine, using in vitro studies, the effect of albumin concentration and ALP activity on PLP concentration in plasma and red blood cells of healthy subjects (HS) and critically ill patients (CI). DESIGN Heparin and EDTA (ALP inhibited) whole blood samples from HS (n = 8) and CI (n = 26) were incubated with PLP. Concentration of PLP in plasma and red cells was measured. Albumin and ALP levels were determined in plasma. RESULTS In PLP incubated heparin samples, there was a strong direct relationship between albumin in the concentration range 10-44 g/L and increase in plasma PLP concentration (rs = 0.93, P < 0.001) and an inverse relationship with increase in red cell PLP concentration (rs = -0.90, P < 0.001). In contrast, ALP activity was inversely associated with increase in plasma PLP concentration (rs = -0.42; P = 0.013) and directly associated with red cell PLP concentration (rs = 0.49; P = 0.003). CONCLUSIONS Plasma albumin concentration and to a lesser extent ALP activity influences PLP concentration in plasma and red cells. In conditions associated with low albumin (e.g. SIR) or altered ALP activity, red cell PLP measurements are more likely to be reliable than plasma measurements in differentiating true from apparent vitamin B6 deficiency and to guide vitamin B6 supplementation.
Collapse
|
50
|
Yan S, Li M, Ma X, Jiang S, Sun M, Wang C, Pan Y, Sun C, Yao Y, Jin L, Li B. Association of multiple mineral and vitamin B group intake with blood glucose using quantile regression analysis: NHANES 2007-2014. Food Nutr Res 2019; 63:3560. [PMID: 31983911 PMCID: PMC6958618 DOI: 10.29219/fnr.v63.3560] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 07/20/2019] [Accepted: 10/31/2019] [Indexed: 12/28/2022] Open
Abstract
Background Hyperglycaemia and diabetes have become major public health problems worldwide. There is increasing evidence that minerals and the vitamin B group might play specific roles in hyperglycaemia and the pathogenesis and progression of diabetes or metabolic complications. Objectives The main aim of this study is to investigate the effect of mineral and vitamin B group supplementation on the blood glucose levels of different populations. Design This was a cross-sectional study. Data from the National Health and Nutrition Examination Survey (NHANES) 2007-2014 were used in this study. A total of 8,322 participants (4,169 men and 4,153 women) were included in the study. Quantile regression (QR) was performed to identify the influence of mineral and vitamin B group intake on the level of fasting plasma glucose (FPG) in individuals in different quantiles of FPG. Results After adjusting for age, income, education, race, smoking, and alcohol consumption, FPG had a negative association with folic acid in individuals with normal or high FPG, with calcium in individuals with normal FPG, and with magnesium in males. FPG was negatively associated with folic acid and calcium in individuals with normal FPG, and magnesium in most of the quantiles for females. Discussion Hyperglycaemia and diabetes are currently becoming popular research topics. However, little is known about how the whole continuum of blood glucose is associated with commonly researched nutrient supplementation in terms of hyperglycaemia and diabetes. Conclusions The intake of calcium, folic acid and magnesium was negatively associated with blood glucose levels in individuals in different quantiles of FPG. Appropriate prevention and treatment strategies should be developed for people with different blood glucose levels.
Collapse
Affiliation(s)
- Shoumeng Yan
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, P. R. China
| | - Meng Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, P. R. China
| | - Xiaoyu Ma
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, P. R. China
| | - Shan Jiang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, P. R. China
| | - Mengzi Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, P. R. China
| | - Changcong Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, P. R. China
| | - Yingan Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, P. R. China
| | - Chong Sun
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, P. R. China
| | - Yan Yao
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| | - Lina Jin
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education, School of Public Health, Jilin University, Changchun, Jilin, P. R. China
| | - Bo Li
- Department of Epidemiology and Biostatistics, School of Public Health, Jilin University, Changchun, P. R. China
| |
Collapse
|