1
|
Olanrewaju OS, Glick BR, Babalola OO. Beyond correlation: Understanding the causal link between microbiome and plant health. Heliyon 2024; 10:e40517. [PMID: 39669148 PMCID: PMC11636107 DOI: 10.1016/j.heliyon.2024.e40517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2023] [Revised: 11/15/2024] [Accepted: 11/18/2024] [Indexed: 12/14/2024] Open
Abstract
Understanding the causal link between the microbiome and plant health is crucial for the future of crop production. Established studies have shown a symbiotic relationship between microbes and plants, reshaping our knowledge of plant microbiomes' role in health and disease. Addressing confounding factors in microbiome study is essential, as standardization enables precise identification of microbiome features that influence outcomes. The microbiome significantly impacts plant development, necessitating holistic investigation for maintaining plant health. Mechanistic studies have deepened our understanding of microbiome structure and function related to plant health, though much research still needs to be carried out. This review, therefore, discusses current challenges and proposes advancing studies from correlation to causation and translation. We explore current knowledge on the microbiome and plant health, emphasizing multi-omics approaches and hypothesis-driven research. Future studies should focus on developing translational research for producing probiotics and prebiotics from biomarkers that regulate the microbiome-plant health connection, promoting sustainable crop production through microbiome applications.
Collapse
Affiliation(s)
- Oluwaseyi Samuel Olanrewaju
- Unit for Environmental Sciences and Management, Microbiology, North-West University, Potchefstroom Campus, Private Bag X6001, Potchefstroom, 2520, South Africa
| | - Bernard R. Glick
- Department of Biology, University of Waterloo, Waterloo, Ontario, N2L3G1, Canada
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, South Africa
- Department of Life Sciences, Silwood Park Campus, Imperial College London, Buckhurst road, Ascot, Berkshire, SL5 7PY, UK
| |
Collapse
|
2
|
Huang XY, Ye XP, Hu YY, Tang ZX, Zhang T, Zhou H, Zhou T, Bai XL, Pi EX, Xie BH, Shi LE. Exopolysaccharides of Paenibacillus polymyxa: A review. Int J Biol Macromol 2024; 261:129663. [PMID: 38278396 DOI: 10.1016/j.ijbiomac.2024.129663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 12/30/2023] [Accepted: 01/19/2024] [Indexed: 01/28/2024]
Abstract
Paenibacillus polymyxa (P. polymyxa) is a member of the genus Paenibacillus, which is a rod-shaped, spore-forming gram-positive bacterium. P. polymyxa is a source of many metabolically active substances, including polypeptides, volatile organic compounds, phytohormone, hydrolytic enzymes, exopolysaccharide (EPS), etc. Due to the wide range of compounds that it produces, P. polymyxa has been extensively studied as a plant growth promoting bacterium which provides a direct benefit to plants through the improvement of N fixation from the atmosphere and enhancement of the solubilization of phosphorus and the uptake of iron in the soil, and phytohormones production. Among the metabolites from P. polymyxa, EPS exhibits many activities, for example, antioxidant, immunomodulating, anti-tumor and many others. EPS has various applications in food, agriculture, environmental protection. Particularly, in the field of sustainable agriculture, P. polymyxa EPS can be served as a biofilm to colonize microbes, and also can act as a nutrient sink on the roots of plants in the rhizosphere. Therefore, this paper would provide a comprehensive review of the advancements of diverse aspects of EPS from P. polymyxa, including the production, extraction, structure, biosynthesis, bioactivity and applications, etc. It would provide a direction for future research on P. polymyxa EPS.
Collapse
Affiliation(s)
- Xuan-Ya Huang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xin-Pei Ye
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Yan-Yu Hu
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Zhen-Xing Tang
- School of Culinary Art, Tourism College of Zhejiang, Hangzhou, Zhejiang 311231, China
| | - Tian Zhang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Hai Zhou
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Ting Zhou
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Xue-Lian Bai
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Er-Xu Pi
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China
| | - Bing-Hua Xie
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| | - Lu-E Shi
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, Zhejiang 311121, China.
| |
Collapse
|
3
|
Upadhyay SK, Rajput VD, Kumari A, Espinosa-Saiz D, Menendez E, Minkina T, Dwivedi P, Mandzhieva S. Plant growth-promoting rhizobacteria: a potential bio-asset for restoration of degraded soil and crop productivity with sustainable emerging techniques. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2023; 45:9321-9344. [PMID: 36413266 DOI: 10.1007/s10653-022-01433-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 11/06/2022] [Indexed: 06/16/2023]
Abstract
The rapid expansion of degraded soil puts pressure on agricultural crop yield while also increasing the likelihood of food scarcity in the near future at the global level. The degraded soil does not suit plants growth owing to the alteration in biogeochemical cycles of nutrients, soil microbial diversity, soil organic matter, and increasing concentration of heavy metals and organic chemicals. Therefore, it is imperative that a solution should be found for such emerging issues in order to establish a sustainable future. In this context, the importance of plant growth-promoting rhizobacteria (PGPR) for their ability to reduce plant stress has been recognized. A direct and indirect mechanism in plant growth promotion is facilitated by PGPR via phytostimulation, biofertilizers, and biocontrol activities. However, plant stress mediated by deteriorated soil at the field level is not entirely addressed by the implementation of PGPR at the field level. Thus, emerging methods such as CRISPR and nanotechnological approaches along with PGPR could manage degraded soil effectively. In the pursuit of the critical gaps in this respect, the present review discusses the recent advancement in PGPR action when used along with nanomaterials and CRISPR, impacting plant growth under degraded soil, thereby opening a new horizon for researchers in this field to mitigate the challenges of degraded soil.
Collapse
Affiliation(s)
- Sudhir K Upadhyay
- Department of Environmental Science, V.B.S. Purvanchal University, Jaunpur, 222003, India
| | - Vishnu D Rajput
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090.
| | - Arpna Kumari
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Daniel Espinosa-Saiz
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain
| | - Esther Menendez
- Microbiology and Genetics Department, Universidad de Salamanca, Salamanca, Spain
- Institute for Agribiotechnology Research (CIALE), Villamayor, Salamanca, Spain
- Mediterranean Institute for Agriculture, Environment and Development (MED), Institute for Advanced Studies and Research (IIFA), Universidade de Évora, Pólo da Mitra, Évora, Portugal
| | - Tatiana Minkina
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| | - Padmanabh Dwivedi
- Department of Plant Physiology, Institute of Agricultural Sciences, Banaras Hindu University, Varanasi, U.P., 221005, India
| | - Saglara Mandzhieva
- Academy of Biology and Biotechnology, Southern Federal University, Rostov-on-Don, Russia, 344090
| |
Collapse
|
4
|
Zhang X, Zou G, Chu H, Shen Z, Zhang Y, Abbas MHH, Albogami BZ, Zhou L, Abdelhafez AA. Biochar applications for treating potentially toxic elements (PTEs) contaminated soils and water: a review. Front Bioeng Biotechnol 2023; 11:1258483. [PMID: 37662433 PMCID: PMC10472142 DOI: 10.3389/fbioe.2023.1258483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/03/2023] [Indexed: 09/05/2023] Open
Abstract
Environmental pollution with potentially toxic elements (PTEs) has become one of the critical and pressing issues worldwide. Although these pollutants occur naturally in the environment, their concentrations are continuously increasing, probably as a consequence of anthropic activities. They are very toxic even at very low concentrations and hence cause undesirable ecological impacts. Thus, the cleanup of polluted soils and water has become an obligation to ensure the safe handling of the available natural resources. Several remediation technologies can be followed to attain successful remediation, i.e., chemical, physical, and biological procedures; yet many of these techniques are expensive and/or may have negative impacts on the surroundings. Recycling agricultural wastes still represents the most promising economical, safe, and successful approach to achieving a healthy and sustainable environment. Briefly, biochar acts as an efficient biosorbent for many PTEs in soils and waters. Furthermore, biochar can considerably reduce concentrations of herbicides in solutions. This review article explains the main reasons for the increasing levels of potentially toxic elements in the environment and their negative impacts on the ecosystem. Moreover, it briefly describes the advantages and disadvantages of using conventional methods for soil and water remediation then clarifies the reasons for using biochar in the clean-up practice of polluted soils and waters, either solely or in combination with other methods such as phytoremediation and soil washing technologies to attain more efficient remediation protocols for the removal of some PTEs, e.g., Cr and As from soils and water.
Collapse
Affiliation(s)
- Xu Zhang
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture, Shanghai, China
| | - Guoyan Zou
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture, Shanghai, China
| | - Huaqiang Chu
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Zheng Shen
- National Engineering Research Center of Protected Agriculture, Shanghai Engineering Research Center of Protected Agriculture, Tongji University, Shanghai, China
| | - Yalei Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, China
| | - Mohamed H. H. Abbas
- Soils and Water Department, Faculty of Agriculture, Soils and Water Department, Benha University, Benha, Egypt
| | - Bader Z. Albogami
- Department of Biology, Faculty of Arts and Sciences, Najran University, Najran, Saudi Arabia
| | - Li Zhou
- Eco-Environmental Protection Research Institute, Shanghai Academy of Agricultural Sciences, Shanghai, China
- Shanghai Engineering Research Centre of Low-Carbon Agriculture, Shanghai, China
| | - Ahmed A. Abdelhafez
- Soils and Water Department, Faculty of Agriculture, New Valley University, New Valley, Egypt
- National Committee of Soil Science, Academy of Scientific Research and Technology, Cairo, Egypt
| |
Collapse
|
5
|
Li X, Ma S, Meng Y, Wei W, Peng C, Ling C, Fan S, Liu Z. Characterization of Antagonistic Bacteria Paenibacillus polymyxa ZYPP18 and the Effects on Plant Growth. PLANTS (BASEL, SWITZERLAND) 2023; 12:2504. [PMID: 37447065 DOI: 10.3390/plants12132504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 06/24/2023] [Accepted: 06/28/2023] [Indexed: 07/15/2023]
Abstract
Paenibacillus polymyxa is a plant growth-promoting rhizobacteria (PGPR) that has significant biocontrol properties. Wheat sheath blight caused by Rhizoctonia cerealis is a significant soil-borne disease of wheat that causes significant losses in wheat production, and the biological control against the disease has received extensive attention. P. polymyxa ZYPP18 was identified using morphological and molecular characterization. An antagonistic activity experiment verified that ZYPP18 inhibits the growth of R. cerealis on artificial growth media. A detached leaf assay verified that ZYPP18 inhibits the expansion of wheat sheath blight on the detached leaf. ZYPP18 has been found to possess plant growth-promoting properties, as well as the ability to solubilize phosphate and generate indole-3-acetic acid. Results from hydroponic experiments showed that wheat seedlings treated with ZYPP18 grew faster. Additionally, pot experiments and field experiments demonstrated that ZYPP18 effectively controls the occurrence of wheat sheath blight. ZYPP18 reduced the incidence of wheat sheath blight in wheat seedlings by 37.37% and 37.90%, respectively. The control effect of ZYPP18 on wheat sheath blight was 56.30% and 65.57%, respectively. These findings provide evidence that P. polymyxa ZYPP18 is an effective biological factor that can control disease and promote plant growth.
Collapse
Affiliation(s)
- Xiangying Li
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Sujing Ma
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Yuan Meng
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Wei Wei
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Chen Peng
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| | - Chunli Ling
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Susu Fan
- Ecology Institute, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Zhenyu Liu
- College of Plant Protection, Shandong Agricultural University, Taian 271018, China
| |
Collapse
|
6
|
Vaghela N, Gohel S. Medicinal plant-associated rhizobacteria enhance the production of pharmaceutically important bioactive compounds under abiotic stress conditions. J Basic Microbiol 2023; 63:308-325. [PMID: 36336634 DOI: 10.1002/jobm.202200361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 09/15/2022] [Accepted: 10/22/2022] [Indexed: 11/09/2022]
Abstract
Interest in cultivating valuable medicinal plants to collect bioactive components has risen extensively over the world to meet the demands of health care systems, pharmaceuticals, and food businesses. Farmers commonly use chemical fertilizers to attain maximal biomass and yield, which have negative effects on the growth, development, and bioactive constituents of such medicinally important plants. Because of its low cost, environmentally friendly behavior, and nondestructive impact on soil fertility, plant health, and human health, the use of beneficial rhizobial microbiota is an alternative strategy for increasing the production of useful medicinal plants under both standard and stressed conditions. Plant growth-promoting rhizobacteria (PGPR) associated with medicinal plants belong to the genera Azotobacter, Acinetobacter, Bacillus, Brevibacterium, Burkholderia, Exiguobacterium, Pseudomonas, Pantoea, Mycobacterium, Methylobacterium, and Serratia. These microbes enhance plant growth parameters by producing secondary metabolites, including enzymes and antibiotics, which help in nutrient uptake, enhance soil fertility, improve plant growth, and protect against plant pathogens. The role of PGPR in the production of biomass and their effect on the quality of bioactive compounds (phytochemicals) is described in this review. Additionally, the mitigation of environmental stresses including drought stress, saline stress, alkaline stress, and flooding stress to herbal plants is illustrated.
Collapse
Affiliation(s)
- Nishtha Vaghela
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India
| | - Sangeeta Gohel
- Department of Biosciences, Saurashtra University, Rajkot, Gujarat, India
| |
Collapse
|
7
|
Chen Z, Wang L, Cardoso JA, Zhu S, Liu G, Rao IM, Lin Y. Improving phosphorus acquisition efficiency through modification of root growth responses to phosphate starvation in legumes. FRONTIERS IN PLANT SCIENCE 2023; 14:1094157. [PMID: 36844096 PMCID: PMC9950756 DOI: 10.3389/fpls.2023.1094157] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Phosphorus (P) is one of the essential macronutrients for plant growth and development, and it is an integral part of the major organic components, including nucleic acids, proteins and phospholipids. Although total P is abundant in most soils, a large amount of P is not easily absorbed by plants. Inorganic phosphate (Pi) is the plant-available P, which is generally immobile and of low availability in soils. Hence, Pi starvation is a major constraint limiting plant growth and productivity. Enhancing plant P efficiency can be achieved by improving P acquisition efficiency (PAE) through modification of morpho-physiological and biochemical alteration in root traits that enable greater acquisition of external Pi from soils. Major advances have been made to dissect the mechanisms underlying plant adaptation to P deficiency, especially for legumes, which are considered important dietary sources for humans and livestock. This review aims to describe how legume root growth responds to Pi starvation, such as changes in the growth of primary root, lateral roots, root hairs and cluster roots. In particular, it summarizes the various strategies of legumes to confront P deficiency by regulating root traits that contribute towards improving PAE. Within these complex responses, a large number of Pi starvation-induced (PSI) genes and regulators involved in the developmental and biochemical alteration of root traits are highlighted. The involvement of key functional genes and regulators in remodeling root traits provides new opportunities for developing legume varieties with maximum PAE needed for regenerative agriculture.
Collapse
Affiliation(s)
- Zhijian Chen
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Linjie Wang
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | | | - Shengnan Zhu
- Life Science and Technology School, Lingnan Normal University, Zhanjiang, China
| | - Guodao Liu
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Idupulapati M. Rao
- International Center for Tropical Agriculture (CIAT), Cali, Colombia
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Yan Lin
- Key Laboratory of Tropical Crops Germplasm Resources Genetic Improvement and Innovation of Hainan Province, Institute of Tropical Crop Genetic Resources, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Institute of Bioengineering, Guangdong Academy of Sciences, Guangzhou, China
| |
Collapse
|
8
|
Liu J, Zhang J, Shi Q, Liu X, Yang Z, Han P, Li J, Wei Z, Hu T, Liu F. The Interactive Effects of Deficit Irrigation and Bacillus pumilus Inoculation on Growth and Physiology of Tomato Plant. PLANTS (BASEL, SWITZERLAND) 2023; 12:670. [PMID: 36771756 PMCID: PMC9919795 DOI: 10.3390/plants12030670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/23/2023] [Accepted: 01/24/2023] [Indexed: 06/18/2023]
Abstract
The effects of inoculating plant growth promoting rhizobacteria (PGPR) and soil water deficits on crop growth and physiology remain largely unknown. Here, the responses of leaf gas exchange, growth, and water use efficiency (WUE) of tomato plants to Bacillus pumilus (B.p.) inoculation under four irrigation strategies (I1-I4) were investigated in a greenhouse. Results showed that soil water deficits, especially at I4 (20%, v/v), significantly decreased leaf stomatal conductance (gs), transpiration rate (Tr), and photosynthetic rate (An), and the decrease of gs and Tr were more pronounced than An. Reduced irrigation regimes significantly lowered dry matter and plant water use both in the non-B.p. control and the B.p. plants, while reduced irrigation significantly increased plant WUE, and B.p. inoculation had little effect on this parameter. Synergistic effects of PGPR and deficit irrigation on leaf gas exchange, leaf abscisic acid content, and stomatal density were found in this study, and specifically, B.p. treated plants at I4 possessed the highest WUE at stomatal and leaf scales, suggesting that B.p. inoculation could optimize water use and partly alleviate the negative effects of soil water deficit. These findings provide useful information for effective irrigation management and the application of PGPR in agriculture in the future.
Collapse
Affiliation(s)
- Jie Liu
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Jiarui Zhang
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Qimiao Shi
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Xiangliang Liu
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Zhen Yang
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Pan Han
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Jingjing Li
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Zhenhua Wei
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Tiantian Hu
- Key Laboratory of Agricultural Soil and Water Engineering in Arid and Semiarid Areas, Ministry of Education, Northwest A&F University, Xianyang 712100, China
| | - Fulai Liu
- Department of Plant and Environmental Sciences, Faculty of Science, University of Copenhagen, Højbakkegaard Allé 13, 2630 Taastrup, Denmark
| |
Collapse
|
9
|
Saad AM, Elhabbak AK, Abbas MH, Mohamed I, AbdelRahman MA, Scopa A, Bassouny MA. Can deficit irrigations be an optimum solution for increasing water productivity under arid conditions? A case study on wheat plants. Saudi J Biol Sci 2023; 30:103537. [PMID: 36590750 PMCID: PMC9800629 DOI: 10.1016/j.sjbs.2022.103537] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 11/08/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022] Open
Abstract
Water scarcity is of growing concern in many countries around the world, especially within the arid and semi-arid zones. Accordingly, rationalizing irrigation water has become an obligation to achieve the sustainable developmental goals of these countries. This may take place via using deficit irrigation which is long thought to be an effective strategy to save and improve water productivity. The current study is a trial to evaluate the pros and cons of using 50 and 75 % of the irrigation requirements (IR) of wheat (deficit irrigations) versus 100 %IR, while precisely charting changes in wheat growth parameters, antioxidant enzymes in plant shoots and the overall nutritional status of plants (NPK contents). Accordingly, a field experiment was conducted for two successive seasons, followed a split-plot design in which deficit irrigations (two irrigations to achieve 50 % of the irrigations requirements (IR), three irrigations to attain 75 % IR, and four irrigations to fulfill 100 % IR) were placed in main plots while four different studied wheat cultivars were in subplots. Results obtained herein indicate that deficit irrigations led to significant reductions in growth parameters and productivity of all wheat cultivars, especially when using 50 % IR. It also decreased NPK contents within plant shoots while elevated their contents of proline, peroxidase, and catalase enzymes. On the other hand, this type of irrigation decreased virtual water content (VWC, the amount of water used in production on ton of wheat grains). Stress tolerance index (STI), and financial revenues per unit area were also assessed. The obtained values of grain productivity, STI, VWC and financial revenues were weighted via PCA analyses, and then introduced in a novel model to estimate the efficiency of deficit irrigations (ODEI) whose results specified that the overall efficiency decreased as follows: 50 %IR < 75 %IR < 100 %IR. In conclusion, deficit irrigation is not deemed appropriate for rationalizing irrigation water while growing wheat on arid soils.
Collapse
Affiliation(s)
- Ahmed M. Saad
- Agronomy Department, Faculty of Agriculture, Benha University, Egypt
| | - Amany K. Elhabbak
- Agronomy Department, Faculty of Agriculture, Benha University, Egypt
| | - Mohamed H.H. Abbas
- Soil and Water Department, Faculty of Agriculture, Benha University, Egypt
| | - Ibrahim Mohamed
- Soil and Water Department, Faculty of Agriculture, Benha University, Egypt
| | - Mohamed A.E. AbdelRahman
- Division of Environmental Studies and Land Use, National Authority for Remote Sensing and Space Sciences (NARSS), Cairo 11769, Egypt
| | - Antonio Scopa
- Scuola di Scienze Agrarie, Forestali, Alimentari ed Ambientali (SAFE), Università degli Studi della Basilicata, Viale dell’Ateneo Lucano, 10, 85100 Potenza, Italy,Corresponding authors.
| | - Mohamed A. Bassouny
- Soil and Water Department, Faculty of Agriculture, Benha University, Egypt,Corresponding authors.
| |
Collapse
|
10
|
Bhat MA, Mishra AK, Jan S, Bhat MA, Kamal MA, Rahman S, Shah AA, Jan AT. Plant Growth Promoting Rhizobacteria in Plant Health: A Perspective Study of the Underground Interaction. PLANTS (BASEL, SWITZERLAND) 2023; 12:629. [PMID: 36771713 PMCID: PMC9919780 DOI: 10.3390/plants12030629] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/22/2023] [Accepted: 01/26/2023] [Indexed: 06/18/2023]
Abstract
Plants are affected by various environmental stresses such as high or low temperatures, drought, and high salt levels, which can disrupt their normal cellular functioning and impact their growth and productivity. These stressors offer a major constraint to the morphological, physiological, and biochemical parameters; thereby attributing serious complications in the growth of crops such as rice, wheat, and corn. Considering the strategic and intricate association of soil microbiota, known as plant growth-promoting rhizobacteria (PGPR), with the plant roots, PGPR helps plants to adapt and survive under changing environmental conditions and become more resilient to stress. They aid in nutrient acquisition and regulation of water content in the soil and also play a role in regulating osmotic balance and ion homeostasis. Boosting key physiological processes, they contribute significantly to the alleviation of stress and promoting the growth and development of plants. This review examines the use of PGPR in increasing plant tolerance to different stresses, focusing on their impact on water uptake, nutrient acquisition, ion homeostasis, and osmotic balance, as well as their effects on crop yield and food security.
Collapse
Affiliation(s)
- Mudasir Ahmad Bhat
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Awdhesh Kumar Mishra
- Department of Biotechnology, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Saima Jan
- Gene Expression Lab., School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Mujtaba Aamir Bhat
- Gene Expression Lab., School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Mohammad Azhar Kamal
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj 11942, Saudi Arabia
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, BR Ambedkar Bihar University, Muzaffarpur 845401, India
| | - Ali Asghar Shah
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| | - Arif Tasleem Jan
- Gene Expression Lab., School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri 185234, India
| |
Collapse
|
11
|
Sandilya SP, Jeevan B, Subrahmanyam G, Dutta K, Vijay N, Bhattacharyya N, Chutia M. Co-inoculation of native multi-trait plant growth promoting rhizobacteria promotes plant growth and suppresses Alternaria blight disease in Castor (Ricinus communis L.). Heliyon 2022; 8:e11886. [DOI: 10.1016/j.heliyon.2022.e11886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 09/11/2022] [Accepted: 11/17/2022] [Indexed: 11/27/2022] Open
|
12
|
Bano A, Waqar A, Khan A, Tariq H. Phytostimulants in sustainable agriculture. FRONTIERS IN SUSTAINABLE FOOD SYSTEMS 2022. [DOI: 10.3389/fsufs.2022.801788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The consistent use of synthetic fertilizers and chemicals in traditional agriculture has not only compromised the fragile agroecosystems but has also adversely affected human, aquatic, and terrestrial life. The use of phytostimulants is an alternative eco-friendly approach that eliminates ecosystem disruption while maintaining agricultural productivity. Phytostimulants include living entities and materials, such as microorganisms and nanomaterials, which when applied to plants or to the rhizosphere, stimulate plant growth and induce tolerance to plants against biotic and abiotic stresses. In this review, we focus on plant growth-promoting rhizobacteria (PGPR), beneficial fungi, such as arbuscular mycorrhizal fungi (AMF) and plant growth-promoting fungi (PGPF), actinomycetes, cyanobacteria, azolla, and lichens, and their potential benefits in the crop improvement, and mitigation of abiotic and biotic stresses either alone or in combination. PGPR, AMF, and PGPF are plant beneficial microbes that can release phytohormones, such as indole acetic acid (IAA), gibberellic acid (GA), and cytokinins, promoting plant growth and improving soil health, and in addition, they also produce many secondary metabolites, antibiotics, and antioxidant compounds and help to combat biotic and abiotic stresses. Their ability to act as phytostimulator and a supplement of inorganic fertilizers is considered promising in practicing sustainable agriculture and organic farming. Glomalin is a proteinaceous product, produced by AMF, involved in soil aggregation and elevation of soil water holding capacity under stressed and unstressed conditions. The negative effects of continuous cropping can be mitigated by AMF biofertilization. The synergistic effects of PGPR and PGPF may be more effective. The mechanisms of control exercised by PGPF either direct or indirect to suppress plant diseases viz. by competing for space and nutrients, mycoparasitism, antibiosis, mycovirus-mediated cross-protection, and induced systemic resistance (ISR) have been discussed. The emerging role of cyanobacterial metabolites and the implication of nanofertilizers have been highlighted in sustainable agriculture.
Collapse
|
13
|
Sun H, Zhang J, Liu W, E W, Wang X, Li H, Cui Y, Zhao D, Liu K, Du B, Ding Y, Wang C. Identification and combinatorial engineering of indole-3-acetic acid synthetic pathways in Paenibacillus polymyxa. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:81. [PMID: 35953838 PMCID: PMC9367139 DOI: 10.1186/s13068-022-02181-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/05/2022] [Indexed: 11/22/2022]
Abstract
Background Paenibacillus polymyxa is a typical plant growth-promoting rhizobacterium (PGPR), and synthesis of indole-3-acetic acid (IAA) is one of the reasons for its growth-promoting capacity. The synthetic pathways of IAA in P. polymyxa must be identified and modified. Results P. polymyxa SC2 and its spontaneous mutant SC2-M1 could promote plant growth by directly secreting IAA. Through metabonomic and genomic analysis, the genes patA, ilvB3, and fusE in the native IPyA pathway of IAA synthesis in strain SC2-M1 were predicted. A novel strong promoter P04420 was rationally selected, synthetically analyzed, and then evaluated on its ability to express IAA synthetic genes. Co-expression of three genes, patA, ilvB3, and fusE, increased IAA yield by 60% in strain SC2-M1. Furthermore, the heterogeneous gene iaam of the IAM pathway and two heterogeneous IPyA pathways of IAA synthesis were selected to improve the IAA yield of strain SC2-M1. The genes ELJP6_14505, ipdC, and ELJP6_00725 of the entire IPyA pathway from Enterobacter ludwigii JP6 were expressed well by promoter P04420 in strain SC2-M1 and increased IAA yield in the engineered strain SC2-M1 from 13 to 31 μg/mL, which was an increase of 138%. Conclusions The results of our study help reveal and enhance the IAA synthesis pathways of P. polymyxa and its future application. Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02181-3. Verifying an entire native IPyA pathway of IAA synthesis in P. polymyxa. Introducing heterologous IAM and IPyA pathways of IAA synthesis to P. polymyxa. Selecting and analyzing a novel strong promoter P04420 to express IAA synthesis genes.
Collapse
|
14
|
Fadiji AE, Santoyo G, Yadav AN, Babalola OO. Efforts towards overcoming drought stress in crops: Revisiting the mechanisms employed by plant growth-promoting bacteria. Front Microbiol 2022; 13:962427. [PMID: 35966701 PMCID: PMC9372271 DOI: 10.3389/fmicb.2022.962427] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Globally, agriculture is under a lot of pressure due to rising population and corresponding increases in food demand. However, several variables, including improper mechanization, limited arable land, and the presence of several biotic and abiotic pressures, continually impact agricultural productivity. Drought is a notable destructive abiotic stress and may be the most serious challenge confronting sustainable agriculture, resulting in a significant crop output deficiency. Numerous morphological and physiological changes occur in plants as a result of drought stress. Hence, there is a need to create mitigation techniques since these changes might permanently harm the plant. Current methods used to reduce the effects of drought stress include the use of film farming, super-absorbent hydrogels, nanoparticles, biochar, and drought-resistant plant cultivars. However, most of these activities are money and labor-intensive, which offer limited plant improvement. The use of plant-growth-promoting bacteria (PGPB) has proven to be a preferred method that offers several indirect and direct advantages in drought mitigation. PGPB are critical biological elements which have favorable impacts on plants’ biochemical and physiological features, leading to improved sugar production, relative water content, leaf number, ascorbic acid levels, and photosynthetic pigment quantities. This present review revisited the impacts of PGPB in ameliorating the detrimental effects of drought stress on plants, explored the mechanism of action employed, as well as the major challenges encountered in their application for plant growth and development.
Collapse
Affiliation(s)
- Ayomide Emmanuel Fadiji
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
| | - Gustavo Santoyo
- Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mexico
| | - Ajar Nath Yadav
- Microbial Biotechnology Laboratory, Department of Biotechnology, Eternal University, Baru Sahib, India
| | - Olubukola Oluranti Babalola
- Food Security and Safety Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mmabatho, South Africa
- *Correspondence: Olubukola Oluranti Babalola,
| |
Collapse
|
15
|
Bandyopadhyay P, Yadav BG, Kumar SG, Kumar R, Kogel KH, Kumar S. Piriformospora indica and Azotobacter chroococcum Consortium Facilitates Higher Acquisition of N, P with Improved Carbon Allocation and Enhanced Plant Growth in Oryza sativa. J Fungi (Basel) 2022; 8:jof8050453. [PMID: 35628709 PMCID: PMC9146537 DOI: 10.3390/jof8050453] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 03/30/2022] [Accepted: 04/06/2022] [Indexed: 12/21/2022] Open
Abstract
The soil microbiome contributes to nutrient acquisition and plant adaptation to numerous biotic and abiotic stresses. Numerous studies have been conducted over the past decade showing that plants take up nutrients better when associated with fungi and additional beneficial bacteria that promote plant growth, but the mechanisms by which the plant host benefits from this tripartite association are not yet fully understood. In this article, we report on a synergistic interaction between rice (Oryza sativa), Piriformospora indica (an endophytic fungus colonizing the rice roots), and Azotobacter chroococcum strain W5, a free-living nitrogen-fixing bacterium. On the basis of mRNA expression analysis and enzymatic activity, we found that co-inoculation of plant roots with the fungus and the rhizobacterium leads to enhanced plant growth and improved nutrient uptake compared to inoculation with either of the two microbes individually. Proteome analysis of O. sativa further revealed that proteins involved in nitrogen and phosphorus metabolism are upregulated and improve nitrogen and phosphate uptake. Our results also show that A. chroococcum supports colonization of rice roots by P. indica, and consequentially, the plants are more resistant to biotic stress upon co-colonization. Our research provides detailed insights into the mechanisms by which microbial partners synergistically promote each other in the interaction while being associated with the host plant.
Collapse
Affiliation(s)
- Prasun Bandyopadhyay
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (P.B.); (B.G.Y.); (S.G.K.); (R.K.)
| | - Bal Govind Yadav
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (P.B.); (B.G.Y.); (S.G.K.); (R.K.)
| | - Srinivasan Ganesh Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (P.B.); (B.G.Y.); (S.G.K.); (R.K.)
| | - Rahul Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (P.B.); (B.G.Y.); (S.G.K.); (R.K.)
| | - Karl-Heinz Kogel
- Institute for Phytopathology, Justus Liebig University, Heinrich-Buff-Ring 26, D-35392 Giessen, Germany;
| | - Shashi Kumar
- International Centre for Genetic Engineering and Biotechnology, Aruna Asaf Ali Marg, New Delhi 110067, India; (P.B.); (B.G.Y.); (S.G.K.); (R.K.)
- Correspondence:
| |
Collapse
|
16
|
Arbuscular mycorrhizae: natural modulators of plant–nutrient relation and growth in stressful environments. Arch Microbiol 2022; 204:264. [DOI: 10.1007/s00203-022-02882-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 03/20/2022] [Accepted: 03/28/2022] [Indexed: 11/02/2022]
|
17
|
Arbuscular Mycorrhizal Fungi Influence Crop Productivity, Plant Diversity, and Ecosystem Services. Fungal Biol 2022. [DOI: 10.1007/978-981-16-8877-5_16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
18
|
Wang H, Cai XY, Xu M, Tian F. Enhanced Biocontrol of Cucumber Fusarium Wilt by Combined Application of New Antagonistic Bacteria Bacillus amyloliquefaciens B2 and Phenolic Acid-Degrading Fungus Pleurotus ostreatus P5. Front Microbiol 2021; 12:700142. [PMID: 34512576 PMCID: PMC8425394 DOI: 10.3389/fmicb.2021.700142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/27/2021] [Indexed: 11/25/2022] Open
Abstract
Continuous monoculture of cucumber (Cucumis sativus L.) typically leads to the frequent incidence of Fusarium wilt caused by Fusarium oxysporum f. sp. cucumerinum (FOC). As potent allelochemicals, phenolic acids are believed to be associated with soilborne diseases. This study aimed to investigate the effect of single or co-inoculation of antagonistic bacteria Bacillus amyloliquefaciens B2 and phenolic acid-degrading fungus Pleurotus ostreatus P5 on the suppression of cucumber Fusarium wilt. The strain B2 was identified as B. amyloliquefaciens based on biochemical, physiological, and 16S rDNA and gyrB gene sequence analyses. Strain B2 showed indole-3-acetic acid (IAA) and siderophore production and phosphate solubilization in in vitro assays. Scanning electron microscope (SEM) imaging showed the ability of strain B2 to adhere to the root surface of cucumber. P. ostreatus P5 could effectively degrade mixed phenolic acids as its sole source of carbon and energy for growth in liquid medium. In a pot experiment, four treatments were established as follows: (1) CK, uninoculated control; (2) B2, inoculation of strain B2; (3) P5, inoculation of strain P5; and (4) B2 + P5, co-inoculation of strain B2 and strain P5. At the end of the 60-day pot experiment, the B2, P5, and B2 + P5 treatments significantly reduced disease incidence by 48.1, 22.2, and 63.0%, respectively, compared to the CK treatment (p < 0.05). All three inoculation treatments significantly increased the growth of cucumber seedlings and suppressed the FOC population compared to the control (p < 0.05). High-performance liquid chromatography (HPLC) analysis showed that total phenolic acids were decreased by 18.9, 35.9, and 63.2% in the B2, P5, and B2 + P5 treatments, respectively. The results from this study suggest that combined application of B. amyloliquefaciens B2 and P. ostreatus P5 could be a promising strategy for suppressing Fusarium wilt and improving plant growth of cucumber seedlings under continuous cropping conditions.
Collapse
Affiliation(s)
- Hongwei Wang
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, China
| | - Xiao-Yu Cai
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, China
| | - Man Xu
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, China
| | - Feng Tian
- Nanjing Institute of Environmental Science, Ministry of Ecology and Environment of China, Nanjing, China
| |
Collapse
|
19
|
Imran M, Abulreesh HH, Monjed MK, Elbanna K, Samreen, Ahmad I. Multifarious functional traits of free-living rhizospheric fungi, with special reference to Aspergillus spp. isolated from North Indian soil, and their inoculation effect on plant growth. ANN MICROBIOL 2021. [DOI: 10.1186/s13213-021-01643-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Rhizospheric soil fungi are critical for plant and soil health. However, their multiple functional traits and impact on plant growth have not been systematically explored.
Methods
During this study, biochemical traits of 73 indigenous soil fungal isolates and 15 unidentified isolates related to plant growth promotion and production of extracellular enzymes were studied.
Results
Forty four (65.67%) of the total isolates produced indole acetic acid (IAA) followed by siderophore (52.23%), phosphate solubilization (37.31%), and antibiotic (11.93%). 91.04% of the studied isolates produced ammonia whereas 28.35% produced organic acid. Extracellular enzyme activities of lipase, amylase, chitinase, and cellulase were detected among 95.52%, 61.11%, 35.82%, and 41.79% isolates, respectively. Based on these activities, 73 fungal isolates were categorized into different biotypes. Quantitative analysis of IAA production and phosphate solubilization was carried out for Aspergillus, Penicillium, and Rhizopus isolates. Aspergillus isolates exhibited varying activities of IAA production and phosphate solubilization. Most of the Aspergillus isolates and some other fungi demonstrated multiple activities. Based on the multiple traits of selected fungal isolates, Aspergillus sp-07, Penicillium sp-03, and Rhizopus sp-02 were further evaluated in different combinations for their inoculation effect on the growth and yield of wheat under field conditions.
Conclusions
The results indicated that these isolates could be developed into bio-inoculants to enhance plant growth. The consortium of these three isolates was also found to be compatible and beneficial for plant growth.
Collapse
|
20
|
Mohamed I, Bassouny MA, Abbas MHH, Ming Z, Cougui C, Fahad S, Saud S, Khan Khattak JZ, Ali S, M S Salem H, Azab A, Ali M. Rice straw application with different water regimes stimulate enzymes activity and improve aggregates and their organic carbon contents in a paddy soil. CHEMOSPHERE 2021; 274:129971. [PMID: 33979915 DOI: 10.1016/j.chemosphere.2021.129971] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Revised: 02/07/2021] [Accepted: 02/09/2021] [Indexed: 06/12/2023]
Abstract
Soil organic carbon plays considerable roles in binding soil particles together forming aggregates. Carbon (C) incorporated within these aggregates is thought to be microbially processed; thus, investigating changes in microbial activities i.e. dehydrogenase, urease, catalase and phosphatase enzymes may explain, to some extent, the dynamics and probably mechanisms responsible of formation of these aggregates. Since, soil water content (SWC) may take part in stimulating/lessening activities of organic matter decomposers; thus, this study aimed at investigating the effects of rice straw as a source of organic C in combination with variable SWC on bioaccumulation of C within different soil aggregate size fractions (2000-250, 250-53 and < 53 μm) and hence formation of these aggregates. To achieve these objectives, a pot experiment was conducted for 90 days, including five water levels i.e. maintaining a water head 1 cm above the soil surface (W1), 100% of the saturation percentage, SP (W2), 80% of SP (W3), 65% of SP (W4) and 50% of SP (W5), beside of two rates of applied rice straw i.e. 0 and 15 g kg-1 (w/w). Results revealed that application of rice straw at a rate of 15 g kg-1 increased the activities of dehydrogenase, urease, neutral phosphatase and catalase enzymes within the first 60 days after application; thereafter, activities of the first three enzymes decreased considerably. Likewise, formation of soil macro- (2000-250 μm) and micro-aggregates (250-53 μm) increased by the end of the experimental period. The highest concentrations of soil carbon were incorporated within soil macro-aggregate, whereas the least C content was found within the "silt + clay" fraction. Increasing SWC resulted in significant reductions in activities of the aforementioned enzymes and consequent reductions occurred in soil aggregation. Carbon content within aggregates sized <250 μm were significantly correlated with the percentage of these aggregates in soil. Thus, soil aggregation is thought to be the byproduct of an aerobic biosynthetic microbial process in which more stable hydrophobic organic C existed mainly in macropores. This process probably occurred within the first 60 days after RS application.
Collapse
Affiliation(s)
- Ibrahim Mohamed
- Department of Soils and Water Science, Faculty of Agriculture, Benha University, Benha, Qalyubia, Egypt
| | - Mohamed A Bassouny
- Department of Soils and Water Science, Faculty of Agriculture, Benha University, Benha, Qalyubia, Egypt
| | - Mohamed H H Abbas
- Department of Soils and Water Science, Faculty of Agriculture, Benha University, Benha, Qalyubia, Egypt
| | - Zhan Ming
- College of Plant Science and Technology, Huzahong Agricultural University, Wuhan, Hubei, 430070, China
| | - Cao Cougui
- College of Plant Science and Technology, Huzahong Agricultural University, Wuhan, Hubei, 430070, China.
| | - Shah Fahad
- Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan.
| | - Shah Saud
- Department of Horticulture, Northeast Agricultural University, Harbin, China
| | | | - Shamsher Ali
- Department of Soil and Environmental Sciences, Amir Muhammad Khan Campus Mardan, The University of Agriculture, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Haythum M S Salem
- Department of Soils and Water Science, Faculty of Agriculture, Benha University, Benha, Qalyubia, Egypt
| | - Ahmed Azab
- Agricultural Engineering Research Center Institute (AEnRI), A.R.C, Giza, Egypt
| | - Maha Ali
- Department of Soils and Water Science, Faculty of Agriculture, Benha University, Benha, Qalyubia, Egypt
| |
Collapse
|
21
|
Above and below-ground involvement in cyclic energy transformation that helps in the establishment of rhizosphere microbial communities. Symbiosis 2021. [DOI: 10.1007/s13199-021-00791-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
22
|
Abdelaal K, AlKahtani M, Attia K, Hafez Y, Király L, Künstler A. The Role of Plant Growth-Promoting Bacteria in Alleviating the Adverse Effects of Drought on Plants. BIOLOGY 2021; 10:520. [PMID: 34207963 PMCID: PMC8230635 DOI: 10.3390/biology10060520] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 06/08/2021] [Accepted: 06/09/2021] [Indexed: 11/29/2022]
Abstract
Plant growth-promoting bacteria play an essential role in enhancing the physical, chemical and biological characters of soils by facilitating nutrient uptake and water flow, especially under abiotic stress conditions, which are major constrains to agricultural development and production. Drought is one of the most harmful abiotic stress and perhaps the most severe problem facing agricultural sustainability, leading to a severe shortage in crop productivity. Drought affects plant growth by causing hormonal and membrane stability perturbations, nutrient imbalance and physiological disorders. Furthermore, drought causes a remarkable decrease in leaf numbers, relative water content, sugar yield, root yield, chlorophyll a and b and ascorbic acid concentrations. However, the concentrations of total phenolic compounds, electrolyte leakage, lipid peroxidation, amounts of proline, and reactive oxygen species are considerably increased because of drought stress. This negative impact of drought can be eliminated by using plant growth-promoting bacteria (PGPB). Under drought conditions, application of PGPB can improve plant growth by adjusting hormonal balance, maintaining nutrient status and producing plant growth regulators. This role of PGPB positively affects physiological and biochemical characteristics, resulting in increased leaf numbers, sugar yield, relative water content, amounts of photosynthetic pigments and ascorbic acid. Conversely, lipid peroxidation, electrolyte leakage and amounts of proline, total phenolic compounds and reactive oxygen species are decreased under drought in the presence of PGPB. The current review gives an overview on the impact of drought on plants and the pivotal role of PGPB in mitigating the negative effects of drought by enhancing antioxidant defense systems and increasing plant growth and yield to improve sustainable agriculture.
Collapse
Affiliation(s)
- Khaled Abdelaal
- Excellence Center (EPCRS), Plant Pathology and Biotechnology Laboratory, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt;
| | - Muneera AlKahtani
- Biology Department, College of Science, Princess Nourah Bint Abdulrahman University, Riyadh 11564, Saudi Arabia;
| | - Kotb Attia
- Center of Excellence in Biotechnology Research, King Saud University, Riyadh 11451, Saudi Arabia;
| | - Yaser Hafez
- Excellence Center (EPCRS), Plant Pathology and Biotechnology Laboratory, Faculty of Agriculture, Kafrelsheikh University, Kafr Elsheikh 33516, Egypt;
| | - Lóránt Király
- Centre for Agricultural Research, Plant Protection Institute, ELKH, 15 Herman Ottó Str., H-1022 Budapest, Hungary; (L.K.); (A.K.)
| | - András Künstler
- Centre for Agricultural Research, Plant Protection Institute, ELKH, 15 Herman Ottó Str., H-1022 Budapest, Hungary; (L.K.); (A.K.)
| |
Collapse
|
23
|
Snigdha S, Jishma P, Nandakumar K, Sylas V, Thomas S, Radhakrishnan E. Laponite® nanoclay gel based microenvironment for plant probiotic rhizobacterial delivery. RHIZOSPHERE 2021; 18:100346. [DOI: 10.1016/j.rhisph.2021.100346] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
24
|
Abdelhafez AA, Eid KE, El-Abeid SE, Abbas MHH, Ahmed N, Mansour RRME, Zou G, Iqbal J, Fahad S, Elkelish A, Alamri S, Siddiqui MH, Mohamed I. Application of soil biofertilizers to a clayey soil contaminated with Sclerotium rolfsii can promote production, protection and nutritive status of Phaseolus vulgaris. CHEMOSPHERE 2021; 271:129321. [PMID: 33434829 DOI: 10.1016/j.chemosphere.2020.129321] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
Sclerotium rolfsii is a soil-borne fungus that causes big losses in productivity of various plant species including Phaseolus vulgaris L. The objectives of this study were to (1) evaluate the impacts of Sclerotium rolfsii on growth and production of common bean plants, (2) determine the effects of Sclerotium rolfsii on nutritive contents of beans, and (3) test the efficacy of bio-inoculants on suppressing plant infection with Sclerotium rolfsii. To fulfill these objectives, we used a coupled pot and field experimental approaches during two growing seasons. Common beans were inoculated with either arbuscular mycorrhizal fungi (Claroideoglomus etunicatum), Saccharomyces cerevisiae, or Trichoderma viride solely or in different combinations. Non-inoculated plants and fungicide treated ones were considered as reference treatments. Throughout these experiments, minimal amounts of rock phosphate were added during soil preparation for bio-inoculated treatments, while the non-inoculated reference treatments received a full dose of P as calcium superphosphate. Results revealed that all tested bioinoculants significantly raised the activities of plant defense enzymes i.e. chitinase, peroxidase and polyphenoloxidase as compared to non-inoculated control. Likewise, pre-, post- and plant survival percentages significantly increased due to these bio-inoculations. Increased survival percentages were attributed to the concurrent increases in uptake of N, P and Zn nutrients by plants treated with bioinoculants. In this concern, plant nutrients uptake was higher in combined than single bio-inoculant treatments. Moreover, the uptake values of plant nutrients owing to the combined bio-inoculants were higher than the corresponding ones achieved due to fungicide treatment. In conclusion, application of the tested bio-inoculants, especially the combined ones can be considered an eco-friendly approach that not only enhances plants resistance against infection with Sclerotium rolfsii but also improves plant nutritive status.
Collapse
Affiliation(s)
- Ahmed A Abdelhafez
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science (SAAS), China; New Valley University, Faculty of Agriculture, Soils and Water Department, Egypt; National Committee of Soil Science, Academy of Scientific Research and Technology, Egypt
| | - Khaled E Eid
- Plant Pathology Department, Faculty of Agriculture, Benha University Egypt
| | - Sozan E El-Abeid
- Plant Pathology Research Institute, Agriculture Research Centre (ARC), Giza, Egypt
| | - Mohamed H H Abbas
- Soils and Water Department, Faculty of Agriculture, Benha University, Egypt
| | - Nevin Ahmed
- Plant Protection Department, Faculty of Agriculture, Benha University, Egypt
| | | | - Guoyan Zou
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science (SAAS), China
| | - Javed Iqbal
- Department of Agronomy and Horticulture, University of Nebraska-Lincoln, Lincoln, NE, 68583, USA
| | - Shah Fahad
- Hainan Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, 570228, China; Department of Agronomy, The University of Haripur, Haripur, 22620, Pakistan.
| | - Amr Elkelish
- Botany Department, Faculty of Science, Suze Canal University, Ismailia, Egypt
| | - Saud Alamri
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Manzer H Siddiqui
- Department of Botany and Microbiology, College of Science, King Saud University, Riyadh, 2455, Saudi Arabia
| | - Ibrahim Mohamed
- Soils and Water Department, Faculty of Agriculture, Benha University, Egypt.
| |
Collapse
|
25
|
Chen Y, Li S, Liu N, He H, Cao X, Lv C, Zhang K, Dai J. Effects of different types of microbial inoculants on available nitrogen and phosphorus, soil microbial community, and wheat growth in high-P soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:23036-23047. [PMID: 33438124 DOI: 10.1007/s11356-020-12203-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Accepted: 12/22/2020] [Indexed: 05/03/2023]
Abstract
Irrational application of chemical fertilizers causes soil nutrient imbalance, reduced microbial diversity, soil diseases, and other soil quality problems and is one of the main sources of non-point pollution. The application of microbial inoculant (MI) can improve the soil environment and crop growth to reduce problems caused by irrational application of chemical fertilizers. Field experiments were carried out in high-phosphorus soils to study the effects of the addition of various MIs combined with chemical fertilizers on soil properties, wheat growth, and soil microbial composition and structure. The MIs consisted of one fungal agent: Trichoderma compound agent (TC) and five bacterial agents, namely soil remediation agent (SR), anti-repeat microbial agent (AM), microbial agent (MA), plant growth-promoting rhizobacteria (PG), and biological fertilizer agent (BF). The wheat yield increased by 15.2-33.4% with the addition of MIs, and PG with Bacillus subtilis as the core microorganism had the most obvious effect on increasing the production (p < 0.05). For the entire growth period of wheat, all MIs applied significantly increased the available nitrogen (AN) (p < 0.05) but did not significantly affect the available phosphorus (AP). BF has the best effect on increasing AN in the soil. The 16S rRNA sequencing results indicated that the dominant phyla of soil bacteria were Proteobacteria, Acidobacteria, Bacteroidetes, Actinobacteria, and Verrucomicrobia. The addition of MIs increased the relative abundance of Acidobacteria, Actinobacteria, Chloroflexi and decreased Proteobacteria and Bacteroidetes. The diversity of soil bacterial community (Chao1) was significantly higher in the soil added with TC than that added with BF (p < 0.05). All bacterial agents significantly enriched various genera (p < 0.05), while the fungal agent (TC) did not enrich the genera significantly. pH and AN, but not TP, were closely related to the dominant bacteria phylum in high-P soil. The application of MIs improved AN in soil, increased the wheat yield, and changed the relative abundance of the soil dominant phylum, and these changes were closely related to the type of MIs. The results provide a scientific basis for rational use of different types of MIs in high-P soil.
Collapse
Affiliation(s)
- Yihui Chen
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, China
| | - Shuangshuang Li
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, China
| | - Na Liu
- College of Resource and Environment, Shanxi Agricultural University, Taigu, 030801, China
| | - Huan He
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, China
| | - Xiaoyu Cao
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, China
| | - Cheng Lv
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, China
| | - Ke Zhang
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, China
| | - Jiulan Dai
- Environment Research Institute, Shandong University, Binhai Road 72, Qingdao, 266237, Shandong, China.
| |
Collapse
|
26
|
Characterization of Plant Growth-Promoting Traits and Inoculation Effects on Triticum durum of Actinomycetes Isolates under Salt Stress Conditions. SOIL SYSTEMS 2021. [DOI: 10.3390/soilsystems5020026] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
This study aimed to characterize the halotolerant capability, in vitro, of selected actinomycetes strains and to evaluate their competence in promoting halo stress tolerance in durum wheat in a greenhouse experiment. Fourteen isolates were tested for phosphate solubilization, indole acetic acid, hydrocyanic acid, and ammonia production under different salt concentrations (i.e., 0, 0.25, 0.5, 0.75, 1, 1.25, and 1.5 M NaCl). The presence of 1-aminocyclopropane-1-carboxylate deaminase activity was also investigated. Salinity tolerance was evaluated in durum wheat through plant growth and development parameters: shoot and root length, dry and ash-free dry weight, and the total chlorophyll content, as well as proline accumulation. In vitro assays have shown that the strains can solubilize inorganic phosphate and produce indole acetic acid, hydrocyanic acid, and ammonia under different salt concentrations. Most of the strains (86%) had 1-aminocyclopropane-1-carboxylate deaminase activity, with significant amounts of α-ketobutyric acid. In the greenhouse experiment, inoculation with actinomycetes strains improved the morpho-biochemical parameters of durum wheat plants, which also recorded significantly higher content of chlorophylls and proline than those uninoculated, both under normal and stressed conditions. Our results suggest that inoculation of halotolerant actinomycetes can mitigate the negative effects of salt stress and allow normal growth and development of durum wheat plants.
Collapse
|
27
|
Liu H, Wang J, Sun H, Han X, Peng Y, Liu J, Liu K, Ding Y, Wang C, Du B. Transcriptome Profiles Reveal the Growth-Promoting Mechanisms of Paenibacillus polymyxa YC0136 on Tobacco ( Nicotiana tabacum L.). Front Microbiol 2020; 11:584174. [PMID: 33101258 PMCID: PMC7546199 DOI: 10.3389/fmicb.2020.584174] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Accepted: 09/07/2020] [Indexed: 11/13/2022] Open
Abstract
Paenibacillus polymyxa is an important member of the plant growth-promoting rhizobacteria. P. polymyxa YC0136 inoculation had beneficial effect on growth promotion and biological control of tobacco (Nicotiana tabacum L.) under field conditions. This study aimed to reveal the growth-promoting mechanisms of strain YC0136. In growth-promotion assays, tobacco plant height was increased by 8.42% and 8.25% at 60 and 90 days, respectively, after inoculation with strain YC0136. Strain YC0136 also promoted the accumulation of tobacco biomass in varying degrees. Following inoculation with strain YC0136, 3,525 and 4,368 tobacco genes were up-regulated and down-regulated, respectively. Strain YC0136 induced the expression of plant hormone-related genes in tobacco, including auxin, cytokinin, and gibberellin, as well as transcription factors related to stress resistance such as WRKY and MYB. In addition, strain YC0136 induced the up-regulation of genes in the phenylpropanoid biosynthesis pathway by 1.51-4.59 times. Interaction with tobacco also induced gene expression changes in strain YC0136, with 286 and 223 genes up-regulated and down-regulated, respectively. Tobacco interaction induced up-regulation of the ilvB gene related to auxin biosynthesis in strain YC0136 by 1.72 times and induced expression of some nutrient transport genes. This study contributes to our understanding of the growth-promoting mechanisms of strain YC0136 on tobacco and provides a theoretical basis for the application of P. polymyxa YC0136 as a biological fertilizer.
Collapse
Affiliation(s)
- Hu Liu
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Jun Wang
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Huimin Sun
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Xiaobin Han
- Zunyi Tobacco Monopoly Administration of Guizhou, Zunyi, China
| | - Yulong Peng
- Zunyi Tobacco Monopoly Administration of Guizhou, Zunyi, China
| | - Jing Liu
- Zunyi Tobacco Monopoly Administration of Guizhou, Zunyi, China
| | - Kai Liu
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Yanqin Ding
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Chengqiang Wang
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| | - Binghai Du
- College of Life Sciences, Shandong Engineering Research Center of Plant-Microbial Restoration for Saline-Alkali Land, Shandong Key Laboratory of Agricultural Microbiology, National Engineering Laboratory for Efficient Utilization of Soil and Fertilizer Resources, Shandong Agricultural University, Tai'an, China
| |
Collapse
|
28
|
Adedeji AA, Häggblom MM, Babalola OO. Sustainable agriculture in Africa: Plant growth-promoting rhizobacteria (PGPR) to the rescue. SCIENTIFIC AFRICAN 2020. [DOI: 10.1016/j.sciaf.2020.e00492] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022] Open
|
29
|
Bhat MA, Kumar V, Bhat MA, Wani IA, Dar FL, Farooq I, Bhatti F, Koser R, Rahman S, Jan AT. Mechanistic Insights of the Interaction of Plant Growth-Promoting Rhizobacteria (PGPR) With Plant Roots Toward Enhancing Plant Productivity by Alleviating Salinity Stress. Front Microbiol 2020; 11:1952. [PMID: 32973708 PMCID: PMC7468593 DOI: 10.3389/fmicb.2020.01952] [Citation(s) in RCA: 76] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 07/24/2020] [Indexed: 11/20/2022] Open
Abstract
Agriculture plays an important role in a country's economy. The sector is challenged by many stresses, which led to huge loss in plant productivity worldwide. The ever-increasing population, rapid urbanization with shrinking agricultural lands, dramatic change in climatic conditions, and extensive use of agrochemicals in agricultural practices that caused environmental disturbances confront mankind of escalating problems of food security and sustainability in agriculture. Escalating environmental problems and global hunger have led to the development and adoption of genetic engineering and other conventional plant breeding approaches in developing stress-tolerant varieties of crops. However, these approaches have drawn flaws in their adoption as the process of generating tolerant varieties takes months to years in bringing the technology from the lab to the field. Under such scenario, sustainable and climate-smart agricultural practices that avail bacterial usage open the avenues in fulfilling the incessant demand for food for the global population. Ensuring stability on economic fronts, bacteria minimizes plant salt uptake by trapping ions in their exopolysaccharide matrix besides checking the expression of Na+/H+ and high-affinity potassium transporters. Herein we describe information on salinity stress and its effect on plant health as well as strategies adopted by plant growth-promoting rhizobacteria (PGPR) in helping plants to overcome salinity stress and in mitigating loss in overall plant productivity. It is believed that acquisition of advanced knowledge of plant-beneficial PGPR will help in devising strategies for sustainable, environment-friendly, and climate-smart agricultural technologies for adoption in agriculture to overcome the constrained environmental conditions.
Collapse
Affiliation(s)
- Mujtaba Aamir Bhat
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Vijay Kumar
- Department of Biotechnology, Yeungnam University, Gyeongsan, South Korea
| | - Mudasir Ahmad Bhat
- Department of Biotechnology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Ishfaq Ahmad Wani
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Farhana Latief Dar
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Iqra Farooq
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Farha Bhatti
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Rubina Koser
- Department of Microbiology, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Safikur Rahman
- Department of Botany, Munshi Singh College, Babasaheb Bhimrao Ambedkar Bihar University, Muzaffarpur, India
| | - Arif Tasleem Jan
- Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| |
Collapse
|
30
|
Optimization of PGPR and silicon fertilization using response surface methodology for enhanced growth, yield and biochemical parameters of French bean (Phaseolus vulgaris L.) under saline stress. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2019.101463] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Eid KE, Abbas MHH, Mekawi EM, ElNagar MM, Abdelhafez AA, Amin BH, Mohamed I, Ali MM. Arbuscular mycorrhiza and environmentally biochemicals enhance the nutritional status of Helianthus tuberosus and induce its resistance against Sclerotium rolfsii. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109783. [PMID: 31629192 DOI: 10.1016/j.ecoenv.2019.109783] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Chemical fungicides are effective tools in controlling plant pathogens; however, these chemicals can, on the other hand, distress the ecosystem. Accordingly, the current research investigates the potentiality of substituting traditional chemical fungicides by inducing plant resistance against infection with soil-born pathogens i.e. Sclerotium rolfsii in the presence of mycorrhizae (AMF) as plant inoculants and one of the following amendments: humic acid, sulphex (a mixture of canola oil and diluted sulphuric acid) and paclobutrazol (ABZ). To attain the abovementioned objective, a field (mildly infected with S. rolfsii) was cultivated with Helianthus tuberosus (a perennial plant belongs to the Asteraceae family) for two successive seasons (2014 and 2015) and the above-mentioned treatments were tested for their feasibilities in controlling S. rolfsii infection against the chemical fungicide "Vitavax-200" either solely or in combinations in a complete randomized block design. Inoculating plants with AMF or amending soils with either humic acid, Sulphex or ABZ solely increased significantly the activities of plant defense enzymes by approximately 1.5-2.1 folds higher than the control treatment. These treatments also improved NPK availability in soil and; hence, increased their contents within plant tubers. Consequently, these treatments decreased the disease incidence and severity caused by S. rolfsii while improved shoot biomass and tuber yield. In spite of that, these results stood below the prospective of the fungicide treatment. The integrated treatments i.e. "humic acid + AMF", "Sulphex + AMF" and "ABZ + AMF" caused further significant improvements in both NPK availabilities in soil and plant areal bio-masses. This probably induced further plant resistance against the investigated soil-borne pathogen while recorded insignificant variations in disease incidence and severity when compared with the fungicide treatment. Moreover, the integrated treatments increased the tuber yields beyond those attained for the fungicide treatment. Accordingly, such integrated strategies can completely substitute the chemical fungicides; thus, minimize their negative impacts on the ecosystem.
Collapse
Affiliation(s)
- Khaled E Eid
- Benha University, Faculty of Agriculture, Plant Pathology Department, Egypt.
| | - Mohamed H H Abbas
- Benha University, Faculty of Agriculture, Soils and Water Department, Egypt.
| | - Enas M Mekawi
- Benha University, Faculty of Agriculture, Agricultural Biochemistry Department, Egypt
| | - Mahran M ElNagar
- Benha University, Faculty of Agriculture, Horticulture Department, Egypt
| | - Ahmed A Abdelhafez
- Eco-environmental Protection Research Institute, Shanghai Academy of Agricultural Science (SAAS) , China; The New Valley University, Faculty of Agriculture, Soils and Water Department, Egypt
| | - Basma H Amin
- Al- Azhar University, The Regional Centre for Mycology and Biotechnology (RCMB) , Egypt
| | - Ibrahim Mohamed
- Benha University, Faculty of Agriculture, Soils and Water Department, Egypt.
| | - Maha M Ali
- Benha University, Faculty of Agriculture, Soils and Water Department, Egypt
| |
Collapse
|
32
|
The Effects of a Microorganisms-Based Commercial Product on the Morphological, Biochemical and Yield of Tomato Plants under Two Different Water Regimes. Microorganisms 2019; 7:microorganisms7120706. [PMID: 31888271 PMCID: PMC6955974 DOI: 10.3390/microorganisms7120706] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2019] [Revised: 12/12/2019] [Accepted: 12/14/2019] [Indexed: 01/01/2023] Open
Abstract
The practice of organic agriculture represents an essential requirement for conserving natural resources and for providing the food necessary for a growing population, on a sustainable basis. Tomatoes are considered to be one of the most important crops worldwide. In this context, the organic production of tomatoes should be taken into more consideration. The use of microorganisms-based commercial products is an alternative to chemical fertilizers. Anyway, the results of their use are still variable because of various factors. The aim of this study was to test the effect of inoculation with AMF, PGPR and fungi-based products (Rizotech plus®) on the morphological (length of the plants), biochemical (lycopen, polyphenols, antioxidant activity), and number of fruits and yields of four tomato cultivars (Siriana F1, HTP F1, Minaret F1, Inima de Bou) in two different water regimes used for irrigation (200 m3 or 300 m3 of water/hectare) under a protected area. The results showed that the efficiency of Rizotech plus® application is dependent on the cultivar and the amount of water used. Also, it was clearly demonstrated that the microorganism inoculation significantly increased the yield of Minaret F1, Siriana F1 and HTP F1 cultivars as compared to the uninoculated plants, regardless of the water amount used in the experiment. Moreover, it was observed that for the irrigation of all four cultivars, inoculated with Rizotech plus®, a lower amount of water (200 m3·ha−1) can be used to get the same length of plants, number of fruits and yield as in the case of a higher amount of water (300 m3·ha−1). In the case of lycopene, polyphenols and antioxidant activity, the results varied with the cultivar and the water amount used. This study gives new information about the functionality and performance of the microorganisms from Rizotech plus® product when applied to different tomato cultivars grown in a tunnel, in the condition of two different water regimes, contributing to a better characterization of it and maybe to a more efficient use in agriculture to achieve optimum results.
Collapse
|
33
|
Liu X, Li Q, Li Y, Guan G, Chen S. Paenibacillus strains with nitrogen fixation and multiple beneficial properties for promoting plant growth. PeerJ 2019; 7:e7445. [PMID: 31579563 PMCID: PMC6761918 DOI: 10.7717/peerj.7445] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 07/09/2019] [Indexed: 11/20/2022] Open
Abstract
Paenibacillus is a large genus of Gram-positive, facultative anaerobic, endospore-forming bacteria. The genus Paenibacillus currently comprises more than 150 named species, approximately 20 of which have nitrogen-fixation ability. The N2-fixing Paenibacillus strains have potential uses as a bacterial fertilizer in agriculture. In this study, 179 bacterial strains were isolated by using nitrogen-free medium after heating at 85 °C for 10 min from 69 soil samples collected from different plant rhizospheres in different areas. Of the 179 bacterial strains, 25 Paenibacillus strains had nifH gene encoding Fe protein of nitrogenase and showed nitrogenase activities. Of the 25 N2-fixing Paenibacillus strains, 22 strains produced indole-3-acetic acid (IAA). 21 strains out of the 25 N2-fixing Paenibacillus strains inhibited at least one of the 6 plant pathogens Rhizoctonia cerealis, Fusarium graminearum, Gibberella zeae, Fusarium solani, Colletotrichum gossypii and Alternaria longipes. 18 strains inhibited 5 plant pathogens and Paenibacillus sp. SZ-13b could inhibit the growth of all of the 6 plant pathogens. According to the nitrogenase activities, antibacterial capacities and IAA production, we chose eight strains to inoculate wheat, cucumber and tomato. Our results showed that the 5 strains Paenibacillus sp. JS-4, Paenibacillus sp. SZ-10, Paenibacillus sp. SZ-14, Paenibacillus sp. BJ-4 and Paenibacillus sp. SZ-15 significantly promoted plant growth and enhanced the dry weight of plants. Hence, the five strains have the greater potential to be used as good candidates for biofertilizer to facilitate sustainable development of agriculture.
Collapse
Affiliation(s)
- Xiaomeng Liu
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Qin Li
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Yongbin Li
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Guohua Guan
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| | - Sanfeng Chen
- State Key Laboratory for Agrobiotechnology and College of Biological Sciences, China Agricultural University, Beijing, China
| |
Collapse
|
34
|
Effects of organophosphate pesticides on siderophore producing soils microorganisms. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2019. [DOI: 10.1016/j.bcab.2019.101359] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
35
|
Tolba STM, Ibrahim M, Amer EAM, Ahmed DAM. First insights into salt tolerance improvement of Stevia by plant growth-promoting Streptomyces species. Arch Microbiol 2019; 201:1295-1306. [PMID: 31273402 DOI: 10.1007/s00203-019-01696-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Revised: 06/18/2019] [Accepted: 06/26/2019] [Indexed: 11/28/2022]
Abstract
The present study aimed to investigate the potential of plant growth-promoting rhizobacteria (PGPR) to improve the salt stress and alleviate its impact on Stevia crop plant under different levels of salt concentration. Two Streptomyces spp. isolated from the rhizosphere of halophytic plants (Cucumis sativus L. and Salicornia europaea L.) have shown potential for plant growth promotion in Stevia plant. The streptomycetes isolates were identified by classical microbiological techniques and partial sequencing of 16S rRNA gene as Streptomyces variabilis (4NC) and S. fradiae (8PK). The results have shown that inoculation of Stevia plant by these isolates has enhanced plant growth parameters under applied salt stress. Moreover, total cellular proteins were extracted from the two Streptomyces isolates and SDS-PAGE technique was conducted. Mass spectrometric analysis has identified unique polypeptide of the elongation factor thermos unstable (EF-Tu) indicating the elevation of ribosomal RNA and ribosomal protein genes transcription. On the same context, alleviation of salt stress in Stevia plants inoculated with the two Streptomyces isolates has potentially promoted the accumulation of the major pronounced RuBisCO large subunit protein band detected approximately at 53 kDa. These results may give novel insights and accretion our understanding of salinity tolerance mechanisms using PGP streptomycetes to develop resistant sugar crops of highly important economic value. This study has presented the integration of microbiological, biochemical, and molecular techniques to evaluate the effect of salt stress and to assess the level of stress amelioration using PGPR on proteostasis of sugar crops in Egypt.
Collapse
Affiliation(s)
- Sahar T M Tolba
- Microbiology Department, Faculty of Science, Ain Shams University, Cairo, Egypt.
| | - Mohamed Ibrahim
- Botany Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Essam A M Amer
- Breeding and Genetics Department, Sugar Crops Research Institute, Agricultural Research Centre (ARC), Giza, Egypt
| | - Doaa A M Ahmed
- Breeding and Genetics Department, Sugar Crops Research Institute, Agricultural Research Centre (ARC), Giza, Egypt
| |
Collapse
|