1
|
Åkerlund M, Baskozos G, Li W, Themistocleous AC, Pascal MMV, Rayner NW, Attal N, Baron R, Baudic S, Bennedsgaard K, Bouhassira D, Comini M, Crombez G, Faber CG, Finnerup NB, Gierthmühlen J, Granovsky Y, Gylfadottir SS, Hébert HL, Jensen TS, John J, Kemp HI, Lauria G, Laycock H, Meng W, Nilsen KB, Palmer C, Rice ASC, Serra J, Smith BH, Tesfaye S, Topaz LS, Veluchamy A, Vollert J, Yarnitsky D, van Zuydam N, Zwart JA, McCarthy MI, Lyssenko V, Bennett DL. Genetic associations of neuropathic pain and sensory profile in a deeply phenotyped neuropathy cohort. Pain 2024:00006396-990000000-00756. [PMID: 39471050 DOI: 10.1097/j.pain.0000000000003463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Accepted: 09/27/2024] [Indexed: 11/01/2024]
Abstract
ABSTRACT We aimed to investigate the genetic associations of neuropathic pain in a deeply phenotyped cohort. Participants with neuropathic pain were cases and compared with those exposed to injury or disease but without neuropathic pain as control subjects. Diabetic polyneuropathy was the most common aetiology of neuropathic pain. A standardised quantitative sensory testing protocol was used to categorize participants based on sensory profile. We performed genome-wide association study, and in a subset of participants, we undertook whole-exome sequencing targeting analyses of 45 known pain-related genes. In the genome-wide association study of diabetic neuropathy (N = 1541), a top significant association was found at the KCNT2 locus linked with pain intensity (rs114159097, P = 3.55 × 10-8). Gene-based analysis revealed significant associations between LHX8 and TCF7L2 and neuropathic pain. Polygenic risk score for depression was associated with neuropathic pain in all participants. Polygenic risk score for C-reactive protein showed a positive association, while that for fasting insulin showed a negative association with neuropathic pain, in individuals with diabetic polyneuropathy. Gene burden analysis of candidate pain genes supported significant associations between rare variants in SCN9A and OPRM1 and neuropathic pain. Comparison of individuals with the "irritable" nociceptor profile to those with a "nonirritable" nociceptor profile identified a significantly associated variant (rs72669682, P = 4.39 × 10-8) within the ANK2 gene. Our study on a deeply phenotyped cohort with neuropathic pain has confirmed genetic associations with the known pain-related genes KCNT2, OPRM1, and SCN9A and identified novel associations with LHX8 and ANK2, genes not previously linked to pain and sensory profiles, respectively.
Collapse
Affiliation(s)
- Mikael Åkerlund
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Lund, Sweden
| | - Georgios Baskozos
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, United Kingdom
| | - Wenqianglong Li
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, United Kingdom
| | | | - Mathilde M V Pascal
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, United Kingdom
| | - N William Rayner
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
- Department of Human Genetics, Wellcome Sanger Institute, Hinxton, United Kingdom
- Institute of Translational Genomics, Helmholtz Zentrum München, German Research Center for Environmental Health, Neuherberg, Germany
| | - Nadine Attal
- INSERM U987, APHP and UVSQ Paris Saclay University, CHU Ambroise Paré, Boulogne Billancourt, France
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, Universitätsklinikum Schleswig-Holstein, Kiel, Germany
| | - Sophie Baudic
- INSERM U987, APHP and UVSQ Paris Saclay University, CHU Ambroise Paré, Boulogne Billancourt, France
| | | | - Didier Bouhassira
- INSERM U987, APHP and UVSQ Paris Saclay University, CHU Ambroise Paré, Boulogne Billancourt, France
| | - Maddalena Comini
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, United Kingdom
| | - Geert Crombez
- Department of Experimental-Clinical and Health Psychology, Ghent University, Ghent, Belgium
| | - Catharina G Faber
- Department of Neurology, Maastricht University Medical Center, Mental Health and Neuroscience Reseach Institute, Maastricht, the Netherlands
| | - Nanna B Finnerup
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Janne Gierthmühlen
- Department for Anesthesiology and Surgical Intensive Care Medicine, Pain Therapy, University Hospital of Kiel, Kiel, Germany
| | - Yelena Granovsky
- Department of Neurology, Rambam Health Care Campus, Technion-Israel Institute of Technology, Haifa, Israel
| | - Sandra Sif Gylfadottir
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Harry L Hébert
- Chronic Pain Research Group, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Troels S Jensen
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus, Denmark
- Department of Neurology, Aarhus University Hospital, Aarhus, Denmark
| | - Jishi John
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, United Kingdom
| | - Harriet I Kemp
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Giuseppe Lauria
- Department of Medical Biotechnology and Translational Medicine, University of Milan, Milan, Italy
- Department of Clinical Neurosciences, IRCCS Fondazione Istituto Neurologico "Carlo Besta," Milan, Italy
| | - Helen Laycock
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Weihua Meng
- Chronic Pain Research Group, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
- Nottingham Ningbo China Beacons of Excellence Research and Innovation Institute, University of Nottingham Ningbo China, Ningbo, China
| | - Kristian Bernhard Nilsen
- Section for Clinical Neurophysiology, Department of Neurology, Oslo University Hospital, Oslo, Norway
| | - Colin Palmer
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Andrew S C Rice
- Pain Research, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Jordi Serra
- Department of Clinical Neurophysiology, King's College Hospital, London, United Kingdom
| | - Blair H Smith
- Chronic Pain Research Group, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, United Kingdom
| | - Leah Shafran Topaz
- Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Abirami Veluchamy
- Chronic Pain Research Group, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Jan Vollert
- Department of Clinical and Biomedical Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter, United Kingdom
| | - David Yarnitsky
- Department of Neurology, Rambam Health Care Campus, Technion-Israel Institute of Technology, Haifa, Israel
| | - Natalie van Zuydam
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology and Metabolism, Radcliffe Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - John Anker Zwart
- Department of Research and Innovation, Oslo University Hospital and University of Oslo, Oslo, Norway
| | - Mark I McCarthy
- NIHR Oxford Biomedical Research Centre, Oxford University Hospitals Trust, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Valeriya Lyssenko
- Department of Clinical Sciences, Lund University Diabetes Centre, Lund University, Lund, Sweden
- Department of Clinical Science, University of Bergen, Bergen, Norway
| | - David L Bennett
- Nuffield Department of Clinical Neuroscience, The University of Oxford, Oxford, United Kingdom
| |
Collapse
|
2
|
Yang B, Wei W, Fang J, Xue Y, Wei J. Diabetic Neuropathic Pain and Circadian Rhythm: A Future Direction Worthy of Study. J Pain Res 2024; 17:3005-3020. [PMID: 39308994 PMCID: PMC11414757 DOI: 10.2147/jpr.s467249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/11/2024] [Indexed: 09/25/2024] Open
Abstract
More than half of people with diabetes experience neuropathic pain. Previous research has shown that diabetes patients' neuropathic pain exhibits a circadian cycle, which is characterized by increased pain sensitivity at night. Additional clinical research has revealed that the standard opioid drugs are ineffective at relieving pain and do not change the circadian rhythm. This article describes diabetic neuropathic pain and circadian rhythms separately, with a comprehensive focus on circadian rhythms. It is hoped that this characteristic of diabetic neuropathic pain can be utilized in the future to obtain more effective treatments for it.
Collapse
Affiliation(s)
- Baozhong Yang
- Department of Anaesthesiology, Taiyuan Central Hospital, Taiyuan, People’s Republic of China
| | - Wei Wei
- Department of Anaesthesiology, Taiyuan Central Hospital, Taiyuan, People’s Republic of China
- School of Anesthesia, Shanxi Medical University, Shanxi, People’s Republic of China
| | - Jun Fang
- Department of Anaesthesiology, Taiyuan Central Hospital, Taiyuan, People’s Republic of China
- School of Anesthesia, Shanxi Medical University, Shanxi, People’s Republic of China
| | - Yating Xue
- Department of Anaesthesiology, Taiyuan Central Hospital, Taiyuan, People’s Republic of China
- School of Anesthesia, Shanxi Medical University, Shanxi, People’s Republic of China
| | - Jiacheng Wei
- Department of Anaesthesiology, Taiyuan Central Hospital, Taiyuan, People’s Republic of China
- School of Anesthesia, Shanxi Medical University, Shanxi, People’s Republic of China
| |
Collapse
|
3
|
Usakin LA, Maksimova NV, Pesheva ED, Zaitseva EL, Tokmakova AY, Panteleyev AA. Assessment of potential genetic markers for diabetic foot ulcer among Moscow residents. Endocrine 2024:10.1007/s12020-024-03966-2. [PMID: 39017835 DOI: 10.1007/s12020-024-03966-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/10/2024] [Indexed: 07/18/2024]
Abstract
PURPOSE Diabetic foot ulcer (DFU) is one of the most severe complications of type 2 diabetes, which is manifested in chronic skin ulcers of lower extremities. DFU treatment remains complex and expensive despite the availability of well-established protocols. Early prediction of potential DFU development at the onset of type 2 diabetes can greatly improve the aftermath of this complication. METHODS To assess potential genetic markers for DFU, a group of diabetic patients from Moscow region with and without DFU was genotyped for a number of SNPs previously reported to be associated with the DFU. RESULTS Obtained results did not confirm previously claimed association of rs1024611, rs3918242, rs2073618, rs1800629, rs4986790, rs179998, rs1963645 and rs11549465 (respectively, in MCP1, MMP9, TNFRSF11B, TNFα, TLR4, eNOS, NOS1AP and HIF1α genes) with the DFU. Surprisingly, the t allele of rs7903146 in the TCF7l2 gene known as one of the most prominent risk factors for type 2 diabetes has shown a protective effect on DFU with OR(95%) = 0.68(0.48-0.96). CONCLUSION Non-replication of previously published SNP associations with DFU suggests that the role of genetic factors in the DFU onset is either highly variable in different populations or is not as significant as the role of non-genetic factors.
Collapse
Affiliation(s)
- Lev A Usakin
- National Research Centre Kurchatov Institute, Moscow, Russian Federation.
| | - Nadezhda V Maksimova
- Pirogov Russian National Research Medical University, Moscow, Russian Federation
| | - Ekaterina D Pesheva
- I.M. Sechenov First Moscow State Medical University, Moscow, Russian Federation
| | | | | | - Andrey A Panteleyev
- National Research Centre Kurchatov Institute, Moscow, Russian Federation.
- A.V. Vishnevsky Institute of Surgery, Moscow, Russian Federation.
| |
Collapse
|
4
|
Hajdú N, Rácz R, Tordai DZ, Békeffy M, Vági OE, Istenes I, Körei AE, Kempler P, Putz Z. Genetic Variants Influence the Development of Diabetic Neuropathy. Int J Mol Sci 2024; 25:6429. [PMID: 38928135 PMCID: PMC11203776 DOI: 10.3390/ijms25126429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
The exact mechanism by which diabetic neuropathy develops is still not fully known, despite our advances in medical knowledge. Progressing neuropathy may occur with a persistently favorable metabolic status in some patients with diabetes mellitus, while, in others, though seldom, a persistently unfavorable metabolic status is not associated with significant neuropathy. This might be significantly due to genetic differences. While recent years have brought compelling progress in the understanding of the pathogenetic background-in particular, accelerated progress is being made in understanding molecular biological mechanisms-some aspects are still not fully understood. A comparatively small amount of information is accessible on this matter; therefore, by summarizing the available data, in this review, we aim to provide a clearer picture of the current state of knowledge, identify gaps in the previous studies, and possibly suggest directions for future studies. This could help in developing more personalized approaches to the prevention and treatment of diabetic neuropathy, while also taking into account individual genetic profiles.
Collapse
|
5
|
Presto P, Sehar U, Kopel J, Reddy PH. Mechanisms of pain in aging and age-related conditions: Focus on caregivers. Ageing Res Rev 2024; 95:102249. [PMID: 38417712 DOI: 10.1016/j.arr.2024.102249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 02/13/2024] [Accepted: 02/22/2024] [Indexed: 03/01/2024]
Abstract
Pain is a complex, subjective experience that can significantly impact quality of life, particularly in aging individuals, by adversely affecting physical and emotional well-being. Whereas acute pain usually serves a protective function, chronic pain is a persistent pathological condition that contributes to functional deficits, cognitive decline, and emotional disturbances in the elderly. Despite substantial progress that has been made in characterizing age-related changes in pain, complete mechanistic details of pain processing mechanisms in the aging patient remain unknown. Pain is particularly under-recognized and under-managed in the elderly, especially among patients with Alzheimer's disease (AD), Alzheimer's disease-related dementias (ADRD), and other age-related conditions. Furthermore, difficulties in assessing pain in patients with AD/ADRD and other age-related conditions may contribute to the familial caregiver burden. The purpose of this article is to discuss the mechanisms and risk factors for chronic pain development and persistence, with a particular focus on age-related changes. Our article also highlights the importance of caregivers working with aging chronic pain patients, and emphasizes the urgent need for increased legislative awareness and improved pain management in these populations to substantially alleviate caregiver burden.
Collapse
Affiliation(s)
- Peyton Presto
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ujala Sehar
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Jonathan Kopel
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, USA; Department of Speech, Language and Hearing Sciences, School Health Professions, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Public Health, School of Population and Public Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Neurology, Departments of School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA.
| |
Collapse
|
6
|
Alsubaie SF, Alkathiry AA, Aljuaid MI, Alnasser MA. The relationship between chronic diseases and the intensity and duration of low back pain. Eur J Phys Rehabil Med 2024; 60:55-61. [PMID: 38059574 PMCID: PMC10938039 DOI: 10.23736/s1973-9087.23.07649-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 07/11/2023] [Accepted: 11/22/2023] [Indexed: 12/08/2023]
Abstract
BACKGROUND Low back pain (LBP) is a worldwide problem that affects numerous people and limits their mobility. Several factors, including chronic diseases, increase the risk of developing LBP. To date, the information available about the relationship between chronic diseases and the intensity and duration of LBP is quite limited. AIM The aim of the present study was to address the relationship between chronic diseases and both the intensity and duration of LBP. DESIGN This is an observational cross-sectional study. SETTING The study was conducted in the community of Saudi Arabia. POPULATION 2181 adult participants (aged 18 years or more, mean age of 33 and standard deviation [SD] of ±11, 61% females) from Saudi Arabia with either recent or recurring LBP participated in the study. METHODS The participants of this study were surveyed, and their demographic information was obtained. They were asked whether they had LBP during the past year, and if they had, they were asked about their LBP in terms of the pain intensity on a scale that runs from 0 to 10, where 0 indicates no pain and 10 indicates extreme pain. Further, the participants were asked how long their pain lasted (in days). They were also inquired whether they had any of the following chronic diseases: diabetes mellitus, high blood pressure, hypotension, arthritis, cardiopulmonary diseases, kidney diseases, and hypothyroidism. Logistic regression was used to analyze the relationships between both of LBP's intensity and duration, and the presence of chronic diseases, while adjusting for the potential effect of age and gender. RESULTS A total of 2181 adults with either new onset of or recurrent LBP during the past 12 months participated in the present study. Of these, 356 (16%), who had LBP, suffered from one or more of the said chronic diseases. It was found that having one or more chronic diseases had statistically significant relationship with increased LBP's intensity (P=0.002), as well as prolonged duration (P=0.001). In particular, hypertension, arthritis, and hypothyroidism have statistically significant relationship with increased the intensity of the pain (P<0.05). Only, hypertension and arthritis have statistically significant relationship with increased the duration of pain (P≤0.001). CONCLUSIONS The presence of chronic diseases was associated with a more intense and longer duration of LBP. CLINICAL REHABILITATION IMPACT In view of the results of this study, we expect that those who have chronic diseases will have a longer duration of LBP and more intense pain.
Collapse
Affiliation(s)
- Saud F Alsubaie
- Department of Health Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia -
| | - Abdulaziz A Alkathiry
- College of Applied Medical Sciences, Department of Physical Therapy and Health Rehabilitation, Majmaah University, Majmaah, Saudi Arabia
| | - Majed I Aljuaid
- Department of Health Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Musab A Alnasser
- Department of Health Rehabilitation Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| |
Collapse
|
7
|
Li S, Brimmers A, van Boekel RL, Vissers KC, Coenen MJ. A systematic review of genome-wide association studies for pain, nociception, neuropathy, and pain treatment responses. Pain 2023; 164:1891-1911. [PMID: 37144689 PMCID: PMC10436363 DOI: 10.1097/j.pain.0000000000002910] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 02/07/2023] [Accepted: 02/10/2023] [Indexed: 05/06/2023]
Abstract
ABSTRACT Pain is the leading cause of disability worldwide, imposing an enormous burden on personal health and society. Pain is a multifactorial and multidimensional problem. Currently, there is (some) evidence that genetic factors could partially explain individual susceptibility to pain and interpersonal differences in pain treatment response. To better understand the underlying genetic mechanisms of pain, we systematically reviewed and summarized genome-wide association studies (GWASes) investigating the associations between genetic variants and pain/pain-related phenotypes in humans. We reviewed 57 full-text articles and identified 30 loci reported in more than 1 study. To check whether genes described in this review are associated with (other) pain phenotypes, we searched 2 pain genetic databases, Human Pain Genetics Database and Mouse Pain Genetics Database. Six GWAS-identified genes/loci were also reported in those databases, mainly involved in neurological functions and inflammation. These findings demonstrate an important contribution of genetic factors to the risk of pain and pain-related phenotypes. However, replication studies with consistent phenotype definitions and sufficient statistical power are required to validate these pain-associated genes further. Our review also highlights the need for bioinformatic tools to elucidate the function of identified genes/loci. We believe that a better understanding of the genetic background of pain will shed light on the underlying biological mechanisms of pain and benefit patients by improving the clinical management of pain.
Collapse
Affiliation(s)
- Song Li
- Department of Human Genetics, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands. Coenen is now with the Department of Clinical Chemistry, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Annika Brimmers
- Department of Human Genetics, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands. Coenen is now with the Department of Clinical Chemistry, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Regina L.M. van Boekel
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Kris C.P. Vissers
- Department of Anesthesiology, Pain and Palliative Medicine, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Marieke J.H. Coenen
- Department of Human Genetics, Radboud Institute for Health Sciences, Radboud University Medical Center, Nijmegen, the Netherlands. Coenen is now with the Department of Clinical Chemistry, Erasmus Medical Center, Rotterdam, the Netherlands
| |
Collapse
|
8
|
Truini A, Aleksovska K, Anderson CC, Attal N, Baron R, Bennett DL, Bouhassira D, Cruccu G, Eisenberg E, Enax-Krumova E, Davis KD, Di Stefano G, Finnerup NB, Garcia-Larrea L, Hanafi I, Haroutounian S, Karlsson P, Rakusa M, Rice ASC, Sachau J, Smith BH, Sommer C, Tölle T, Valls-Solé J, Veluchamy A. Joint European Academy of Neurology-European Pain Federation-Neuropathic Pain Special Interest Group of the International Association for the Study of Pain guidelines on neuropathic pain assessment. Eur J Neurol 2023; 30:2177-2196. [PMID: 37253688 DOI: 10.1111/ene.15831] [Citation(s) in RCA: 24] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 06/01/2023]
Abstract
BACKGROUND AND PURPOSE In these guidelines, we aimed to develop evidence-based recommendations for the use of screening questionnaires and diagnostic tests in patients with neuropathic pain (NeP). METHODS We systematically reviewed studies providing information on the sensitivity and specificity of screening questionnaires, and quantitative sensory testing, neurophysiology, skin biopsy, and corneal confocal microscopy. We also analysed how functional neuroimaging, peripheral nerve blocks, and genetic testing might provide useful information in diagnosing NeP. RESULTS Of the screening questionnaires, Douleur Neuropathique en 4 Questions (DN4), I-DN4 (self-administered DN4), and Leeds Assessment of Neuropathic Symptoms and Signs (LANSS) received a strong recommendation, and S-LANSS (self-administered LANSS) and PainDETECT weak recommendations for their use in the diagnostic pathway for patients with possible NeP. We devised a strong recommendation for the use of skin biopsy and a weak recommendation for quantitative sensory testing and nociceptive evoked potentials in the NeP diagnosis. Trigeminal reflex testing received a strong recommendation in diagnosing secondary trigeminal neuralgia. Although many studies support the usefulness of corneal confocal microscopy in diagnosing peripheral neuropathy, no study specifically investigated the diagnostic accuracy of this technique in patients with NeP. Functional neuroimaging and peripheral nerve blocks are helpful in disclosing pathophysiology and/or predicting outcomes, but current literature does not support their use for diagnosing NeP. Genetic testing may be considered at specialist centres, in selected cases. CONCLUSIONS These recommendations provide evidence-based clinical practice guidelines for NeP diagnosis. Due to the poor-to-moderate quality of evidence identified by this review, future large-scale, well-designed, multicentre studies assessing the accuracy of diagnostic tests for NeP are needed.
Collapse
Affiliation(s)
- Andrea Truini
- Department of Human Neuroscience, University Sapienza, Rome, Italy
| | - Katina Aleksovska
- European Academy of Neurology, Vienna, Austria
- Department of Neurology, Ss. Cyril and Methodius University, Skopje, North Macedonia
| | - Christopher C Anderson
- Division of Clinical and Translational Research, Department of Anesthesiology, Pain Center, Washington University School of Medicine, St. Louis, Missouri, USA
- Department of Neurology, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Nadine Attal
- Université Versailles Saint Quentin en Yvelines, Versailles, France
- Inserm U987, Pathophysiology and Clinical Pharmacology of Pain, Centre d'évaluation et de Traitement de la Douleur, Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Ralf Baron
- Division of Neurological Pain Research and Therapy, Department of Neurology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - David L Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, UK
| | - Didier Bouhassira
- Inserm U987, Pathophysiology and Clinical Pharmacology of Pain, Centre d'évaluation et de Traitement de la Douleur, Hôpital Ambroise Paré, Boulogne-Billancourt, France
| | - Giorgio Cruccu
- Department of Human Neuroscience, University Sapienza, Rome, Italy
| | - Elon Eisenberg
- Faculty of Medicine, Technion, Israel Institute of Technology, Haifa, Israel
| | - Elena Enax-Krumova
- Department of Neurology, BG University Hospital Bergmannsheil, Ruhr-University Bochum, Bochum, Germany
| | - Karen Deborah Davis
- Division of Brain, Imaging, and Behaviour, Krembil Brain Institute, Krembil Research Institute, Toronto Western Hospital, University Health Network, Toronto, Ontario, Canada
| | | | - Nanna B Finnerup
- Department of Clinical Medicine, Danish Pain Research Centre, Aarhus University, Aarhus, Denmark
| | - Luis Garcia-Larrea
- Central Integration of Pain (NeuroPain) Lab-Lyon Neuroscience Research Centre, INSERM U1028, CNRS, UMR5292, Université Claude Bernard, Bron, France
- Centre D'évaluation et de Traitement de la Douleur, Hôpital Neurologique, Lyon, France
| | - Ibrahem Hanafi
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Simon Haroutounian
- Division of Clinical and Translational Research, Department of Anesthesiology, Pain Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Pall Karlsson
- Department of Clinical Medicine, Danish Pain Research Centre, Aarhus University, Aarhus, Denmark
- Core Centre for Molecular Morphology, Section for Stereology and Microscopy, Aarhus University, Aarhus, Denmark
| | - Martin Rakusa
- Division of Neurology, University Medical Centre Maribor, Maribor, Slovenia
| | - Andrew S C Rice
- Pain Research, Department of Surgery and Cancer, Imperial College London, London, UK
| | - Juliane Sachau
- Division of Neurological Pain Research and Therapy, Department of Neurology, Universitätsklinikum Schleswig-Holstein, Campus Kiel, Kiel, Germany
| | - Blair H Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Claudia Sommer
- Department of Neurology, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Tölle
- Department of Neurology, Klinikum rechts der Isar, Technische Universität München, Munich, Germany
| | - Josep Valls-Solé
- Institut d'Investigació Biomèdica August Pi i Sunyer, Barcelona, Spain
| | - Abirami Veluchamy
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
9
|
Nabi AHMN, Ebihara A, Shekhar HU. Impacts of SARS-CoV-2 on diabetes mellitus: A pre and post pandemic evaluation. World J Virol 2023; 12:151-171. [PMID: 37396707 PMCID: PMC10311579 DOI: 10.5501/wjv.v12.i3.151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/24/2023] [Accepted: 04/13/2023] [Indexed: 06/21/2023] Open
Abstract
The coronavirus disease 2019 (COVID-19) pandemic caused by the novel beta coronavirus severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) crippled the whole world and has resulted in large number of morbidity and mortality. The origin of the SARS-CoV-2 is still disputed. The risk of infection with SARS-CoV-2 is dependent on several risk factors as observed in many studies. The severity of the disease depends on many factors including the viral strain, host immunogenetics, environmental factors, host genetics, host nutritional status and presence of comorbidities like hypertension, diabetes, Chronic Obstructive Pulmonary Disease, cardiovascular disease, renal impairment. Diabetes is a metabolic disorder mainly characterized by hyperglycemia. Diabetic individuals are intrinsically prone to infections. SARS-CoV-2 infection in patients with diabetes result in β-cell damage and cytokine storm. Damage to the cells impairs the equilibrium of glucose, leading to hyperglycemia. The ensuing cytokine storm causes insulin resistance, especially in the muscles and liver, which also causes a hyperglycemic state. All of these increase the severity of COVID-19. Genetics also play pivotal role in disease pathogenesis. This review article focuses from the probable sources of coronaviruses and SARS-CoV-2 to its impacts on individuals with diabetes and host genetics in pre- and post-pandemic era.
Collapse
Affiliation(s)
- A H M Nurun Nabi
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| | - Akio Ebihara
- Faculty of Applied Biological Sciences, Gifu University, Gifu 501-1193, Japan
| | - Hossain Uddin Shekhar
- Department of Biochemistry and Molecular Biology, University of Dhaka, Dhaka 1000, Bangladesh
| |
Collapse
|
10
|
Presto P, Mazzitelli M, Junell R, Griffin Z, Neugebauer V. Sex differences in pain along the neuraxis. Neuropharmacology 2022; 210:109030. [DOI: 10.1016/j.neuropharm.2022.109030] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 02/24/2022] [Accepted: 03/12/2022] [Indexed: 12/30/2022]
|
11
|
Bhandari R, Sharma A, Kuhad A. Novel Nanotechnological Approaches for Targeting Dorsal Root Ganglion (DRG) in Mitigating Diabetic Neuropathic Pain (DNP). Front Endocrinol (Lausanne) 2022; 12:790747. [PMID: 35211091 PMCID: PMC8862660 DOI: 10.3389/fendo.2021.790747] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Accepted: 12/17/2021] [Indexed: 11/28/2022] Open
Abstract
Diabetic neuropathy is the most entrenched complication of diabetes. Usually, it affects the distal foot and toes, which then gradually approaches the lower part of the legs. Diabetic foot ulcer (DFU) could be one of the worst complications of diabetes mellitus. Long-term diabetes leads to hyperglycemia, which is the utmost contributor to neuropathic pain. Hyperglycemia causing an upregulation of voltage-gated sodium channels in the dorsal root ganglion (DRG) was often observed in models of neuropathic pain. DRG opening frequency increases intracellular sodium ion levels, which further causes increased calcium channel opening and stimulates other pathways leading to diabetic peripheral neuropathy (DPN). Currently, pain due to diabetic neuropathy is managed via antidepressants, opioids, gamma-aminobutyric acid (GABA) analogs, and topical agents such as capsaicin. Despite the availability of various treatment strategies, the percentage of patients achieving adequate pain relief remains low. Many factors contribute to this condition, such as lack of specificity and adverse effects such as light-headedness, languidness, and multiple daily doses. Therefore, nanotechnology outperforms in every aspect, providing several benefits compared to traditional therapy such as site-specific and targeted drug delivery. Nanotechnology is the branch of science that deals with the development of nanoscale materials and products, even smaller than 100 nm. Carriers can improve their efficacy with reduced side effects by incorporating drugs into the novel delivery systems. Thus, the utilization of nanotechnological approaches such as nanoparticles, polymeric nanoparticles, inorganic nanoparticles, lipid nanoparticles, gene therapy (siRNA and miRNA), and extracellular vesicles can extensively contribute to relieving neuropathic pain.
Collapse
Affiliation(s)
| | | | - Anurag Kuhad
- University Institute of Pharmaceutical Sciences, Panjab University, Chandigarh, India
| |
Collapse
|
12
|
Sloan G, Alam U, Selvarajah D, Tesfaye S. The Treatment of Painful Diabetic Neuropathy. Curr Diabetes Rev 2022; 18:e070721194556. [PMID: 34238163 DOI: 10.2174/1573399817666210707112413] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 02/18/2021] [Accepted: 03/08/2021] [Indexed: 11/22/2022]
Abstract
Painful diabetic peripheral neuropathy (painful-DPN) is a highly prevalent and disabling condition, affecting up to one-third of patients with diabetes. This condition can have a profound impact resulting in a poor quality of life, disruption of employment, impaired sleep, and poor mental health with an excess of depression and anxiety. The management of painful-DPN poses a great challenge. Unfortunately, currently there are no Food and Drug Administration (USA) approved disease-modifying treatments for diabetic peripheral neuropathy (DPN) as trials of putative pathogenetic treatments have failed at phase 3 clinical trial stage. Therefore, the focus of managing painful- DPN other than improving glycaemic control and cardiovascular risk factor modification is treating symptoms. The recommended treatments based on expert international consensus for painful- DPN have remained essentially unchanged for the last decade. Both the serotonin re-uptake inhibitor (SNRI) duloxetine and α2δ ligand pregabalin have the most robust evidence for treating painful-DPN. The weak opioids (e.g. tapentadol and tramadol, both of which have an SNRI effect), tricyclic antidepressants such as amitriptyline and α2δ ligand gabapentin are also widely recommended and prescribed agents. Opioids (except tramadol and tapentadol), should be prescribed with caution in view of the lack of definitive data surrounding efficacy, concerns surrounding addiction and adverse events. Recently, emerging therapies have gained local licenses, including the α2δ ligand mirogabalin (Japan) and the high dose 8% capsaicin patch (FDA and Europe). The management of refractory painful-DPN is difficult; specialist pain services may offer off-label therapies (e.g. botulinum toxin, intravenous lidocaine and spinal cord stimulation), although there is limited clinical trial evidence supporting their use. Additionally, despite combination therapy being commonly used clinically, there is little evidence supporting this practise. There is a need for further clinical trials to assess novel therapeutic agents, optimal combination therapy and existing agents to determine which are the most effective for the treatment of painful-DPN. This article reviews the evidence for the treatment of painful-DPN, including emerging treatment strategies such as novel compounds and stratification of patients according to individual characteristics (e.g. pain phenotype, neuroimaging and genotype) to improve treatment responses.
Collapse
Affiliation(s)
- Gordon Sloan
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, UK
| | - Uazman Alam
- Department of Cardiovascular and Metabolic Medicine and the Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, and Liverpool University Hospital, NHS Foundation Trust, Liverpool, UK
- Division of Diabetes, Endocrinology and Gastroenterology, Institute of Human Development, University of Manchester, Manchester, UK
| | - Dinesh Selvarajah
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, UK
- Department of Oncology and Human Metabolism, University of Sheffield, Sheffield, UK
| | - Solomon Tesfaye
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals, NHS Foundation Trust, Sheffield, UK
| |
Collapse
|
13
|
Molecular Changes in the Dorsal Root Ganglion during the Late Phase of Peripheral Nerve Injury-induced Pain in Rodents: A Systematic Review. Anesthesiology 2021; 136:362-388. [PMID: 34965284 DOI: 10.1097/aln.0000000000004092] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/09/2022]
Abstract
The dorsal root ganglion is widely recognized as a potential target to treat chronic pain. A fundamental understanding of quantitative molecular and genomic changes during the late phase of pain is therefore indispensable. The authors performed a systematic literature review on injury-induced pain in rodent dorsal root ganglions at minimally 3 weeks after injury. So far, slightly more than 300 molecules were quantified on the protein or messenger RNA level, of which about 60 were in more than one study. Only nine individual sequencing studies were performed in which the most up- or downregulated genes varied due to heterogeneity in study design. Neuropeptide Y and galanin were found to be consistently upregulated on both the gene and protein levels. The current knowledge regarding molecular changes in the dorsal root ganglion during the late phase of pain is limited. General conclusions are difficult to draw, making it hard to select specific molecules as a focus for treatment.
Collapse
|
14
|
Veluchamy A, Hébert HL, van Zuydam NR, Pearson ER, Campbell A, Hayward C, Meng W, McCarthy MI, Bennett DLH, Palmer CNA, Smith BH. Association of Genetic Variant at Chromosome 12q23.1 With Neuropathic Pain Susceptibility. JAMA Netw Open 2021; 4:e2136560. [PMID: 34854908 PMCID: PMC8640893 DOI: 10.1001/jamanetworkopen.2021.36560] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
IMPORTANCE Neuropathic pain (NP) has important clinical and socioeconomic consequences for individuals and society. Increasing evidence indicates that genetic factors make a significant contribution to NP, but genome-wide association studies (GWASs) are scant in this field and could help to elucidate susceptibility to NP. OBJECTIVE To identify genetic variants associated with NP susceptibility. DESIGN, SETTING, AND PARTICIPANTS This genetic association study included a meta-analysis of GWASs of NP using 3 independent cohorts: ie, Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS); Generation Scotland: Scottish Family Health Study (GS:SFHS); and the United Kingdom Biobank (UKBB). Data analysis was conducted from April 2018 to December 2019. EXPOSURES Individuals with NP (ie, case participants; those with pain of ≥3 months' duration and a Douleur Neuropathique en 4 Questions score ≥3) and individuals with no pain (ie, control participants) with or without diabetes from GoDARTS and GS:SFHS were identified using validated self-completed questionnaires. In the UKBB, self-reported prescribed medication and hospital records were used as a proxy to identify case participants (patients recorded as receiving specific anti-NP medicines) and control participants. MAIN OUTCOMES AND MEASURES GWAS was performed using linear mixed modeling. GWAS summary statistics were combined using fixed-effect meta-analysis. A total of 51 variants previously shown to be associated with NP were tested for replication. RESULTS This study included a total of 4512 case participants (2662 [58.9%] women; mean [SD] age, 61.7 [10.8] years) and 428 489 control participants (227 817 [53.2%] women; mean [SD] age, 62.3 [11.5] years) in the meta-analysis of 3 cohorts with European descent. The study found a genome-wide significant locus at chromosome 12q23.1, which mapped to SLC25A3 (rs369920026; odds ratio [OR] for having NP, 1.68; 95% CI, 1.40-2.02; P = 1.30 × 10-8), and a suggestive variant at 13q14.2 near CAB39L (rs7992766; OR, 1.09; 95% CI, 1.05-1.14; P = 1.22 × 10-7). These mitochondrial phosphate carriers and calcium binding genes are expressed in brain and dorsal root ganglia. Colocalization analyses using expression quantitative loci data found that the suggestive variant was associated with expression of CAB39L in the brain cerebellum (P = 1.01 × 10-14). None of the previously reported variants were replicated. CONCLUSIONS AND RELEVANCE To our knowledge, this was the largest meta-analyses of GWAS to date. It found novel genetic variants associated with NP susceptibility. These findings provide new insights into the genetic architecture of NP and important information for further studies.
Collapse
Affiliation(s)
- Abirami Veluchamy
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Harry L. Hébert
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | | | - Ewan R. Pearson
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Archie Campbell
- Generation Scotland, Centre for Genomics and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Caroline Hayward
- Generation Scotland, Centre for Genomics and Experimental Medicine, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
- Medical Research Council Human Genetics Unit, Medical Research Council Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Weihua Meng
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Mark I. McCarthy
- Wellcome Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Oxford, United Kingdom
| | - David L. H. Bennett
- Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Colin N. A. Palmer
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| | - Blair H. Smith
- Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, United Kingdom
| |
Collapse
|
15
|
Ma Y, Xiang Q, Yan C, Liao H, Wang J. Relationship between chronic diseases and depression: the mediating effect of pain. BMC Psychiatry 2021; 21:436. [PMID: 34488696 PMCID: PMC8419946 DOI: 10.1186/s12888-021-03428-3] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 07/26/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic diseases have a high incidence in China and may cause pain and depression. However, the association of chronic diseases with pain and the incidence of depression has not been comprehensively investigated. METHODS The study population was obtained from the 2015 China Health and Retirement Longitudinal Study (CHARLS). The cross-sectional data from15,213 persons were included. CHARLS provides nationally representative data from21,097 individuals aged 45 years and older in approximately 150 districts and 450 villages. The main outcome was the incidence of depression. The main independent variable was chronic disease (no chronic disease, one chronic disease, and two or more chronic diseases). The mediators were the degree of pain (no pain, mild pain, and moderate to severe pain) and whether measures were taken to relieve pain (measures taken and no measures taken). We performed chi-square and binary logistic regression analyses of the associations of chronic disease with pain and the incidence of depression. The mediation model was examined using the Sobel test. RESULTS Patients with more chronic diseases had more severe pain (OR = 3.697, P < 0.001, CI = 2.919-4.681) and were more likely to develop depression (OR = 2.777, P < 0.001, CI = 2.497-3.090). The degree of pain partially mediated the interaction between chronic disease and depression in this study (t = 7.989, P < 0.001). The incidence of depression was high in people who were female, less educated, unmarried, living in rural areas, and working. CONCLUSIONS The degree of pain had a partial mediating effect on chronic disease and depression. Pain relief measures should be considered when treating patients with depression.
Collapse
Affiliation(s)
- Ying Ma
- grid.33199.310000 0004 0368 7223Department of Health Management, School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Qin Xiang
- grid.33199.310000 0004 0368 7223Department of Health Management, School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Chaoyang Yan
- grid.33199.310000 0004 0368 7223Department of Health Management, School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Hui Liao
- grid.33199.310000 0004 0368 7223Department of Health Management, School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 Hubei China
| | - Jing Wang
- Department of Health Management, School of Medicine and Health Management, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,The Key Research Institute of Humanities and Social Science of Hubei Province, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China. .,Institute for Poverty Reduction and Development, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, China.
| |
Collapse
|
16
|
Kwon O. Pathophysiology of neuropathic pain. JOURNAL OF THE KOREAN MEDICAL ASSOCIATION 2021. [DOI: 10.5124/jkma.2021.64.7.468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background: Neuropathic pain is notoriously difficult to manage properly, not only because of its varied nature and the absence of objective diagnostic tools but also because of extensive reciprocal neuronal interactive pathogenic mechanism from the molecular level to patient’s own psychophysical characteristics. This paper briefly reviews the pathophysiology of neuropathic pain to the level of clinicians’ interest and its potential in clinical practiceCurrent Concepts: Recent research progress now allows us to obtain a bird view of neuropathic pain pathophysiology: peripheral and central sensitization. For peripheral sensitization, a local inflammatory milieu of the injured nerve primarily drives sequential phenotypic changes, which are critical and shared by both neuropathic and inflammatory pain. Central sensitization is led either by the hyperexcitability of the second-order afferent neuron itself or loss of physiological inhibitory control of the transmission of pain signal to the higher nervous system. Peripheral and central sensitization work synergistically but can also introduce neuropathic pain alone.Discussion and Conclusion: The cause of neuropathic pain is diverse, and understanding of its pathophysiology is still insufficient to realize a mechanism-based approach to clinical phenotypes or therapeutic applications. In dealing with chronic neuropathic pain, it is highly desirable to assess key aspects of a patient’s pain based on a plausible mechanism and select the best management method accordingly.
Collapse
|
17
|
Abstract
Pain is an immense clinical and societal challenge, and the key to understanding and treating it is variability. Robust interindividual differences are consistently observed in pain sensitivity, susceptibility to developing painful disorders, and response to analgesic manipulations. This review examines the causes of this variability, including both organismic and environmental sources. Chronic pain development is a textbook example of a gene-environment interaction, requiring both chance initiating events (e.g., trauma, infection) and more immutable risk factors. The focus is on genetic factors, since twin studies have determined that a plurality of the variance likely derives from inherited genetic variants, but sex, age, ethnicity, personality variables, and environmental factors are also considered.
Collapse
Affiliation(s)
- Jeffrey S Mogil
- Departments of Psychology and Anesthesia, Alan Edwards Centre for Research on Pain, McGill University, Montreal, Quebec H3A 1B1, Canada;
| |
Collapse
|
18
|
Sloan G, Selvarajah D, Tesfaye S. Pathogenesis, diagnosis and clinical management of diabetic sensorimotor peripheral neuropathy. Nat Rev Endocrinol 2021; 17:400-420. [PMID: 34050323 DOI: 10.1038/s41574-021-00496-z] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/15/2021] [Indexed: 02/08/2023]
Abstract
Diabetic sensorimotor peripheral neuropathy (DSPN) is a serious complication of diabetes mellitus and is associated with increased mortality, lower-limb amputations and distressing painful neuropathic symptoms (painful DSPN). Our understanding of the pathophysiology of the disease has largely been derived from animal models, which have identified key potential mechanisms. However, effective therapies in preclinical models have not translated into clinical trials and we have no universally accepted disease-modifying treatments. Moreover, the condition is generally diagnosed late when irreversible nerve damage has already taken place. Innovative point-of-care devices have great potential to enable the early diagnosis of DSPN when the condition might be more amenable to treatment. The management of painful DSPN remains less than optimal; however, studies suggest that a mechanism-based approach might offer an enhanced benefit in certain pain phenotypes. The management of patients with DSPN involves the control of individualized cardiometabolic targets, a multidisciplinary approach aimed at the prevention and management of foot complications, and the timely diagnosis and management of neuropathic pain. Here, we discuss the latest advances in the mechanisms of DSPN and painful DSPN, originating both from the periphery and the central nervous system, as well as the emerging diagnostics and treatments.
Collapse
Affiliation(s)
- Gordon Sloan
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
| | - Dinesh Selvarajah
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK
- Department of Oncology and Human Metabolism, University of Sheffield, Sheffield, UK
| | - Solomon Tesfaye
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Sheffield, UK.
| |
Collapse
|
19
|
Sex- and age-specific genetic analysis of chronic back pain. Pain 2021; 162:1176-1187. [PMID: 33021770 DOI: 10.1097/j.pain.0000000000002100] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 09/28/2020] [Indexed: 11/26/2022]
Abstract
ABSTRACT Sex differences for chronic back pain (cBP) have been reported, with females usually exhibiting greater morbidity, severity, and poorer response to treatment. Genetic factors acting in an age-specific manner have been implicated but never comprehensively explored. We performed sex- and age-stratified genome-wide association study and single nucleotide polymorphism-by-sex interaction analysis for cBP defined as "Back pain for 3+ months" in 202,077 males and 237,754 females of European ancestry from UK Biobank. Two and 7 nonoverlapping genome-wide significant loci were identified for males and females, respectively. A male-specific locus on chromosome 10 near SPOCK2 gene was replicated in 4 independent cohorts. Four loci demonstrated single nucleotide polymorphism-by-sex interaction, although none of them were formally replicated. Single nucleotide polymorphism-explained heritability was higher in females (0.079 vs 0.067, P = 0.006). There was a high, although not complete, genetic correlation between the sexes (r = 0.838 ± 0.041, different from 1 with P = 7.8E-05). Genetic correlation between the sexes for cBP decreased with age (0.858 ± 0.049 in younger people vs 0.544 ± 0.157 in older people; P = 4.3E-05). There was a stronger genetic correlation of cBP with self-reported diagnosis of intervertebral disk degeneration in males than in females (0.889 vs 0.638; P = 3.7E-06). Thus, the genetic component of cBP in the UK Biobank exhibits a mild sex- and age-dependency. This provides an insight into the possible causes of sex- and age-specificity in epidemiology and pathophysiology of cBP and chronic pain at other anatomical sites.
Collapse
|
20
|
Genetic and Epigenomic Modifiers of Diabetic Neuropathy. Int J Mol Sci 2021; 22:ijms22094887. [PMID: 34063061 PMCID: PMC8124699 DOI: 10.3390/ijms22094887] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/18/2022] Open
Abstract
Diabetic neuropathy (DN), the most common chronic and progressive complication of diabetes mellitus (DM), strongly affects patients’ quality of life. DN could be present as peripheral, autonomous or, clinically also relevant, uremic neuropathy. The etiopathogenesis of DN is multifactorial, and genetic components play a role both in its occurrence and clinical course. A number of gene polymorphisms in candidate genes have been assessed as susceptibility factors for DN, and most of them are linked to mechanisms such as reactive oxygen species production, neurovascular impairments and modified protein glycosylation, as well as immunomodulation and inflammation. Different epigenomic mechanisms such as DNA methylation, histone modifications and non-coding RNA action have been studied in DN, which also underline the importance of “metabolic memory” in DN appearance and progression. In this review, we summarize most of the relevant data in the field of genetics and epigenomics of DN, hoping they will become significant for diagnosis, therapy and prevention of DN.
Collapse
|
21
|
Hébert HL, Veluchamy A, Baskozos G, Fardo F, Van Ryckeghem DML, Pascal MMV, Jones C, Milburn K, Pearson ER, Crombez G, Bennett DLH, Meng W, Palmer CNA, Smith BH. Cohort profile: DOLORisk Dundee: a longitudinal study of chronic neuropathic pain. BMJ Open 2021; 11:e042887. [PMID: 33952538 PMCID: PMC8103377 DOI: 10.1136/bmjopen-2020-042887] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 12/09/2020] [Accepted: 04/11/2021] [Indexed: 02/07/2023] Open
Abstract
PURPOSE Neuropathic pain is a common disorder of the somatosensory system that affects 7%-10% of the general population. The disorder places a large social and economic burden on patients as well as healthcare services. However, not everyone with a relevant underlying aetiology develops corresponding pain. DOLORisk Dundee, a European Union-funded cohort, part of the multicentre DOLORisk consortium, was set up to increase current understanding of this variation in onset. In particular, the cohort will allow exploration of psychosocial, clinical and genetic predictors of neuropathic pain onset. PARTICIPANTS DOLORisk Dundee has been constructed by rephenotyping two pre-existing Scottish population cohorts for neuropathic pain using a standardised 'core' study protocol: Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS) (n=5236) consisting of predominantly type 2 diabetics from the Tayside region, and Generation Scotland: Scottish Family Health Study (GS:SFHS; n=20 221). Rephenotyping was conducted in two phases: a baseline postal survey and a combined postal and online follow-up survey. DOLORisk Dundee consists of 9155 participants (GoDARTS=1915; GS:SFHS=7240) who responded to the baseline survey, of which 6338 (69.2%; GoDARTS=1046; GS:SFHS=5292) also responded to the follow-up survey (18 months later). FINDINGS TO DATE At baseline, the proportion of those with chronic neuropathic pain (Douleur Neuropathique en 4 Questions questionnaire score ≥3, duration ≥3 months) was 30.5% in GoDARTS and 14.2% in Generation Scotland. Electronic record linkage enables large scale genetic association studies to be conducted and risk models have been constructed for neuropathic pain. FUTURE PLANS The cohort is being maintained by an access committee, through which collaborations are encouraged. Details of how to do this will be available on the study website (http://dolorisk.eu/). Further follow-up surveys of the cohort are planned and funding applications are being prepared to this effect. This will be conducted in harmony with similar pain rephenotyping of UK Biobank.
Collapse
Affiliation(s)
- Harry L Hébert
- Chronic Pain Research Group, Division of Population Health and Genomics, Mackenzie Building, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Abirami Veluchamy
- Chronic Pain Research Group, Division of Population Health and Genomics, Mackenzie Building, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Georgios Baskozos
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Francesca Fardo
- Danish Pain Research Center, Department of Clinical Medicine, Aarhus University, Aarhus, Denmark
| | - Dimitri M L Van Ryckeghem
- Department of Experimental-Clinical and Health Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Gent, Belgium
- Section Experimental Health Psychology, Clinical Psychological Science, Departments, Faculty of Psychology and Neuroscience, Maastricht University, Maastricht, Netherlands
- Institute of Health and Behaviour, INSIDE, University of Luxembourg, Luxembourg, Luxembourg
| | - Mathilde M V Pascal
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Claire Jones
- Health Informatics Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Keith Milburn
- Health Informatics Centre, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Ewan R Pearson
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Geert Crombez
- Department of Experimental-Clinical and Health Psychology, Faculty of Psychology and Educational Sciences, Ghent University, Gent, Belgium
| | - David L H Bennett
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Weihua Meng
- Chronic Pain Research Group, Division of Population Health and Genomics, Mackenzie Building, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Colin N A Palmer
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics, Division of Population Health and Genomics, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| | - Blair H Smith
- Chronic Pain Research Group, Division of Population Health and Genomics, Mackenzie Building, Ninewells Hospital and Medical School, University of Dundee, Dundee, UK
| |
Collapse
|
22
|
|
23
|
Nishizawa D, Iseki M, Arita H, Hanaoka K, Yajima C, Kato J, Ogawa S, Hiranuma A, Kasai S, Hasegawa J, Hayashida M, Ikeda K. Genome-wide association study identifies candidate loci associated with chronic pain and postherpetic neuralgia. Mol Pain 2021; 17:1744806921999924. [PMID: 33685280 PMCID: PMC8822450 DOI: 10.1177/1744806921999924] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
BACKGROUND Human twin studies and other studies have indicated that chronic pain has heritability that ranges from 30% to 70%. We aimed to identify potential genetic variants that contribute to the susceptibility to chronic pain and efficacy of administered drugs. We conducted genome-wide association studies (GWASs) using whole-genome genotyping arrays with more than 700,000 markers in 191 chronic pain patients and a subgroup of 89 patients with postherpetic neuralgia (PHN) in addition to 282 healthy control subjects in several genetic models, followed by additional gene-based and gene-set analyses of the same phenotypes. We also performed a GWAS for the efficacy of drugs for the treatment of pain. RESULTS Although none of the single-nucleotide polymorphisms (SNPs) were found to be genome-wide significantly associated with chronic pain (p ≥ 1.858 × 10-7), the GWAS of PHN patients revealed that the rs4773840 SNP within the ABCC4 gene region was significantly associated with PHN in the trend model (nominal p = 1.638 × 10-7). In the additional gene-based analysis, one gene, PRKCQ, was significantly associated with chronic pain in the trend model (adjusted p = 0.03722). In the gene-set analysis, several gene sets were significantly associated with chronic pain and PHN. No SNPs were significantly associated with the efficacy of any of types of drugs in any of the genetic models. CONCLUSIONS These results suggest that the PRKCQ gene and rs4773840 SNP within the ABCC4 gene region may be related to the susceptibility to chronic pain conditions and PHN, respectively.
Collapse
Affiliation(s)
- Daisuke Nishizawa
- Addictive Substance Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masako Iseki
- Department of Anesthesiology & Pain Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Hideko Arita
- Department of Anesthesiology and Pain Relief Center, JR Tokyo General Hospital, Tokyo, Japan
| | - Kazuo Hanaoka
- Department of Anesthesiology and Pain Relief Center, JR Tokyo General Hospital, Tokyo, Japan
| | - Choku Yajima
- Department of Anesthesiology and Pain Relief Center, JR Tokyo General Hospital, Tokyo, Japan
| | - Jitsu Kato
- Department of Anesthesiology, Nihon University School of Medicine, Tokyo, Japan
| | - Setsuro Ogawa
- Nihon University, University Research Center, Tokyo, Japan
| | - Ayako Hiranuma
- Addictive Substance Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Surgery, Toho University Sakura Medical Center, Sakura, Japan
| | - Shinya Kasai
- Addictive Substance Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Junko Hasegawa
- Addictive Substance Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| | - Masakazu Hayashida
- Addictive Substance Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan.,Department of Anesthesiology & Pain Medicine, Juntendo University School of Medicine, Tokyo, Japan
| | - Kazutaka Ikeda
- Addictive Substance Project, Department of Psychiatry and Behavioral Sciences, Tokyo Metropolitan Institute of Medical Science, Tokyo, Japan
| |
Collapse
|
24
|
Akinci G, Savelieff MG, Gallagher G, Callaghan BC, Feldman EL. Diabetic neuropathy in children and youth: New and emerging risk factors. Pediatr Diabetes 2021; 22:132-147. [PMID: 33205601 PMCID: PMC11533219 DOI: 10.1111/pedi.13153] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 11/02/2020] [Accepted: 11/12/2020] [Indexed: 12/23/2022] Open
Abstract
Pediatric neuropathy attributed to metabolic dysfunction is a well-known complication in children and youth with type 1 diabetes. Moreover, the rise of obesity and in particular of type 2 diabetes may cause an uptick in pediatric neuropathy incidence. However, despite the anticipated increase in neuropathy incidence, pathogenic insights and strategies to prevent or manage neuropathy in the setting of diabetes and obesity in children and youth remain unknown. Data from adult studies and available youth cohort studies are providing an initial understanding of potential diagnostic, management, and preventative measures in early life. This review discusses the current state of knowledge emanating from these efforts, with particular emphasis on the prevalence, clinical presentation, diagnostic approaches and considerations, and risk factors of neuropathy in type 1 and type 2 diabetes in children and youth. Also highlighted are current management strategies and recommendations for neuropathy in children and youth with diabetes. This knowledge, along with continued and sustained emphasis on identifying and eliminating modifiable risk factors, completing randomized controlled trials to assess effectiveness of strategies like weight loss and exercise, and enhancing awareness to support early detection and prevention, are pertinent to addressing the rising incidence of neuropathy associated with diabetes and obesity in children and youth.
Collapse
Affiliation(s)
- Gulcin Akinci
- Department of Neurology, University of Michigan Medicine, Ann Arbor, MI
| | | | - Gary Gallagher
- Department of Neurology, University of Michigan Medicine, Ann Arbor, MI
| | | | - Eva L. Feldman
- Department of Neurology, University of Michigan Medicine, Ann Arbor, MI
| |
Collapse
|
25
|
Spallone V, Ciccacci C, Latini A, Borgiani P. What Is in the Field for Genetics and Epigenetics of Diabetic Neuropathy: The Role of MicroRNAs. J Diabetes Res 2021; 2021:5593608. [PMID: 34660810 PMCID: PMC8514969 DOI: 10.1155/2021/5593608] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 09/07/2021] [Indexed: 12/25/2022] Open
Abstract
Despite the high prevalence of diabetic neuropathy, its early start, and its impact on quality of life and mortality, unresolved clinical issues persist in the field regarding its screening implementation, the understanding of its mechanisms, and the search for valid biomarkers, as well as disease-modifying treatment. Genetics may address these needs by providing genetic biomarkers of susceptibility, giving insights into pathogenesis, and shedding light on how to select possible responders to treatment. After a brief summary of recent studies on the genetics of diabetic neuropathy, the current review focused mainly on microRNAs (miRNAs), including the authors' results in this field. It summarized the findings of animal and human studies that associate miRNAs with diabetic neuropathy and explored the possible pathogenetic meanings of these associations, in particular regarding miR-128a, miR-155a, and miR-499a, as well as their application for diabetic neuropathy screening. Moreover, from a genetic perspective, it examined new findings of polymorphisms of miRNA genes in diabetic neuropathy. It considered in more depth the pathogenetic implications for diabetic neuropathy of the polymorphism of MIR499A and the related changes in the downstream action of miR-499a, showing how epigenetic and genetic studies may provide insight into pathogenetic mechanisms like mitochondrial dysfunction. Finally, the concept and the data of genotype-phenotype association for polymorphism of miRNA genes were described. In conclusion, although at a very preliminary stage, the findings linking the genetics and epigenetics of miRNAs might contribute to the identification of exploratory risk biomarkers, a comprehensive definition of susceptibility to specific pathogenetic mechanisms, and the development of mechanism-based treatment of diabetic neuropathy, thus addressing the goals of genetic studies.
Collapse
Affiliation(s)
- V. Spallone
- Department of Systems Medicine, Endocrinology Section, University of Rome Tor Vergata, Rome, Italy
| | - C. Ciccacci
- UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - A. Latini
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| | - P. Borgiani
- Department of Biomedicine and Prevention, Genetics Section, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|
26
|
Disentangling comorbidity in chronic pain: A study in primary health care settings from India. PLoS One 2020; 15:e0242865. [PMID: 33253251 PMCID: PMC7703899 DOI: 10.1371/journal.pone.0242865] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 11/10/2020] [Indexed: 11/19/2022] Open
Abstract
OBJECTIVES The study examined the prevalence, sociodemographic, and clinical correlates of chronic pain among primary care patients in the state of Kerala, India. It also examined the patterns and relationships of chronic physical and mental health conditions with chronic pain. METHODS This study is a cross-sectional survey conducted among 7165 adult patients selected randomly by a multi-stage stratified design from 71 primary health centers. The questionnaires administered included Chronic pain screening questionnaire, self-reported Chronic physical health condition checklist, Patient Health Questionnaire-SADS, The Alcohol Use Disorders Identification Test, Fagerström Test for Nicotine Dependence, WHO Disability Assessment Schedule and WHOQOL- BREF for Quality/Satisfaction with Life. The prevalence and comorbid patterns of chronic pain were determined. Logistic regression analysis and generalized linear mixed-effects model was employed to examine the relationship of chronic pain to socio-demographic variables and examined physical and mental health conditions. RESULTS A total of 1831 (27%) patients reported chronic pain. Among those with chronic pain, 28.3% reported no co-occurring chronic mental or physical illness, 35.3% reported one, and 36.3% reported multi-morbidity. In the multivariate analysis, patients with chronic pain when compared to those without had higher odds of being older, female, having lower education, not living with their family, greater disability, and poor satisfaction with life. Chronic pain was independently associated with both medical (hypertension, diabetes mellitus, tuberculosis, arthritis, and other medical illnesses) and mental health conditions (depressive disorders, anxiety disorders, and tobacco dependence). It showed a varying strength of association and additive effect with increasing number of co-occurring physical and mental illnesses. CONCLUSIONS Chronic pain is a common condition among primary care attendees associated with significant burden of medical and mental health comorbidity. The findings highlight the need to incorporate treatment models that will ensure appropriate management to improve outcomes within the resource constraints.
Collapse
|
27
|
Naureen Z, Lorusso L, Manganotti P, Caruso P, Mazzon G, Cecchin S, Marceddu G, Bertelli M. Genetics of pain: From rare Mendelian disorders to genetic predisposition to pain. ACTA BIO-MEDICA : ATENEI PARMENSIS 2020; 91:e2020010. [PMID: 33170156 PMCID: PMC8023138 DOI: 10.23750/abm.v91i13-s.10682] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Subscribe] [Scholar Register] [Received: 09/25/2020] [Accepted: 10/23/2020] [Indexed: 02/01/2023]
Abstract
Background and aim of the work: Pain is defined by the International Association for the Study of Pain as “an unpleasant sensory and emotional experience associated with actual or potential tissue damage, or described in terms of such damage”. In this mini-review, we focused on the Mendelian disorders with chronic pain as the main characteristic or where pain perception is disrupted, and on the polymorphisms that can impart susceptibility to chronic pain. Methods: We searched PubMed and Online Mendelian Inheritance in Man (OMIM) databases and selected only syndromes in which pain or insensitivity to pain were among the main characteristics. Polymorphisms were selected from the database GWAS catalog (https://www.ebi.ac.uk/gwas/home). Results: We retrieved a total of 28 genes associated with Mendelian inheritance in which pain or insensitivity to pain were the main characteristics and 70 polymorphisms associated with modulation of pain perception. Conclusions: This mini-review highlights the importance of genetics in phenotypes characterized by chronic pain or pain insensitivity. We think that an effective genetic test should analyze all genes associated with Mendelian pain disorders and all SNPs that can increase the risk of pain. (www.actabiomedica.it)
Collapse
Affiliation(s)
- Zakira Naureen
- Department of Biological Sciences and Chemistry, College of Arts and Sciences, University of Nizwa, Nizwa, Oman.
| | - Lorenzo Lorusso
- ASST Lecco, UOC Neurology and Stroke Unit, Merate (LC), Italy.
| | - Paolo Manganotti
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy.
| | - Paola Caruso
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy.
| | - Giulia Mazzon
- Clinical Unit of Neurology, Department of Medicine, Surgery and Health Sciences, Cattinara University Hospital ASUGI, University of Trieste, Trieste, Italy.
| | | | | | - Matteo Bertelli
- MAGI'S LAB, Rovereto (TN), Italy; MAGI EUREGIO, Bolzano, Italy; EBTNA-LAB, Rovereto (TN), Italy.
| |
Collapse
|
28
|
Ren X, Yang R, Li L, Xu X, Liang S. Long non coding RNAs involved in MAPK pathway mechanism mediates diabetic neuropathic pain. Cell Biol Int 2020; 44:2372-2379. [PMID: 32844535 DOI: 10.1002/cbin.11457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Diabetes is the largest global epidemic of the 21st century, and the cost of diabetes and its complications comprise about 12% of global health expenditure. Diabetic neuropathy is the most common complication of diabetes, affecting up to 50% of patients over the course of their disease. Among them, 30%-50% develop neuropathic pain, which has typical symptoms that originate from the toes and progress to foot ulcers and seriously influence quality of life. The pathogenesis of diabetic neuropathic pain (DNP) is complicated and incompletely understood and there is no effective treatment except supportive treatment. Long noncoding RNAs (lncRNAs), a class of noncoding RNAs exceeding 200 nucleotides in length, have been shown to play key roles in fundamental cellular processes, and are considered to be potential targets for treatment. Recent research indicates that lncRNA is involved in the pathogenesis of DNP. Certain overexpressed lncRNAs can enhance the purinergic receptor-mediated neuropathic pain in peripheral ganglia and inflammatory cytokines are released due to receptors activated by adenosine triphosphate. In recent years, our laboratory also has been exploring the relationship and pathogenesis between lncRNAs and DNP. In this review, we focus on the recent progress in functional lncRNAs associated with DNP and investigate their roles related to respective receptors.
Collapse
Affiliation(s)
- Xinlu Ren
- Queen Mary University of London Joint Programme, Nanchang University, Nanchang, Jiangxi, China
| | - Runan Yang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, China
| | - Lin Li
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, China
| | - Xiumei Xu
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, China
| | - Shangdong Liang
- Neuropharmacology Laboratory of Physiology Department, Basic Medical School of Nanchang University, Nanchang, Jiangxi, 330006, China.,Jiangxi Provincial Key Laboratory of Autonomic Nervous Function and Disease, Nanchang, Jiangxi, 330006, China
| |
Collapse
|
29
|
Dong W, Jin SC, Allocco A, Zeng X, Sheth AH, Panchagnula S, Castonguay A, Lorenzo LÉ, Islam B, Brindle G, Bachand K, Hu J, Sularz A, Gaillard J, Choi J, Dunbar A, Nelson-Williams C, Kiziltug E, Furey CG, Conine S, Duy PQ, Kundishora AJ, Loring E, Li B, Lu Q, Zhou G, Liu W, Li X, Sierant MC, Mane S, Castaldi C, López-Giráldez F, Knight JR, Sekula RF, Simard JM, Eskandar EN, Gottschalk C, Moliterno J, Günel M, Gerrard JL, Dib-Hajj S, Waxman SG, Barker FG, Alper SL, Chahine M, Haider S, De Koninck Y, Lifton RP, Kahle KT. Exome Sequencing Implicates Impaired GABA Signaling and Neuronal Ion Transport in Trigeminal Neuralgia. iScience 2020; 23:101552. [PMID: 33083721 PMCID: PMC7554653 DOI: 10.1016/j.isci.2020.101552] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 09/06/2020] [Accepted: 09/08/2020] [Indexed: 02/07/2023] Open
Abstract
Trigeminal neuralgia (TN) is a common, debilitating neuropathic face pain syndrome often resistant to therapy. The familial clustering of TN cases suggests that genetic factors play a role in disease pathogenesis. However, no unbiased, large-scale genomic study of TN has been performed to date. Analysis of 290 whole exome-sequenced TN probands, including 20 multiplex kindreds and 70 parent-offspring trios, revealed enrichment of rare, damaging variants in GABA receptor-binding genes in cases. Mice engineered with a TN-associated de novo mutation (p.Cys188Trp) in the GABAA receptor Cl− channel γ-1 subunit (GABRG1) exhibited trigeminal mechanical allodynia and face pain behavior. Other TN probands harbored rare damaging variants in Na+ and Ca+ channels, including a significant variant burden in the α-1H subunit of the voltage-gated Ca2+ channel Cav3.2 (CACNA1H). These results provide exome-level insight into TN and implicate genetically encoded impairment of GABA signaling and neuronal ion transport in TN pathogenesis. Genomic analysis of trigeminal neuralgia (TN) using exome sequencing Rare mutations in GABA signaling and ion transport genes are enriched in TN cases Generation of a genetic TN mouse model engineered with a patient-specific mutation
Collapse
Affiliation(s)
- Weilai Dong
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Sheng Chih Jin
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
| | - August Allocco
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Xue Zeng
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Amar H Sheth
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Annie Castonguay
- CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | | | - Barira Islam
- University College London, School of Pharmacy, London, England
| | | | - Karine Bachand
- CERVO Brain Research Centre, Université Laval, Québec, QC, Canada
| | - Jamie Hu
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Agata Sularz
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Jonathan Gaillard
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Jungmin Choi
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA.,Department of Biomedical Sciences, Korea University College of Medicine, 02841 Seoul, Korea
| | - Ashley Dunbar
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Emre Kiziltug
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | | | - Sierra Conine
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Phan Q Duy
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Adam J Kundishora
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Erin Loring
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA
| | - Boyang Li
- Department of Biostatistics, Yale School of Public Health, New Haven, CT, USA
| | - Qiongshi Lu
- Department of Biostatistics & Medical Informatics, University of Wisconsin-Madison, Madison, WI, USA
| | - Geyu Zhou
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Wei Liu
- Program of Computational Biology and Bioinformatics, Yale University, New Haven, CT, USA
| | - Xinyue Li
- School of Data Science, City University of Hong Kong, Hong Kong, China
| | - Michael C Sierant
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Shrikant Mane
- Yale Center for Genome Analysis, West Haven, CT, USA
| | | | | | | | - Raymond F Sekula
- Department of Neurological Surgery, University of Pittsburgh School of Medicine and University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | - J Marc Simard
- Department of Neurosurgery, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Emad N Eskandar
- Department of Neurological Surgery, Albert Einstein College of Medicine, Montefiore Medical Center, New York
| | | | | | - Murat Günel
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Jason L Gerrard
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA
| | - Sulayman Dib-Hajj
- Center for Neuroscience & Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, USA.,Department of Neurology; Yale University, New Haven, CT, USA
| | - Stephen G Waxman
- Center for Neuroscience & Regeneration Research, VA Connecticut Healthcare System, West Haven, CT, USA.,Department of Neurology; Yale University, New Haven, CT, USA
| | - Fred G Barker
- Harvard Medical School, Boston, MA, USA.,Cancer Center, Massachusetts General Hospital, Boston, MA, USA.,Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Seth L Alper
- Division of Nephrology and Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, and Department of Medicine, Harvard Medical School, Boston, MA, USA
| | - Mohamed Chahine
- CERVO Brain Research Centre, Université Laval, Québec, QC, Canada.,Department of Medicine, Université Laval, Québec, QC, Canada
| | - Shozeb Haider
- University College London, School of Pharmacy, London, England
| | - Yves De Koninck
- CERVO Brain Research Centre, Université Laval, Québec, QC, Canada.,Department of Psychiatry and Neuroscience, Université Laval, Québec, QC, Canada
| | - Richard P Lifton
- Department of Genetics, Yale School of Medicine, New Haven, CT, USA.,Laboratory of Human Genetics and Genomics, The Rockefeller University, New York, NY, USA
| | - Kristopher T Kahle
- Department of Neurosurgery, Yale School of Medicine, New Haven, CT, USA.,Department of Pediatrics, Yale School of Medicine, New Haven, CT, USA.,Department of Cellular & Molecular Physiology, Yale School of Medicine, New Haven, CT, USA
| |
Collapse
|
30
|
Genome-wide association study for circulating fibroblast growth factor 21 and 23. Sci Rep 2020; 10:14578. [PMID: 32884031 PMCID: PMC7471933 DOI: 10.1038/s41598-020-71569-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2019] [Accepted: 08/06/2020] [Indexed: 11/09/2022] Open
Abstract
Fibroblast growth factors (FGFs) 21 and 23 are recently identified hormones regulating metabolism of glucose, lipid, phosphate and vitamin D. Here we conducted a genome-wide association study (GWAS) for circulating FGF21 and FGF23 concentrations to identify their genetic determinants. We enrolled 5,000 participants from Taiwan Biobank for this GWAS. After excluding participants with diabetes mellitus and quality control, association of single nucleotide polymorphisms (SNPs) with log-transformed FGF21 and FGF23 serum concentrations adjusted for age, sex and principal components of ancestry were analyzed. A second model additionally adjusted for body mass index (BMI) and a third model additionally adjusted for BMI and estimated glomerular filtration rate (eGFR) were used. A total of 4,201 participants underwent GWAS analysis. rs67327215, located within RGS6 (a gene involved in fatty acid synthesis), and two other SNPs (rs12565114 and rs9520257, located between PHC2-ZSCAN20 and ARGLU1-FAM155A respectively) showed suggestive associations with serum FGF21 level (P = 6.66 × 10–7, 6.00 × 10–7 and 6.11 × 10–7 respectively). The SNPs rs17111495 and rs17843626 were significantly associated with FGF23 level, with the former near PCSK9 gene and the latter near HLA-DQA1 gene (P = 1.04 × 10–10 and 1.80 × 10–8 respectively). SNP rs2798631, located within the TGFB2 gene, was suggestively associated with serum FGF23 level (P = 4.97 × 10–7). Additional adjustment for BMI yielded similar results. For FGF23, further adjustment for eGFR had similar results. We conducted the first GWAS of circulating FGF21 levels to date. Novel candidate genetic loci associated with circulating FGF21 or FGF23 levels were found. Further replication and functional studies are needed to support our findings.
Collapse
|
31
|
Abstract
Diabetes is one of the fastest growing diseases worldwide, projected to affect 693 million adults by 2045. Devastating macrovascular complications (cardiovascular disease) and microvascular complications (such as diabetic kidney disease, diabetic retinopathy and neuropathy) lead to increased mortality, blindness, kidney failure and an overall decreased quality of life in individuals with diabetes. Clinical risk factors and glycaemic control alone cannot predict the development of vascular complications; numerous genetic studies have demonstrated a clear genetic component to both diabetes and its complications. Early research aimed at identifying genetic determinants of diabetes complications relied on familial linkage analysis suited to strong-effect loci, candidate gene studies prone to false positives, and underpowered genome-wide association studies limited by sample size. The explosion of new genomic datasets, both in terms of biobanks and aggregation of worldwide cohorts, has more than doubled the number of genetic discoveries for both diabetes and diabetes complications. We focus herein on genetic discoveries for diabetes and diabetes complications, empowered primarily through genome-wide association studies, and emphasize the gaps in research for taking genomic discovery to the next level.
Collapse
Affiliation(s)
- Joanne B Cole
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA
- Division of Endocrinology and Center for Basic and Translational Obesity Research, Boston Children's Hospital, Boston, MA, USA
| | - Jose C Florez
- Programs in Metabolism and Medical & Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Diabetes Unit and Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Qualitative sex differences in pain processing: emerging evidence of a biased literature. Nat Rev Neurosci 2020; 21:353-365. [PMID: 32440016 DOI: 10.1038/s41583-020-0310-6] [Citation(s) in RCA: 350] [Impact Index Per Article: 87.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/15/2020] [Indexed: 02/07/2023]
Abstract
Although most patients with chronic pain are women, the preclinical literature regarding pain processing and the pathophysiology of chronic pain has historically been derived overwhelmingly from the study of male rodents. This Review describes how the recent adoption by a number of funding agencies of policies mandating the incorporation of sex as a biological variable into preclinical research has correlated with an increase in the number of studies investigating sex differences in pain and analgesia. Trends in the field are analysed, with a focus on newly published findings of qualitative sex differences: that is, those findings that are suggestive of differential processing mechanisms in each sex. It is becoming increasingly clear that robust differences exist in the genetic, molecular, cellular and systems-level mechanisms of acute and chronic pain processing in male and female rodents and humans.
Collapse
|
33
|
Takematsu E, Spencer A, Auster J, Chen PC, Graham A, Martin P, Baker AB. Genome wide analysis of gene expression changes in skin from patients with type 2 diabetes. PLoS One 2020; 15:e0225267. [PMID: 32084158 PMCID: PMC7034863 DOI: 10.1371/journal.pone.0225267] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 10/31/2019] [Indexed: 12/15/2022] Open
Abstract
Non-healing chronic ulcers are a serious complication of diabetes and are a major healthcare problem. While a host of treatments have been explored to heal or prevent these ulcers from forming, these treatments have not been found to be consistently effective in clinical trials. An understanding of the changes in gene expression in the skin of diabetic patients may provide insight into the processes and mechanisms that precede the formation of non-healing ulcers. In this study, we investigated genome wide changes in gene expression in skin between patients with type 2 diabetes and non-diabetic patients using next generation sequencing. We compared the gene expression in skin samples taken from 27 patients (13 with type 2 diabetes and 14 non-diabetic). This information may be useful in identifying the causal factors and potential therapeutic targets for the prevention and treatment of diabetic related diseases.
Collapse
Affiliation(s)
- Eri Takematsu
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Adrianne Spencer
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Jeff Auster
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Po-Chih Chen
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
| | - Annette Graham
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Scotland, United Kingdom
| | - Patricia Martin
- Department of Biological and Biomedical Sciences, School of Health and Life Sciences, Glasgow Caledonian University, Scotland, United Kingdom
| | - Aaron B. Baker
- University of Texas at Austin, Department of Biomedical Engineering, Austin, TX
- Institute for Cellular and Molecular Biology, University of Texas at Austin, Austin, TX
- The Institute for Computational Engineering and Sciences, University of Texas at Austin, Austin, TX
- Institute for Biomaterials, Drug Delivery and Regenerative Medicine, University of Texas at Austin, Austin, TX
- * E-mail:
| |
Collapse
|
34
|
Yang H, Sloan G, Ye Y, Wang S, Duan B, Tesfaye S, Gao L. New Perspective in Diabetic Neuropathy: From the Periphery to the Brain, a Call for Early Detection, and Precision Medicine. Front Endocrinol (Lausanne) 2020; 10:929. [PMID: 32010062 PMCID: PMC6978915 DOI: 10.3389/fendo.2019.00929] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/19/2019] [Indexed: 12/12/2022] Open
Abstract
Diabetic peripheral neuropathy (DPN) is a common chronic complication of diabetes mellitus. It leads to distressing and expensive clinical sequelae such as foot ulceration, leg amputation, and neuropathic pain (painful-DPN). Unfortunately, DPN is often diagnosed late when irreversible nerve injury has occurred and its first presentation may be with a diabetic foot ulcer. Several novel diagnostic techniques are available which may supplement clinical assessment and aid the early detection of DPN. Moreover, treatments for DPN and painful-DPN are limited. Only tight glucose control in type 1 diabetes has robust evidence in reducing the risk of developing DPN. However, neither glucose control nor pathogenetic treatments are effective in painful-DPN and symptomatic treatments are often inadequate. It has recently been hypothesized that using various patient characteristics it may be possible to stratify individuals and assign them targeted therapies to produce better pain relief. We review the diagnostic techniques which may aid the early detection of DPN in the clinical and research environment, and recent advances in precision medicine techniques for the treatment of painful-DPN.
Collapse
Affiliation(s)
- Heng Yang
- Endocrinology Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gordon Sloan
- Diabetes Research Unit, Sheffield Teaching Hospitals, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Yingchun Ye
- Endocrinology Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shuo Wang
- Endocrinology Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Bihan Duan
- Endocrinology Department, Renmin Hospital of Wuhan University, Wuhan, China
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals, Royal Hallamshire Hospital, Sheffield, United Kingdom
| | - Ling Gao
- Endocrinology Department, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
35
|
Biscetti F, Rando MM, Nardella E, Cecchini AL, Pecorini G, Landolfi R, Flex A. High Mobility Group Box-1 and Diabetes Mellitus Complications: State of the Art and Future Perspectives. Int J Mol Sci 2019; 20:ijms20246258. [PMID: 31835864 PMCID: PMC6940913 DOI: 10.3390/ijms20246258] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2019] [Revised: 12/08/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
Diabetes mellitus (DM) is an endemic disease, with growing health and social costs. The complications of diabetes can affect potentially all parts of the human body, from the heart to the kidneys, peripheral and central nervous system, and the vascular bed. Although many mechanisms have been studied, not all players responsible for these complications have been defined yet. High Mobility Group Box-1 (HMGB1) is a non-histone nuclear protein that has been implicated in many pathological processes, from sepsis to ischemia. The purpose of this review is to take stock of all the most recent data available on the role of HMGB1 in the complications of DM.
Collapse
Affiliation(s)
- Federico Biscetti
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Correspondence: ; Tel.: +39-06-3015-4335; Fax: +39-06-3550-7232
| | | | - Elisabetta Nardella
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| | | | - Giovanni Pecorini
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| | - Raffaele Landolfi
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| | - Andrea Flex
- U.O.C. Clinica Medica e Malattie Vascolari, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Roma, Italy; (G.P.); (R.L.); (A.F.)
- Laboratory of Vascular Biology and Genetics, Università Cattolica del Sacro Cuore, 00168 Roma, Italy
- Università Cattolica del Sacro Cuore, 00168 Roma, Italy; (M.M.R.); (E.N.); (A.L.C.)
| |
Collapse
|
36
|
Calvo M, Davies AJ, Hébert HL, Weir GA, Chesler EJ, Finnerup NB, Levitt RC, Smith BH, Neely GG, Costigan M, Bennett DL. The Genetics of Neuropathic Pain from Model Organisms to Clinical Application. Neuron 2019; 104:637-653. [PMID: 31751545 PMCID: PMC6868508 DOI: 10.1016/j.neuron.2019.09.018] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 09/05/2019] [Accepted: 09/12/2019] [Indexed: 12/14/2022]
Abstract
Neuropathic pain (NeuP) arises due to injury of the somatosensory nervous system and is both common and disabling, rendering an urgent need for non-addictive, effective new therapies. Given the high evolutionary conservation of pain, investigative approaches from Drosophila mutagenesis to human Mendelian genetics have aided our understanding of the maladaptive plasticity underlying NeuP. Successes include the identification of ion channel variants causing hyper-excitability and the importance of neuro-immune signaling. Recent developments encompass improved sensory phenotyping in animal models and patients, brain imaging, and electrophysiology-based pain biomarkers, the collection of large well-phenotyped population cohorts, neurons derived from patient stem cells, and high-precision CRISPR generated genetic editing. We will discuss how to harness these resources to understand the pathophysiological drivers of NeuP, define its relationship with comorbidities such as anxiety, depression, and sleep disorders, and explore how to apply these findings to the prediction, diagnosis, and treatment of NeuP in the clinic.
Collapse
Affiliation(s)
- Margarita Calvo
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Alexander J Davies
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | - Harry L Hébert
- Chronic Pain Research Group, Division of Population Health and Genomics, Mackenzie Building, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Greg A Weir
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK
| | | | - Nanna B Finnerup
- Department of Clinical Medicine, Danish Pain Research Center, Aarhus University, Aarhus 8000, Denmark
| | - Roy C Levitt
- Department of Anesthesiology, Perioperative Medicine and Pain Management, and John T. MacDonald Foundation Department of Human Genetics, Miller School of Medicine, University of Miami, Miami, FL, USA
| | - Blair H Smith
- Chronic Pain Research Group, Division of Population Health and Genomics, Mackenzie Building, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - G Gregory Neely
- Dr. John and Anne Chong Lab for Functional Genomics, Camperdown, University of Sydney, Sydney, NSW, Australia
| | - Michael Costigan
- Departments of Anesthesia and Neurobiology, Children's Hospital Boston and Harvard Medical School, Boston, MA, USA.
| | - David L Bennett
- Neural Injury Group, Nuffield Department of Clinical Neuroscience, John Radcliffe Hospital, University of Oxford, Oxford, UK.
| |
Collapse
|
37
|
Yamamoto PA, Conchon Costa AC, Lauretti GR, de Moraes NV. Pharmacogenomics in chronic pain therapy: from disease to treatment and challenges for clinical practice. Pharmacogenomics 2019; 20:971-982. [DOI: 10.2217/pgs-2019-0066] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Pharmacogenomics (PGx) has emerged as an encouraging tool in chronic pain therapy. Genetic variations associated with drug effectiveness or adverse reactions (amitriptyline/nortriptyline/codeine/oxycodone/tramadol-CYP2D6, amitriptyline-CYP2C19, carbamazepine-HLA-A, carbamazepine/oxcarbazepine-HLA-B) can be used to guide chronic pain management. Despite this evidence, many obstacles still need to be overcome for the effective clinical implementation of PGx. To translate the pharmacogenetic testing into actionable clinical decisions, the Clinical Pharmacogenetics Implementation Consortium has been developing guidelines for several drug–gene pairs. This review will show the applicability of PGx in chronic pain from disease to treatment; report the drug–gene pairs with strongest evidences in the clinic; and the challenges for the clinical implementation of PGx.
Collapse
Affiliation(s)
- Priscila Akemi Yamamoto
- São Paulo State University, UNESP - School of Pharmaceutical Sciences, Araraquara, SP, Brazil
| | - Ana Carolina Conchon Costa
- São Paulo University, USP – School of Pharmaceutical Sciences of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Gabriela Rocha Lauretti
- São Paulo University, USP – School of Medicine of Ribeirão Preto, Ribeirão Preto, SP, Brazil
| | - Natália Valadares de Moraes
- São Paulo State University, UNESP - School of Pharmaceutical Sciences, Araraquara, SP, Brazil
- Queen's University Belfast, Belfast, UK
| |
Collapse
|
38
|
Mills SEE, Nicolson KP, Smith BH. Chronic pain: a review of its epidemiology and associated factors in population-based studies. Br J Anaesth 2019; 123:e273-e283. [PMID: 31079836 PMCID: PMC6676152 DOI: 10.1016/j.bja.2019.03.023] [Citation(s) in RCA: 736] [Impact Index Per Article: 147.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 03/22/2019] [Indexed: 12/18/2022] Open
Abstract
Chronic pain is a common, complex, and distressing problem that has a profound impact on individuals and society. It frequently presents as a result of a disease or an injury; however, it is not merely an accompanying symptom, but rather a separate condition in its own right, with its own medical definition and taxonomy. Studying the distribution and determinants of chronic pain allows us to understand and manage the problem at the individual and population levels. Targeted and appropriate prevention and management strategies need to take into account the biological, psychological, socio-demographic, and lifestyle determinants and outcomes of pain. We present a narrative review of the current understanding of these factors.
Collapse
Affiliation(s)
- Sarah E E Mills
- Population Health and Genomics Division, University of Dundee School of Medicine, Ninewells Hospital and Medical School, Dundee, Scotland, UK.
| | - Karen P Nicolson
- Population Health and Genomics Division, University of Dundee School of Medicine, Ninewells Hospital and Medical School, Dundee, Scotland, UK
| | - Blair H Smith
- Population Health and Genomics Division, University of Dundee School of Medicine, Ninewells Hospital and Medical School, Dundee, Scotland, UK
| |
Collapse
|
39
|
Lee E, Takita C, Wright JL, Slifer SH, Martin ER, Urbanic JJ, Langefeld CD, Lesser GJ, Shaw EG, Hu JJ. Genome-wide enriched pathway analysis of acute post-radiotherapy pain in breast cancer patients: a prospective cohort study. Hum Genomics 2019; 13:28. [PMID: 31196165 PMCID: PMC6567461 DOI: 10.1186/s40246-019-0212-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/23/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Adjuvant radiotherapy (RT) can increase the risk of developing pain; however, the molecular mechanisms of RT-related pain remain unclear. The current study aimed to identify susceptibility loci and enriched pathways for clinically relevant acute post-RT pain, defined as having moderate to severe pain (pain score ≥ 4) at the completion of RT. METHODS We conducted a genome-wide association study (GWAS) with 1,344,832 single-nucleotide polymorphisms (SNPs), a gene-based analysis using PLINK set-based tests of 19,621 genes, and a functional enrichment analysis of a gene list of 875 genes with p < 0.05 using NIH DAVID functional annotation module with KEGG pathways and GO terms (n = 380) among 1112 breast cancer patients. RESULTS About 29% of patients reported acute post-RT pain. None of SNPs nor genes reached genome-wide significant level. Four SNPs showed suggestive associations with post-RT pain; rs16970540 in RFFL or near the LIG3 gene (p = 1.7 × 10-6), rs4584690, and rs7335912 in ABCC4/MPR4 gene (p = 5.5 × 10-6 and p = 7.8 × 10-6, respectively), and rs73633565 in EGFL6 gene (p = 8.1 × 10-6). Gene-based analysis suggested the potential involvement of neurotransmitters, olfactory receptors, and cytochrome P450 in post-RT pain, whereas functional analysis showed glucuronidation (FDR-adjusted p value = 9.46 × 10-7) and olfactory receptor activities (FDR-adjusted p value = 0.032) as the most significantly enriched biological features. CONCLUSIONS This is the first GWAS suggesting that post-RT pain is a complex polygenic trait influenced by many biological processes and functions such as glucuronidation and olfactory receptor activities. If validated in larger populations, the results can provide biological targets for pain management to improve cancer patients' quality of life. Additionally, these genes can be further tested as predictive biomarkers for personalized pain management.
Collapse
Affiliation(s)
- Eunkyung Lee
- Department of Health Sciences, University of Central Florida College of Health Professions and Sciences, Orlando, FL, 32816, USA.
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| | - Cristiane Takita
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
- Department of Radiation Oncology, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Jean L Wright
- Department of Radiation Oncology and Molecular Radiation Sciences, Johns Hopkins University, Baltimore, MD, 21231, USA
| | - Susan H Slifer
- The Center for Genetic Epidemiology and Statistical Genetics, Joph P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - Eden R Martin
- The Center for Genetic Epidemiology and Statistical Genetics, Joph P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL, 33136, USA
| | - James J Urbanic
- Wake Forest NCORP Research Base, Winston-Salem, NC, 27157, USA
| | | | - Glenn J Lesser
- Wake Forest NCORP Research Base, Winston-Salem, NC, 27157, USA
| | - Edward G Shaw
- Wake Forest NCORP Research Base, Winston-Salem, NC, 27157, USA
| | - Jennifer J Hu
- Department of Public Health Sciences, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
- Sylvester Comprehensive Cancer Center, University of Miami Miller School of Medicine, Miami, FL, 33136, USA.
| |
Collapse
|
40
|
Abstract
Neuropathic pain (NP) is an increasingly common chronic pain state and a major health burden, affecting approximately 7% to 10% of the general population. Emerging evidence suggests that genetic factors could partially explain individual susceptibility to NP and the estimated heritability in twins is 37%. The aim of this study was to systematically review and summarize the studies in humans that have investigated the influence of genetic factors associated with NP. We conducted a comprehensive literature search and performed meta-analyses of all the potential genetic variants associated with NP. We reviewed 29 full-text articles and identified 28 genes that were significantly associated with NP, mainly involved in neurotransmission, immune response, and metabolism. Genetic variants in HLA genes, COMT, OPRM1, TNFA, IL6, and GCH1, were found to have an association with NP in more than one study. In the meta-analysis, polymorphisms in HLA-DRB1*13 (odds ratio [OR], 2.96; confidence interval [CI], 1.93-4.56), HLA-DRB1*04 (OR, 1.40; CI, 1.02-1.93), HLA-DQB1*03 (OR, 2.86; CI, 1.57-5.21), HLA-A*33 (OR, 2.32; CI, 1.42-3.80), and HLA-B*44 (OR, 3.17; CI, 2.22-4.55) were associated with significantly increased risk of developing NP, whereas HLA-A*02 (OR, 0.64; CI, 0.47-0.87) conferred reduced risk and neither rs1799971 in OPRM1 (OR, 0.55; CI, 0.27-1.11) nor rs4680 in COMT (OR, 0.95; CI, 0.81-1.13) were significantly associated with NP. These findings demonstrate an important and specific contribution of genetic factors to the risk of developing NP. However, large-scale replication studies are required to validate these candidate genes. Our review also highlights the need for genome-wide association studies with consistent case definition to elucidate the genetic architecture underpinning NP.
Collapse
|
41
|
Shillo P, Sloan G, Greig M, Hunt L, Selvarajah D, Elliott J, Gandhi R, Wilkinson ID, Tesfaye S. Painful and Painless Diabetic Neuropathies: What Is the Difference? Curr Diab Rep 2019; 19:32. [PMID: 31065863 PMCID: PMC6505492 DOI: 10.1007/s11892-019-1150-5] [Citation(s) in RCA: 89] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE OF REVIEW The prevalence of diabetes mellitus and its chronic complications are increasing to epidemic proportions. This will unfortunately result in massive increases in diabetic distal symmetrical polyneuropathy (DPN) and its troublesome sequelae, including disabling neuropathic pain (painful-DPN), which affects around 25% of patients with diabetes. Why these patients develop neuropathic pain, while others with a similar degree of neuropathy do not, is not clearly understood. This review will look at recent advances that may shed some light on the differences between painful and painless-DPN. RECENT FINDINGS Gender, clinical pain phenotyping, serum biomarkers, brain imaging, genetics, and skin biopsy findings have been reported to differentiate painful- from painless-DPN. Painful-DPN seems to be associated with female gender and small fiber dysfunction. Moreover, recent brain imaging studies have found neuropathic pain signatures within the central nervous system; however, whether this is the cause or effect of the pain is yet to be determined. Further research is urgently required to develop our understanding of the pathogenesis of pain in DPN in order to develop new and effective mechanistic treatments for painful-DPN.
Collapse
Affiliation(s)
- Pallai Shillo
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield, S10 2JF UK
| | - Gordon Sloan
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield, S10 2JF UK
| | - Marni Greig
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield, S10 2JF UK
| | - Leanne Hunt
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield, S10 2JF UK
| | - Dinesh Selvarajah
- Department of Oncology and Human Metabolism, University of Sheffield, Sheffield, UK
| | - Jackie Elliott
- Department of Oncology and Human Metabolism, University of Sheffield, Sheffield, UK
| | - Rajiv Gandhi
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield, S10 2JF UK
| | | | - Solomon Tesfaye
- Diabetes Research Unit, Royal Hallamshire Hospital, Sheffield Teaching Hospitals NHS Foundation Trust, Glossop Road, Sheffield, S10 2JF UK
- Department of Oncology and Human Metabolism, University of Sheffield, Sheffield, UK
| |
Collapse
|
42
|
Hébert HL, Shepherd B, Milburn K, Veluchamy A, Meng W, Carr F, Donnelly LA, Tavendale R, Leese G, Colhoun HM, Dow E, Morris AD, Doney AS, Lang CC, Pearson ER, Smith BH, Palmer CNA. Cohort Profile: Genetics of Diabetes Audit and Research in Tayside Scotland (GoDARTS). Int J Epidemiol 2019; 47:380-381j. [PMID: 29025058 PMCID: PMC5913637 DOI: 10.1093/ije/dyx140] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/07/2017] [Indexed: 12/25/2022] Open
Affiliation(s)
| | | | - Keith Milburn
- Health Informatics Centre Services, Ninewells Hospital & Medical School, University of Dundee, Dundee, UK
| | - Abirami Veluchamy
- Division of Population Health Sciences.,Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | | | - Fiona Carr
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | | | - Roger Tavendale
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | - Graham Leese
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | - Helen M Colhoun
- Division of Population Health Sciences.,Institute of Genetics & Molecular Medicine
| | - Ellie Dow
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | - Andrew D Morris
- Usher Institute of Population Health Sciences and Informatics, University of Edinburgh, Edinburgh, UK
| | | | - Chim C Lang
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | - Ewan R Pearson
- Pat Macpherson Centre for Pharmacogenetics and Pharmacogenomics
| | | | | |
Collapse
|
43
|
Li J, He J, Li H, Fan BF, Liu BT, Mao P, Jin Y, Cheng ZQ, Zhang TJ, Zhong ZF, Li SJ, Zhu SN, Feng Y. Proportion of neuropathic pain in the back region in chronic low back pain patients -a multicenter investigation. Sci Rep 2018; 8:16537. [PMID: 30409981 PMCID: PMC6224392 DOI: 10.1038/s41598-018-33832-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 09/28/2018] [Indexed: 12/21/2022] Open
Abstract
Neuropathy can contribute to low back pain (LBP) in the region of the back. Our study investigated the proportion of neuropathic pain (NP) in low back region in chronic LBP patients from multicenter and clinics in China and identified associated factors. Assessment was made using a questionnaire and the Leeds Assessment of Neuropathic Symptoms and Signs (LANSS, only tested in low back region), as well as Quantitative Sensory Testing (QST, merely applied to the low back region), the Hospital Anxiety and Depression Scale (HADS) and the Oswestry Disability Index (ODI). Our questionnaire collected demographic information, behavioral habits and medical records. 2116 outpatients over 18 years old complaining of LBP lasting more than 3 months were enrolled in this study. The NP proportion in low back region in chronic LBP patients was 2.8%. Multivariable logistic regression analysis showed that histories of lumbar surgery, abdominal or pelvic surgery, and drinking alcohol were independent positive predictors for LBP of predominantly neuropathic origin (LBNPO), while history of low back sprain and frequently carrying weight as independent negative predictor. Using these parameters may help the identification of patients with chronic LBP likely to develop NP leading to improved treatment outcomes.
Collapse
Affiliation(s)
- Jun Li
- Peking University People's Hospital, Department of Pain Medicine, Beijing, 100044, China
| | - Jing He
- Peking University People's Hospital, Department of Pain Medicine, Beijing, 100044, China
| | - Hu Li
- Peking University People's Hospital, Arthritis Clinical & Research Center, Beijing, 100044, China
| | - Bi-Fa Fan
- China-Japan Friendship Hospital, Department of Pain Medicine, Beijing, 100029, China
| | - Bo-Tao Liu
- China-Japan Friendship Hospital, Department of Pain Medicine, Beijing, 100029, China
| | - Peng Mao
- China-Japan Friendship Hospital, Department of Pain Medicine, Beijing, 100029, China
| | - Yi Jin
- Jinling Hospital, Department of Anesthesiology, Pain Medicine Center, Nanjing, 210002, China
| | - Zhu-Qiang Cheng
- Jinling Hospital, Department of Anesthesiology, Pain Medicine Center, Nanjing, 210002, China
| | - Ting-Jie Zhang
- Peking University People's Hospital, Department of Pain Medicine, Beijing, 100044, China
| | - Zhi-Fang Zhong
- Peking University People's Hospital, Department of Pain Medicine, Beijing, 100044, China
| | - Si-Ji Li
- Peking University People's Hospital, Department of Pain Medicine, Beijing, 100044, China
| | - Sai-Nan Zhu
- Peking University First Hospital, Department of Epidemiology, Beijing, 100034, China
| | - Yi Feng
- Peking University People's Hospital, Department of Pain Medicine, Beijing, 100044, China.
| |
Collapse
|
44
|
Sloan G, Shillo P, Selvarajah D, Wu J, Wilkinson ID, Tracey I, Anand P, Tesfaye S. A new look at painful diabetic neuropathy. Diabetes Res Clin Pract 2018; 144:177-191. [PMID: 30201394 DOI: 10.1016/j.diabres.2018.08.020] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023]
Abstract
The prevalence of diabetes mellitus and its chronic complications continue to increase alarmingly. Consequently, the massive expenditure on diabetic distal symmetrical polyneuropathy (DSPN) and its sequelae, will also likely rise. Up to 50% of patients with diabetes develop DSPN, and about 20% develop neuropathic pain (painful-DSPN). Painful-DSPN can cast a huge burden on sufferers' lives with increased rates of unemployment, mental health disorders and physical co-morbidities. Unfortunately, due to limited understanding of the mechanisms leading to painful-DSPN, current treatments remain inadequate. Recent studies examining the pathophysiology of painful-DSPN have identified maladaptive alterations at the level of both the peripheral and central nervous systems. Additionally, genetic studies have suggested that patients with variants of voltage gated sodium channels may be more at risk of developing neuropathic pain in the presence of a disease trigger such as diabetes. We review the recent advances in genetics, skin biopsy immunohistochemistry and neuro-imaging, which have the potential to further our understanding of the condition, and identify targets for new mechanism based therapies.
Collapse
Affiliation(s)
- Gordon Sloan
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust & Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Pallai Shillo
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust & Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Dinesh Selvarajah
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust & Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Jing Wu
- Department of Endocrinology, Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Iain D Wilkinson
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust & Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom
| | - Irene Tracey
- FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Praveen Anand
- Peripheral Neuropathy Unit, Centre for Clinical Translation, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Solomon Tesfaye
- Diabetes Research Unit, Sheffield Teaching Hospitals NHS Foundation Trust & Academic Unit of Radiology, University of Sheffield, Sheffield, United Kingdom.
| |
Collapse
|
45
|
Genome-wide association study identifies genes associated with neuropathy in patients with head and neck cancer. Sci Rep 2018; 8:8789. [PMID: 29884837 PMCID: PMC5993794 DOI: 10.1038/s41598-018-27070-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/21/2018] [Indexed: 12/18/2022] Open
Abstract
Neuropathic pain (NP), defined as pain initiated or caused by a primary lesion or dysfunction in the nervous system, is a debilitating chronic pain condition often resulting from cancer treatment. Among cancer patients, neuropathy during cancer treatment is a predisposing event for NP. To identify genetic variants influencing the development of NP, we conducted a genome-wide association study in 1,043 patients with squamous cell carcinoma of the head and neck, based on 714,494 tagging single-nucleotide polymorphisms (SNPs) (130 cases, 913 controls). About 12.5% of the patients, who previously had cancer treatment, had neuropathy-associated diagnoses, as defined using the ICD-9/ICD-10 codes. We identified four common SNPs representing four genomic regions: 7q22.3 (rs10950641; SNX8; P = 3.39 × 10−14), 19p13.2 (rs4804217; PCP2; P = 2.95 × 10−9), 3q27.3 (rs6796803; KNG1; P = 6.42 × 10−9) and 15q22.2 (rs4775319; RORA; P = 1.02 × 10−8), suggesting SNX8, PCP2, KNG1 and RORA might be novel target genes for NP in patients with head and neck cancer. Future experimental validation to explore physiological effects of the identified SNPs will provide a better understanding of the biological mechanisms underlying NP and may provide insights into novel therapeutic targets for treatment and management of NP.
Collapse
|
46
|
Knezevic NN, Tverdohleb T, Knezevic I, Candido KD. The Role of Genetic Polymorphisms in Chronic Pain Patients. Int J Mol Sci 2018; 19:E1707. [PMID: 29890676 PMCID: PMC6032204 DOI: 10.3390/ijms19061707] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Revised: 05/23/2018] [Accepted: 06/01/2018] [Indexed: 01/11/2023] Open
Abstract
It is estimated that the total annual financial cost for pain management in the U.S. exceeds 100 billion dollars. However, when indirect costs are included, such as functional disability and reduction in working hours, the cost can reach more than 300 billion dollars. In chronic pain patients, the role of pharmacogenetics is determined by genetic effects on various pain types, as well as the genetic effect on drug safety and efficacy. In this review article, we discuss genetic polymorphisms present in different types of chronic pain, such as fibromyalgia, low back pain, migraine, painful peripheral diabetic neuropathy and trigeminal neuralgia. Furthermore, we discuss the role of CYP450 enzymes involved in metabolism of drugs, which have been used for treatment of chronic pain (amitriptyline, duloxetine, opioids, etc.). We also discuss how pharmacogenetics can be applied towards improving drug efficacy, shortening the time required to achieve therapeutic outcomes, reducing risks of side effects, and reducing medical costs and reliance upon polypharmacy.
Collapse
Affiliation(s)
- Nebojsa Nick Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA.
- Department of Anesthesiology, College of Medicine, University of Illinois, Chicago, IL 60612, USA.
- Department of Surgery, College of Medicine, University of Illinois, Chicago, IL 60612, USA.
| | - Tatiana Tverdohleb
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA.
| | - Ivana Knezevic
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA.
| | - Kenneth D Candido
- Department of Anesthesiology, Advocate Illinois Masonic Medical Center, 836 W. Wellington Ave. Suite 4815, Chicago, IL 60657, USA.
- Department of Anesthesiology, College of Medicine, University of Illinois, Chicago, IL 60612, USA.
- Department of Surgery, College of Medicine, University of Illinois, Chicago, IL 60612, USA.
| |
Collapse
|
47
|
|
48
|
Zorina-Lichtenwalter K, Parisien M, Diatchenko L. Genetic studies of human neuropathic pain conditions: a review. Pain 2018; 159:583-594. [PMID: 29240606 PMCID: PMC5828382 DOI: 10.1097/j.pain.0000000000001099] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2017] [Revised: 10/20/2017] [Accepted: 10/26/2017] [Indexed: 12/12/2022]
Abstract
Numerous studies have shown associations between genetic variants and neuropathic pain disorders. Rare monogenic disorders are caused by mutations of substantial effect size in a single gene, whereas common disorders are likely to have a contribution from multiple genetic variants of mild effect size, representing different biological pathways. In this review, we survey the reported genetic contributors to neuropathic pain and submit them for validation in a 150,000-participant sample of the U.K. Biobank cohort. Successfully replicated association with a neuropathic pain construct for 2 variants in IL10 underscores the importance of neuroimmune interactions, whereas genome-wide significant association with low back pain (P = 1.3e-8) and false discovery rate 5% significant associations with hip, knee, and neck pain for variant rs7734804 upstream of the MAT2B gene provide evidence of shared contributing mechanisms to overlapping pain conditions at the molecular genetic level.
Collapse
Affiliation(s)
| | - Marc Parisien
- Alan Edwards Pain Centre, McGill University, Montreal, QC, Canada
| | - Luda Diatchenko
- Alan Edwards Pain Centre, McGill University, Montreal, QC, Canada
| |
Collapse
|
49
|
Sandholm N, Groop PH. Genetic basis of diabetic kidney disease and other diabetic complications. Curr Opin Genet Dev 2018; 50:17-24. [PMID: 29453109 DOI: 10.1016/j.gde.2018.01.002] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2017] [Revised: 01/19/2018] [Accepted: 01/24/2018] [Indexed: 12/21/2022]
Abstract
Diabetic kidney disease and other long-term complications are common in diabetes, and comprise the main cause of co-morbidity and premature mortality in individuals with diabetes. While familial clustering and heritability have been reported for all diabetic complications, the genetic background and the molecular mechanisms remain poorly understood. In recent years, genome-wide association studies have identified a few susceptibility loci for the renal complications as well as for diabetic retinopathy, diabetic cardiovascular disease and mortality. As for many complex diseases, the genetic factors increase the risk of complications in concert with the environment, and certain associations seem specific for particular conditions, for example, SP3-CDCA7 associated with end-stage renal disease only in women, or MGMT and variants on chromosome 5q13 associated with cardiovascular mortality only under tight glycaemic control. The characterization of the phenotypes is one of the main challenges for genetic research on diabetic complications, in addition to an urgent need to increase the number of individuals with diabetes with high quality phenotypic data to be included in future genetic studies.
Collapse
Affiliation(s)
- Niina Sandholm
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland; Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; Research Programs Unit, Diabetes and Obesity, University of Helsinki, 00290 Helsinki, Finland.
| | - Per-Henrik Groop
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland; Abdominal Center Nephrology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland; Research Programs Unit, Diabetes and Obesity, University of Helsinki, 00290 Helsinki, Finland; Department of Diabetes, Central Clinical School, Monash University, Melbourne, Victoria, Australia
| |
Collapse
|
50
|
Abstract
Pain is an increasing clinical challenge affecting about half the population, with a substantial number of people suffering daily intense pain. Such suffering can be linked to the dramatic rise in opioid use and associated deaths in the United States. There is a pressing need for new analgesics with limited side effects. Here, we summarize what we know about the genetics of pain and implications for drug development. We make the case that chronic pain is not one but a set of disease states, with peripheral drive a key element in most. We argue that understanding redundancy and plasticity, hallmarks of the nervous system, is critical in developing analgesic drug strategies. We describe the exploitation of monogenic pain syndromes and genetic association studies to define analgesic targets, as well as issues associated with animal models of pain. We appraise present-day screening technologies and describe recent approaches to pain treatment that hold promise.
Collapse
Affiliation(s)
- Jane E Sexton
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom;
| | - James J Cox
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom;
| | - Jing Zhao
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom;
| | - John N Wood
- Molecular Nociception Group, Wolfson Institute for Biomedical Research, University College London, London WC1E 6BT, United Kingdom;
| |
Collapse
|