1
|
Messaoudi M, Pakstis AJ, Boussetta S, Ben Ammar Elgaaied A, Kidd KK, Cherni L. CYP2C gene polymorphisms in North African populations. Mol Biol Rep 2024; 51:1145. [PMID: 39532754 DOI: 10.1007/s11033-024-10093-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Cytochrome P450 is a superfamily of genes generating hemoproteins that metabolize foreign chemicals as well as endogenous compounds, such as steroids. The human CYP2C genes (CYP2C8, CYP2C9, CYP2C18, CYP2C19) cluster on chromosome 10 and metabolize many clinically useful drugs. CYP2C19 and CYP2C9 have been the most studied while CYP2C8 has been studied less frequently. CYP2C18 has been relatively ignored until recently but its importance has begun to be recognized. METHODS AND RESULTS We studied the genotypes of 7 pharmacogenetic markers in 3 CYP2C genes: CYP2C19 (rs12248560), CYP2C9 (rs4918758, rs1799853), and CYP2C8 (rs10509681, rs11572103, rs1058930, rs11572080), in one Libyan population and 7 Tunisian populations. Five of the 7 SNPs are in exons and have functional consequences while one intronic SNP is considered to be in close proximity to a regulatory region because of the many studies that report associations with metabolic effects. We carried out principal component analysis (PCA) on the North African populations and 83 other populations from the 1000 Genomes Project and Kidd Laboratory. The geographic clustering observed via PCA was more pronounced when considering multi-SNP haplotype frequencies. CONCLUSION This study reveals the intermediate position of North Africans between Europeans and Asians and the varied dissimilarities with other world regions. The genetic variation observed within and between geographic regions have implications for drug metabolism and adverse individual responses to medical treatments.
Collapse
Affiliation(s)
- Mohsen Messaoudi
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia.
| | - Andrew J Pakstis
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Sami Boussetta
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Amel Ben Ammar Elgaaied
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
| | - Kenneth K Kidd
- Department of Genetics, Yale University School of Medicine, New Haven, CT, 06520, USA
| | - Lotfi Cherni
- Laboratory of Genetics, Immunology and Human Pathologies, Faculty of Sciences of Tunis, University of Tunis El Manar, 2092, Tunis, Tunisia
- Higher Institute of Biotechnology of Monastir, Monastir University, 5000, Monastir, Tunisia
| |
Collapse
|
2
|
Peña-Martín MC, Marcos-Vadillo E, García-Berrocal B, Heredero-Jung DH, García-Salgado MJ, Lorenzo-Hernández SM, Larrue R, Lenski M, Drevin G, Sanz C, Isidoro-García M. A Comparison of Molecular Techniques for Improving the Methodology in the Laboratory of Pharmacogenetics. Int J Mol Sci 2024; 25:11505. [PMID: 39519058 PMCID: PMC11546559 DOI: 10.3390/ijms252111505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/20/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
One of the most critical goals in healthcare is safe and effective drug therapy, which is directly related to an individual's response to treatment. Precision medicine can improve drug safety in many scenarios, including polypharmacy, and it requires the development of new genetic characterization methods. In this report, we use real-time PCR, microarray techniques, and mass spectrometry (MALDI-TOF), which allows us to compare them and identify the potential benefits of technological improvements, leading to better quality medical care. These comparative studies, as part of our pharmacogenetic Five-Step Precision Medicine (5SPM) approach, reveal the superiority of mass spectrometry over the other methods analyzed and highlight the importance of updating the laboratory's pharmacogenetic methodology to identify new variants with clinical impact.
Collapse
Affiliation(s)
- María Celsa Peña-Martín
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Pharmacology-Toxicology and Pharmacovigilance Department, Angers University Hospital, F-49100 Angers, France;
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Elena Marcos-Vadillo
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Belén García-Berrocal
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - David Hansoe Heredero-Jung
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - María Jesús García-Salgado
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Sandra Milagros Lorenzo-Hernández
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
| | - Romain Larrue
- CNRS, Inserm, CHU Lille, UMR9020-U1277—CANTHER—Cancer Heterogeneity Plasticity and Resistance to Therapies, University of Lille, F-59000 Lille, France;
| | - Marie Lenski
- CHU Lille, Institut Pasteur de Lille, ULR 4483, IMPECS-IMPact of the Chemical Environment on Health, University of Lille, F-59000 Lille, France;
| | - Guillaume Drevin
- Pharmacology-Toxicology and Pharmacovigilance Department, Angers University Hospital, F-49100 Angers, France;
| | - Catalina Sanz
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
- Department of Microbiology and Genetics, University of Salamanca, 37007 Salamanca, Spain
| | - María Isidoro-García
- Department of Clinical Biochemistry, University Hospital of Salamanca, 37007 Salamanca, Spain; (M.C.P.-M.); (E.M.-V.); (B.G.-B.); (D.H.H.-J.); (M.J.G.-S.); (S.M.L.-H.); (M.I.-G.)
- Institute for Biomedical Research of Salamanca, 37007 Salamanca, Spain
- Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
| |
Collapse
|
3
|
Zhang X, Mu H, Zhong Y, Wang R, Li W. Effect of High Altitude Environment on Pharmacokinetic and Pharmacodynamic of Warfarin in Rats. Curr Drug Metab 2024; 25:54-62. [PMID: 38409697 DOI: 10.2174/0113892002277930240201101256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/22/2023] [Accepted: 01/12/2024] [Indexed: 02/28/2024]
Abstract
BACKGROUND High altitude environment affects the pharmacokinetic (PK) parameters of drugs and the PK parameters are an important theoretical basis for guiding the rational clinical use of drugs. Warfarin is an oral anticoagulant of the coumarin class commonly used in clinical practice, but it has a narrow therapeutic window and wide individual variation. However, the effect of high altitude environment on PK and pharmacodynamic (PD) of warfarin is unclear. OBJECTIVE The objective of this study is to investigate the effect of a high altitude environment on PK and PD of warfarin in rats. METHOD Rats were randomly divided into plain group and high altitude group and blood samples were collected through the orbital venous plexus after administration of 2 mg/kg warfarin. Warfarin concentrations in plasma samples were determined by liquid chromatography-tandem mass spectrometry (LC-MS/MS) and PK parameters were calculated by the non-compartment model using WinNonlin 8.1 software. Meanwhile, the expression of PXR, P-gp and CYP2C9 in liver tissues was also determined by western blotting. The effect of high altitude environment on PD of warfarin was explored by measuring activated partial thromboplastin time (APTT) and prothrombin time (PT) values and then calculated international normalized ratio (INR) values based on PT. RESULTS Significant changes in PK behaviors and PD of warfarin in high altitude-rats were observed. Compared with the plain-rats, the peak concentration (Cmax) and the area under the plasma concentration-time curve (AUC) increased significantly by 50.9% and 107.46%, respectively. At the same time, high altitude environment significantly inhibited the expression of PXR, P-gp and CYP2C9 in liver tissues. The results of the PD study showed that high altitude environments significantly prolonged PT, APTT and INR values. CONCLUSION High altitude environment inhibited the metabolism and increased the absorption of warfarin in rats and increased the effect of anticoagulant effect, suggesting that the optimal dose of warfarin for patients at high altitude should be reassessed.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Department of Pharmacy, 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Hongfang Mu
- Department of Pharmacy, 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Yan Zhong
- Department of Pharmacy, 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Rong Wang
- Department of Pharmacy, 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| | - Wenbin Li
- Department of Pharmacy, 940th Hospital of Joint Logistic Support Force of Chinese People's Liberation Army, Lanzhou, China
| |
Collapse
|
4
|
Dudas B, Miteva MA. Computational and artificial intelligence-based approaches for drug metabolism and transport prediction. Trends Pharmacol Sci 2024; 45:39-55. [PMID: 38072723 DOI: 10.1016/j.tips.2023.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 11/09/2023] [Accepted: 11/09/2023] [Indexed: 01/07/2024]
Abstract
Drug metabolism and transport, orchestrated by drug-metabolizing enzymes (DMEs) and drug transporters (DTs), are implicated in drug-drug interactions (DDIs) and adverse drug reactions (ADRs). Reliable and precise predictions of DDIs and ADRs are critical in the early stages of drug development to reduce the rate of drug candidate failure. A variety of experimental and computational technologies have been developed to predict DDIs and ADRs. Recent artificial intelligence (AI) approaches offer new opportunities for better predicting and understanding the complex processes related to drug metabolism and transport. We summarize the role of major DMEs and DTs, and provide an overview of current progress in computational approaches for the prediction of drug metabolism, transport, and DDIs, with an emphasis on AI including machine learning (ML) and deep learning (DL) modeling.
Collapse
Affiliation(s)
- Balint Dudas
- Université Paris Cité, CNRS UMR 8038 CiTCoM, Inserm U1268 MCTR, Paris, France
| | - Maria A Miteva
- Université Paris Cité, CNRS UMR 8038 CiTCoM, Inserm U1268 MCTR, Paris, France.
| |
Collapse
|
5
|
Tidbury N, Preston J, Lip GYH. Lessons learned from the influence of CYP2C9 genotype on warfarin dosing. Expert Opin Drug Metab Toxicol 2023; 19:185-188. [PMID: 37254883 DOI: 10.1080/17425255.2023.2220961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/24/2023] [Accepted: 05/30/2023] [Indexed: 06/01/2023]
Affiliation(s)
- Nicola Tidbury
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
| | - Joshua Preston
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
| | - Gregory Y H Lip
- Liverpool Centre for Cardiovascular Science at University of Liverpool, Liverpool John Moores University and Liverpool Heart & Chest Hospital, Liverpool, UK
| |
Collapse
|
6
|
Jiang LP, Zhu T, Tang K, Wu Y, Fu M, Ji JZ, Mi QY, Ge PX, Zhao XH, Tai T, Xie HG. Enhanced metabolic activation of and platelet response to clopidogrel in T cell-deficient mice through induction of Cyp2c and Cyp3a and inhibition of Ces1. J Thromb Haemost 2023; 21:1322-1335. [PMID: 36738827 DOI: 10.1016/j.jtha.2023.01.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 12/15/2022] [Accepted: 01/17/2023] [Indexed: 02/05/2023]
Abstract
BACKGROUND T cells and platelets reciprocally coordinate mutual functions through crosstalk or interaction. However, it is not known whether metabolic activation of and platelet response to clopidogrel could be changed if T cells were deficient or impaired in some cases and, if any, how it would work. OBJECTIVES The objective of this study was to dissect the potential changes in platelet responses to and metabolic activation of clopidogrel in the case of T cell deficiency and to elucidate their mechanisms involved. METHODS BALB/c athymic nude mice or euthymic mice (controls) pretreated with cyclosporine A (CsA), thymosin α1 (Tα1), or their combination were used to investigate the changes in ADP-induced platelet activation and aggregation, systemic exposure of clopidogrel and its metabolites, and mRNA/protein expression and activity levels of clopidogrel-metabolizing enzymes in the liver, respectively. RESULTS Nude mice exhibited significantly enhanced antiplatelet effects of clopidogrel due to increased formation of clopidogrel active metabolite in the liver, where the enzyme activity levels of Cyp2c and Cyp3a were significantly elevated compared with control mice. Furthermore, the effects of CsA pretreatment on the metabolism of clopidogrel in euthymic mice were identical to those seen in athymic mice. As expected, concomitant use of Tα1 reversed all the observed effects of CsA on clopidogrel metabolism and relevant metabolic enzymes. CONCLUSIONS T cell deficiency or suppression enhances the antiplatelet effects of clopidogrel due to the boosted metabolic activation of clopidogrel in the liver through a dramatic induction of Cyp2c and Cyp3a in mice, suggesting that the metabolism of substrate drugs of Cyp2c and Cyp3a may be enhanced by T cell impairment.
Collapse
Affiliation(s)
- Li-Ping Jiang
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ting Zhu
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ke Tang
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Yu Wu
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Min Fu
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Jin-Zi Ji
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Qiong-Yu Mi
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | - Peng-Xin Ge
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Xiang-Hong Zhao
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Ting Tai
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Department of Clinical Pharmacy, School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China.
| | - Hong-Guang Xie
- Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, China Pharmaceutical University, Nanjing, China; Division of Clinical Pharmacology, General Clinical Research Center, Nanjing First Hospital, Nanjing Medical University, Nanjing, China; Department of Clinical Pharmacy, Nanjing Medical University School of Pharmacy, Nanjing, China.
| |
Collapse
|
7
|
Zhou J, Wei Z, Xu B, Liu M, Xu R, Wu X. Pharmacovigilance of triazole antifungal agents: Analysis of the FDA adverse event reporting system (FAERS) database. Front Pharmacol 2022; 13:1039867. [PMID: 36588707 PMCID: PMC9798094 DOI: 10.3389/fphar.2022.1039867] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Accepted: 12/05/2022] [Indexed: 12/23/2022] Open
Abstract
Triazole antifungal drugs (TAD) are widely used to treat invasive fungal infections due to their broad antifungal spectrum and low toxicity. Despite their preference in the clinic, multiple Adverse Events (AE) are still reported each year. OBJECTIVE We aimed to characterize the distribution of Adverse Events associated with Triazole antifungal drugs in different systems and to identify Important Medical Events (IME) signals for Triazole antifungal drugs. METHODS The U.S. Food and Drug Administration Adverse Event Reporting System (FAERS) was queried for Adverse Events related to Triazole antifungal drugs from 2012 to 2022. The Adverse Events caused by all other drugs and non-TAD antifungal drugs were analyzed as references. Reporting odds ratio and Bayesian confidence propagation neural network of information components were used to evaluate the association between Triazole antifungal drugs and Important Medical Events. Visual signal spectrum is mapped to identify potential adverse reaction signals. RESULTS Overall, 10,262 Adverse Events were reported to be associated with Triazole antifungal drugs, of which 5,563 cases were defined as Important Medical Events. Common adverse drug reactions (ADR) mentioned in the instructions such as delirium and hypokalemia were detected, as well as unlabeled ADRs such as rhabdomyolysis and hepatitis fulminant. Cholestasis, drug-induced liver injury, QT interval prolongation and renal impairment have notable signals in all Triazole antifungal drugs, with 50 percent of patients developing a severe clinical outcome. Isavuconazole had the lowest signal intensity and demonstrated a superior safety profile. CONCLUSION Most results are generally consistent with previous studies and are documented in the prescribing instructions, but some IMEs are not included, such as hepatitis fulminant. Additional pharmaco-epidemiological or experimental studies are required to validate the small number of unlabeled ADRs. TAD-related Important Medical Eventshave a considerable potential to cause clinically serious outcomes. Clinical use of Triazole antifungal drugs requires more attention.
Collapse
Affiliation(s)
- Jianxing Zhou
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China,School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Zipeng Wei
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China,School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Baohua Xu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China,School of Pharmacy, Fujian Medical University, Fuzhou, Fujian, China
| | - Maobai Liu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Ruichao Xu
- Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xuemei Wu
- Department of Pharmacy, Fujian Medical University Union Hospital, Fuzhou, Fujian, China,*Correspondence: Xuemei Wu,
| |
Collapse
|
8
|
Amado PM, Woodley C, Cristiano MLS, O’Neill PM. Recent Advances of DprE1 Inhibitors against Mycobacterium tuberculosis: Computational Analysis of Physicochemical and ADMET Properties. ACS OMEGA 2022; 7:40659-40681. [PMID: 36406587 PMCID: PMC9670723 DOI: 10.1021/acsomega.2c05307] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Accepted: 10/21/2022] [Indexed: 05/14/2023]
Abstract
Decaprenylphosphoryl-β-d-ribose 2'-epimerase (DprE1) is a critical flavoenzyme in Mycobacterium tuberculosis, catalyzing a vital step in the production of lipoarabinomannan and arabinogalactan, both of which are essential for cell wall biosynthesis. Due to its periplasmic localization, DprE1 is a susceptible target, and several compounds with diverse scaffolds have been discovered that inhibit this enzyme, covalently or noncovalently. We evaluated a total of ∼1519 DprE1 inhibitors disclosed in the literature from 2009 to April 2022 by performing an in-depth analysis of physicochemical descriptors and absorption, distribution, metabolism, excretion, and toxicity (ADMET), to gain new insights into these properties in DprE1 inhibitors. Several molecular properties that should facilitate the design and optimization of future DprE1 inhibitors are described, allowing for the development of improved analogues targeting M. tuberculosis.
Collapse
Affiliation(s)
- Patrícia
S. M. Amado
- Center
of Marine Sciences - CCMAR, University of
Algarve, P-8005-039 Faro, Portugal
- Department
of Chemistry and Pharmacy, FCT, University
of Algarve, P-8005-039 Faro, Portugal
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Christopher Woodley
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
| | - Maria L. S. Cristiano
- Center
of Marine Sciences - CCMAR, University of
Algarve, P-8005-039 Faro, Portugal
- Department
of Chemistry and Pharmacy, FCT, University
of Algarve, P-8005-039 Faro, Portugal
- Email
for M.L.S.C.:
| | - Paul M. O’Neill
- Department
of Chemistry, University of Liverpool, Liverpool L69 7ZD, United Kingdom
- Email for P.M.O.:
| |
Collapse
|
9
|
Isvoran A, Peng Y, Ceauranu S, Schmidt L, Nicot AB, Miteva MA. Pharmacogenetics of human sulfotransferases and impact of amino acid exchange on Phase II drug metabolism. Drug Discov Today 2022; 27:103349. [PMID: 36096358 DOI: 10.1016/j.drudis.2022.103349] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 07/27/2022] [Accepted: 09/06/2022] [Indexed: 11/20/2022]
Abstract
Sulfotransferases (SULTs) are Phase II drug-metabolizing enzymes (DMEs) catalyzing the sulfation of a variety of endogenous compounds, natural products, and drugs. Various drugs, such as nonsteroidal anti-inflammatory drugs (NSAIDS) can inhibit SULTs, affecting drug-drug interactions. Several polymorphisms have been identified for SULTs that might be crucial for interindividual variability in drug response and toxicity or for increased disease risk. Here, we review current knowledge on non-synonymous single nucleotide polymorphisms (nsSNPs) of human SULTs, focusing on the coded SULT allozymes and molecular mechanisms explaining their variable activity, which is essential for personalized medicine. We discuss the structural and dynamic bases of key amino acid (AA) variants implicated in the impacts on drug metabolism in the case of SULT1A1, as revealed by molecular modeling approaches.
Collapse
Affiliation(s)
- Adriana Isvoran
- Department of Biology-Chemistry and Advanced Environmental Research Laboratories, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
| | - Yunhui Peng
- INSERM U1268 Medicinal Chemistry and Translational Research, CiTCoM UMR 8038 CNRS - Université Paris Cité, 75006 Paris, France
| | - Silvana Ceauranu
- Department of Biology-Chemistry and Advanced Environmental Research Laboratories, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
| | - Leon Schmidt
- Department of Biology-Chemistry and Advanced Environmental Research Laboratories, West University of Timisoara, 16 Pestalozzi, 300115 Timisoara, Romania
| | - Arnaud B Nicot
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, F-44000 Nantes, France.
| | - Maria A Miteva
- INSERM U1268 Medicinal Chemistry and Translational Research, CiTCoM UMR 8038 CNRS - Université Paris Cité, 75006 Paris, France.
| |
Collapse
|
10
|
Katsonis P, Wilhelm K, Williams A, Lichtarge O. Genome interpretation using in silico predictors of variant impact. Hum Genet 2022; 141:1549-1577. [PMID: 35488922 PMCID: PMC9055222 DOI: 10.1007/s00439-022-02457-6] [Citation(s) in RCA: 28] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Accepted: 04/17/2022] [Indexed: 02/06/2023]
Abstract
Estimating the effects of variants found in disease driver genes opens the door to personalized therapeutic opportunities. Clinical associations and laboratory experiments can only characterize a tiny fraction of all the available variants, leaving the majority as variants of unknown significance (VUS). In silico methods bridge this gap by providing instant estimates on a large scale, most often based on the numerous genetic differences between species. Despite concerns that these methods may lack reliability in individual subjects, their numerous practical applications over cohorts suggest they are already helpful and have a role to play in genome interpretation when used at the proper scale and context. In this review, we aim to gain insights into the training and validation of these variant effect predicting methods and illustrate representative types of experimental and clinical applications. Objective performance assessments using various datasets that are not yet published indicate the strengths and limitations of each method. These show that cautious use of in silico variant impact predictors is essential for addressing genome interpretation challenges.
Collapse
Affiliation(s)
- Panagiotis Katsonis
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| | - Kevin Wilhelm
- Graduate School of Biomedical Sciences, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Amanda Williams
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA
| | - Olivier Lichtarge
- Department of Molecular and Human Genetics, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Biochemistry, Human Genetics and Molecular Biology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Department of Pharmacology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
- Computational and Integrative Biomedical Research Center, Baylor College of Medicine, One Baylor Plaza, Houston, TX, 77030, USA.
| |
Collapse
|
11
|
Tasdemiroglu Y, Gourdie RG, He JQ. In vivo degradation forms, anti-degradation strategies, and clinical applications of therapeutic peptides in non-infectious chronic diseases. Eur J Pharmacol 2022; 932:175192. [PMID: 35981605 DOI: 10.1016/j.ejphar.2022.175192] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/01/2022] [Accepted: 08/05/2022] [Indexed: 11/03/2022]
Abstract
Current medicinal treatments for diseases comprise largely of two categories: small molecular (chemical) (e.g., aspirin) and larger molecular (peptides/proteins, e.g., insulin) drugs. Whilst both types of therapeutics can effectively treat different diseases, ranging from well-understood (in view of pathogenesis and treatment) examples (e.g., flu), to less-understood chronic diseases (e.g., diabetes), classical small molecule drugs often possess significant side-effects (a major cause of drug withdrawal from market) due to their low- or non-specific targeting. By contrast, therapeutic peptides, which comprise short sequences from naturally occurring peptides/proteins, commonly demonstrate high target specificity, well-characterized modes-of-action, and low or non-toxicity in vivo. Unfortunately, due to their small size, linear permutation, and lack of tertiary structure, peptidic drugs are easily subject to rapid degradation or loss in vivo through chemical and physical routines, thus resulting in a short half-life and reduced therapeutic efficacy, a major drawback that can reduce therapeutic efficiency. However, recent studies demonstrate that the short half-life of peptidic drugs can be significantly extended by various means, including use of enantiomeric or non-natural amino acids (AAs) (e.g., L-AAs replacement with D-AAs), chemical conjugation [e.g., with polyethylene glycol], and encapsulation (e.g., in exosomes). In this context, we provide an overview of the major in vivo degradation forms of small therapeutic peptides in the plasma and anti-degradation strategies. We also update on the progress of small peptide therapeutics that are either currently in clinical trials or are being successfully used in clinical therapies for patients with non-infectious diseases, such as diabetes, multiple sclerosis, and cancer.
Collapse
Affiliation(s)
- Yagmur Tasdemiroglu
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA
| | - Robert G Gourdie
- Center for Vascular and Heart Research, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA, 24016, USA
| | - Jia-Qiang He
- Department of Biomedical Sciences and Pathobiology, College of Veterinary Medicine, Virginia Tech, Blacksburg, VA, 24061, USA.
| |
Collapse
|
12
|
Hu Y, Chen F, Zhou K, Zhang Z, Li F, Zhang J, Tang Y, Jin Z. In Vitro and In Vivo Antibacterial Activity, Toxicity and Resistance Analysis of Pleuromutilin Derivative Z33 against Methicillin-Resistant Staphylococcus aureus. Molecules 2022; 27:molecules27154939. [PMID: 35956888 PMCID: PMC9370166 DOI: 10.3390/molecules27154939] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 07/30/2022] [Accepted: 07/31/2022] [Indexed: 12/10/2022] Open
Abstract
The novel pleuromutilin derivative, which showed excellent in vitro antibacterial activity against MRSA, 22-(2-(2-(4-((4-(4-nitrophenyl)piperazin-1-yl)methyl)-1H-1,2,3-triazol-1-yl)acetamido)phenyl)thioacety-l-yl-22-deoxypleuromutilin (Z33), was synthesized and characterized in our previous work. In this study, the preliminary pharmacodynamics and safety of Z33 were further evaluated. In in vitro antibacterial activity assays, Z33 was found to be a potent bactericidal antibiotic against MRSA that induced dose-dependent growth inhibition and long-term post-antibiotic effect (PAE). The drug-resistance test demonstrated that Z33 possessed a narrow mutant selection window and lower propensities to select resistance than that of tiamulin. Cytochrome P450 (CYP450) inhibition assay determined that the inhibitory effect of Z33 was similar to that of tiamulin against the activity of CYP3A4, and was lower than that of tiamulin on the activity of CYP2E1. Toxicity determination showed that both Z33 and tiamulin displayed low cytotoxicity of RAW264.7 cells. Furthermore, Z33 was found to be a high-security compound with a 50% lethal dose (LD50) above 5000 mg/kg in the acute oral toxicity test in mice. In an in vivo antibacterial activity test, Z33 displayed better therapeutic effectiveness than tiamulin in the neutropenic mouse thigh infection model. In summary, Z33 was worthy of further development as a highly effective and safe antibiotic agent against MRSA infection.
Collapse
Affiliation(s)
- Yuhan Hu
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (F.C.); (K.Z.); (Z.Z.); (F.L.); (J.Z.)
| | - Fang Chen
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (F.C.); (K.Z.); (Z.Z.); (F.L.); (J.Z.)
| | - Kexin Zhou
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (F.C.); (K.Z.); (Z.Z.); (F.L.); (J.Z.)
| | - Zhe Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (F.C.); (K.Z.); (Z.Z.); (F.L.); (J.Z.)
| | - Fei Li
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (F.C.); (K.Z.); (Z.Z.); (F.L.); (J.Z.)
| | - Jianfeng Zhang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (F.C.); (K.Z.); (Z.Z.); (F.L.); (J.Z.)
| | - Youzhi Tang
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (F.C.); (K.Z.); (Z.Z.); (F.L.); (J.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: (Y.T.); (Z.J.); Fax: +86-20-85280665 (Y.T.)
| | - Zhen Jin
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (Y.H.); (F.C.); (K.Z.); (Z.Z.); (F.L.); (J.Z.)
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510642, China
- Correspondence: (Y.T.); (Z.J.); Fax: +86-20-85280665 (Y.T.)
| |
Collapse
|
13
|
Human Cytochrome P450 2C9 and Its Polymorphic Modifications: Electroanalysis, Catalytic Properties, and Approaches to the Regulation of Enzymatic Activity. Processes (Basel) 2022. [DOI: 10.3390/pr10020383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The electrochemical properties of cytochrome P450 2C9 (CYP2C9) and polymorphic modifications P450 2C9*2 (CYP2C9*2) and P450 2C9*3 (CYP2C9*3) were studied. To analyze the comparative electrochemical and electrocatalytic activity, the enzymes were immobilized on electrodes modified with a membrane-like synthetic surfactant (didodecyldimethylammonium bromide (DDAB)). An adequate choice of the type of modified electrode was confirmed by cyclic voltammetry of cytochromes P450 under anaerobic conditions, demonstrating well-defined peaks of reduction and oxidation of the heme iron. The midpoint potential, Emid, of cytochrome P450 2C9 is −0.318 ± 0.01 V, and Emid = −0.324 ± 0.01 V, and Emid = −0.318 ± 0.03 V for allelic variant 2C9*2 and allelic variant 2C9*3, respectively. In the presence of substrate diclofenac under aerobic conditions, cytochrome P450 2C9 and its polymorphic modifications P450 2C9*2 and P450 2C9*3 exhibit catalytic properties. Stimulation of the metabolism of diclofenac by cytochrome P450 2C9 in the presence of antioxidant medications mexidol and taurine was shown.
Collapse
|
14
|
Ten Years of Experience Support Pharmacogenetic Testing to Guide Individualized Drug Therapy. Pharmaceutics 2022; 14:pharmaceutics14010160. [PMID: 35057056 PMCID: PMC8779486 DOI: 10.3390/pharmaceutics14010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Revised: 12/27/2021] [Accepted: 01/07/2022] [Indexed: 12/10/2022] Open
Abstract
Precision medicine utilizing the genetic information of genes involved in the metabolism and disposition of drugs can not only improve drug efficacy but also prevent or minimize adverse events. Polypharmacy is common among multimorbid patients and is associated with increased adverse events. One of the main objectives in health care is safe and efficacious drug therapy, which is directly correlated to the individual response to treatment. Precision medicine can increase drug safety in many scenarios, including polypharmacy. In this report, we share our experience utilizing precision medicine over the past ten years. Based on our experience using pharmacogenetic (PGx)-informed prescribing, we implemented a five-step precision medicine protocol (5SPM) that includes the assessment of the biological-clinical characteristics of the patient, current and past prescription history, and the patient's PGx test results. To illustrate our approach, we present cases highlighting the clinical relevance of precision medicine with a focus on patients with a complex history and polypharmacy.
Collapse
|
15
|
Yuan LJ, Qian JC, Li XY, Cui J, Cai JP, Hu GX. Enzymatic activity on valsartan of 38 CYP2C9 variants from the Chinese population. Chem Biol Interact 2022; 353:109799. [PMID: 34998819 DOI: 10.1016/j.cbi.2022.109799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2021] [Revised: 12/17/2021] [Accepted: 01/03/2022] [Indexed: 11/17/2022]
Abstract
BACKGROUND AND OBJECTIVE Valsartan is widely used for the treatment of moderate hypertension. However, previous studies have found that efficacy of the valsartan depends on the dose and intake. Cytochrome P450 (CYP) 2C9 metabolizes ∼15% of the clinical drugs. Genetic polymorphisms of CYP2C9 markedly affect the safety and effectiveness of many drugs, which might lead to adverse reactions and therapeutic failure. Twenty-four novel CYP2C9 variants (*36-*60) had been previously discovered via gene sequencing in the Han population. Our study aims to evaluate the impact of 38 CYP2C9 variants from the Chinese population on valsartan metabolism compared with CYP2C9*1 in vitro. METHODS Wild-type CYP2C9*1 and other CYP2C9 variants were expressed in Spodoptera frugiperda 21 insect cells. Incubations were performed at 37 °C with 20-2000 μM substrate for 30 min. The metabolite 4-OH valsartan was determined via UPLC-MS/MS. RESULTS Among the 38 CYP2C9 variants, the enzymatic activities of most variants were significantly altered compared with the wild-type. Three variants (CYP2C9*27, *40 and *49) exhibited increased intrinsic clearance values (134-153% relative clearance). However, 12 variants (CYP *8, *13, *16, *19, *33, *36, *42, *43, *45, *52, *54, *58) caused >90% decreases in the relative clearance of valsartan compared to CYP2C9*1. CONCLUSIONS Our research provides systematic data for evaluating the effects of CYP2C9 variants on valsartan metabolism in the Chinese population. These results will expand our understanding of the impact of CYP2C9 genetic polymorphisms on valsartan metabolism and will contribute to precision medicine.
Collapse
Affiliation(s)
- Ling-Jing Yuan
- Department of Pharmacy, Shaoxing Second Hospital, Shaoxing, Zhejiang, China; Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Jian-Chang Qian
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiang-Yu Li
- Department of Pharmacy, Shaoxing Keqiao Women & Children΄s Hospital, Shaoxing, Zhejiang, China
| | - Ju Cui
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, PR China
| | - Jian-Ping Cai
- The Ministry of Health (MOH) Key Laboratory of Geriatrics, Beijing Hospital, National Center of Gerontology, Beijing, PR China.
| | - Guo-Xin Hu
- Institute of Molecular Toxicology and Pharmacology, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, China.
| |
Collapse
|
16
|
Goldwaser E, Laurent C, Lagarde N, Fabrega S, Nay L, Villoutreix BO, Jelsch C, Nicot AB, Loriot MA, Miteva MA. Machine learning-driven identification of drugs inhibiting cytochrome P450 2C9. PLoS Comput Biol 2022; 18:e1009820. [PMID: 35081108 PMCID: PMC8820617 DOI: 10.1371/journal.pcbi.1009820] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 02/07/2022] [Accepted: 01/10/2022] [Indexed: 11/19/2022] Open
Abstract
Cytochrome P450 2C9 (CYP2C9) is a major drug-metabolizing enzyme that represents 20% of the hepatic CYPs and is responsible for the metabolism of 15% of drugs. A general concern in drug discovery is to avoid the inhibition of CYP leading to toxic drug accumulation and adverse drug-drug interactions. However, the prediction of CYP inhibition remains challenging due to its complexity. We developed an original machine learning approach for the prediction of drug-like molecules inhibiting CYP2C9. We created new predictive models by integrating CYP2C9 protein structure and dynamics knowledge, an original selection of physicochemical properties of CYP2C9 inhibitors, and machine learning modeling. We tested the machine learning models on publicly available data and demonstrated that our models successfully predicted CYP2C9 inhibitors with an accuracy, sensitivity and specificity of approximately 80%. We experimentally validated the developed approach and provided the first identification of the drugs vatalanib, piriqualone, ticagrelor and cloperidone as strong inhibitors of CYP2C9 with IC values <18 μM and sertindole, asapiprant, duvelisib and dasatinib as moderate inhibitors with IC50 values between 40 and 85 μM. Vatalanib was identified as the strongest inhibitor with an IC50 value of 0.067 μM. Metabolism assays allowed the characterization of specific metabolites of abemaciclib, cloperidone, vatalanib and tarafenacin produced by CYP2C9. The obtained results demonstrate that such a strategy could improve the prediction of drug-drug interactions in clinical practice and could be utilized to prioritize drug candidates in drug discovery pipelines.
Collapse
Affiliation(s)
- Elodie Goldwaser
- INSERM U1268 « Medicinal Chemistry and Translational Research », UMR 8038 CiTCoM, CNRS—University of Paris, Paris, France
| | | | - Nathalie Lagarde
- Laboratoire GBCM, EA7528, Conservatoire National des Arts et Métiers, 2 Rue Conté, Hésam Université, Paris, France
| | - Sylvie Fabrega
- Viral Vector for Gene Transfer core facility, Université de Paris—Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | - Laure Nay
- Viral Vector for Gene Transfer core facility, Université de Paris—Structure Fédérative de Recherche Necker, INSERM US24/CNRS UMS3633, Paris, France
| | | | | | - Arnaud B. Nicot
- INSERM, Nantes Université, Center for Research in Transplantation and Translational Immunology, UMR 1064, ITUN, Nantes, France
| | - Marie-Anne Loriot
- University of Paris, INSERM U1138, Paris, France
- Assistance Publique-Hôpitaux de Paris, Hôpital Européen Georges Pompidou, Service de Biochimie, Paris, France
| | - Maria A. Miteva
- INSERM U1268 « Medicinal Chemistry and Translational Research », UMR 8038 CiTCoM, CNRS—University of Paris, Paris, France
| |
Collapse
|
17
|
Li Y, Lu YY, Jia J, Fang M, Zhao L, Jiang Y, Shi Y, Tu PF, Guo XY. A Novel System for Evaluating the Inhibition Effect of Drugs on Cytochrome P450 Enzymes in vitro Based on Human-Induced Hepatocytes (hiHeps). Front Pharmacol 2021; 12:748658. [PMID: 34776966 PMCID: PMC8580884 DOI: 10.3389/fphar.2021.748658] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 10/11/2021] [Indexed: 11/22/2022] Open
Abstract
Cytochrome P450 (CYP) is the most important phase I drug-metabolizing enzyme, and the effect of drugs on CYP enzymes can lead to decreased pharmacological efficacy or enhanced toxicity of drugs, but there are many deficiencies in the evaluation models of CYP enzymes in vitro. Human-induced hepatocytes (hiHeps) derived from human fibroblasts by transdifferentiation have mature hepatocyte characteristics. The aim was to establish a novel evaluation system for the effect of drugs on CYP3A4, 1A2, 2B6, 2C9, and 2C19 in vitro based on hiHeps. Curcumin can inhibit many CYP enzymes in vitro, and so the inhibition of curcumin on CYP enzymes was compared by human liver microsomes, human hepatocytes, and hiHeps using UPLC-MS and the cocktail method. The results showed that the IC50 values of CYP enzymes in the hiHeps group were similar to those in the hepatocytes group, which proved the effectiveness and stability of the novel evaluation system in vitro. Subsequently, the evaluation system was applied to study the inhibitory activity of notoginseng total saponins (NS), safflower total flavonoids (SF), and the herb pair of NS–SF on five CYP enzymes. The mechanism of improving efficacy after NS and SF combined based on CYP enzymes was elucidated in vitro. The established evaluation system will become a powerful tool for the research of the effect of drugs on the activity of CYP enzymes in vitro, which has broad application prospects in drug research.
Collapse
Affiliation(s)
- Yan Li
- School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Ying-Yuan Lu
- School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Jun Jia
- Stem Cell Research Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Meng Fang
- School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Lin Zhao
- School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Yong Jiang
- School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Yan Shi
- Stem Cell Research Center, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Peng-Fei Tu
- School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| | - Xiao-Yu Guo
- School of Pharmaceutical Sciences, State Key Laboratory of Natural and Biomimetic Drugs, Peking University, Beijing, China
| |
Collapse
|
18
|
Hirata TDC, Dagli-Hernandez C, Genvigir FDV, Lauschke VM, Zhou Y, Hirata MH, Hirata RDC. Cardiovascular Pharmacogenomics: An Update on Clinical Studies of Antithrombotic Drugs in Brazilian Patients. Mol Diagn Ther 2021; 25:735-755. [PMID: 34357562 DOI: 10.1007/s40291-021-00549-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/12/2021] [Indexed: 10/20/2022]
Abstract
Anticoagulant and antiplatelet drugs effectively prevent thrombotic events in patients with cardiovascular diseases, ischemic stroke, peripheral vascular diseases, and other thromboembolic diseases. However, genetic and non-genetic factors affect the response to antithrombotic therapy and can increase the risk of adverse events. This narrative review discusses pharmacogenomic studies on antithrombotic drugs commonly prescribed in Brazil. Multiple Brazilian studies assessed the impact of pharmacokinetic (PK) and pharmacodynamic (PD) gene variants on warfarin response. The reduced function alleles CYP2C9*2 and CYP2C9*3, and VKORC1 rs9923231 (c.-1639G>A) are associated with increased sensitivity to warfarin and a low dose requirement to prevent bleeding episodes, whereas CYP4F2 rs2108622 (p.Val433Met) carriers have higher dose requirements (warfarin resistance). These deleterious variants and non-genetic factors (age, gender, body weight, co-administered drugs, food interactions, and others) account for up to 63% of the warfarin dose variability. Few pharmacogenomics studies have explored antiplatelet drugs in Brazilian cohorts, finding associations between CYP2C19*2, PON1 rs662 and ABCC3 rs757421 genotypes and platelet responsiveness or clopidogrel PK in subjects with coronary artery disease (CAD) or acute coronary syndrome (ACS), whereas ITGB3 contributes to aspirin PK but not platelet responsiveness in diabetic patients. Brazilian guidelines on anticoagulants and antiplatelets recommend the use of a platelet aggregation test or genotyping only in selected cases of ACS subjects without ST-segment elevation taking clopidogrel, and also suggest CYP2C9 and VKORC1 genotyping before starting warfarin therapy to assess the risk of bleeding episodes or warfarin resistance.
Collapse
Affiliation(s)
- Thiago Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 580, Sao Paulo, 05508-000, Brazil
| | - Carolina Dagli-Hernandez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 580, Sao Paulo, 05508-000, Brazil
| | - Fabiana Dalla Vecchia Genvigir
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 580, Sao Paulo, 05508-000, Brazil
| | - Volker Martin Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Solna, Sweden.,Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, 70376, Germany
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Solna, Sweden
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 580, Sao Paulo, 05508-000, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Av. Prof. Lineu Prestes 580, Sao Paulo, 05508-000, Brazil.
| |
Collapse
|
19
|
Zhang Y, Hou K, Liu F, Luo X, He S, Hu L, Yang C, Huang L, Feng Y. The influence of CYP2C19 polymorphisms on voriconazole trough concentrations: Systematic review and meta-analysis. Mycoses 2021; 64:860-873. [PMID: 33896064 DOI: 10.1111/myc.13293] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/10/2021] [Accepted: 04/15/2021] [Indexed: 12/26/2022]
Abstract
BACKGROUND Voriconazole primary metabolism is catalysed by CYP2C19. A large variability of trough concentrations in patients with invasive fungal infection treated with voriconazole has been observed in clinical practice. It remains controversial whether the CYP2C19 polymorphisms are responsible for voriconazole metabolism in the individual variation. OBJECTIVES The primary aim of this study was to assess the effect of CYP2C19 polymorphisms on voriconazole trough concentrations. METHODS Following a systematic literature review, we performed a meta-analysis for mean differences (MD) of voriconazole trough concentrations (Cmin ), voriconazole dosage adjusted trough concentrations (Cmin /D) and for risk ratio (RR) of the proportion of patients in the target therapeutic range between pairwise comparisons of CYP2C19 phenotypes. RESULTS Compared with normal metabolisers (NMs), intermediate metabolisers (IMs) (MD: 0.82, 95% CI: 0.57 to 1.07, I2 = 44%, p < .00001) or poor metabolisers (PMs) (MD: 1.59, 95% CI: 1.14 to 2.05, I2 = 46%, p < .00001) had significantly higher voriconazole Cmin (μg·ml-1 ), while rapid metabolisers (RMs) had significantly lower voriconazole Cmin (MD: -0,87, 95% CI: -1.35 to -0.38, I2 = 0%, p = .0004). In addition, IMs had significantly lower Cmin than PMs (MD: -0.59, 95% CI: -0.97 to -0.20, I2 = 22%, p = .003). Similarly, the Cmin /D (μg·kg·ml-1 ·mg-1 ) was significantly higher in IMs (MD: 0.13, 95% CI: 0.05 to 0.22, I2 = 0%, p = .002) and PMs (MD: 0.20, 95% CI: 0.07 to 0.34, I2 = 0%, p = .003) than that in NMs, and also, IMs had significantly lower Cmin /D than PMs (MD: -0.11, 95% CI: -0.14 to -0.08, I2 = 0%, p < .00001). Furthermore, PMs had a significantly higher proportion of the target therapeutic range than NMs (RR: 1.34, 95% CI: 1.09 to 1.64, I2 = 50%, p = .005). CONCLUSIONS Compared to NMs, IMs and PMs had higher voriconazole trough concentrations, especially in Asians, while RMs had lower voriconazole trough concentrations. In addition, PMs had a higher proportion of the target therapeutic range than NMs, especially in Asians. CYP2C19 genotyping is expected to be used to preemptively guide the individualisation of voriconazole in clinical practice.
Collapse
Affiliation(s)
- Ying Zhang
- Department of Pharmacy, Peking University People's Hospital, Beijing, China.,School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Kelu Hou
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Fang Liu
- Department of Mathematics and Physics, School of Chinese Pharmacy, Beijing University of Chinese Medicine, Beijing, China
| | - Xingxian Luo
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Shiyu He
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Lei Hu
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Changqing Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, China
| | - Lin Huang
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| | - Yufei Feng
- Department of Pharmacy, Peking University People's Hospital, Beijing, China
| |
Collapse
|
20
|
Govindammal M, Prasath M, Kamaraj S, Muthu S, Selvapandiyan M. Exploring the molecular structure, vibrational spectroscopic, quantum chemical calculation and molecular docking studies of curcumin: A potential PI3K/AKT uptake inhibitor. Heliyon 2021; 7:e06646. [PMID: 33898809 PMCID: PMC8056428 DOI: 10.1016/j.heliyon.2021.e06646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/16/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023] Open
Abstract
The IUPAC name of curcumin is (1E, 6E)-1,7-Bis(4-hydroxy-3methoxyphenyl) hepta-1,6-e-3,5-dione (7B3M5D) and is characterized by spectroscopic profiling with FT-IR and FT-Raman spectra obtained both experimentally and theoretically. PED analysis was done for the confirmation of minimum energy obtained in the title compound. Optimized geometrical parameters are compared with experimental values obtained for 7B3M5D by utilizing B3LYP functional employing 6–311++G (d,p) level of theory. The HOMO-LUMO, MEP, and Fukui function analysis has been used to elucidate the information regarding charge transfer within the molecule. The stabilization energy and charge delocalization of the 7B3M5D were performed by NBO analysis. This article assesses that the title compound act as a potential inhibitor of the PI3K/AKT inhibitor through in silico studies, like molecular docking, molecular dynamics (MD), ADMET prediction and also this molecule obeys Lipinski's rule of five. 7B3M5D was docked effectively in the active site of PI3K/AKT inhibitor.
Collapse
Affiliation(s)
- M Govindammal
- Department of Physics, Periyar University PG Extension Centre, Dharmapuri, 636701, India
| | - M Prasath
- Department of Physics, Periyar University PG Extension Centre, Dharmapuri, 636701, India
| | - S Kamaraj
- Department of Biotechnology, Periyar University PG Extension Centre, Dharmapuri, India
| | - S Muthu
- Department of Physics, Arignar Anna Govt. Arts College, Cheyyar, 604407, Tamilnadu, India
| | - M Selvapandiyan
- Department of Physics, Periyar University PG Extension Centre, Dharmapuri, 636701, India
| |
Collapse
|
21
|
Estrada DF, Kumar A, Campomizzi CS, Jay N. Crystal Structures of Drug-Metabolizing CYPs. Methods Mol Biol 2021; 2342:171-192. [PMID: 34272695 PMCID: PMC10813703 DOI: 10.1007/978-1-0716-1554-6_7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The complex enzyme kinetics displayed by drug-metabolizing cytochrome P450 enzymes (CYPs) (see Chapter 9 ) can, in part, be explained by an examination of their crystallographic protein structures. Fortunately, despite low sequence similarity between different families of drug-metabolizing CYPs, there exists a high degree of structural homology within the superfamily. This similarity in the protein fold allows for a direct comparison of the structural features of CYPs that contribute toward differences in substrate binding, heterotropic and homotropic cooperativity, and genetic variability in drug metabolism. In this chapter, we first provide an overview of the nomenclature and the role of structural features that are common in all CYPs. We then apply these definitions to understand the different substrate specificities and functions in the CYP3A, CYP2C, and CYP2D families of enzymes.
Collapse
Affiliation(s)
| | - Amit Kumar
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA
| | | | - Natalie Jay
- Department of Biochemistry, University at Buffalo, Buffalo, NY, USA
| |
Collapse
|
22
|
Bechtold B, Clarke J. Multi-factorial pharmacokinetic interactions: unraveling complexities in precision drug therapy. Expert Opin Drug Metab Toxicol 2020; 17:397-412. [PMID: 33339463 DOI: 10.1080/17425255.2021.1867105] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Introduction: Precision drug therapy requires accounting for pertinent factors in pharmacokinetic (PK) inter-individual variability (i.e., pharmacogenetics, diseases, polypharmacy, and natural product use) that can cause sub-therapeutic or adverse effects. Although each of these individual factors can alter victim drug PK, multi-factorial interactions can cause additive, synergistic, or opposing effects. Determining the magnitude and direction of these complex multi-factorial effects requires understanding the rate-limiting redundant and/or sequential PK processes for each drug.Areas covered: Perturbations in drug-metabolizing enzymes and/or transporters are integral to single- and multi-factorial PK interactions. Examples of single factor PK interactions presented include gene-drug (pharmacogenetic), disease-drug, drug-drug, and natural product-drug interactions. Examples of multi-factorial PK interactions presented include drug-gene-drug, natural product-gene-drug, gene-gene-drug, disease-natural product-drug, and disease-gene-drug interactions. Clear interpretation of multi-factorial interactions can be complicated by study design, complexity in victim drug PK, and incomplete mechanistic understanding of victim drug PK.Expert opinion: Incorporation of complex multi-factorial PK interactions into precision drug therapy requires advances in clinical decision tools, intentional PK study designs, drug-metabolizing enzyme and transporter fractional contribution determinations, systems and computational approaches (e.g., physiologically-based pharmacokinetic modeling), and PK phenotyping of progressive diseases.
Collapse
Affiliation(s)
- Baron Bechtold
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| | - John Clarke
- Department of Pharmaceutical Sciences, Washington State University, Spokane, WA, USA
| |
Collapse
|
23
|
Quignot N, Więcek W, Lautz L, Dorne JL, Amzal B. Inter-phenotypic differences in CYP2C9 and CYP2C19 metabolism: Bayesian meta-regression of human population variability in kinetics and application in chemical risk assessment. Toxicol Lett 2020; 337:111-120. [PMID: 33232775 DOI: 10.1016/j.toxlet.2020.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 11/13/2020] [Accepted: 11/19/2020] [Indexed: 01/23/2023]
Abstract
Quantifying variability in pharmacokinetics (PK) and toxicokinetics (TK) provides a science-based approach to refine uncertainty factors (UFs) for chemical risk assessment. In this context, genetic polymorphisms in cytochromes P450 (CYPs) drive inter-phenotypic differences and may result in reduction or increase in metabolism of drugs or other xenobiotics. Here, an extensive literature search was performed to identify PK data for probe substrates of the human polymorphic isoforms CYP2C9 and CYP2C19. Relevant data from 158 publications were extracted for markers of chronic exposure (clearance and area under the plasma concentration-time curve) and analysed using a Bayesian meta-regression model. Enzyme function (EF), driven by inter-phenotypic differences across a range of allozymes present in extensive and poor metabolisers (EMs and PMs), and fraction metabolised (Fm), were identified as exhibiting the highest impact on the metabolism. The Bayesian meta-regression model provided good predictions for such inter-phenotypic differences. Integration of population distributions for inter-phenotypic differences and estimates for EF and Fm allowed the derivation of CYP2C9- and CYP2C19-related UFs which ranged from 2.7 to 12.7, and were above the default factor for human variability in TK (3.16) for PMs and major substrates (Fm >60%). These results provide population distributions and pathway-related UFs as conservative in silico options to integrate variability in CYP2C9 and CYP2C19 metabolism using in vitro kinetic evidence and in the absence of human data. The future development of quantitative extrapolation models is discussed with particular attention to integrating human in vitro and in vivo PK or TK data with pathway-related variability for chemical risk assessment.
Collapse
Affiliation(s)
| | | | - Leonie Lautz
- Risk Assessment Department, French Agency for Food, Environmental and Occupational Health & Safety (ANSES), Maisons-Alfort, France
| | - Jean-Lou Dorne
- European Food Safety Authority, Via Carlo Magno 1A, 43126, Parma, Italy
| | | |
Collapse
|
24
|
Klimenko K. Examining the evidence of non-monotonic dose-response in Androgen Receptor agonism high-throughput screening assay. Toxicol Appl Pharmacol 2020; 410:115338. [PMID: 33217376 DOI: 10.1016/j.taap.2020.115338] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/15/2020] [Accepted: 11/15/2020] [Indexed: 12/01/2022]
Abstract
Modern High-Throughput Screening (HTS) techniques allow to determine in vitro bioactivity of tens of thousands of chemicals within a relatively short period of time and tested compounds are usually interpreted as either active or inactive. The interpretation is mostly based on the assumption of monotonic dose-response. This approach ignores potential abnormal dose-response relationships, such as non-monotonic dose-response (NMDR). NMDR presents a serious challenge to toxicologists and pharmacologists, since they undermine the usefulness of such concepts as lowest-observed-adverse-effect level (LOAEL) and no-observed-adverse-effect level (NOAEL). The possible presence of the NMDR in Androgen receptor (AR) agonism was examined for a structurally diverse set of chemicals (~8 300 unique compounds) from Tox21 project library. The source of activity data is Tox21 AR agonism luciferase-based HTS on the MDA-MB-453 cell line. The examination of curve fitting for 35,328 dose-response data entries was based on modified version of existing criteria for determination of NMDR. The bias that arises from compounds' cytotoxicity and interference with firefly luciferase protein was also studied. The examination has shown evidence of NMDR for several compounds, including known AR antagonists (e. g. Cyproterone acetate) and other known endocrine disruptors (e. g. Tranilast). Compounds were divided into 3 groups based on chemical class, known biological activity profile and the shape of dose-response curve. The challenges of using HTS data to determine NMDR and benefits of this analysis are discussed.
Collapse
Affiliation(s)
- Kyrylo Klimenko
- Private consultant in Computational Toxicology, Av. 1 de Maio, 11, 2825-396 Costa de Caparica, Portugal.
| |
Collapse
|
25
|
Variations in the frequencies of polymorphisms in the CYP2C9 gene in six major ethnicities of Pakistan. Sci Rep 2020; 10:19370. [PMID: 33168919 PMCID: PMC7652876 DOI: 10.1038/s41598-020-76366-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Accepted: 09/16/2020] [Indexed: 01/05/2023] Open
Abstract
Genetic variation in cytochrome P450 (CYP) 2C9 is known to cause significant inter-individual differences in drug response and adverse effects. The frequencies of CYP2C9*2 and CYP2C9*3, both of which are responsible for the low activity of the enzyme, are not known in the Pakistani population. Therefore, we screened various ethnic groups residing in Pakistan for these polymorphisms. A total of 467 healthy human volunteers were recruited from six major ethnicities of Pakistan after written informed consent. Our results indicate that about 20% of the Pakistani population has a genotype containing at least one low activity allele. Ethnic Punjabi and Pathan populations had the highest frequencies of wild type genotypes while Urdu, Seraiki, and Sindhi populations showed higher rates of both low activity genotypes. The Baloch population showed the highest rates of low activity genotypes with less than 50% of the samples showing wild type genotypes, suggesting that more than half of the Baloch population possesses low activity genotypes. The frequencies found in various ethnic groups in Pakistan were comparable with ethnicities in the South Asian region except for the Baloch population. These results suggest that pharmacogenetics screening for low activity genotypes may be a helpful tool for clinicians while prescribing medications metabolized by CYP2C9.
Collapse
|
26
|
Mirzaev K, Abdullaev S, Akmalova K, Sozaeva J, Grishina E, Shuev G, Bolieva L, Sozaeva M, Zhuchkova S, Gimaldinova N, Sidukova E, Serebrova S, Asoskova A, Shein A, Poptsova M, Suleymanov S, Burashnikova I, Shikaleva A, Kachanova A, Fedorinov D, Sychev D. Interethnic differences in the prevalence of main cardiovascular pharmacogenetic biomarkers. Pharmacogenomics 2020; 21:677-694. [DOI: 10.2217/pgs-2020-0005] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Background: The aim of this study was to determine the prevalence of CYP2C9, VKORC1, CYP2C19, ABCB1, CYP2D6 and SLCO1B1 genes polymorphisms among residents of the Volga region (Chuvash and Mari) and northern Caucasus (Kabardins and Ossetians). Materials & methods: The study involved 845 apparently healthy volunteers of both sexes of the four different ethnic groups living in the Russian Federation: 238 from the Chuvash ethnic group, 206 Mari, 157 Kabardins and 244 Ossetians. Results: Significant differences were identified in allele frequency of CYP2C9, VKORC1, CYP2C19, ABCB1, CYP2D6 and SLCO1B1 genes polymorphisms between the Chuvash and Kabardins, Chuvash and Ossetians, Mari and Kabardians, Mari and Ossetians.
Collapse
Affiliation(s)
- Karin Mirzaev
- Federal State Budgetary Educational Institution of Further Professional Education “Russian Medical Academy of Continuous Professional Education” of The Ministry of Healthcare of The Russian Federation, Barrikadnaya Str., 2/1, Bldg. 1, Moscow, 125993, Russian Federation
| | - Sherzod Abdullaev
- Federal State Budgetary Educational Institution of Further Professional Education “Russian Medical Academy of Continuous Professional Education” of The Ministry of Healthcare of The Russian Federation, Barrikadnaya Str., 2/1, Bldg. 1, Moscow, 125993, Russian Federation
| | - Kristina Akmalova
- Federal State Budgetary Educational Institution of Further Professional Education “Russian Medical Academy of Continuous Professional Education” of The Ministry of Healthcare of The Russian Federation, Barrikadnaya Str., 2/1, Bldg. 1, Moscow, 125993, Russian Federation
| | - Jeannette Sozaeva
- Federal State Budgetary Educational Institution of Further Professional Education “Russian Medical Academy of Continuous Professional Education” of The Ministry of Healthcare of The Russian Federation, Barrikadnaya Str., 2/1, Bldg. 1, Moscow, 125993, Russian Federation
| | - Elena Grishina
- Federal State Budgetary Educational Institution of Further Professional Education “Russian Medical Academy of Continuous Professional Education” of The Ministry of Healthcare of The Russian Federation, Barrikadnaya Str., 2/1, Bldg. 1, Moscow, 125993, Russian Federation
| | - Gregory Shuev
- Federal State Budgetary Educational Institution of Further Professional Education “Russian Medical Academy of Continuous Professional Education” of The Ministry of Healthcare of The Russian Federation, Barrikadnaya Str., 2/1, Bldg. 1, Moscow, 125993, Russian Federation
| | - Laura Bolieva
- Federal State Budgetary Educational Institution of Higher Education “North Ossetia State Medical Academy” of The Ministry of Healthcare of the Russian Federation, Pushkinskaya Str., 40, Vladikavkaz, Republic of North Ossetia–Alania, 362019, Russian Federation
| | - Mariam Sozaeva
- State Budgetary Healthcare Institution “Republican Clinical Hospital” of The Ministry of Healthcare of The Russian Federation, Nogmova Str., 91, Nalchik, Kabardino–Balkarian Republic, 360003, Russian Federation
| | - Svetlana Zhuchkova
- Autonomous Institution “Republican Clinical Oncology Center” of the Ministry of Health of The Chuvash Republic, Gladkov Str., 31, Cheboksary, Chuvash Republic, 428020, Russian Federation
| | - Natalya Gimaldinova
- Federal State Budgetary Educational Institution of Higher Education “I. N. Ulianov Chuvash State University”, Moskovskiy Pr., 15, Cheboksary, Chuvash Republic, 428015, Russian Federation
| | - Elena Sidukova
- State Budgetary Institution of The Republic of Mari El ‘Kozmodemyansk interdistrict hospital”, 3rd microdistrict, 25, Kozmodemyansk, Republic of Mari El, 425350, Russian Federation
| | - Svetlana Serebrova
- Department of Clinical Pharmacology & Propaedeutic of Internal Diseases of The Faculty of General Medicine of Sechenov First Moscow State Medical University of The Ministry of Health of The Russian Federation, Trubetskaya Str., 8, bld., Moscow, 2119991, Russian Federation
| | - Anastasia Asoskova
- Federal State Budgetary Educational Institution of Further Professional Education “Russian Medical Academy of Continuous Professional Education” of The Ministry of Healthcare of The Russian Federation, Barrikadnaya Str., 2/1, Bldg. 1, Moscow, 125993, Russian Federation
| | - Alexander Shein
- Laboratory of Bioinformatics, Big Data & Information Retrieval School, Faculty of Computer Science, National Research University Higher School of Economics, 3 Kochnovsky Proezd, Moscow, 109028, Russian Federation
| | - Maria Poptsova
- Laboratory of Bioinformatics, Big Data & Information Retrieval School, Faculty of Computer Science, National Research University Higher School of Economics, 3 Kochnovsky Proezd, Moscow, 109028, Russian Federation
| | - Salavat Suleymanov
- Russian–Japanese Medical Center “SAIKO”, Komsomolskaya St., 104, Khabarovsk, Khabarovsk Territory, 680000, Russian Federation
| | - Irina Burashnikova
- Kazan State Medical Academy, Kazan State Medical University, Mushtari st., 11, Kazan, Republic of Tatarstan, 420012, Russian Federation
| | - Anastasia Shikaleva
- Kazan State Medical Academy, Kazan State Medical University, Mushtari st., 11, Kazan, Republic of Tatarstan, 420012, Russian Federation
| | - Anastasia Kachanova
- Federal State Budgetary Educational Institution of Further Professional Education “Russian Medical Academy of Continuous Professional Education” of The Ministry of Healthcare of The Russian Federation, Barrikadnaya Str., 2/1, Bldg. 1, Moscow, 125993, Russian Federation
| | - Denis Fedorinov
- Federal State Budgetary Educational Institution of Further Professional Education “Russian Medical Academy of Continuous Professional Education” of The Ministry of Healthcare of The Russian Federation, Barrikadnaya Str., 2/1, Bldg. 1, Moscow, 125993, Russian Federation
| | - Dmitry Sychev
- Federal State Budgetary Educational Institution of Further Professional Education “Russian Medical Academy of Continuous Professional Education” of The Ministry of Healthcare of The Russian Federation, Barrikadnaya Str., 2/1, Bldg. 1, Moscow, 125993, Russian Federation
| |
Collapse
|
27
|
McDonald MG, Henderson LM, Ray S, Yeung CK, Johnson AL, Kowalski JP, Hanenberg H, Wiek C, Thummel KE, Rettie AE. Heterologous Expression and Functional Characterization of Novel CYP2C9 Variants Identified in the Alaska Native People. J Pharmacol Exp Ther 2020; 374:233-240. [PMID: 32423989 DOI: 10.1124/jpet.120.265850] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 05/12/2020] [Indexed: 01/27/2023] Open
Abstract
CYP2C9 is a major form of human liver cytochrome P450 that is responsible for the oxidative metabolism of several widely used low-therapeutic index drugs, including (S)-warfarin and phenytoin. In a cohort of Alaska Native people, ultrarare or novel CYP2C9 protein variants, M1L (rs114071557), N218I (rs780801862), and P279T (rs182132442, CYP2C9*29), are expressed with higher frequencies than the well characterized CYP2C9*2 and CYP2C9*3 alleles. We report here on their relative expression in lentivirus-infected HepG2 cells and the functional characterization of purified reconstituted enzyme variants expressed in Escherichia coli toward (S)-warfarin, phenytoin, flurbiprofen, and (S)-naproxen. In the infected HepG2 cells, robust mRNA and protein expression were obtained for wild-type, N218I, and P279T variants, but as expected, the M1L variant protein was not translated in this liver-derived cell line. His-tagged wild-type protein and the N218I and P279T variants, but not M1L, expressed well in E. coli and were highly purified after affinity chromatography. Upon reconstitution with cytochrome P450 oxidoreductase and cytochrome b5, the N218I and P279T protein variants metabolized (S)-warfarin, phenytoin, flurbiprofen, and (S)-naproxen to the expected monohydroxylated or O-demethylated metabolites. Steady-state kinetic analyses revealed that the relative catalytic efficiency ratios of (S)-warfarin metabolism by the P279T and N218I variants were 87% and 24%, respectively, of wild-type CYP2C9 protein. A similar rank ordering was observed for metabolism of phenytoin, flurbiprofen, and (S)-naproxen. We conclude that carriers of the variant N218I and, especially, the M1L alleles would be at risk of exacerbated therapeutic effects from drugs that rely on CYP2C9 for their metabolic clearance. SIGNIFICANCE STATEMENT: Novel gene variants of CYP2C9-M1L, and N218I, along with P279T (CYP2C9*29)-are expressed in Alaska Native people at relatively high frequencies. In vitro characterization of their functional effects revealed that each variant confers reduced catalytic efficiency toward several substrates, including the low-therapeutic index drugs (S)-warfarin and phenytoin. These data provide the first functional information for new, common CYP2C9 variants in this understudied population. The data may help guide dose adjustments in allele carriers, thus mitigating potential healthcare disparities.
Collapse
Affiliation(s)
- Matthew G McDonald
- Departments of Medicinal Chemistry (M.G.M., S.R., A.L.J., J.P.K., A.E.R.), Pharmaceutics (L.M.H., K.E.T.), and Pharmacy (C.K.Y.), University of Washington, Seattle, Washington; Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, Düsseldorf, Germany (H.H., C.W.); and Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany (H.H.)
| | - Lindsay M Henderson
- Departments of Medicinal Chemistry (M.G.M., S.R., A.L.J., J.P.K., A.E.R.), Pharmaceutics (L.M.H., K.E.T.), and Pharmacy (C.K.Y.), University of Washington, Seattle, Washington; Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, Düsseldorf, Germany (H.H., C.W.); and Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany (H.H.)
| | - Sutapa Ray
- Departments of Medicinal Chemistry (M.G.M., S.R., A.L.J., J.P.K., A.E.R.), Pharmaceutics (L.M.H., K.E.T.), and Pharmacy (C.K.Y.), University of Washington, Seattle, Washington; Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, Düsseldorf, Germany (H.H., C.W.); and Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany (H.H.)
| | - Catherine K Yeung
- Departments of Medicinal Chemistry (M.G.M., S.R., A.L.J., J.P.K., A.E.R.), Pharmaceutics (L.M.H., K.E.T.), and Pharmacy (C.K.Y.), University of Washington, Seattle, Washington; Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, Düsseldorf, Germany (H.H., C.W.); and Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany (H.H.)
| | - Amanda L Johnson
- Departments of Medicinal Chemistry (M.G.M., S.R., A.L.J., J.P.K., A.E.R.), Pharmaceutics (L.M.H., K.E.T.), and Pharmacy (C.K.Y.), University of Washington, Seattle, Washington; Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, Düsseldorf, Germany (H.H., C.W.); and Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany (H.H.)
| | - John P Kowalski
- Departments of Medicinal Chemistry (M.G.M., S.R., A.L.J., J.P.K., A.E.R.), Pharmaceutics (L.M.H., K.E.T.), and Pharmacy (C.K.Y.), University of Washington, Seattle, Washington; Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, Düsseldorf, Germany (H.H., C.W.); and Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany (H.H.)
| | - Helmut Hanenberg
- Departments of Medicinal Chemistry (M.G.M., S.R., A.L.J., J.P.K., A.E.R.), Pharmaceutics (L.M.H., K.E.T.), and Pharmacy (C.K.Y.), University of Washington, Seattle, Washington; Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, Düsseldorf, Germany (H.H., C.W.); and Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany (H.H.)
| | - Constanze Wiek
- Departments of Medicinal Chemistry (M.G.M., S.R., A.L.J., J.P.K., A.E.R.), Pharmaceutics (L.M.H., K.E.T.), and Pharmacy (C.K.Y.), University of Washington, Seattle, Washington; Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, Düsseldorf, Germany (H.H., C.W.); and Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany (H.H.)
| | - Kenneth E Thummel
- Departments of Medicinal Chemistry (M.G.M., S.R., A.L.J., J.P.K., A.E.R.), Pharmaceutics (L.M.H., K.E.T.), and Pharmacy (C.K.Y.), University of Washington, Seattle, Washington; Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, Düsseldorf, Germany (H.H., C.W.); and Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany (H.H.)
| | - Allan E Rettie
- Departments of Medicinal Chemistry (M.G.M., S.R., A.L.J., J.P.K., A.E.R.), Pharmaceutics (L.M.H., K.E.T.), and Pharmacy (C.K.Y.), University of Washington, Seattle, Washington; Department of Otorhinolaryngology and Head/Neck Surgery, Heinrich-Heine University, Düsseldorf, Germany (H.H., C.W.); and Department of Pediatrics III, University Children's Hospital Essen, University of Duisburg-Essen, Essen, Germany (H.H.)
| |
Collapse
|
28
|
Gyulkhandanyan A, Rezaie AR, Roumenina L, Lagarde N, Fremeaux-Bacchi V, Miteva MA, Villoutreix BO. Analysis of protein missense alterations by combining sequence- and structure-based methods. Mol Genet Genomic Med 2020; 8:e1166. [PMID: 32096919 PMCID: PMC7196459 DOI: 10.1002/mgg3.1166] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/20/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Different types of in silico approaches can be used to predict the phenotypic consequence of missense variants. Such algorithms are often categorized as sequence based or structure based, when they necessitate 3D structural information. In addition, many other in silico tools, not dedicated to the analysis of variants, can be used to gain additional insights about the possible mechanisms at play. METHODS Here we applied different computational approaches to a set of 20 known missense variants present on different proteins (CYP, complement factor B, antithrombin and blood coagulation factor VIII). The tools that were used include fast computational approaches and web servers such as PolyPhen-2, PopMusic, DUET, MaestroWeb, SAAFEC, Missense3D, VarSite, FlexPred, PredyFlexy, Clustal Omega, meta-PPISP, FTMap, ClusPro, pyDock, PPM, RING, Cytoscape, and ChannelsDB. RESULTS We observe some conflicting results among the methods but, most of the time, the combination of several engines helped to clarify the potential impacts of the amino acid substitutions. CONCLUSION Combining different computational approaches including some that were not developed to investigate missense variants help to predict the possible impact of the amino acid substitutions. Yet, when the modified residues are involved in a salt-bridge, the tools tend to fail, even when the analysis is performed in 3D. Thus, interactive structural analysis with molecular graphics packages such as Chimera or PyMol or others are still needed to clarify automatic prediction.
Collapse
Affiliation(s)
- Aram Gyulkhandanyan
- INSERM U973, Laboratory MTi, University Paris Diderot, Paris, France
- Laboratory SABNP, University of Evry, INSERM U1204, Université Paris-Saclay, Evry, France
| | - Alireza R Rezaie
- Cardiovascular Biology Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Lubka Roumenina
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
| | - Nathalie Lagarde
- INSERM U973, Laboratory MTi, University Paris Diderot, Paris, France
- Laboratoire GBCM, EA7528, Conservatoire national des arts et métiers, Hesam Université, Paris, France
| | - Veronique Fremeaux-Bacchi
- INSERM, UMR_S 1138, Centre de Recherche des Cordeliers, Paris, France
- Sorbonne Universités, Paris, France
- Université Paris Descartes, Sorbonne Paris Cité, Paris, France
- Assistance Publique-Hôpitaux de Paris, Service d'Immunologie Biologique, Hôpital Européen Georges Pompidou, Paris, France
| | - Maria A Miteva
- INSERM U973, Laboratory MTi, University Paris Diderot, Paris, France
- Inserm U1268 MCTR, CNRS UMR 8038 CiTCoM, Faculté de Pharmacie de Paris, Univ. De Paris, Paris, France
| | - Bruno O Villoutreix
- INSERM U973, Laboratory MTi, University Paris Diderot, Paris, France
- INSERM, Institut Pasteur de Lille, U1177-Drugs and Molecules for Living Systems, Université de Lille, Lille, France
| |
Collapse
|
29
|
Cytochrome P450 2C9 polymorphism: Effect of amino acid substitutions on protein flexibility in the presence of tamoxifen. Comput Biol Chem 2020; 84:107166. [DOI: 10.1016/j.compbiolchem.2019.107166] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 09/29/2019] [Accepted: 11/14/2019] [Indexed: 01/21/2023]
|
30
|
Zhao MM, Liu TJ, Wang Q, Zhang R, Liu L, Gong DQ, Geng TY. Fatty acids modulate the expression of pyruvate kinase and arachidonate-lipoxygenase through PPARγ/CYP2C45 pathway: a link to goose fatty liver. Poult Sci 2019; 98:4346-4358. [PMID: 31287882 DOI: 10.3382/ps/pez395] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Accepted: 06/24/2019] [Indexed: 12/30/2022] Open
Abstract
Cytochrome P-450 2C45 (CYP2C45) is the most highly expressed cytochrome P-450 isoform in chicken liver, and may play an important role in avian liver biology. However, information regarding the function of CYP2C45 in fatty liver is generally limited. The aim of this study was to investigate the role of CYP2C45 during the development of goose fatty liver. Our result indicated that the transcription of CYP2C45, together with PK and ALOX5, was increased in goose liver upon overfeeding for 19 D (P < 0.05). In goose primary hepatocytes, CYP2C45 RNA expression was also upgraded by the treatment with various chemicals like insulin, the fatty acids, and PPAR agonists (P < 0.05). We also found that both CYP2C45 overexpression and troglitazone treatment could increase the expression of pyruvate kinase (PK) and arachidonate 5-lipoxygenase (ALOX5), and furthermore, showed that the up-regulation of PK and ALOX5 induced by troglitazone could be suppressed by small interfering RNAs targeting CYP2C45 (P < 0.05). These findings suggest that fatty acids treatment and the overfeeding can induce the up-regulation of CYP2C45 expression possibly via PPARγ and that the induction of PK and ALOX5 in goose fatty liver is at least partially attributed to fatty acid-induced expression of CYP2C45. Thus, our data provides an insight into the mechanism by which glycolysis and arachidonic acid metabolism are modulated in goose fatty liver.
Collapse
Affiliation(s)
- M M Zhao
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - T J Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - Q Wang
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - R Zhang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou 225125, China
| | - L Liu
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - D Q Gong
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| | - T Y Geng
- College of Animal Science and Technology, Yangzhou University, Yangzhou 225009, China
| |
Collapse
|
31
|
Wang Y, Xu H, Sun G, Xue M, Sun S, Huang T, Zhou J, Loor JJ, Li M. Transcriptome Analysis of the Effects of Fasting Caecotrophy on Hepatic Lipid Metabolism in New Zealand Rabbits. Animals (Basel) 2019; 9:ani9090648. [PMID: 31484452 PMCID: PMC6769842 DOI: 10.3390/ani9090648] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/21/2019] [Accepted: 08/30/2019] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Caecotrophy in small herbivores, including rabbits, is the instinctive behavior of eating soft feces. Little is known about the impact of caecotrophy on growth and metabolism. In the present study, we used an Elizabeth circle to prevent rabbits from eating soft feces and measured changes in feed intake, body weight, internal organ weight, serum biochemical indices and liver lipid droplet accumulation. Liver tissue was also used for transcriptome sequencing. Results indicated that fasting caecotrophy decreased rabbit growth and lipid synthesis in the liver. Abstract In order to investigate the effects of fasting caecotrophy on hepatic lipid metabolism in rabbits, 12 weaned female New Zealand white rabbits were randomly divided into (n = 6/group) a control and fasting caecotrophy group. Rabbits in the experimental group were treated with an Elizabeth circle to prevent them from eating their own soft feces for a 60-day period. Growth and blood biochemical indices, transcriptome sequencing and histology analysis of the liver were performed. Compared with the control group, final weight, weight gain, liver weight, growth rate and feed conversion ratio, all decreased in the experimental group (p < 0.05). RNA sequencing (RNA-seq) analysis revealed a total of 301.2 million raw reads (approximately 45.06 Gb of high-quality clean data) that were mapped to the rabbit genome. After a five-step filtering process, 14,964 genes were identified, including 444 differentially expressed genes (p < 0.05, foldchange ≥ 1). A number of differently expressed genes linked to lipid metabolism were further analyzed including CYP7A1, SREBP, ABCA1, GPAM, CYP3A1, RBP4 and RDH5. The KEGG (Kyoto Encyclopedia of Genes and Genomes) annotation of the differentially expressed genes indicated that main pathways affected were pentose and glucuronide interactions, starch and sucrose metabolism, retinol metabolism and PPAR signaling. Overall, the present study revealed that preventing caecotrophy reduced growth and altered lipid metabolism, both of which will help guide the development of new approaches for rabbits’ feeding and production. These data also provide a reference for studying the effects of soft feces in other small herbivores.
Collapse
Affiliation(s)
- Yadong Wang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Huifen Xu
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Guirong Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Mingming Xue
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Shuaijie Sun
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Tao Huang
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Jianshe Zhou
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| | - Juan J Loor
- Mammalian NutriPhysioGenomics, Department of Animal Sciences and Division of Nutritional Sciences, University of Illinois, Champaign, IL 61801, USA.
| | - Ming Li
- College of Animal Science and Veterinary Medicine, Henan Agricultural University, Zhengzhou 450046, China.
| |
Collapse
|
32
|
Pratt VM, Cavallari LH, Del Tredici AL, Hachad H, Ji Y, Moyer AM, Scott SA, Whirl-Carrillo M, Weck KE. Recommendations for Clinical CYP2C9 Genotyping Allele Selection: A Joint Recommendation of the Association for Molecular Pathology and College of American Pathologists. J Mol Diagn 2019; 21:746-755. [PMID: 31075510 PMCID: PMC7057225 DOI: 10.1016/j.jmoldx.2019.04.003] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 04/03/2019] [Accepted: 04/22/2019] [Indexed: 01/17/2023] Open
Abstract
The goals of the Association for Molecular Pathology Pharmacogenomics (PGx) Working Group of the Association for Molecular Pathology Clinical Practice Committee are to define the key attributes of PGx alleles recommended for clinical testing and a minimum set of variants that should be included in clinical PGx genotyping assays. This document provides recommendations for a minimum panel of variant alleles (Tier 1) and an extended panel of variant alleles (Tier 2) that will aid clinical laboratories when designing assays for CYP2C9 testing. The Working Group considered the functional impact of the variants, allele frequencies in different populations and ethnicities, the availability of reference materials, and other technical considerations for PGx testing when developing these recommendations. Our goal is to promote standardization of testing PGx genes and alleles across clinical laboratories. These recommendations are not to be interpreted as restrictive but to provide a reference guide. The current document will focus on CYP2C9 testing that can be applied to all CYP2C9-related medications. A separate recommendation on warfarin PGx testing is being developed to include recommendations on CYP2C9 alleles and additional warfarin sensitivity-associated genes and alleles.
Collapse
Affiliation(s)
- Victoria M Pratt
- The Pharmacogenomics (PGx) Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Bethesda, Maryland; Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, Indiana.
| | - Larisa H Cavallari
- The Pharmacogenomics (PGx) Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Bethesda, Maryland; Department of Pharmacotherapy and Translational Research and Center for Pharmacogenomics, University of Florida, Gainesville, Florida
| | - Andria L Del Tredici
- The Pharmacogenomics (PGx) Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Bethesda, Maryland; Millennium Health, LLC, San Diego, California
| | - Houda Hachad
- The Pharmacogenomics (PGx) Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Bethesda, Maryland; Translational Software, Bellevue, Washington
| | - Yuan Ji
- The Pharmacogenomics (PGx) Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Bethesda, Maryland; Department of Pathology and ARUP Laboratories, University of Utah School of Medicine, Salt Lake City, Utah
| | - Ann M Moyer
- The Pharmacogenomics (PGx) Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Bethesda, Maryland; Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, Minnesota
| | - Stuart A Scott
- The Pharmacogenomics (PGx) Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Bethesda, Maryland; Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, New York; Sema4, Stamford, Connecticut
| | - Michelle Whirl-Carrillo
- The Pharmacogenomics (PGx) Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Bethesda, Maryland; Department of Biomedical Data Science, Stanford University, Stanford, California
| | - Karen E Weck
- The Pharmacogenomics (PGx) Working Group of the Clinical Practice Committee, Association for Molecular Pathology, Bethesda, Maryland; Department of Pathology and Laboratory Medicine and Department of Genetics, University of North Carolina, Chapel Hill, North Carolina
| |
Collapse
|
33
|
Fukuno S, Nagai K, Yamamoto K, Tanimura T, Nabe T, Konishi H. Pharmacokinetic interference of doxorubicin with tolbutamide due to reduced metabolic clearance with increased serum unbound fraction in rats. Biopharm Drug Dispos 2019; 40:225-233. [PMID: 31215040 DOI: 10.1002/bdd.2195] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 05/26/2019] [Accepted: 06/06/2019] [Indexed: 12/19/2022]
Abstract
The study examined the effect of doxorubicin (DOX) on the hepatic expression of CYP2C and its activity for metabolizing tolbutamide (TB), a specific CYP2C substrate, in rats and whether the pharmacokinetics of tolbutamide were altered by doxorubicin exposure. The expression level of hepatic CYP2C11 was depressed 1 day after doxorubicin administration (day 1), and this effect on CYP2C11 was augmented on day 4. However, the expression level of hepatic CYP2C6 remained unchanged. The activity of tolbutamide 4-hydroxylation in hepatic microsomes was decreased with time following doxorubicin administration. Regarding the enzyme kinetic parameters for tolbutamide 4-hydroxylation on day 4, the maximum velocity (Vmax ) was significantly lower in the DOX group than that in the control group, while the Michaelis constant (Km ) was unaffected. On pharmacokinetic examination, the total clearance (CLtot ) of tolbutamide on day 4 was increased, despite the decreased metabolic capacity. On the other hand, the serum unbound fraction (fu ) of tolbutamide was elevated with a reduced serum albumin concentration in the DOX group. Contrary to CLtot , CLtot /fu , a parameter approximated to the hepatic intrinsic clearance of unbound tolbutamide, was estimated to be significantly reduced in the DOX group. These findings indicate that the metabolic capacity of CYP2C11 in the liver is depressed time-dependently by down-regulation after doxorubicin exposure in rats, and that the decreased enzyme activity of TB 4-hydroxylation in hepatic microsomes reflects the pharmacokinetic change of unbound tolbutamide, not total tolbutamide, in serum.
Collapse
Affiliation(s)
- Shuhei Fukuno
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, 584-0066, Japan
| | - Katsuhito Nagai
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, 584-0066, Japan
| | - Kohei Yamamoto
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, 584-0066, Japan
| | - Takehiro Tanimura
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, 584-0066, Japan
| | - Takeshi Nabe
- Laboratory of Immunopharmacology, Faculty of Pharmaceutical Sciences, Setsunan University, 45-1 Nagaotouge-cho, Hirakata, 573-0101, Japan
| | - Hiroki Konishi
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, 584-0066, Japan
| |
Collapse
|
34
|
Ahmed S, Zhou J, Zhou Z, Chen SQ. Genetic Polymorphisms and In Silico Mutagenesis Analyses of CYP2C9, CYP2D6, and CYPOR Genes in the Pakistani Population. Genes (Basel) 2018; 9:E514. [PMID: 30360443 PMCID: PMC6211126 DOI: 10.3390/genes9100514] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/18/2018] [Accepted: 10/18/2018] [Indexed: 12/12/2022] Open
Abstract
Diverse distributions of pharmacogenetically relevant variants of highly polymorphic CYP2C9, CYP2D6 and CYPOR genes are responsible for some varied drug responses observed across human populations. There is limited data available regarding the pharmacogenetic polymorphisms and frequency distributions of major allele variants in the Pakistani population. The present in silico mutagenesis study conducted on genotype pharmacogenetic variants and comparative analysis with a global population aims to extend the currently limited pharmacogenetic available evidence for the indigenous Pakistani population. Extracted genomic DNA from 244 healthy individuals' venous blood samples were amplified for distinct variant loci in the CYP2C9, CYP2D6 and CYPOR genes. Two-way sequencing results were compared with standard PubMed data and sequence variant loci confirmed by Chromas. This study revealed significant variations in CYP2C9 (rs1799853, rs1057910 and rs72558189), CYP2D6 (rs16947 and rs1135840), and CYPOR (rs1057868, rs781919285 and rs562750402) variants in intraethnic and interethnic frequency distributions. In silico mutagenesis and three-dimensional protein structural alignment analysis approaches clearly exposed the possible varied impact of rare CYPOR (rs781919285 and rs562750402) single nucleotide polymorphisms (SNPs) and confirmed that the influences of CYP2C9 and CYP2D6 variants are consistent with what was found in earlier studies. This investigation highlighted the need to study pharmacogenetic relevance loci and documentation since evidence could be utilized to elucidate genetic backgrounds of drug metabolism, and provide a basis for future pharmacogenomic studies and adequate dose adjustments in Pakistani and global populations.
Collapse
Affiliation(s)
- Shabbir Ahmed
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Jie Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Zhan Zhou
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
| | - Shu-Qing Chen
- Institute of Drug Metabolism and Pharmaceutical Analysis and Zhejiang Provincial Key Laboratory of Anti-Cancer Drug Research, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China.
- International Center for Precision Medicine, Zhejiang California International NanoSystems Institute (ZCNI), Hangzhou 310058, China.
| |
Collapse
|
35
|
Ono Y, Sugiyama S, Matsushita M, Kitazawa T, Amano T, Uno Y, Ikushiro S, Teraoka H. Limited expression of functional cytochrome p450 2c subtypes in the liver and small intestine of domestic cats. Xenobiotica 2018; 49:627-635. [PMID: 29848168 DOI: 10.1080/00498254.2018.1483543] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
1. Compared to information for herbivores and omnivores, knowledge on xenobiotic metabolism in carnivores is limited. The cytochrome P450 2C (CYP2C) subfamily is recognized as one of the most important CYP groups in human and dog. We identified and characterized CYP2C isoforms and variants in cat, which is an obligate carnivore. 2. Quantitative RT-PCR and immunoblot analyses were carried out to evaluate the expression of CYP2C in the liver and small intestine. A functional CYP2C isoform was heterologously expressed in yeast microsomes to determine the enzymatic activity. 3. Cat had two CYP2C genes, 21 and 41, in the genome; however, CYP2C21P was a pseudogene that had many stop codons. Three splicing variants of CYP2C41 were identified (v1-v3), but only one of them (v1) showed a complete deduced amino acid sequence as CYP2C protein. Transcripts of feline CYP2C41v1 were detected but the amounts were negligible or very small in the liver and small intestine. Immunoreactivity to an antihuman CYP2C antibody was confirmed in the recombinant feline CYP2C41v1 but not in the feline liver. 4. Recombinant feline CYP2C41v1 metabolized several substrates, including dibenzylfluorescein that is specific to human CYP2C. 5. The results suggest a limited role of functional CYP2C isoforms in xenobiotic metabolism in cat.
Collapse
Affiliation(s)
- Yuka Ono
- a School of Veterinary Medicine , Rakuno Gakuen University , Ebetsu , Hokkaido , Japan
| | - Souta Sugiyama
- a School of Veterinary Medicine , Rakuno Gakuen University , Ebetsu , Hokkaido , Japan
| | - Mayu Matsushita
- a School of Veterinary Medicine , Rakuno Gakuen University , Ebetsu , Hokkaido , Japan
| | - Takio Kitazawa
- a School of Veterinary Medicine , Rakuno Gakuen University , Ebetsu , Hokkaido , Japan
| | - Tomoko Amano
- b College of Agriculture Food and Environment Sciences , Rakuno Gakuen University , Ebetsu , Hokkaido , Japan
| | - Yasuhiro Uno
- c Pharmacokinetics and Bioanalysis Center , Shin Nippon Biomedical Laboratories Ltd , Kainan , Wakayama , Japan
| | - Shinichi Ikushiro
- d Department of Biotechnology Faculty of Engineering , Toyama Prefectural University , Imizu , Toyama , Japan
| | - Hiroki Teraoka
- a School of Veterinary Medicine , Rakuno Gakuen University , Ebetsu , Hokkaido , Japan
| |
Collapse
|
36
|
Fukuno S, Nagai K, Horii A, Yamamoto K, Konishi H. Pharmacokinetics and metabolic elimination of tolbutamide in female rats: Comparison with male rats. Biopharm Drug Dispos 2018; 39:321-327. [PMID: 29978919 DOI: 10.1002/bdd.2148] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Revised: 06/10/2018] [Accepted: 06/16/2018] [Indexed: 11/11/2022]
Abstract
As there are to be known gender differences in the expression profiles of rat hepatic CYP2C, we examined the pharmacokinetic behavior of tolbutamide (TB), a typical probe for CYP2C, and hepatic enzyme activities for metabolizing TB in female rats to compare with male rats. On the pharmacokinetic analysis of TB after intravenous administration to female rats, the elimination rate constant at the terminal phase (ke ), total clearance (CLtot ) and the apparent volume of distribution at steady-state (Vdss ) were significantly lower than in male rats. The binding rates of TB to serum protein were similar in male and female rats, indicating that the change in unbound TB concentration in serum is not associated with the difference in the pharmacokinetic disposition of TB. On metabolic examination using hepatic microsomes, the maximum reaction velocity (Vmax ) of the metabolic conversion from TB to 4-hydroxytolbutamide (4-OH-TB) in female rats was lower than that in male rats, although there was no significant difference in the Michaelis constant (Km ) between genders. Consistent with this, the Vmax -to-Km ratio (Vmax /Km ) was significantly lower in female rats than in male rats. Therefore, the low in vitro CYP2C-dependent activity for hepatic TB removal in female rats provided a clear explanation for the lower in vivo elimination clearance of TB. Our findings strongly suggest that there is a gender difference in the metabolic capacity to eliminate drugs that serve as substrates of hepatic CYP2C enzymes in rats.
Collapse
Affiliation(s)
- Shuhei Fukuno
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, 584-8540, Japan
| | - Katsuhito Nagai
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, 584-8540, Japan
| | - Ayano Horii
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, 584-8540, Japan
| | - Kohei Yamamoto
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, 584-8540, Japan
| | - Hiroki Konishi
- Laboratory of Clinical Pharmacy and Therapeutics, Faculty of Pharmacy, Osaka Ohtani University, 3-11-1 Nishikiori-kita, Tondabayashi, 584-8540, Japan
| |
Collapse
|
37
|
Louet M, Labbé CM, Fagnen C, Aono CM, Homem-de-Mello P, Villoutreix BO, Miteva MA. Insights into molecular mechanisms of drug metabolism dysfunction of human CYP2C9*30. PLoS One 2018; 13:e0197249. [PMID: 29746595 PMCID: PMC5944999 DOI: 10.1371/journal.pone.0197249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 04/30/2018] [Indexed: 12/17/2022] Open
Abstract
Cytochrome P450 2C9 (CYP2C9) metabolizes about 15% of clinically administrated drugs. The allelic variant CYP2C9*30 (A477T) is associated to diminished response to the antihypertensive effects of the prodrug losartan and affected metabolism of other drugs. Here, we investigated molecular mechanisms involved in the functional consequences of this amino-acid substitution. Molecular dynamics (MD) simulations performed for the active species of the enzyme (heme in the Compound I state), in the apo or substrate-bound state, and binding energy analyses gave insights into altered protein structure and dynamics involved in the defective drug metabolism of human CYP2C9.30. Our data revealed an increased rigidity of the key Substrate Recognition Sites SRS1 and SRS5 and shifting of the β turn 4 of SRS6 toward the helix F in CYP2C9.30. Channel and binding substrate dynamics analyses showed altered substrate channel access and active site accommodation. These conformational and dynamic changes are believed to be involved in the governing mechanism of the reduced catalytic activity. An ensemble of representative conformations of the WT and A477T mutant properly accommodating drug substrates were identified, those structures can be used for prediction of new CYP2C9 and CYP2C9.30 substrates and drug-drug interactions.
Collapse
Affiliation(s)
- Maxime Louet
- Université Paris Diderot, Sorbonne Paris Cité, Inserm UMR-S 973, Molécules Thérapeutiques In silico, Paris, France
- INSERM, U973, Paris, France
| | - Céline M. Labbé
- Université Paris Diderot, Sorbonne Paris Cité, Inserm UMR-S 973, Molécules Thérapeutiques In silico, Paris, France
- INSERM, U973, Paris, France
| | - Charline Fagnen
- Université Paris Diderot, Sorbonne Paris Cité, Inserm UMR-S 973, Molécules Thérapeutiques In silico, Paris, France
- INSERM, U973, Paris, France
- Université Pierre et Marie Curie, Sorbonne Universités, UMR 7590, Institut de Minéralogie, de Physique des Matériaux et de Cosmochimie, Paris, France
| | - Cassiano M. Aono
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Santo André, Brazil
| | - Paula Homem-de-Mello
- Universidade Federal do ABC, Centro de Ciências Naturais e Humanas, Santo André, Brazil
| | - Bruno O. Villoutreix
- Université Paris Diderot, Sorbonne Paris Cité, Inserm UMR-S 973, Molécules Thérapeutiques In silico, Paris, France
- INSERM, U973, Paris, France
| | - Maria A. Miteva
- Université Paris Diderot, Sorbonne Paris Cité, Inserm UMR-S 973, Molécules Thérapeutiques In silico, Paris, France
- INSERM, U973, Paris, France
- * E-mail:
| |
Collapse
|
38
|
Daly AK, Rettie AE, Fowler DM, Miners JO. Pharmacogenomics of CYP2C9: Functional and Clinical Considerations. J Pers Med 2017; 8:E1. [PMID: 29283396 PMCID: PMC5872075 DOI: 10.3390/jpm8010001] [Citation(s) in RCA: 113] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Revised: 12/18/2017] [Accepted: 12/20/2017] [Indexed: 02/07/2023] Open
Abstract
CYP2C9 is the most abundant CYP2C subfamily enzyme in human liver and the most important contributor from this subfamily to drug metabolism. Polymorphisms resulting in decreased enzyme activity are common in the CYP2C9 gene and this, combined with narrow therapeutic indices for several key drug substrates, results in some important issues relating to drug safety and efficacy. CYP2C9 substrate selectivity is detailed and, based on crystal structures for the enzyme, we describe how CYP2C9 catalyzes these reactions. Factors relevant to clinical response to CYP2C9 substrates including inhibition, induction and genetic polymorphism are discussed in detail. In particular, we consider the issue of ethnic variation in pattern and frequency of genetic polymorphisms and clinical implications. Warfarin is the most well studied CYP2C9 substrate; recent work on use of dosing algorithms that include CYP2C9 genotype to improve patient safety during initiation of warfarin dosing are reviewed and prospects for their clinical implementation considered. Finally, we discuss a novel approach to cataloging the functional capabilities of rare 'variants of uncertain significance', which are increasingly detected as more exome and genome sequencing of diverse populations is conducted.
Collapse
Affiliation(s)
- Ann K Daly
- Institute of Cellular Medicine, Newcastle University, Framlington Place, Newcastle upon Tyne NE2 4HH, UK.
| | - Allan E Rettie
- Department of Medicinal Chemistry, University of Washington, Seattle, WA 98195, USA.
| | - Douglas M Fowler
- Department of Genome Sciences and Department of Bioengineering, University of Washington, Seattle, WA 98195, USA.
| | - John O Miners
- Department of Clinical Pharmacology, Flinders University School of Medicine, Adelaide 5042, Australia.
| |
Collapse
|
39
|
Influences of Anlotinib on Cytochrome P450 Enzymes in Rats Using a Cocktail Method. BIOMED RESEARCH INTERNATIONAL 2017; 2017:3619723. [PMID: 29441353 PMCID: PMC5758843 DOI: 10.1155/2017/3619723] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 11/10/2017] [Accepted: 11/28/2017] [Indexed: 12/18/2022]
Abstract
The present study aimed to investigate the effect of anlotinib (AL3818) on pharmacokinetics of cytochrome P450 (CYP) enzymes (CYP1A2, CYP2C6, CYP2D1, CYP2D2, and CYP3A1/2) by using five cocktail probe drugs in vivo. After pretreatment for 7 days with anlotinib (treatment group) or saline (control group) by oral administration, probe drugs phenacetin, tolbutamide, omeprazole, metoprolol, and midazolam were administered to rats by oral administration. Blood samples were obtained at a series of time-points and the concentrations of five probe drugs in plasma were determined by a UHPLC-MS/MS method. The results showed that treatment with anlotinib had no significant effect on rat CYP1A2, CYP2D2, and CYP2C6. However, anlotinib had a significant inductive effect on CYP2D1 and CYP3A1/2. Therefore, caution is needed during the concomitant use of anlotinib with other drugs metabolized by CYP2D1 and CYP3A1/2 because of potential drug-anlotinib interactions.
Collapse
|
40
|
Amsden JR, Gubbins PO. Pharmacogenomics of triazole antifungal agents: implications for safety, tolerability and efficacy. Expert Opin Drug Metab Toxicol 2017; 13:1135-1146. [DOI: 10.1080/17425255.2017.1391213] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Jarrett R. Amsden
- Department of Pharmacy Practice, Butler University College of Pharmacy and Health Sciences, Indianapolis, IN, USA
| | - Paul O. Gubbins
- Division of Pharmacy Practice and Administration, UMKC School of Pharmacy at MSU, Springfield, MO, USA
| |
Collapse
|
41
|
Seripa D, Lozupone M, Stella E, Paroni G, Bisceglia P, La Montagna M, D’onofrio G, Gravina C, Urbano M, Priore MG, Lamanna A, Daniele A, Bellomo A, Logroscino G, Greco A, Panza F. Psychotropic drugs and CYP2D6 in late-life psychiatric and neurological disorders. What do we know? Expert Opin Drug Saf 2017; 16:1373-1385. [DOI: 10.1080/14740338.2017.1389891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Davide Seripa
- Complex Structure of Geriatrics, Department of Medical Sciences, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
| | - Madia Lozupone
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Eleonora Stella
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giulia Paroni
- Complex Structure of Geriatrics, Department of Medical Sciences, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
| | - Paola Bisceglia
- Complex Structure of Geriatrics, Department of Medical Sciences, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
| | - Maddalena La Montagna
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Grazia D’onofrio
- Complex Structure of Geriatrics, Department of Medical Sciences, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
| | - Carolina Gravina
- Complex Structure of Geriatrics, Department of Medical Sciences, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
| | - Maria Urbano
- Complex Structure of Geriatrics, Department of Medical Sciences, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
| | - Maria Giovanna Priore
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Angela Lamanna
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
| | - Antonio Daniele
- Institute of Neurology, Catholic University of Sacred Heart, Rome, Italy
| | - Antonello Bellomo
- Psychiatric Unit, Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giancarlo Logroscino
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Department of Clinical Research in Neurology, University of Bari Aldo Moro, “Pia Fondazione Cardinale G. Panico”, Tricase, Lecce, Italy
| | - Antonio Greco
- Complex Structure of Geriatrics, Department of Medical Sciences, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
| | - Francesco Panza
- Complex Structure of Geriatrics, Department of Medical Sciences, IRCCS “Casa Sollievo della Sofferenza”, San Giovanni Rotondo, Foggia, Italy
- Neurodegenerative Disease Unit, Department of Basic Medicine, Neuroscience, and Sense Organs, University of Bari Aldo Moro, Bari, Italy
- Department of Clinical Research in Neurology, University of Bari Aldo Moro, “Pia Fondazione Cardinale G. Panico”, Tricase, Lecce, Italy
| |
Collapse
|
42
|
Lagorce D, Douguet D, Miteva MA, Villoutreix BO. Computational analysis of calculated physicochemical and ADMET properties of protein-protein interaction inhibitors. Sci Rep 2017; 7:46277. [PMID: 28397808 PMCID: PMC5387685 DOI: 10.1038/srep46277] [Citation(s) in RCA: 92] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Accepted: 03/13/2017] [Indexed: 12/18/2022] Open
Abstract
The modulation of PPIs by low molecular weight chemical compounds, particularly by orally bioavailable molecules, would be very valuable in numerous disease indications. However, it is known that PPI inhibitors (iPPIs) tend to have properties that are linked to poor Absorption, Distribution, Metabolism, Excretion and Toxicity (ADMET) and in some cases to poor clinical outcomes. Previously reported in silico analyses of iPPIs have essentially focused on physicochemical properties but several other ADMET parameters would be important to assess. In order to gain new insights into the ADMET properties of iPPIs, computations were carried out on eight datasets collected from several databases. These datasets involve compounds targeting enzymes, GPCRs, ion channels, nuclear receptors, allosteric modulators, oral marketed drugs, oral natural product-derived marketed drugs and iPPIs. Several trends are reported that should assist the design and optimization of future PPI inhibitors, either for drug discovery endeavors or for chemical biology projects.
Collapse
Affiliation(s)
- David Lagorce
- INSERM, U973, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Dominique Douguet
- CNRS UMR7275, Institut de Pharmacologie Moléculaire et Cellulaire, Université Côte d’Azur, Valbonne, France
| | - Maria A. Miteva
- INSERM, U973, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | |
Collapse
|
43
|
Cui YL, Wu RL. Molecular dynamics investigations of membrane-bound CYP2C19 polymorphisms reveal distinct mechanisms for peripheral variants by long-range effects on the enzymatic activity. MOLECULAR BIOSYSTEMS 2017; 13:1070-1079. [DOI: 10.1039/c6mb00827e] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The results reveal distinct mechanisms for enzymatic activity deficiencies upon two peripheral variants in CYP2C19.
Collapse
Affiliation(s)
- Ying-Lu Cui
- Center for Computational Biology
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing
- China
| | - Rong-Ling Wu
- Center for Computational Biology
- College of Biological Sciences and Biotechnology
- Beijing Forestry University
- Beijing
- China
| |
Collapse
|
44
|
Chen Z, Miao L, Liu Y, Dong T, Ma X, Guan X, Zhou G, Zou B. A universal genotyping–microarray constructed by ligating a universal fluorescence-probe with SNP-encoded flaps cleaved from multiplex invasive reactions. Chem Commun (Camb) 2017; 53:12922-12925. [PMID: 29152636 DOI: 10.1039/c7cc06649j] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The universal chip and fluorescence probe enable genotyping multiple SNPs more labor-saving and cost-saving.
Collapse
Affiliation(s)
- Zhiyao Chen
- Department of Pharmacology
- Jinling Hospital
- Medical School of Nanjing University
- Nanjing 210002
- China
| | - Liyan Miao
- Department of Clinical Pharmacology Research Lab
- The First Affiliated Hospital of Soochow University
- Suzhou 215006
- China
| | - Yunlong Liu
- Department of Pharmacology
- Jinling Hospital
- Medical School of Nanjing University
- Nanjing 210002
- China
| | - Tianhui Dong
- Department of Pharmacology
- Jinling Hospital
- Medical School of Nanjing University
- Nanjing 210002
- China
| | - Xueping Ma
- Department of Pharmacology
- Jinling Hospital
- Medical School of Nanjing University
- Nanjing 210002
- China
| | - Xiaoxiang Guan
- Department of Pharmacology
- Jinling Hospital
- Medical School of Nanjing University
- Nanjing 210002
- China
| | - Guohua Zhou
- Department of Pharmacology
- Jinling Hospital
- Medical School of Nanjing University
- Nanjing 210002
- China
| | - Bingjie Zou
- Department of Pharmacology
- Jinling Hospital
- Medical School of Nanjing University
- Nanjing 210002
- China
| |
Collapse
|