1
|
Bersin TV, Cordova KL, Journey ML, Beckman BR, Lema SC. Food deprivation reduces sensitivity of liver Igf1 synthesis pathways to growth hormone in juvenile gopher rockfish (Sebastes carnatus). Gen Comp Endocrinol 2024; 346:114404. [PMID: 37940008 DOI: 10.1016/j.ygcen.2023.114404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 10/19/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
Growth hormone (Gh) regulates growth in part by stimulating the liver to synthesize and release insulin-like growth factor-1 (Igf1), which then promotes somatic growth. However, for fish experiencing food limitation, elevated blood Gh can occur even with low circulating Igf1 and slow growth, suggesting that nutritional stress can alter the sensitivity of liver Igf1 synthesis pathways to Gh. Here, we examined how recent feeding experience affected Gh regulation of liver Igf1 synthesis pathways in juvenile gopher rockfish (Sebastes carnatus) to illuminate mechanisms underlying the nutritional modulation of Igf1 production. Juvenile gopher rockfish were maintained under conditions of feeding or complete food deprivation (fasting) for 14 d and then treated with recombinant sea bream (Sparus aurata) Gh or saline control. Gh upregulated hepatic igf1 mRNA levels in fed fish but not in fasted fish. The liver of fasted rockfish also showed a lower relative abundance of gene transcripts encoding teleost Gh receptors 1 (ghr1) and 2 (ghr2), as well as reduced protein levels of phosphorylated janus tyrosine kinase 2 (pJak2) and signal transducer and activator of transcription 5 (pStat5), which function to induce igf1 gene transcription following Gh binding to Gh receptors. Relative hepatic mRNA levels for suppressors of cytokine signaling (Socs) genes socs2, socs3a, and socs3b were also lower in fasted rockfish. Socs2 can suppress Gh activation of Jak2/Stat5, and fasting-related variation in socs expression may reflect modulated inhibitory control of igf1 gene transcription. Fasted rockfish also had elevated liver mRNA abundances for lipolytic hormone-sensitive lipase 1 (hsl1) and Igf binding proteins igfbp1a, -1b and -3a, reduced liver mRNAs encoding igfbp2b and an Igfbp acid labile subunit-like (igfals) gene, and higher transcript abundances for Igf1 receptors igf1ra and igf1rb in skeletal muscle. Together, these findings suggest that food deprivation impacts liver Igf1 responsiveness to Gh via multiple mechanisms that include a downregulation of hepatic Gh receptors, modulation of the intracellular Jak2/Stat5 transduction pathway, and possible shifts in Socs-inhibitory control of igf1 gene transcription, while also demonstrating that these changes occur in concert with shifts in liver Igfbp expression and muscle Gh/Igf1 signaling pathway components.
Collapse
Affiliation(s)
- Theresa V Bersin
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Kasey L Cordova
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA
| | - Meredith L Journey
- Lynker Technology, 202 Church St SE #536, Leesburg, VA 20175, USA; Under Contract to Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Brian R Beckman
- Environmental and Fisheries Sciences Division, Northwest Fisheries Science Center, National Marine Fisheries Service, National Oceanic and Atmospheric Administration, Seattle, WA 98112, USA
| | - Sean C Lema
- Biological Sciences Department, Center for Coastal Marine Sciences, California Polytechnic State University, San Luis Obispo, CA 93407, USA.
| |
Collapse
|
2
|
Elbialy ZI, Gamal S, Al-Hawary II, Shukry M, Salah AS, Aboshosha AA, Assar DH. Exploring the impacts of different fasting and refeeding regimes on Nile tilapia (Oreochromis niloticus L.): growth performance, histopathological study, and expression levels of some muscle growth-related genes. FISH PHYSIOLOGY AND BIOCHEMISTRY 2022; 48:973-989. [PMID: 35781858 PMCID: PMC9385825 DOI: 10.1007/s10695-022-01094-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2022] [Accepted: 06/24/2022] [Indexed: 06/15/2023]
Abstract
The current study investigated how different fasting and refeeding regimes would impact Nile tilapia growth performance, histopathological examination, and gene expression of myostatin, myogenin, GH, IGF-1, and NPYa. Nile tilapia fish (n = 120) were randomly allocated into four groups, including the control group fed on a basal diet for 6 weeks (F6), group A starved for 1 week and then refed for 5 weeks (S1F5), group B starved for 2 weeks and then refed for 4 weeks (S2F4), while group C starved for 4 weeks and then refed for 2 weeks (S4F2). Fasting provoked a decrease in body weight coincided with more extended starvation periods. Also, it induced muscle and liver histological alterations; the severity was correlated with the length of fasting periods. Gene expression levels of GH, MSTN, MYOG, and NPYa were significantly increased, while IGF1 was markedly depressed in fasted fish compared to the control group. Interestingly, refeeding after well-planned short fasting period (S1F5) modulated the histopathological alterations. To some extent, these changes were restored after refeeding. Restored IGF-I and opposing fasting expression profiles of the genes mentioned above thus recovered weights almost like the control group and achieved satisfactory growth compensation. Conversely, refeeding following more extended fasting periods failed to restore body weight. In conclusion, refeeding after fasting can induce a compensatory response. Still, the restoration capacity is dependent on the length of fasting and refeeding periods through exhibiting differential morphological structure and expressions pattern for muscle and growth-related genes.
Collapse
Affiliation(s)
- Zizy I. Elbialy
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Shrouk Gamal
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Ibrahim I. Al-Hawary
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Abdallah S. Salah
- Department of Aquaculture, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
- Institute of Aquaculture, Faculty of Natural Sciences, University of Stirling, Stirling, FK9 4LA UK
| | - Ali A. Aboshosha
- Department of Genetics, Faculty of Agriculture, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| | - Doaa H. Assar
- Clinical Pathology Department, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, 33516 Egypt
| |
Collapse
|
3
|
Barría A, Benzie JAH, Houston RD, De Koning DJ, de Verdal H. Genomic Selection and Genome-wide Association Study for Feed-Efficiency Traits in a Farmed Nile Tilapia ( Oreochromis niloticus) Population. Front Genet 2021; 12:737906. [PMID: 34616434 PMCID: PMC8488396 DOI: 10.3389/fgene.2021.737906] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 08/31/2021] [Indexed: 11/24/2022] Open
Abstract
Nile tilapia is a key aquaculture species with one of the highest production volumes globally. Genetic improvement of feed efficiency via selective breeding is an important goal, and genomic selection may expedite this process. The aims of this study were to 1) dissect the genetic architecture of feed-efficiency traits in a Nile tilapia breeding population, 2) map the genomic regions associated with these traits and identify candidate genes, 3) evaluate the accuracy of breeding value prediction using genomic data, and 4) assess the impact of the genetic marker density on genomic prediction accuracies. Using an experimental video recording trial, feed conversion ratio (FCR), body weight gain (BWG), residual feed intake (RFI) and feed intake (FI) traits were recorded in 40 full-sibling families from the GIFT (Genetically Improved Farmed Tilapia) Nile tilapia breeding population. Fish were genotyped with a ThermoFisher Axiom 65 K Nile tilapia SNP array. Significant heritabilities, ranging from 0.12 to 0.22, were estimated for all the assessed traits using the genomic relationship matrix. A negative but favourable genetic correlation was found between BWG and the feed-efficiency related traits; -0.60 and -0.63 for FCR and RFI, respectively. While the genome-wide association analyses suggested a polygenic genetic architecture for all the measured traits, there were significant QTL identified for BWG and FI on chromosomes seven and five respectively. Candidate genes previously found to be associated with feed-efficiency traits were located in these QTL regions, including ntrk3a, ghrh and eif4e3. The accuracy of breeding value prediction using the genomic data was up to 34% higher than using pedigree records. A SNP density of approximately 5,000 SNPs was sufficient to achieve similar prediction accuracy as the full genotype data set. Our results highlight the potential of genomic selection to improve feed efficiency traits in Nile tilapia breeding programmes.
Collapse
Affiliation(s)
- Agustin Barría
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Easter Bush, Midlothian, United Kingdom
| | - John A. H. Benzie
- WorldFish, Bayan Lepas, Malaysia
- School of Biological Earth and Environmental Sciences, University College Cork, Cork, Ireland
| | - Ross D. Houston
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, University of Edinburgh Easter Bush, Midlothian, United Kingdom
| | - Dirk-Jan De Koning
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Hugues de Verdal
- CIRAD, UMR ISEM, Montpellier, France
- ISEM, Univ Montpellier, CNRS, EPHE, IRD, Montpellier, France
- CIRAD, UMR AGAP Institut, Montpellier, France
- UMR AGAP Institut, Univ Montpellier, CIRAD, INRAE, Institut Agro, Montpellier, France
| |
Collapse
|
4
|
Effects of starvation and refeeding on growth performance, appetite, growth hormone-insulin-like growth factor axis levels and digestive function of Acipenser dabryanus. Br J Nutr 2021; 126:695-707. [PMID: 33143764 DOI: 10.1017/s0007114520004389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The aim of this study was to explore the effects and mechanisms of different starvation treatments on the compensatory growth of Acipenser dabryanus. A total of 120 fish (60·532 (sem 0·284) g) were randomly assigned to four groups (fasting 0, 3, 7 or 14 d and then refed for 14 d). During fasting, middle body weight decreased significantly with prolonged starvation. The whole-body and muscle composition, serum biochemical indexes, visceral indexes and digestive enzyme activities had been effected with varying degrees of changes. The growth hormone (GH) level in serum was significantly increased in 14D; however, insulin-like growth factor-1 (IGF-1) showed the opposite trend. The neuropeptide Y (npy) mRNA level in brain was significantly improved in 7D; peptide YY (pyy) mRNA level in intestine was significantly decreased during fasting. After refeeding, the final body weight, percentage weight gain, specific growth rate, feed intake, feed efficiency and protein efficiency ratio showed no difference between 0D and 3D. The changes of whole-body and muscle composition, serum biochemical indexes, visceral indexes and digestive enzyme activities had taken place in varying degrees. GH levels in 3D and 7D were significantly higher than those in the 0D; the IGF-1 content decreased significantly during refeeding. There was no significant difference in npy and pyy mRNA levels. These results indicated that short-term fasting followed by refeeding resulted in full compensation and the physiological and biochemical effects on A. dabryanus were the lowest after 3 d of starvation and 14 d of refeeding. Additionally, compensation in A. dabryanus may be mediated by appetite genes and GH, and the degree of compensation is also affected by the duration of starvation.
Collapse
|
5
|
Zhu W, He Y, Ruan Z, Zhang X, Liao L, Gao Y, Lin N, Chen X, Liang R, Liu WS. Identification of the cDNA Encoding the Growth Hormone Receptor ( GHR) and the Regulation of GHR and IGF-I Gene Expression by Nutritional Status in Reeves' Turtle ( Chinemys reevesii). Front Genet 2020; 11:587. [PMID: 32582298 PMCID: PMC7296147 DOI: 10.3389/fgene.2020.00587] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2019] [Accepted: 05/14/2020] [Indexed: 11/19/2022] Open
Abstract
Chinemys reevesii (Reeves’ turtle) is a slow-growing reptile that is distributed widely across China. Prior to this study, the cDNA sequence of the growth hormone receptor (GHR) in the Reeve’s turtle, or how periods of starvation might influence the gene expression of GHR and insulin-like growth factor I (IGF-I) in this species, were unknown. Here, we identified the full-length sequence of the cDNA encoding GHR in Reeves’ turtle by using RT-PCR and RACE. The full-length GHR cDNA was identified to be 3936 base-pairs in length, with a 1848 base-pair open reading frame (ORF) that encodes a 615 amino acid protein. Analysis showed that GHR mRNA was detectable in a wide range of tissues; the highest and lowest levels of expression were detected in the liver and the gonad, respectively. IGF-I was also expressed in a range of tissues, but not in the gonad; the highest levels of IGF-I expression were detected in the liver. After 4 weeks of fasting, the expression levels of GHR and IGF-I in the liver had decreased significantly; however, these gradually returned to normal after refeeding. We report the first cloned cDNA sequence for the GHR gene in the Reeve’s turtle. Our findings provide a foundation from which to investigate the specific function of the GHR in Reeve’s turtle, and serve as a reference for studying the effects of different nutrient levels on GHR expression in this species.
Collapse
Affiliation(s)
- Wenlu Zhu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yuhui He
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Zhuohao Ruan
- College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Province Key Laboratory for Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Xiquan Zhang
- Guangdong Province Key Laboratory for Animal Genomics and Molecular Breeding, South China Agricultural University, Guangzhou, China
| | - Liangyuan Liao
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Yicong Gao
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Nani Lin
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Xiancan Chen
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Rui Liang
- College of Marine Sciences, South China Agricultural University, Guangzhou, China
| | - Wen-Sheng Liu
- College of Marine Sciences, South China Agricultural University, Guangzhou, China.,Guangdong Province Engineering Research Centre of Aquatic Immunization and Aquaculture Health Techniques, South China Agricultural University, Guangzhou, China
| |
Collapse
|
6
|
Petro-Sakuma C, Celino-Brady FT, Breves JP, Seale AP. Growth hormone regulates intestinal gene expression of nutrient transporters in tilapia (Oreochromis mossambicus). Gen Comp Endocrinol 2020; 292:113464. [PMID: 32171745 PMCID: PMC7253219 DOI: 10.1016/j.ygcen.2020.113464] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Revised: 03/05/2020] [Accepted: 03/10/2020] [Indexed: 02/07/2023]
Abstract
Among the various ways that growth hormone (GH) underlies the growth physiology of teleost fishes, GH stimulates transport pathways that facilitate the absorption of nutrients across intestinal epithelia. The current study investigated the effects of GH on the gene expression of nutrient transporters in an omnivorous teleost, the Mozambique tilapia (Oreochromis mossambicus). We employed pituitary gland removal (hypophysectomy) and hormone replacement to assess whether GH directs the gene expression of the GH receptor (ghr2), the peptide transporters, pept1a, pept1b and pept2, the amino acid transporter, slc7a9, the Na+/glucose cotransporter, sglt1, the glucose transporter, glut2, and the myo-inositol transporter, smit2, in anterior, middle, and posterior intestine. ghr2 was predominantly expressed in posterior intestine, while pept1a, pept1b, slc7a9, sglt1, glut2, and smit2 exhibited the highest mRNA levels in anterior and/or middle intestine. While hypophysectomized tilapia exhibited diminished expression of ghr2, pept1a, pept1b, slc7a9, and glut2 compared with intact and sham-operated controls, only ghr2, pept1a, pept1b and glut2 levels were restored by GH replacement. Our findings indicate that GH supports growth, at least in part, by stimulating the gene expression of its cognate receptor and key nutrient transporters in the intestine.
Collapse
Affiliation(s)
- Cody Petro-Sakuma
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Fritzie T Celino-Brady
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA
| | - Jason P Breves
- Department of Biology, Skidmore College, 815 N. Broadway, Saratoga Springs, NY 12866, USA
| | - Andre P Seale
- Department of Human Nutrition, Food, and Animal Sciences, University of Hawai'i at Mānoa, Honolulu, HI 96822, USA; Hawai'i Institute of Marine Biology, University of Hawai'i, Kāne'ohe, HI 96744, USA.
| |
Collapse
|
7
|
Cai Y, Yin Y, Li Y, Guan L, Zhang P, Qin Y, Wang Y, Li Y. Cadmium exposure affects growth performance, energy metabolism, and neuropeptide expression in Carassius auratus gibelio. FISH PHYSIOLOGY AND BIOCHEMISTRY 2020; 46:187-197. [PMID: 31612298 DOI: 10.1007/s10695-019-00709-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 09/09/2019] [Indexed: 06/10/2023]
Abstract
Cadmium (Cd) is the most abundant heavy metal in aquatic environments and is easily detected on a global scale. Carassius auratus gibelio is a common aquaculture species. The aim of this study was to explore the toxic effects of 1, 2, and 4 mg/L Cd on the energy metabolism, growth performance, and neurological responses of C. gibelio. After 30 days of exposure, Cd concentrations in the liver and brain were significantly increased in Cd-exposed groups. Low-level Cd exposure (1 mg/L) increased weight and length gains, as well as food intake, in the fish. Acetylcholinesterase activity decreased significantly in the Cd-exposed groups. Energy metabolism levels (as reflected by oxygen consumption, ammonia excretion rate, and swimming activity), as well as serum T3 and T4 levels, increased significantly in the fish exposed to 1 mg/L Cd. However, energy metabolism and serum T3/T4 levels decreased significantly in the 4-mg/L Cd group. Neuropeptide gene expression levels in brain were consistent with the observed changes in food intake. In the Cd-exposed groups, the expression levels of neuropeptide Y (NPY), apelin, and metallothionein (MT) increased significantly, while those of pro-opinmelanocortin (POMC), ghrelin, and corticotrophin-releasing factor (CRF) decreased significantly. Our data suggested that in fish, low doses of Cd might increase food intake, as well as weight and length gains, but high doses of Cd might have the opposite effect. These effects might be a result of neurohumoral regulation. Long-term exposure to low doses of Cd might cause weight gain and affect food intake.
Collapse
Affiliation(s)
- Yanan Cai
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China
| | - Yuwei Yin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China
| | - Yueru Li
- Laboratory of Ginseng and Antler Products Quality and Safety Risk Assessment, Ministry of Agriculture, Changchun, 130118, China
| | - Lili Guan
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Peijun Zhang
- Health Monitoring and Inspection Center of Jilin Province, Changchun, 130062, China
| | - Yue Qin
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China
| | - Yunxiang Wang
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China
| | - Yuehong Li
- College of Animal Science and Technology, Jilin Agricultural University, Changchun, 130118, China.
- Ministry of Education Laboratory of Animal Production and Quality Security, Jilin Agricultural University, Changchun, 130118, China.
| |
Collapse
|
8
|
Liu Q, Yan H, Hu P, Liu W, Shen X, Cui X, Wu Y, Yuan Z, Zhang L, Zhang Y, Song C, Liu Y. Growth and survival of Takifugu rubripes larvae cultured under different light conditions. FISH PHYSIOLOGY AND BIOCHEMISTRY 2019; 45:1533-1549. [PMID: 31001755 DOI: 10.1007/s10695-019-00639-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/28/2019] [Indexed: 06/09/2023]
Abstract
We assessed the effects of light intensity and spectrum on the growth and survival of Takifugu rubripes larvae from 30 to 69 days after hatching. Five lighting regimes were applied using 0.5, 1.5, and 3.0 W m-2 full spectrum white (W0.5, W1.5, W3.0), 0.5 W m-2 yellow (Y0.5), and 0.5 W m-2 blue light (B0.5). At the end of the experiment, body length, wet weight, and specific growth rate from day 0 to day 39 were significantly greater in larvae reared under W3.0 than under B0.5 (P ˂ 0.05). No significant differences were observed among W0.5, W1.5, and W3.0, or among W0.5, Y0.5, and B0.5 (P > 0.05). Survival rate was significantly higher in larvae reared under W1.5 than W0.5 (P ˂ 0.05), but no significant differences were observed among W0.5, Y0.5, and B0.5 (P > 0.05). Additionally, light conditioning did not affect the total thickness of the retina. Although the ratio of the thickness of the retinal pigment epithelium layer/total thickness (TT) was significantly higher in larvae exposed to W3.0 compared with those exposed to other light conditions, and the thickness of the outer nuclear layer/TT was significantly lower in larvae exposed to W3.0 compared with those exposed to W0.5 (P < 0.05), no relationship was confirmed between the structure of the retina and the growth performance of the T. rubripes larvae. Expression patterns of two stress-related and seven growth-related genes were also compared with the biometric parameters investigated in the experimental groups. No significant differences in the aanat1a, crh, ss1, igf1, or igf2 expression were observed among the five treatments. Pomc expression was significantly lower in larvae exposed to W1.5 than the larvae exposed to W0.5, and it was significantly lower in larvae exposed to Y0.5 than in larvae exposed to W0.5 or B0.5 (P < 0.05). Significant differences were also found in the expression of gh, with the highest levels being observed under W3.0, while the lowest levels were observed in B0.5 (P < 0.05). Ghrh expression was significantly higher in W3.0 (P < 0.05). These results should be considered when designing rearing protocols for fugu larvae in aquaculture systems.
Collapse
Affiliation(s)
- Qi Liu
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Hongwei Yan
- College of Fisheries and Life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Pengfei Hu
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Wenlei Liu
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Xufang Shen
- College of Fisheries and Life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Xin Cui
- College of Fisheries and Life Science, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Yumeng Wu
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Zhen Yuan
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Lei Zhang
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China
| | - Yanxiang Zhang
- Dalian Fugu Foods Co., Ltd, No. 888, Bishui Road, Economic Development Zone, Dalian, 116400, China
| | - Changbin Song
- Institute of Semiconductors, Chinese Academy of Sciences, No.35, Qinghua East Road, Haidian District, Beijing, 10083, China
| | - Ying Liu
- College of Marine Science and Environment Engineering, Dalian Ocean University, No. 52 Heishijiao Street, Shahekou District, Dalian, 116023, China.
| |
Collapse
|
9
|
Rajeswari JJ, Hatef A, Golshan M, Alavi SMH, Unniappan S. Metabolic stress leads to divergent changes in the ghrelinergic system in goldfish (Carassius auratus) gonads. Comp Biochem Physiol A Mol Integr Physiol 2019; 235:112-120. [PMID: 31158494 DOI: 10.1016/j.cbpa.2019.05.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 05/28/2019] [Accepted: 05/28/2019] [Indexed: 12/12/2022]
Abstract
Various endocrine factors that regulate energy homeostasis are also implicated in the reproductive physiology of mammals. However, the hormonal link between metabolism and reproduction in fish is poorly understood. Ghrelin is a multifunctional hormone with both metabolic and reproductive roles in vertebrates. Post-translational acylation by ghrelin-O-acyltransferase (GOAT) is critical for its biological actions. The expression of ghrelin, ghrelin or growth hormone secretagogue receptor (GHSR), and GOAT (which forms the ghrelinergic system) in fish under metabolic stress remains unclear. In this research, we used RT-qPCR and Western blot analysis to determine the expression of the ghrelinergic system in goldfish (during the reproductively active phase) hypothalamus and gonads under 7 and 28 days of fasting. We found a significant increase in preproghrelin mRNA expresson in the ovary, and GOAT mRNA expression in the testis of goldfish deprived of food for 7 days. In fish deprived of food for 28 days, preproghrelin, GHSR and GOAT mRNA expression was significantly increased in the hypothalamus of male goldfish. Such differences were not observed in the hypothalamus of female fish, and in the testis of 28 days fasted fish. Meanwhile, preproghrelin, GHSR, and GOAT expression (both mRNA and protein) was significantly increased in the ovary of female fish fasted for 28 days. Ghrelin has been shown to suppress oocyte maturation in fish. The upregulation of a system that has ovarian inbititory roles suggests a role for ghrelin in maintaining reduced reproductive capability during metabolically challenging periods.
Collapse
Affiliation(s)
- Jithine Jayakumar Rajeswari
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada
| | - Azadeh Hatef
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada
| | - Mahdi Golshan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada; Iranian Fisheries Science Research Institute, Agricultural Research, Education and Extension Organization, Tehran, Iran; South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany 389 25, Czech Republic
| | - Sayyed Mohammad Hadi Alavi
- South Bohemian Research Center of Aquaculture and Biodiversity of Hydrocenoses, Faculty of Fisheries and Protection of Waters, University of South Bohemia in České Budějovice, Vodňany 389 25, Czech Republic; School of Biology, College of Science, University of Tehran, P.O.Box: 14155-6455, Tehran, Iran
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, Western College of Veterinary Medicine, University of Saskatchewan, S7N 5B4, Canada.
| |
Collapse
|
10
|
Bai Z, Ren T, Han Y, Rahman MM, Hu Y, Li Z, Jiang Z. Influences of dietary selenomethionine exposure on tissue accumulation, blood biochemical profiles, gene expression and intestinal microbiota of Carassius auratus. Comp Biochem Physiol C Toxicol Pharmacol 2019; 218:21-29. [PMID: 30528703 DOI: 10.1016/j.cbpc.2018.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 01/08/2023]
Abstract
A 30-days feeding trail was conducted to determine the sensitivity of Carassius auratus to the toxicological effects of elevated dietary Selenomethionine (Se-Met). C. auratus averaging 23.56 ± 1.82 g were exposed to four Se-Met concentrations (mg Se/kg): 0 (Se-Met0), 5 (Se-Met5), 10 (Se-Met10) and 20 (Se-Met20) to estimate the effects on tissue selenium (Se) accumulation, blood biochemical profiles, transcript expression and intestinal microbiota. Se accumulated in the kidney, liver and muscle in a dose-dependent manner and followed this order: kidney > liver > muscle, the highest accumulation were obtained in kidney of Se-Met20 diet after 30 days of feeding. Serum contents of alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) in fish exposed to Se-Met20 group was significantly highest among Se-Met exposure groups. Hydrogen peroxide (H2O2) concentrations in liver were affected by dietary Se-Met exposures. Liver contents of total antioxidant capacity (TAC), catalase (CAT), glutathione peroxidase (GPx) and malondialdehyde (MDA) in fish exposure to Se-Met5 group was significantly highest among Se-Met exposure groups. Growth hormone receptor (GHR), insulin-like growth factor 1 (IGF-1) and antioxidant enzyme related genes including glutathione peroxidase (GPx), catalase (CAT) and glutathione S-transferase (GST) expression in liver were down-regulated with the concentration of Se-Met exposure groups. The results of high-throughput sequencing showed that gut microbial communities and hierarchy cluster heatmap analysis were significantly affected by Se-Met exposure. The abundances of Cetobacterium and Vibrio increased while fish exposed to Se-Met20 group. The abundance of Ralstonia increased when the Se-Met exposure dose reached 10 mg Se kg-1. The results suggested that the exposure to elevated dietary Se-Met may result toxic effects in C. auratus.
Collapse
Affiliation(s)
- Zhuoan Bai
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Tongjun Ren
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| | - Yuzhe Han
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| | - Md Mostafizur Rahman
- College of Marine Technology and Environment, Dalian Ocean University, No.52 Heishijiao Street, Shahekou District, Dalian 116023, China
| | - Yanan Hu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Zequn Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Zhiqiang Jiang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
11
|
Das K, Ogawa S, Kitahashi T, Parhar IS. Expression of neuropeptide Y and gonadotropin-releasing hormone gene types in the brain of female Nile tilapia (Oreochromis niloticus) during mouthbrooding and food restriction. Peptides 2019; 112:67-77. [PMID: 30389346 DOI: 10.1016/j.peptides.2018.10.009] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 09/28/2018] [Accepted: 10/29/2018] [Indexed: 12/14/2022]
Abstract
A cichlid fish, the Nile tilapia (Oreochromis niloticus), is a maternal mouthbrooder, which exhibits minimum energy expenditure and slower ovarian cycles during mouthbrooding. The objective of this study was to observe changes in the gene expression of key neuropeptides involved in the control of appetite and reproduction, including neuropeptide Y a (NPYa), reproductive neuropeptides: gonadotropin-releasing hormone (GnRH1, GnRH2 and GnRH3) and kisspeptin (Kiss2) during mouthbrooding (4- and 12-days), 12-days of food restriction and 12-days of food restriction followed by refeeding. The food restriction regime showed a significant increase in npya mRNA levels in the telencephalon. However, there were no significant alterations in npya mRNA levels during mouthbrooding. gnrh1 mRNA levels were significantly lower in mouthbrooding female as compared with females with food restriction. gnrh3 mRNA levels were also significantly lower in female with 12-days of mouthbrooding, 12-days of food restriction followed by 12-days of refeeding when compared with controls. There were no significant differences in gnrh2 and kiss2 mRNA levels between groups under different feeding regimes. No significant changes were observed in mRNA levels of receptors for peripheral metabolic signaling molecules: ghrelin (GHS-R1a and GHS-R1b) and leptin (Lep-R). These results suggested that unaffected npya mRNA levels in the telencephalon might contribute to suppression of appetite in mouthbrooding female tilapia. Furthermore, lower gnrh1 and gnrh3 mRNA levels may influence the suppression of reproductive functions such as progression of ovarian cycle and reproductive behaviours, while GnRH2 and Kiss2 may not play a significant roles in reproduction under food restriction condition.
Collapse
Affiliation(s)
- Kalpana Das
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Satoshi Ogawa
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia.
| | - Takashi Kitahashi
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| | - Ishwar S Parhar
- Brain Research Institute, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Selangor, Malaysia
| |
Collapse
|
12
|
Bertucci JI, Blanco AM, Sundarrajan L, Rajeswari JJ, Velasco C, Unniappan S. Nutrient Regulation of Endocrine Factors Influencing Feeding and Growth in Fish. Front Endocrinol (Lausanne) 2019; 10:83. [PMID: 30873115 PMCID: PMC6403160 DOI: 10.3389/fendo.2019.00083] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/16/2018] [Accepted: 01/30/2019] [Indexed: 12/31/2022] Open
Abstract
Endocrine factors regulate food intake and growth, two interlinked physiological processes critical for the proper development of organisms. Somatic growth is mainly regulated by growth hormone (GH) and insulin-like growth factors I and II (IGF-I and IGF-II) that act on target tissues, including muscle, and bones. Peptidyl hormones produced from the brain and peripheral tissues regulate feeding to meet metabolic demands. The GH-IGF system and hormones regulating appetite are regulated by both internal (indicating the metabolic status of the organism) and external (environmental) signals. Among the external signals, the most notable are diet availability and diet composition. Macronutrients and micronutrients act on several hormone-producing tissues to regulate the synthesis and secretion of appetite-regulating hormones and hormones of the GH-IGF system, eventually modulating growth and food intake. A comprehensive understanding of how nutrients regulate hormones is essential to design diet formulations that better modulate endogenous factors for the benefit of aquaculture to increase yield. This review will discuss the current knowledge on nutritional regulation of hormones modulating growth and food intake in fish.
Collapse
Affiliation(s)
- Juan Ignacio Bertucci
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Ayelén Melisa Blanco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Laboratorio de Fisioloxìa Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Lakshminarasimhan Sundarrajan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Jithine Jayakumar Rajeswari
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Cristina Velasco
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- Laboratorio de Fisioloxìa Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía and Centro de Investigación Mariña, Universidade de Vigo, Vigo, Spain
| | - Suraj Unniappan
- Laboratory of Integrative Neuroendocrinology, Department of Veterinary Biomedical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
- *Correspondence: Suraj Unniappan
| |
Collapse
|
13
|
Bergan-Roller HE, Sheridan MA. The growth hormone signaling system: Insights into coordinating the anabolic and catabolic actions of growth hormone. Gen Comp Endocrinol 2018; 258:119-133. [PMID: 28760716 DOI: 10.1016/j.ygcen.2017.07.028] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2017] [Revised: 07/19/2017] [Accepted: 07/27/2017] [Indexed: 12/16/2022]
Abstract
Although growth hormone (GH) is a multifunctional factor that coordinates various aspects of feeding, reproduction, osmoregulation, and immune system function, perhaps two of its most studied actions are the regulation of growth and metabolism, particularly lipid metabolism. In this review, we describe the major growth-promoting and lipid metabolic actions of GH and then discuss how the GH system regulates these actions. Numerous intrinsic and extrinsic factors provide information about the metabolic status of the organism and influence the production of release of GH. The actions of GH are mediated by GH receptors (GHR), which are widely distributed among tissues. Teleosts possess multiple forms of GHRs that arose through the evolution of this group. Modulation of tissue responsiveness to GH is regulated by molecular and functional expression of GHRs, and in teleosts GHR subtypes, by various factors that reflect the metabolic and growth status of the organism, including nutritional state. The action of GH is propagated by the linkage of GHRs to several cellular effector systems, including JAK-STAT, ERK, PI3K-Akt, and PKC. The differential activation of these pathways, which is governed by nutrient status, underlies GH stimulation of growth or GH stimulation of lipolysis. Taken together, the multi-functional actions of GH are determined by the distribution and abundance of GHRs (and GHR subtypes in teleosts) as well as by the GHR-effector system linkages.
Collapse
Affiliation(s)
| | - Mark A Sheridan
- Department of Biological Sciences, Texas Tech University, Lubbock, TX 79409 USA.
| |
Collapse
|
14
|
Perelló-Amorós M, Vélez EJ, Vela-Albesa J, Sánchez-Moya A, Riera-Heredia N, Hedén I, Fernández-Borràs J, Blasco J, Calduch-Giner JA, Navarro I, Capilla E, Jönsson E, Pérez-Sánchez J, Gutiérrez J. Ghrelin and Its Receptors in Gilthead Sea Bream: Nutritional Regulation. Front Endocrinol (Lausanne) 2018; 9:399. [PMID: 30105002 PMCID: PMC6077198 DOI: 10.3389/fendo.2018.00399] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/27/2018] [Indexed: 12/19/2022] Open
Abstract
Ghrelin is involved in the regulation of growth in vertebrates through controlling different functions, such as feed intake, metabolism, intestinal activity or growth hormone (Gh) secretion. The aim of this work was to identify the sequences of preproghrelin and Ghrelin receptors (ghsrs), and to study their responses to different nutritional conditions in gilthead sea bream (Sparus aurata) juveniles. The structure and phylogeny of S. aurata preproghrelin was analyzed, and a tissue screening was performed. The effects of 21 days of fasting and 2, 5, 24 h, and 7 days of refeeding on plasma levels of Ghrelin, Gh and Igf-1, and the gene expression of preproghrelin, ghsrs and members of the Gh/Igf-1 system were determined in key tissues. preproghrelin and the receptors are well conserved, being expressed mainly in stomach, and in the pituitary and brain, respectively. Twenty-one days of fasting resulted in a decrease in growth while Ghrelin plasma levels were elevated to decrease at 5 h post-prandial when pituitary ghsrs expression was minimum. Gh in plasma increased during fasting and slowly felt upon refeeding, while plasma Igf-1 showed an inverse profile. Pituitary gh expression augmented during fasting reaching maximum levels at 1 day post-feeding while liver igf-1 expression and that of its splice variants decreased to lowest levels. Liver Gh receptors expression was down-regulated during fasting and recovered after refeeding. This study demonstrates the important role of Ghrelin during fasting, its acute down-regulation in the post-prandial stage and its interaction with pituitary Ghsrs and Gh/Igf-1 axis.
Collapse
Affiliation(s)
- Miquel Perelló-Amorós
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Emilio J. Vélez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Jaume Vela-Albesa
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Albert Sánchez-Moya
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Natàlia Riera-Heredia
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Ida Hedén
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jaume Fernández-Borràs
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Josefina Blasco
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Josep A. Calduch-Giner
- Nutrition and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), Castellón, Spain
| | - Isabel Navarro
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Encarnación Capilla
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
| | - Elisabeth Jönsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden
| | - Jaume Pérez-Sánchez
- Nutrition and Fish Growth Endocrinology, Institute of Aquaculture Torre de la Sal (CSIC), Castellón, Spain
| | - Joaquim Gutiérrez
- Department of Cell Biology, Physiology and Immunology, Faculty of Biology, University of Barcelona, Barcelona, Spain
- *Correspondence: Joaquim Gutiérrez
| |
Collapse
|
15
|
Forsatkar MN, Nematollahi MA, Rafiee G, Farahmand H, Lawrence C. Effects of the prebiotic mannan-oligosaccharide on the stress response of feed deprived zebrafish (Danio rerio). Physiol Behav 2017; 180:70-77. [PMID: 28821445 DOI: 10.1016/j.physbeh.2017.08.010] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Revised: 07/27/2017] [Accepted: 08/14/2017] [Indexed: 01/07/2023]
Abstract
Feed deprivation has deleterious effects on fish behavior and stress physiology which may susceptible them to disease outbreak. Functional ingredients in diets may substantially impact the physiology and stress responses of host organisms. Here, we hypothesized that the administration of a dietary prebiotic might attenuate the negative influences of feed deprivation on the behavioral profile of anxiety and physiological responses to stress in zebrafish (Danio rerio). Fish were fed with either basal or mannan-oligosaccharide supplemented (0.4% MOS/kg diet) diets, once per day (normal-control: CN, and normal-prebiotic: PN) or once every other day (starved-control: CS, and starved-prebiotic: PS) for 8weeks. Afterwards, fish were subjected to a novel tank test to measure anxiety. Fish from the CS treatment exhibited more pronounced bottom-dwelling behavior than the other treatments. The number of transitions from the bottom to the top third of the novel tank was significantly higher in PN fish than the CS specimens. No significant differences were found between the CN and PS treatments in all of the anxiety behaviors. CS fish showed higher baseline cortisol levels than the other treatments, which was in line with higher expression of CRH gene in fish subjected to this treatment. Cortisol levels and CRH gene expression of the subjects were also measured after induction of two routine aquaculture stressors. CN and PS fish exhibited similar patterns of cortisol responses at most of the sampling times after stress, and PN specimens showed a significantly lower concentration of cortisol than the other treatments in most cases. Expression of the CRH gene was higher in feed deprived fish immediately after stress induction. Overall, the results show that feed deprivation in some cases influenced anxiety-like behaviors and elevated stress response in zebrafish juveniles; however, the addition of MOS to the diet helped deprived fish exhibit behaviors more typical of normally fed animals.
Collapse
Affiliation(s)
| | | | - Gholamreza Rafiee
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | - Hamid Farahmand
- Department of Fisheries, Faculty of Natural Resources, University of Tehran, Karaj, Iran
| | | |
Collapse
|
16
|
Delgado MJ, Cerdá-Reverter JM, Soengas JL. Hypothalamic Integration of Metabolic, Endocrine, and Circadian Signals in Fish: Involvement in the Control of Food Intake. Front Neurosci 2017; 11:354. [PMID: 28694769 PMCID: PMC5483453 DOI: 10.3389/fnins.2017.00354] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2016] [Accepted: 06/07/2017] [Indexed: 12/12/2022] Open
Abstract
The regulation of food intake in fish is a complex process carried out through several different mechanisms in the central nervous system (CNS) with hypothalamus being the main regulatory center. As in mammals, a complex hypothalamic circuit including two populations of neurons: one co-expressing neuropeptide Y (NPY) and Agouti-related peptide (AgRP) and the second one population co-expressing pro-opiomelanocortin (POMC) and cocaine- and amphetamine-regulated transcript (CART) is involved in the integration of information relating to food intake control. The production and release of these peptides control food intake, and the production results from the integration of information of different nature such as levels of nutrients and hormones as well as circadian signals. The present review summarizes the knowledge and recent findings about the presence and functioning of these mechanisms in fish and their differences vs. the known mammalian model.
Collapse
Affiliation(s)
- María J. Delgado
- Departamento de Fisiología (Fisiología Animal II), Facultad de Biología, Universidad Complutense de MadridMadrid, Spain
| | - José M. Cerdá-Reverter
- Departamento de Fisiología de Peces y Biotecnología, Instituto de Acuicultura Torre de la Sal, Consejo Superior de Investigaciones CientíficasCastellón, Spain
| | - José L. Soengas
- Laboratorio de Fisioloxía Animal, Departamento de Bioloxía Funcional e Ciencias da Saúde, Facultade de Bioloxía, Universidade de VigoVigo, Spain
| |
Collapse
|
17
|
Navarro-Guillén C, Yúfera M, Engrola S. Ghrelin in Senegalese sole (Solea senegalensis) post-larvae: Paracrine effects on food intake. Comp Biochem Physiol A Mol Integr Physiol 2017; 204:85-92. [DOI: 10.1016/j.cbpa.2016.11.004] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2016] [Revised: 10/13/2016] [Accepted: 11/08/2016] [Indexed: 01/18/2023]
|
18
|
Zhang J, Sun P, Yang F, Kong T, Zhang R. Tributyltin disrupts feeding and energy metabolism in the goldfish (Carassius auratus). CHEMOSPHERE 2016; 152:221-228. [PMID: 26971175 DOI: 10.1016/j.chemosphere.2016.02.127] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2015] [Revised: 02/28/2016] [Accepted: 02/29/2016] [Indexed: 05/22/2023]
Abstract
Tributyltin (TBT) can induce obesogen response. However, little is known about the adverse effects of TBT on food intake and energy metabolism. The present study was designed to investigate the effects of TBT, at environmental concentrations of 2.44 and 24.4 ng/L (1 and 10 ng/L as Sn), on feeding and energy metabolism in goldfish (Carassius auratus). After exposure for 54 d, TBT increased the weight gain and food intake in fish. The patterns of brain neuropeptide genes expression were in line with potential orexigenic effects, with increased expression of neuropeptide Y and apelin, and decreased expression of pro-opiomelanocortin, ghrelin, cocaine and amphetamine-regulated transcript, and corticotropin-releasing factor. Interestingly, the energy metabolism indicators (oxygen consumption, ammonia exertion and swimming activity) and the serum thyroid hormones were all significantly increased at the 2.44 ng/L TBT group in fish. However, no changes of energy metabolism indicators or a decrease of thyroid hormones was found at the 24.4 ng/L TBT group, which indicated a complex disrupting effect on metabolism of TBT. In short, TBT can alter feeding and energy metabolism in fish, which might promote the obesogenic responses.
Collapse
Affiliation(s)
- Jiliang Zhang
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Henan, China.
| | - Ping Sun
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Henan, China
| | - Fan Yang
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Henan, China
| | - Tao Kong
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Henan, China
| | - Ruichen Zhang
- Henan Open Laboratory of Key Subjects of Environmental and Animal Products Safety, College of Animal Science and Technology, Henan University of Science and Technology, Henan, China
| |
Collapse
|
19
|
Periprandial changes and effects of short- and long-term fasting on ghrelin, GOAT, and ghrelin receptors in goldfish (Carassius auratus). J Comp Physiol B 2016; 186:727-38. [DOI: 10.1007/s00360-016-0986-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/26/2016] [Accepted: 03/29/2016] [Indexed: 02/06/2023]
|
20
|
Volkoff H. Cloning, tissue distribution and effects of fasting on mRNA expression levels of leptin and ghrelin in red-bellied piranha (Pygocentrus nattereri). Gen Comp Endocrinol 2015; 217-218:20-7. [PMID: 25980684 DOI: 10.1016/j.ygcen.2015.05.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2014] [Revised: 04/11/2015] [Accepted: 05/07/2015] [Indexed: 12/26/2022]
Abstract
cDNAs encoding the appetite regulating peptides leptin and ghrelin were isolated in red-bellied piranha (Characiforme, Serrasalmidae) and their mRNA tissue and brain distributions examined. When compared to other fish, the sequences obtained for all peptides were most similar to that of other Characiforme fish and Siluriformes. All peptides were widely expressed within the brain and in several peripheral tissues, including gastrointestinal tract. In order to better understand the role of these peptides in the regulation of feeding of red-bellied piranha, the mRNA expression levels of leptin and ghrelin were examined in both brain and intestine, in fed and 7-day fasted fish. No significant differences in expression were seen in whole brain for either peptide. Within the intestine, there was a decrease in leptin mRNA expression and an increase in ghrelin mRNA expression in fasted fish, compared to fed fish. The results suggest that leptin and ghrelin might play a major role in the regulation of feeding and energy homeostasis of red-bellied piranha and this role might be more prominent in the intestine than in the brain.
Collapse
Affiliation(s)
- Hélène Volkoff
- Departments of Biology and Biochemistry, Memorial University of Newfoundland, St. John's, NL A1B 3X9, Canada.
| |
Collapse
|
21
|
Tian J, He G, Mai K, Liu C. Effects of postprandial starvation on mRNA expression of endocrine-, amino acid and peptide transporter-, and metabolic enzyme-related genes in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:773-787. [PMID: 25805459 DOI: 10.1007/s10695-015-0045-x] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Accepted: 03/18/2015] [Indexed: 06/04/2023]
Abstract
The goal of this study was to systematically evaluate the molecular activities of endocrine-, amino acid and peptide transporters-, and metabolic enzyme-related genes in 35-day-old mixed-sex zebrafish (Danio rerio) after feeding . Zebrafish with initial body weights ranging from 9 to 11 mg were fasted for 384 h in a controlled indoor environment. Fish were sampled at 0, 3, 6, 12, 24, 48, 96, 192, and 384 h after fed. Overall, the present study results show that the regulatory mechanism that insulin-like growth factor I negative feedback regulated growth hormone is conserved in zebrafish, as it is in mammals, but that regulation of growth hormone receptors is highly intricate. Leptin and cholecystokinin are time-dependent negative feedback signals, and neuropeptide Y may be an important positive neuropeptide for food intake in zebrafish. The amino acid/carnitine transporters B(0,+) (ATB(0,+)) and broad neutral (0) amino acid transporter 1(B(0)AT1) mRNA levels measured in our study suggest that protein may be utilized during 24-96 h of fasting in zebrafish. Glutamine synthetase mRNA levels were downregulated, and glutamate dehydrogenase, alanine aminotransferase, aspartate transaminase, and trypsin mRNA levels were upregulated after longtime fasting in this study. The mRNA expression levels of fatty acid synthetase decreased significantly (P < 0.05), whereas those of lipoprotein lipase rapidly increased after 96 h of fasting. Fasting activated the expression of glucose synthesis genes when fasting for short periods of time; when fasting is prolonged, the mRNA levels of glucose breakdown enzymes and pentose phosphate shunt genes decreased.
Collapse
Affiliation(s)
- Juan Tian
- Key Laboratory of Aquaculture Nutrition (Ministry of Agriculture), Ocean University of China, No. 5 Yushan Rd., Qingdao, 266003, People's Republic of China,
| | | | | | | |
Collapse
|
22
|
Neuroendocrine regulation of somatic growth in fishes. SCIENCE CHINA-LIFE SCIENCES 2015; 58:137-47. [DOI: 10.1007/s11427-015-4805-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2014] [Accepted: 09/19/2014] [Indexed: 10/24/2022]
|
23
|
Kaiya H, Konno N, Kangawa K, Uchiyama M, Miyazato M. Identification, tissue distribution and functional characterization of the ghrelin receptor in West African lungfish, Protopterus annectens. Gen Comp Endocrinol 2014; 209:106-17. [PMID: 25093625 DOI: 10.1016/j.ygcen.2014.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Revised: 07/16/2014] [Accepted: 07/26/2014] [Indexed: 12/29/2022]
Abstract
We identified two ghrelin receptor isoforms, the ghrelin receptor type-1a (GHS-R1a) and its alternative splice form (GHS-R1b) for West African lungfish, Protopterus annectens. Lungfish GHS-R1a and 1b comprised 361 and 281 amino acids, respectively. Lungfish GHS-R1a showed the highest identity to coelacanth GHS-R1a (80.4%). The highest expression of GHS-R1a mRNAs was seen in the brain, liver, ovary, heart, intestine, and gills. GHS-R1b mRNAs were also detected in the same tissues with GHS-R1a, but their expression level was 1/20 that of GHS-R1a. In human embryonic kidney 293 cells transiently expressing lungfish GHS-R1a, rat and bullfrog ghrelin, and two GHS-R1a agonists, GHRP-6 and hexarelin, increased intracellular Ca(2+) concentrations. The intensity of the Ca(2+) increases induced by GHS-R1a agonists was twice when compared to that induced by ghrelin, although the median effective doses (ED50) were similar, suggesting a long-lasting effect of GHS-R1a agonists with similar affinity. We also examined changes in the GHS-R gene expression during an eight-week estivation. Body weight was slightly lowered, but plasma sodium and glucose concentrations decreased; plasma urea concentration increased significantly 4weeks after the start of estivation. Overall, expression of GHS-R1a mRNA decreased, but changes in GHS-R1b mRNA expression were inconsistent with those of GHS-R1a during estivation, suggesting an involvement of GHS-R in energy homeostasis, as seen in mammals. Our results suggest that the ghrelin-GHS-R1a system is present in this lungfish although ghrelin has not yet been found. The structure of GHS-R1a is closer to that of tetrapods than Actinopterygian fish, indicating a process of evolution that follows the Crossopterygii such as coelacanth.
Collapse
Affiliation(s)
- Hiroyuki Kaiya
- Department of Biochemistry, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan.
| | - Norifumi Konno
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan
| | - Kenji Kangawa
- Department of Biochemistry, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| | - Minoru Uchiyama
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan
| | - Mikiya Miyazato
- Department of Biochemistry, National Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan
| |
Collapse
|
24
|
Eom J, Hong M, Cone RD, Song Y. Zebrafish ghrelin is expressed in pancreatic endocrine cells and regulated by metabolic state. Biochem Biophys Res Commun 2013; 439:115-20. [DOI: 10.1016/j.bbrc.2013.08.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2013] [Accepted: 08/06/2013] [Indexed: 10/26/2022]
|
25
|
Jönsson E. The role of ghrelin in energy balance regulation in fish. Gen Comp Endocrinol 2013; 187:79-85. [PMID: 23557643 DOI: 10.1016/j.ygcen.2013.03.013] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2013] [Accepted: 03/19/2013] [Indexed: 12/22/2022]
Abstract
Knowledge about the endocrine regulation of energy balance in fish is of interest for basic as well as aquaculture research. Ghrelin is a peptide hormone that was first identified in fish 10 years ago and has important roles in the control of food intake and metabolism. Both ghrelin and its receptor, the growth hormone secretagogue receptor (GHS-R), have been found in numerous fish species. Their tissue distributions support the idea that ghrelin has an integrative role in the regulation of energy balance at both the central nervous system level and systemic level. In tilapia and goldfish, ghrelin treatment appears to increase food intake and to stimulate lipogenesis and tissue fat deposition to promote a more positive energy status. In rainbow trout, on the other hand, ghrelin decreases food intake. Goldfish and rainbow trout are the fish species in which the mode of action of ghrelin on food intake has been most thoroughly investigated. The results from these studies indicate that ghrelin alters food intake by acting on well-known appetite signals, such as CRH, NPY and orexin, in the hypothalamus in a species-specific manner. In goldfish, sensory fibres of the vagus nerve convey the signal from gut-derived ghrelin to modulate appetite. The data also indicate that ghrelin may modulate foraging/swimming activity and the perception of food in fish. Results related to the effects of energy status, temperature, and stressors on plasma ghrelin/tissue ghrelin mRNA levels are occasionally inconsistent between short- and long-term studies, between the protein and mRNA, and between species. Recent data also imply a role of ghrelin in carbohydrate metabolism. More functional studies are required to understand the role of ghrelin and its mechanisms of action in the regulation of energy balance among fish.
Collapse
Affiliation(s)
- Elisabeth Jönsson
- Fish Endocrinology Laboratory, Department of Biological and Environmental Sciences, University of Gothenburg, Box 463, 405 30 Göteborg, Sweden.
| |
Collapse
|
26
|
Upton KR, Riley LG. Acute stress inhibits food intake and alters ghrelin signaling in the brain of tilapia (Oreochromis mossambicus). Domest Anim Endocrinol 2013; 44:157-64. [PMID: 23291012 DOI: 10.1016/j.domaniend.2012.10.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 10/04/2012] [Accepted: 10/05/2012] [Indexed: 10/27/2022]
Abstract
This study investigated the effect of an acute stress on food intake and on the expression of neuropeptide Y (NPY), corticotropin-releasing hormone (CRH), and ghrelin and its receptors, growth hormone secretagogue receptors (GHSRs) in the tilapia (Oreochromis mossambicus). Food intake was significantly (P < 0.01) reduced in fish after a 30-min crowding and handling stress. In a second group of animals exposed to the same 30-min stressor, tissue samples were collected immediately after the stressor to determine changes in the neuroendocrine regulators of food intake. Although CRH and NPY are considered the major mediators of appetite during stress, both mRNA levels were unaltered in the telencephalon/pre-optic area and in the hypothalamic/optic tectum. Interestingly, there was an elevation in the ghrelin transcript (P < 0.05) in the telencephalon/pre-optic area and elevation of its functional receptor (GHSR1a-LR) (P < 0.001) in the hypothalamic/optic tectum. Elevation of GHSR-LR heteronuclear RNA (P < 0.01) in the telencephalon/pre-optic area and suppression in the hypothalamic/optic tectum (P < 0.001) suggest rapid control of the ghrelin regulatory system in response to acute stress. These results suggest that ghrelin signaling is altered during acute stress. It is not clear if these changes result in altered feeding behavior because no changes in CRH or NPY mRNA expression were observed or if ghrelin is playing a role in regulating overall metabolic changes after acute stress.
Collapse
Affiliation(s)
- K R Upton
- Department of Biology, California State University at Fresno, Fresno, CA 93740, USA
| | | |
Collapse
|
27
|
Kaiya H, Kangawa K, Miyazato M. What is the general action of ghrelin for vertebrates? - comparisons of ghrelin's effects across vertebrates. Gen Comp Endocrinol 2013. [PMID: 23178701 DOI: 10.1016/j.ygcen.2012.10.015] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Ten years and more passed since ghrelin was discovered. Various physiological actions of ghrelin have been documented in both mammalian and nonmammalian vertebrates. Do these actions have any commonality? In this review, we focused on several effects of ghrelin, and compared the effect across vertebrates. We would like to discuss possible general function of ghrelin in vertebrates.
Collapse
Affiliation(s)
- Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, 5-7-1 Fujishirodai, Suita, Osaka 565-8565, Japan.
| | | | | |
Collapse
|
28
|
Koven W, Schulte P. The effect of fasting and refeeding on mRNA expression of PepT1 and gastrointestinal hormones regulating digestion and food intake in zebrafish (Danio rerio). FISH PHYSIOLOGY AND BIOCHEMISTRY 2012; 38:1565-1575. [PMID: 22565667 DOI: 10.1007/s10695-012-9649-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2011] [Accepted: 04/21/2012] [Indexed: 05/31/2023]
Abstract
In vertebrates, a significant part of ingested protein is absorbed as di- and tripeptides through a brush border membrane proton/oligopeptide transporter protein called PepT1. The aim of the present study was to determine the effect of short-term food deprivation and refeeding in adult zebrafish (Danio rerio) on gastrointestinal mRNA expression of PepT1 as well as on the satiety hormones cholecystokinin (CCK), gastrin-releasing peptide (GRP) and ghrelin (GHR) in order to elucidate a potential mechanism driving compensatory growth. Sixty adult zebrafish were stocked in a 40-L aquarium and fed daily a commercial flake diet to satiation for 10 days where the digestive tracts (DT) of sampled fish (n = 5) were dissected out. Samplings were repeated following 1, 2 and 5 days of food deprivation and after 1, 2 and 5 days of refeeding. The RNA was extracted from all sampled DTs and analyzed by quantitative real-time PCR for the mRNA expression of PepT1, rRNA 18S, CCK, GRP and GHR. PepT1 mRNA expression increased with successive refeedings reaching a level approximately 8 times higher than pre-fast levels. CCK, GRP and GHR mRNA levels also decreased during fasting, but increased only to pre-fasting levels with refeeding. Overall, the results suggest that PepT1 may be a contributing mechanism to compensatory growth that could influence CCK secretion and GRP and GHR activity.
Collapse
Affiliation(s)
- William Koven
- Israel Oceanographic and Limnological Research, The National Center for Mariculture, P.O.B. 1212, 88112, Eilat, Israel.
| | - Patricia Schulte
- Department of Zoology, The University of British Columbia, 6270 University Blvd, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
29
|
Janzen WJ, Duncan CA, Riley LG. Cortisol treatment reduces ghrelin signaling and food intake in tilapia, Oreochromis mossambicus. Domest Anim Endocrinol 2012; 43:251-9. [PMID: 22657576 DOI: 10.1016/j.domaniend.2012.04.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2012] [Revised: 04/03/2012] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
Abstract
It is well known that after a stressor, levels of plasma cortisol rise, inducing physiological changes within the animal that are directed toward maintaining homeostasis. Less well understood is the role of cortisol in regulating food intake in teleosts. This study investigated the effect of cortisol on food intake and regulation of the neuroendocrine appetite-stimulating hormones, neuropeptide Y (NPY) and ghrelin, in tilapia (Oreochromis mossambicus). Male and female tilapia were randomly assigned to one of the following treatments: unhandled control, vehicle-injected control, or cortisol (2 μg/g BW). Food intake was determined 24 h after injection during a 1-h feeding trial. Cortisol reduced food intake (P<0.001). An identical study was conducted to measure the effects of 24-h cortisol treatment on the endocrine regulators of food intake. Cortisol reduced stomach expression of ghrelin mRNA (P<0.05) and plasma concentrations of ghrelin (P<0.05). In the hypothalamus/optic tectum cortisol reduced levels of GHSR1a-LR (biologically active ghrelin receptor) mRNA. In the telencephalon/preoptic area cortisol significantly reduced levels of NPY and GHSR1b-LR (biologically inactive ghrelin receptor) mRNA. These findings suggest that anorexigenic actions of cortisol may be mediated via two separate pathways: (1) reducing circulating ghrelin levels as well as GHSR1a-LR expression in the hypothalamus/optic tectum and/or (2) suppressing NPY expression in the telencephalon/preoptic area.
Collapse
Affiliation(s)
- W J Janzen
- Department of Biology, California State University at Fresno, Fresno, CA 93740, USA
| | | | | |
Collapse
|
30
|
Zhong H, Zhou Y, Liu S, Tao M, Long Y, Liu Z, Zhang C, Duan W, Hu J, Song C, Liu Y. Elevated expressions of GH/IGF axis genes in triploid crucian carp. Gen Comp Endocrinol 2012; 178:291-300. [PMID: 22713693 DOI: 10.1016/j.ygcen.2012.06.006] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2012] [Revised: 05/11/2012] [Accepted: 06/04/2012] [Indexed: 10/28/2022]
Abstract
Growth hormone (GH), growth hormone receptor (GHR) and insulin-like growth factor 1 (IGF-1) are pivotal signaling factors of the GH/IGF axis, which plays a crucial role in regulating growth in vertebrates. In this study, GH, GHR and IGF-1 cDNAs were cloned from triploid and tetraploid crucian carp. In addition, mRNA expression levels were characterized in diploid red crucian carp, triploids and tetraploids. Reverse transcriptase PCR indicated that GH genes were only expressed in the pituitary, while GHR and IGF-1 were widely expressed in all tested tissues. Real-time PCR study of different seasonal profiles showed that triploids had significantly higher expression of the studied genes during both the prespawning and the spawning season. Although different temperatures (22, 26 and 30°C) showed no significant effects on GH, GHR and IGF-1 mRNA expression in either diploids or triploids, triploids had higher expression levels than diploids at each temperature. After 1 week of fasting, the expression of all studied genes was reduced in both diploids and triploids, while the expressions levels were higher in triploids than in diploids. These results suggest that the elevated expression of GH/IGF axis genes in triploids plays a crucial role in the faster growth rate of triploids.
Collapse
Affiliation(s)
- Huan Zhong
- Key Laboratory of Protein Chemistry and Fish Developmental Biology of the Education Ministry of China, College of Life Sciences, Hunan Normal University, Changsha 410081, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Hevrøy EM, Waagbø R, Torstensen BE, Takle H, Stubhaug I, Jørgensen SM, Torgersen T, Tvenning L, Susort S, Breck O, Hansen T. Ghrelin is involved in voluntary anorexia in Atlantic salmon raised at elevated sea temperatures. Gen Comp Endocrinol 2012; 175:118-34. [PMID: 22036890 DOI: 10.1016/j.ygcen.2011.10.007] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 10/08/2011] [Accepted: 10/12/2011] [Indexed: 01/07/2023]
Abstract
Due to global and local climate changes, farmed salmon may experience periods of elevated sea temperatures. An experiment was conducted to examine endocrine and dietary effects of high sea temperatures in adult (2.0 kg) and sexually immature Atlantic salmon, Salmo salar L. Groups of salmon were exposed to 19 °C while others were kept as controls at 14 °C. The experiment lasted for 56 days, and fish were given iso-nitrogenous diets with either a normal (335 g kg(-1); L34) or a lower lipid level (298 g kg(-1); L30). Fish held at 19 °C had a reduction in the daily feed intake, growth and feed utilization of more than 50% compared to the controls. Fish at 19 °C retained little ingested fat, and high maintenance cost lead to depleted endogenous energy body reserves. Circulating ghrelin concentration and stomach ghrelin-1 and hypothalamus growth hormone secretagogue receptor 1a-like receptor (GHSR1a-LR) mRNA levels were significantly reduced in salmon at 19 °C. An increasing number of fish kept at 19 °C had empty gastrointestinal tract after 21 days (11-67%) and 56 days (56-100%), with the highest numbers in fish fed the L34 diet. We suggest that lower circulating ghrelin during negative energy homeostasis induce down-regulation of GHSR1a-LR, neuropeptide Y, and anorexigenic factors at transcriptional levels in the hypothalamus, which over time lead to a voluntary anorexia development in adult salmon held at 19 °C. Reduction of feed intake and growth may be an important coping strategy for salmon during elevated temperatures.
Collapse
Affiliation(s)
- E M Hevrøy
- National Institute of Nutrition and Seafood Research, PO Box 2029, Nordnes, N-5817 Bergen, Norway.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Kaiya H, Miyazato M, Kangawa K. Recent advances in the phylogenetic study of ghrelin. Peptides 2011; 32:2155-74. [PMID: 21600258 DOI: 10.1016/j.peptides.2011.04.027] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2011] [Revised: 04/04/2011] [Accepted: 04/29/2011] [Indexed: 01/03/2023]
Abstract
To understand fully the biology of ghrelin, it is important to know the evolutionary history of ghrelin and its receptor. Phylogenetic and comparative genomic studies of mammalian and non-mammalian vertebrates are a useful approach to that end. Ghrelin is a hormone that has apparently evaded natural selection during a long evolutionary history. Surely ghrelin plays crucial physiological roles in living animals. Phylogenetic studies reveal the nature and evolutionary history of this important signaling system.
Collapse
Affiliation(s)
- Hiroyuki Kaiya
- Department of Biochemistry, National Cerebral and Cardiovascular Center Research Institute, Osaka, Japan.
| | | | | |
Collapse
|
33
|
Pierce AL, Breves JP, Moriyama S, Hirano T, Grau EG. Differential regulation of Igf1 and Igf2 mRNA levels in tilapia hepatocytes: effects of insulin and cortisol on GH sensitivity. J Endocrinol 2011; 211:201-10. [PMID: 21803836 DOI: 10.1530/joe-10-0456] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Igf1 and Igf2 stimulate growth and development of vertebrates. In mammals, liver-derived endocrine Igf1 mediates the growth promoting effects of GH during postnatal life, whereas Igf2 stimulates placental and fetal growth and is not regulated by GH. Insulin enhances Igf1 production by the mammalian liver directly, and by increasing hepatocyte sensitivity to GH. We examined the regulation of igf1 and igf2 mRNA levels by GH, insulin, and cortisol, and the effects of insulin and cortisol on GH sensitivity in primary cultured hepatocytes of tilapia, a cichlid teleost. GH increased mRNA levels of both igf1 and igf2 in a concentration-related and biphasic manner over the physiological range, with a greater effect on igf2 mRNA level. Insulin increased basal igf2 mRNA level, and strongly increased GH-stimulated igf2 mRNA level, but slightly reduced basal igf1 mRNA level and did not affect GH-stimulated igf1 mRNA level. Cortisol inhibited GH stimulation of igf1, but increased GH stimulation of igf2 mRNA level. The synergistic effect of insulin and GH on igf2 mRNA level was confirmed in vivo. These results indicate that insulin and cortisol differentially modulate the response of igf1 and igf2 mRNA to GH in tilapia hepatocytes, and suggest that the regulation of liver Igf2 production differs between fish and mammals. Regulation of liver Igf2 production in fish appears to be similar to regulation of liver Igf1 production in mammals.
Collapse
Affiliation(s)
- Andrew L Pierce
- Hawaii Institute of Marine Biology, University of Hawaii, Kaneohe, USA
| | | | | | | | | |
Collapse
|
34
|
Kang KS, Yahashi S, Matsuda K. Central and peripheral effects of ghrelin on energy balance, food intake and lipid metabolism in teleost fish. Peptides 2011; 32:2242-7. [PMID: 21601604 DOI: 10.1016/j.peptides.2011.05.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2011] [Revised: 04/24/2011] [Accepted: 05/05/2011] [Indexed: 11/23/2022]
Abstract
Ghrelin was first identified and characterized from rat stomach as an endogenous ligand for the growth hormone secretagogue receptor. Ghrelin and its receptor system are present not only in peripheral tissues such as stomach and intestine, but also in the central nervous system of mammals. Interestingly, administration of ghrelin induces an orexigenic effect and also modifies locomotor activity, suggesting its involvement in feeding control and the regulation of energy balance, in addition to the regulation of growth hormone release. Information about ghrelin in non-mammals, such as teleost fish, has also been increasing, and important data have been obtained. An understanding of the evolutionary background of the energy regulation system and the central and peripheral roles of ghrelin in teleost fish could provide indications as to their roles in mammals, particularly humans. In this review, we overview the central and peripheral effects of ghrelin on energy balance, locomotor activity, and lipid metabolism in teleost fish.
Collapse
Affiliation(s)
- Ki Sung Kang
- Laboratory of Regulatory Biology, Graduate School of Science and Engineering, University of Toyama, 3190-Gofuku, Toyama 930-8555, Japan
| | | | | |
Collapse
|
35
|
Kaneko G, Furukawa S, Kurosu Y, Yamada T, Takeshima H, Nishida M, Mitsuboshi T, Otaka T, Shirasu K, Koda T, Takemasa Y, Aki S, Mochizuki T, Fukushima H, Fukuda Y, Kinoshita S, Asakawa S, Watabe S. Correlation with larval body size of mRNA levels of growth hormone, growth hormone receptor I and insulin-like growth factor I in larval torafugu Takifugu rubripes. JOURNAL OF FISH BIOLOGY 2011; 79:854-874. [PMID: 21967578 DOI: 10.1111/j.1095-8649.2011.03037.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The full-length of insulin-like growth factor (IGF) complementary (c)DNAs encoded by igf-I and igf-II from torafugu pufferfish Takifugu rubripes were cloned in the present study. The deduced amino acid sequences of the two genes showed c. 80% identity each with those of Igf-I and Igf-II from other teleosts, respectively. Two growth hormone (GH) receptors, ghr1 and ghr2, were also cloned in silico using the T. rubripes Fugu genome database. The transcripts of T. rubripes igf-I were detected in slow muscle, heart, skin, gill, liver and intestine but not in fast muscle, spleen and testis of adult fish, whereas those of igf-II were found in all tissues examined. Subsequently, the accumulated messenger (m)RNA levels of igf-I and igf-II were investigated in an F(2) population derived from a male of an apparent fast-growing T. rubripes strain and a wild female T. rubripes together with those of other growth-related genes encoding Gh, Ghr1 and Ghr2, and with those of prolactin (Prl) and leptin (Lep) previously reported. The accumulated mRNA levels of igf-I, gh and ghr1 were significantly correlated to growth rate at larval stages in the population, but not for those of igf-II, prl, ghr2 and lep. Although it is unclear whether or not this phenotype is directly related to the heredity of the fast-growing strain, the findings suggest that the expression of igf-I, gh and ghr1 is involved in the regulation of growth rate at larval stages in T. rubripes.
Collapse
Affiliation(s)
- G Kaneko
- Department of Aquatic Bioscience, Graduate School of Agricultural and Life Sciences, The University of Tokyo, Bunkyo, Tokyo 113-8657, Japan
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
36
|
Hevrøy EM, Azpeleta C, Shimizu M, Lanzén A, Kaiya H, Espe M, Olsvik PA. Effects of short-term starvation on ghrelin, GH-IGF system, and IGF-binding proteins in Atlantic salmon. FISH PHYSIOLOGY AND BIOCHEMISTRY 2011; 37:217-232. [PMID: 20878468 DOI: 10.1007/s10695-010-9434-3] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2010] [Accepted: 09/14/2010] [Indexed: 05/29/2023]
Abstract
The effects of short-time fasting on appetite, growth, and nutrient were studied in Atlantic salmon (Salmo salar) smolts. Feed deprivation did change the energy metabolism with reduced plasma protein and muscle indispensible amino acid levels. Plasma levels of ghrelin were significantly higher in starved salmon compared with fed fish after 2 days, but no differences in circulating ghrelin were found between treatments after 14 days. Two mRNA sequences for ghrelin-1 and ghrelin-2, 430 and 533 bp long, respectively, were detected. In addition, the growth hormone secretagogues-receptor like receptor (GHSR-LR) 1a and 1b were identified. Ghrelin-1 but not ghrelin-2 mRNA levels were affected by starvation in the stomach. Lower ghrelin-1 mRNA levels were detected at day 2 in starved fish compared with fed fish. The mRNA levels of GHSR-LR1a were not affected by starvation. Fasting reduced the phenotypic growth and the transcription of insulin-like growth factor (IGF)-II together with IGF-IIR, but IGF-I mRNA were not regulated in fasted salmon after 14 days. Three IGF-binding proteins (IGFBP) at 23, 32, and 43 kDa were found in salmon, and circulating 23 kDa was significantly increased after 14 days of starvation compared with fed fish, indicating increased catabolism. The levels of IGFBP-1 mRNA were significantly higher in fed and starved fish after 14 days compared to those at the start of the experiment, but no significant difference was observed between the treatments. In conclusion, we have shown that circulating ghrelin and ghrelin-1 mRNA is related to changes in energy metabolism in Atlantic salmon.
Collapse
Affiliation(s)
- E M Hevrøy
- National Institute of Nutrition and Seafood Research (NIFES), Nordnes, Bergen, Norway.
| | | | | | | | | | | | | |
Collapse
|
37
|
Breves JP, Fox BK, Pierce AL, Hirano T, Grau EG. Gene expression of growth hormone family and glucocorticoid receptors, osmosensors, and ion transporters in the gill during seawater acclimation of Mozambique tilapia, Oreochromis mossambicus. ACTA ACUST UNITED AC 2010; 313:432-41. [PMID: 20623800 DOI: 10.1002/jez.613] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study characterized endocrine and ionoregulatory responses accompanying seawater (SW) acclimation in Mozambique tilapia (Oreochromis mossambicus). Changes in plasma hormones and gene expression of hormone receptors, putative osmosensors, and ion transporters in the gill were measured. Transfer of freshwater (FW)-acclimated tilapia to SW resulted in a marked elevation in plasma osmolality and a significant rise in plasma growth hormone (GH) levels at 12 hr and 14 days after transfer. Significant reductions in plasma prolactin (PRL(177) and PRL(188)) levels also occurred in SW-transferred fish; no effect of transfer upon plasma cortisol or insulin-like growth factor I was observed. Gene expression of GH receptor increased strongly 6 hr after transfer, whereas PRL receptor was lower than controls at 12 hr. By contrast, mRNA levels of somatolactin and glucocorticoid receptors were unaffected by SW transfer. Osmotic stress transcription factor 1 mRNA levels rose significantly between 3 and 12 hr, whereas the calcium-sensing receptor was unaffected. Aquaporin-3 gene expression was strongly down-regulated during SW acclimation from 12 hr until the conclusion of the experiment. Na(+)/K(+)/2Cl(-) cotransporter gene expression increased significantly 3 hr after transfer, whereas expression of Na(+)/Cl(-) cotransporter, specific to FW-type chloride cells, declined by 6 hr into SW acclimation. The response of Na(+)/H(+) exchanger was less pronounced, but showed a similar pattern to that of the Na(+)/Cl(-) cotransporter. These results suggest that acquisition of hyposmoregulatory mechanisms in Mozambique tilapia entails the coordinated interaction of systemic hormones with local factors in the gill, including hormone receptors, ion transporters, and osmosensors.
Collapse
Affiliation(s)
- Jason P Breves
- Department of Molecular Biosciences and Bioengineering, University of Hawaii at Manoa, Honolulu, Hawaii, USA
| | | | | | | | | |
Collapse
|
38
|
Mennigen JA, Sassine J, Trudeau VL, Moon TW. Waterborne fluoxetine disrupts feeding and energy metabolism in the goldfish Carassius auratus. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2010; 100:128-37. [PMID: 20692053 DOI: 10.1016/j.aquatox.2010.07.022] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2010] [Revised: 07/06/2010] [Accepted: 07/17/2010] [Indexed: 05/25/2023]
Abstract
Fluoxetine (FLX) is one of the most commonly detected pharmaceuticals in wastewater and bioaccumulates in wild-caught fish, especially in brain, liver and muscle tissues. Previous studies indicated that FLX is pharmacologically active in fish species exerting anorexigenic effects, but it is not clear whether waterborne FLX has any potential effects on regulating food intake and energy metabolism. In this study, we investigated the effect of two doses of FLX, an environmental concentration of 540 ng/L, and 100-times this concentration (54 μg/L), on feeding and key metabolic parameters in goldfish. Fish were exposed for a period of 28 days and changes in food intake and body mass were assessed. Pair-fed groups were maintained to discern primary FLX-induced effects from secondary metabolic responses induced by the decreased food intake. Additionally, an untreated control group and a fasted group were used to further compare physiological changes in the context of nutritional status of the animals. Significant decreases in food intake and weight gain were recorded in goldfish exposed to 54 μg/L FLX. Furthermore a significant decrease occurred in circulating glucose levels in the group exposed to 540 ng/L FLX. To elucidate potential mechanisms, we investigated gene expression of feeding neuropeptides in the neuroendocrine brain of goldfish as well as gene expression and enzymatic activity of glycolytic and gluconeogenetic enzymes in liver and muscle tissues. The results confirm brain gene expression patterns in line with potential anorexigenic effects in the hypothalamus, with increased expression in corticotropin-releasing factor (CRF) and decreased expression of neuropeptide Y (NPY). With respect to glucose metabolism, liver gene expression of the gluconeogenic enzyme fructose-1,6-bisphosphatase decreased and muscle hexokinase activity increased in fish exposed to 540 ng/L FLX. Overall, this study demonstrated anorectic properties of FLX at a dose of 54 μg/L FLX and moderate but significant effects on glucose metabolism in goldfish exposed to 540 ng/L FLX. Future studies investigating the importance of these changes in fish are warranted.
Collapse
Affiliation(s)
- Jan A Mennigen
- Centre for Advanced Research in Environmental Genomics, Department of Biology, University of Ottawa, Ottawa, Ontario K1N6N5, Canada
| | | | | | | |
Collapse
|
39
|
Volkoff H, Hoskins LJ, Tuziak SM. Influence of intrinsic signals and environmental cues on the endocrine control of feeding in fish: potential application in aquaculture. Gen Comp Endocrinol 2010; 167:352-9. [PMID: 19735660 DOI: 10.1016/j.ygcen.2009.09.001] [Citation(s) in RCA: 59] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2009] [Revised: 08/30/2009] [Accepted: 09/02/2009] [Indexed: 01/05/2023]
Abstract
Optimization of food consumption and ultimately growth are major concerns for aquaculture. In fish, food intake is regulated by several hormones produced by both brain and peripheral tissues. Changes in feeding behavior and appetite usually occur through the modulation of the gene expression and/or action of these appetite-regulating hormones and can be due not only to variations in intrinsic factors such as nutritional/metabolic or reproductive status, but also to changes in environmental factors, such as temperature and photoperiod. In addition, the gene expression and/or plasma levels of appetite-regulating hormones might also display daily as well as circannual (seasonal) rhythms. Despite recent advances, our current understanding of the regulation of feeding in fish is still limited. We give here a brief overview of our current knowledge of the endocrine regulation of feeding in fish and describe how a better understanding of appetite-related hormones in fish might lead to the development of sustainable aquaculture.
Collapse
Affiliation(s)
- Hélène Volkoff
- Department of Biology, Memorial University of Newfoundland, St. John's, NL, Canada.
| | | | | |
Collapse
|
40
|
The endocrine regulation network of growth hormone synthesis and secretion in fish: Emphasis on the signal integration in somatotropes. SCIENCE CHINA-LIFE SCIENCES 2010; 53:462-70. [DOI: 10.1007/s11427-010-0084-6] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2009] [Accepted: 01/06/2010] [Indexed: 01/21/2023]
|
41
|
Fox BK, Breves JP, Davis LK, Pierce AL, Hirano T, Grau EG. Tissue-specific regulation of the growth hormone/insulin-like growth factor axis during fasting and re-feeding: Importance of muscle expression of IGF-I and IGF-II mRNA in the tilapia. Gen Comp Endocrinol 2010; 166:573-80. [PMID: 19932110 DOI: 10.1016/j.ygcen.2009.11.012] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/25/2009] [Revised: 10/30/2009] [Accepted: 11/17/2009] [Indexed: 01/29/2023]
Abstract
The effects of prolonged nutrient restriction (fasting) and subsequent restoration (re-feeding) on the growth hormone (GH)/insulin-like growth factor (IGF) axis were investigated in the tilapia (Oreochromis mossambicus). Mean weight and specific growth rate declined within 1 week in fasted fish, and remained lower than controls throughout 4 weeks of fasting. Plasma levels of IGF-I were lower than fed controls during 4 weeks of fasting, suggesting a significant catabolic state. Following re-feeding, fasted fish gained weight continuously, but did not attain the weight of fed controls at 8 weeks after re-feeding. Specific growth rate increased above the continuously-fed controls during the first 6 weeks of re-feeding, clearly indicating a compensatory response. Plasma IGF-I levels increased after 1 week of re-feeding and levels were not otherwise different from fed controls. Plasma GH levels were unaffected by either fasting or re-feeding. No consistent effect of fasting or re-feeding was observed on liver expression of GH receptor (GH-R), somatolactin (SL) receptor (SL-R), IGF-I or IGF-II. In contrast, muscle expression of GH-R increased markedly during 4 weeks of fasting, and then declined below control levels upon re-feeding for weeks 1 and 2. Similarly, muscle expression of SL-R increased after 4 weeks of fasting, and reduced below control levels after 1 and 2 weeks of re-feeding. On the other hand, muscle expression of IGF-I was strongly reduced throughout the fasting period, and levels recovered 2 weeks after re-feeding. Muscle expression of IGF-II was not affected by fasting, but was reduced after 1 and 2 weeks of re-feeding. These results indicate that GH/IGF axis, particularly muscle expression of GH-R, SL-R and IGF-I and -II, is sensitive to nutritional status in the tilapia.
Collapse
Affiliation(s)
- Bradley K Fox
- Department of Molecular Biosciences and Bioengineering, University of Hawaii, Honolulu, HI 96822, USA
| | | | | | | | | | | |
Collapse
|
42
|
Reinecke M. Influences of the environment on the endocrine and paracrine fish growth hormone-insulin-like growth factor-I system. JOURNAL OF FISH BIOLOGY 2010; 76:1233-54. [PMID: 20537012 DOI: 10.1111/j.1095-8649.2010.02605.x] [Citation(s) in RCA: 144] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Insulin-like growth factor-I (IGF-I) is a key component of the complex system that regulates differentiation, development, growth and reproduction of fishes. The IGF-I gene is mainly expressed in the liver that represents the principal source of endocrine IGF-I but also in numerous other organs where the hormone most probably acts in an autocrine-paracrine manner. The primary stimulus for synthesis and release of IGF-I is growth hormone (GH) from the anterior pituitary. Thus, in analogy to mammals, it is usual to speak of a fish 'GH-IGF-I axis'. The GH-IGF-I system is affected by changes in the environment and probably represents a target of endocrine disrupting compounds (EDC) that impair many physiological processes in fishes. Thus, the review deals with the influences of changes in different environmental factors, such as food availability, temperature, photoperiod, season, salinity and EDCs, on GH gene expression in pituitary, IGF-I gene expression in liver and extrahepatic sites and the physiological effects resulting from the evoked alterations in endocrine and local IGF-I. Environmental influences certainly interact with each other but for convenience of the reader they will be dealt with in separate sections. Current trends in GH-IGF-I research are analysed and future focuses are suggested at the end of the sections.
Collapse
Affiliation(s)
- M Reinecke
- Division of Neuroendocrinology, Institute of Anatomy, University of Zürich, Winterthurerstr. 190, 8057 Zürich, Switzerland.
| |
Collapse
|
43
|
Riley LG, Walker AP, Dorough CP, Schwandt SE, Grau EG. Glucose regulates ghrelin, neuropeptide Y, and the GH/IGF-I axis in the tilapia, Oreochromis mossambicus. Comp Biochem Physiol A Mol Integr Physiol 2009; 154:541-6. [PMID: 19735736 DOI: 10.1016/j.cbpa.2009.08.018] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2009] [Revised: 08/24/2009] [Accepted: 08/30/2009] [Indexed: 11/17/2022]
Abstract
In general, a fish's ability to clear glucose is sluggish in relation to mammals, which has lead to the idea that fish are glucose intolerant. It has been reported that circulating glucose levels do fluctuate in response to environmental challenges. Recent reports suggest that glucose may function as a metabolic signal regulating 'glucosensors' in the brain in fish, as has been reported in mammals. The current study was designed to investigate the effect of glucose on ghrelin and neuropeptide Y (NPY) signaling in the brain, and on the growth hormone/insulin-like growth factor-I (GH/IGF-I) in the tilapia, Oreochromis mossambicus. Glucose treatment significantly increased plasma and stomach mRNA levels of ghrelin. In the brain, mRNA levels of the ghrelin receptor (GRLN-R) were significantly reduced, whereas NPY mRNA levels were significantly elevated; suggesting that NPY containing neurons may be a "glucosensor" as reported in mammals. Glucose treatment resulted in changes in the GH/IGF-I axis. Liver mRNA levels of both GH receptors (GHR1 and GHR2) were significantly elevated, whereas liver IGF-I mRNA were unaltered by glucose treatment. No change in plasma or pituitary mRNA levels of GH was observed. Glucose significantly reduced plasma IGF-I levels. These data show that glucose regulates endocrine factors involved in appetite, growth, and possibly energy homeostasis, and suggests that glucose may be acting as a signal of metabolic status in fish.
Collapse
Affiliation(s)
- Larry G Riley
- California State University-Fresno, Department of Biology, Fresno, CA 93740, USA.
| | | | | | | | | |
Collapse
|