1
|
Luo L, Li Q, Xing C, Li C, Pan Y, Sun H, Yu X, Wen K, Shen J, Wang Z. Antibody-based therapy: An alternative for antimicrobial treatment in the post-antibiotic era. Microbiol Res 2025; 290:127974. [PMID: 39577369 DOI: 10.1016/j.micres.2024.127974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/10/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024]
Abstract
The consecutive growth of antimicrobial resistance and the spread of resistance genes worldwide, especially the emergence of superbugs, have made traditional antibiotic-based treatments inadequate to fight bacterial infections. Therefore, new therapeutic modalities for bacterial infections are urgently needed. Antibodies are considered to be an effective alternative to antibiotics. The emergence and advancement of technologies such as hybridoma, antibody purification, transgenic mice, phage display, and protein engineering have enabled the production of large quantities of humanized antibodies with high purity and affinity. Antibodies has achieved remarkable achievements in the field of medicine in the past decades. Antibody-based therapy is expected to be an effective way to treat drug-resistant bacterial infections in the post-antibiotic era due to its merits of high specificity, which leads to no selective pressure on non-target bacteria and could cooperate with antibiotics to enhance the antimicrobial effect. This review first introduces the mechanism of action of antibodies against bacterial infections, then summarizes the reported antimicrobial antibodies according to different targets, discusses the advantages and limitations of the antibody-based therapy for antimicrobial treatment, and finally, the perspectives of antimicrobial antibodies developing have been prospected, providing a reference for the development of new antimicrobial antibodies.
Collapse
Affiliation(s)
- Liang Luo
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China; Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, PR China
| | - Qing Li
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Chen Xing
- Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, PR China
| | - Chenglong Li
- College of Veterinary Medicine, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Yantong Pan
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China; Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, PR China
| | - He Sun
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Xuezhi Yu
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Kai Wen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Jianzhong Shen
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China
| | - Zhanhui Wang
- National Key Laboratory of Veterinary Public Health and Safety, Beijing Key Laboratory of Detection Technology for Animal-Derived Food Safety, College of Veterinary Medicine, China Agricultural University, Beijing 100193, PR China; Technology Innovation Center for Food Safety Surveillance and Detection (Hainan), Sanya Institute of China Agricultural University, Sanya 572025, PR China.
| |
Collapse
|
2
|
Cheng K, Lu J, Guo J, Wang R, Chen L, Wang X, Jiang Y, Li Y, Xu C, Kang Q, Qiaerxie G, Du P, Gao C, Yu Y, Yang Z, Wang W. Characterization of neutralizing chimeric heavy-chain antibodies against tetanus toxin. Hum Vaccin Immunother 2024; 20:2366641. [PMID: 38934499 PMCID: PMC11212558 DOI: 10.1080/21645515.2024.2366641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 06/07/2024] [Indexed: 06/28/2024] Open
Abstract
Tetanus toxin (TeNT) is one of the most toxic proteins. Neutralizing antibodies against TeNT are effective in prevention and treatment. In this study, 14 anti-tetanus nanobodies were obtained from a phage display nanobody library by immunizing a camel with the C-terminal receptor-binding domain of TeNT (TeNT-Hc) as the antigen. After fusion with the human Fc fragment, 11 chimeric heavy-chain antibodies demonstrated nanomolar binding toward TeNT-Hc. The results of toxin neutralization experiments showed that T83-7, T83-8, and T83-13 completely protected mice against 20 × the median lethal dose (LD50) at a low concentration. The neutralizing potency of T83-7, T83-8, and T83-13 against TeNT is 0.4 IU/mg, 0.4 IU/mg and 0.2 IU/mg, respectively. In the prophylactic setting, we found that 5 mg/kg of T83-13 provided the mice with full protection from tetanus, even when they were injected 14 days before exposure to 20 × LD50 TeNT. T83-7 and T83-8 were less effective, being fully protective only when challenged 7 or 10 days before exposure, respectively. In the therapeutic setting, 12 h after exposure to TeNT, 1 ~ 5 mg/kg of T83-7, and T83-8 could provide complete protection for mice against 5 × LD50 TeNT, while 1 mg/kg T83-13 could provide complete protection 24 h after exposure to 5 × LD50 TeNT. Our results suggested that these antibodies represent prophylactic and therapeutic activities against TeNT in a mouse model. The T83-7, T83-8, and T83-13 could form the basis for the subsequent development of drugs to treat TeNT toxicity.
Collapse
Affiliation(s)
- Kexuan Cheng
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Jiansheng Lu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Jiazheng Guo
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Rong Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Lei Chen
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Xi Wang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yujia Jiang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yating Li
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Changyan Xu
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Qinglin Kang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Gulisaina Qiaerxie
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Peng Du
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Chen Gao
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Yunzhou Yu
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Zhixin Yang
- Laboratory of Advanced Biotechnology, Beijing Institute of Biotechnology, Beijing, China
| | - Wei Wang
- Department of Occupational Health and Occupational Diseases, College of Public Health, Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
3
|
Bu F, Ye G, Morsheimer K, Mendoza A, Turner-Hubbard H, Herbst M, Spiller B, Wadzinski BE, Eaton B, Anantpadma M, Yang G, Liu B, Davey R, Li F. Discovery of Nanosota-EB1 and -EB2 as Novel Nanobody Inhibitors Against Ebola Virus Infection. PLoS Pathog 2024; 20:e1012817. [PMID: 39715280 DOI: 10.1371/journal.ppat.1012817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Accepted: 12/09/2024] [Indexed: 12/25/2024] Open
Abstract
The Ebola filovirus (EBOV) poses a serious threat to global health and national security. Nanobodies, a type of single-domain antibody, have demonstrated promising therapeutic potential. We identified two anti-EBOV nanobodies, Nanosota-EB1 and Nanosota-EB2, which specifically target the EBOV glycoprotein (GP). Cryo-EM and biochemical data revealed that Nanosota-EB1 binds to the glycan cap of GP1, preventing its protease cleavage, while Nanosota-EB2 binds to critical membrane-fusion elements in GP2, stabilizing it in the pre-fusion state. Nanosota-EB2 is a potent neutralizer of EBOV infection in vitro and offers excellent protection in a mouse model of EBOV challenge, while Nanosota-EB1 provides moderate neutralization and protection. Nanosota-EB1 and Nanosota-EB2 are the first nanobodies shown to inhibit authentic EBOV. Combined with our newly developed structure-guided in vitro evolution approach, they lay the foundation for nanobody-based therapies against EBOV and other viruses within the ebolavirus genus.
Collapse
Affiliation(s)
- Fan Bu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Gang Ye
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Kimberly Morsheimer
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
- Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Alise Mendoza
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Hailey Turner-Hubbard
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Morgan Herbst
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Benjamin Spiller
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Brian E Wadzinski
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Brett Eaton
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Manu Anantpadma
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Frederick, Maryland, United States of America
| | - Ge Yang
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Bin Liu
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Robert Davey
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, United States of America
- Department of Virology, Immunology, and Microbiology, Boston University School of Medicine, Boston, Massachusetts, United States of America
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
4
|
Sultana S, Geyer CR. Effect of framework and complementarity determining region H1 charge on the human VH-B1a domain expression, folding, stability, and solubility. Biochem Biophys Res Commun 2024; 739:150956. [PMID: 39541928 DOI: 10.1016/j.bbrc.2024.150956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/24/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024]
Abstract
Many difficulties related to using antibodies in diagnostic and therapeutic applications can sometimes be circumvented by using smaller, less complex single domain antibodies based on variable heavy chain (VH) domain constructs such as camelid VHH domains. However, VH domains have their own limitations, including an increased tendency to aggregate. VH domains often contain hydrophobic residues within their complementarity-determining regions (CDRs) that facilitate binding to target antigens but can also mediate VH domain aggregation, which is a concern for therapeutic applications since this can trigger immune responses. In this study, we engineered the human VH-1Ba domain to improve its stability and solubility by introducing charged amino acids in the VH domain framework region and CDRH1. We followed two strategies to improve the stability and solubility of VH domains. First, we introduced positive and negatively charged amino acids in the framework region of an autonomous human VH domain (VH-B1a) and observed the effect of framework net charge on VH domain refolding, stability, and solubility. Introducing positive charge into the VH-B1a framework increased its thermostability but slightly lowered its refolding ability and solubility. We were not able to obtain correctly folded negatively charged (-VH) VH domains. Second, we introduced a series of positive and negatively charged amino acids in the CDRH1 loop of near-neutral (VH-B1a) and positively charged (+VH) VH domains, and observed their effect on expression, refolding, stability, and solubility. For both the VH-B1a and +VH domains, we observed a decrease in melting temperature (Tm) and room temperature solubility as more negative or positive charged amino acids were added to the CDRH1. The VH-B1a domain had higher room temperature solubility for negative and slightly positive CDRH1 net charges. The + VH domain had higher Tms for all CDRH1 net charges and was better able to tolerate the adverse effects of adding positive charge to CDRH1. We observed a similar response in refolding and solubility of VH-B1a and +VH in response to changes in CDRH1 net charge after temperature-induced denaturation for negative and neutral CDRH1s. We observed a positional effect with a single Lys (31K) and double Lys (31, 32 KK) substitutions in CDRH1, which promoted VH-B1a aggregation and was partially overcome by the +VH domain. In summary, this study provides information for designing VH domains with improved biophysical properties and a +VH domain that will be useful for applications where positive surface charge and CDRH1 are desirable.
Collapse
Affiliation(s)
- Sharmin Sultana
- Department of Biochemistry, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada
| | - C Ronald Geyer
- Department of Pathology, University of Saskatchewan, Saskatoon, SK, S7N 5E5, Canada.
| |
Collapse
|
5
|
Li R, Huang J, Wei Y, Wang Y, Lu C, Liu J, Ma X. Nanotherapeutics for Macrophage Network Modulation in Tumor Microenvironments: Targets and Tools. Int J Nanomedicine 2024; 19:13615-13651. [PMID: 39717515 PMCID: PMC11665441 DOI: 10.2147/ijn.s491573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 12/04/2024] [Indexed: 12/25/2024] Open
Abstract
Macrophage is an important component in the tumor immune microenvironment, which exerts significant influence on tumor development and metastasis. Due to their dual nature of promoting and suppressing inflammation, macrophages can serve as both targets for tumor immunotherapy and tools for treating malignancies. However, the abundant infiltration of tumor-associated macrophages dominated by an immunosuppressive phenotype maintains a pro-tumor microenvironment, and engineering macrophages using nanotechnology to manipulate the tumor immune microenvironment represent a feasible approach for cancer immunotherapy. Additionally, considering the phagocytic and specifically tumor-targeting capabilities of M1 macrophages, macrophages manipulated through cellular engineering and nanotechnology, as well as macrophage-derived exosomes and macrophage membranes, can also become effective tools for cancer treatment. In conclusion, nanotherapeutics targeting macrophages remains immense potential for the development of macrophage-mediated tumor treatment methods and will further enhance our understanding, diagnosis, and treatment of various malignants.
Collapse
Affiliation(s)
- Renwei Li
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Jing Huang
- Department of Medical Ultrasound, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Yuhao Wei
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Yusha Wang
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
- Lung Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Can Lu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, People’s Republic of China
| | - Jifeng Liu
- Department of Otolaryngology Head and Neck Surgery/Deep Underground Space Medical Center, West China Hospital, Sichuan University, Chengdu, Sichuan, People’s Republic of China
- State Key Laboratory of Intelligent Construction and Healthy Operation and Maintenance of Deep Underground Engineering, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| | - Xuelei Ma
- Department of Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, People’s Republic of China
| |
Collapse
|
6
|
Wang Z, Shi Z, Liao X, Quan G, Dong H, Zhao P, Zhou Y, Shi N, Wang J, Wu Y, Qiao C, Li XY, Zhang R, Wang Z, Wang T, Gao X, Feng J, Luo L. Broad-Spectrum Engineered Multivalent Nanobodies Against SARS-CoV-1/2. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402975. [PMID: 39373693 PMCID: PMC11615778 DOI: 10.1002/advs.202402975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 06/28/2024] [Indexed: 10/08/2024]
Abstract
SARS-CoV-2 Omicron sublineages escape most preclinical/clinical neutralizing antibodies in development, suggesting that previously employed antibody screening strategies are not well suited to counteract the rapid mutation of SARS-CoV-2. Therefore, there is an urgent need to screen better broad-spectrum neutralizing antibody. In this study, a comprehensive approach to design broad-spectrum inhibitors against both SARS-CoV-1 and SARS-CoV-2 by leveraging the structural diversity of nanobodies is proposed. This includes the de novo design of a fully human nanobody library and the camel immunization-based nanobody library, both targeting conserved epitopes, as well as the development of multivalent nanobodies that bind nonoverlapping epitopes. The results show that trivale B11-E8-F3, three nanobodies joined tandemly in trivalent form, have the broadest spectrum and efficient neutralization activity, which spans from SARS-CoV-1 to SARS-CoV-2 variants. It is also demonstrated that B11-E8-F3 has a very prominent preventive and some therapeutic effect in animal models of three authentic viruses. Therefore, B11-E8-F3 has an outstanding advantage in preventing SARS-CoV-1/SARS-CoV-2 infections, especially in immunocompromised populations or elderly people with high-risk comorbidities.
Collapse
Affiliation(s)
- Zhihong Wang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Zhuangzhuang Shi
- Key Laboratory of Jilin Province for Zoonosis Prevention and ControlChangchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchun130122P. R. China
| | - Xiaochen Liao
- Joint National Laboratory for Antibody Drug Engineeringthe First Affiliated Hospital, Henan UniversityKaifeng CityHenan475004P. R. China
| | - Guiqi Quan
- Hunan Normal University School of medicineChangshaHunan410200P. R. China
| | - Hui Dong
- Joint National Laboratory for Antibody Drug Engineeringthe First Affiliated Hospital, Henan UniversityKaifeng CityHenan475004P. R. China
| | - Pinnan Zhao
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Yangyihua Zhou
- Joint National Laboratory for Antibody Drug Engineeringthe First Affiliated Hospital, Henan UniversityKaifeng CityHenan475004P. R. China
| | - Ning Shi
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Jie Wang
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Yahui Wu
- Hunan Normal University School of medicineChangshaHunan410200P. R. China
| | - Chunxia Qiao
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Xin ying Li
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Ran Zhang
- Hunan Normal University School of medicineChangshaHunan410200P. R. China
| | - Zekun Wang
- Joint National Laboratory for Antibody Drug Engineeringthe First Affiliated Hospital, Henan UniversityKaifeng CityHenan475004P. R. China
| | - Tiecheng Wang
- Key Laboratory of Jilin Province for Zoonosis Prevention and ControlChangchun Veterinary Research InstituteChinese Academy of Agricultural SciencesChangchun130122P. R. China
| | - Xiang Gao
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Jiannan Feng
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| | - Longlong Luo
- State Key Laboratory of Toxicology and Medical CountermeasuresBeijing Institute of Pharmacology and ToxicologyBeijing100850P. R. China
| |
Collapse
|
7
|
Prajapati M, Malik P, Sinha A, Yadav H, Jaiwal YK, Ahlawat YK, Chaudhary D, Jaiwal R, Sharma N, Jaiwal PK, Chattu VK. Biotechnological Interventions for the Production of Subunit Vaccines Against Group A Rotavirus. Cell Biochem Funct 2024; 42:e70031. [PMID: 39707603 DOI: 10.1002/cbf.70031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 11/29/2024] [Accepted: 12/02/2024] [Indexed: 12/23/2024]
Abstract
Group A rotavirus (RVA) is a major cause of severe gastroenteritis in infants and young children globally, despite the availability of live-attenuated vaccines. Challenges such as limited efficacy in low-income regions, safety concerns for immunocompromised individuals, and cold-chain dependency necessitate alternative vaccine strategies. Subunit vaccines, which use specific viral proteins to elicit immunity, provide a safer and more adaptable approach. This review highlights biotechnological advancements in producing subunit vaccines, focusing on recombinant expression systems like bacterial, yeast, insect, mammalian, and plant-based platforms for scalable and cost-effective production of viral proteins. Key innovations include molecular engineering, adjuvant development, and delivery system improvements to enhance vaccine immunogenicity and efficacy. Subunit vaccines and virus-like particles expressed in various systems have demonstrated promising preclinical and clinical results, with some candidates nearing commercial readiness. Reverse vaccinology, combined with Artificial Intelligence and Machine Learning, is driving the development of innovative multiepitope vaccines and antivirals. Strategies such as passive immunization, single-chain antibodies, immunobiotics, and novel antivirals are also explored as alternative management options. The review also underscores advanced genome editing and reverse genetics approaches to improve vaccine design and antiviral therapies. These biotechnological interventions offer hope for equitable and effective control of rotavirus diarrhea, particularly in resource-limited settings, and represent significant progress toward addressing current vaccine limitations.
Collapse
Affiliation(s)
- Mukta Prajapati
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Pooja Malik
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Astha Sinha
- Department of Paediatrics, Civil Hospital, Rohtak, India
| | - Honey Yadav
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Yachna K Jaiwal
- Department of Pharmaceutical Sciences, Maharshi Dayanand University, Rohtak, India
| | - Yogesh K Ahlawat
- University Centre for Research and Development, Chandigarh University, Mohali, Punjab, India
- Centre for Research Impact and Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, India
| | - Darshna Chaudhary
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Ranjana Jaiwal
- Department of Zoology, Maharshi Dayanand University, Rohtak, India
| | - Nisha Sharma
- Department of Biotechnology, Graphic Era (Deemed to be University), Dehradun, India
| | - Pawan K Jaiwal
- Centre for Biotechnology, Maharshi Dayanand University, Rohtak, India
| | - Vijay K Chattu
- Department of OS & OT, Temerty Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
8
|
McArthur N, Squire JD, Onyeachonam OJ, Bhatt NN, Jerez C, Holberton AL, Tessier PM, Wood LB, Kayed R, Kane RS. Generation of nanobodies with conformational specificity for tau oligomers that recognize tau aggregates from human Alzheimer's disease samples. Biomater Sci 2024; 12:6033-6046. [PMID: 39434503 PMCID: PMC11585960 DOI: 10.1039/d4bm00707g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024]
Abstract
Tauopathies are neurodegenerative diseases that involve tau misfolding and aggregation in the brain. These diseases, including Alzheimer's disease (AD), are some of the least understood and most difficult to treat neurodegenerative disorders. Antibodies and antibody fragments that target tau oligomers, which are especially toxic forms of tau, are promising options for immunotherapies and diagnostic tools for tauopathies. In this study, we have developed conformational, tau oligomer-specific nanobodies, or single-domain antibodies. We demonstrate that these nanobodies, OT2.4 and OT2.6, are highly specific for tau oligomers relative to tau monomers and fibrils. We used epitope mapping to verify that these nanobodies bind to discontinuous epitopes on tau and to support the idea that they interact with a conformation present in the oligomeric, and not monomeric or fibrillar, forms of tau. We show that these nanobodies interact with tau oligomers in brain samples from AD patients and from healthy older adults with primary age-related tauopathy. Our results demonstrate the potential of these nanobodies as tau oligomer-specific binding reagents and future tauopathy therapeutics and diagnostics.
Collapse
Affiliation(s)
- Nikki McArthur
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Jay D Squire
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Ogechukwu J Onyeachonam
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
| | - Nemil N Bhatt
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Cynthia Jerez
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Abigail L Holberton
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Peter M Tessier
- Department of Chemical Engineering, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Levi B Wood
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Ravi S Kane
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
9
|
Zhou L, Zhou H, Wang P, Xu H, Wu J, Zhou Y, Feng J, Zheng W. Construction of engineered probiotic that adhere and display nanobody to neutralize porcine reproductive and respiratory syndrome virus. Arch Microbiol 2024; 206:466. [PMID: 39540965 DOI: 10.1007/s00203-024-04198-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 10/23/2024] [Accepted: 11/08/2024] [Indexed: 11/16/2024]
Abstract
Pathogenic blue ear disease caused by porcine reproductive and respiratory syndrome virus (PRRSV) bring severe loss to breeding industry due to high infectivity and mortality. L. plantarum serves as the probiotic host strain, known for its beneficial properties in the gut microbiota. E. coli is used as a cloning host for the initial genetic engineering steps, facilitating the construction and amplification of the desired genetic constructs. In this study, using synthetic biology technology, we constructed engineered probiotics which could adhere and display nanobody on the surface to neutralize virus. Firstly, we screen an optimal nanobody to effectively bind with PRRSV by building library, expression and purification. Then, the integration of adhesion protein and nanobody into the genome of probiotics significantly improved its adhesion to IPEC-J2 cells. In addition, this engineered probiotic is almost non-toxic to cells with good safety, which can be used as a daily probiotics to prevent virus fecal transmission. Our study proposed this novel construction strategy of engineering probiotics with both adhesion and neutralization effects, which provided a new therapeutic view for intestinal virus clearance.
Collapse
Affiliation(s)
- Li Zhou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hanlin Zhou
- College of Life Science and Technology, Mudanjiang Normal University, 191 Wenhua Street, Mudanjiang, 157011, China
- College of Life Science and Technology, Huazhong University of Science and Technology, 1037 Luo Yu Road, Wuhan, 430074, China
- Liangzhun (Wuhan) Life Science & Technology Co. Ltd., 666 Gaoxin Avenue, Wuhan, 430073, China
| | - Panying Wang
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Hang Xu
- State Key Laboratory of Systems Medicine for Cancer, Shanghai Cancer Institute, Renji Affiliated to Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200120, P. R. China
| | - Jiayi Wu
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Yuanzhuo Zhou
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Jiaying Feng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Weiyi Zheng
- School of Food Science and Pharmaceutical Engineering, Nanjing Normal University, Nanjing, 210023, P. R. China.
| |
Collapse
|
10
|
Naylon SH, Richaud AD, Zhao G, Bui L, Dufresne CP, Wu CJ, Wangpaichitr M, Savaraj N, Roche SP. A platform of ADAPTive scaffolds: development of CDR-H3 β-hairpin mimics into covalent inhibitors of the PD1/PDL1 immune checkpoint. RSC Chem Biol 2024; 5:d4cb00174e. [PMID: 39552936 PMCID: PMC11562385 DOI: 10.1039/d4cb00174e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 10/30/2024] [Indexed: 11/19/2024] Open
Abstract
Aberrant and dysregulated protein-protein interactions (PPIs) drive a significant number of human diseases, which is why they represent a major class of targets in drug discovery. Although a number of high-affinity antibody-based drugs have emerged in this therapeutic space, the discovery of smaller PPI inhibitors is lagging far behind, underscoring the need for novel scaffold modalities. To bridge this gap, we introduce a biomimetic platform technology - adaptive design of antibody paratopes into therapeutics (ADAPT) - that enables the paratope-forming binding loops of antibodies to be crafted into large β-hairpin scaffolds (ADAPTins). In this study, we describe a novel strategy for engineering native CDR-H3 "hot loops" with varying sequences, lengths, and rigidity into ADAPTins, ultimately transforming these compounds into irreversible covalent inhibitors. A proof-of-concept was established by creating a series of ADAPTin blockers of the PD1:PDL1 immune checkpoint PPI (blocking activity EC50 < 0.3 μM) which were subsequently modified into potent covalent PD1 inhibitors. The compelling rate of stable and folded ADAPTins above physiological temperature (21 out of 29) obtained across six different scaffolds suggests that the platform technology could provide a novel opportunity for high-quality peptide display and biological screening.
Collapse
Affiliation(s)
- Sarah H Naylon
- Department of Chemistry and Biochemistry, Florida Atlantic University Boca Raton Florida 33431 USA
| | - Alexis D Richaud
- Department of Chemistry and Biochemistry, Florida Atlantic University Boca Raton Florida 33431 USA
| | - Guangkuan Zhao
- Department of Chemistry and Biochemistry, Florida Atlantic University Boca Raton Florida 33431 USA
| | - Linda Bui
- Department of Chemistry and Biochemistry, Florida Atlantic University Boca Raton Florida 33431 USA
| | | | - Chunjing J Wu
- University of Miami, Miller School of Medicine Miami Florida 33136 USA
| | | | - Niramol Savaraj
- University of Miami, Miller School of Medicine Miami Florida 33136 USA
| | - Stéphane P Roche
- Department of Chemistry and Biochemistry, Florida Atlantic University Boca Raton Florida 33431 USA
| |
Collapse
|
11
|
Ye G, Bu F, Saxena D, Turner-Hubbard H, Herbst M, Spiller B, Wadzinski BE, Du L, Liu B, Zheng J, Li F. Discovery of Nanosota-9 as anti-Omicron nanobody therapeutic candidate. PLoS Pathog 2024; 20:e1012726. [PMID: 39591462 PMCID: PMC11630572 DOI: 10.1371/journal.ppat.1012726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/10/2024] [Accepted: 11/05/2024] [Indexed: 11/28/2024] Open
Abstract
Omicron subvariants of SARS-CoV-2 continue to pose a significant global health threat. Nanobodies, single-domain antibodies derived from camelids, are promising therapeutic tools against pandemic viruses due to their favorable properties. In this study, we identified a novel nanobody, Nanosota-9, which demonstrates high potency against a wide range of Omicron subvariants both in vitro and in a mouse model. Cryo-EM data revealed that Nanosota-9 neutralizes Omicron through a unique mechanism: two Nanosota-9 molecules crosslink two receptor-binding domains (RBDs) of the trimeric Omicron spike protein, preventing the RBDs from binding to the ACE2 receptor. This mechanism explains its strong anti-Omicron potency. Additionally, the Nanosota-9 binding epitopes on the spike protein are relatively conserved among Omicron subvariants, contributing to its broad anti-Omicron spectrum. Combined with our recently developed structure-guided in vitro evolution approach for nanobodies, Nanosota-9 has the potential to serve as the foundation for a superior anti-Omicron therapeutic.
Collapse
Affiliation(s)
- Gang Ye
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Fan Bu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Divyasha Saxena
- Center for Predictive Medicine, University of Louisville, Kentucky, United States of America
| | - Hailey Turner-Hubbard
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Morgan Herbst
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Benjamin Spiller
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Brian E. Wadzinski
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Lanying Du
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Bin Liu
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Jian Zheng
- Center for Predictive Medicine, University of Louisville, Kentucky, United States of America
- Department of Microbiology and Immunology, University of Louisville, Kentucky, United States of America
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
12
|
Jiang MJ, Cui HP, Li TT, Yang XM, Lu XL, Liu AQ. A novel anti-CTLA-4 nanobody-IL12 fusion protein in combination with a dendritic cell/tumour fusion cell vaccine enhances the antitumour activity of CD8 + T cells in solid tumours. J Nanobiotechnology 2024; 22:645. [PMID: 39427185 PMCID: PMC11490160 DOI: 10.1186/s12951-024-02914-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/07/2024] [Indexed: 10/21/2024] Open
Abstract
BACKGROUND We previously developed a nanobody targeting CTLA-4 and demonstrated that it can boost antitumour T-cell responses in vitro; however, the resulting responses after the injection of T cells into cancer models are usually weak and transient. Here, we explored whether fusing our nanobody to IL-12 would enable it to induce stronger, longer-lasting T-cell immune responses after exposure to immature dendritic cell and tumour cell fusions. RESULTS The fusion protein enhanced the response of CD8+ T cells to tumour antigens in vitro and led to stronger, more persistent immune responses after the T cells were injected into mice bearing different types of xenografts. CONCLUSION Our in vitro and in vivo results suggest the anticancer potential of our nanobody-interleukin fusion system and support the clinical application of this fusion approach for various nanobodies.
Collapse
Affiliation(s)
- Meng-Jie Jiang
- Department of Gastroenterology and Respiratory Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Hao-Peng Cui
- Department of Gastroenterology and Respiratory Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Ting-Ting Li
- Department of Gastroenterology and Respiratory Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China
| | - Xiao-Mei Yang
- Guangxi Key Laboratory of Nanobody Research and Guangxi Nanobody Engineering Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, China
| | - Xiao-Ling Lu
- Guangxi Key Laboratory of Nanobody Research and Guangxi Nanobody Engineering Research Center, Guangxi Medical University, Nanning, Guangxi, 530021, China.
| | - Ai-Qun Liu
- Department of Gastroenterology and Respiratory Medicine & Endoscopy Center, Guangxi Medical University Cancer Hospital, Nanning, Guangxi, 530021, China.
| |
Collapse
|
13
|
Aboul-Ella H, Gohar A, Ali AA, Ismail LM, Mahmoud AEER, Elkhatib WF, Aboul-Ella H. Monoclonal antibodies: From magic bullet to precision weapon. MOLECULAR BIOMEDICINE 2024; 5:47. [PMID: 39390211 PMCID: PMC11467159 DOI: 10.1186/s43556-024-00210-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Accepted: 09/19/2024] [Indexed: 10/12/2024] Open
Abstract
Monoclonal antibodies (mAbs) are used to prevent, detect, and treat a broad spectrum of non-communicable and communicable diseases. Over the past few years, the market for mAbs has grown exponentially with an expected compound annual growth rate (CAGR) of 11.07% from 2024 (237.64 billion USD estimated at the end of 2023) to 2033 (679.03 billion USD expected by the end of 2033). Ever since the advent of hybridoma technology introduced in 1975, antibody-based therapeutics were realized using murine antibodies which further progressed into humanized and fully human antibodies, reducing the risk of immunogenicity. Some benefits of using mAbs over conventional drugs include a drastic reduction in the chances of adverse reactions, interactions between drugs, and targeting specific proteins. While antibodies are very efficient, their higher production costs impede the process of commercialization. However, their cost factor has been improved by developing biosimilar antibodies as affordable versions of therapeutic antibodies. Along with the recent advancements and innovations in antibody engineering have helped and will furtherly help to design bio-better antibodies with improved efficacy than the conventional ones. These novel mAb-based therapeutics are set to revolutionize existing drug therapies targeting a wide spectrum of diseases, thereby meeting several unmet medical needs. This review provides comprehensive insights into the current fundamental landscape of mAbs development and applications and the key factors influencing the future projections, advancement, and incorporation of such promising immunotherapeutic candidates as a confrontation approach against a wide list of diseases, with a rationalistic mentioning of any limitations facing this field.
Collapse
Affiliation(s)
- Hassan Aboul-Ella
- Department of Microbiology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| | - Asmaa Gohar
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ahram Canadian University (ACU), Giza, Egypt
- Egyptian Drug Authority (EDA), Giza, Egypt
| | - Aya Ahmed Ali
- Department of Microbiology and Immunology, Faculty of Pharmacy, Sinai University, Sinai, Egypt
| | - Lina M Ismail
- Department of Biotechnology and Molecular Chemistry, Faculty of Science, Cairo University, Giza, Egypt
- Creative Egyptian Biotechnologists (CEB), Giza, Egypt
| | | | - Walid F Elkhatib
- Department of Microbiology and Immunology, Faculty of Pharmacy, Galala University, Suez, Egypt
- Department of Microbiology and Immunology, Faculty of Pharmacy, Ain Shams University, Cairo, Egypt
| | - Heba Aboul-Ella
- Department of Pharmacognosy, Faculty of Pharmacy and Drug Technology, Egyptian Chinese University (ECU), Cairo, Egypt
- Scientific Research Group in Egypt (SRGE), Cairo, Egypt
| |
Collapse
|
14
|
Yang G, Nikkhoi SK, Owji H, Li G, Massumi M, Cervelli J, Vandavasi VG, Hatefi A. A Novel Tetravalent Bispecific Immune Cell Engager Activates Natural Killer Cells to Kill Cancer Cells without Mediating Fratricide. Antibodies (Basel) 2024; 13:75. [PMID: 39311380 PMCID: PMC11417942 DOI: 10.3390/antib13030075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/30/2024] [Accepted: 09/05/2024] [Indexed: 09/26/2024] Open
Abstract
We previously reported the structure, affinity, and anticancer activity of a bivalent bispecific natural killer cell engager (BiKE) composed of one anti-CD16a VHH and one anti-HER2 VHH fused via a linker. In this study, we explored the engineering of a tetravalent BiKE by fusing two anti-CD16a and two anti-HER2 VHHs in tandem, using bivalent BiKE as a template. The tetravalent BiKE was genetically engineered, and its tertiary structure was predicted using in silico modeling. The antigen binding and affinity of the tetravalent BiKE were assessed using ELISA, flow cytometry, and biolayer interferometry. The ability of the BiKEs to kill cancer cells was evaluated through classical and residual antibody-dependent cellular cytotoxicity (ADCC) assays. Additionally, we investigated the potential for NK cell fratricide via CD16a-CD16a crosslinking. Our results revealed that the tetravalent BiKE exhibited at least 100-fold higher affinity toward its target antigens compared to its bivalent counterpart. The residual ADCC assay indicated that the tetravalent BiKE was more effective in killing cancer cells than the bivalent BiKE, attributable to its lower Koff value, which prolonged its binding to NK cell surfaces. Fratricide assays demonstrated that neither the bivalent nor the tetravalent BiKE mediated fratricide. Notably, our findings showed that daratumumab-induced NK fratricide was restricted to CD38-CD38 crosslinking and was not related to ADCC via CD16a-CD38 crosslinking. This study is the first in the literature to show the successful engineering of a tetravalent immune cell engager composed of tandem VHH units, which achieves high affinity and anticancer activity without mediating fratricide.
Collapse
Affiliation(s)
- Ge Yang
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ 08854, USA
| | | | - Hajar Owji
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ 08854, USA
| | - Geng Li
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ 08854, USA
| | - Mohammad Massumi
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ 08854, USA
| | - Jessica Cervelli
- Environmental and Occupational Health Science Institute, Flow Cytometry Core Facility, Rutgers University, Piscataway, NJ 08854, USA
| | - Venu Gopal Vandavasi
- Department of Chemistry, Biophysics Core Facility, Princeton University, Princeton, NJ 08544, USA
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers University, Piscataway, NJ 08854, USA
- Cancer Pharmacology Program, Cancer Institute of New Jersey, New Brunswick, NJ 08901, USA
| |
Collapse
|
15
|
McArthur N, Kang B, Rivera Moctezuma FG, Shaikh AT, Loeffler K, Bhatt NN, Kidd M, Zupancic JM, Desai AA, Djeddar N, Bryksin A, Tessier PM, Kayed R, Wood LB, Kane RS. Development of a pan-tau multivalent nanobody that binds tau aggregation motifs and recognizes pathological tau aggregates. Biotechnol Prog 2024; 40:e3463. [PMID: 38568030 PMCID: PMC11447142 DOI: 10.1002/btpr.3463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 02/29/2024] [Accepted: 03/21/2024] [Indexed: 08/16/2024]
Abstract
Alzheimer's disease and other tauopathies are characterized by the misfolding and aggregation of the tau protein into oligomeric and fibrillar structures. Antibodies against tau play an increasingly important role in studying these neurodegenerative diseases and the generation of tools to diagnose and treat them. The development of antibodies that recognize tau protein aggregates, however, is hindered by complex immunization and antibody selection strategies and limitations to antigen presentation. Here, we have taken a facile approach to identify single-domain antibodies, or nanobodies, that bind to many forms of tau by screening a synthetic yeast surface display nanobody library against monomeric tau and creating multivalent versions of our lead nanobody, MT3.1, to increase its avidity for tau aggregates. We demonstrate that MT3.1 binds to tau monomer, oligomers, and fibrils, as well as pathogenic tau from a tauopathy mouse model, despite being identified through screens against monomeric tau. Through epitope mapping, we discovered binding epitopes of MT3.1 contain the key motif VQIXXK which drives tau aggregation. We show that our bivalent and tetravalent versions of MT3.1 have greatly improved binding ability to tau oligomers and fibrils compared to monovalent MT3.1. Our results demonstrate the utility of our nanobody screening and multivalent design approach in developing nanobodies that bind amyloidogenic protein aggregates. This approach can be extended to the generation of multivalent nanobodies that target other amyloid proteins and has the potential to advance the research and treatment of neurodegenerative diseases.
Collapse
Affiliation(s)
- Nikki McArthur
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Bokyung Kang
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Felix G. Rivera Moctezuma
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Akber T. Shaikh
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Kathryn Loeffler
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Nemil N. Bhatt
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Madison Kidd
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Jennifer M. Zupancic
- Department of Chemical Engineering, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Alec A. Desai
- Department of Chemical Engineering, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | - Naima Djeddar
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Anton Bryksin
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Peter M. Tessier
- Department of Chemical Engineering, University of Michigan, North Campus Research Complex, 2800 Plymouth Road, Ann Arbor, MI 48109, USA
- Biointerfaces Institute, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Pharmaceutical Sciences, University of Michigan, Ann Arbor, MI 48109, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA
| | - Rakez Kayed
- Mitchell Center for Neurodegenerative Disease, University of Texas Medical Branch, Galveston, Texas 77555, USA
- Department of Neurology, University of Texas Medical Branch, Galveston, Texas 77555, USA
| | - Levi B. Wood
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| | - Ravi S. Kane
- School of Chemical & Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia 30332, USA
| |
Collapse
|
16
|
Ye G, Bu F, Pan R, Mendoza A, Yang G, Spiller B, Wadzinski BE, Du L, Perlman S, Liu B, Li F. Structure-guided in vitro evolution of nanobodies targeting new viral variants. PLoS Pathog 2024; 20:e1012600. [PMID: 39325826 PMCID: PMC11460708 DOI: 10.1371/journal.ppat.1012600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 10/08/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
A major challenge in antiviral antibody therapy is keeping up with the rapid evolution of viruses. Our research shows that nanobodies - single-domain antibodies derived from camelids - can be rapidly re-engineered to combat new viral strains through structure-guided in vitro evolution. Specifically, for viral mutations occurring at nanobody-binding sites, we introduce randomized amino acid sequences into nanobody residues near these mutations. We then select nanobody variants that effectively bind to the mutated viral target from a phage display library. As a proof of concept, we used this approach to adapt Nanosota-3, a nanobody originally identified to target the receptor-binding domain (RBD) of early Omicron subvariants, making it highly effective against recent Omicron subvariants. Remarkably, this adaptation process can be completed in less than two weeks, allowing drug development to keep pace with viral evolution and provide timely protection to humans.
Collapse
Affiliation(s)
- Gang Ye
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Fan Bu
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ruangang Pan
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Alise Mendoza
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| | - Ge Yang
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Benjamin Spiller
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Brian E. Wadzinski
- Department of Pharmacology, Vanderbilt University School of Medicine, Nashville, Tennessee, United States of America
| | - Lanying Du
- Institute for Biomedical Sciences, Georgia State University, Atlanta, Georgia, United States of America
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, Iowa, United States of America
| | - Bin Liu
- Hormel Institute, University of Minnesota, Austin, Minnesota, United States of America
| | - Fang Li
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, United States of America
- Center for Emerging Viruses, University of Minnesota, Minneapolis, Minnesota, United States of America
| |
Collapse
|
17
|
Lin J, Yu Z, Gao X. Advanced Noninvasive Strategies for the Brain Delivery of Therapeutic Proteins and Peptides. ACS NANO 2024; 18:22752-22779. [PMID: 39133564 DOI: 10.1021/acsnano.4c06851] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Recent years have witnessed rapid progress in the discovery of therapeutic proteins and peptides for the treatment of central nervous system (CNS) diseases. However, their clinical applications have been considerably hindered by challenges such as low biomembrane permeability, poor stability, short circulation time, and the formidable blood-brain barrier (BBB). Recently, substantial improvements have been made in understanding the dynamics of the BBB and developing efficient approaches for delivering proteins and peptides to the CNS, especially by using various nanoparticles. Herein, we present an overview of the up-to-date understanding of the BBB under physiological and pathological conditions, emphasizing their effects on brain drug delivery. We summarize advanced strategies and elucidate the underlying mechanisms for delivering proteins and peptides to the brain. We highlight the developments and applications of nanocarriers in treating CNS diseases via BBB crossing. We also provide critical opinions on the limitations and obstacles of the current strategies and put forward prospects for future research.
Collapse
Affiliation(s)
- Jiayuan Lin
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Zhihua Yu
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| | - Xiaoling Gao
- Department of Pharmacology and Chemical Biology, Collaborative Innovation Center for Clinical and Translational Science by Chinese Ministry of Education & Shanghai, Shanghai Key Laboratory of Emotions and Affective Disorders, Shanghai Jiao Tong University School of Medicine, 280 South Chongqing Road, Shanghai 200025, China
| |
Collapse
|
18
|
Shoemaker RL, Larsen RJ, Larsen PA. Single-domain antibodies and aptamers drive new opportunities for neurodegenerative disease research. Front Immunol 2024; 15:1426656. [PMID: 39238639 PMCID: PMC11374656 DOI: 10.3389/fimmu.2024.1426656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Accepted: 07/22/2024] [Indexed: 09/07/2024] Open
Abstract
Neurodegenerative diseases (NDs) in mammals, such as Alzheimer's disease (AD), Parkinson's disease (PD), and transmissible spongiform encephalopathies (TSEs), are characterized by the accumulation of misfolded proteins in the central nervous system (CNS). Despite the presence of these pathogenic proteins, the immune response in affected individuals remains notably muted. Traditional immunological strategies, particularly those reliant on monoclonal antibodies (mAbs), face challenges related to tissue penetration, blood-brain barrier (BBB) crossing, and maintaining protein stability. This has led to a burgeoning interest in alternative immunotherapeutic avenues. Notably, single-domain antibodies (or nanobodies) and aptamers have emerged as promising candidates, as their reduced size facilitates high affinity antigen binding and they exhibit superior biophysical stability compared to mAbs. Aptamers, synthetic molecules generated from DNA or RNA ligands, present both rapid production times and cost-effective solutions. Both nanobodies and aptamers exhibit inherent qualities suitable for ND research and therapeutic development. Cross-seeding events must be considered in both traditional and small-molecule-based immunodiagnostic and therapeutic approaches, as well as subsequent neurotoxic impacts and complications beyond protein aggregates. This review delineates the challenges traditional immunological methods pose in ND research and underscores the potential of nanobodies and aptamers in advancing next-generation ND diagnostics and therapeutics.
Collapse
Affiliation(s)
- Rachel L Shoemaker
- Minnesota Center for Prion Research and Outreach (MNPRO), University of Minnesota, St. Paul, MN, United States
- Department of Biomedical and Veterinary Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States
| | - Roxanne J Larsen
- Department of Biomedical and Veterinary Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States
- Priogen Corp., St. Paul, MN, United States
| | - Peter A Larsen
- Minnesota Center for Prion Research and Outreach (MNPRO), University of Minnesota, St. Paul, MN, United States
- Department of Biomedical and Veterinary Sciences, University of Minnesota College of Veterinary Medicine, St. Paul, MN, United States
| |
Collapse
|
19
|
Redrado-Hernández S, Macías-León J, Castro-López J, Belén Sanz A, Dolader E, Arias M, González-Ramírez AM, Sánchez-Navarro D, Petryk Y, Farkaš V, Vincke C, Muyldermans S, García-Barbazán I, Del Agua C, Zaragoza O, Arroyo J, Pardo J, Gálvez EM, Hurtado-Guerrero R. Broad Protection against Invasive Fungal Disease from a Nanobody Targeting the Active Site of Fungal β-1,3-Glucanosyltransferases. Angew Chem Int Ed Engl 2024; 63:e202405823. [PMID: 38856634 DOI: 10.1002/anie.202405823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 05/20/2024] [Accepted: 06/10/2024] [Indexed: 06/11/2024]
Abstract
Invasive fungal disease accounts for about 3.8 million deaths annually, an unacceptable rate that urgently prompts the discovery of new knowledge-driven treatments. We report the use of camelid single-domain nanobodies (Nbs) against fungal β-1,3-glucanosyltransferases (Gel) involved in β-1,3-glucan transglycosylation. Crystal structures of two Nbs with Gel4 from Aspergillus fumigatus revealed binding to a dissimilar CBM43 domain and a highly conserved catalytic domain across fungal species, respectively. Anti-Gel4 active site Nb3 showed significant antifungal efficacy in vitro and in vivo prophylactically and therapeutically against different A. fumigatus and Cryptococcus neoformans isolates, reducing the fungal burden and disease severity, thus significantly improving immunocompromised animal survival. Notably, C. deneoformans (serotype D) strains were more susceptible to Nb3 and genetic Gel deletion than C. neoformans (serotype A) strains, indicating a key role for β-1,3-glucan remodelling in C. deneoformans survival. These findings add new insight about the role of β-1,3-glucan in fungal biology and demonstrate the potential of nanobodies in targeting fungal enzymes to combat invasive fungal diseases.
Collapse
Grants
- PID2022-136362NB-I00 Ministerio de Asuntos Económicos y Transformación Digital, Gobierno de España
- BIO2016-79289-P Ministerio de Economía y Competitividad, Gobierno de España
- PID2019-105223GB-I00 Ministerio de Ciencia, Innovación y Universidades y Agencia Estatal de Investigación, Gobierno de España
- PID2022-136888NB-I00 Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación, Gobierno de España
- PID2020-114546RB Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación, Gobierno de España
- PID2020-113963RB-I00 Ministerio de Ciencia e Innovación y Agencia Estatal de Investigación, Gobierno de España
- S2017/BMD3691-InGEMICS-CM Comunidad de Madrid
- B29_17R, E34_R17, LMP58_18 and LMP139_21 Gobierno de Aragon
- Nanofungi Precipita (crowdfunding)
- BIOSTRUCTX_5186 FP7 (2007-2013), BioStruct-X
Collapse
Affiliation(s)
- Sergio Redrado-Hernández
- Instituto de Carboquímica ICB-CSIC, 50018, Zaragoza, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC), Health Institute Carlos III, 28029, Madrid, Spain
| | - Javier Macías-León
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018, Zaragoza, Spain
| | - Jorge Castro-López
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018, Zaragoza, Spain
| | - Ana Belén Sanz
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Elena Dolader
- Department of Microbiology, Pediatry, Radiology and Public Health, University of Zaragoza, 50009, Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
| | - Maykel Arias
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC), Health Institute Carlos III, 28029, Madrid, Spain
- Department of Microbiology, Pediatry, Radiology and Public Health, University of Zaragoza, 50009, Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
| | - Andrés Manuel González-Ramírez
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018, Zaragoza, Spain
| | - David Sánchez-Navarro
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018, Zaragoza, Spain
| | - Yuliya Petryk
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Vladimír Farkaš
- Department of Glycobiology, Institute of Chemistry, Center for Glycomics, Slovak Academy of Sciences, 84538, Bratislava, Slovakia
| | - Cécile Vincke
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Serge Muyldermans
- Laboratory of Cellular and Molecular Immunology, Vrije Universiteit Brussel, 1050, Brussels, Belgium
| | - Irene García-Barbazán
- Mycology Reference Laboratory. National Centre for Microbiology., Health Institute Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Celia Del Agua
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
- Department of Pathology, Hospital Clínico Universitario Lozano Blesa, IIS-Aragón, 50009, Zaragoza, Spain
| | - Oscar Zaragoza
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC), Health Institute Carlos III, 28029, Madrid, Spain
- Mycology Reference Laboratory. National Centre for Microbiology., Health Institute Carlos III, 28220, Majadahonda, Madrid, Spain
| | - Javier Arroyo
- Departamento de Microbiología y Parasitología, Facultad de Farmacia, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Julián Pardo
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC), Health Institute Carlos III, 28029, Madrid, Spain
- Department of Microbiology, Pediatry, Radiology and Public Health, University of Zaragoza, 50009, Zaragoza, Spain
- Aragón Health Research Institute (IIS Aragón), Biomedical Research Centre of Aragón (CIBA), 50009, Zaragoza, Spain
| | - Eva M Gálvez
- Instituto de Carboquímica ICB-CSIC, 50018, Zaragoza, Spain
- Center for Biomedical Research in Network in Infectious Diseases (CIBERINFEC), Health Institute Carlos III, 28029, Madrid, Spain
| | - Ramon Hurtado-Guerrero
- Institute of Biocomputation and Physics of Complex Systems (BIFI), University of Zaragoza, Mariano Esquillor s/n, Campus Rio Ebro, Edificio I+D, 50018, Zaragoza, Spain
- Fundación ARAID, 50018, Zaragoza, Spain
- Copenhagen Center for Glycomics, Department of Cellular and Molecular Medicine, University of Copenhagen, DK-2200, Copenhagen, Denmark
| |
Collapse
|
20
|
Ploegh H, Liu X, Le Gall C, Alexander R, Borgman E, Balligand T. Bi-specific antibody engagers for cancer immunotherapy. RESEARCH SQUARE 2024:rs.3.rs-4792057. [PMID: 39149504 PMCID: PMC11326407 DOI: 10.21203/rs.3.rs-4792057/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Bispecific antibody engagers are fusion proteins composed of a nanobody that recognizes immunoglobulin kappa light chains (VHH kappa ) and a nanobody that recognizes either CTLA-4 or PD-L1. These fusions show strong antitumor activity in mice through recruitment of polyclonal immunoglobulins independently of specificity or isotype. In the MC38 mouse model of colorectal carcinoma, the anti-CTLA-4VHH-VHH kappa conjugate eradicates tumors and reduces the number of intratumoral regulatory T cells. The anti-PD-L1VHH-VHH kappa conjugate is less effective in the MC38 model, whilst still outperforming an antibody of similar specificity. The potency of the anti-PD-L1VHH-VHH kappa conjugate was strongly enhanced by installation of the cytotoxic drug maytansine or a STING agonist. The ability of such fusions to engage the Fc-mediated functions of all immunoglobulin isotypes is an appealing strategy to further improve on the efficacy of immune checkpoint blockade, commonly delivered as a monoclonal immunoglobulin of a single defined isotype.
Collapse
Affiliation(s)
| | | | - Camille Le Gall
- Radboud Institute for Molecular Life Sciences, Radboud University Medical Center
| | | | - Ella Borgman
- Boston Children's Hospital, Harvard Medical School
| | | |
Collapse
|
21
|
Gallant JP, Hicks D, Shi K, Moeller NH, Hoppe B, Lake EW, Baehr C, Pravetoni M, Aihara H, LeBeau AM. Identification and biophysical characterization of a novel domain-swapped camelid antibody specific for fentanyl. J Biol Chem 2024; 300:107502. [PMID: 38945452 PMCID: PMC11321312 DOI: 10.1016/j.jbc.2024.107502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 06/04/2024] [Accepted: 06/17/2024] [Indexed: 07/02/2024] Open
Abstract
Opioid use disorders (OUD) and overdoses are ever-evolving public health threats that continue to grow in incidence and prevalence in the United States and abroad. Current treatments consist of opioid receptor agonists and antagonists, which are safe and effective but still suffer from some limitations. Murine and humanized monoclonal antibodies (mAb) have emerged as an alternative and complementary strategy to reverse and prevent opioid-induced respiratory depression. To explore antibody applications beyond traditional heavy-light chain mAbs, we identified and biophysically characterized a novel single-domain antibody specific for fentanyl from a camelid variable-heavy-heavy (VHH) domain phage display library. Structural data suggested that VHH binding to fentanyl was facilitated by a unique domain-swapped dimerization mechanism, which accompanied a rearrangement of complementarity-determining region loops leading to the formation of a fentanyl-binding pocket. Structure-guided mutagenesis further identified an amino acid substitution that improved the affinity and relaxed the requirement for dimerization of the VHH in fentanyl binding. Our studies demonstrate VHH engagement of an opioid and inform on how to further engineer a VHH for enhanced stability and efficacy, laying the groundwork for exploring the in vivo applications of VHH-based biologics against OUD and overdose.
Collapse
Affiliation(s)
- Joseph P Gallant
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Dustin Hicks
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Ke Shi
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Nicholas H Moeller
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA
| | - Brooke Hoppe
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA
| | - Eric W Lake
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA
| | - Carly Baehr
- Department of Pharmacology, University of Minnesota Medical School, Minneapolis, Minnesota, USA
| | - Marco Pravetoni
- Department of Psychiatry and Behavioral Sciences, University of Washington School of Medicine, Seattle, Washington, USA; Center for Medication Development for Substance Use Disorders, University of Washington, Seattle, Washington, USA.
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology, and Biophysics, University of Minnesota, Minneapolis, Minnesota, USA.
| | - Aaron M LeBeau
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; Department of Radiology, University of Wisconsin School of Medicine and Public Health, Madison, Wisconsin, USA; Carbone Cancer Center, University of Wisconsin-Madison, Madison, Wisconsin, USA.
| |
Collapse
|
22
|
Zhang T, Yang D, Tang L, Hu Y. Current development of severe acute respiratory syndrome coronavirus 2 neutralizing antibodies (Review). Mol Med Rep 2024; 30:148. [PMID: 38940338 PMCID: PMC11228696 DOI: 10.3892/mmr.2024.13272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 05/21/2024] [Indexed: 06/29/2024] Open
Abstract
The coronavirus disease 2019 pandemic due to severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) seriously affected global public health security. Studies on vaccines, neutralizing antibodies (NAbs) and small molecule antiviral drugs are currently ongoing. In particular, NAbs have emerged as promising therapeutic agents due to their well‑defined mechanism, high specificity, superior safety profile, ease of large‑scale production and simultaneous application for both prevention and treatment of viral infection. Numerous NAb therapeutics have entered the clinical research stages, demonstrating promising therapeutic and preventive effects. These agents have been used for outbreak prevention and control under urgent authorization processes. The present review summarizes the molecular targets of SARS‑CoV‑2‑associated NAbs and screening and identification techniques for NAb development. Moreover, the current shortcomings and challenges that persist with the use of NAbs are discussed. The aim of the present review is to offer a reference for the development of NAbs for any future emergent infectious diseases, including SARS‑CoV‑2.
Collapse
Affiliation(s)
- Tong Zhang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Di Yang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Liang Tang
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Yu Hu
- Department of Hematology, Wuhan Union Hospital, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
23
|
Kamoshida G, Yamaguchi D, Kaya Y, Yamakado T, Yamashita K, Aoyagi M, Nagai S, Yamada N, Kawagishi Y, Sugano M, Sakairi Y, Ueno M, Takemoto N, Morita Y, Ishizaka Y, Yahiro K. Development of a novel bacterial production system for recombinant bioactive proteins completely free from endotoxin contamination. PNAS NEXUS 2024; 3:pgae328. [PMID: 39161731 PMCID: PMC11331542 DOI: 10.1093/pnasnexus/pgae328] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024]
Abstract
Endotoxins, or lipopolysaccharides (LPS), are potent immunostimulatory molecules of critical concern in bacterial recombinant protein expression systems. The gram-negative bacterium Acinetobacter baumannii exhibits an interesting and unique phenotype characterized by the complete loss of LPS. In this study, we developed a novel system for producing recombinant proteins completely devoid of endotoxin contamination using LPS-deficient A. baumannii. We purified endotoxin-free functional green fluorescent protein, which reduced endotoxin contamination by approximately three orders of magnitude, and also purified the functional cytokine tumor necrosis factor (TNF)-α. Additionally, utilization of the Omp38 signal peptide of A. baumannii enabled the extracellular production of variable domain of heavy chain of heavy chain (VHH) antibodies. With these advantages, mNb6-tri-20aa, a multivalent VHH that specifically binds to the spike protein of severe acute respiratory syndrome coronavirus 2, was purified from the culture supernatant, and endotoxin contamination was reduced by a factor of approximately 2 × 105 compared with that in conventional expression systems. A virus neutralization assay demonstrated the functionality of the purified antibody in suppressing viral infections. Moreover, we applied our system to produce ozoralizumab, a multispecific VHH that binds to human TNF-α and albumin and are marketed as a rheumatoid arthritis drug. We successfully purified a functional antibody from endotoxin contamination. This system establishes a new, completely endotoxin-free platform for the expression of recombinant proteins, which distinguishes it from other bacterial expression systems, and holds promise for future applications.
Collapse
Affiliation(s)
- Go Kamoshida
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Daiki Yamaguchi
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yuki Kaya
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Toshiki Yamakado
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Kenta Yamashita
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Moe Aoyagi
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Saaya Nagai
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Noriteru Yamada
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Yu Kawagishi
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| | - Mizuki Sugano
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yoshiaki Sakairi
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Mikako Ueno
- Department of Intractable Diseases, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjyuku-ku, Tokyo 162-8655, Japan
| | - Norihiko Takemoto
- Pathogenic Microbe Laboratory, Research Institute, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjyuku-ku, Tokyo 162-8655, Japan
| | - Yuji Morita
- Department of Infection Control Science, Meiji Pharmaceutical University, 2-522-1 Noshio, Kiyose, Tokyo 204-8588, Japan
| | - Yukihito Ishizaka
- Department of Intractable Diseases, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjyuku-ku, Tokyo 162-8655, Japan
| | - Kinnosuke Yahiro
- Laboratory of Microbiology and Infection Control, Kyoto Pharmaceutical University, 5 Misasagi-Nakauchi-cho, Yamashina-ku, Kyoto 607-8414, Japan
| |
Collapse
|
24
|
Medina Pérez VM, Baselga M, Schuhmacher AJ. Single-Domain Antibodies as Antibody-Drug Conjugates: From Promise to Practice-A Systematic Review. Cancers (Basel) 2024; 16:2681. [PMID: 39123409 PMCID: PMC11311928 DOI: 10.3390/cancers16152681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND Antibody-drug conjugates (ADCs) represent potent cancer therapies that deliver highly toxic drugs to tumor cells precisely, thus allowing for targeted treatment and significantly reducing off-target effects. Despite their effectiveness, ADCs can face limitations due to acquired resistance and potential side effects. OBJECTIVES This study focuses on advances in various ADC components to improve both the efficacy and safety of these agents, and includes the analysis of several novel ADC formats. This work assesses whether the unique features of VHHs-such as their small size, enhanced tissue penetration, stability, and cost-effectiveness-make them a viable alternative to conventional antibodies for ADCs and reviews their current status in ADC development. METHODS Following PRISMA guidelines, this study focused on VHHs as components of ADCs, examining advancements and prospects from 1 January 2014 to 30 June 2024. Searches were conducted in PubMed, Cochrane Library, ScienceDirect and LILACS using specific terms related to ADCs and single-domain antibodies. Retrieved articles were rigorously evaluated, excluding duplicates and non-qualifying studies. The selected peer-reviewed articles were analyzed for quality and synthesized to highlight advancements, methods, payloads, and future directions in ADC research. RESULTS VHHs offer significant advantages for drug conjugation over conventional antibodies due to their smaller size and structure, which enhance tissue penetration and enable access to previously inaccessible epitopes. Their superior stability, solubility, and manufacturability facilitate cost-effective production and expand the range of targetable antigens. Additionally, some VHHs can naturally cross the blood-brain barrier or be easily modified to favor their penetration, making them promising for targeting brain tumors and metastases. Although no VHH-drug conjugates (nADC or nanoADC) are currently in the clinical arena, preclinical studies have explored various conjugation methods and linkers. CONCLUSIONS While ADCs are transforming cancer treatment, their unique mechanisms and associated toxicities challenge traditional views on bioavailability and vary with different tumor types. Severe toxicities, often linked to compound instability, off-target effects, and nonspecific blood cell interactions, highlight the need for better understanding. Conversely, the rapid distribution, tumor penetration, and clearance of VHHs could be advantageous, potentially reducing toxicity by minimizing prolonged exposure. These attributes make single-domain antibodies strong candidates for the next generation of ADCs, potentially enhancing both efficacy and safety.
Collapse
Affiliation(s)
- Víctor Manuel Medina Pérez
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
| | - Marta Baselga
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
| | - Alberto J. Schuhmacher
- Molecular Oncology Group, Instituto de Investigación Sanitaria Aragón (IIS Aragón), 50009 Zaragoza, Spain;
- Fundación Aragonesa para la Investigación y el Desarrollo (ARAID), 50018 Zaragoza, Spain
| |
Collapse
|
25
|
He S, Nader K, Abarrategi JS, Bediaga H, Nocedo-Mena D, Ascencio E, Casanola-Martin GM, Castellanos-Rubio I, Insausti M, Rasulev B, Arrasate S, González-Díaz H. NANO.PTML model for read-across prediction of nanosystems in neurosciences. computational model and experimental case of study. J Nanobiotechnology 2024; 22:435. [PMID: 39044265 PMCID: PMC11267683 DOI: 10.1186/s12951-024-02660-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/24/2024] [Indexed: 07/25/2024] Open
Abstract
Neurodegenerative diseases involve progressive neuronal death. Traditional treatments often struggle due to solubility, bioavailability, and crossing the Blood-Brain Barrier (BBB). Nanoparticles (NPs) in biomedical field are garnering growing attention as neurodegenerative disease drugs (NDDs) carrier to the central nervous system. Here, we introduced computational and experimental analysis. In the computational study, a specific IFPTML technique was used, which combined Information Fusion (IF) + Perturbation Theory (PT) + Machine Learning (ML) to select the most promising Nanoparticle Neuronal Disease Drug Delivery (N2D3) systems. For the application of IFPTML model in the nanoscience, NANO.PTML is used. IF-process was carried out between 4403 NDDs assays and 260 cytotoxicity NP assays conducting a dataset of 500,000 cases. The optimal IFPTML was the Decision Tree (DT) algorithm which shown satisfactory performance with specificity values of 96.4% and 96.2%, and sensitivity values of 79.3% and 75.7% in the training (375k/75%) and validation (125k/25%) set. Moreover, the DT model obtained Area Under Receiver Operating Characteristic (AUROC) scores of 0.97 and 0.96 in the training and validation series, highlighting its effectiveness in classification tasks. In the experimental part, two samples of NPs (Fe3O4_A and Fe3O4_B) were synthesized by thermal decomposition of an iron(III) oleate (FeOl) precursor and structurally characterized by different methods. Additionally, in order to make the as-synthesized hydrophobic NPs (Fe3O4_A and Fe3O4_B) soluble in water the amphiphilic CTAB (Cetyl Trimethyl Ammonium Bromide) molecule was employed. Therefore, to conduct a study with a wider range of NP system variants, an experimental illustrative simulation experiment was performed using the IFPTML-DT model. For this, a set of 500,000 prediction dataset was created. The outcome of this experiment highlighted certain NANO.PTML systems as promising candidates for further investigation. The NANO.PTML approach holds potential to accelerate experimental investigations and offer initial insights into various NP and NDDs compounds, serving as an efficient alternative to time-consuming trial-and-error procedures.
Collapse
Affiliation(s)
- Shan He
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58108, USA
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Leioa, 48940, Spain
- IKERDATA S.L., ZITEK, UPV/EHU, Rectorate Building, nº 6, Leioa, 48940, Greater Bilbao, Basque Country, Spain
| | - Karam Nader
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Leioa, 48940, Spain
| | - Julen Segura Abarrategi
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Leioa, 48940, Spain
| | - Harbil Bediaga
- IKERDATA S.L., ZITEK, UPV/EHU, Rectorate Building, nº 6, Leioa, 48940, Greater Bilbao, Basque Country, Spain
| | - Deyani Nocedo-Mena
- Faculty of Physical Mathematical Sciences, Autonomous University of Nuevo León, San Nicolás de los Garza, 66455, Nuevo León, México
| | - Estefania Ascencio
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58108, USA
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Leioa, 48940, Spain
- IKERDATA S.L., ZITEK, UPV/EHU, Rectorate Building, nº 6, Leioa, 48940, Greater Bilbao, Basque Country, Spain
| | - Gerardo M Casanola-Martin
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58108, USA
| | - Idoia Castellanos-Rubio
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Leioa, 48940, Spain.
| | - Maite Insausti
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Leioa, 48940, Spain
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, Leioa, 48940, Spain
| | - Bakhtiyor Rasulev
- Department of Coatings and Polymeric Materials, North Dakota State University, Fargo, ND, 58108, USA
| | - Sonia Arrasate
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Leioa, 48940, Spain.
| | - Humberto González-Díaz
- Department of Organic and Inorganic Chemistry, University of Basque Country UPV/EHU, Leioa, 48940, Spain
- BIOFISIKA: Basque Center for Biophysics CSIC, University of The Basque Country (UPV/EHU), Barrio Sarriena s/n, Leioa, 48940, Bizkaia, Basque Country, Spain
- IKERBASQUE, Basque Foundation for Science, Bilbao, 48011, Biscay, Spain
| |
Collapse
|
26
|
Guo K, Grünberg R, Ren Y, Chang T, Wustoni S, Strnad O, Koklu A, Díaz‐Galicia E, Agudelo JP, Druet V, Castillo TCH, Moser M, Ohayon D, Hama A, Dada A, McCulloch I, Viola I, Arold ST, Inal S. SpyDirect: A Novel Biofunctionalization Method for High Stability and Longevity of Electronic Biosensors. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306716. [PMID: 38161228 PMCID: PMC11251562 DOI: 10.1002/advs.202306716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/21/2023] [Indexed: 01/03/2024]
Abstract
Electronic immunosensors are indispensable tools for diagnostics, particularly in scenarios demanding immediate results. Conventionally, these sensors rely on the chemical immobilization of antibodies onto electrodes. However, globular proteins tend to adsorb and unfold on these surfaces. Therefore, self-assembled monolayers (SAMs) of thiolated alkyl molecules are commonly used for indirect gold-antibody coupling. Here, a limitation associated with SAMs is revealed, wherein they curtail the longevity of protein sensors, particularly when integrated into the state-of-the-art transducer of organic bioelectronics-the organic electrochemical transistor. The SpyDirect method is introduced, generating an ultrahigh-density array of oriented nanobody receptors stably linked to the gold electrode without any SAMs. It is accomplished by directly coupling cysteine-terminated and orientation-optimized spyTag peptides, onto which nanobody-spyCatcher fusion proteins are autocatalytically attached, yielding a dense and uniform biorecognition layer. The structure-guided design optimizes the conformation and packing of flexibly tethered nanobodies. This biolayer enhances shelf-life and reduces background noise in various complex media. SpyDirect functionalization is faster and easier than SAM-based methods and does not necessitate organic solvents, rendering the sensors eco-friendly, accessible, and amenable to scalability. SpyDirect represents a broadly applicable biofunctionalization method for enhancing the cost-effectiveness, sustainability, and longevity of electronic biosensors, all without compromising sensitivity.
Collapse
Affiliation(s)
- Keying Guo
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Raik Grünberg
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Yuxiang Ren
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Tianrui Chang
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Shofarul Wustoni
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Ondrej Strnad
- Computer, Electrical and Mathematical Science and EngineeringKAUSTThuwal23955‐6900Saudi Arabia
| | - Anil Koklu
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Escarlet Díaz‐Galicia
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Jessica Parrado Agudelo
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Victor Druet
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Tania Cecilia Hidalgo Castillo
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | | | - David Ohayon
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Adel Hama
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| | - Ashraf Dada
- King Faisal Specialist Hospital & Research Centre (KFSH‐RC)Jeddah21499Saudi Arabia
| | - Iain McCulloch
- Department of ChemistryUniversity of OxfordOxfordOX1 3TAUK
| | - Ivan Viola
- Computer, Electrical and Mathematical Science and EngineeringKAUSTThuwal23955‐6900Saudi Arabia
| | - Stefan T. Arold
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
- Centre de Biologie Structurale (CBS), INSERM, CNRSUniversité de MontpellierMontpellierF‐34090France
| | - Sahika Inal
- Computational Bioscience Research Center (CBRC), Biological and Environmental Science and EngineeringKing Abdullah University of Science and Technology (KAUST)Thuwal23955‐6900Saudi Arabia
| |
Collapse
|
27
|
Hwang J, Jang IY, Bae E, Choi J, Kim JH, Lee SB, Kim JH, Lee JP, Jang HY, Kim HT, Lim JW, Yeom M, Jang E, Kim SE, Jeong HH, Kim JW, Seong SY, Song D, Na W. H1N1 nanobody development and therapeutic efficacy verification in H1N1-challenged mice. Biomed Pharmacother 2024; 176:116781. [PMID: 38805966 DOI: 10.1016/j.biopha.2024.116781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 05/08/2024] [Accepted: 05/17/2024] [Indexed: 05/30/2024] Open
Abstract
Influenza A virus causes numerous deaths and infections worldwide annually. Therefore, we have considered nanobodies as a potential treatment for patients with severe cases of influenza. We developed a nanobody that was expected to have protective efficacy against the A/California/04/2009 (CA/04; pandemic 2009 flu strain) and evaluated its therapeutic efficacy against CA/04 in mice experiments. This nanobody was derived from the immunization of the alpaca, and the inactivated CA/04 virus was used as an immunogen. We successfully generated a nanobody library through bio-panning, phage ELISA, and Bio-layer interferometry. Moreover, we confirmed that administering nanobodies after lethal doses of CA/04 reduced viral replication in the lungs and influenza-induced clinical signs in mice. These research findings will help to develop nanobodies as viral therapeutics for CA/04 and other infectious viruses.
Collapse
Affiliation(s)
- Jaehyun Hwang
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea; Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - In-Young Jang
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Eunseo Bae
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea; Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Jaeseok Choi
- College of Veterinary Medicine, Chonnam National University, Gwangju 61186, Republic of Korea; Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea
| | - Jeong Hwan Kim
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Sang Beum Lee
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Jong Hyun Kim
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Jae Pil Lee
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Ho Young Jang
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Hyoung Tae Kim
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea
| | - Jong-Woo Lim
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Minjoo Yeom
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea
| | - Eunhee Jang
- Research Center, HuVet bio, Inc., Seoul 05836, Republic of Korea
| | - Seong-Eun Kim
- Research Center, HuVet bio, Inc., Seoul 05836, Republic of Korea
| | - Hyoung Hwa Jeong
- Research Center, HuVet bio, Inc., Seoul 05836, Republic of Korea
| | - Jung Woo Kim
- Research Center, HuVet bio, Inc., Seoul 05836, Republic of Korea
| | - Seung-Yong Seong
- Shaperon R&D center, Shaperon, Inc., Seoul 06373, Republic of Korea.
| | - Daesub Song
- College of Veterinary Medicine and Research Institute for Veterinary Science, Seoul National University, Seoul 08826, Republic of Korea.
| | - Woonsung Na
- Dental Research Institute, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea; Department of Oral Microbiology and Immunology, School of Dentistry, Seoul National University, Seoul 03080, Republic of Korea.
| |
Collapse
|
28
|
Nix MA, Wiita AP. Alternative target recognition elements for chimeric antigen receptor (CAR) T cells: beyond standard antibody fragments. Cytotherapy 2024; 26:729-738. [PMID: 38466264 DOI: 10.1016/j.jcyt.2024.02.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/31/2024] [Accepted: 02/26/2024] [Indexed: 03/12/2024]
Abstract
BACKGROUND AIMS Chimeric antigen receptor T (CAR-T) cells are a remarkably efficacious, highly promising and rapidly evolving strategy in the field of immuno-oncology. The precision of these targeted cellular therapies is driven by the specificity of the antigen recognition element (the "binder") encoded in the CAR. This binder redirects these immune effector cells precisely toward a defined antigen on the surface of cancer cells, leading to T-cell receptor-independent tumor lysis. Currently, for tumor targeting most CAR-T cells are designed using single-chain variable fragments (scFvs) derived from murine or human immunoglobulins. However, there are several emerging alternative binder modalities that are finding increasing utility for improved CAR function beyond scFvs. METHODS Here we review the most recent developments in the use of non-canonical protein binding domains in CAR design, including nanobodies, DARPins, natural ligands, and de novo-designed protein elements. RESULTS Overall, we describe how new protein binder formats, with their unique structural properties and mechanisms of action, may possess key advantages over traditional scFv CAR designs. CONCLUSIONS These alternative binder designs may contribute to enhanced CAR-T therapeutic options and, ultimately, improved outcomes for cancer patients.
Collapse
Affiliation(s)
- Matthew A Nix
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA; Cartography Biosciences, South San Francisco, California, USA
| | - Arun P Wiita
- Department of Laboratory Medicine, University of California, San Francisco, San Francisco, California, USA; Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California, USA; Chan Zuckerberg Biohub San Francisco, San Francisco, California, USA; Parker Institute for Cancer Immunotherapy, San Francisco, California, USA.
| |
Collapse
|
29
|
Zhang Y, Wang T, Zhang P, Wan Y, Chang G, Xu X, Ruan F, Zhou T, Zhao Q, Zhang M, Wang X. Facile construction of sandwich ELISA based on double-nanobody for specific detection of α-hemolysin in food samples. Talanta 2024; 274:126021. [PMID: 38569370 DOI: 10.1016/j.talanta.2024.126021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/25/2024] [Accepted: 03/30/2024] [Indexed: 04/05/2024]
Abstract
α-hemolysin (Hla), a toxin secreted by Staphylococcus aureus (S. aureus), has been proved to be involved in the occurrence and aggravation of food poisoning. Hence, it is quite essential to establish its rapid detection methods to guarantee food safety. Sandwich ELISA based on nanobody is well known to be viable for toxins, but there is absence of nanobody against Hla, let alone a pair for it. Therefore, in this paper, we screened specific nanobodies by bio-panning and obtained the optimal nanobody pair for sandwich ELISA firstly. Then, RANbody, a novel nanobody owning both recognition and catalytic capability, is generated in a single step and at low cost through molecular recombination technology. Subsequently, sandwich ELISA was developed to detect Hla based on the nanobody and RANbody, that not only eliminated the use of secondary antibodies and animal-derived antibody, but also reduced detection time and cost, compared with traditional sandwich ELISA. Lastly, the performance has been evaluated, especially for specificity which showed no response to other hemolysins and a low limit of detection of 10 ng/mL. Besides, the proposed sandwich ELISA exhibits favorable feasibility and was successfully employed for the detection of Hla in milk and pork samples.
Collapse
Affiliation(s)
- Yao Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Ting Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Pengfei Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Yangli Wan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Guanhong Chang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Xu Xu
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Fuqian Ruan
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Ting Zhou
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Qin Zhao
- College of Veterinary Medicine, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China
| | - Min Zhang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| | - Xin Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi, 712100, People's Republic of China.
| |
Collapse
|
30
|
Wright EA, Reddock MB, Roberts EK, Legesse YW, Perry G, Bradley RD. Genetic characterization of the prion protein gene in camels ( Camelus) with comments on the evolutionary history of prion disease in Cetartiodactyla. PeerJ 2024; 12:e17552. [PMID: 38948234 PMCID: PMC11214740 DOI: 10.7717/peerj.17552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Accepted: 05/20/2024] [Indexed: 07/02/2024] Open
Abstract
Transmissible spongiform encephalopathies (TSEs) are a fatal neurogenerative disease that include Creutzfeldt-Jakob disease in humans, scrapie in sheep and goats, bovine spongiform encephalopathy (BSE), and several others as well as the recently described camel prion disease (CPD). CPD originally was documented in 3.1% of camels examined during an antemortem slaughterhouse inspection in the Ouargla region of Algeria. Of three individuals confirmed for CPD, two were sequenced for the exon 3 of the prion protein gene (PRNP) and were identical to sequences previously reported for Camelus dromedarius. Given that other TSEs, such as BSE, are known to be capable of cross-species transmission and that there is household consumption of meat and milk from Camelus, regulations to ensure camel and human health should be a One Health priority in exporting countries. Although the interspecies transmissibility of CPD currently is unknown, genotypic characterization of Camelus PRNP may be used for predictability of predisposition and potential susceptibility to CPD. Herein, eight breeds of dromedary camels from a previous genetic (mitochondrial DNA and microsatellites) and morphological study were genotyped for PRNP and compared to genotypes from CPD-positive Algerian camels. Sequence data from PRNP indicated that Ethiopian camels possessed 100% sequence identity to CPD-positive camels from Algeria. In addition, the camel PRNP genotype is unique compared to other members of the Orders Cetartiodactyla and Perissodactyla and provides an in-depth phylogenetic analysis of families within Cetartiodactyla and Perissodactyla that was used to infer the evolutionary history of the PRNP gene.
Collapse
Affiliation(s)
- Emily A. Wright
- Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, TX, United States of America
| | - Madison B. Reddock
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States of America
| | - Emma K. Roberts
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States of America
- Climate Center, Texas Tech University, Lubbock, TX, United States of America
| | - Yoseph W. Legesse
- School of Animal and Range Sciences, Haramaya University, Dire Dawa, Ethiopia
- Institute of Pastoral and Agropastoral Development Studies, Jigjiga University, Jigjiga, Ethiopia
| | - Gad Perry
- Department of Natural Resources Management, Texas Tech University, Lubbock, TX, United States of America
| | - Robert D. Bradley
- Natural Science Research Laboratory, Museum of Texas Tech University, Lubbock, TX, United States of America
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, United States of America
| |
Collapse
|
31
|
Kim AM, Zhao L, Patel TR, Bailey CJ, Bai Q, Wakefield MR, Fang Y. From bench to bedside: the past, present and future of IL-21 immunotherapy. Med Oncol 2024; 41:181. [PMID: 38900341 DOI: 10.1007/s12032-024-02404-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 05/02/2024] [Indexed: 06/21/2024]
Abstract
As immunotherapy gains momentum as a promising approach for treating several types of cancer, IL-21 has emerged as the latest discovery within the γ chain cytokine family, known for its decisive effects on innate and adaptive immunity and immunopathology. Through the modulation of immune cells, IL-21 has demonstrated significant anti-tumor effects in preclinical studies. The potential of IL-21 in cancer treatment has been explored in phase I and II clinical trials, where it has been utilized both as monotherapy and in combination with other drug agents. Further investigation, alongside larger studies, is necessary before final evaluation and application of IL-21 as immunotherapy. This review aims to summarize these pre-clinical and clinical studies and to discuss the possible future directions of IL-21 immunotherapy development. Such a study may be helpful to accelerate the process of clinical application for IL21 immunotherapy.
Collapse
Affiliation(s)
- Austin M Kim
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA
| | - Lei Zhao
- The Department of Respiratory Medicine, The 2nd People's Hospital of Hefei and Hefei Hospital Affiliated to Anhui Medical University, Hefei, China
| | - Tej R Patel
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Colin J Bailey
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Qian Bai
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Mark R Wakefield
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA
| | - Yujiang Fang
- Department of Microbiology, Immunology & Pathology, Des Moines University College of Osteopathic Medicine, Des Moines, IA, 50312, USA.
- Department of Surgery, University of Missouri School of Medicine, Columbia, MO, 65212, USA.
| |
Collapse
|
32
|
Wu Y, Zhu M, Sun B, Chen Y, Huang Y, Gai J, Li G, Li Y, Wan Y, Ma L. A humanized trivalent Nectin-4-targeting nanobody drug conjugate displays potent antitumor activity in gastric cancer. J Nanobiotechnology 2024; 22:256. [PMID: 38755613 PMCID: PMC11097425 DOI: 10.1186/s12951-024-02521-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Accepted: 05/01/2024] [Indexed: 05/18/2024] Open
Abstract
BACKGROUND Gastric cancer represents a highly lethal malignancy with an elevated mortality rate among cancer patients, coupled with a suboptimal postoperative survival prognosis. Nectin-4, an overexpressed oncological target for various cancers, has been exploited to create antibody-drug conjugates (ADCs) to treat solid tumors. However, there is limited research on Nectin-4 ADCs specifically for gastric cancer, and conventional immunoglobulin G (IgG)-based ADCs frequently encounter binding site barriers. Based on the excellent tumor penetration capabilities inherent in nanobodies (Nbs), we developed Nectin-4-targeting Nb drug conjugates (NDCs) for the treatment of gastric cancer. RESULTS An immunized phage display library was established and employed for the selection of Nectin-4-specific Nbs using phage display technology. Subsequently, these Nbs were engineered into homodimers to enhance Nb affinity. To prolong in vivo half-life and reduce immunogenicity, we fused an Nb targeting human serum albumin (HSA), resulting in the development of trivalent humanized Nbs. Further, we site-specifically conjugated a monomethyl auristatin E (MMAE) at the C-terminus of the trivalent Nbs, creating Nectin-4 NDC (huNb26/Nb26-Nbh-MMAE) with a drug-to-antibody ratio (DAR) of 1. Nectin-4 NDC demonstrated excellent in vitro cell-binding activities and cytotoxic efficacy against cells with high Nectin-4 expression. Subsequent administration of Nectin-4 NDC to mice bearing NCI-N87 human gastric cancer xenografts demonstrated rapid tissue penetration and high tumor uptake through in vivo imaging. Moreover, Nectin-4 NDC exhibited noteworthy dose-dependent anti-tumor efficacy in in vivo studies. CONCLUSION We have engineered a Nectin-4 NDC with elevated affinity and effective tumor uptake, further establishing its potential as a therapeutic agent for gastric cancer.
Collapse
Affiliation(s)
- Yue Wu
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Min Zhu
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, China
| | - Baihe Sun
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongting Chen
- Graduate School of Xinxiang Medical University, Henan, China
| | - Yuping Huang
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, China
| | - Junwei Gai
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, China
| | - Guanghui Li
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, China
| | - Yanfei Li
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| | - Yakun Wan
- Shanghai Novamab Biopharmaceuticals Co., Ltd., Shanghai, China.
| | - Linlin Ma
- Shanghai University of Medicine & Health Sciences Affiliated Zhoupu Hospital, Shanghai, China.
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China.
| |
Collapse
|
33
|
Rödström KEJ, Cloake A, Sörmann J, Baronina A, Smith KHM, Pike ACW, Ang J, Proks P, Schewe M, Holland-Kaye I, Bushell SR, Elliott J, Pardon E, Baukrowitz T, Owens RJ, Newstead S, Steyaert J, Carpenter EP, Tucker SJ. Extracellular modulation of TREK-2 activity with nanobodies provides insight into the mechanisms of K2P channel regulation. Nat Commun 2024; 15:4173. [PMID: 38755204 PMCID: PMC11099193 DOI: 10.1038/s41467-024-48536-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 05/03/2024] [Indexed: 05/18/2024] Open
Abstract
Potassium channels of the Two-Pore Domain (K2P) subfamily, KCNK1-KCNK18, play crucial roles in controlling the electrical activity of many different cell types and represent attractive therapeutic targets. However, the identification of highly selective small molecule drugs against these channels has been challenging due to the high degree of structural and functional conservation that exists not only between K2P channels, but across the whole K+ channel superfamily. To address the issue of selectivity, here we generate camelid antibody fragments (nanobodies) against the TREK-2 (KCNK10) K2P K+ channel and identify selective binders including several that directly modulate channel activity. X-ray crystallography and CryoEM data of these nanobodies in complex with TREK-2 also reveal insights into their mechanisms of activation and inhibition via binding to the extracellular loops and Cap domain, as well as their suitability for immunodetection. These structures facilitate design of a biparatropic inhibitory nanobody with markedly improved sensitivity. Together, these results provide important insights into TREK channel gating and provide an alternative, more selective approach to modulation of K2P channel activity via their extracellular domains.
Collapse
Affiliation(s)
- Karin E J Rödström
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Alexander Cloake
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - Janina Sörmann
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Agnese Baronina
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Kathryn H M Smith
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Ashley C W Pike
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Jackie Ang
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Peter Proks
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
| | - Marcus Schewe
- Institute of Physiology, Medical Faculty, Kiel University, Kiel, Germany
| | | | - Simon R Bushell
- Centre for Medicines Discovery, University of Oxford, Oxford, UK
| | - Jenna Elliott
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK
| | - Els Pardon
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Thomas Baukrowitz
- Institute of Physiology, Medical Faculty, Kiel University, Kiel, Germany
| | - Raymond J Owens
- The Rosalind Franklin Institute, Harwell Campus, Didcot, UK
- Division of Structural Biology, University of Oxford, Oxford, UK
| | - Simon Newstead
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK
- Department of Biochemistry, University of Oxford, Oxford, UK
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK
| | - Jan Steyaert
- Structural Biology Brussels, Vrije Universiteit Brussel, Brussels, Belgium
- VIB-VUB Center for Structural Biology, VIB, Brussels, Belgium
| | - Elisabeth P Carpenter
- Centre for Medicines Discovery, University of Oxford, Oxford, UK.
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK.
| | - Stephen J Tucker
- Clarendon Laboratory, Department of Physics, University of Oxford, Oxford, UK.
- Kavli Institute for Nanoscience Discovery, University of Oxford, Oxford, UK.
- OXION Initiative in Ion Channels and Disease, University of Oxford, Oxford, UK.
| |
Collapse
|
34
|
Shatz-Binder W, Azumaya CM, Leonard B, Vuong I, Sudhamsu J, Rohou A, Liu P, Sandoval W, Bol K, Izadi S, Holder PG, Blanchette C, Perozzo R, Kelley RF, Kalia Y. Adapting Ferritin, a Naturally Occurring Protein Cage, to Modulate Intrinsic Agonism of OX40. Bioconjug Chem 2024; 35:593-603. [PMID: 38592684 PMCID: PMC11099885 DOI: 10.1021/acs.bioconjchem.4c00020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 03/15/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024]
Abstract
Ferritin is a multivalent, self-assembling protein scaffold found in most human cell types, in addition to being present in invertebrates, higher plants, fungi, and bacteria, that offers an attractive alternative to polymer-based drug delivery systems (DDS). In this study, the utility of the ferritin cage as a DDS was demonstrated within the context of T cell agonism for tumor killing. Members of the tumor necrosis factor receptor superfamily (TNFRSF) are attractive targets for the development of anticancer therapeutics. These receptors are endogenously activated by trimeric ligands that occur in transmembrane or soluble forms, and oligomerization and cell-surface anchoring have been shown to be essential aspects of the targeted agonism of this receptor class. Here, we demonstrated that the ferritin cage could be easily tailored for multivalent display of anti-OX40 antibody fragments on its surface and determined that these arrays are capable of pathway activation through cell-surface clustering. Together, these results confirm the utility, versatility, and developability of ferritin as a DDS.
Collapse
Affiliation(s)
- Whitney Shatz-Binder
- Protein
Chemistry, Genentech Inc., South San Francisco, California 94080, United States
- Pharmaceutical
Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Caleigh M. Azumaya
- Structural
Biology, Genentech Inc., South San Francisco, California 94080, United States
| | - Brandon Leonard
- Antibody
Engineering, Genentech Inc., South San Francisco, California 94080, United States
| | - Ivan Vuong
- Protein
Chemistry, Genentech Inc., South San Francisco, California 94080, United States
- Pritzker
School of Molecular Engineering, University
of Chicago, 5640 S Ellis Ave, Chicago, Illinois 60637, United States
| | - Jawahar Sudhamsu
- Structural
Biology, Genentech Inc., South San Francisco, California 94080, United States
| | - Alexis Rohou
- Structural
Biology, Genentech Inc., South San Francisco, California 94080, United States
| | - Peter Liu
- Microchemistry,
Proteomics and Lipidomics, Genentech Inc., South San Francisco, California 94080, United States
| | - Wendy Sandoval
- Microchemistry,
Proteomics and Lipidomics, Genentech Inc., South San Francisco, California 94080, United States
| | - Karenna Bol
- Pharmaceutical
Chemistry, Genentech Inc., South San Francisco, California 94080, United States
- Business
and Program Management, Genentech Inc., South San Francisco, California 94080, United States
| | - Saeed Izadi
- Pharmaceutical
Chemistry, Genentech Inc., South San Francisco, California 94080, United States
| | - Patrick G. Holder
- Protein
Chemistry, Genentech Inc., South San Francisco, California 94080, United States
| | - Craig Blanchette
- Protein
Chemistry, Genentech Inc., South San Francisco, California 94080, United States
| | - Remo Perozzo
- Pharmaceutical
Sciences, University of Geneva, Geneva 1211, Switzerland
| | - Robert F. Kelley
- Pharmaceutical
Chemistry, Genentech Inc., South San Francisco, California 94080, United States
| | - Yogeshvar Kalia
- Pharmaceutical
Sciences, University of Geneva, Geneva 1211, Switzerland
| |
Collapse
|
35
|
Wang J, Shi B, Chen H, Yu M, Wang P, Qian Z, Hu K, Wang J. Engineered Multivalent Nanobodies Efficiently Neutralize SARS-CoV-2 Omicron Subvariants BA.1, BA.4/5, XBB.1 and BQ.1.1. Vaccines (Basel) 2024; 12:417. [PMID: 38675799 PMCID: PMC11054741 DOI: 10.3390/vaccines12040417] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 04/05/2024] [Accepted: 04/08/2024] [Indexed: 04/28/2024] Open
Abstract
Most available neutralizing antibodies are ineffective against highly mutated SARS-CoV-2 Omicron subvariants. Therefore, it is crucial to develop potent and broad-spectrum alternatives to effectively manage Omicron subvariants. Here, we constructed a high-diversity nanobody phage display library and identified nine nanobodies specific to the SARS-CoV-2 receptor-binding domain (RBD). Five of them exhibited cross-neutralization activity against the SARS-CoV-2 wild-type (WT) strain and the Omicron subvariants BA.1 and BA.4/5, and one nanobody demonstrated marked efficacy even against the Omicron subvariants BQ.1.1 and XBB.1. To enhance the therapeutic potential, we engineered a panel of multivalent nanobodies with increased neutralizing potency and breadth. The most potent multivalent nanobody, B13-B13-B13, cross-neutralized all tested pseudoviruses, with a geometric mean of the 50% inhibitory concentration (GM IC50) value of 20.83 ng/mL. An analysis of the mechanism underlying the enhancement of neutralization breadth by representative multivalent nanobodies demonstrated that the strategic engineering approach of combining two or three nanobodies into a multivalent molecule could improve the affinity between a single nanobody and spike, and could enhance tolerance toward escape mutations such as R346T and N460K. Our engineered multivalent nanobodies may be promising drug candidates for treating and preventing infection with Omicron subvariants and even future variants.
Collapse
Affiliation(s)
- Jiali Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Bingjie Shi
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Hanyi Chen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Mengyuan Yu
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Peipei Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Zhaohui Qian
- NHC Key Laboratory of Systems Biology of Pathogens, Institute of Pathogen Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| | - Keping Hu
- The Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
- Andes Antibody Technology Hengshui LL Company, Hengshui 053000, China
| | - Jianxun Wang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
- Shenzhen Research Institute, Beijing University of Chinese Medicine, Shenzhen 518118, China
| |
Collapse
|
36
|
Hannula L, Kuivanen S, Lasham J, Kant R, Kareinen L, Bogacheva M, Strandin T, Sironen T, Hepojoki J, Sharma V, Saviranta P, Kipar A, Vapalahti O, Huiskonen JT, Rissanen I. Nanobody engineering for SARS-CoV-2 neutralization and detection. Microbiol Spectr 2024; 12:e0419922. [PMID: 38363137 PMCID: PMC10986514 DOI: 10.1128/spectrum.04199-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 01/03/2024] [Indexed: 02/17/2024] Open
Abstract
In response to the ongoing COVID-19 pandemic, the quest for coronavirus inhibitors has inspired research on a variety of small proteins beyond conventional antibodies, including robust single-domain antibody fragments, i.e., "nanobodies." Here, we explore the potential of nanobody engineering in the development of antivirals and diagnostic tools. Through fusion of nanobody domains that target distinct binding sites, we engineered multimodular nanobody constructs that neutralize wild-type SARS-CoV-2 and the Alpha and Delta variants at high potency, with IC50 values as low as 50 pM. Despite simultaneous binding to distinct epitopes, Beta and Omicron variants were more resistant to neutralization by the multimodular nanobodies, which highlights the importance of accounting for antigenic drift in the design of biologics. To further explore the applications of nanobody engineering in outbreak management, we present an assay based on fusions of nanobodies with fragments of NanoLuc luciferase that can detect sub-nanomolar quantities of the SARS-CoV-2 spike protein in a single step. Our work showcases the potential of nanobody engineering to combat emerging infectious diseases. IMPORTANCE Nanobodies, small protein binders derived from the camelid antibody, are highly potent inhibitors of respiratory viruses that offer several advantages over conventional antibodies as candidates for specific therapies, including high stability and low production costs. In this work, we leverage the unique properties of nanobodies and apply them as building blocks for new therapeutic and diagnostic tools. We report ultra-potent SARS-CoV-2 inhibition by engineered nanobodies comprising multiple modules in structure-guided combinations and develop nanobodies that carry signal molecules, allowing rapid detection of the SARS-CoV-2 spike protein. Our results highlight the potential of engineered nanobodies in the development of effective countermeasures, both therapeutic and diagnostic, to manage outbreaks of emerging viruses.
Collapse
Affiliation(s)
- Liina Hannula
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Suvi Kuivanen
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Jonathan Lasham
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Ravi Kant
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Department of Tropical Parasitology, Institute of Maritime and Tropical Medicine, Medical University of Gdansk, Gdynia, Poland
| | - Lauri Kareinen
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Mariia Bogacheva
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Sciences (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Tomas Strandin
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Tarja Sironen
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
| | - Jussi Hepojoki
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
| | - Vivek Sharma
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
- Department of Physics, University of Helsinki, Helsinki, Finland
| | - Petri Saviranta
- VTT Technical Research Centre of Finland Ltd., Espoo, Finland
| | - Anja Kipar
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Laboratory for Animal Model Pathology, Institute of Veterinary Pathology, Vetsuisse Faculty, University of Zurich, Zurich, Switzerland
- Department of Infection Biology and Microbiomes, Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Olli Vapalahti
- Department of Virology, Medicum, Faculty of Medicine, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- HUSLAB, Helsinki University Hospital, Helsinki, Finland
| | - Juha T. Huiskonen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| | - Ilona Rissanen
- Institute of Biotechnology, Helsinki Institute of Life Science (HiLIFE), University of Helsinki, Helsinki, Finland
| |
Collapse
|
37
|
Park KS, Park TI, Lee JE, Hwang SY, Choi A, Pack SP. Aptamers and Nanobodies as New Bioprobes for SARS-CoV-2 Diagnostic and Therapeutic System Applications. BIOSENSORS 2024; 14:146. [PMID: 38534253 PMCID: PMC10968798 DOI: 10.3390/bios14030146] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024]
Abstract
The global challenges posed by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic have underscored the critical importance of innovative and efficient control systems for addressing future pandemics. The most effective way to control the pandemic is to rapidly suppress the spread of the virus through early detection using a rapid, accurate, and easy-to-use diagnostic platform. In biosensors that use bioprobes, the binding affinity of molecular recognition elements (MREs) is the primary factor determining the dynamic range of the sensing platform. Furthermore, the sensitivity relies mainly on bioprobe quality with sufficient functionality. This comprehensive review investigates aptamers and nanobodies recently developed as advanced MREs for SARS-CoV-2 diagnostic and therapeutic applications. These bioprobes might be integrated into organic bioelectronic materials and devices, with promising enhanced sensitivity and specificity. This review offers valuable insights into advancing biosensing technologies for infectious disease diagnosis and treatment using aptamers and nanobodies as new bioprobes.
Collapse
Affiliation(s)
| | | | | | | | | | - Seung Pil Pack
- Department of Biotechnology and Bioinformatics, Korea University, Sejong 30019, Republic of Korea; (K.S.P.); (T.-I.P.); (J.E.L.); (S.-Y.H.); (A.C.)
| |
Collapse
|
38
|
Ehsasatvatan M, Baghban Kohnehrouz B. A new trivalent recombinant protein for type 2 diabetes mellitus with oral delivery potential: design, expression, and experimental validation. J Biomol Struct Dyn 2024:1-16. [PMID: 38468545 DOI: 10.1080/07391102.2024.2329290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2023] [Accepted: 03/06/2024] [Indexed: 03/13/2024]
Abstract
Glucagon-like peptide-1 (GLP-1) receptor agonists are increasingly used in clinical practice for the management of type 2 diabetes mellitus. However, the extremely short half-life of GLP-1 and the need for subcutaneous administration limit its clinical application. Thus, half-life extension and alternative delivery methods are highly desired. DARPin domains with high affinity for human serum albumin (HSA) have been selected for the half-life extension of therapeutic peptides and proteins. In the present study, novel trivalent fusion proteins as long-acting GLP-1 receptor agonists with potential for oral delivery were computationally engineered by incorporating a protease-resistant modified GLP-1, an anti-human serum albumin DARPin, and an approved cell-penetrating peptide (Penetratin, Tat, and Polyarginine) linked either by rigid or flexible linkers. Theoretical studies and molecular dynamics simulation results suggested that mGLP1-DARPin-Pen has acceptable quality and stability. Moreover, the potential affinity of the selected fusion proteins for GLP-1 receptor and human serum albumin was explored by molecular docking. The recombinant construct was cloned into the pET28a vector and expressed in Escherichia coli. SDS-PAGE analysis of the purified fusion protein matched its molecular size and was confirmed by western blot analysis. The results demonstrated that the engineered fusion protein could bind HSA with high affinity. Importantly, insulin secretion assays using a mouse pancreatic β-cell line (β-TC6) revealed that the engineered trivalent fusion protein retained the ability to stimulate cellular insulin secretion. Immunofluorescence microscopy analysis indicated the CPP-dependent cellular uptake of mGLP1-DARPin-Pen. These findings demonstrated that mGLP1-DARPin-Pen is a highly potent oral drug candidate that could be particularly useful in the treatment of type 2 diabetes mellitus.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Maryam Ehsasatvatan
- Department of Plant Breeding & Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| | - Bahram Baghban Kohnehrouz
- Department of Plant Breeding & Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz, Iran
| |
Collapse
|
39
|
Zhang W, Wang H, Wu T, Gao X, Shang Y, Zhang Z, Liu X, Li Y. A SARS-CoV-2 Nanobody Displayed on the Surface of Human Ferritin with High Neutralization Activity. Int J Nanomedicine 2024; 19:2429-2440. [PMID: 38476285 PMCID: PMC10929646 DOI: 10.2147/ijn.s450829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 02/29/2024] [Indexed: 03/14/2024] Open
Abstract
Purpose COVID-19 is rampant throughout the world, which has caused great damage to human lives and seriously hindered the development of the global economy. Aiming at the treatment of SARS-CoV-2, in this study, we proposed a novel fenobody strategy based on ferritin (Fe) self-assembly technology. Methods The neutralizing nanobody H11-D4 of SARS-CoV-2 fused to the C-terminus of end-modified human ferritin was expressed in E. coli and silkworm baculovirus expression systems. A large number of nanoparticles were successfully self-assembled in silkworms, while relatively few nanoparticles can be observed in the treated products from E. coli by electron microscopy. Subsequently, the fenobody's expression level and neutralizing activity were then evaluated. Results The results showed that the IC50 of H11-D4 and fenobody Fe-H11-D4 expressed in E. coli were 171.1 nmol L-1 and 20.87 nmol L-1, respectively. However, the IC50 of Fe-HD11-D4 expressed in silkworms was 1.46 nmol L-1 showing better neutralization activity. Conclusion Therefore, fenobodies can be well self-assembled in silkworm baculovirus expression system, and ferritin self-assembly technology can effectively improve nanobody neutralization activity.
Collapse
Affiliation(s)
- Wenrong Zhang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
- College of Life Sciences, Capital Normal University, Beijing, People’s Republic of China
| | - Haining Wang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Tong Wu
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Xintao Gao
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yuting Shang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Zhifang Zhang
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Xingjian Liu
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| | - Yinü Li
- National Key Laboratory of Agricultural Microbiology, Biotechnology Research Institute, Chinese Academy of Agricultural Sciences, Beijing, People’s Republic of China
| |
Collapse
|
40
|
Tao Z, Zhao X, Wang H, Zhang J, Jiang G, Yu B, Chen Y, Zhu M, Long J, Yin L, Zhang X, Liu M, He L. A method for rapid nanobody screening with no bias of the library diversity. iScience 2024; 27:108966. [PMID: 38327779 PMCID: PMC10847680 DOI: 10.1016/j.isci.2024.108966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 07/14/2023] [Accepted: 01/15/2024] [Indexed: 02/09/2024] Open
Abstract
Nanobody, referred to the variable domain of heavy-chain-only antibodies, has several advantages such as small size and feasible Escherichia coli expression, making them promising for scientific research and therapies. Conventional nanobody screening and expression methods often suffer from the need for subcloning into expression vectors and amplification-induced diversity loss. Here, we developed an integrated method for simultaneous screening and expression. Nanobody libraries were cloned and secretly expressed in the culture medium. Target-specific nanobodies were isolated through 1-3 rounds of dilution and regrowth following the Poisson distribution. This ensured no dismissal of positive clones, with populations of positive clones increasing over 10-fold in each dilution round. Ultimately, we isolated 5 nanobodies against death domain receptor 5 and 5 against Pyrococcus furiosus DNA polymerase directly from their immunized libraries. Notably, our approach enables nanobody screening without specialized instruments, demonstrating broad applicability in routine monoclonal nanobody production for diverse biomedical applications.
Collapse
Affiliation(s)
- Zhiqing Tao
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xiaoling Zhao
- Department of Reproductive Medicine, General Hospital of Central Theater Command of the People’s Liberation Army, Wuhan, Hubei 430061, China
- Qinhe Life Science Ltd, Wuhan 430000, China
| | - Huan Wang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, China
| | - Juan Zhang
- Department of Reproductive Medicine, General Hospital of Central Theater Command of the People’s Liberation Army, Wuhan, Hubei 430061, China
| | - Guosheng Jiang
- School of Life Science and Technology, Weifang Medical University, Weifang, Shandong 261053, China
| | - Bin Yu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yihao Chen
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Mingjun Zhu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Junli Long
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lei Yin
- State Key Laboratory of Virology, Hubei Key Laboratory of Cell Homeostasis, College of Life Sciences, Department of Clinical Oncology, Renmin Hospital of Wuhan University, Wuhan University, Wuhan, Hubei Province 430072, China
| | - Xu Zhang
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Maili Liu
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Optics Valley Laboratory, Hubei 430074, China
| | - Lichun He
- State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance in Wuhan, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Chen F, Liu Z, Kang W, Jiang F, Yang X, Yin F, Zhou Z, Li Z. Single-domain antibodies against SARS-CoV-2 RBD from a two-stage phage screening of universal and focused synthetic libraries. BMC Infect Dis 2024; 24:199. [PMID: 38350843 PMCID: PMC10865538 DOI: 10.1186/s12879-024-09022-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 01/16/2024] [Indexed: 02/15/2024] Open
Abstract
BACKGROUND Coronavirus disease 2019 (COVID-19) is an evolving global pandemic, and nanobodies, as well as other single-domain antibodies (sdAbs), have been recognized as a potential diagnostic and therapeutic tool for infectious diseases. High-throughput screening techniques such as phage display have been developed as an alternative to in vivo immunization for the discovery of antibody-like target-specific binders. METHODS We designed and constructed a highly diverse synthetic phage library sdAb-U (single-domain Antibody - Universal library ) based on a human framework. The SARS-CoV-2 receptor-binding domain (RBD) was expressed and purified. The universal library sdAb-U was panned against the RBD protein target for two rounds, followed by monoclonal phage ELISA (enzyme-linked immunosorbent assay) to identify RBD-specific binders (the first stage). High-affinity binders were sequenced and the obtained CDR1 and CDR2 sequences were combined with fully randomized CDR3 to construct a targeted (focused) phage library sdAb-RBD, for subsequent second-stage phage panning (also two rounds) and screening. Then, sequences with high single-to-background ratios in phage ELISA were selected for expression. The binding affinities of sdAbs to RBD were measured by an ELISA-based method. In addition, we conducted competition ELISA (using ACE2 ectodomain S19-D615) and SARS-CoV-2 pseudovirus neutralization assays for the high-affinity RBD-binding sdAb39. RESULTS Significant enrichments were observed in both the first-stage (universal library) and the second-stage (focused library) phage panning. Five RBD-specific binders were identified in the first stage with high ELISA signal-to-background ratios. In the second stage, we observed a much higher possibility of finding RBD-specific clones in phage ELISA. Among 45 selected RBD-positive sequences, we found eight sdAbs can be well expressed, and five of them show high-affinity to RBD (EC50 < 100nM). We finally found that sdAb39 (EC50 ~ 4nM) can compete with ACE2 for binding to RBD. CONCLUSION Overall, this two-stage strategy of synthetic phage display libraries enables rapid selection of SARS-CoV-2 RBD sdAb with potential therapeutic activity, and this two-stage strategy can potentially be used for rapid discovery of sdAbs against other targets.
Collapse
Affiliation(s)
- Fangfang Chen
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Zhihong Liu
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China
| | - Wei Kang
- NanoAI Biotech Co., Ltd, Pingshan District, Shenzhen, China
| | - Fan Jiang
- NanoAI Biotech Co., Ltd, Pingshan District, Shenzhen, China.
| | - Xixiao Yang
- Department of Pharmacy, Shenzhen Hospital, Southern Medical University, Shenzhen, China
| | - Feng Yin
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China
| | - Ziyuan Zhou
- National Cancer Center, National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen, China
| | - Zigang Li
- Pingshan Translational Medicine Center, Shenzhen Bay Laboratory, Shenzhen, China.
- State Key Laboratory of Chemical Oncogenomics, School of Chemical Biology and Biotechnology, Peking University Shenzhen Graduate School, Shenzhen, China.
| |
Collapse
|
42
|
Abdolvahab MH, Karimi P, Mohajeri N, Abedini M, Zare H. Targeted drug delivery using nanobodies to deliver effective molecules to breast cancer cells: the most attractive application of nanobodies. Cancer Cell Int 2024; 24:67. [PMID: 38341580 DOI: 10.1186/s12935-024-03259-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 02/02/2024] [Indexed: 02/12/2024] Open
Abstract
Targeted drug delivery is one of the attractive ways in which cancer treatment can significantly reduce side effects. In the last two decades, the use of antibodies as a tool for accurate detection of cancer has been noted. On the other hand, the binding of drugs and carriers containing drugs to the specific antibodies of cancer cells can specifically target only these cells. However, the use of whole antibodies brings challenges, including their large size, the complexity of conjugation, the high cost of production, and the creation of immunogenic reactions in the body. The use of nanobodies, or VHHs, which are a small part of camel heavy chain antibodies, is very popular due to their small size, high craftsmanship, and low production cost. In this article, in addition to a brief overview of the structure and characteristics of nanobodies, the use of this molecule in the targeted drug delivery of breast cancer has been reviewed.
Collapse
Affiliation(s)
- Mohadeseh Haji Abdolvahab
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Pegah Karimi
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Nasrin Mohajeri
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Mohammad Abedini
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran
| | - Hamed Zare
- Recombinant Proteins Department, Breast Cancer Research Center, Motamed Cancer Institute, ACECR, Tehran, Iran.
| |
Collapse
|
43
|
Nikkhoi SK, Heydarzadeh H, Vandavasi VG, Yang G, Louro P, Polunas M, Owji H, Hatefi A. A high affinity and specificity anti-HER2 single-domain antibody (VHH) that targets trastuzumab's epitope with versatile biochemical, biological, and medical applications. Immunol Res 2024; 72:103-118. [PMID: 37632647 PMCID: PMC10842867 DOI: 10.1007/s12026-023-09418-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 08/19/2023] [Indexed: 08/28/2023]
Abstract
In the past decade, various single-domain antibodies from llamas, also known as VHH or nanobody, have been discovered with applications in tumor imaging and cancer therapy. However, the potential application of anti-HER2 VHHs as a diagnostic tool suitable for ELISA, flow cytometry, cell imaging, bispecific antibody engineering, and immunohistochemistry has not been fully elucidated. To investigate this potential, HER2 antigen was expressed in HEK293 F cells, purified, and used to immunize llama. Using phage display, anti-HER2 VHHs with high affinity and specificity were isolated, sequenced, and constructed with a Histag and c-Myc tag. The constructed anti-HER2 VHHs were then expressed in E. coli, purified, and evaluated for their use in ELISA, flow cytometry, cell imaging, and immunohistochemistry. The affinities of the anti-HER2 VHHs toward the HER2 antigen were determined using biolayer interferometry. Furthermore, the binding sites of the anti-HER2 VHHs were evaluated by epitope mapping and in silico modeling and docking. Here, we report the sequence of an anti-HER2 VHH with high affinity (sub-nanomolar), specificity, and selectivity. This VHH binds to the same epitope as trastuzumab and can be utilized to generate bispecific antibodies or used as a diagnostic tool to differentiate HER2+ from HER2- antigens on plates, cells, and tissues. This discovery has broad applications in biochemical, biological, and medical sciences.
Collapse
Affiliation(s)
- Shahryar Khoshtinat Nikkhoi
- Department of Pharmaceutics, Rutgers University, Room 222, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Hediyeh Heydarzadeh
- Department of Pharmaceutics, Rutgers University, Room 222, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Venu Gopal Vandavasi
- Department of Chemistry, Biophysics Core Facility, Princeton University, Princeton, NJ, 08544, USA
| | - Ge Yang
- Department of Pharmaceutics, Rutgers University, Room 222, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Pedro Louro
- Rutgers Research Pathology Services, Rutgers University, Piscataway, NJ, 08854, USA
| | - Marianne Polunas
- Rutgers Research Pathology Services, Rutgers University, Piscataway, NJ, 08854, USA
| | - Hajar Owji
- Department of Pharmaceutics, Rutgers University, Room 222, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA
| | - Arash Hatefi
- Department of Pharmaceutics, Rutgers University, Room 222, 160 Frelinghuysen Road, Piscataway, NJ, 08854, USA.
- Cancer Pharmacology Program, Rutgers Cancer Institute of New Jersey, New Brunswick, NJ, 08901, USA.
| |
Collapse
|
44
|
Sun M, Sun Y, Yang Y, Zhao M, Cao D, Zhang M, Xia D, Wang T, Gao Y, Wang S, Wang H, Cai X, An T. Multivalent nanobody-based sandwich enzyme-linked immunosorbent assay for sensitive detection of porcine reproductive and respiratory syndrome virus. Int J Biol Macromol 2024; 258:128896. [PMID: 38143067 DOI: 10.1016/j.ijbiomac.2023.128896] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/13/2023] [Accepted: 12/17/2023] [Indexed: 12/26/2023]
Abstract
The pandemic of the porcine reproductive and respiratory syndrome virus (PRRSV) has caused huge economic losses and continues to threaten the swine industry worldwide. Nucleocapsid protein (N protein) is the primary antigen of PRRSV for development of sensitive diagnostic assays. Two high affinity nanobodies against N protein, Nb12 and Nb35, were selected and employed to develop a sandwich ELISA. Further we improved the ELISA method to obtain greater sensitivity, a trivalent nanobody (3 × Nb35) and a bivalent nanobody-HRP fusion protein (2 × Nb12-HRP) were expressed and used. This modified ELISA was found to have high sensitivity for detecting PRRSV, with a detection limit of 10 TCID50/ml (median tissue culture infectious dose), which was approximately 200-fold greater than the single-copy nanobody-based sandwich ELISA. The developed assay shows high specificity and can detect almost all circulating lineages of PRRSV-2 in China. This study provides suggestions for reforming nanobodies and for the further development of multivalent nanobody-based ELISAs for other various viruses.
Collapse
Affiliation(s)
- Mingxia Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yue Sun
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yongbo Yang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Man Zhao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Dan Cao
- Soybean Research Institute, Heilongjiang Academy of Agricultural Science, Harbin 150086, China
| | - Minmin Zhang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Dasong Xia
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Tao Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Yanfei Gao
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Shanghui Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Haiwei Wang
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China
| | - Xuehui Cai
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; Heilongjiang Research Center of Veterinary Biopharmaceutical Technology, Harbin 150069, China.
| | - Tongqing An
- State Key Laboratory for Animal Disease Control and Prevention, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Harbin 150069, China; Heilongjiang Provincial Key Laboratory of Veterinary Immunology, Harbin 150069, China.
| |
Collapse
|
45
|
Xiong S, Liu Z, Yi X, Liu K, Huang B, Wang X. NanoLAS: a comprehensive nanobody database with data integration, consolidation and application. Database (Oxford) 2024; 2024:baae003. [PMID: 38300518 PMCID: PMC10833066 DOI: 10.1093/database/baae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/15/2023] [Accepted: 01/06/2024] [Indexed: 02/02/2024]
Abstract
Nanobodies, a unique subclass of antibodies first discovered in camelid animals, are composed solely of a single heavy chain's variable region. Their significantly reduced molecular weight, in comparison to conventional antibodies, confers numerous advantages in the treatment of various diseases. As research and applications involving nanobodies expand, the quantity of identified nanobodies is also rapidly growing. However, the existing antibody databases are deficient in type and coverage, failing to satisfy the comprehensive needs of researchers and thus impeding progress in nanobody research. In response to this, we have amalgamated data from multiple sources to successfully assemble a new and comprehensive nanobody database. This database has currently included the latest nanobody data and provides researchers with an excellent search and data display interface, thus facilitating the progression of nanobody research and their application in disease treatment. In summary, the newly constructed Nanobody Library and Archive System may significantly enhance the retrieval efficiency and application potential of nanobodies. We envision that Nanobody Library and Archive System will serve as an accessible, robust and efficient tool for nanobody research and development, propelling advancements in the field of biomedicine. Database URL: https://www.nanolas.cloud.
Collapse
Affiliation(s)
| | - Zhengwen Liu
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, China
| | - Xin Yi
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, China
| | - Kai Liu
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, China
| | - Bingding Huang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, China
| | - Xin Wang
- College of Big Data and Internet, Shenzhen Technology University, Shenzhen 518118, China
| |
Collapse
|
46
|
Babamohamadi M, Mohammadi N, Faryadi E, Haddadi M, Merati A, Ghobadinezhad F, Amirian R, Izadi Z, Hadjati J. Anti-CTLA-4 nanobody as a promising approach in cancer immunotherapy. Cell Death Dis 2024; 15:17. [PMID: 38191571 PMCID: PMC10774412 DOI: 10.1038/s41419-023-06391-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 11/25/2023] [Accepted: 12/13/2023] [Indexed: 01/10/2024]
Abstract
Cancer is one of the most common diseases and causes of death worldwide. Since common treatment approaches do not yield acceptable results in many patients, developing innovative strategies for effective treatment is necessary. Immunotherapy is one of the promising approaches that has been highly regarded for preventing tumor recurrence and new metastases. Meanwhile, inhibiting immune checkpoints is one of the most attractive methods of cancer immunotherapy. Cytotoxic T lymphocyte-associated protein-4 (CTLA-4) is an essential immune molecule that plays a vital role in cell cycle modulation, regulation of T cell proliferation, and cytokine production. This molecule is classically expressed by stimulated T cells. Inhibition of overexpression of immune checkpoints such as CTLA-4 receptors has been confirmed as an effective strategy. In cancer immunotherapy, immune checkpoint-blocking drugs can be enhanced with nanobodies that target immune checkpoint molecules. Nanobodies are derived from the variable domain of heavy antibody chains. These small protein fragments have evolved entirely without a light chain and can be used as a powerful tool in imaging and treating diseases with their unique structure. They have a low molecular weight, which makes them smaller than conventional antibodies while still being able to bind to specific antigens. In addition to low molecular weight, specific binding to targets, resistance to temperature, pH, and enzymes, high ability to penetrate tumor tissues, and low toxicity make nanobodies an ideal approach to overcome the disadvantages of monoclonal antibody-based immunotherapy. In this article, while reviewing the cellular and molecular functions of CTLA-4, the structure and mechanisms of nanobodies' activity, and their delivery methods, we will explain the advantages and challenges of using nanobodies, emphasizing immunotherapy treatments based on anti-CTLA-4 nanobodies.
Collapse
Affiliation(s)
- Mehregan Babamohamadi
- Department of Biology, School of Natural Sciences, University of Tabriz, Tabriz, Iran
- Stem Cell and Regenerative Medicine Innovation Center, Tehran University of Medical Sciences, Tehran, Iran
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Nastaran Mohammadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Elham Faryadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Maryam Haddadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Immunology, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Amirhossein Merati
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Medical Laboratory Sciences, School of Paramedical, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Farbod Ghobadinezhad
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Roshanak Amirian
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Student Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zhila Izadi
- USERN Office, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Pharmaceutical Sciences Research Center, Health Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Jamshid Hadjati
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
47
|
Tawfeeq C, Song J, Khaniya U, Madej T, Wang J, Youkharibache P, Abrol R. Towards a structural and functional analysis of the immunoglobulin-fold proteome. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2024; 138:135-178. [PMID: 38220423 DOI: 10.1016/bs.apcsb.2023.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2024]
Abstract
The immunoglobulin fold (Ig fold) domain is a super-secondary structural motif consisting of a sandwich with two layers of β-sheets that is present in many proteins with very diverse biological functions covering a wide range of physiological processes. This domain presents a modular architecture built with β strands connected by variable length loops that has a highly conserved structural core of four β-strands and quite variable β-sheet extensions in the two sandwich layers that enable both divergent and convergent evolutionary mechanisms in the known Ig fold proteome. The central role of this Ig fold's structural plasticity in the evolutionary success of antibodies in our immune system is well established. Nature has also utilized this Ig fold in all domains of life in many different physiological contexts that go way beyond the immune system. Here we will present a structural and functional overview of the utilization of the Ig fold in different biological processes and in different cellular contexts to highlight some of the innumerable ways that this structural motif can interact in multidomain proteins to enable their diversity of functions. This includes shareable specific protein structure visualizations behind those functions that serve as starting points for further explorations of the biomolecular interactions spanning the Ig fold proteome. This overview also highlights how this Ig fold is being utilized through natural adaptation, engineering, and even building from scratch for a range of biotechnological applications.
Collapse
Affiliation(s)
- Caesar Tawfeeq
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, United States
| | - James Song
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Umesh Khaniya
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, United States
| | - Thomas Madej
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Jiyao Wang
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, United States
| | - Philippe Youkharibache
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, United States.
| | - Ravinder Abrol
- Department of Chemistry and Biochemistry, California State University Northridge, Northridge, United States.
| |
Collapse
|
48
|
Niquille DL, Fitzgerald KM, Gera N. Biparatopic antibodies: therapeutic applications and prospects. MAbs 2024; 16:2310890. [PMID: 38439551 PMCID: PMC10936611 DOI: 10.1080/19420862.2024.2310890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/23/2024] [Indexed: 03/06/2024] Open
Abstract
Biparatopic antibodies (bpAbs) bind distinct, non-overlapping epitopes on an antigen. This unique binding mode enables new mechanisms of action beyond monospecific and bispecific antibodies (bsAbs) that can make bpAbs effective therapeutics for various indications, including oncology and infectious diseases. Biparatopic binding can lead to superior affinity and specificity, promote antagonism, lock target conformation, and result in higher-order target clustering. Such antibody-target complexes can elicit strong agonism, increase immune effector function, or result in rapid target downregulation and lysosomal trafficking. These are not only attractive properties for therapeutic antibodies but are increasingly being explored for other modalities such as antibody-drug conjugates, T-cell engagers and chimeric antigen receptors. Recent advances in bpAb engineering have enabled the construction of ever more sophisticated formats that are starting to show promise in the clinic.
Collapse
Affiliation(s)
| | | | - Nimish Gera
- Biologics, Mythic Therapeutics, Waltham, MA, USA
| |
Collapse
|
49
|
Wu X, Zhang J, Fang L. Next-Generation Sequencing and Proteomics-Enabled Approach for Rapid and High-Throughput Isolation of Virus-Neutralizing Nanobodies. Methods Mol Biol 2024; 2824:135-146. [PMID: 39039411 DOI: 10.1007/978-1-0716-3926-9_10] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Compared with traditional antibodies, nanobodies from camelids have various advantages, including small molecular weight, high affinity, low immunogenicity, convenient production through genetic engineering, etc. Here we combined next-generation sequencing (NGS) with proteomics technology based on affinity purification-mass spectrometry (AP-MS) and bioinformatics analysis to high-throughput screen monoclonal nanobodies from camels immunized with surface glycoprotein (glycoprotein N, Gn) of severe fever with thrombocytopenia syndrome virus and fulfilled production of the screened anti-Gn monoclonal nanobody with high affinity by genetic engineering. The innovative high-throughput technical route developed here could also be expanded to the production of neutralizing nanobodies specific for Rift Valley fever virus.
Collapse
Affiliation(s)
- Xilin Wu
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Jingzi Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China
- Chemistry and Biomedicine Innovation Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China
| | - Lei Fang
- State Key Laboratory of Pharmaceutical Biotechnology, Medical School, Nanjing University, Nanjing, China.
- Chemistry and Biomedicine Innovation Center, Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
50
|
Mustafa MI, Mohammed A. Nanobodies: A Game-Changer in Cell-Mediated Immunotherapy for Cancer. SLAS DISCOVERY : ADVANCING LIFE SCIENCES R & D 2023; 28:358-364. [PMID: 37634615 DOI: 10.1016/j.slasd.2023.08.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/14/2023] [Accepted: 08/23/2023] [Indexed: 08/29/2023]
Abstract
Nanobodies are small, single-domain antibodies that have emerged as a promising tool in cancer immunotherapy. These molecules can target specific antigens on cancer cells and trigger an immune response against them. In this mini-review article, we highlight the potential of nanobodies in cell-mediated immunotherapy for cancer treatment. We discuss the advantages of nanobodies over conventional antibodies, their ability to penetrate solid tumors, and their potential to enhance the efficacy of other immunotherapeutic agents. We also provide an overview of recent preclinical and clinical studies that have demonstrated the effectiveness of nanobody-based immunotherapy in various types of cancer.
Collapse
Affiliation(s)
- Mujahed I Mustafa
- Department of Biotechnology, College of Applied and Industrial Sciences, University of Bahri, Khartoum, Sudan.
| | - Ahmed Mohammed
- Department of Biotechnology, School of Life Sciences and Technology, Omdurman Islamic University, Omdurman, Sudan
| |
Collapse
|